nonlinear_pspi.pdf

182
Nonlinear Control N. Marchand References Outline Introduction Linear/Nonlinear The X4 example Linear approaches Antiwindup Linearization Gain scheduling Stability Nonlinear approaches CLF Sliding mode Geometric control Recursive techniques X4 stabilization Observers Control of Nonlinear Systems Nicolas Marchand CNRS Associate researcher [email protected] Control Systems Department,  gipsa-lab Grenoble, France Master PSPI 2009-2010 N. Marchand (gipsa-lab)  Nonlinear Control  Maste r PSPI 2009- 201 0 1 / 174

Upload: acajahuaringa

Post on 02-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 1/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

NonlinearapproachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Control of Nonlinear Systems

Nicolas Marchand

CNRS Associate researcher

[email protected]

Control Systems Department, gipsa-labGrenoble, France

Master PSPI 2009-2010

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 1 / 174

Page 2: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 2/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

NonlinearapproachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

References

Nonlinear systems Khalil - Prentice-Hall, 2002

Probably the best book to start with nonlinear control

Nonlinear systems S. Sastry - Springer Verlag, 1999

Good general book, a bit harder than Khalil’s

Mathematical Control Theory - E.D. Sontag - Springer, 1998

Mathematically oriented, Can be downloaded at:

http://www.math.rutgers.edu/ ~ sontag/FTP_DIR/sontag_mathematical_control_theory_springer98.pdf

Constructive nonlinear control - Sepulchre et al. - Springer, 1997 More

focused on passivity and recursive approaches

Nonlinear control systems - A. Isidori - Springer Verlag, 1995

A reference for geometric approach

Applied Nonlinear control - J.J. Slotine and W. Li - Prentice-Hall, 1991

An interesting reference in particular for sliding mode

“Research on Gain Scheduling” - W.J. Rugh and J.S. Shamma -

Automatica, 36 (10):1401–1425, 2000“Survey of gain scheduling analysis and design” - D.J. Leith and W.E.Leithead - Int. Journal of Control, 73:1001–1025, 1999Surveys on Gain Scheduling, The second reference can be downloaded at:

http://citeseer.ist.psu.edu/leith99survey.html

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 2 / 174

Page 3: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 3/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Outline

1 IntroductionLinear versus nonlinear

The X4 example2 Linear control methods for nonlinear systems

AntiwindupLinearization

Gain scheduling3 Stability

4 Nonlinear control methodsControl Lyapunov functions

Sliding mode controlState and output linearizationBackstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 3 / 174

Page 4: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 4/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Outline

1 IntroductionLinear versus nonlinear

The X4 example2 Linear control methods for nonlinear systems

AntiwindupLinearization

Gain scheduling3 Stability

4 Nonlinear control methodsControl Lyapunov functions

Sliding mode controlState and output linearizationBackstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 4 / 174

Page 5: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 5/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Introduction

Some preliminary vocable and definitions

What is control ?

A very short review of the linear case (properties,design of control laws, etc.)

Why nonlinear control ?

Formulation of a nonlinear control problem (model,representation, closed-loop stability, etc.)?

Some strange possible behaviors of nonlinear systems

Example : The X4 helicopter

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 5 / 174

Page 6: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 6/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Outline

1 IntroductionLinear versus nonlinear

The X4 example2 Linear control methods for nonlinear systems

AntiwindupLinearization

Gain scheduling3 Stability

4 Nonlinear control methodsControl Lyapunov functions

Sliding mode controlState and output linearizationBackstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 6 / 174

Page 7: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 7/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Some preliminary vocable

We consider a dynamical system:

ystem

u(t) y(t)x(t)

where:

y is the output: represents what is “visible” from outsidethe systemx is the state of the system: characterizes the state of thesystemu is the control input: makes the system move

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 7 / 174

Page 8: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 8/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The 4 steps to control a system

y u y d

x

Observer

k (x )

Controller

1 ModelizationTo get a mathematical representation of the systemDifferent kind of model are useful. Often:

a simple model to build the control lawa sharp model to check the control law and the observer

2 Design the state reconstruction: in order to reconstructthe variables needed for control

3 Design the control and test it

4 Close the loop on the real system

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 8 / 174

Page 9: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 9/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Linear dynamical systemsSome properties of linear system (1/2)

Definition: Systems such that if y 1 and y 2 are the

outputs corresponding to u 1 and u 2, then ∀λ ∈ R:y 1 + λy 2 is the output corresponding to u 1 + λu 2

Representation near the operating point:Transfer function:

y (s ) = h(s )u (s )

State space representation:x = Ax + Bu

y = Cx (+Du )

The model can be obtainedphysical modelization (eventually coupled withidentification)identification (black box approach)

both give h(s ) or (A, B , C , D ) and hence the model.

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 9 / 174

Page 10: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 10/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Linear dynamical systemsSome properties of linear system (2/2)

x = Ax + Bu

y = Cx (+Du )

Nice properties:

Unique and constant equilibriumControllability (resp. observability) directly given byrank(B , AB , . . . , An−1B ) (resp. rank(C , CA, . . . , CAn−1))

Stability directly given by the poles of h(s )

or the eigenvaluesof A (asymptotically stable < 0)Local properties = global properties (like stability,stabilizability, etc.)The time behavior is independent of the initial conditionFrequency analysis is easyControl is easy: simply take u = Kx with K such that

(eig(A + BK )) < 0, the closed-loop system x = Ax + BKx willbe asymptotically stable· · ·

Mathematical tool: linear algebraThis is a caricature of the reality (of course problems due touncertainties, delays, noise, etc.)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 10 / 174

Page 11: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 11/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Why nonlinear control ?Why nonlinear control if linear control is so easy ?

All physical systems are nonlinear because of

Actuators saturationsViscosity (proportional to speed2)Sine or cosine functions in roboticsChemical kinetic in exp(temperature)

Friction or hysteresis phenomena

...

More and more the performance specification requiresnonlinear control (eg. automotive)

More and more controlled systems are deeply nonlinear

(eg. µ -nano systems where hysteresis phenomena, friction,discontinuous behavior)

Nonlinear control is sometimes necessary (oscillators,cyclic systems, . . . )

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 11 / 174

Page 12: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 12/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Nonlinear dynamical systemsHow to get a model ?

Representation:

State space representation:ODE Ordinary differential equation:

In this course, only:

x (t ) = f (x (t ), u (t ))

y (t ) = h(x (t ), u (t ))

PDE Partial differential equation (traffic, flow, etc.):

0 = g (x (t ), x (t ), ∂f (x ,... )

∂x u (t ))

0 = h(y (t ), x (t ), u (t ))

. . . Algebraic differential equations (implicit), hybrid (with

discrete or event based equations), etc.The model can be obtained

physical modelization and then nonlinear identification of the parameters (identifiability problems)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 12 / 174

Page 13: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 13/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Nonlinear dynamical systemsOpen-loop control versus closed-loop control ?

y u y d

x

States: x

Observer

k (x )

Controller

Open-loop controlfind u (t ) such that limt →∞ y (t ) − y d (t ) = 0

Widely used for path planning problems (robotics)

Closed-loop control

find u (x ) such that limt →∞ y (t ) − y d (t ) = 0

Better because closed loop control can stabilize systems and is robust w.r.t.perturbation.

In this course

Only closed-loop control problems are treated

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 13 / 174

Page 14: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 14/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Nonlinear dynamical systemsAim of control ?

y u x d

x

States: x

Observer

k (x )

Controller

Tracking problemfind u (x ) such that limt →∞ x (t ) − x d (t ) = 0

Stabilization problem

find u (x ) such that limt →∞ x (t ) − x d (t ) = 0 for x d (t ) = constant

Null stabilization problemfind u (x ) such that limt →∞ x (t ) − x d (t ) = 0 for x d (t ) = 0

In any cases, a null stabilization problem of z (t ) = y (t ) − y d (t )

In this course

Only the stabilization problem will be treated.

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 14 / 174

Page 15: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 15/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Some strange behaviors of nonlinear systemsThe undersea vehicle

Simplified model of the undersea vehicle (in one

direction):

v (t ) = −v |v | + u

Step answer:

No proportionalitybetween the inputand the output

0 1 2 3 4 5 6 7 8 9 100

0.5

1

1.5

u (s ) = 1

100s

u (s ) = 1s

u (s ) = 2s

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 15 / 174

Page 16: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 16/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Some strange behaviors of nonlinear systemsThe Van der Pol oscillator (1/2)

Van der Pol oscillator

x 1 = x 2x 2 = −x 1 − εh(x 1)x 2

with h(x 1) = −1 + x 21

Oscillations: ε tunes the limit cycle

0 10 20 30 40 50−3

−2

−1

0

1

2

3

4

5

6

ε = 1, x (0) = (5, 5)

ε = 0.1, x (0) = (5, 5)

time

x

−4 −2 0 2 4 6−4

−3

−2

−1

0

1

2

3

4

5

6

ε = 1, x (0) = (5, 5)

ε = 0.1, x (0) = (5, 5)

x 1

x 2

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 16 / 174

Page 17: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 17/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Some strange behaviors of nonlinear systemsThe Van der Pol oscillator (2/2)

Oscillations: stable limit cycles, fast dynamics

0 10 20 30 40 50−3

−2

−1

0

1

2

3

4

5

6

ε = 1, x (0) = (0, 1)

ε = 1, x (0) = (5, 5)

time

x

−3 −2 −1 0 1 2 3 4 5 6−3

−2

−1

0

1

2

3

4

5

6

ε = 1, x (0) = (0, 1)

ε = 1, x (0) = (5, 5)

x 1

x 2

0 0.1 0.2 0.3 0.4 0.5−3

−2

−1

0

1

2

3

4

5

6

ε = 1, x (0) = (0, 1)

ε = 1, x (0) = (5, 5)

time

x

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 17 / 174

S f

Page 18: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 18/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Some strange behaviors of nonlinear systemsThe tunnel diode (1/2)

The tunnel diode model

C dV C

dt + i R = i L

E − Ri L = V C + Ldi L

dt

i R = h(v R )

It gives:

x 1(t ) = 1

C

(−h(x 1) + x 2)

x 2(t ) = 1

L(−x 1 − Rx 2 + u )

with x 1 = v C , x 2 = i L and u = E

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 18 / 174

S b h i f li

Page 19: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 19/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Some strange behaviors of nonlinear systemsThe tunnel diode (2/2)

The tunnel diode behavior: bifurcation

with:i R = 17.76v R − 103.79v 2R + 229.62v 3R − 226.31v 4R + 83.72v 5R

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

1.2

1.4

x (0) = (0, 1.23)

x (0) = (0, 1.24)

time

x

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

x (0) = (0, 1.23)

x (0) = (0, 1.24)

x 1

x 2

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 19 / 174

S b h i f li

Page 20: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 20/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Some strange behaviors of nonlinear systemsThe car parking

The car parking simplified model

x 1 = u 1

x 2 = u 2

x 3 = x 2u 1

System with a misleading simplicity

Theorem (Brockett (83))

There is no (u 1(x ), u 2(x )) continuous w.r.t. x such that x is

asymptotically stable

In practice:manoeuvresdiscontinuous controltime-varying control M

a r c h a n d a n d A l a m i r ( 2 0 0 3 )

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 20 / 174

N li d i l t

Page 21: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 21/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Nonlinear dynamical systemsEverything is possible

x = f (x , u )

y = h(x , u )

Everything is possible:

Equilibrium can be unique, multiple, infinite or even not existControllability (resp. observability) are very hard to prove (it isoften even not checked)

Stability may be hard to proveLocal properties = global properties (like stability,stabilizability, etc.)The time behavior is depends upon the initial conditionFrequency analysis is almost impossibleNo systematic approach for building a control law: to each

problem corresponds it unique solution· · ·

Mathematical tool: Lyapunov and differential tools

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 21 / 174

Outline

Page 22: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 22/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Outline

1 IntroductionLinear versus nonlinear

The X4 example2 Linear control methods for nonlinear systems

AntiwindupLinearizationGain scheduling

3 Stability

4 Nonlinear control methodsControl Lyapunov functionsSliding mode controlState and output linearizationBackstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 22 / 174

The X4 helico te

Page 23: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 23/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 helicopterHow it works ?

4 fixed rotors with controlled rotationspeed s i

s 1

s 2

s 3

s 4

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 23 / 174

The X4 helicopter

Page 24: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 24/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 helicopterHow it works ?

4 fixed rotors with controlled rotationspeed s i 4 generated forces F i

F 1

F 2

F 3

F 4

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 23 / 174

The X4 helicopter

Page 25: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 25/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 helicopterHow it works ?

4 fixed rotors with controlled rotationspeed s i 4 generated forces F i 4 counter-rotating torques Γ i

Γ 1

Γ 2

Γ 3

Γ 4

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 23 / 174

The X4 helicopter

Page 26: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 26/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 helicopterHow it works ?

4 fixed rotors with controlled rotationspeed s i 4 generated forces F i 4 counter-rotating torques Γ i Roll movement generated with adissymmetry between left and rightforces:

Γ r = l (F 4 − F 2)

F 2

F 4

l

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 23 / 174

The X4 helicopter

Page 27: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 27/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 helicopterHow it works ?

4 fixed rotors with controlled rotationspeed s i 4 generated forces F i 4 counter-rotating torques Γ i Roll movement generated with adissymmetry between left and rightforces:

Γ r = l (F 4 − F 2)Pitch movement generated with adissymmetry between front and rearforces:

Γ p = l (F 1 − F 3)

F 1

F 3

l

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 23 / 174

The X4 helicopter

Page 28: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 28/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 helicopterHow it works ?

4 fixed rotors with controlled rotationspeed s i 4 generated forces F i 4 counter-rotating torques Γ i Roll movement generated with adissymmetry between left and rightforces:

Γ r = l (F 4 − F 2)Pitch movement generated with adissymmetry between front and rearforces:

Γ p = l (F 1 − F 3)

Yaw movement generated with adissymmetry between front/rear andleft/right torques:

Γ y = Γ 1 + Γ 3 − Γ 2 − Γ 4

Γ 1

Γ 2

Γ 3

Γ 4

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 23 / 174

The X4 helicopter

Page 29: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 29/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 helicopterBuilding a model (1/3)

Electrical motor: A 2nd order system with friction and saturationusually approximated by a 1rst order system:

s i = − k 2mJ r R

s i − 1

J r τ load +

k m

J r R satU i

(U i ) i ∈ 1, 2, 3, 4 (1)

s i : rotation speedU i : voltage applied to the motor; real control variable

τ load: motor load: τ load = k gearbox κ |s i | s i with κ drag coefficient

Aerodynamical forces and torques: Very complex models exist

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 24 / 174

The X4 helicopter

Page 30: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 30/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 helicopterBuilding a model (1/3)

Electrical motor: A 2nd order system with friction and saturationusually approximated by a 1rst order system:

s i = − k 2mJ r R

s i − 1

J r τ load +

k m

J r R satU i

(U i ) i ∈ 1, 2, 3, 4 (1)

s i : rotation speedU i : voltage applied to the motor; real control variable

τ load: motor load: τ load = k gearbox κ |s i | s i with κ drag coefficient

Aerodynamical forces and torques: Very complex models existbut overcomplicated for control, better use the simplified model:

F i = bs 2i

Γ r = lb (s 24 − s

22 )

Γ p = lb (s 21 − s 23 )

Γ y = κ(s 21 + s 23 − s 22 − s 24 )

i ∈ 1, 2, 3, 4 (2)

b : thrust coefficient, κ: drag coefficient

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 24 / 174

The X4 helicopter

Page 31: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 31/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 helicopterBuilding a model (2/3)

Two framesa fixed frame E ( e 1, e 2, e 3)

a frame attached to the X4T ( t 1, t 2, t 3)

Frame change

a rotation matrix R from T to E

e 1

e 2

e 3 t 1

t 2

t 3

State variables:Cartesian coordinates (in E )

position p velocity v

Attitude coordinates:

angular velocity ω in the moving frame T either: Euler angles three successive rotations about t 3, t 1 and t 3 of angles angles φ, θ and ψ giving R or: Quaternion representation (q 0, q ) = (cosβ/2, u sinβ/2)

represent a rotation of angle β about u

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 25 / 174

The X4 helicopter

Page 32: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 32/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 helicopterBuilding a model (3/3)

Cartesian coordinates:

p = v m v = −mg e 3 + R (

i F i (s i ) t 3)

(3)

Attitude:

Euler angles formalism:

R = R ω×

J ω = − ω×J ω + Γ totwith ω× =

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

(4)

ω× is the skew symmetric tensor associated to ω

Quaternion formalism:

q = 1

2 Ω( ω)q

= 12 Ξ(q ) ω

J ω = − ω×J ω + Γ tot

with

Ω( ω) =

0 − ωT

ω − ω×

Ξ(q ) =

− q

T

I 3×3q 0 + q × (5)

where Γ tot = −

i

I r ω× t 3s i

gyroscopic torque

+Γ pert +

Γ r (s 2, s 4)

Γ p (s 1, s 3)

Γ y (s 1, s 2, s 3, s 4)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 26 / 174

The X4 helicopter

Page 33: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 33/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

pReview of the nonlinearities

s i = −

k 2mJ r R s i −

k gearbox κ

J r |s i | s i + k mJ r R satU i (U i )

p = v

m v = −mg e 3 + R

00

i F i (s i )

R = R ω×

J ω = − ω×J ω −

i I r ω×

00

i s i

+

Γ r (s 2, s 4)

Γ p (s 1, s 3)

Γ y (s 1, s 2, s 3, s 4)

In red: the nonlinearitiesIn blue: where the control variables act

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 27 / 174

The X4 helicopter

Page 34: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 34/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

pIdentification of the parameters

Electrical motor:

For small input steps, the system behaves very close to a linear

first order systemHence, use linear identification toolsU i is found on the data-sheet of the motor (damage avoidance)

Aerodynamical parameters: b and κ

b and κ measured with specific test beds,

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 28 / 174

The X4 helicopter

Page 35: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 35/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

pIdentification of the parameters

Electrical motor:

For small input steps, the system behaves very close to a linear

first order systemHence, use linear identification toolsU i is found on the data-sheet of the motor (damage avoidance)

Aerodynamical parameters: b and κ

b and κ measured with specific test beds, depends upon temperature,distance from ground, etc.

Mechanical parameters:

l length of an arm of the helicopter, easy to measurem total mass of the helicopter, easy to measureJ body inertia, hard to have preciselyI r rotor inertia, hard to have precisely

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 28 / 174

The X4 helicopter

Page 36: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 36/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approachesCLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

pValues of the parameters

Motor parameters:

parameter description value unit

k m motor constant 4.3 × 10−3 N.m/AJ r rotor inertia 3.4 × 10−5 J.g.m2

R motor resistance 0.67 Ω

k gearbox gearbox ratio 2.7 × 10−3 -U i maximal voltage 12 V

Aerodynamical parameters:

parameter description value

b thrust coefficient 3.8 × 10−6

κ drag coefficient 2.9 × 10−5

Body parameters:

parameter description value unit

J inertia matrix

14.6 × 10−3 0 00 7.8 × 10−3 00 0 7.8 × 10−3

kg.m2

m mass of the UAV 0.458 kgl radius of the UAV 22.5 cmg gravity 9.81 m/s2

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 29 / 174

The X4 helicopter

Page 37: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 37/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Open-loop behavior with roll initial speed

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 30 / 174

The X4 helicopter

Page 38: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 38/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Open-loop behavior with pitch initial speed

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 31 / 174

The X4 helicopter

Page 39: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 39/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Open-loop behavior with yaw initial speed

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 32 / 174

The X4 helicopter

Page 40: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 40/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Open-loop behavior with roll and yaw initial speed

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 33 / 174

The X4 helicopter

Page 41: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 41/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Open-loop behavior with pitch and yaw initial speed

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 34 / 174

Outline

Page 42: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 42/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

1 IntroductionLinear versus nonlinearThe X4 example

2 Linear control methods for nonlinear systemsAntiwindupLinearizationGain scheduling

3 Stability

4 Nonlinear control methodsControl Lyapunov functionsSliding mode control

State and output linearizationBackstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 35 / 174

Outline

Page 43: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 43/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

1 IntroductionLinear versus nonlinearThe X4 example

2 Linear control methods for nonlinear systemsAntiwindupLinearizationGain scheduling

3 Stability

4 Nonlinear control methodsControl Lyapunov functionsSliding mode control

State and output linearizationBackstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 36 / 174

Linear systems with saturated inputsI f h l f h X ’ ( / )

Page 44: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 44/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Impact of input saturations on the control of the X4’s rotors (1/4)

We go back to the X4 example and focus on the rotors:s i = −

k 2mJ r R

s i − 1

J r τ load +

k m

J r R satU i

(U i )

If one wants to act on the X4 with desired forces F d i , it

is necessary to be able to set the rotors speeds s i to s d i

with

s d i =

1

b F d

i

A usual way to control the electrical motor consist in

taking τ load as un unknown loadneglecting the voltage limitations U i

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 37 / 174

Linear systems with saturated inputsI f i i h l f h X4’ (2/4)

Page 45: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 45/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Impact of input saturations on the control of the X4’s rotors (2/4)

The so obtained system is linear

s i (s )

U i (s ) =

1k m

1 + J r R k 2m

s =

G

1 + τ s

Define a PI controller for it:

C (s ) = K p + K i

s

Taking K i = 1τCLG

and K p = τ K i , the closed loop systemis:

s i (s )

U i (s ) =

1

1 + τ CLs

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 38 / 174

Linear systems with saturated inputsI t f i t t ti th t l f th X4’ t (3/4)

Page 46: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 46/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Impact of input saturations on the control of the X4’s rotors (3/4)

Make a step that compensates the weight, that is such

that s

d

i = mg

4b so that i F

d

i = mg Taking τ CL = 50 ms, one gets with saturations

0 1 2 3 4 50

200

400

600

0 1 2 3 4 5−20

0

20

40

60

80

time

s i

U i

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 39 / 174

Linear systems with saturated inputsSat atio a ca se i stabilit

Page 47: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 47/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Saturation may cause instability

The result could be worse:

1

s-1

Transfer FcnSaturationPulse

Generator

7s+5

s

Control

For u ∈ [−1.2, 1.2 ], the closed-loop behavior is:

0 1 2 3 4 5−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

without saturation

with saturation

Saturations may lead to instability especially in thepresence of integrators in the loop

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 40 / 174

Linear systems with saturated inputsKey idea of the anti windup scheme

Page 48: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 48/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Key idea of the anti-windup scheme

Consider a linear system with a PID controller:

Linear system

PID controller

Kd

Kp

KI 1/s

s

The instability comes from the integration of the errorKey idea: soften the integral effect when the control issaturated

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 41 / 174

Linear systems with saturated inputsPID controller with anti windup

Page 49: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 49/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

PID controller with anti-windup

Structure of the PID controller with anti-windup:

Anti Windup

PID controller

Kd

Kp

KI 1/s

s

Linear system

Ks

If u = u , that is if u is not saturated, then the PIDcontroller with anti-windup is identical to the classicalPID controllerIf u is saturated (u = u ), K s tunes the reduction of theintegral effect of the PID

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 42 / 174

Linear systems with saturated inputsGeneral controller with anti-windup

Page 50: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 50/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

General controller with anti-windup

Structure of the general dynamic controller:

++

++1

s

F

D

G C u e

with dynamics given by:

x c = Fx c + Ge u = Cx c + De

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 43 / 174

Linear systems with saturated inputsGeneral controller with anti-windup

Page 51: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 51/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

General controller with anti windup

Anti-windup structure of the general dynamic controller:

++

++

+

1s

F − KC

D

G − KD C

K

u e

with dynamics given by:

x c = Fx c + Ge + K (u − Cx c − De )

= (F − KC )x c + (G − KD )e + Ku

Choice of the antiwindup parameters

Take K such that (F − KC ) is stable and |λmax(F − KC )| > |λmax(F )|

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 44 / 174

Linear systems with saturated inputsA short Lyapunov explanation of the behavior

Page 52: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 52/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

A short Lyapunov explanation of the behavior

Consider a stable closed loop linear system: it isglobally asymptotically stable. A saturation on the inputmay:

transform the global stability into local stability. In thiscase, the aim of the anti-windup is to increase the radiusof attraction of the closed loop systemkeep the global stability property. In this case, the aim

of the anti-windup is to renders the saturated systemcloser to its unsaturated equivalent

However, there is no formal proof of stability of anti-windup strategies

Other approaches for saturated inputs

Optimal control

Nested saturation function (under development)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 45 / 174

Linear systems with saturated inputsBack to the unstable case

Page 53: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 53/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

ac to t e u stab e case

The unstable case:

1

s-1

Transfer FcnSaturationPulse

Generator

7s+5

s

Control

The closed-loop behavior is:

0 1 2 3 4 5−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

without saturation

with saturation

with saturation and anti-windup

However, nothing is magic and divergent behavior may occurbecause of the level of the step input

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 46 / 174

Linear systems with saturated inputsImpact of input saturations on the control of the X4’s rotors (4/4)

Page 54: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 54/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

p p ( / )

Make a step that compensates the weight, that is such

that s d

i = mg

4b so that i

F d

i = mg

Taking τ CL = 50 ms, one gets with anti-windup

0 1 2 3 4 50

200

400

600

0 1 2 3 4 5−20

0

20

40

60

80

time

s i

U i

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 47 / 174

1 IntroductionLinear versus nonlinear

Page 55: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 55/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 example

2

Linear control methods for nonlinear systemsAntiwindupLinearizationGain scheduling

3 Stability

4 Nonlinear control methodsControl Lyapunov functionsSliding mode controlState and output linearization

Backstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 48 / 174

Linearization of nonlinear systemsImpact of the load on the control of the X4’s rotors

Page 56: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 56/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Make a step that compensates the weight, that is such that s d i =

mg 4b

so

that i F d i = mg

Taking τ CL = 50 ms, one gets with load

0 1 2 3 4 50

200

400

600

0 1 2 3 4 5−20

−10

0

10

20

time

s i

U i

The PI controller seems badly tuned: for t > 1.3 s , the control is not saturatedbut the convergence is very slow. What’s wrong ?

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 49 / 174

Linearization of nonlinear systemsImpact of the load on the control of the X4’s rotors

Page 57: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 57/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Back to the rotor dynamical equation:

s i = − k 2mJ r R

s i − k gearbox κ

J r |s i | s i +

k m

J r R satU i

(U i )

Taking τ load as unknown implies that the PI control law

was tuned for:

s i = − k 2mJ r R

s i + k m

J r R satU i

(U i )

Implicitly, the second order terms were neglected

Unfortunately, these two systems behave similarly iff s i is

small, which is not the case for s d i =

mg 4b

≈544 rad s−1

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 50 / 174

Linearization of nonlinear systemsLinearization at the origin

Page 58: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 58/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Linearization at the origin

Take a nonlinear system x = f (x , u )

y = h(x , u )

with f (0, 0) = 0. Then, near the origin, it can be approximated by its

linear Taylor expansion at the first order:

x = ∂f

∂x

(x =0,u =0)

A

x + ∂f

∂u

(x =0,u =0)

B

u

y − h(0, 0) =

∂h

∂x

(x =0,u =0) C

x +

∂h

∂u

(x =0,u =0) D

u

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 51 / 174

Linearization of nonlinear systemsLinearization at a point

Page 59: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 59/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Linearization at a point

Take a nonlinear system x = f (x , u )

y = h(x , u )

then, near the equilibrium point (x 0, u 0), it can be approximated by itslinear Taylor expansion at the first order:

x ˙x

= ∂f

∂x

(x 0,u 0) A

(x − x 0) x

+ ∂f

∂u

(x 0,u 0) B

(u − u 0) u

y − h(x 0, u 0) = ∂h

∂x (x 0,u 0) C

(x − x 0) x

+ ∂h

∂u (x 0,u 0) D

(u − u 0) u

which is linear in the variables x = x − x 0 and u = u − u 0

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 52 / 174

Linearization of nonlinear systemsSome properties of the linearization

Page 60: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 60/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Controllability properties

Take a nonlinear system

x = f (x , u ) (6)

and its linearization at (x 0, u 0):

˙x = Ax + B u (7)

If (7) is controllable then (6) is locally controllableNothing can be concluded if (7) is uncontrollable

Example

The car is controllable but not its linearizationx 1 = u 1x 2 = u 2x 3 = x 2u 1

linearization at the origin

x 1

x 2x 3

=

1 0

0 10 0

u 1 u 2

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 53 / 174

Linearization of nonlinear systemsSome properties of the linearization

Page 61: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 61/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Stability properties

Take a nonlinear system

x = f (x , u ) (8)

and its linearization at (x 0, u 0):

˙x = Ax + B u (9)

Assume that one can build a feedback law u = k (x ) so that:

(9) is asymptotically stable ( < 0): then (8) is locallyasymptotically stable with u = u 0 + k (x )

(9) is unstable ( > 0): then (8) is locally unstable withu = u 0 + k (x )

Nothing can be concluded if (9) is simply stable ( ≤ 0)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 54 / 174

Linearization of nonlinear systemsImpact of the load on the control of the X4’s rotors

Page 62: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 62/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Back to the rotor dynamical equation:

s i = −

k 2mJ r R s i −

k gearbox κ

J r |s i | s i +

k m

J r R satU i (U i )

Define U d i , the constant control that keeps the steady state speed:

U d i = k ms d

i + Rk gearbox κ

k m s d

i

s d

i

The linearization of the rotor dynamics near s d i gives:

˙s i = −

k 2mJ r R

+ 2k gearbox κ

J r

s d i

s i + k m

J r R satU i

(U i )

with:

U i = U i − U d i

s i = s i − s d i

satU i (U i ) =

U i if U i ∈ [−U i , +U i ]

U i if U i ≥ U i −U i if U i ≤ −U i

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 55 / 174

Linearization of nonlinear systemsImpact of the load on the control of the X4’s rotors

Page 63: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 63/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Make a step that compensates the weight, that is such that

s d i =

mg 4b

so that i F d i = mg

Taking τ CL = 50 ms and a PI controller tuned at s d i on the systemwith load, one has:

0 1 2 3 4 50

200

400

600

0 1 2 3 4 5−20

−10

0

10

20

time

s i

U i

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 56 / 174

1 IntroductionLinear versus nonlinearTh X4 l

Page 64: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 64/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 example

2 Linear control methods for nonlinear systemsAntiwindupLinearizationGain scheduling

3 Stability

4 Nonlinear control methodsControl Lyapunov functionsSliding mode controlState and output linearization

Backstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 57 / 174

Towards gain schedulingImpact of a change in the steady state speed of the X4’s rotors

Page 65: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 65/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Take again τ CL = 50 ms and a PI controller tuned at s d i

Make speed steps of different level

0 2 4 6 8 10−200

0

200

400

600

0 2 4 6 8 10−20

−10

0

10

20

time

s i

U i

The controller is well tuned near s d i but not very good a large

range of use

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 58 / 174

Towards gain schedulingLocal linearization may be inadequate for large excursion

Page 66: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 66/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The result could be worse:

Take the inverted pendulum

θ

y

=

1

∆(θ)

m + M −ml cos θ

−ml cos θ I + ml 2

mgl sin θ

u + ml θ2 sin θ − k y

where

I is the inertia of the pendulum∆(θ) = (I + ml 2)(m + M ) − m2l 2 cos2 θ

Linearize it near the upper position (θ = 0) with m = M = I = g = 1,k = 0 and x = (θ, θ, y , y ):

x 1x 2x 3x 4

=

0 1 0 023 0 0 00 0 0 1

− 13 0 0 0

x 1x 2x 3x 4

+

0− 1

3023

u

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 59 / 174

N li

Towards gain schedulingLocal linearization may be inadequate for large excursion

Build a linear feedback law that places the poles at 1

Page 67: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 67/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Build a linear feedback law that places the poles at -1Starting from θ(0) = π/5, it converges, from θ(0) = 1.1 × π/5, it diverges

0 5 10 150

5

10

15

0 5 10 150

5

10

15

Inverted pendulum Linearization of the

inverted pendulum

Initial condition:

x (0) = (π/5, 0, 0, 0)

x (0) = (1.1π/5, 0, 0, 0)

x x

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 60 / 174

N li

Towards gain scheduling

For some systems, the radius of attraction of a

Page 68: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 68/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

stabilized linearization may be very small (less than onedegree on the double inverted pendulum for instance)

Linearization is not suitable for large range of use of the closed-loop system

For other systems, the controller must be very finelytuned in order to meet performance requirements (e.g.

automotive with more and more restrictive pollutionstandards)

Linearization is not suitable for high accuracy closedloop systems

Either for stability reasons or performance reasons, itmay be necessary to tune the controller at more thanone operating point

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 61 / 174

Nonlinear

Towards gain scheduling

Gain scheduling uses the idea of using a collection of

Page 69: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 69/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

linearization of a nonlinear system at differentoperating points

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 62 / 174

Nonlinear

Gain schedulingTake a nonlinear system

Page 70: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 70/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

x = f (x , u )

Define a family of equilibrium points

s = (x eq , u eq ) such that f (x eq , u eq ) = 0

At each point s , linearize the system assuming s is

constant:

˙x = A(s )x + B (s )u

with x = x − x eq and u = u − u eq

At each point s , define a feedback law:

u = u eq (s ) − K (s )(x − x eq (s ))

with (Eig(A(s ) − B (s )K (s ))) < 0

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 63 / 174

Nonlinear

Gain schedulingThe controller is then obtained by changing s in the apriori defined collection of points

Page 71: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 71/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

priori defined collection of pointsThe change of s can be done discontinuously or continuously

by interpolation

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 64 / 174

Nonlinear

Gain schedulingDrawbacks of gain scheduling :

Con ergence onl if s aries slo l

Page 72: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 72/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Convergence only if s varies slowly The performance within a linearization area may be poor

The mapping may be prohibitive if the number of states islarge The stability issues are not clear

Recent evolution of gain scheduling:

Dynamic gain scheduling: improve the transition betweenthe different controllers, limits the importance of the slow

motion of s LPV: Linear parameter varying methods considers thenonlinear system as

x = A(ρ(x ))x + B (ρ(x ))u

and, under some conditions, uses LMI to build a feedback.Improves the performance within a linearization area.

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 65 / 174

Nonlinear

Gain schedulingHandling changes in the steady state speed of the X4’s rotors

Take again τCL = 50 ms and a PI controller tuned at si

Page 73: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 73/182

Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

LinearapproachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Take again τ CL = 50 ms and a PI controller tuned at s i Make speed steps of different level

0 2 4 6 8 10−200

0

200

400

600

0 2 4 6 8 10−20

−10

0

10

20

time

s i

U i

The rotors are now well controlled

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 66 / 174

Nonlinear

Stability

1 IntroductionLinear versus nonlinear

Page 74: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 74/182

Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

LinearapproachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Linear versus nonlinearThe X4 example

2 Linear control methods for nonlinear systemsAntiwindupLinearizationGain scheduling

3 Stability

4 Nonlinear control methodsControl Lyapunov functionsSliding mode control

State and output linearizationBackstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 67 / 174

Nonlinear

StabilityConsider the autonomous nonlinear system:

Page 75: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 75/182

Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

x = f (x , u (x )) = g (x ) (10)

StabilitySystem (10) is said to be stable at the origin iff:∀R > 0, ∃r (R ) > 0 such that ∀x 0 ∈ B(r (R )), x (t ; x 0), solutionof (10) with x 0 as initial condition, remains in B(R ) for allt >

0.

Attractivity

The origin is said to be attractive iff:limt →∞ x (t ; x 0) = 0.

Asymptotic stability

System (10) is said to be asymptotically stable at the originiff it is stable and attractive

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 68 / 174

NonlinearC

StabilityGraphical interpretation

Page 76: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 76/182

Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

For linear systems: Attractivity → Stability

For nonlinear systems: Attractivity Stability

Stability and attractivity : properties hard to check ?

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 69 / 174

NonlinearC l

StabilityUsing the linearization

Page 77: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 77/182

Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Asymptotic stability and local linearizatonConsider x = g (x ) and its linearization at the origin

x = ∂g ∂x

x =0x . Then:

Linearization with eig< 0 Nonlinear system is locally

asymptotically stableLinearization with eig> 0 Nonlinear system is locallyunstable

Linearization with eig= 0: nothing can be concluded on

the nonlinear system (may be stable or unstable)

Only local conclusions

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 70 / 174

NonlinearC t l

StabilityLyapunov theory: Lyapunov functions

Page 78: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 78/182

Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Aleksandr Mikhailovich LyapunovMarkov’s school friend, Chebyshev’s student Master Thesis : On the stability of ellipsoidal forms of equilibrium of a rotating liquid in 1884

Phd Thesis : The general problem of the stability of motionin 1892

6 June 1857 - 3 Nov 1918

Definition: Lyapunov function

Let V : Rn → R be a continuous function such that:

1 (definite) V (x ) = 0

⇔ x = 0

2 (positive) ∀

x , V (x ) ≥

0

3 (radially unbounded) limx →∞ V (x ) = +∞Lyapunov functions are energies

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 71 / 174

NonlinearControl

StabilityLyapunov theory: Lyapunov theorem

Page 79: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 79/182

Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Aleksandr Mikhailovich LyapunovMarkov’s school friend, Chebyshev’s student

Master Thesis : On the stability of ellipsoidal forms of equilibrium of a rotating liquid in 1884Phd Thesis : The general problem of the stability of motion in 1892

6 June 1857 - 3 Nov 1918

Theorem: (First) Lyapunov theorem

If ∃ a Lyapunov function V : Rn → R+ s.t.

(strictly decreasing) V (x (t )) is strictly decreasing for allx (0) = 0

then the origin is asymptotically stable.

If ∃ a Lyapunov function V : Rn → R+ s.t.

(decreasing) V (x (t )) is decreasing

then the origin is stable.

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 72 / 174

NonlinearControl

StabilityLyapunov theorem: a graphical interpretation

Page 80: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 80/182

Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 73 / 174

NonlinearControl

StabilityStability and robustness

Page 81: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 81/182

Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Stability holds robustness:

x = g (x ) stable ⇒ V =

∂V

∂x g (x ) < 0

⇒ ∂V

∂x (g (x ) + ε(x )) < 0

⇒ x = g (x ) + ε(x ) stable

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 74 / 174

NonlinearControl

Outline

1 IntroductionLinear versus nonlinear

Page 82: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 82/182

Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 example

2 Linear control methods for nonlinear systemsAntiwindupLinearizationGain scheduling

3 Stability4 Nonlinear control methods

Control Lyapunov functionsSliding mode control

State and output linearizationBackstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 75 / 174

NonlinearControl

The X4 helicopterThe control problems

Page 83: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 83/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLFSliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

s i = − k 2mJ r R

s i − k gearbox κ

J r |s i | s i +

k mJ r R

satU i (U i )

p = v

m v = −mg e 3 + R 00i F i (s i )

R = R ω×

J ω = − ω×J ω −

i I r ω×

00

i s i

+

Γ r (s 2, s 4)

Γ p (s 1, s 3)

Γ y (s 1, s 2, s 3, s 4)

Position control problem

Attitude control problem

N Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 76 / 174

NonlinearControl

Outline

1 IntroductionLinear versus nonlinear

Page 84: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 84/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 example

2 Linear control methods for nonlinear systemsAntiwindupLinearizationGain scheduling

3 Stability4 Nonlinear control methods

Control Lyapunov functionsSliding mode control

State and output linearizationBackstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 77 / 174

NonlinearControl

Control Lyapunov functionsCharacterizing property (1/3)

Control Lyapunov functions (CLF) where introduced in the 80’s

Page 85: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 85/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

CLF are for controllability and control what Lyapunov functions

are for stabilityLyapunov: a tool for stability analysis of autonomoussystems

Take

x 1 = x 2

x 2 = −x 1 − x 2

Take the Lyapunov function

V (x ) = 3

2x 21 + x 1x 2 + x 22

Along the trajectories of the system:

V (x (t )) = ∇V (x ).f (x ) = − x 2

hence, V 0 and the system is asymptotically stable

N Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 78 / 174

NonlinearControl

Control Lyapunov functionsCharacterizing property (2/3)

Control Lyapunov Functions: a tool for stabilization of

Page 86: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 86/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

controlled systems

Take now the controlled system

x 1 = x 2

x 2 = −x 1 + u

Take the Lyapunov function

V (x ) = 3

2x 21 + x 1x 2 + x 22

Along the trajectories of the system:

V (x (t ), u (t )) = ∇V (x ).f (x , u )

= −x 21 + x 1x 2 + x 22 + (x 1 + 2x 2)u

N Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 79 / 174

NonlinearControl

Control Lyapunov functionsCharacterizing property (3/3)

Control Lyapunov Functions: a tool for stabilization of

Page 87: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 87/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

controlled systems

Along the trajectories of the system:

V (x (t ), u (t )) = ∇V (x ).f (x , u )

= −x 21 + x 1x 2 + x 22 + (x 1 + 2x 2)u

henceif x 1 + 2x 2 = 0, there exists u such that V otherwise (if x 1 + 2x 2 = 0)

V (x (t ), u (t )) = −4x 22 − 2x 22 + x 22 = −5x 22

which is negative unless x 2 = 0 = − 1

2

x 1: V

In conclusion: characterizing property of CLF

For any x = 0, there exists u such that V (x (t ), u (t )) < 0

N Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 80 / 174

NonlinearControl

Control Lyapunov functionsFormal definitions

Definition: Lyapunov function

Page 88: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 88/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

A continuous function V : Rn

→ R≥0 is called a Lyapunov

function if 1 [positive definiteness] V (x ) ≥ 0 for all x and V (0) = 0 if and

only if x = 02 [radially unbounded] limx →∞ V (x ) = +

∞or:

1 [positive definiteness] V (x ) ≥ 0 for all x and V (0) = 0 if andonly if x = 0

2 [proper] for each a ≥ 0, the set x |V (x ) ≤ a is compact

or, alternatively:

(∃α, α ∈ K∞) α (x ) ≤ V (x ) ≤ α (x ) ∀x ∈ Rn

N Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 81 / 174

NonlinearControl

Control Lyapunov functionsFormal definitions

Definition: Control Lyapunov Function

Page 89: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 89/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Definition: Control Lyapunov Function

A differentiable control Lyapunov function denotes adifferentiable Lyapunov function being infinitesimally

decreasing , meaning that there exists a positive continuousdefinite function W : Rn

→R≥0 and such that:

supx ∈Rn minu ∈Rm ∇V (x )f (x , u ) + W (x ) ≤ 0

Roughly speaking a CLF is a Lyapunov function that onecan force to decrease

Extensions to nonsmooth CLF exist and are necessary forthe class of system that can not be stabilized by means of smooth static feedback

N Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 82 / 174

NonlinearControl

Control Lyapunov functionsControl affine systems

Definition: Directional Lie derivative

For any f and g with values in appropriate sets, the Lie derivative of g along f is

Page 90: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 90/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

For any f and g with values in appropriate sets, the Lie derivative of g along f isdefined by:

Lf g (x ) := ∇g (x ) · f (x )

Iteratively, one defines:Lk

f g (x ) := Lf Lk −1f g (x )

Theorem

Consider a control affine system x = g 0(x ) + m

i =1 u i g i (x ) with f smooth andf (0) = 0. Assume that the set

S =

x |Lf V (x ) = 0 and Lk f Lg i V (x ) = 0 for all k ∈ N, i ∈ 1, . . . , m

= 0

then, the feedback

k (x ) := − (∇V (x ) · G (x ))T =

Lg 1 V (x ) · · · Lg m V (x )

T

globally asymptotically stabilizes the system at the origin.

N Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009 2010 83 / 174

NonlinearControl

Control Lyapunov functionsControl affine systems

Theorem: Sontag’s universal formula (1989)

Consider a control affine system x = g0(x) + m ui gi (x) with f smooth and

Page 91: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 91/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Consider a control affine system x = g 0(x ) +

i =1 u i g i (x ) with f smooth and

f (0) = 0. Assume that there exists a differentiable CLF, then the feedback

k i (x ) = −b i (x )ϕ(a(x ), β(x )) (= 0 for x = 0)

a(x ) := ∇V (x )f (x ) and b i (x ) := ∇V (x )g i (x ) for i = 1, . . . , m

B (x ) = b 1(x ) · · · b 2(x ) and β(x ) = B (x )2

q : R→ R is any real analytic function with q (0) = 0 and bq (b ) > 0 for anyb > 0ϕ is the real analytic function:

ϕ(a, b ) =

a+

√ a2+bq (b )

b if b = 0

0 if b = 0

is such that k (0) = 0, k smooth on Rn\0 and

supx ∈Rn

∇V (x )f (x , k (x )) + W (x ) ≤ 0

N Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009 2010 84 / 174

NonlinearControl

Control Lyapunov functionsControl affine systems

Definition: Small control property

A CLF V i id i fi h ll l if f

Page 92: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 92/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

A CLF V is said to satisfies the small control property if for any ε,

there is some δ so that:

supx ∈B(δ)

minu ∈B(ε)

∇V (x )f (x , u ) + W (x ) ≤ 0

The small control property implicitly means that if ε is small (hence the

control), the system can still be controlled as long as it is sufficiently close to

the origin

Theorem: Sontag’s universal formula (1989)

Consider an control-affine system x = g 0(x ) + i = 1mu i g i (x )

with f smooth and f (0) = 0. Assume that there exists adifferentiable CLF, then the previous feedback k with q (b ) = b issmooth on Rn\0 and continuous at the origin

N Marchand (gipsa lab) Nonlinear Control Master PSPI 2009 2010 85 / 174

NonlinearControl

Control Lyapunov functionsRobustness issues

Model Real systemx = f (x u) x = f (x u)+ε

Page 93: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 93/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

x = f (x , u )

u = k (x ) x = f (x , u )+ε

u = k (x +δ)

Definition: Robustness w.r.t. model errors

A feedback law k : Rn → Rm is said to be robust with respect to model errors if

limt →∞ x (t ) ∈ B(r (ε)) with limε→0 r (ε) = 0 (x (t ) denotes the solution of x = f (x , k (x )) + ε)

Definition: Robustness w.r.t. measurement errors

A feedback law k : Rn → Rm is said to be robust with respect to measurement

errors if limt →∞ x (t ) ∈ B(r (δ)) with limδ→0 r (δ) = 0 (x (t ) denotes the solutionof x = f (x , k (x + δ)))

Theorem: Smooth CLF = robust stability (1999)

The existence of a feedback law robust to measurement errors and model errorsis equivalent to the existence of a smooth CLF

N Marchand (gipsa-lab

) Nonlinear Control Master PSPI 2009 2010 86 / 174

NonlinearControl

N M h d

Control Lyapunov functionsConclusion

A CLF is th ti l t l t i l t l

Page 94: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 94/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

A CLF is a theoretical tool, not a magical tool

A CLF is not a constructive tool

Finding a stabilizing control law and finding a CLF are atbest the same problems. In all other cases, finding astabilizing control law is easier than finding a CLF

Even if one can find a CLF for a system, the universalformula often gives a feedback with poor performances

However, this is an important field of research in thecontrol system theory community that proved importanttheoretical results, for instance the equivalence betweenasymptotic controllability and stabilizability of nonlinearsystems (1997)

N Marchand (gipsa-lab

) Nonlinear Control Master PSPI 2009 2010 87 / 174

NonlinearControl

N M h d

Other structural toolsPassivity

Definition: Passivity

Page 95: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 95/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

A system x = f (x , u )y = h(x , u )

is said to be passive if there exists some function S (x ) ≥ 0 withS (0) = 0 such that

S (x (T )) − S (x (0)) ≤ T

0u T (τ )y (τ )d τ

Roughly speaking, S (x (0)) (called the storage function)denotes the largest amount of energy which can be extractedfrom the system given the initial condition x (0).Passivity eases the design of control law and is a powerful toolfor interconnected systemsImportant literature

N Marchand (gipsa-lab

) Nonlinear Control Master PSPI 2009 2010 88 / 174

NonlinearControl

N Marchand

Other structural toolsInput-to-State Stability (ISS)

Class K A continuous function γ : R≥0 → R≥0 is said in K if it is strictly increasingand γ(0) = 0

Cl KL A ti f ti β R × R → R i id i KL if β( ) ∈ K f

Page 96: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 96/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

Class KL A continuous function β : R≥0 × R≥0 → R≥0 is said in KL if β(·, s ) ∈ K foreach fixed s and β(r , ·) is decreasing for each fixed r and lims →∞ β(r , s ) = 0

Definition: Input-to-State Stability

A systemx = f (x , u )

is said to be input-to-state stable if there exists functions β ∈ KL

and γ ∈ Ksuch that for each bounded u (·) and each x (0), the solution x (t ) exists and is

bounded by:x (t ) ≤ β(x (0) , t ) + γ( sup

0≤τ≤t u (τ ))

Roughly speaking, ISS characterizes a relation between the norm of thestate and the energy injected in the system: the system can not diverge infinite time with a bounded controlISS eases the design of control lawImportant literature

N Marchand (gipsa-lab

) Nonlinear Control Master PSPI 2009 2010 89 / 174

NonlinearControl

N Marchand

Outline

1 IntroductionLinear versus nonlinearThe X4 example

Page 97: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 97/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

The X4 example

2 Linear control methods for nonlinear systemsAntiwindupLinearizationGain scheduling

3 Stability4 Nonlinear control methods

Control Lyapunov functionsSliding mode controlState and output linearizationBackstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N M h d (gipsa-lab

) N li C t l M st PSPI 2009 2010 90 / 174

Page 98: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 98/182

NonlinearControl

N Marchand

Sliding mode controlAn introducing example

Making V decrease as fast as possible is equivalent to minimizing V :

u = Argmin V

Page 99: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 99/182

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

−x 21 + x 1x 2 + x 22 can not be changed

(x 1 + 2x 2)u minimal for u =−sign(x 1+2x 2)

u = Argminu ∈[−1,1]

V

= Argmin

u ∈[−1,1]

− x 21 + x 1x 2 + x 22 + (x 1 + 2x 2)u

= − sign(x 1 + 2x 2)

Simulating the closed loop system with initial condition x (0) = (2, −3), it gives:

0 2 4 6 8 10−4

−2

0

2

0 2 4 6 8 10−1.5

−1

−0.5

0

0.5

1

1.5

x 1x 2

u

Why does it work ?

N M h d ( i-lab

) N li C t l M t PSPI 2009 2010 92 / 174

NonlinearControl

N. Marchand

Sliding mode controlAn introducing example

Define σ(x ) = x 1 + 2x 2. The set S (x ) = x |σ(x ) = 0 ∩ |x 1| ≤ 0.6, |x 2| ≤ 0.3 is attractive:

Page 100: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 100/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

x 1 x 2

V

S =

x | x 1 +

2 x 2 =

0

N M h d ( i-lab

) N li C t l M t PSPI 2009 2010 93 / 174

NonlinearControl

N. Marchand

Sliding mode controlAn introducing example

Define σ(x ) = x 1 + 2x 2. The set S (x ) = x |σ(x ) = 0 ∩ |x 1| ≤ 0.6, |x 2| ≤ 0.3 is attractive:

Page 101: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 101/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

x 1 x 2

S S < 0S S < 0

S S > 0

S S > 0

S =

x | x 1 +

2 x 2 =

0

N M h d (gipsa-lab

) N li C l M PSPI 2009 2010 93 / 174

NonlinearControl

N. Marchand

Sliding mode controlAn introducing example

The set S (x ) = x |σ(x ) = 0 ∩ |x 1| ≤ 0.6, |x 2| ≤ 0.3 isattractiveO h i j i d h l i h h i

Page 102: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 102/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

Once the set is joined, the control is such that x remains onS (x ), that is:

S (x ) = 0 = x 1 + 2x 2 = x 2 − x 1 + u

Hence, on S (x ), u = − sign(x 1 + 2x 2) has the same influence

on the system as the control u eq =

x 1 −

x 2On S (x ), the system behaves like:

x 1 = x 2

x 2 = −x 1 + u = −x 2

x 2 and hence also x 1 clearly exponentially go to zero withoutleaving S (x ) = x |x 1 + 2x 2 = 0 ∩ |x 1| ≤ 0.6, |x 2| ≤ 0.3

N M h d (gipsa-lab

) N li C l M PSPI 2009 2010 94 / 174

NonlinearControl

N. Marchand

Sliding mode controlPrinciple of sliding mode control

Principle:

Page 103: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 103/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

Principle:

Define a sliding surface S (x ) = x |σ(x ) = 0

A stabilizing sliding mode control is a control law

discontinuous in on S (x )

that insures the attractivity of S (x )

such that, on the surface S (x ), the states “slides” tothe origin

Main characteristic of sliding mode control:

Robust control law

Discontinuities may damage actuators (filtered versionsexist)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 95 / 174

NonlinearControl

N. Marchand

Sliding mode controlNotion of sliding surface and equivalent control

With a sliding mode control, the system takes the form:

˙ f +(x ) if σ(x ) > 0

Page 104: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 104/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

x = ( ) ( )

f −

(x ) if σ(x ) < 0

σ(x ) = 0

σ(x )> 0

σ(x ) < 0

f + (x )

f − (x )f −n (x )

f +n (x )

What happens for σ(x ) = 0 ?The solution on σ(x ) = 0 is the solution of x = α f +(x ) + (1 − α )f −(x )

where α satisfies α f +n (x ) + (1 − α )f −n (x ) = 0 for the normal projections of f + and f −

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 96 / 174

NonlinearControl

N. Marchand

Sliding mode controlA sliding mode control for a class of affine systems

Theorem: Sliding mode control for a class of nonlinear systems

Take the nonlinear system:

Page 105: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 105/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

Take the nonlinear system:

x 1x 2...

x n

=

f 1(x ) + g 1(x )u

x 1...

x n−1

= f (x ) + g (x )u

Choose the control law

u = −p T f (x )

p T g (x ) −

µ

p T g (x ) sign(σ(x ))

with µ > 0, σ(x ) = p T

x and p T

=

p 1 · · · p n

is a stablepolynomial (all roots have strictly negative real parts)Then the origin of the closed loop system is asymptoticallystable

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 97 / 174

NonlinearControl

N. Marchand

Sliding mode controlSliding mode control for some affine systems: proof of convergence

Proof:

Take the Lyapunov function

Page 106: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 106/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

V (x ) = 12

x T pp T x

Note that V (x ) = σ2(x )

2Along the trajectories of the system, one has:

V (x ) = σT (x )σ(x ) = x T p

p T f (x ) + p T g (x )u

with the chosen control, it gives:

V (x ) = −µσ(x ) sign(σ(x )) = −µ |σ(x )|

x tends to S = x |σ(x ) = 0µ tunes how fast the system converges to S = x |σ(x ) = 0

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 98 / 174

NonlinearControl

N. Marchand

Sliding mode controlSliding mode control for some affine systems: proof of convergence

On S , the system is such that

σ(x ) = 0 = p 1x 1 + · · · + p n−1x n−1 + p nx n

Page 107: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 107/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

But:

x n−1 = x n

x n−2 = x n−1 = x (2)n

...

x 1 = x 2 = · · · = x (n−1)n

That can be written with z i = x n−i +1 in the form:

z =

0 1 0 · · · 0

0 0 1 . . .

......

.. .

.. . 0

0 · · · · · · 0 1− p 2

p 1− p 3

p 1· · · · · · − p n

p 1

z

Hence, x asymptotically goes to the origin

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 99 / 174

NonlinearControl

N. Marchand

Sliding mode controlSliding mode control for some affine systems: time to switch

Consider an initial point x 0 such that σ(x 0) > 0.

Page 108: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 108/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear

approachesAntiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

Sinceσ(x )σ(x ) = −µσ(x ) sign(σ(x ))

it follows that as long as σ(x ) > 0

σ(x ) = −µ

Hence, the instant of the first switch is

t s = σ(x 0)

µ < ∞

Moreover, t s → 0 as µ →∞N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 100 / 174

NonlinearControl

N. Marchand

Sliding mode controlRobustness issues

Assume that one knows only a model

x = f (x ) + g (x)u

Page 109: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 109/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

x = f (x ) + g (x )u

of the true system

x = f (x ) + g (x )u

The time derivative of the Lyapunov function is:

V (x ) = σ(x )

p T (f g − f g T )p

p T g − µ

p T g

p T g sign(σ(x ))

If sign(p T g ) = sign(p T g ) and µ > 0 sufficiently large, V < 0The closed-loop system is robust against model errors

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 101 / 174

NonlinearControl

N. Marchand

Outline1 Introduction

Linear versus nonlinearThe X4 example

Page 110: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 110/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

2 Linear control methods for nonlinear systemsAntiwindupLinearizationGain scheduling

3 Stability4 Nonlinear control methods

Control Lyapunov functionsSliding mode controlState and output linearization

Backstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 102 / 174

NonlinearControl

N. Marchand

State and output linearizationIntroducing examples

Consider nonlinear the system

x 1 = −2x 1 + ax 2 + sin(x 1)

Page 111: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 111/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

x 2 = −x 2 cos(x 1) + u cos(2x 1)

Take the new set of state variables

z 1 = x 1z 2 = ax 1 + sin(x 1)

x 1 = z 1

x 2 = z 2−sin(z 1)

a

The state equations become:

z 1 = −2z 1 + z 2

z 2 = −2z 1 cos(z 1) + cos(z 1) sin(z 1) + au cos(2z 1)

The nonlinearities can then be canceled taking the new control v :

u = 1

a cos(2z 1) (v − cos(z 1) sin(z 1) + 2z 1 cos(z 1))

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 103 / 174

NonlinearControl

N. Marchand

State and output linearizationIntroducing examples

The system then becomes linear:

z =−2 1

z +0

v

Page 112: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 112/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

z = 0 0

z + 1 v

Taking v = −2z 2 places the poles of the closed-loop in −2, −2Hence, limt →∞ z = 0Looking back to the transformation:

x 1 = z 1

x 2 = z 2 − sin(z 1)

a

one also have limt →∞ x = 0In the original coordinates, the control writes:

u = 1

a cos(2x 1)[−2ax 2−2sin(x 2)−cos(x 1) sin(x 1)+2x 1 cos(x 1)]

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 104 / 174

NonlinearControl

N. Marchand

State and output linearizationIntroducing examples

Consider nonlinear the system

x 1 = sin(x 2) + (x 2 + 1)x 35

Page 113: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 113/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

x 2 = x 51 + x 3

x 3 = x 21 + u

Take x 1 as “output”: y = x 1When not imposed, the choice of the appropriate output is often delicate

Compute the first time derivative of y :

y = x 1 = sin(x 2) + (x 2 + 1)x 3

Compute the second time derivative of y :

y = (x 2 + 1)u + (x 51 + x 3)(x 3 + cos(x 2)) + (x 2 + 1)x 21 m(x )

Taking u = v −m(x )

x 2+1 gives the linear system: y = v

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 105 / 174

NonlinearControl

N. Marchand

State and output linearizationIntroducing examples

Potential problem if x 2 = −1

Here again, take the linear feedback v = y + 2y that

Page 114: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 114/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

places the poles of the closed loop system in −1, −1Hence, y and y asymptotically converges to the origin

The state of the system is of dimension 3. Only twovariables have been brought to the origin, what about the

third one ?Write the system with the new coordinates(z 1, z 2, z 3) = (y , y , x 3):

Linearized sub-system: z 1 = z 2

z 2 = v Internal dynamics:

z 3 = z 21 + u (z )

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 106 / 174

NonlinearControl

N. Marchand

State and output linearizationIntroducing examples

One has to check that the internal dynamics is stable. For this, weassume that y = y = 0 (which happens asymptotically):

→ →

Page 115: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 115/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

z 3 =

→0 z 21 +

→0 v −((

0 z 51 +z 3)(z 3 + cos x 2) +

0 (x 2 + 1)z 21 )

x 2 + 1

= −z 3(z 3 + cos x 2)

x 2 + 1

If x 2 and z 3 are small enough, z 3 ≈ −z 3(z 3 + 1) ≈ −z 3: the internaldynamics is locally asymptotically stable

The approach can be applied if and only if the internal dynamics isstable

If the internal dynamics is unstable, the system is called non-minimumphase

Change the inputUse additional inputs to stabilize the internal dynamicsOther approach in the literature like approximate linearization

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 107 / 174

NonlinearControl

N. Marchand

State and output linearizationIntroduction

Consider again nonlinear systems affine in the control:

x = f (x ) + g (x )u

Page 116: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 116/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

y = h(x )

The linearization approach tries to find

a feedback control law

u = α (x ) + β(x )v

and a change of variablez = T (x )

that transforms the nonlinear systems into:

Input-State linearization

z = Az + Bv

No systematic approach

Input-Output linearization

y (r ) = v

Systematic approach

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 108 / 174

NonlinearControl

N. Marchand

State and output linearizationThe SISO case

Take x = f (x ) + g (x )u

y = h(x )

Page 117: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 117/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

The time derivative of y is then given by:

y = ∂h

∂x (f (x ) + g (x )u ) = Lf h(x ) + Lg h(x )u

If Lg h(x ) = 0, the control is

u = 1

Lg h(x )(−Lf h(x ) + v )

yielding y = v

Otherwise (that is Lg h(x ) ≡ 0), differentiate once more:

y = ∂Lf h

∂x (f (x ) + g (x )u ) = L2

f h(x ) + Lg Lf h(x )u

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 109 / 174

NonlinearControl

N. Marchand

State and output linearizationThe SISO case

If Lg Lf h(x ) = 0, the control is

u = 1

(−L2f h(x ) + v )

Page 118: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 118/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

Lg Lf h(x )

yielding to y = v

. . .

Definition: Relative degree

There exists an integer r ≤ n such that Lg Li f h(x ) ≡ 0 for alli ∈ 1, . . . , r − 2 and Lg L

r −1f h(x ) = 0 that is called the relative degree of

the system

The control law

u = 1Lg L

r −1f h(x )

(−Lr f h(x ) + v )

yields the linear system y (r ) = v

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 110 / 174

NonlinearControl

N. Marchand

State and output linearizationThe MIMO case

Takex = f (x ) + g 1(x )u 1 + g 2(x )u 2

Page 119: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 119/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

y 1 = h1(x )y 2 = h2(x )

The relative degree r 1, r 2 is then given by:

Lg 1 Li −1f h1(x ) = Lg 2 Li −1

f h1(x ) = 0

∀i < r 1

Lg 1 Li −1f h2(x ) = Lg 2 Li −1

f h2(x ) = 0 ∀i < r 2

Assume that the Input-Output decoupling condition issatisfied, that is:

rank

Lg 1 Lr 1−1f h1(x ) Lg 2 Lr 1−1f h1(x )Lg 1 Lr 2−1

f h2(x ) Lg 2 Lr 2−1f h2(x )

= 2

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 111 / 174

NonlinearControl

N. Marchand

State and output linearizationThe MIMO case

One has:

y 1 = Lf h1(x ) + Lg 1 h1(x )

=0

u 1 + Lg 2 h1(x )

=0

u 2

Page 120: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 120/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

y 1 = L2f h1(x ) + Lg 1 Lf h1(x ) =0

u 1 + Lg 2 Lf h1(x ) =0

u 2

...

y (r 1)1 = Lr 1

f h1(x ) + Lg 1 Lr 1−1f h1(x )

either =0

u 1 + Lg 2 Lr 1−1f h1(x )

or =0

u 2

Make the same for y 2:

y 2 = Lf h2(x ) + Lg 1 h2(x ) =0

u 1 + Lg 2 h2(x ) =0

u 2

y 2 = L2f h2(x ) + Lg 1 Lf h2(x )

=0

u 1 + Lg 2 Lf h2(x )

=0

u 2

...

y (r 2)2 = Lr 2

f h2(x ) + Lg 1 Lr 2−1f h2(x )

either =0

u 1 + Lg 2 Lr 2−1f h2(x ) or =0

u 2

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 112 / 174

NonlinearControl

N. Marchand

State and output linearizationThe MIMO case

Hence, one has:

y (r 1)1 Lr 1

f h1(x ) Lg 1 Lr 1−1f h1(x ) Lg 2 Lr 1−1

f h1(x ) u 1

Page 121: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 121/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

y (r 2)

2

=

Lr 2f h2(x )

b (x )

+

Lg 1 Lr 2−1f h2(x ) Lg 2 Lr 2−1f h2(x )

A(x )

u 2

u

Thanks to the decoupling condition, one can take:

u = −A(x )−1

b (x ) + A(x )−1

v

which gives two chains of integrators:

y (r 1)1 = v 1 y

(r 2)2 = v 2

This approach can be extended to any output and input sizes

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 113 / 174

NonlinearControl

N. Marchand

State and output linearizationA block diagram representation

Page 122: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 122/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

Linearization techniques can be interpreted as:

Nonlinear

system

Linear

control

Linearizing

feedbackLinear loop

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 114 / 174

NonlinearControl

N. Marchand

State and output linearizationThe general case

The internal dynamics or zero-dynamics is then of dimensionn − r ; its stability has to be checkedFor linear systems r =number of poles-number of zeros

Page 123: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 123/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

This approach took a rapid development in the 80’s Maybe the only “general” approach for nonlinear system with

predictive control Can be extended to MIMO systems with a decoupling

condition Many extensions in particular with the notion of flatness Power tool for path generation Non robust approach since it is based on coordinate changes

that can be stiff The control may take too large values “Kills” nonlinearities even if they are good

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 115 / 174

NonlinearControl

N. Marchand

R f

Outline1 Introduction

Linear versus nonlinearThe X4 example

2 L l h d f l

Page 124: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 124/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

2 Linear control methods for nonlinear systemsAntiwindupLinearizationGain scheduling

3 Stability

4 Nonlinear control methodsControl Lyapunov functionsSliding mode controlState and output linearization

Backstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 116 / 174

NonlinearControl

N. Marchand

R f

BacksteppingMain results

Theorem: backstepping design

Assume that the system ˙ χ = f ( χ, v ) with f (0, 0) = 0 can asymptotically be stabilized withv = k ( χ). Let V denote a C1 Lyapunov function (definite, positive and radiallyunbounded) such that ∂V

∂χf ( χ, k ( χ)) < 0 for all χ

= 0. Then, the system

Page 125: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 125/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding modeGeometriccontrol

Recursivetechniques

X4 stabilization

Observers

˙ χ = f ( χ, ξ)

ξ = h( χ, ξ) + u

with h(0, 0) = 0 is also asymptotically stabilizable with the control:

u ( χ, ξ) = −h( χ, ξ) +

∂k

∂χ f ( χ, ξ) − ξ + k ( χ) −∂V

∂χ G ( χ, ξ − k ( χ))T

with

G ( χ, ξ) =

10

∂f

∂ξ( χ, k ( χ) + λξ)d λ

The Lyapunov function

W ( χ, ξ) = V ( χ) + 1

2 ξ − k ( χ)2

is then strictly decreasing for any ( χ, ξ) = (0, 0)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 117 / 174

NonlinearControl

N. Marchand

R f

BacksteppingMain results

Th h i l b li d

Page 126: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 126/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The theorem can recursively be applied to

˙ χ = f ( χ, ξ1)

ξ1 = a1( χ, ξ1) + b 1( χ, ξ1)ξ2

ξ2 = a2( χ, ξ1, ξ2) + b 2( χ, ξ1, ξ2)ξ3

...

ξn−1 = an−1( χ, ξ1, ξ2, . . . , ξn−2) + b n−1( χ, ξ1, ξ2, . . . , ξn−2)ξn−1

ξn = an( χ, ξ1, ξ2, . . . , ξn−1) + b n( χ, ξ1, ξ2, . . . , ξn−1)u

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 118 / 174

NonlinearControl

N. Marchand

References

ForwardingStrict-feedforward systems

Consider the class of strict-feedforward systems :

Page 127: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 127/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

x 1 = x 2 + f 1(x 2, x 3, . . . , x n, u )

x 2 = x 3 + f 2(x 3, . . . , x n, u )

...

x n−1 = x n + f n−1(x n, u )

x n = u

Strict-feedforward systems are in general no feedbacklinearizable

Backstepping is not applicable

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 119 / 174

NonlinearControl

N. Marchand

References

ForwardingForwarding procedure

At step 0: Begin with stabilizing the system x n = u n.Take e.g. u n = −x n and the corresponding Lyapunov function V n = 1

2 x 2nAt step 1: Augment the control law

un−1(xn−1 xn) un(xn) + vn−1(xn−1 xn)

Page 128: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 128/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

u n−1(x n−1, x n) = u n(x n) + v n−1(x n−1, x n)

such that u n−1 stabilizes the cascade

x n−1 = x n + f n−1(x n, u n−1)

x n = u n−1

At step k: Augment the control law

u n−k (x n−k , . . . , x n) = u n−k +1(x n−k +1, . . . , x n) + v n−k (x n−k , . . . , x n)

such that u n−k stabilizes the cascade

ξn−k = x n−k +1 + f n−k (x n−k +1, . . . , x n, u n−k )

.

..x n−1 = x n + f n−1(x n, u n−k )

x n = u n−k

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 120 / 174

NonlinearControl

N. Marchand

References

ForwardingForwarding procedure

The control law u n−k always exists for allk ∈ 1, . . . , n − 1

The L ap no f nction at step k can be gi en b

Page 129: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 129/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The Lyapunov function at step k can be given by:

V k = V k +1 + 1

2x 2k +

0x k (τ )f k (x k +1(τ ), . . . , x n(τ ))d τ

To avoid computations of the integrals, low-gain controlcan be used. It gave rise to an important litterature onbounded feedback control (Teel (91), Sussmann et al.(94))

Various extensions for more general system exist but are

still based on the same recursive constructionForwarding can be interpreted with passivity, ISS oroptimal control

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 121 / 174

NonlinearControl

N. Marchand

References

Backstepping/ForwardingAn interpretation of the names

Page 130: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 130/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 122 / 174

NonlinearControl

N. Marchand

References

Outline1 Introduction

Linear versus nonlinearThe X4 example

2 Linear control methods for nonlinear systems

Page 131: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 131/182

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

2 Linear control methods for nonlinear systemsAntiwindupLinearizationGain scheduling

3 Stability

4 Nonlinear control methodsControl Lyapunov functionsSliding mode controlState and output linearization

Backstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 123 / 174

NonlinearControl

N. Marchand

References

The X4 helicopterX4 position stabilization

The aim is now to apply nonlinear control techniques to the stabilizationproblem of an X4 helicopter at a pointInput-Ouput Linearization techniques can not be applied since the system

is non minimum phaseTh b k t i h i i i d f

Page 132: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 132/182

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

is non minimum phaseThe backstepping approach is inspired fromS. Bouabdallah and R. Siegwart, ‘‘Backstepping and sliding-mode

techniques applied to an indoor micro quadrotor’’, at the EPFL

(Lausanne, Switzerland) presented at the International Conference on

Robotics and Automation 2005 (ICRA’05, Barcelonna, Spain)

The PVTOL control strategy comes fromA. Hably, F. Kendoul, N. Marchand and P. Castillo, Positive Systems,

chapter: "Further results on global stabilization of the PVTOL

aircraft", pp 303-310, Springer Verlag , 2006

The saturated control law is taken in:N. Marchand and A. Hably, "Nonlinear stabilization of multiple

integrators with bounded controls", Automatica, vol. 41, no. 12, pp2147-2152, 2005.

Revealing example of what often happens in nonlinear: a solution comesfrom the combination of different methods

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 124 / 174

NonlinearControl

N. Marchand

References

The X4 helicopterA two steps approach

s k 2m s k gearbox κ |s | s + k m sat (U )

Page 133: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 133/182

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

s i = − m

J r R s i −

g

J r |s i | s i + m

J r R satU i

(U i )

p = v

m v = −mg e 3 + R

00

i

F i (s i )

R = R ω×

J ω = − ω×J ω −

i I r ω×

0

0

i s i

+

Γ r (s 2, s 4)

Γ p (s 1, s 3)

Γ y (s 1, s 2, s 3, s 4)

Position control problem

Attitude control problem

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 125 / 174

NonlinearControl

N. Marchand

References

The X4 helicopter: attitude stabilizationA backstepping approach

The aim of this first step is to be able to bring (φ,θ,ψ) toany desired configuration (φd , θd , ψd )

Attitude equations (with an appropriate choice of Euler

angles):

Page 134: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 134/182

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

angles):

x 1 = x 2x 2 = a1x 4x 6 + b 1Γ r

x 3 = x 4x 4 = a2x 2x 6 + b 2Γ p

x 5 = x 6x 6 = a3x 2x 4 + b 3Γ y

with (x 1, . . . , x 6) = (φ, φ,θ, θ, ψ, ˙ ψ), a1 = J 2−J 3J 1

, a2 = J 3−J 1J 2

,

a3 = J 1−J 2J 3

, b 1 = 1J 1

, b 2 = 1J 2

and b 3 = 1J 3

The system would be trivial to control if (x 2, x 4, x 6) was thecontrol instead of (Γ r , Γ p , Γ y )

This is precisely the philosophy of backstepping

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 126 / 174

NonlinearControl

N. Marchand

References

The X4 helicopter: attitude stabilizationRecall of backstepping main result

Theorem: backstepping design

Assume that the system ˙ χ = f ( χ, v ) with f (0, 0) = 0 can asymptotically be stabilized withv = k ( χ). Let V denote a C1 Lyapunov function (definite, positive and radiallyunbounded) such that ∂V

∂χf ( χ, k ( χ)) < 0 for all χ

= 0. Then, the system

˙ f ( ξ)

Page 135: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 135/182

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

˙ χ = f ( χ, ξ)

ξ = h( χ, ξ) + u

with h(0, 0) = 0 is also asymptotically stabilizable with the control:

u ( χ, ξ) = −h( χ, ξ) +

∂k

∂χ f ( χ, ξ) − ξ + k ( χ) −∂V

∂χ G ( χ, ξ − k ( χ))T

with

G ( χ, ξ) =

10

∂f

∂ξ( χ, k ( χ) + λξ)d λ

The Lyapunov function

W ( χ, ξ) = V ( χ) + 1

2 ξ − k ( χ)2

is then strictly decreasing for any ( χ, ξ) = (0, 0)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 127 / 174

NonlinearControl

N. Marchand

References

The X4 helicopter: attitude stabilizationA backstepping approach

Define first the tracking error:

z1 = x1 − x1d = φ − φd

Page 136: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 136/182

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

z x x d φ φz 2 = x 3 − x 3d

= θ − θd

z 3 = x 5 − x 5d = ψ − ψd

It gives the subsystem

z 1 = x 2 − x 1d

z 2 = x 4 − x 3d

z 3 = x 6 − x 5d

where, at this step, (x 2, x 4, x 6) is the control vectorTake first V 1 = 1

2 z 21 .

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 128 / 174

NonlinearControl

N. Marchand

References

The X4 helicopter: attitude stabilizationA backstepping approach

Along the trajectories of the system, the Lyapunovfunction gives:

V 1 = z 1(x 2 − x 1d )

Hence taking as fictive control x2 = x1 α1z1 with

Page 137: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 137/182

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Hence taking as fictive control x 2 = x 1d − α 1z 1 with

α 1 > 0 insures the decrease of V 1:

V 1 = −α 1z 21

x 1 will asymptotically converge to x 1d ... unfortunately x 2is not the control and we have to build thanks tobackstepping approach “ the Γ r that will force x 2 to makex 1 converge to x 1d

For this, define the tracking error for x 2:

z 2 = x 2 − (x 1d − α 1z 1)

input of subsystem in z 1we would like to put

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 129 / 174

NonlinearControl

N. Marchand

ReferencesO li

The X4 helicopter: attitude stabilizationA backstepping approach

One hasz 2 = a1x 4x 6 + b 1Γ r

x 2

−x 1d + α 1x 2 − α 1x 1d

α1z 1

Recall we have to build “ the Γ r that will force x 2 to make x 1 converge

Page 138: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 138/182

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

r 2 1 gto x 1d

”. For this, we use the formula of the backstepping theorem:

Theorem: backstepping design

...

u ( χ, ξ) = −h( χ, ξ) + ∂k

∂χf ( χ, ξ) − ξ + k ( χ) −

∂V

∂χ G ( χ, ξ − k ( χ))

T

...

with in our case:

χ = z 1ξ = z 2h = a1x 4x 6 − x 1d

+ α 1x 2 − α 1x 1d

k = x 1d − α 1z 1

f = x 2 − x 1d

V = 12 z 21

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 130 / 174

NonlinearControl

N. Marchand

ReferencesO tli

The X4 helicopter: attitude stabilizationA backstepping approach

Or more simply, we construct it:

W (z 1, z 2) = V (z 1) + 1

2 x 2 − (x 1d

− α 1z 1)2=

1

2(z 21 + z 22 )

Al th t j t i s f th s st

Page 139: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 139/182

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Along the trajectories of the system:

W = z 1(x 2 − x 1d ) + z 2

a1x 4x 6 +

control

b 1Γ r −x 1d

+ α 1x 2 − α 1x 1d

Taking v as new control variable:

v = a1x 4x 6 + b 1Γ r − x 1d + α 1x 2 − α 1x 1d

b 1Γ r = v − a1x 4x 6 + x 1d − α 1x 2 + α 1x 1d

gives:W = z 1(x 2 − x 1d

) + z 2v

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 131 / 174

NonlinearControl

N. Marchand

ReferencesOutline

The X4 helicopter: attitude stabilizationA backstepping approach

Trying to write

x 2 − x 1d = −α 1z 1

ideal case

+? (x 2 − x 1d + α 1z 1)

difference between realand ideal cases

Page 140: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 140/182

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

= −α 1z 1 + x 2 − x 1d + α 1z 1

z 2

Hence, it gives:

W = −α 1z 21 + z 1z 2 +z 2v

can be compensated with v

Taking:v = −z 1 − α 2z 2

where α 2 > 0 in order to insure

W = −α 1z 21 − α 2z 22 < 0

Repeating this for θ and ψ gives the wanted control law

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 132 / 174

NonlinearControl

N. Marchand

ReferencesOutline

The X4 helicopter: attitude stabilizationA backstepping approach

Attitude stabilization

The control law given by

b 1Γ r = −z 1 − α 2z 2 − a1x 4x 6 + x 1d − α 1x 2 + α 1x 1d

Page 141: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 141/182

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

b 2Γ p = −z 3 − α 4z 4 − a2x 2x 6 + x 3d − α 3x 4 + α 3x 3d

b 3Γ y = −z 5 − α 6z 6 − a3x 2x 4 + x 5d − α 5x 6 + α 5x 5d

with z 1 = x 1 − x 1d , z 2 = x 2 − x 1d

+ α 1z 1, z 3 = x 3 − x 3d ,

z 4 = x 4 − x 3d + α 3z 3, z 5 = x 5 − x 5d and z 6 = x 6 − x 5d + α 5z 5asymptotically stabilizes (x 1, x 3, x 5) to their desired position(x 1d

, x 3d , x 5d

)

This kind of approach appeared in the literature in the last

90’sNow better approach based on forwarding are appearingtaking into account practical saturation of the control torques

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 133 / 174

NonlinearControl

N. Marchand

ReferencesOutline

The X4 helicopter: attitude stabilizationA backstepping approach

Simulations: apply successive steps of 45 in roll, pitch andyaw

60

Page 142: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 142/182

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

0 10 20 30 40 50 60 70−20

0

20

40

60

0 10 20 30 40 50 60 70−20

0

20

40

60

0 10 20 30 40 50 60 70−20

0

20

40

60

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 134 / 174

NonlinearControl

N. Marchand

References

Outline

The X4 helicopter: attitude stabilizationA backstepping approach

Adjusting the α ’s: with α i = 0.2

60 1

Page 143: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 143/182

Outline

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

0 10 20 30 40 50 60 70−20

0

20

40

0 10 20 30 40 50 60 70−20

0

20

40

60

0 10 20 30 40 50 60 70−20

0

20

40

60

Roll, pitch and yaw answers

0 10 20 30 40 50 60 70−1

0

0 10 20 30 40 50 60 70−0.5

0

0.5

0 10 20 30 40 50 60 70−2

−1

0

1

Γ r , Γ p and Γ y controls

Too many oscillations

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 135 / 174

NonlinearControl

N. Marchand

References

Outline

The X4 helicopter: attitude stabilizationA backstepping approach

Adjusting the α ’s: with α i = 2

40

60 5

Page 144: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 144/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

0 10 20 30 40 50 60 70−20

0

20

40

0 10 20 30 40 50 60 70−20

0

20

40

60

0 10 20 30 40 50 60 70−20

0

20

40

60

Roll, pitch and yaw answers

0 10 20 30 40 50 60 70−5

0

0 10 20 30 40 50 60 70−2

0

2

0 10 20 30 40 50 60 70−2

0

2

Γ r , Γ p and Γ y controls

Seems to be a good choice

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 136 / 174

Page 145: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 145/182

NonlinearControl

N. Marchand

References

Outline

The X4 helicopter: attitude stabilizationA backstepping approach

Page 146: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 146/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

ObserversSuccessive steps of 45 in roll, pitch and yaw with α i = 2

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 138 / 174

NonlinearControl

N. Marchand

References

Outline

The X4 helicopter: attitude stabilizationA backstepping approach

The saturation of the possible control torques Γ r , Γ p , Γ y

may be problematic

On the X4 system, the maximum speed of the rotors is

given by the solution of:

Page 147: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 147/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

k 2ms max + k gearbox κRs max2 − k mU = 0

which gives: s max = 604 rad.s−1

The maximum roll and pitch torques are when one rotor isat rest, the other one at is maximum speed (we assumethat the rotation is in only one direction):

Γ maxr ,p = lbs 2max = 0.31 N.m

The maximum yaw torque is obtained when two oppositerotors turn at the s max the two others are at rest:

Γ maxy = 2κs 2max = 21.2 N.m

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 139 / 174

NonlinearControl

N. Marchand

References

Outline

The X4 helicopter: attitude stabilizationA backstepping approach

Page 148: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 148/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Adapt the parameters to the saturation:

Take larger α 5,6 than the α 1,...,4Take small enough α i to fulfill the saturation constraint

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 140 / 174

NonlinearControl

N. Marchand

References

Outline

The X4 helicopter: attitude stabilizationA backstepping approach

Adjusting the α ’s: with α 1,...,4 = 0.4 and α 5,6 = 8

40

60 1

Page 149: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 149/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

0 10 20 30 40 50 60 70−20

0

20

0 10 20 30 40 50 60 70

−20

0

20

40

60

0 10 20 30 40 50 60 70−20

0

20

40

60

Roll, pitch and yaw answers

0 10 20 30 40 50 60 70−1

0

0 10 20 30 40 50 60 70

−0.5

0

0.5

0 10 20 30 40 50 60 70−50

0

50

Γ r , Γ p and Γ y controls

The controls are still too large

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 141 / 174

NonlinearControl

N. Marchand

References

Outline

The X4 helicopter: attitude stabilizationA backstepping approach

Adjusting the α ’s: with α 1,...,4 = 0.2 and α 5,6 = 8

40

60 1

Page 150: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 150/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

0 10 20 30 40 50 60 70−20

0

20

0 10 20 30 40 50 60 70

−20

0

20

40

60

0 10 20 30 40 50 60 70−20

0

20

40

60

Roll, pitch and yaw answers

0 10 20 30 40 50 60 70−1

0

0 10 20 30 40 50 60 70

−0.5

0

0.5

0 10 20 30 40 50 60 70−50

0

50

Γ r , Γ p and Γ y controls

Oscillations are now present

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 142 / 174

NonlinearControl

N. Marchand

References

Outline

The X4 helicopter: attitude stabilizationA backstepping approach

Taking α 1,...,4 = 0.2 and α 5,6 = 8 and applying it on thesystem with saturations, it gives:

60 0.5

Page 151: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 151/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

0 10 20 30 40 50 60 70−20

0

20

40

60

0 10 20 30 40 50 60 70−20

0

20

40

60

0 10 20 30 40 50 60 70−20

0

20

40

60

Roll, pitch and yaw answers

0 10 20 30 40 50 60 70−0.5

0

0.5

0 10 20 30 40 50 60 70−0.5

0

0.5

0 10 20 30 40 50 60 70−50

0

50

Γ r , Γ p and Γ y controls

Seems to work

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 143 / 174

NonlinearControl

N. Marchand

References

Outline

The X4 helicopter: attitude stabilizationA backstepping approach

Page 152: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 152/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

ObserversThe control law with the saturated system

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 144 / 174

NonlinearControl

N. Marchand

References

Outline

The X4 helicopter: position controlSimplification of the problem

First use the attitude control to adjust the X4 in the rightdirection:

Page 153: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 153/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 145 / 174

NonlinearControl

N. Marchand

References

Outline

The X4 helicopter: position controlSimplification of the problem

There exists a relation between (α,β,ψ) and (φ,θ,ψ) (arotation about the yaw axis)Use the attitude control to drive and keep α and ψ to the

originTake now the system in the plane:

Page 154: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 154/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 146 / 174

NonlinearControl

N. Marchand

References

Outline

The X4 helicopter: position controlSimplification of the problem

This problem is referred in the literature as the PVTOL

aircraft stabilization problem (Planar Vertical Take Off and Landing aircraft)

Page 155: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 155/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

AntiwindupLinearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

The “generic” equations are:

x = − sin(θ)u

y = cos(θ)u − 1θ = v

u v

θ

x

y

where ’-1’ represent the normalized gravity, v represents

the equivalent control torque.

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 147 / 174

NonlinearControl

N. Marchand

References

Outline

I d i

The X4 helicopter: position controlA saturation based control

Define z (z 1, z 2, z 3, z 4, z 5, z 6)T (x , x , y , y , θ, θ)T

The system becomes:

Translational part:

z 1 = z 2z 2 = −u sin(z 5)

Rotational part:z 5 = z 6

Page 156: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 156/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

z 3 = z 4z 4 = u cos(z 5) − 1

z 6 = v

The idea is to use v to drive z 5 to z d 5 such that:

z 5d arctan(

−r 1

r 2 + 1)

with ε < 12 (tuning parameter) and σ(·) = max(min(·, 1), −1):

r 1 = −εσ(z 2) − ε2

σ(εz 1 + z 2)r 2 = −εσ(z 4) − ε2σ(εz 3 + z 4)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 148 / 174

NonlinearControl

N. Marchand

References

Outline

I t d ti

The X4 helicopter: position controlA saturation based control

When z 5 reaches z 5d and applying the thrust control input u

u = r 21 + (r 2 + 1)2

the translational subsystem takes the form of two independent

Page 157: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 157/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

second order chain of integrators

z 1 = z 2z 2 = r 1

z 3 = z 4z 4 = r 2

If we could prove that

r 1 = −εσ(z 2) − ε2σ(εz 1 + z 2)

r 2 = −εσ(z 4) − ε2σ(εz 3 + z 4)

insures (z 1, z 2, z 3, z 4) → 0Then, it will follow that once (z 1, z 2, z 3, z 4) = 0, z 5d

= 0 andz 5d

= z 6d = 0 hence also (z 5, z 6) → 0

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 149 / 174

NonlinearControl

N. Marchand

References

Outline

I t od ctio

The X4 helicopter: position controlA saturation based control

Remain two problems:Prove that

Page 158: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 158/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Prove that

r 1 = −εσ(z 2) − ε2σ(εz 1 + z 2)

r 2 = −εσ(z 4) − ε2σ(εz 3 + z 4)

brings (z 1, z 2, z 3, z 4) to zero

Build a control so that (z 5, z 6) tends to (z 5d , z 5d

= z 6d )

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 150 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

The X4 helicopter: position controlA saturated control law for linear systems

An integrator chain is defined by:

x =

0 1 0 . . . 0...

. . . 1 . . .

...

... . . . . . . 0

.. . . 1

x +

0......0

u (11)

Page 159: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 159/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

. . 10 . . . . . . . . . 0

=:A

01

=:B

Problem: stabilizing (11) with

−u ≤ u ≤ u

and u is a positive constant

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 151 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

The X4 helicopter: position controlA saturated control law for linear systems

First compute

n

i =1

(λ + εi ) = p 0 + p 1λ +

· · ·+ p n−1λn−1 + λn

Apply the coordinate change

Page 160: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 160/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Apply the coordinate change

y := ni =1 εi

u Tx with

T n = B

T n−1 = (A + p n−1I )B

T n−2 = (A2 + p n−1A + p n−2I )B ...

T 1 = (An−1 + p n−1An−2 + · · · + p 1I )B

The system becomes normalized in

y =

0 εn−1 εn−2 . . . ε

0 0 εn−2 . . . ε...

. . . . . .

...0 . . . . . . 0 ε

0 . . . . . . 0 0

y +

1......

...1

v

with −n

i =1 εi ≤ v ≤ ni =1 εi

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 152 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

The X4 helicopter: position controlA saturated control law for linear systems

Theorem: An efficient saturated controlLet ε(n) denote the only root of εn − 2ε + 1 = 0 in ]0, 1[.

Page 161: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 161/182

Introduction

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

( ) y + ] , [

Then for all ε with 0 < ε < ε(n),

u = − ¯

u ni =1 εi

ni =1

εn−i +1 sat1(y i )

globally asymptotically stabilizes the integrator chain.

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 153 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

The X4 helicopter: position controlA saturated control law for linear systems

Sketch of the proof:

Assume that |y n| > 1 and take V n := 12 y 2n

Then

V n = −y n ε sat1(y n) =ε

−y n

ε2 sat1(y n−1) + · · · + εn sat1(y 1)

| |<ε2+ +εn

Page 162: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 162/182

t oduct o

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

=ε |·|<ε2+···+εn

So V is decreasing if

ε > ε2

+ · · · + εn ⇔ 1 − 2ε + ε

n

> 0 ⇔ ε < ε(n)

y n joins [−1, 1 ] in finite time and remains thereDuring that time, y n−1 to y 1 can not blow upRepeating this scheme for y n−1 to y 1 gives y ∈ B(1) aftersome time

In B(1), the system is linear and stable ⇒ GASThe construction of this feedback law is based on feedforward

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 154 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

The X4 helicopter: position controlA saturation based control

Remain two problems:

Prove that

r 1 = −εσ(z 2) − ε2σ(εz 1 + z 2)

r2 = −εσ(z4) − ε2σ(εz3 + z4)

Page 163: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 163/182

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

r 2 = εσ(z 4) ε σ(εz 3 + z 4)

brings (z 1, z 2, z 3, z 4) to zero

direct application of the saturated control lawBuild a control so that (z 5, z 6) tends to (z 5d

, z 5d = z 6d

)

take:

v = σβ(z 5d ) − εσ(z 6 − z 5d

) − ε2σ(ε(z 5 − z 5d ) + (z 6 − z 5d

))

that work applying the saturated control law on thevariables z 5 − z 5d

and z 6 − z 5d

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 155 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

The X4 helicopterSecond step: position control

Page 164: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 164/182

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

(φ,θ,ψ,x ,y ,z ) = (pi 2 ,

pi 2 ,

pi 4 ,5,5,5)

(φ, θ, ψ, x , y , z ) = (0,0,0,1,2,0)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 156 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

The X4 helicopterSecond step: position control

Page 165: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 165/182

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Zoom on the 10 first seconds with a snapshot every second

Initial conditions:

(φ,θ,ψ,x ,y ,z ) = ( pi 2 ,

pi 2 ,

pi 4 ,5,5,5)

(φ, θ, ψ, x , y , z ) = (0,0,0,1,2,0)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 157 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

Outline

1 IntroductionLinear versus nonlinearThe X4 example

2 Linear control methods for nonlinear systemsAntiwindupLinearization

Page 166: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 166/182

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Gain scheduling

3 Stability

4 Nonlinear control methodsControl Lyapunov functionsSliding mode controlState and output linearization

Backstepping and feedforwardingStabilization of the X4 at a position

5 Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 158 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

Nonlinear observers

y u y d

x

Observer

k (x )

Controller

Page 167: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 167/182

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Observer

1 ModelizationTo get a mathematical representation of the systemDifferent kind of model are useful. Often:

a simple model to build the control lawa sharp model to check the control law and the observer

2 Design the state reconstruction: in order to reconstructthe variables needed for control

3 Design the control and test it

Close the loop

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 159 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear systems: Simple observerx (t ) = Ax (t ) + Bu (t )

y (t ) = Cx (t )

Observability given by rank(C , CA, . . . , CAn−1)

O fi

Page 168: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 168/182

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

LinearizationGain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometriccontrol

Recursivetechniques

X4 stabilization

Observers

Once the observability has been checked, define theobserver:

˙x (t ) = Ax + Bu (t ) + L(y (t ) − y (t ))y (t ) = C x (t )

with L such that (eig(A + LC )) < 0.Then x tends to x asymptotically with a speed

related to eig(A + LC )

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 160 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

Li /N li

Linear systems (cntd.):

convergence of the observer

Define the error e (t ) := x (t ) − x (t ). Then:

e(t) = Ae(t) + L(y (t) − y (t)) = (A + KC )e(t)

Page 169: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 169/182

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

LinearizationGain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

GeometriccontrolRecursivetechniques

X4 stabilization

Observers

e (t ) = Ae (t ) + L(y (t ) − y (t )) = (A + KC )e (t )

Hence, if (eig(A + LC )) < 0, limt →∞ x (t ) = x (t )

Separation principle: the controller and the observer canbe designed separately, if each are stable, their associationwill be stable

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 161 / 174

Page 170: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 170/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

Time-varying linear systems:x (t ) = A(t )x (t ) + B (t )u (t )

y (t ) = C (t )x (t )

Kalman filter:˙x = A(t )x (t ) + B (t )u (t ) + L(t )(y (t ) − y (t ))

y (t) C (t)x(t)

Page 171: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 171/182

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

LinearizationGain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

GeometriccontrolRecursivetechniques

X4 stabilization

Observers

y (t ) = C (t )x (t )

with: P = AP + PAT − PC T W −1CP + V + δP

P (0) = P 0 = P T 0 > 0

W = W T > 0

L = −PC T W −1

δ > 2

A

or V = V T > 0

δ enables to tunes the speed of convergence of theobserver

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 163 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The observer can also be computed as L = −S −1

C T

W −1

where

−S = AT S + SA − C T W −1C + SVS + δS

S (0) = S 0 = S T 0 > 0

The observer is optimal in the sense that it minimizes

Page 172: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 172/182

Linear/Nonlinear

The X4 example

Linearapproaches

Antiwindup

LinearizationGain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

GeometriccontrolRecursivetechniques

X4 stabilization

Observers

t

0[C (τ )z (τ ) − y (τ )]T W −1 [C (τ )z (τ ) − y (τ )] +

[B (τ )u (τ )]T V −1 [B (τ )u (τ )] d τ +

(x 0 − x 0)T P −10 (x 0 − x 0)

The observer is also optimal for

x is affected by a white noise w x of variance V

y is affected by a white noise w y of variance W

w x and w y are uncorrelated

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 164 / 174

Page 173: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 173/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

Extended Kalman filter (EKF):˙x = f (x (t ), u (t )) − L(t )(y (t ) − y (t ))

y (t ) = h(x (t ))

with P = AP + PAT − PC T W −1CP + V + δP

P (0) = P 0 = P T 0 > 0

Page 174: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 174/182

/

The X4 example

Linearapproaches

Antiwindup

LinearizationGain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

GeometriccontrolRecursivetechniques

X4 stabilization

Observers

( ) 0 0

W = W T > 0

L = PC T W −1

δ > 2 A or V = V T > 0

A = ∂f

∂x (x (t ), u (t )) C =

∂h

∂x (x (t ))

No guarantee of convergence (except for specificstructure conditions)

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 166 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

Luenberger-Like observers

For a system of the form:x (t ) = Ax (t ) + φ(Cx (t ), u )

y (t ) = Cx (t )

with (A, C ) observable, if A − KC is stable, an observer is:

˙x (t ) = Ax (t ) + φ(y (t ), u (t )) − K (C x (t ) − y (t ))

For a system of the form:

Page 175: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 175/182

/

The X4 example

Linearapproaches

Antiwindup

LinearizationGain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometric

controlRecursivetechniques

X4 stabilization

Observers

x (t ) = A0x (t ) + φ(x (t ), u (t ))

y (t ) = C 0x (t )

with (A0, C 0) are in canonical form, if A0 − K 0C 0 is stable, λ

sufficiently large, φ global lipschitz and

∂φi

∂x j

(x , u ) = 0 for j ≥ i + 1

an observer is:˙x (t ) = A0x (t ) + φ(x (t ), u (t )) − diag(λ, λ2, . . . , λn)K 0(C 0x (t ) − y (t ))

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 167 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

Kalman-Like observersFor a system of the form:

x (t ) = A(u (t ))x (t ) + B (u (t ))

y (t ) = Cx (t )

an observer is:

˙x(t) = A(u(t))x(t) + B (u(t)) − K (t)(C x (t) − y (t))

Page 176: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 176/182

The X4 example

Linearapproaches

Antiwindup

LinearizationGain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometric

controlRecursivetechniques

X4 stabilization

Observers

x (t ) = A(u (t ))x (t ) + B (u (t )) − K (t )(C x (t ) − y (t ))

with

P = A(u (t ))P + PAT (u (t )) − PC T W −1CP + V + δP

P (0) = P 0 = P T 0 > 0, W = W T > 0

δ > 2 A(u (t )) or V = V T > 0

L = PC T W −1

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 168 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

Kalman-Like observers (cntd.)

For a system of the form:x (t ) = A0(u (t ), y (t ))x (t ) + φ(x (t ), u (t ))

y (t ) = C 0x (t )

with:

A0(u , y ) =

0 a12(u , y ) 0

. . .

an−1n(u , y )

0 0

bounded

Page 177: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 177/182

The X4 example

Linearapproaches

Antiwindup

LinearizationGain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometric

controlRecursivetechniques

X4 stabilization

Observers

0 0

C 0 =

1 0 · · · 0

∂φi

∂x j

(x , u ) = 0 for j

≥ i + 1

an observer is:

˙x = A(u , y )x + φ(x , u ) − diag(λ, λ2, . . . , λn)K 0(t )(C 0x − y )

with P = λ

A(u (t ))P + PAT (u (t )) − PC T W −1CP + δP

P (0) = P 0 = P

T 0 > 0, W = W

T

> 0δ > 2 A(u (t )) and λ large enough

L = P C T W −1

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 169 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

Not mentionned:

Optimal observers (robust, very efficient and easy to

tune but costly)Based on something like:

Page 178: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 178/182

The X4 example

Linearapproaches

Antiwindup

LinearizationGain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometric

controlRecursivetechniques

X4 stabilization

Observers

x = Arg minx (·)

t 1

t 0

h(x (τ )) − y (τ )) d τ

Sliding mode observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 170 / 174

Page 179: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 179/182

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

ObserversApplication to the attitude estimation

The gyrometers give:

b gyr = ω + ηgyr 1 noise

+ νgyr 1 bias

where hmag are the coordinates of the magnetic field in

Page 180: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 180/182

The X4 example

Linearapproaches

Antiwindup

LinearizationGain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometric

controlRecursivetechniques

X4 stabilization

Observers

g

the fixed frame.The bias drift is the main error and it deteriorates the

accuracy of the rate gyros on the low frequency band.We take:

b gyr = ω + ηgyr 1 + νgyr 1

˙ νgyr 1 = − 1τ νgyr 1 + ηgyr 2

noise

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 172 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

ObserversApplication to the attitude estimation

Nonlinear observer for attitude estimation

An observer of the attitude can be: ˙q = 1

2 Ω( b gyr − ^ νgyr 1 + K 1ε)q ˙ν = −T 1ν − K2ε

Page 181: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 181/182

The X4 example

Linearapproaches

Antiwindup

LinearizationGain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometric

controlRecursivetechniques

X4 stabilization

Observers

ν T ν K 2ε

where T is a diagonal matrix of time constant, K i are positive

definite matrices, ε is given by:

ε = q e sign(q e 0 )

where q e = (q e 0 , q e ) is the quaternion error between the

estimate q and a direct projection obtained with b mag and b acc

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 173 / 174

NonlinearControl

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

ObserversApplication to the attitude estimation

Block diagram of the observer

Page 182: Nonlinear_PSPI.pdf

8/10/2019 Nonlinear_PSPI.pdf

http://slidepdf.com/reader/full/nonlinearpspipdf 182/182

The X4 example

Linearapproaches

Antiwindup

LinearizationGain scheduling

Stability

Nonlinearapproaches

CLF

Sliding mode

Geometric

controlRecursivetechniques

X4 stabilization

Observers

N. Marchand (gipsa-lab) Nonlinear Control Master PSPI 2009-2010 174 / 174