nonlinear kinetic turbulence theory

87
Nonlinear kinetic turbulence theory Peter H. Yoon University of Maryland 6th East‐Asia School and Workshop on Laboratory, Space, and Astrophysical Plasmas Tsukuba, Japan, 11 ‐ 16 July, 2016

Upload: others

Post on 22-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nonlinear kinetic turbulence theory

Nonlinear kinetic turbulence theory

Peter H. YoonUniversity of Maryland

6th East‐Asia School and Workshop on Laboratory, Space, and Astrophysical PlasmasTsukuba, Japan, 11 ‐ 16 July, 2016

Page 2: Nonlinear kinetic turbulence theory

FLUID THEORIES KINETIC THEORIES

• MHD (Ideal,Resistive, Hall, etc).Well‐developedmature field.• Drift‐wave turb.(Hasegawa‐Mima)

• Strong turbulence(à la Zakharov)

• Weak turbulence forunmagnetized plasmas(Tsytovich, Melrose,Sitenko, Davidson,etc.). Most maturekinetic plasmaturbulence theory• Renormalized (strongturbulence à laKadomtsev, Dupree,etc.)

REDUCEDKINETIC THEORIES

• Drift Kinetic• Gyrokinetic (applicable for low‐frequency regime andfor stronglymagnetizedplasmas)

• Weak turbulence formagnetized plasmas(incomplete, but somepreliminary worksinclude those byPustovalov & Silin,Porkolab, etc.)

Page 3: Nonlinear kinetic turbulence theory

Part 1. Electrostatic Problem

Wang et al., ApJ Lett. (2012)

Maxwellian Core

Halo

Superhalo

Interplanetary& galactic cosmicray electrons

SOLAR WIND ELECTRON DISTRIBUTION AT 1 AU

Page 4: Nonlinear kinetic turbulence theory

(bi) kappa model

f (v) f (v|| )

v v||

Maksimovic et al. JGR, 110, A09104 (2005)

Page 5: Nonlinear kinetic turbulence theory

fMaxwellBoltzmannGauss ex 2

fkappa 1

(1 x 2 /)or

1(1 x 2 /) 1

Page 6: Nonlinear kinetic turbulence theory

fMaxwellBoltzmannGauss ex 2

fkappa 1

(1 x 2 /)or

1(1 x 2 /) 1

Page 7: Nonlinear kinetic turbulence theory

fMaxwellBoltzmannGauss ex 2

fkappa 1

(1 x 2 /)or

1(1 x 2 /) 1

Page 8: Nonlinear kinetic turbulence theory

Theories of “Kappa” Distribution

• 1. Collisional or Stochastic Transport Model (Scudder, 1990s; Schwandron, 2010)

• 2. Non‐Extensive Thermodynamics (Tsallis, 1980s; Treumann, 2000s; Leubner, 2000s; Livadiotis, 2000s)

• 3. Steady‐State Plasma Turbulence (Yoon, 2014)

Page 9: Nonlinear kinetic turbulence theory

Nonlinear Plasma Interaction

e+

e–

E, B

E, BM M

M M

Page 10: Nonlinear kinetic turbulence theory

e+

e–

E, B

E, B

Klimontovich function

Page 11: Nonlinear kinetic turbulence theory

e+

e–

E, B

E, BElectrostatic approximation

Na (r,v,t) fa (r,v, t)Na (r,v,t) fa (r,v,t) Na (r,v,t)E(r, t) E(r, t)

Separation into average and fluctuation

Page 12: Nonlinear kinetic turbulence theory

(r,t) (r’,t’)(r,t) (r’,t’)

(r,t) (r’,t’)(r,t) (r’,t’)

g2ab(| r r ' |, | t t ' |) Na (r,v, t)Nb(r ',v ', t ')

g2ab (r, t,|r r' |,| t t' |)

Page 13: Nonlinear kinetic turbulence theory

Phenomenological approach:Non‐Gaussian PDFMulti‐fractal scaling

Page 14: Nonlinear kinetic turbulence theory

Fluctuation Equation

Particle kinetic equation

Field equation

Page 15: Nonlinear kinetic turbulence theory

Near absence of linear term in NS turbulence:<< 1

Robust linear physics in plasma turbulence:

Linear, QL, and weak turbulence theories are valid for plasmas

“Renormalization” is necessary at the outset

Navier‐Stokes turbulence:

Plasma turbulence:

Page 16: Nonlinear kinetic turbulence theory

Perturbative plasma turbulence theory

Nk Nka(1) Nk

a(2) Nka(3)

Nka(1) Nk

0 ea

ma

1 k v

kk fa

v,

Nka(2)

ea

ma

1 k v

dk 'k'v[k ' 'Nkk ', '

a(1) k ' 'Nkk ', 'a(1) ],

Nka(3)

ea

ma

1 k v

dk 'k'v[k ' 'Nkk ', '

a(2) k ' 'Nkk ', 'a(2) ],

...

Page 17: Nonlinear kinetic turbulence theory

Particle Kinetic Equation

Spontaneous drag (discrete particle effect)

Velocity space diffusion

Page 18: Nonlinear kinetic turbulence theory

Wave Kinetic Equation

Spontaneous emission

Induced emission(Landau damping/Quasi‐linear growth/damping rate)

Linear wave‐particleresonance

Wave Particle

Page 19: Nonlinear kinetic turbulence theory

2 ', ''1 k

L dk' Vk,k 'L ( k

L 'k 'L ' ' kk '

S )

kLIk '

'LIk k ' ''S 'k '

L Ik k ' ''S Ik

L ' ' k k 'L Ik '

'LIkL

Spontaneous decay Induced decay

Page 20: Nonlinear kinetic turbulence theory

2 ', ''1 k

L dk' Vk,k 'L ( k

L 'k 'L ' ' kk '

S )

kLIk '

'LIk k ' ''S 'k '

L Ik k ' ''S Ik

L ' ' k k 'L Ik '

'LIkL

Nonlinear wave‐wave resonance

Wave (kk)

Wave(k–kʼk – kʼ)

Wave(kʼkʼ)

Page 21: Nonlinear kinetic turbulence theory

2 ', ''1 k

L dk' Vk,k 'L ( k

L 'k 'L ' ' kk '

S )

kLIk '

'LIk k ' ''S 'k '

L Ik k ' ''S Ik

L ' ' k k 'L Ik '

'LIkL

Spontaneous scattering

Induced scattering (NL Landau damping) (scattering off thermal ions)

Page 22: Nonlinear kinetic turbulence theory

2 ', ''1 k

L dk' Vk,k 'L ( k

L 'k 'L ' ' kk '

S )

kLIk '

'LIk k ' ''S 'k '

L Ik k ' ''S Ik

L ' ' k k 'L Ik '

'LIkL

Nonlinear wave‐particle resonance

Particle

Wave(kk)

Wave(kʼkʼ)

Page 23: Nonlinear kinetic turbulence theory

Weak turbulence theory‐ L. M. Gorbunov, V. V. Pustovalov, and V. P. Silin, Sov. Phys. JETP

20, 967 (1965)‐ L. M. Al’tshul’ and V. I. Karpman, Sov Phys. JETP 20, 1043 (1965)‐ L. M. Kovrizhnykh, Sov. Phys. JETP  21, 744 (1965)‐ B. B. Kadomtsev, Plasma Turbulence (Academic Press, 1965)‐ V. N. Tsytovich, Sov. Phys. USPEKHI 9, 805 (1967)‐ V. N. Tsytovich, Nonlinear Effects in Plasma (Plenum Press, 

1970)‐ R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic 

Press, 1972)‐ V. N. Tsytovich, Theory of Turbulent Plasma (Consultants 

Bureau, 1977)‐ D. B. Melrose, Plasma Astrophysics (Gordon and Breach, 1980)‐ A. G. Sitenko, Fluctuations and Non‐Linear Wave Interactions in 

Plasmas (Pergamon, 1982)

Page 24: Nonlinear kinetic turbulence theory

Wang et al., ApJ Lett. (2012)

Maxwellian Core

Halo

Superhalo

Interplanetary& galactic cosmicray electrons

SOLAR WIND ELECTRON DISTRIBUTION AT 1 AU

Page 25: Nonlinear kinetic turbulence theory

Quasi‐thermal noise [by Stuart Bale]

I(k)LangmuirTurbulenceSpectrum

Page 26: Nonlinear kinetic turbulence theory

Turbulent Equilibrium

Particles and wave constantly exchange momentum and energy but are in dynamical steady state.

Page 27: Nonlinear kinetic turbulence theory

2 ', ''1 k

L dk' Vk,k 'L ( k

L 'k 'L ' ' kk '

S )

kLIk '

'LIk k ' ''S 'k '

L Ikk ' ''S Ik

L ' ' k k 'L Ik '

'LIkL

Wave‐wave

Linear wave‐particle

Nonlinearwave‐particle

Asymptotic solution (∂/∂t = 0)

Page 28: Nonlinear kinetic turbulence theory

Self‐consistent, steady‐state electron velocity and Langmuir spectrum

distributions

Page 29: Nonlinear kinetic turbulence theory

Electron VDF (cont’d)

e.g., thermal equilibrium

Page 30: Nonlinear kinetic turbulence theory

Self‐Consistent Solution: Turbulent Equilibrium

• Self‐consistent steady‐state particle and wave distributions leads to kappa distribution, but  is undetermined:

Page 31: Nonlinear kinetic turbulence theory

2 ', ''1 k

L dk' Vk,k 'L ( k

L 'k 'L ' ' kk '

S )

kLIk '

'LIk k ' ''S 'k '

L Ikk ' ''S Ik

L ' ' k k 'L Ik '

'LIkL

Wave‐wave

Linear wave‐particle

Nonlinearwave‐particle

Asymptotic solution (∂/∂t = 0)

Page 32: Nonlinear kinetic turbulence theory

Balance of nonlinear terms within wave kinetic equation

Page 33: Nonlinear kinetic turbulence theory

Balance of spontaneous and induced emissions

Balance of spontaneous and induced scatterings

=0

=0

Page 34: Nonlinear kinetic turbulence theory

Solving the above equation one obtains the steady‐state turbulence intensity that balances the spontaneous and induced scattering processes:

kdI(k)dk

4 2

Ti

d k

dk[I(k)]2

d k

dkI(k) 0.

Page 35: Nonlinear kinetic turbulence theory

• We now have two alternative expressions for the steady‐state turbulence intensity:

Te 3/2 1

Ti, and 3234

• Balance of spontaneous and induced emissions

• Balance of spontaneous and induced scatterings

• The only way the two expressions can be reconciled is when

Page 36: Nonlinear kinetic turbulence theory

• Turbulent equilibrium:

94 2.25.

Page 37: Nonlinear kinetic turbulence theory

Wang et al., ApJ Lett. (2012)

Maxwellian Core

Halo

Superhalo

Interplanetary& galactic cosmicray electrons

SOLAR WIND ELECTRON DISTRIBUTION AT 1 AU

Page 38: Nonlinear kinetic turbulence theory

fobservation v , f theory v2 2 ~ v 6.5,

avgobservation 6.69 theory 6.5

Page 39: Nonlinear kinetic turbulence theory

Part 1. Conclusion• Perturbative nonlinear kinetic theory of Langmuir turbulence is well known [e.g., Tytovich, 1970; Davidson 1972; Melrose, 1980; Sitenko, 1982, etc.]

• Application of the theory to explain quiet time solar wind electron kappa distribution [Yoon, 2014] is, however, new. Comparison between theory ( = 6.5) and observation (avg = 6.69) is favorable.

Page 40: Nonlinear kinetic turbulence theory

Part II. Electromagnetic Problem

e+

e–

E, B

E, B

Page 41: Nonlinear kinetic turbulence theory

Radiations in Space

Page 42: Nonlinear kinetic turbulence theory

Flare

Page 43: Nonlinear kinetic turbulence theory

Type III

Type II

BowshockRadiation

EscapingTerrestrial Continuum

Reiner et al.

Page 44: Nonlinear kinetic turbulence theory

X Ray

Type III radio

Electrons

Page 45: Nonlinear kinetic turbulence theory

Lin 1981

Page 46: Nonlinear kinetic turbulence theory

Most type III bursts do not have the iconic F‐H pair emission structure

Type II emissions are somewhat more clearly identifiable with the beam‐induced F‐H pair emissions

Page 47: Nonlinear kinetic turbulence theory

Culgoora Radio Spectrograph

Page 48: Nonlinear kinetic turbulence theory

Plasma emission scenario(Ginzburg & Zeleznyakov, 1958; Melrose, 1970s;

Robinson, Cairns, 1980 & 1990s)

• Electron beam produced during flare• Generation of Langmuir waves• Backscattered Langmuir waves by nonlinear processes

• Harmonic emission by merging of Langmuir waves

• Fundamental emission by Langmuir wave decay

Page 49: Nonlinear kinetic turbulence theory
Page 50: Nonlinear kinetic turbulence theory

Beam‐generated Langmuir turbulence

Page 51: Nonlinear kinetic turbulence theory

e

e

E, pe

Langmuir oscillation Ion‐sound wave

ee

E, kcSi

Debye cloud

Page 52: Nonlinear kinetic turbulence theory

k

pe (1 3k2D

2 /2)

kcS

Page 53: Nonlinear kinetic turbulence theory

– 2kL 2kL

Vb

kkL– kL

T

L

S

Bump‐in‐tailinstability

Page 54: Nonlinear kinetic turbulence theory

k||

k

S

L

Vb

Page 55: Nonlinear kinetic turbulence theory

Backscattered L wave

e iL

L’

S

Page 56: Nonlinear kinetic turbulence theory

k

S

L

T

pe

pe V0L’

Page 57: Nonlinear kinetic turbulence theory

k||

k

S

L

T

Page 58: Nonlinear kinetic turbulence theory

F Emission

eiL

F

S

Decay of L mode into S and T at Fundamental

Page 59: Nonlinear kinetic turbulence theory

F Emission

k

S

L

T

pe

pe V0

F

Page 60: Nonlinear kinetic turbulence theory

k||

k

S

L

T

Page 61: Nonlinear kinetic turbulence theory

H Emission

L

H

L’

Merging of Primary L and Backscattered L’ modes into T mode at Harmonic

Page 62: Nonlinear kinetic turbulence theory

k

S

L

T

pe

pe V0L’

H

H Emission

Page 63: Nonlinear kinetic turbulence theory

k||

k

S

L

T

Page 64: Nonlinear kinetic turbulence theory

Plasma emission scenario

• Many advances have been made over six decades of research.

• We have recently carried out EM weak turbulence calculation of plasma emission from beam‐plasma instability to radiation generation [Ziebell, Yoon, Gaelzer, Pavan, ApJL, 2014; ApJ, 2015]

Page 65: Nonlinear kinetic turbulence theory

2 ', ''1 k

L dk' Vk,k 'L ( k

L 'k 'L ' ' kk '

S )

kLIk '

'LIk k ' ''S 'k '

L Ik k ' ''S Ik

L ' ' k k 'L Ik '

'LIkL

Langmuir wave kinetic equation

Spontaneous & induced emission

(L ‐> L+S) three wave decay

(L ‐> L+e) spontaneous &induced scattering

Page 66: Nonlinear kinetic turbulence theory

2 ', ''1 k

L dk' Vk,k 'L ( k

L 'k 'L ' ' kk '

S )

kLIk '

'LIk k ' ''S 'k '

L Ik k ' ''S Ik

L ' ' k k 'L Ik '

'LIkL

Langmuir wave kinetic equation

Spontaneous & induced emission

(L ‐> L+S) three wave decay

(L ‐> L+e) spontaneous &induced scattering

e

e

E, pe

e iL

L’

S

Page 67: Nonlinear kinetic turbulence theory

Ion‐acoustic wave kinetic equation

Spontaneous &induced emission

(S ‐> L+L) three wave decay

Particle kinetic equation

Page 68: Nonlinear kinetic turbulence theory

Transverse EM wave kinetic equation

(L+I ‐> T) Fundamentalemission by scattering

(L+L ‐> T) Harmonic emission

(L+S ‐> T) Fundamental emission by decay

(L+T ‐> T) Higher‐harmonic emission

Page 69: Nonlinear kinetic turbulence theory

Transverse EM wave kinetic equation

(L+T ‐> T) Higher‐harmonic emission

Page 70: Nonlinear kinetic turbulence theory

PIC simulation[Rhee et al., 2009]

Page 71: Nonlinear kinetic turbulence theory
Page 72: Nonlinear kinetic turbulence theory

PIC simulation [Rhee et al., 2009]

Page 73: Nonlinear kinetic turbulence theory

Transverse EM wave kinetic equation

(L+I ‐> T) Fundamentalemission by scattering

(L+L ‐> T) Harmonic emission

(L+S ‐> T) Fundamental emission by decay

(L+T ‐> T) Higher‐harmonic emission

Page 74: Nonlinear kinetic turbulence theory
Page 75: Nonlinear kinetic turbulence theory
Page 76: Nonlinear kinetic turbulence theory
Page 77: Nonlinear kinetic turbulence theory

Dulk et al. 1984

Page 78: Nonlinear kinetic turbulence theory

Background Radiation

Page 79: Nonlinear kinetic turbulence theory

Blackbody Radiation

In the presence of plasma

Page 80: Nonlinear kinetic turbulence theory

10-8 10-7 10-6 10-5 10-4 10-310-20

10-18

10-16

10-14

10-12

10-10

10-8

wavelength

Spectrum

With plasma

vacuum

Page 81: Nonlinear kinetic turbulence theory

Spectrum of solar radiation

Page 82: Nonlinear kinetic turbulence theory

Theory of background radiation

Page 83: Nonlinear kinetic turbulence theory

t

IkT

2 0

'1 dk ' dv Uk,k '

T [kT 'k '

L (kk ') v]

ne2

pe2 k

T Ik ' 'L 'k '

T IkT

2

( fe fi )

me

mi

Ik ' 'L Ik

L

2(kk ') fi

v

Page 84: Nonlinear kinetic turbulence theory
Page 85: Nonlinear kinetic turbulence theory
Page 86: Nonlinear kinetic turbulence theory

Part 2. Conclusions and Discussion

‐ Despite 6 decades of research, the plasma emission was not understood in complete quantitative terms until now.

‐ We solved EM weak turbulence theory to demonstrate plasma emission for the first time and compared against few available 2D EM PIC simulation results.

Page 87: Nonlinear kinetic turbulence theory

General Conclusion

• Perturbative nonlinear kinetic theory called “weak turbulence theory” successfully explains many facets of space plasma phenomena – electron kappa VDF, plasma emission, …

• Basic methodology can be extended for other applications, most notably, turbulent phenomena in magnetized plasmas.