nonlinear and ultrafast responses in mott insulators · 2018. 11. 15. · nonlinear and ultrafast...

46
Nonlinear and ultrafast responses in Mott insulators H. Okamoto (Univ. of Tokyo, CREST-JST) Terahertz-electric-field-induced Mott insulator to metal transition Dielectric breakdown mechanism H. Yamakawa et al., Nature Materials (2017) Photoinduced Mott insulator to metal transition Probing of ultrafast spin dynamics coupled with charge excitations T. Miyamoto et al., in preparation THz pulse Cu O 7 fs pulse ET

Upload: others

Post on 30-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Nonlinear and ultrafast responses

    in Mott insulators

    H. Okamoto (Univ. of Tokyo, CREST-JST)

    ○ Terahertz-electric-field-induced

    Mott insulator to metal transition

    Dielectric breakdown mechanism

    H. Yamakawa et al., Nature Materials (2017)

    ○ Photoinduced Mott insulator to metal

    transition

    Probing of ultrafast spin dynamics

    coupled with charge excitations

    T. Miyamoto et al., in preparation

    THz

    pulse

    Cu

    O

    7 fs

    pulse

    ET

  • Collaborators

    ● Femtosecond pump probe spectroscopy

    H. Yamakawa T. Morimoto T. Miyamoto N. Kida

    ● Sample preparationsM. Suda, H.M. Yamamoto (IMS), and R. Kato (RIKEN)

    K. Miyagawa and K. Kanoda (UT)

    T. Ito, A. Sawa (AIST)

    ● Theory S. Ishihara (Tohoku Univ.)

    T. Terashige, H. Tobe, Y. Kinoshita N. Asada (UT)

    Acknowledgements

    T. Tohyama (Tokyo Univ. Science) and T. Oka (Max Planck)

  • Towards the understanding of strong electric field effects

    on correlated electron materials

    1 THz

    ⇔ ~4 meV⇔ ~300 m

    >> 100 kV/cm

    1 psex. Pulse front tilting

    J. Hebling et al., Opt. Express 10, 1161 (2002).

    A nearly mono-cyclic THz pulse

    New possibilities for rapid

    controls of physical properties

    in solids

  • carrier number

    M. C. Hoffmann et al., PRB (2009)

    H. Hirori et al., Nat. Commun. (2013)

    e

    e

    Phonon exciton

    magnon

    I. Katayama et al., PRL (2012) H. Hirori et al.,

    Phys. Rev. B (2010)

    T. Kampfrath et al.,

    Nature Photonics (2010)

    superconducting

    order parameter

    R. Matsunaga, N. Tsuji, R. Shimano et al.,

    Science (2014)

    electro-magnon

    Attempts to control solids by a nearly monocyclic strong THz pulse

    T. Kubacka et al., Science (2014)

  • Polarization control by a terahertz field in electronic ferroelectrics

    Paraelectric

    (neutral)

    maxETHz

    415 kV/cm

    a

    b

    c

    TTFCA

    Ferroelectric

    (ionic)

    P

    neutral-ionic

    transition

    Tc=81K

    TTF-CA

    TTF (Donor : D)

    S

    S

    S

    S

    CA (Acceptor : A)

    O O

    Cl

    Cl

    Cl

    Cl

  • Coercive field is 5 kV/cm

    for 100-Hz electric fields

    Pvs E

    Electric field E or ETHz

    P

    5 5200 400 kV/cm

    Pvs ETHz

    P/P 7%-1 0 1-0.1

    0

    0.1

    -200

    0

    200

    400

    Delay time (ps)

    = 1.3 eV2 = 2.6 eV

    65 K

    I S

    HG

    / I S

    HG

    maxETHz

    415 kV/cm

    ETHz

    P/P7%@ 400 kV/cm

    Nature Commun. 4, 2586 (2013), Sci. Rep. 6, 20571 (2016), PRL 118, 107602 (2017)

    Ferroelectric

    P

    P+P

    ’ ’ ’ ’ ’ ’

    SHG 2ω

    (2.6 eV)

    THz pulse (400 kV/cm)

    P

    probe

    ω (1.3 eV)

    Terahertz-pump SHG-probe method

    Filed-induced intermolecular charge transfers

    Polarization control by a terahertz field in electronic ferroelectrics

  • insulator-metal transition

    VO2

    To achieve an ultrafast phase control in a sub-picosecond time scale

    by a smaller electric field, focus on electronic phase transitions

    without large structural changes.

    A large structural change

    ・A terahertz electric field enhancedin a metamaterial resonator 2 MV/cm

    ・Slow dynamics >> 1 ps

    M. Liu, R. Averitt, K.A. Nelson et al., Nature (2012)

    Attempts to drive a phase transition by a strong THz pulse

  • Mott insulator Metal

    To drive a MI to metal transition

    by a lower electric field,

    a narrow-gap Mott insulator

    is advantageous.

    T. Oka, Phys. Rev. B 86, 075148 (2012)

    Theory ΔMott (eV) Eth (MV/cm)

    ET-F2TCNQ 0.7 3

    Sr2CuO3 1.5 9

    ΔMott

    Upper Hubbard band

    Lower Hubbard bandETHz

    Carrier generations

    through quantum tunneling

    (Zener tunneling)

    A system with one electron per site (half-filled band)

    Large U

    Terahertz-field-induced Mott insulator to metal transition

  • Mott

    insulatormetal

    Anion

    X

    K. Kanoda, JPSJ 75, 051007 (2006)

    ET

    a

    c

    +0.5ET

    (ET)2

    X

    A unit is an ET dimer.

    The nominal valence

    of each ET is 0.5.

    A dimer has one hole.

    2D half-filled band

    Bandwidth

    Insulator-metal transition in κ-(ET)2X

  • Anion

    X

    bulk On diamond

    metal

    K. Kanoda, JPSJ 75, 051007 (2006)

    Bandwidth

    Mott

    insulator

    d-Br

    -(ET)2Cu[N(CN)2]Br

    diamond

    d-Br 0.6 m

    Suda,

    Yamamoto

    (IMS)

    bulk

    0 0.2 0.4 0.6 0.8

    0

    1

    2

    3

    4

    E // c

    OD

    Photon Energy (eV)

    bulk

    metal

    insulator

    on diamond

    10 K

    Insulator-metal transition in κ-(ET)2X

    Absorption (OD: optical density) spectra

  • 0 0.2 0.4 0.6 0.8

    0

    1

    2

    3

    4

    E // c

    OD

    Photon Energy (eV)

    bulk

    metal

    insulator

    on diamond

    10 K

    -2 -1 0 1 2

    -100

    0

    100

    200

    Time (ps)

    ET

    Hz

    (kV

    /cm

    )

    THz pulse

    The sample is completely transparent

    for the THz pulse.

    No carriers are excited beyond the gap.

    Insulator-metal transition in κ-(ET)2X

    Absorption (OD: optical density) spectra

    diamond

    d-Br 0.6 m

    Suda,

    Yamamoto

    (IMS)

    Terahertz-pump

    optical-absorption-probe

    spectroscopy

    OD

    Frequency (THz)

    Photon Energy (eV)

    Mott gap

    Mott30 meV

    insulator

    on diamond

    0.001 0.01 0.1 1

    0

    1

    2

    3

    40.1 1 10 100

  • THz pump (180 kV/cm)

    ΔO

    DO

    D

    E // c

    10 K

    Insulator on diamond

    Photon Energy (eV)

    td = 0.7 ps

    0

    1

    2

    3

    4

    0 0.2 0.4 0.6 0.8

    -0.05

    0

    0.05

    0.1

    0.15

    Metal (bulk)

    (ODmetalODMott)

    ×0.11

    THz-pump optical-absorption-probe spectroscopy (180kV/cm)

    Delay Time (ps)

    ΔO

    D

    0.124 eV

    0.14 eV

    0.16 eV

    0.273 eV

    0.36 eV

    0.65 eV

    E // c

    0 5 10

    0

    0.05

    0.1

    -2 -1 0 1 2

    -100

    0

    100

    200

    ET

    Hz

    (kV

    /cm

    )

    Delay Time (ps)

    THzpulseETHz

    10

    -4 (E

    TH

    z)2

    (kV

    2/c

    m2)

    0.7 ps

    (Eth)2

    0

    1

    2

    3

    4

    Electric-field-induced

    Mott-insulator to metal transition

    (the carrier density 0.055/dimer)

  • THz pump (180 kV/cm)

    ΔO

    DO

    D

    E // c

    10 K

    Insulator on diamond

    Photon Energy (eV)

    td = 0.7 ps

    0

    1

    2

    3

    4

    0 0.2 0.4 0.6 0.8

    -0.05

    0

    0.05

    0.1

    0.15

    Metal (bulk)

    THz electric-field dependence of absorption changes in IR region

    -2 -1 0 1 2 3 4

    0

    0.05

    0.1

    ΔO

    D

    Delay Time (ps)

    180 kV/cm147 kV/cm120 kV/cm

    90 kV/cm59 kV/cm45 kV/cm

    td = 0 ps

    0 50 100 150 2000

    0.02

    0.04

    0.06

    ETHz (kV/cm)

    ΔO

    D

    td = 0 ps

  • THz electric-field dependence of absorption changes in IR region

    -2 -1 0 1 2 3 4

    0

    0.05

    0.1

    ΔO

    D

    Delay Time (ps)

    180 kV/cm147 kV/cm120 kV/cm

    90 kV/cm59 kV/cm45 kV/cm

    td = 0 ps

    ΔO

    D

    ETHzexp(π Eth/ETHz)⇔ OD

    Probability of quantum tunneling

    The I-M transition is driven bycarrier generations via the

    quantum tunneling mechanism.

    T. Oka, Phys. Rev. B 86, 075148 (2012)

    ETHz (kV/cm)

    td = 0 ps

    0 50 100 150 2000

    0.02

    0.04

    0.06ETHzexp(πEth /ETHz)

    Eth=64 kV/cm

    ΔMott

    Upper Hubbard band

    Lower Hubbard band

    ξ

    ETHz

    Carrier generation via quantum tunneling

  • THz electric-field dependence of absorption changes in IR region

    -2 -1 0 1 2 3 4

    0

    0.05

    0.1

    ΔO

    D

    Delay Time (ps)

    180 kV/cm147 kV/cm120 kV/cm

    90 kV/cm59 kV/cm45 kV/cm

    td = 0 ps

    ETHz (kV/cm)

    td = 0 ps

    0 50 100 150 2000

    0.02

    0.04

    0.06

    td = 0.7 ps

    td = 0.7 ps

    40 100 2000.0001

    0.001

    0.01

    0.1

    ETHz (kV/cm)

    ΔO

    D

    td = 0 ps

    td = 0.7 ps

    ΔO

    D

    ΔMott

    Upper Hubbard band

    Lower Hubbard band

    ξ

    ETHz

    Carrier generation via quantum tunneling

    ETHz exp(π Eth / ETHz)

    Eth=64 kV/cm

  • 0

    0.05

    0.1

    -0.4 -0.2 0 0.2 0.4 0.6

    0

    0.001

    0.002

    THz electric-field dependence of absorption changes in IR region

    ΔMott

    Upper Hubbard band

    Lower Hubbard band

    ξ

    ETHz

    Carrier generation via quantum tunneling

    Mott transition

    180 kV/cm

    ΔO

    OD

    Rise time:

    0 ps

    45 kV/cm

    (×45)Rise time:

    0.13 ps

    Delay Time (ps)

    |ETHz|exp(π Eth/|ETHz|)

    0.13 ps

    0.13 ps

    Rise time 0.13 ps

    is the characteristic

    time of the Mott

    transition.

    40 100 2000.0001

    0.001

    0.01

    0.1

    ETHz (kV/cm)

    ΔO

    D

    td = 0 ps

    td = 0.7 ps

    ETHz exp(π Eth / ETHz)

    Eth=64 kV/cm

    Mott transition

  • THz electric-field dependence of absorption changes in IR region

    ΔMott

    Upper Hubbard band

    Lower Hubbard band

    ξ

    ETHz

    Carrier generation via quantum tunneling

    Mott transition

    180 kV/cm

    ΔO

    OD

    Rise time:

    0 ps

    45 kV/cm

    (×45)Rise time:

    0.13 ps

    Delay Time (ps)

    |ETHz|exp(π Eth/|ETHz|)

    0.13 ps

    a

    c t

    t

    t = 78 meV⇔ 0.051 ps

    t’ = 33 meV⇔ 0.12 ps

    t '

    0.13 ps

    0

    0.05

    0.1

    -0.4 -0.2 0 0.2 0.4 0.6

    0

    0.001

    0.002

    D. Faltermeier et al., PRB 76, 165113 (2007).

    Rise time 0.13 ps

    is the characteristic

    time of the Mott

    transition.

  • 170 kV/cm

    ΔO

    D

    ΔO

    Do

    sc

    THz pulse exc.

    Inte

    nsity

    THz pulse exc.

    ETHz2

    0.124 eV

    28

    cm-1

    37

    cm-146

    cm-1

    a

    c

    Mott insulator Metal

    0

    0.05

    0.1

    0

    0.1

    0.2

    0.3

    0.4

    -0.01

    0

    0.01

    Delay Time (ps) Wavenumber (cm-1)Delay Time (ps)0 2 4 6 0 20 40 600 5 10

    Analyses of the coherent oscillations on the absorption changes

    Metal (lattice relaxed)

    0.13 ps 0.5 ps

    Molecular displacements increase U on

    each dimer and stabilize the Mott phase.Releases of molecular displacements

    stabilizing the Mott insulator state

    H. Yamakawa et al., Nature Materials (2017)

  • ETHz

    ΔMott

    Upper Hubbard band

    Lower Hubbard band

    ξ

    Impulsive

    dielectric

    breakdown

    Mott

    transition

    td = 0.7 ps

    0 0.2 0.4 0.6 0.8

    -0.05

    0

    0.05

    0.1

    0.15

    ΔO

    D

    Photon energy (eV)

    THz pulse (180 kV/cm)κ-(ET)2Cu2(N(CN)2)Br

    Summary : the electric-field-induced Mott-insulator to metal transition

    Terahertz-pump optical-probe spectroscopy

    on κ-(ET)2Cu2(N(CN)2)Br

    ・ A characteristic time for the electronic state changes in the Mott transition is evaluated

    to be 0.1 ps.

    ・ Electric-field-induced carrier generationsby an impulsive dielectric breakdown and

    a subsequent Mott transition are detected.

  • ○ Terahertz-electric-field-induced

    Mott insulator to metal transition

    Dielectric breakdown mechanism

    H. Yamakawa et al., Nature Materials (2017)

    ○ Photoinduced Mott insulator to metal

    transition

    Probing of ultrafast spin dynamics

    coupled with charge excitations

    T. Miyamoto et al., in preparation

    THz

    pulse

    Cu

    O

    7 fs

    pulse

    ET

  • py(O)

    px(O)

    dx2-y2 (Cu)

    Cu2+ :d 9

    unpaired electron in dx2-y2

    Cu 3d

    Cu2+

    dx2-y2

    Mott insulator

    U

    Cu 3d

    Cu 3d

    Coulomb

    Repulsion

    U

    On-site Coulomb repulsion

    U

    Electronic structure of undoped cuprate Nd2CuO4 (NCO)

    Nd2CuO4(NCO)

    :Cu

    :O

    :Nd

    :Cu

    :O

    :La

  • Mott insulatorInjection of

    electron and hole carriers

    (doublons and holons)

    Metal

    Ultrafast photoinduced Mott-insulator to metal transition

  • :Cu

    :O

    :Nd

    :Cu

    :O

    :La

    Nd2CuO4

    ab

    c

    Mott insulator Metal

    H. Okamoto et al., PRB 82, 060513R (2010), PRB 83, 125102 (2011).

    Photoinduced Mott-insulator to metal transition in Nd2CuO4 (180 fs res.)

  • Photon energy (eV)

    Norm

    aliz

    ed

    OD

    Mott insulator Metal

    0 0.5 1.00

    1

    20.1 ps

    5.0 ps (x 50)2.0 ps (x 14.5)

    Midgap absorption

    Drude

    component

    Low-energy spectra (normalized)

    H. Okamoto et al., PRB 82, 060513R (2010), PRB 83, 125102 (2011).

    Photoinduced Mott-insulator to metal transition in Nd2CuO4 (180 fs res.)

  • Charge dynamics in half-filled 2D Mott insulators with large U

    Introduction of carriers produces midgap

    absorption (incoherent part).

    spin-charge coupling

    holon

    Energy

    Energy

    Incoherent part

    Drude comp.

    Small carrierdensity

    Intermediate carrier density

    ex. LSCO, NCCO

    low carrier density

    Drude weight is small as compared to

    the incoherent part.S. Uchida et al., PRB 43, 7942 (1991)

    Y. Onose et al., PRB 69, 024504 (2004)ex. E. Dagotto Rev. Mod. Phys. 66, 763 (1994)

  • spin-charge coupling

    doublon

    Energy

    Energy

    Incoherent part

    Drude comp.

    Small carrierdensity

    Intermediate carrier density

    ex. LSCO, NCCODrude weight is small as compared to

    the incoherent part.

    Introduction of carriers produces midgap

    absorption (incoherent part).

    Charge dynamics in half-filled 2D Mott insulators with large U

    low carrier density

    S. Uchida et al., PRB 43, 7942 (1991)

    Y. Onose et al., PRB 69, 024504 (2004)ex. E. Dagotto Rev. Mod. Phys. 66, 763 (1994)

  • doublonholon

    Photon energy (eV)

    Norm

    aliz

    ed

    OD

    Midgap absorption

    0 0.5 1.00

    1

    20.1 ps

    5.0 ps (x 50)2.0 ps (x 14.5)

    Drude

    component

    Low-energy spectra (normalized)

    H. Okamoto et al., PRB 82, 060513R (2010), PRB 83, 125102 (2011).

    Photoinduced Mott-insulator to metal transition in Nd2CuO4 (180 fs res.)

    Mid-gap state Mott insulator Metal

    h

    d

  • Pump-probe experiments with the time resolution of 10 fs

    t

    7 fs

    pump

    probesample

    photo-detector

    Pulse width 7 fs

    Delay Time (fs)

    Inte

    nsity

    -20 -10 0 10 20

    0

    1

    Cross correlation profile

    FWHM10 fs

    ○ 7 fs pulse is divided to two beams.→ a pump and a probe pulse

    Reflection-type pump-probe system

    using 7 fs pulses generated from

    a non-collinear OPA

  • Pulse width 7 fs

    Delay Time (fs)

    Inte

    nsity

    -20 -10 0 10 20

    0

    1

    Cross correlation profile

    FWHM10 fs

    ○ 7 fs pulse is divided to two beams.→ a pump and a probe pulse

    ○ The spectral weight transfer between the Mott gap transition and the low

    energy components occurs.

    Time evolutions of bleaching signals

    → dynamics of photoexcited states

    1 2 30

    0.1

    0.2

    0.3

    0

    0.5

    1

    1.5

    Photon Energy (eV)

    Re

    fle

    ctivity

    103

    (S/c

    m)

    Nd2CuO4

    7 fspulse

    Energy

    Midgapabs.

    Drudecomp.

    Pump-probe experiments with the time resolution of 10 fs

  • ΔR

    /R

    -100

    -0.2

    -0.1

    0

    Iex (ph/Cu)

    Delay time (fs)

    -50 0 50

    0.0016

    0.0032

    0.0049

    0.0065

    0.0081

    0.012

    0.016

    0.024

    0.032

    0.049

    0.065

    0.079

    100

    Iex (ph/Cu)

    Perturbed free induction decay of probe-pulse-induced polarization C.H. Brito Cruz et. al., IEEE J. Quantum Electron. 24 261 (1988)

    Response function

    Time evolutions of bleaching signals at various excitation photon density

  • Iex (ph/Cu)

    Delay time (fs)

    -100 -50 0 50

    -0.2

    -0.1

    0

    0.0016

    0.0032

    0.0049

    0.0065

    0.0081

    0.012

    0.016

    0.024

    0.032

    0.049

    0.065

    0.079

    100

    Iex (ph/Cu)

    Low photon density 0.003 ph/Cu

    High photon density 0.079 ph/Cu

    Excitation photon density dependence of bleaching signals in Nd2CuO4Δ

    R/R

    ΔR

    /R

    Delay time (fs)-100 0 100

    -0.02

    -0.01

    0

    ΔR

    /R

    Delay time (fs)-100 0 100

    -0.2

    -0.1

    0

    20 fs

    10 fs

  • 10 fs

    Low photon density 0.003 ph/Cu

    High photon density 0.079 ph/Cu

    ΔR

    /R

    Delay time (fs)-100 0 100

    -0.02

    -0.01

    0

    ΔR

    /R

    Delay time (fs)-100 0 100

    -0.2

    -0.1

    0

    Excitation photon density dependence of bleaching signals in Nd2CuO4

    Energy

    Energy

    Incoherent part

    Drude comp.

    Small carrierdensity

    Intermediate carrier density

    ex. LSCO, NCCO

    low carrier density

    Mid-gap

    absorption

    Mid-gap

    absorption

    Drude

    component

    Mid-gap

    absorption

    Chemical carrier doping

    20 fs

  • ΔR

    /R

    Delay time (fs)-100 0 100

    -0.2

    -0.1

    0

    ΔR

    /R

    Delay time (fs)-100 0 100

    -0.02

    -0.01

    0

    Low photon density 0.003 ph/Cu

    High photon density 0.079 ph/Cu

    Excitation photon density dependence of bleaching signals in Nd2CuO4

    Mid-gap

    absorption

    Drude

    component

    Mid-gap

    absorption

    ∆𝑅

    𝑅= 𝐴1 + 𝐴2 1 − exp −

    𝑡

    𝜏𝑟exp −

    𝑡

    𝜏1

    ∆𝑅

    𝑅= 𝐴1 + 𝐴2 1 − exp −

    𝑡

    𝜏𝑟exp −

    𝑡

    𝜏1

    Midgap absorption

    + 𝐴3exp −𝑡

    𝜏2

    Midgap absorption

    Drude component

    slow rise 18 fs

    11 fs

  • Excitation photon density dependence of bleaching signals in Nd2CuO4

    Time scale of phonon : ħ 500 cm-1 ⇔ 60 fsTime scale of spin : J 0.13 eV ⇔ 30 fs

    18 fs

    Spin relaxation

    11 fs

    Decay of Metallic (Drude) component

    ΔR

    /R

    Delay time (fs)-100 0 100

    -0.2

    -0.1

    0

    ΔR

    /R

    Delay time (fs)-100 0 100

    -0.02

    -0.01

    0

    Low photon density 0.003 ph/Cu

    High photon density 0.079 ph/Cu

    Mid-gap

    absorption

    Drude

    component

    Mid-gap

    absorption

    18 fs

    11 fs

  • Charge-spin coupling

    0 0.02 0.04 0.06 0.080

    10

    20

    30

    40

    Excitation photon density xph (ph/Cu)

    Decay t

    ime

    (fs

    )

    Strong e-e interaction

    Decrease in the decay time

    of Drude component

    Auger recombination of carriers

    Drude comp.

    Excitation photon density dependence of the Drude component

    Excitation photon density xph (ph/Cu)

    Δ

    R/R

    (A1

    A2, A

    3)

    Drude comp.

    0 0.02 0.04 0.06 0.080

    0.1

    0.2 Midgap absorption(spin-relaxed)

    Amplitude Decay time

    Threshold behavior

    of the Drude component

    Localization of carriers

  • 0

    1

    2

    0

    1

    2

    0

    1

    2

    0

    1

    2

    0 0.2 0.40

    1

    2

    -100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    -1

    0

    1

    -1

    0

    1

    -4

    0

    4

    -4

    0

    4

    0 80 160-1

    0

    1

    1.80 eV

    1.88 eV

    1.94 eV

    2.03 eV

    2.10 eV

    Delay time (fs)

    10

    R/R

    0.008 ph/Cu

    probe

    energy

    SampleProbe Pulse

    Photo-

    Detector

    Bandpass

    Filter

    1.5 20

    0.5

    1

    Pulse

    Photon Energy (eV)

    294 K

    103

    (S/c

    m)

    Probe energy dependence

  • 0

    1

    2

    0

    1

    2

    0

    1

    2

    0

    1

    2

    0 0.2 0.40

    1

    2

    -100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    -1

    0

    1

    -1

    0

    1

    -4

    0

    4

    -4

    0

    4

    0 80 160-1

    0

    1

    Fourier

    Pow

    er

    Spectr

    a (

    arb

    . units)

    2.03 eV

    1.94 eV

    1.88 eV

    1.80 eV

    1.80 eV

    1.88 eV

    1.94 eV

    2.03 eV

    2.10 eV

    Delay time (fs)

    10

    R/R

    0.008 ph/Cu

    Delay time (fs)

    10

    R/R

    1.80 eV

    1.88 eV

    1.94 eV

    2.03 eV

    2.10 eV

    Coherent oscillations

    Oscillation energy EOSC (eV)

    probe

    energy

    2.10 eV

    Probe

    2758

    cm-1

    2339

    cm-1

    2758

    cm-1

    1597

    cm-1

    789

    cm-1

  • 0 0.1 0.2 0.3 0.4 0.50

    0.1

    0.2

    0.3

    0.4

    Momentum q

    En

    erg

    y (

    eV

    )

    K. Ishii et al.,

    Nat. Commun.

    5, 3714 (2014).

    2. EOSC is very high.

    8002800 cm-1

    Optical phonon:

    ・large dispersion・large energy

    magnon:

    0

    1

    2

    0

    1

    2

    0

    1

    2

    0

    1

    2

    0 0.2 0.40

    1

    2

    -100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    -1

    0

    1

    -1

    0

    1

    -4

    0

    4

    -4

    0

    4

    0 80 160-1

    0

    1

    2.03 eV

    1.94 eV

    1.88 eV

    1.80 eV

    Oscillation energy EOSC (eV)Delay time (fs)

    10

    R/R

    1.80 eV

    1.88 eV

    1.94 eV

    2.03 eV

    2.10 eV

    Coherent oscillations

    2.10 eV

    Probe 1. EOSC depends on

    the probe energy.

    (large dispersion)

    ・small energy

    Characteristics

    ・no dispersion

    Fourier

    Pow

    er

    Spectr

    a (

    arb

    . units)

    Inelastic X-ray

    scattering

    2758

    cm-1

    2339

    cm-1

    2758

    cm-1

    1597

    cm-1

    789

    cm-1

  • 0

    1000

    2000

    3000

    -100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    Probe energy ℏprobe (eV)

    103

    (S/c

    m)

    EO

    SC

    (eV

    )

    EOSC ℏprobe ℏg

    Raman Scattering:Y. Tokura et al.

    PRB 41, 11657 (1990).

    2-magnon excitation

    Coherent oscillations

    2ℏ𝜔𝑘

    q

    energy

    /2 /2

    Magnon

    dispersion

    ℏ𝜔𝑘

    k k

    ℏg

    2-magnon

    sideband

    ℏg

    ℏr (eV)

    (a

    rb .

    unit)

    0

    0.5

    1

    0

    0.5

    1

    0

    0.5

    1

    0

    0.5

    1

    0 0.2 0.40

    0.5

    1

    -100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    EO

    SC

    (cm

    -1)

    The oscillations

    may be related to

    the emission

    of two magnons.

    EOSC 2ℏk

    Raman spectra of cuprates

  • -100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    Probe energy ℏprobe (eV)

    103

    (S/c

    m)

    EO

    SC

    (eV

    )

    EOSC ℏprobe ℏg

    ℏg

    2-magnon

    sideband

    ℏg

    ℏr (eV)

    (a

    rb .

    unit)

    0

    0.5

    1

    0

    0.5

    1

    0

    0.5

    1

    0

    0.5

    1

    0 0.2 0.40

    0.5

    1

    -100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    A probe pulse causes a transition to

    | 2, 𝑘 : two D-H pairs + 2magnons

    2D-H+2mag.| 2, 𝑘

    D-H+2mag.| 1, 𝑘

    D-H | 1, 0

    G.S.| 0, 0

    pump probe

    interference

    2ℏ𝜔𝑘

    A pump pulse produces two states;

    | 1, 0 : a D-H pair| 1, 𝑘 : a D-H pair + 2magnons

    A possible mechanism of coherent oscillations (S. Ishihara et al.)

    These two transitions can interfere

    with each other.

    A coherent oscillation with

    2ℏk (2magnon frequency).

    via the two transition paths

    | 1, 0 + “a D-H pair + 2magnons”| 1, 𝑘 + “a D-H pair”.

    D-H pair excitation One mode of two magnon (2ℏ𝜔𝑘)

  • 𝐻0 = ℏ𝜔g𝑋†𝑋 +

    𝑖=𝑘,𝑞

    ℏ𝜔𝑖𝑏𝑖† 𝑏𝑖

    holon-doublon pair magnon

    ・Hamiltonian

    ・Electronic and spin state: | 𝑁, 𝑘 and | 𝑁, 𝑞

    𝑁 : 𝑁 holon-doublon pair excitations

    𝑘 : a two-magnon excitation with a frequency of 2ℏ𝜔𝑘

    𝑞 : a two-magnon excitation with a frequency of 2ℏ𝜔𝑞

    𝐻′ = 𝐴𝜔g𝑋† + 𝑔

    𝑖=𝑘,𝑞

    𝐴𝜔g+2𝜔𝑖𝑋†𝑏𝑖

    †𝑏−𝑖† + 𝐻. 𝑐.

    ・Interactions with photons

    𝐴𝜔: the vector potential with frequency

    magnon sidebandMott gap transition

    (2ℏ𝜔𝑘 < 2ℏ𝜔𝑞)-100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    ℏprobe (eV)

    103

    (S/c

    m)

    EO

    SC

    (e

    V)

    EOSC ℏprobe ℏg

    ℏg

    2-magnon

    sideband

    ℏg

    (a

    rb .

    unit)

    0

    0.5

    1

    0

    0.5

    1

    0

    0.5

    1

    0

    0.5

    1

    0 0.2 0.40

    0.5

    1

    -100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    2ℏ𝜔𝑘

    D-H

    | 1, 0ℏ𝜔g

    (a

    rb .

    unit)

    ℏprobe (eV)

    2ℏ𝜔𝑞

    D-H + 2magnons

    | 1, 𝑘

    | 1, 𝑞

    Magnon

    sideband

    A possible mechanism of coherent oscillations (S. Ishihara et al.)

  • ・ The expectation value of electronic current

    ・ Three excited states | 1, 0 , | 1, 𝑘 and | 1, 𝑞are simultaneously generated at 𝑡 = 0by a broadband pump pulse.

    𝑗 𝑡 = 𝛹 𝑡 𝑗 𝛹 𝑡 ~ 0

    𝑡

    𝑑𝑡’𝐹 𝑡′

    𝐹 𝑡′ = 𝐹0 𝑡′

    + sin 𝜔g + 2𝜔k 𝑡 − 𝜔g𝑡′ 𝐴𝜔g

    ′ 𝑡′

    +𝑤k sin 𝜔g𝑡 − 𝜔g + 2𝜔k 𝑡′ 𝐴𝜔g+2𝜔k

    ′ 𝑡′

    +𝑤q sin 𝜔g𝑡 − 𝜔g + 2𝜔q 𝑡′ 𝐴𝜔g+2𝜔q

    ′ 𝑡′

    + sin 𝜔g + 2𝜔q 𝑡 − 𝜔g𝑡′ 𝐴𝜔g

    ′ 𝑡′

    Interference of constituent terms

    trivial term

    A simplified model of coherent oscillations (S. Ishihara et al.)

    -100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    ℏprobe (eV)

    103

    (S/c

    m)

    EO

    SC

    (e

    V)

    EOSC ℏprobe ℏg

    ℏg

    2-magnon

    sideband

    ℏg

    (a

    rb .

    unit)

    0

    0.5

    1

    0

    0.5

    1

    0

    0.5

    1

    0

    0.5

    1

    0 0.2 0.40

    0.5

    1

    -100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    2ℏ𝜔𝑘

    D-H

    | 1, 0ℏ𝜔g

    (a

    rb .

    unit)

    ℏprobe (eV)

    2ℏ𝜔𝑞

    D-H + 2magnons

    | 1, 𝑘

    | 1, 𝑞

    Magnon

    sideband

  • 𝜔probe = 𝜔g + 2𝜔𝑘 𝜔probe = 𝜔g + 2𝜔𝑞

    0 20 40 60 80

    -2

    -1

    0

    1

    2

    0 20 40 60 80

    -2

    -1

    0

    1

    2

    0 1 2 30

    0.5

    1

    0 1 2 30

    0.5

    1

    wk term

    wq term

    Delay Time t

    Pow

    er

    Spectr

    a

    Frequency

    Curr

    ent j

    Delay Time t

    Frequency

    2𝜔𝑘

    wk term

    wq term

    wkterm wq

    term

    wkterm

    wqterm

    2𝜔𝑘2𝜔𝑞

    2𝜔𝑞Intensity near 2𝜔𝑘(2𝜔𝑞)

    is larger at

    ℏ𝜔probe = ℏ𝜔g+2ℏ𝜔𝑘(ℏ𝜔probe = ℏ𝜔g + 2ℏ𝜔𝑞).

    (a

    rb .u

    nit)

    ℏprobe (eV)

    (a

    rb .u

    nit)

    ℏprobe (eV)

    | 1, 𝑘 state | 1, 𝑞 state

    A simplified model of coherent oscillations (S. Ishihara et al.)

  • Pump-probe spectroscopy with the

    time resolution of 10 fs on Nd2CuO4

    ・ Frequency of the coherent oscillations depends on the probe energy.

    Strong coupling of charge and spin degrees of freedom in a 2D Mott insulator

    Summary : the photoinduced Mott-insulator to metal transition

    Theoretical calculation

    ・ Quantum interference of the optical transitions between

    charge-spin coupled excited states

    doublon

    holon

    ・ Spin-relaxation time in magnetic-polaron formations 18 fs

    -100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    Probe energy ℏprobe (eV)

    103

    (S/c

    m)

    EO

    SC

    2ℏ

    k(e

    V)

    2-magnon

    sideband

    ℏCT

    ℏprobe (eV)

    (a

    rb .u

    nit)

    0

    0.5

    1

    0

    0.5

    1

    0

    0.5

    1

    0

    0.5

    1

    0 0.2 0.40

    0.5

    1

    -100 0 100 200

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    1.5 20

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    EOSC ℏprobe ℏg

    18 fs

    18 fs