non-parametric methods for lévy-based financial modelsintroduction some lévy-based financial...

108
Non-parametric methods for Lévy-based financial models José Enrique Figueroa-López 1 1 Department of Statistics Purdue University WORKSHOP ON INFINITELY DIVISIBLE PROCESSES CIMAT, Guanajuato, Gto., México March 16, 2009

Upload: others

Post on 13-Dec-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

  • Non-parametric methods for

    Lévy-based financial models

    José Enrique Figueroa-López1

    1Department of Statistics

    Purdue University

    WORKSHOP ON INFINITELY DIVISIBLE PROCESSES

    CIMAT, Guanajuato, Gto., México

    March 16, 2009

  • Outline

    1 Introduction

    Some Lévy-based financial models

    Formulation of the problems

    2 Estimation of Lévy densities

    Minimax rate of convergence

    Nonparametric sieve estimators

    The rate of convergence of the risk

    3 Confidence intervals for the Lévy density

    A pointwise CLT

    4 Confidence bands for the Lévy density

    A uniform CLT

    5 Final remarks

    Feasibility in realty

  • Introduction Some Lévy-based financial models

    Outline

    1 Introduction

    Some Lévy-based financial models

    Formulation of the problems

    2 Estimation of Lévy densities

    Minimax rate of convergence

    Nonparametric sieve estimators

    The rate of convergence of the risk

    3 Confidence intervals for the Lévy density

    A pointwise CLT

    4 Confidence bands for the Lévy density

    A uniform CLT

    5 Final remarks

    Feasibility in realty

  • Introduction Some Lévy-based financial models

    Overview of Lévy-based financial models

    1 Lévy process: {Xt}t≥0(i) X0 = 0, (ii) Independent and stationary increments,

    (iii) càdlàg paths, (iv) no fixed jump times P(∆Xt 6= 0) = 0.2 Exponential Lévy models: St = S0eXt .

    • Examples: Variance Gamma, CGMY, generalized Hyperbolic, etc.

    • Advantages: Return distributions with heavy-tails, high kurtosis, asymmetry.

    • Drawbacks: Lack of volatility clustering and leverage.

    3 Time-changed Lévy models (Carr, et. al.): St = S0eXτ(t) , whereτ(t) =

    ∫ t0 rudu, drt = α(m − rt )dt + v

    √rt dWt .

    • Advantages: Introduce stochastic clustering.

    • Drawbacks: Lack of leverage.

    4 Stochastic volatility driven by OU (Barndorff-Nielsen and Shephard):

    St := S0 exp{∫ t

    0 budu +∫ t

    0 σuWu}

    , where σ2t = σ20 +

    ∫ t0 ασ

    2s ds + Xαt .

  • Introduction Some Lévy-based financial models

    Overview of Lévy-based financial models

    1 Lévy process: {Xt}t≥0(i) X0 = 0, (ii) Independent and stationary increments,

    (iii) càdlàg paths, (iv) no fixed jump times P(∆Xt 6= 0) = 0.2 Exponential Lévy models: St = S0eXt .

    • Examples: Variance Gamma, CGMY, generalized Hyperbolic, etc.

    • Advantages: Return distributions with heavy-tails, high kurtosis, asymmetry.

    • Drawbacks: Lack of volatility clustering and leverage.

    3 Time-changed Lévy models (Carr, et. al.): St = S0eXτ(t) , whereτ(t) =

    ∫ t0 rudu, drt = α(m − rt )dt + v

    √rt dWt .

    • Advantages: Introduce stochastic clustering.

    • Drawbacks: Lack of leverage.

    4 Stochastic volatility driven by OU (Barndorff-Nielsen and Shephard):

    St := S0 exp{∫ t

    0 budu +∫ t

    0 σuWu}

    , where σ2t = σ20 +

    ∫ t0 ασ

    2s ds + Xαt .

  • Introduction Some Lévy-based financial models

    Overview of Lévy-based financial models

    1 Lévy process: {Xt}t≥0(i) X0 = 0, (ii) Independent and stationary increments,

    (iii) càdlàg paths, (iv) no fixed jump times P(∆Xt 6= 0) = 0.2 Exponential Lévy models: St = S0eXt .

    • Examples: Variance Gamma, CGMY, generalized Hyperbolic, etc.

    • Advantages: Return distributions with heavy-tails, high kurtosis, asymmetry.

    • Drawbacks: Lack of volatility clustering and leverage.

    3 Time-changed Lévy models (Carr, et. al.): St = S0eXτ(t) , whereτ(t) =

    ∫ t0 rudu, drt = α(m − rt )dt + v

    √rt dWt .

    • Advantages: Introduce stochastic clustering.

    • Drawbacks: Lack of leverage.

    4 Stochastic volatility driven by OU (Barndorff-Nielsen and Shephard):

    St := S0 exp{∫ t

    0 budu +∫ t

    0 σuWu}

    , where σ2t = σ20 +

    ∫ t0 ασ

    2s ds + Xαt .

  • Introduction Some Lévy-based financial models

    Overview of Lévy-based financial models

    1 Lévy process: {Xt}t≥0(i) X0 = 0, (ii) Independent and stationary increments,

    (iii) càdlàg paths, (iv) no fixed jump times P(∆Xt 6= 0) = 0.2 Exponential Lévy models: St = S0eXt .

    • Examples: Variance Gamma, CGMY, generalized Hyperbolic, etc.

    • Advantages: Return distributions with heavy-tails, high kurtosis, asymmetry.

    • Drawbacks: Lack of volatility clustering and leverage.

    3 Time-changed Lévy models (Carr, et. al.): St = S0eXτ(t) , whereτ(t) =

    ∫ t0 rudu, drt = α(m − rt )dt + v

    √rt dWt .

    • Advantages: Introduce stochastic clustering.

    • Drawbacks: Lack of leverage.

    4 Stochastic volatility driven by OU (Barndorff-Nielsen and Shephard):

    St := S0 exp{∫ t

    0 budu +∫ t

    0 σuWu}

    , where σ2t = σ20 +

    ∫ t0 ασ

    2s ds + Xαt .

  • Introduction Some Lévy-based financial models

    Overview of Lévy-based financial models

    1 Lévy process: {Xt}t≥0(i) X0 = 0, (ii) Independent and stationary increments,

    (iii) càdlàg paths, (iv) no fixed jump times P(∆Xt 6= 0) = 0.2 Exponential Lévy models: St = S0eXt .

    • Examples: Variance Gamma, CGMY, generalized Hyperbolic, etc.

    • Advantages: Return distributions with heavy-tails, high kurtosis, asymmetry.

    • Drawbacks: Lack of volatility clustering and leverage.

    3 Time-changed Lévy models (Carr, et. al.): St = S0eXτ(t) , whereτ(t) =

    ∫ t0 rudu, drt = α(m − rt )dt + v

    √rt dWt .

    • Advantages: Introduce stochastic clustering.

    • Drawbacks: Lack of leverage.

    4 Stochastic volatility driven by OU (Barndorff-Nielsen and Shephard):

    St := S0 exp{∫ t

    0 budu +∫ t

    0 σuWu}

    , where σ2t = σ20 +

    ∫ t0 ασ

    2s ds + Xαt .

  • Introduction Some Lévy-based financial models

    Overview of Lévy-based financial models

    1 Lévy process: {Xt}t≥0(i) X0 = 0, (ii) Independent and stationary increments,

    (iii) càdlàg paths, (iv) no fixed jump times P(∆Xt 6= 0) = 0.2 Exponential Lévy models: St = S0eXt .

    • Examples: Variance Gamma, CGMY, generalized Hyperbolic, etc.

    • Advantages: Return distributions with heavy-tails, high kurtosis, asymmetry.

    • Drawbacks: Lack of volatility clustering and leverage.

    3 Time-changed Lévy models (Carr, et. al.): St = S0eXτ(t) , whereτ(t) =

    ∫ t0 rudu, drt = α(m − rt )dt + v

    √rt dWt .

    • Advantages: Introduce stochastic clustering.

    • Drawbacks: Lack of leverage.

    4 Stochastic volatility driven by OU (Barndorff-Nielsen and Shephard):

    St := S0 exp{∫ t

    0 budu +∫ t

    0 σuWu}

    , where σ2t = σ20 +

    ∫ t0 ασ

    2s ds + Xαt .

  • Introduction Some Lévy-based financial models

    Overview of Lévy-based financial models

    1 Lévy process: {Xt}t≥0(i) X0 = 0, (ii) Independent and stationary increments,

    (iii) càdlàg paths, (iv) no fixed jump times P(∆Xt 6= 0) = 0.2 Exponential Lévy models: St = S0eXt .

    • Examples: Variance Gamma, CGMY, generalized Hyperbolic, etc.

    • Advantages: Return distributions with heavy-tails, high kurtosis, asymmetry.

    • Drawbacks: Lack of volatility clustering and leverage.

    3 Time-changed Lévy models (Carr, et. al.): St = S0eXτ(t) , whereτ(t) =

    ∫ t0 rudu, drt = α(m − rt )dt + v

    √rt dWt .

    • Advantages: Introduce stochastic clustering.

    • Drawbacks: Lack of leverage.

    4 Stochastic volatility driven by OU (Barndorff-Nielsen and Shephard):

    St := S0 exp{∫ t

    0 budu +∫ t

    0 σuWu}

    , where σ2t = σ20 +

    ∫ t0 ασ

    2s ds + Xαt .

  • Introduction Some Lévy-based financial models

    Overview of Lévy-based financial models

    1 Lévy process: {Xt}t≥0(i) X0 = 0, (ii) Independent and stationary increments,

    (iii) càdlàg paths, (iv) no fixed jump times P(∆Xt 6= 0) = 0.2 Exponential Lévy models: St = S0eXt .

    • Examples: Variance Gamma, CGMY, generalized Hyperbolic, etc.

    • Advantages: Return distributions with heavy-tails, high kurtosis, asymmetry.

    • Drawbacks: Lack of volatility clustering and leverage.

    3 Time-changed Lévy models (Carr, et. al.): St = S0eXτ(t) , whereτ(t) =

    ∫ t0 rudu, drt = α(m − rt )dt + v

    √rt dWt .

    • Advantages: Introduce stochastic clustering.

    • Drawbacks: Lack of leverage.

    4 Stochastic volatility driven by OU (Barndorff-Nielsen and Shephard):

    St := S0 exp{∫ t

    0 budu +∫ t

    0 σuWu}

    , where σ2t = σ20 +

    ∫ t0 ασ

    2s ds + Xαt .

  • Introduction Some Lévy-based financial models

    Overview of Lévy-based financial models

    1 Lévy process: {Xt}t≥0(i) X0 = 0, (ii) Independent and stationary increments,

    (iii) càdlàg paths, (iv) no fixed jump times P(∆Xt 6= 0) = 0.2 Exponential Lévy models: St = S0eXt .

    • Examples: Variance Gamma, CGMY, generalized Hyperbolic, etc.

    • Advantages: Return distributions with heavy-tails, high kurtosis, asymmetry.

    • Drawbacks: Lack of volatility clustering and leverage.

    3 Time-changed Lévy models (Carr, et. al.): St = S0eXτ(t) , whereτ(t) =

    ∫ t0 rudu, drt = α(m − rt )dt + v

    √rt dWt .

    • Advantages: Introduce stochastic clustering.

    • Drawbacks: Lack of leverage.

    4 Stochastic volatility driven by OU (Barndorff-Nielsen and Shephard):

    St := S0 exp{∫ t

    0 budu +∫ t

    0 σuWu}

    , where σ2t = σ20 +

    ∫ t0 ασ

    2s ds + Xαt .

  • Introduction Some Lévy-based financial models

    Overview of Lévy-based financial models

    1 Lévy process: {Xt}t≥0(i) X0 = 0, (ii) Independent and stationary increments,

    (iii) càdlàg paths, (iv) no fixed jump times P(∆Xt 6= 0) = 0.2 Exponential Lévy models: St = S0eXt .

    • Examples: Variance Gamma, CGMY, generalized Hyperbolic, etc.

    • Advantages: Return distributions with heavy-tails, high kurtosis, asymmetry.

    • Drawbacks: Lack of volatility clustering and leverage.

    3 Time-changed Lévy models (Carr, et. al.): St = S0eXτ(t) , whereτ(t) =

    ∫ t0 rudu, drt = α(m − rt )dt + v

    √rt dWt .

    • Advantages: Introduce stochastic clustering.

    • Drawbacks: Lack of leverage.

    4 Stochastic volatility driven by OU (Barndorff-Nielsen and Shephard):

    St := S0 exp{∫ t

    0 budu +∫ t

    0 σuWu}

    , where σ2t = σ20 +

    ∫ t0 ασ

    2s ds + Xαt .

  • Introduction Formulation of the problems

    Outline

    1 Introduction

    Some Lévy-based financial models

    Formulation of the problems

    2 Estimation of Lévy densities

    Minimax rate of convergence

    Nonparametric sieve estimators

    The rate of convergence of the risk

    3 Confidence intervals for the Lévy density

    A pointwise CLT

    4 Confidence bands for the Lévy density

    A uniform CLT

    5 Final remarks

    Feasibility in realty

  • Introduction Formulation of the problems

    Formulation of the problems

    1 Set-up:• {Xt}t≥0 is a Lévy process with Lévy measure ν.• ν(dx) = s(x)dx , where s is the Lévy density;

    s(x) = intensity of jumps with size close to x .

    • The process is discretely sampled at π : 0 = t0 < · · · < tn = T .

    2 Objectives:

    • Construct functional estimators ŝπ for s on a domain D = (a, b) (a > 0),

    relying only on “qualitative" assumptions on s;

    • Compared with the “best" estimator based on continuous sampling on [0,T ];

    • Devise (asymptotic) point-wise confidence intervals:

    Pˆs(x) ∈ (ŝπ(x)± σ̂(x)zα/2)

    ˜ T→∞,π̄→0−→ 1− α, for each x ∈ D;(π̄ := max{ti+1 − ti})

    • Construct (asymptotic) confidence bands:

    Pˆs(x) ∈ (ŝπ(x)± dα/2(x)),∀x ∈ D

    ˜ T→∞,π̄→0−→ 1− α.

  • Introduction Formulation of the problems

    Formulation of the problems

    1 Set-up:• {Xt}t≥0 is a Lévy process with Lévy measure ν.• ν(dx) = s(x)dx , where s is the Lévy density;

    s(x) = intensity of jumps with size close to x .

    • The process is discretely sampled at π : 0 = t0 < · · · < tn = T .

    2 Objectives:

    • Construct functional estimators ŝπ for s on a domain D = (a, b) (a > 0),

    relying only on “qualitative" assumptions on s;

    • Compared with the “best" estimator based on continuous sampling on [0,T ];

    • Devise (asymptotic) point-wise confidence intervals:

    Pˆs(x) ∈ (ŝπ(x)± σ̂(x)zα/2)

    ˜ T→∞,π̄→0−→ 1− α, for each x ∈ D;(π̄ := max{ti+1 − ti})

    • Construct (asymptotic) confidence bands:

    Pˆs(x) ∈ (ŝπ(x)± dα/2(x)),∀x ∈ D

    ˜ T→∞,π̄→0−→ 1− α.

  • Introduction Formulation of the problems

    Formulation of the problems

    1 Set-up:• {Xt}t≥0 is a Lévy process with Lévy measure ν.• ν(dx) = s(x)dx , where s is the Lévy density;

    s(x) = intensity of jumps with size close to x .

    • The process is discretely sampled at π : 0 = t0 < · · · < tn = T .

    2 Objectives:

    • Construct functional estimators ŝπ for s on a domain D = (a, b) (a > 0),

    relying only on “qualitative" assumptions on s;

    • Compared with the “best" estimator based on continuous sampling on [0,T ];

    • Devise (asymptotic) point-wise confidence intervals:

    Pˆs(x) ∈ (ŝπ(x)± σ̂(x)zα/2)

    ˜ T→∞,π̄→0−→ 1− α, for each x ∈ D;(π̄ := max{ti+1 − ti})

    • Construct (asymptotic) confidence bands:

    Pˆs(x) ∈ (ŝπ(x)± dα/2(x)),∀x ∈ D

    ˜ T→∞,π̄→0−→ 1− α.

  • Introduction Formulation of the problems

    Formulation of the problems

    1 Set-up:• {Xt}t≥0 is a Lévy process with Lévy measure ν.• ν(dx) = s(x)dx , where s is the Lévy density;

    s(x) = intensity of jumps with size close to x .

    • The process is discretely sampled at π : 0 = t0 < · · · < tn = T .

    2 Objectives:

    • Construct functional estimators ŝπ for s on a domain D = (a, b) (a > 0),

    relying only on “qualitative" assumptions on s;

    • Compared with the “best" estimator based on continuous sampling on [0,T ];

    • Devise (asymptotic) point-wise confidence intervals:

    Pˆs(x) ∈ (ŝπ(x)± σ̂(x)zα/2)

    ˜ T→∞,π̄→0−→ 1− α, for each x ∈ D;(π̄ := max{ti+1 − ti})

    • Construct (asymptotic) confidence bands:

    Pˆs(x) ∈ (ŝπ(x)± dα/2(x)),∀x ∈ D

    ˜ T→∞,π̄→0−→ 1− α.

  • Introduction Formulation of the problems

    Formulation of the problems

    1 Set-up:• {Xt}t≥0 is a Lévy process with Lévy measure ν.• ν(dx) = s(x)dx , where s is the Lévy density;

    s(x) = intensity of jumps with size close to x .

    • The process is discretely sampled at π : 0 = t0 < · · · < tn = T .

    2 Objectives:

    • Construct functional estimators ŝπ for s on a domain D = (a, b) (a > 0),

    relying only on “qualitative" assumptions on s;

    • Compared with the “best" estimator based on continuous sampling on [0,T ];

    • Devise (asymptotic) point-wise confidence intervals:

    Pˆs(x) ∈ (ŝπ(x)± σ̂(x)zα/2)

    ˜ T→∞,π̄→0−→ 1− α, for each x ∈ D;(π̄ := max{ti+1 − ti})

    • Construct (asymptotic) confidence bands:

    Pˆs(x) ∈ (ŝπ(x)± dα/2(x)),∀x ∈ D

    ˜ T→∞,π̄→0−→ 1− α.

  • Introduction Formulation of the problems

    Formulation of the problems

    1 Set-up:• {Xt}t≥0 is a Lévy process with Lévy measure ν.• ν(dx) = s(x)dx , where s is the Lévy density;

    s(x) = intensity of jumps with size close to x .

    • The process is discretely sampled at π : 0 = t0 < · · · < tn = T .

    2 Objectives:

    • Construct functional estimators ŝπ for s on a domain D = (a, b) (a > 0),

    relying only on “qualitative" assumptions on s;

    • Compared with the “best" estimator based on continuous sampling on [0,T ];

    • Devise (asymptotic) point-wise confidence intervals:

    Pˆs(x) ∈ (ŝπ(x)± σ̂(x)zα/2)

    ˜ T→∞,π̄→0−→ 1− α, for each x ∈ D;(π̄ := max{ti+1 − ti})

    • Construct (asymptotic) confidence bands:

    Pˆs(x) ∈ (ŝπ(x)± dα/2(x)),∀x ∈ D

    ˜ T→∞,π̄→0−→ 1− α.

  • Introduction Formulation of the problems

    Why is the estimation problem interesting?

    1 The Lévy measure ν determines the jump behavior of the process:

    ν(A) =1t· E{

    ∑s≤t

    1{∆Xs∈A}}.

    2 The sizes of the jumps {∆Xs : s ≤ t ,∆Xs ∈ D} are unobservable basedon discrete data observations

    Xti+1 − Xti = Pure-jump Lévy (ν)︸ ︷︷ ︸Jumps on (ti ,ti+1]

    +σ(Wti+1 −Wti )︸ ︷︷ ︸White noise

    + b∆t︸︷︷︸Drift

    3 Intuition from the finite-jump activity case:

    • {Xti − Xti−1}i will recover the jumps of X in [0,T ] if maxi{ti − ti−1} → 0;• Need T →∞ for consistency of the estimation.

  • Introduction Formulation of the problems

    Why is the estimation problem interesting?

    1 The Lévy measure ν determines the jump behavior of the process:

    ν(A) =1t· E{

    ∑s≤t

    1{∆Xs∈A}}.

    2 The sizes of the jumps {∆Xs : s ≤ t ,∆Xs ∈ D} are unobservable basedon discrete data observations

    Xti+1 − Xti = Pure-jump Lévy (ν)︸ ︷︷ ︸Jumps on (ti ,ti+1]

    +σ(Wti+1 −Wti )︸ ︷︷ ︸White noise

    + b∆t︸︷︷︸Drift

    3 Intuition from the finite-jump activity case:

    • {Xti − Xti−1}i will recover the jumps of X in [0,T ] if maxi{ti − ti−1} → 0;• Need T →∞ for consistency of the estimation.

  • Introduction Formulation of the problems

    Why is the estimation problem interesting?

    1 The Lévy measure ν determines the jump behavior of the process:

    ν(A) =1t· E{

    ∑s≤t

    1{∆Xs∈A}}.

    2 The sizes of the jumps {∆Xs : s ≤ t ,∆Xs ∈ D} are unobservable basedon discrete data observations

    Xti+1 − Xti = Pure-jump Lévy (ν)︸ ︷︷ ︸Jumps on (ti ,ti+1]

    +σ(Wti+1 −Wti )︸ ︷︷ ︸White noise

    + b∆t︸︷︷︸Drift

    3 Intuition from the finite-jump activity case:

    • {Xti − Xti−1}i will recover the jumps of X in [0,T ] if maxi{ti − ti−1} → 0;• Need T →∞ for consistency of the estimation.

  • Introduction Formulation of the problems

    Why is the estimation problem interesting?

    1 The Lévy measure ν determines the jump behavior of the process:

    ν(A) =1t· E{

    ∑s≤t

    1{∆Xs∈A}}.

    2 The sizes of the jumps {∆Xs : s ≤ t ,∆Xs ∈ D} are unobservable basedon discrete data observations

    Xti+1 − Xti = Pure-jump Lévy (ν)︸ ︷︷ ︸Jumps on (ti ,ti+1]

    +σ(Wti+1 −Wti )︸ ︷︷ ︸White noise

    + b∆t︸︷︷︸Drift

    3 Intuition from the finite-jump activity case:

    • {Xti − Xti−1}i will recover the jumps of X in [0,T ] if maxi{ti − ti−1} → 0;• Need T →∞ for consistency of the estimation.

  • Introduction Formulation of the problems

    Why is the estimation problem interesting?

    1 The Lévy measure ν determines the jump behavior of the process:

    ν(A) =1t· E{

    ∑s≤t

    1{∆Xs∈A}}.

    2 The sizes of the jumps {∆Xs : s ≤ t ,∆Xs ∈ D} are unobservable basedon discrete data observations

    Xti+1 − Xti = Pure-jump Lévy (ν)︸ ︷︷ ︸Jumps on (ti ,ti+1]

    +σ(Wti+1 −Wti )︸ ︷︷ ︸White noise

    + b∆t︸︷︷︸Drift

    3 Intuition from the finite-jump activity case:

    • {Xti − Xti−1}i will recover the jumps of X in [0,T ] if maxi{ti − ti−1} → 0;• Need T →∞ for consistency of the estimation.

  • Estimation of Lévy densities Minimax rate of convergence

    Outline

    1 Introduction

    Some Lévy-based financial models

    Formulation of the problems

    2 Estimation of Lévy densities

    Minimax rate of convergence

    Nonparametric sieve estimators

    The rate of convergence of the risk

    3 Confidence intervals for the Lévy density

    A pointwise CLT

    4 Confidence bands for the Lévy density

    A uniform CLT

    5 Final remarks

    Feasibility in realty

  • Estimation of Lévy densities Minimax rate of convergence

    Minimax rate of convergence

    1 What is the best possible rate of convergence when T →∞?• Suppose that s is "smooth" on a domain D = [a, b] (away from the origin):

    Θα = {s : |s(k)(x)− s(k)(y)| ≤ L|x − y |β , ∀x , y ∈ D} (k ∈ N, 0 < β ≤ 1)

    α = k + β is called the "Degree of Smoothness" of s.

    • ST : All estimators ŝT based on {Xt}t≤T .• [F. 2008]: Optimal minimax rate is O

    “T−2α/(2α+1)

    ”;

    lim infT→∞

    T2α

    2α+1 infŝT ∈ST

    sups∈Θα

    EsZ

    D(ŝT (x)− s(x))

    2 dx > 0.

    2 Problem: Devise discrete-based estimator s̃T that attains the optimal rate

    O(T−2α/(2α+1)

    )?

  • Estimation of Lévy densities Minimax rate of convergence

    Minimax rate of convergence

    1 What is the best possible rate of convergence when T →∞?• Suppose that s is "smooth" on a domain D = [a, b] (away from the origin):

    Θα = {s : |s(k)(x)− s(k)(y)| ≤ L|x − y |β , ∀x , y ∈ D} (k ∈ N, 0 < β ≤ 1)

    α = k + β is called the "Degree of Smoothness" of s.

    • ST : All estimators ŝT based on {Xt}t≤T .• [F. 2008]: Optimal minimax rate is O

    “T−2α/(2α+1)

    ”;

    lim infT→∞

    T2α

    2α+1 infŝT ∈ST

    sups∈Θα

    EsZ

    D(ŝT (x)− s(x))

    2 dx > 0.

    2 Problem: Devise discrete-based estimator s̃T that attains the optimal rate

    O(T−2α/(2α+1)

    )?

  • Estimation of Lévy densities Minimax rate of convergence

    Minimax rate of convergence

    1 What is the best possible rate of convergence when T →∞?• Suppose that s is "smooth" on a domain D = [a, b] (away from the origin):

    Θα = {s : |s(k)(x)− s(k)(y)| ≤ L|x − y |β , ∀x , y ∈ D} (k ∈ N, 0 < β ≤ 1)

    α = k + β is called the "Degree of Smoothness" of s.

    • ST : All estimators ŝT based on {Xt}t≤T .• [F. 2008]: Optimal minimax rate is O

    “T−2α/(2α+1)

    ”;

    lim infT→∞

    T2α

    2α+1 infŝT ∈ST

    sups∈Θα

    EsZ

    D(ŝT (x)− s(x))

    2 dx > 0.

    2 Problem: Devise discrete-based estimator s̃T that attains the optimal rate

    O(T−2α/(2α+1)

    )?

  • Estimation of Lévy densities Minimax rate of convergence

    Minimax rate of convergence

    1 What is the best possible rate of convergence when T →∞?• Suppose that s is "smooth" on a domain D = [a, b] (away from the origin):

    Θα = {s : |s(k)(x)− s(k)(y)| ≤ L|x − y |β , ∀x , y ∈ D} (k ∈ N, 0 < β ≤ 1)

    α = k + β is called the "Degree of Smoothness" of s.

    • ST : All estimators ŝT based on {Xt}t≤T .• [F. 2008]: Optimal minimax rate is O

    “T−2α/(2α+1)

    ”;

    lim infT→∞

    T2α

    2α+1 infŝT ∈ST

    sups∈Θα

    EsZ

    D(ŝT (x)− s(x))

    2 dx > 0.

    2 Problem: Devise discrete-based estimator s̃T that attains the optimal rate

    O(T−2α/(2α+1)

    )?

  • Estimation of Lévy densities Minimax rate of convergence

    Minimax rate of convergence

    1 What is the best possible rate of convergence when T →∞?• Suppose that s is "smooth" on a domain D = [a, b] (away from the origin):

    Θα = {s : |s(k)(x)− s(k)(y)| ≤ L|x − y |β , ∀x , y ∈ D} (k ∈ N, 0 < β ≤ 1)

    α = k + β is called the "Degree of Smoothness" of s.

    • ST : All estimators ŝT based on {Xt}t≤T .• [F. 2008]: Optimal minimax rate is O

    “T−2α/(2α+1)

    ”;

    lim infT→∞

    T2α

    2α+1 infŝT ∈ST

    sups∈Θα

    EsZ

    D(ŝT (x)− s(x))

    2 dx > 0.

    2 Problem: Devise discrete-based estimator s̃T that attains the optimal rate

    O(T−2α/(2α+1)

    )?

  • Estimation of Lévy densities Minimax rate of convergence

    Minimax rate of convergence

    1 What is the best possible rate of convergence when T →∞?• Suppose that s is "smooth" on a domain D = [a, b] (away from the origin):

    Θα = {s : |s(k)(x)− s(k)(y)| ≤ L|x − y |β , ∀x , y ∈ D} (k ∈ N, 0 < β ≤ 1)

    α = k + β is called the "Degree of Smoothness" of s.

    • ST : All estimators ŝT based on {Xt}t≤T .• [F. 2008]: Optimal minimax rate is O

    “T−2α/(2α+1)

    ”;

    lim infT→∞

    T2α

    2α+1 infŝT ∈ST

    sups∈Θα

    EsZ

    D(ŝT (x)− s(x))

    2 dx > 0.

    2 Problem: Devise discrete-based estimator s̃T that attains the optimal rate

    O(T−2α/(2α+1)

    )?

  • Estimation of Lévy densities Minimax rate of convergence

    Some relevant results

    1 [F. & Houdré 2006]: Proposes estimator s̃cT

    such that

    lim supT→∞

    T2α

    2α+1 sups∈Θα

    Es∫

    D

    (s̃c

    T(x)− s(x)

    )2 dx

  • Estimation of Lévy densities Minimax rate of convergence

    Some relevant results

    1 [F. & Houdré 2006]: Proposes estimator s̃cT

    such that

    lim supT→∞

    T2α

    2α+1 sups∈Θα

    Es∫

    D

    (s̃c

    T(x)− s(x)

    )2 dx

  • Estimation of Lévy densities Minimax rate of convergence

    Some relevant results

    1 [F. & Houdré 2006]: Proposes estimator s̃cT

    such that

    lim supT→∞

    T2α

    2α+1 sups∈Θα

    Es∫

    D

    (s̃c

    T(x)− s(x)

    )2 dx

  • Estimation of Lévy densities Minimax rate of convergence

    Some relevant results

    1 [F. & Houdré 2006]: Proposes estimator s̃cT

    such that

    lim supT→∞

    T2α

    2α+1 sups∈Θα

    Es∫

    D

    (s̃c

    T(x)− s(x)

    )2 dx

  • Estimation of Lévy densities Nonparametric sieve estimators

    Outline

    1 Introduction

    Some Lévy-based financial models

    Formulation of the problems

    2 Estimation of Lévy densities

    Minimax rate of convergence

    Nonparametric sieve estimators

    The rate of convergence of the risk

    3 Confidence intervals for the Lévy density

    A pointwise CLT

    4 Confidence bands for the Lévy density

    A uniform CLT

    5 Final remarks

    Feasibility in realty

  • Estimation of Lévy densities Nonparametric sieve estimators

    The method of sievesGrenander (81), Birgé & Massart (97).

    • Idea: Approximate s(·) on D by a linear combinationβ1ϕ1(·) + · · ·+ βdϕd (·) of orthonormal functions ϕ1, . . . , ϕd ∈ L2(D,dx)

    • S = span{ϕ1, . . . , ϕd} is called the Sieve.

    • Typical sieves: Splines, wavelets, trigonometric polynomials, etc.

    • Under the condition s ∈ L2(D,dx), the best approximation of s in S is theorthogonal projection:

    s∗(·) =(∫

    ϕ1(x)s(x)dx)ϕ1(·) + · · ·+

    (∫ϕd (x)s(x)dx

    )ϕd (·)

    • Goal: Find estimators β̂(ϕ) for β(ϕ) :=∫

    D ϕ(x)s(x)dx :

    ŝ := β̂(ϕ1)ϕ1 + · · ·+ β̂(ϕd )ϕd

  • Estimation of Lévy densities Nonparametric sieve estimators

    The method of sievesGrenander (81), Birgé & Massart (97).

    • Idea: Approximate s(·) on D by a linear combinationβ1ϕ1(·) + · · ·+ βdϕd (·) of orthonormal functions ϕ1, . . . , ϕd ∈ L2(D,dx)

    • S = span{ϕ1, . . . , ϕd} is called the Sieve.

    • Typical sieves: Splines, wavelets, trigonometric polynomials, etc.

    • Under the condition s ∈ L2(D,dx), the best approximation of s in S is theorthogonal projection:

    s∗(·) =(∫

    ϕ1(x)s(x)dx)ϕ1(·) + · · ·+

    (∫ϕd (x)s(x)dx

    )ϕd (·)

    • Goal: Find estimators β̂(ϕ) for β(ϕ) :=∫

    D ϕ(x)s(x)dx :

    ŝ := β̂(ϕ1)ϕ1 + · · ·+ β̂(ϕd )ϕd

  • Estimation of Lévy densities Nonparametric sieve estimators

    The method of sievesGrenander (81), Birgé & Massart (97).

    • Idea: Approximate s(·) on D by a linear combinationβ1ϕ1(·) + · · ·+ βdϕd (·) of orthonormal functions ϕ1, . . . , ϕd ∈ L2(D,dx)

    • S = span{ϕ1, . . . , ϕd} is called the Sieve.

    • Typical sieves: Splines, wavelets, trigonometric polynomials, etc.

    • Under the condition s ∈ L2(D,dx), the best approximation of s in S is theorthogonal projection:

    s∗(·) =(∫

    ϕ1(x)s(x)dx)ϕ1(·) + · · ·+

    (∫ϕd (x)s(x)dx

    )ϕd (·)

    • Goal: Find estimators β̂(ϕ) for β(ϕ) :=∫

    D ϕ(x)s(x)dx :

    ŝ := β̂(ϕ1)ϕ1 + · · ·+ β̂(ϕd )ϕd

  • Estimation of Lévy densities Nonparametric sieve estimators

    The method of sievesGrenander (81), Birgé & Massart (97).

    • Idea: Approximate s(·) on D by a linear combinationβ1ϕ1(·) + · · ·+ βdϕd (·) of orthonormal functions ϕ1, . . . , ϕd ∈ L2(D,dx)

    • S = span{ϕ1, . . . , ϕd} is called the Sieve.

    • Typical sieves: Splines, wavelets, trigonometric polynomials, etc.

    • Under the condition s ∈ L2(D,dx), the best approximation of s in S is theorthogonal projection:

    s∗(·) =(∫

    ϕ1(x)s(x)dx)ϕ1(·) + · · ·+

    (∫ϕd (x)s(x)dx

    )ϕd (·)

    • Goal: Find estimators β̂(ϕ) for β(ϕ) :=∫

    D ϕ(x)s(x)dx :

    ŝ := β̂(ϕ1)ϕ1 + · · ·+ β̂(ϕd )ϕd

  • Estimation of Lévy densities Nonparametric sieve estimators

    The method of sievesGrenander (81), Birgé & Massart (97).

    • Idea: Approximate s(·) on D by a linear combinationβ1ϕ1(·) + · · ·+ βdϕd (·) of orthonormal functions ϕ1, . . . , ϕd ∈ L2(D,dx)

    • S = span{ϕ1, . . . , ϕd} is called the Sieve.

    • Typical sieves: Splines, wavelets, trigonometric polynomials, etc.

    • Under the condition s ∈ L2(D,dx), the best approximation of s in S is theorthogonal projection:

    s∗(·) =(∫

    ϕ1(x)s(x)dx)ϕ1(·) + · · ·+

    (∫ϕd (x)s(x)dx

    )ϕd (·)

    • Goal: Find estimators β̂(ϕ) for β(ϕ) :=∫

    D ϕ(x)s(x)dx :

    ŝ := β̂(ϕ1)ϕ1 + · · ·+ β̂(ϕd )ϕd

  • Estimation of Lévy densities Nonparametric sieve estimators

    The method of sievesGrenander (81), Birgé & Massart (97).

    • Idea: Approximate s(·) on D by a linear combinationβ1ϕ1(·) + · · ·+ βdϕd (·) of orthonormal functions ϕ1, . . . , ϕd ∈ L2(D,dx)

    • S = span{ϕ1, . . . , ϕd} is called the Sieve.

    • Typical sieves: Splines, wavelets, trigonometric polynomials, etc.

    • Under the condition s ∈ L2(D,dx), the best approximation of s in S is theorthogonal projection:

    s∗(·) =(∫

    ϕ1(x)s(x)dx)ϕ1(·) + · · ·+

    (∫ϕd (x)s(x)dx

    )ϕd (·)

    • Goal: Find estimators β̂(ϕ) for β(ϕ) :=∫

    D ϕ(x)s(x)dx :

    ŝ := β̂(ϕ1)ϕ1 + · · ·+ β̂(ϕd )ϕd

  • Estimation of Lévy densities Nonparametric sieve estimators

    The method of sievesGrenander (81), Birgé & Massart (97).

    • Idea: Approximate s(·) on D by a linear combinationβ1ϕ1(·) + · · ·+ βdϕd (·) of orthonormal functions ϕ1, . . . , ϕd ∈ L2(D,dx)

    • S = span{ϕ1, . . . , ϕd} is called the Sieve.

    • Typical sieves: Splines, wavelets, trigonometric polynomials, etc.

    • Under the condition s ∈ L2(D,dx), the best approximation of s in S is theorthogonal projection:

    s∗(·) =(∫

    ϕ1(x)s(x)dx)ϕ1(·) + · · ·+

    (∫ϕd (x)s(x)dx

    )ϕd (·)

    • Goal: Find estimators β̂(ϕ) for β(ϕ) :=∫

    D ϕ(x)s(x)dx :

    ŝ := β̂(ϕ1)ϕ1 + · · ·+ β̂(ϕd )ϕd (Projection Estimator)

  • Estimation of Lévy densities Nonparametric sieve estimators

    Estimators for β(ϕ) := RD ϕ(x)s(x)dx .Realized ϕ−variation of X in [0,T ] per unit time: [Woerner 03], [F. 04]

    β̂(ϕ) :=1tn

    n∑k=1

    ϕ(Xtk − Xtk−1

    ),

    Properties: [Woerner 03, F. & Houdré 06; F. 07]

    If ϕ satisfies some regularity conditions (?), then

    as tn →∞ and π̄n := max{tk − tk−1} → 0,

    1 Eβ̂(ϕ) −→ β(ϕ)

    2 β̂(ϕ)P−→β(ϕ)

    3 E{β̂(ϕ)− β(ϕ)

    }2−→ 0, provided that ϕ2 meets (?).

    4√

    tn(β̂(ϕ)− β(ϕ)

    )D→ β(ϕ2) 12 N (0,1), provided that π̄n

    √tn → 0.

  • Estimation of Lévy densities The rate of convergence of the risk

    Outline

    1 Introduction

    Some Lévy-based financial models

    Formulation of the problems

    2 Estimation of Lévy densities

    Minimax rate of convergence

    Nonparametric sieve estimators

    The rate of convergence of the risk

    3 Confidence intervals for the Lévy density

    A pointwise CLT

    4 Confidence bands for the Lévy density

    A uniform CLT

    5 Final remarks

    Feasibility in realty

  • Estimation of Lévy densities The rate of convergence of the risk

    Rate of convergence for spline estimators

    Set-up:

    1 Let Skm := span{ϕ1, . . . , ϕd} be all regular piece-wise polynomials onD = [a,b] of degree at most k with m classes (d = (k + 1)m).

    2 s is bounded and smooth on the domain D with “smoothness" α.

    3 Let ŝT ,m = β̂(ϕ1)ϕ1 + · · ·+ β̂(ϕd )ϕd be the projection estimator on Skmbased on Xt0 , . . . ,Xtn (T = tn)

    Theorem: [F. 2008]

    If (i) maxk{tk − tk−1} = O(T−1), (ii) mT :=[T 1/(2α+1)

    ], and (iii) k + 1 > α, then

    lim supT→∞

    T2α

    2α+1 sups∈Θα

    E ‖s − ŝT ,mT ‖2

  • Estimation of Lévy densities The rate of convergence of the risk

    Rate of convergence for spline estimators

    Set-up:

    1 Let Skm := span{ϕ1, . . . , ϕd} be all regular piece-wise polynomials onD = [a,b] of degree at most k with m classes (d = (k + 1)m).

    2 s is bounded and smooth on the domain D with “smoothness" α.

    3 Let ŝT ,m = β̂(ϕ1)ϕ1 + · · ·+ β̂(ϕd )ϕd be the projection estimator on Skmbased on Xt0 , . . . ,Xtn (T = tn)

    Theorem: [F. 2008]

    If (i) maxk{tk − tk−1} = O(T−1), (ii) mT :=[T 1/(2α+1)

    ], and (iii) k + 1 > α, then

    lim supT→∞

    T2α

    2α+1 sups∈Θα

    E ‖s − ŝT ,mT ‖2

  • Estimation of Lévy densities The rate of convergence of the risk

    Rate of convergence for spline estimators

    Set-up:

    1 Let Skm := span{ϕ1, . . . , ϕd} be all regular piece-wise polynomials onD = [a,b] of degree at most k with m classes (d = (k + 1)m).

    2 s is bounded and smooth on the domain D with “smoothness" α.

    3 Let ŝT ,m = β̂(ϕ1)ϕ1 + · · ·+ β̂(ϕd )ϕd be the projection estimator on Skmbased on Xt0 , . . . ,Xtn (T = tn)

    Theorem: [F. 2008]

    If (i) maxk{tk − tk−1} = O(T−1), (ii) mT :=[T 1/(2α+1)

    ], and (iii) k + 1 > α, then

    lim supT→∞

    T2α

    2α+1 sups∈Θα

    E ‖s − ŝT ,mT ‖2

  • Estimation of Lévy densities The rate of convergence of the risk

    Rate of convergence for spline estimators

    Set-up:

    1 Let Skm := span{ϕ1, . . . , ϕd} be all regular piece-wise polynomials onD = [a,b] of degree at most k with m classes (d = (k + 1)m).

    2 s is bounded and smooth on the domain D with “smoothness" α.

    3 Let ŝT ,m = β̂(ϕ1)ϕ1 + · · ·+ β̂(ϕd )ϕd be the projection estimator on Skmbased on Xt0 , . . . ,Xtn (T = tn)

    Theorem: [F. 2008]

    If (i) maxk{tk − tk−1} = O(T−1), (ii) mT :=[T 1/(2α+1)

    ], and (iii) k + 1 > α, then

    lim supT→∞

    T2α

    2α+1 sups∈Θα

    E ‖s − ŝT ,mT ‖2

  • Estimation of Lévy densities The rate of convergence of the risk

    Rate of convergence for spline estimators

    Set-up:

    1 Let Skm := span{ϕ1, . . . , ϕd} be all regular piece-wise polynomials onD = [a,b] of degree at most k with m classes (d = (k + 1)m).

    2 s is bounded and smooth on the domain D with “smoothness" α.

    3 Let ŝT ,m = β̂(ϕ1)ϕ1 + · · ·+ β̂(ϕd )ϕd be the projection estimator on Skmbased on Xt0 , . . . ,Xtn (T = tn)

    Theorem: [F. 2008]

    If (i) maxk{tk − tk−1} = O(T−1), (ii) mT :=[T 1/(2α+1)

    ], and (iii) k + 1 > α, then

    lim supT→∞

    T2α

    2α+1 sups∈Θα

    E ‖s − ŝT ,mT ‖2

  • Confidence intervals for the Lévy density A pointwise CLT

    Outline

    1 Introduction

    Some Lévy-based financial models

    Formulation of the problems

    2 Estimation of Lévy densities

    Minimax rate of convergence

    Nonparametric sieve estimators

    The rate of convergence of the risk

    3 Confidence intervals for the Lévy density

    A pointwise CLT

    4 Confidence bands for the Lévy density

    A uniform CLT

    5 Final remarks

    Feasibility in realty

  • Confidence intervals for the Lévy density A pointwise CLT

    Pointwise confidence intervals

    1 Question: For given x ∈ D and s ∈ Θα, is it possible to construct a sieveestimator ŝT such that

    2α+1 (ŝT (x)− s(x))D→ σ̄(x)N (0,1)?

    2 Typical strategy for a CLT with normalizing constant cT .

    (i) Show the CLT cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0, 1).

    (ii) Show that that bias is o(c−1T ): cT (EŝT (x)− s(x))→ 0.

    3 It seems that (i) and (ii) cannot be satisfied simultaneously:

    • Var(ŝT (x)) ∼mTT

    s(x)2

    (b−a)2 suggesting thatc2T mT

    T → 1 and σ̄(x) =s(x)b−a ;

    • EŝT (x)− s(x) � m−αT suggesting that cT m

    −αT → 0;

    • Not possible to take cT = Tα

    2α+1 ,

    • but can take cT = Tβ , for any 0 < β < α2α+1 .

  • Confidence intervals for the Lévy density A pointwise CLT

    Pointwise confidence intervals

    1 Question: For given x ∈ D and s ∈ Θα, is it possible to construct a sieveestimator ŝT such that

    2α+1 (ŝT (x)− s(x))D→ σ̄(x)N (0,1)?

    2 Typical strategy for a CLT with normalizing constant cT .

    (i) Show the CLT cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0, 1).

    (ii) Show that that bias is o(c−1T ): cT (EŝT (x)− s(x))→ 0.

    3 It seems that (i) and (ii) cannot be satisfied simultaneously:

    • Var(ŝT (x)) ∼mTT

    s(x)2

    (b−a)2 suggesting thatc2T mT

    T → 1 and σ̄(x) =s(x)b−a ;

    • EŝT (x)− s(x) � m−αT suggesting that cT m

    −αT → 0;

    • Not possible to take cT = Tα

    2α+1 ,

    • but can take cT = Tβ , for any 0 < β < α2α+1 .

  • Confidence intervals for the Lévy density A pointwise CLT

    Pointwise confidence intervals

    1 Question: For given x ∈ D and s ∈ Θα, is it possible to construct a sieveestimator ŝT such that

    2α+1 (ŝT (x)− s(x))D→ σ̄(x)N (0,1)?

    2 Typical strategy for a CLT with normalizing constant cT .

    (i) Show the CLT cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0, 1).

    (ii) Show that that bias is o(c−1T ): cT (EŝT (x)− s(x))→ 0.

    3 It seems that (i) and (ii) cannot be satisfied simultaneously:

    • Var(ŝT (x)) ∼mTT

    s(x)2

    (b−a)2 suggesting thatc2T mT

    T → 1 and σ̄(x) =s(x)b−a ;

    • EŝT (x)− s(x) � m−αT suggesting that cT m

    −αT → 0;

    • Not possible to take cT = Tα

    2α+1 ,

    • but can take cT = Tβ , for any 0 < β < α2α+1 .

  • Confidence intervals for the Lévy density A pointwise CLT

    Pointwise confidence intervals

    1 Question: For given x ∈ D and s ∈ Θα, is it possible to construct a sieveestimator ŝT such that

    2α+1 (ŝT (x)− s(x))D→ σ̄(x)N (0,1)?

    2 Typical strategy for a CLT with normalizing constant cT .

    (i) Show the CLT cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0, 1).

    (ii) Show that that bias is o(c−1T ): cT (EŝT (x)− s(x))→ 0.

    3 It seems that (i) and (ii) cannot be satisfied simultaneously:

    • Var(ŝT (x)) ∼mTT

    s(x)2

    (b−a)2 suggesting thatc2T mT

    T → 1 and σ̄(x) =s(x)b−a ;

    • EŝT (x)− s(x) � m−αT suggesting that cT m

    −αT → 0;

    • Not possible to take cT = Tα

    2α+1 ,

    • but can take cT = Tβ , for any 0 < β < α2α+1 .

  • Confidence intervals for the Lévy density A pointwise CLT

    Pointwise confidence intervals

    1 Question: For given x ∈ D and s ∈ Θα, is it possible to construct a sieveestimator ŝT such that

    2α+1 (ŝT (x)− s(x))D→ σ̄(x)N (0,1)?

    2 Typical strategy for a CLT with normalizing constant cT .

    (i) Show the CLT cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0, 1).

    (ii) Show that that bias is o(c−1T ): cT (EŝT (x)− s(x))→ 0.

    3 It seems that (i) and (ii) cannot be satisfied simultaneously:

    • Var(ŝT (x)) ∼mTT

    s(x)2

    (b−a)2 suggesting thatc2T mT

    T → 1 and σ̄(x) =s(x)b−a ;

    • EŝT (x)− s(x) � m−αT suggesting that cT m

    −αT → 0;

    • Not possible to take cT = Tα

    2α+1 ,

    • but can take cT = Tβ , for any 0 < β < α2α+1 .

  • Confidence intervals for the Lévy density A pointwise CLT

    Pointwise confidence intervals

    1 Question: For given x ∈ D and s ∈ Θα, is it possible to construct a sieveestimator ŝT such that

    2α+1 (ŝT (x)− s(x))D→ σ̄(x)N (0,1)?

    2 Typical strategy for a CLT with normalizing constant cT .

    (i) Show the CLT cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0, 1).

    (ii) Show that that bias is o(c−1T ): cT (EŝT (x)− s(x))→ 0.

    3 It seems that (i) and (ii) cannot be satisfied simultaneously:

    • Var(ŝT (x)) ∼mTT

    s(x)2

    (b−a)2 suggesting thatc2T mT

    T → 1 and σ̄(x) =s(x)b−a ;

    • EŝT (x)− s(x) � m−αT suggesting that cT m

    −αT → 0;

    • Not possible to take cT = Tα

    2α+1 ,

    • but can take cT = Tβ , for any 0 < β < α2α+1 .

  • Confidence intervals for the Lévy density A pointwise CLT

    Pointwise confidence intervals

    1 Question: For given x ∈ D and s ∈ Θα, is it possible to construct a sieveestimator ŝT such that

    2α+1 (ŝT (x)− s(x))D→ σ̄(x)N (0,1)?

    2 Typical strategy for a CLT with normalizing constant cT .

    (i) Show the CLT cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0, 1).

    (ii) Show that that bias is o(c−1T ): cT (EŝT (x)− s(x))→ 0.

    3 It seems that (i) and (ii) cannot be satisfied simultaneously:

    • Var(ŝT (x)) ∼mTT

    s(x)2

    (b−a)2 suggesting thatc2T mT

    T → 1 and σ̄(x) =s(x)b−a ;

    • EŝT (x)− s(x) � m−αT suggesting that cT m

    −αT → 0;

    • Not possible to take cT = Tα

    2α+1 ,

    • but can take cT = Tβ , for any 0 < β < α2α+1 .

  • Confidence intervals for the Lévy density A pointwise CLT

    Pointwise confidence intervals

    1 Question: For given x ∈ D and s ∈ Θα, is it possible to construct a sieveestimator ŝT such that

    2α+1 (ŝT (x)− s(x))D→ σ̄(x)N (0,1)?

    2 Typical strategy for a CLT with normalizing constant cT .

    (i) Show the CLT cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0, 1).

    (ii) Show that that bias is o(c−1T ): cT (EŝT (x)− s(x))→ 0.

    3 It seems that (i) and (ii) cannot be satisfied simultaneously:

    • Var(ŝT (x)) ∼mTT

    s(x)2

    (b−a)2 suggesting thatc2T mT

    T → 1 and σ̄(x) =s(x)b−a ;

    • EŝT (x)− s(x) � m−αT suggesting that cT m

    −αT → 0;

    • Not possible to take cT = Tα

    2α+1 ,

    • but can take cT = Tβ , for any 0 < β < α2α+1 .

  • Confidence intervals for the Lévy density A pointwise CLT

    Theorem ([F. 2008])

    1 Sieve: regular piece-wise polynomials of degree k with m classes

    2 s has smoothness α ≥ 1 on D with α ≤ k + 1

    3 b2m(x) :=∑k

    j=0(2j + 1)Q2j

    (2x−(am+bm)

    bm−am

    ), where Qj is the Legendre

    polynomial of degree j on [−1,1] and (am,bm] is the class containing x.

    Then, for any 0 < β < α2α+1 ,

    T β

    bmT(ŝT (x)− s(x))

    D→ s(x)b − a

    N (0,1), T →∞,

    provided that mT =[T 1−2β

    ]and π̄ := maxk{tk − tk−1} ≤ T−γ with γ > 1− β.

    Asymptotic 100(1− α)% confidence intervals for s(x):

    ŝT (x)±bmT (x)

    (b−a)1/2 · T−β · ŝ1/2

    T(x) · zα/2

  • Confidence intervals for the Lévy density A pointwise CLT

    Theorem ([F. 2008])

    1 Sieve: regular piece-wise polynomials of degree k with m classes

    2 s has smoothness α ≥ 1 on D with α ≤ k + 1

    3 b2m(x) :=∑k

    j=0(2j + 1)Q2j

    (2x−(am+bm)

    bm−am

    ), where Qj is the Legendre

    polynomial of degree j on [−1,1] and (am,bm] is the class containing x.

    Then, for any 0 < β < α2α+1 ,

    T β

    bmT(ŝT (x)− s(x))

    D→ s(x)b − a

    N (0,1), T →∞,

    provided that mT =[T 1−2β

    ]and π̄ := maxk{tk − tk−1} ≤ T−γ with γ > 1− β.

    Asymptotic 100(1− α)% confidence intervals for s(x):

    ŝT (x)±bmT (x)

    (b−a)1/2 · T−β · ŝ1/2

    T(x) · zα/2

  • Confidence intervals for the Lévy density A pointwise CLT

    Theorem ([F. 2008])

    1 Sieve: regular piece-wise polynomials of degree k with m classes

    2 s has smoothness α ≥ 1 on D with α ≤ k + 1

    3 b2m(x) :=∑k

    j=0(2j + 1)Q2j

    (2x−(am+bm)

    bm−am

    ), where Qj is the Legendre

    polynomial of degree j on [−1,1] and (am,bm] is the class containing x.

    Then, for any 0 < β < α2α+1 ,

    T β

    bmT(ŝT (x)− s(x))

    D→ s(x)b − a

    N (0,1), T →∞,

    provided that mT =[T 1−2β

    ]and π̄ := maxk{tk − tk−1} ≤ T−γ with γ > 1− β.

    Asymptotic 100(1− α)% confidence intervals for s(x):

    ŝT (x)±bmT (x)

    (b−a)1/2 · T−β · ŝ1/2

    T(x) · zα/2

  • Confidence intervals for the Lévy density A pointwise CLT

    Theorem ([F. 2008])

    1 Sieve: regular piece-wise polynomials of degree k with m classes

    2 s has smoothness α ≥ 1 on D with α ≤ k + 1

    3 b2m(x) :=∑k

    j=0(2j + 1)Q2j

    (2x−(am+bm)

    bm−am

    ), where Qj is the Legendre

    polynomial of degree j on [−1,1] and (am,bm] is the class containing x.

    Then, for any 0 < β < α2α+1 ,

    T β

    bmT(ŝT (x)− s(x))

    D→ s(x)b − a

    N (0,1), T →∞,

    provided that mT =[T 1−2β

    ]and π̄ := maxk{tk − tk−1} ≤ T−γ with γ > 1− β.

    Asymptotic 100(1− α)% confidence intervals for s(x):

    ŝT (x)±bmT (x)

    (b−a)1/2 · T−β · ŝ1/2

    T(x) · zα/2

  • Confidence intervals for the Lévy density A pointwise CLT

    Theorem ([F. 2008])

    1 Sieve: regular piece-wise polynomials of degree k with m classes

    2 s has smoothness α ≥ 1 on D with α ≤ k + 1

    3 b2m(x) :=∑k

    j=0(2j + 1)Q2j

    (2x−(am+bm)

    bm−am

    ), where Qj is the Legendre

    polynomial of degree j on [−1,1] and (am,bm] is the class containing x.

    Then, for any 0 < β < α2α+1 ,

    T β

    bmT(ŝT (x)− s(x))

    D→ s(x)b − a

    N (0,1), T →∞,

    provided that mT =[T 1−2β

    ]and π̄ := maxk{tk − tk−1} ≤ T−γ with γ > 1− β.

    Asymptotic 100(1− α)% confidence intervals for s(x):

    ŝT (x)±bmT (x)

    (b−a)1/2 · T−β · ŝ1/2

    T(x) · zα/2

  • Confidence intervals for the Lévy density A pointwise CLT

    Theorem ([F. 2008])

    1 Sieve: regular piece-wise polynomials of degree k with m classes

    2 s has smoothness α ≥ 1 on D with α ≤ k + 1

    3 b2m(x) :=∑k

    j=0(2j + 1)Q2j

    (2x−(am+bm)

    bm−am

    ), where Qj is the Legendre

    polynomial of degree j on [−1,1] and (am,bm] is the class containing x.

    Then, for any 0 < β < α2α+1 ,

    T β

    bmT(ŝT (x)− s(x))

    D→ s(x)b − a

    N (0,1), T →∞,

    provided that mT =[T 1−2β

    ]and π̄ := maxk{tk − tk−1} ≤ T−γ with γ > 1− β.

    Asymptotic 100(1− α)% confidence intervals for s(x):

    ŝT (x)±bmT (x)

    (b−a)1/2 · T−β · ŝ1/2

    T(x) · zα/2

  • Confidence intervals for the Lévy density A pointwise CLT

    On the tools behind the proof

    1 cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0,1) will follow from the CLT for i.i.d.

    2

    ∣∣∣∣Eϕ (X∆)∆ −∫ϕ(y)ν(dy)

    ∣∣∣∣ ≤ K (ϕ) supy∈[c,d ]

    ∣∣∣∣ 1∆P [X∆ ≥ y ]− ν([y ,∞))∣∣∣∣,

    where K (ϕ) := (‖ϕ‖∞ + ‖ϕ′‖1) if ϕ ∈ C1([c,d ]) and supp(ϕ) ⊂ [c,d ].

    3 Suppose that ν(dx) = s(x)dx with s bounded and Lipschitz on every

    [c,d ] ⊂ R\{0}. Then, for some k 0,supy∈D

    ∣∣ 1t P [Xt ≥ y ]− ν([y ,∞))

    ∣∣ ≤ kt , whenever t < t0.4 Taylor’s expansions:

    s(y)− s(x) =r∑

    j=1

    s(j)(x)j!

    (y − x)j +∫ y

    x

    (s(r)(v)− s(r)(x)

    ) (y − v)r−1(r − 1)!

    dv ,

    where r := bαc for α > 1.

  • Confidence intervals for the Lévy density A pointwise CLT

    On the tools behind the proof

    1 cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0,1) will follow from the CLT for i.i.d.

    2

    ∣∣∣∣Eϕ (X∆)∆ −∫ϕ(y)ν(dy)

    ∣∣∣∣ ≤ K (ϕ) supy∈[c,d ]

    ∣∣∣∣ 1∆P [X∆ ≥ y ]− ν([y ,∞))∣∣∣∣,

    where K (ϕ) := (‖ϕ‖∞ + ‖ϕ′‖1) if ϕ ∈ C1([c,d ]) and supp(ϕ) ⊂ [c,d ].

    3 Suppose that ν(dx) = s(x)dx with s bounded and Lipschitz on every

    [c,d ] ⊂ R\{0}. Then, for some k 0,supy∈D

    ∣∣ 1t P [Xt ≥ y ]− ν([y ,∞))

    ∣∣ ≤ kt , whenever t < t0.4 Taylor’s expansions:

    s(y)− s(x) =r∑

    j=1

    s(j)(x)j!

    (y − x)j +∫ y

    x

    (s(r)(v)− s(r)(x)

    ) (y − v)r−1(r − 1)!

    dv ,

    where r := bαc for α > 1.

  • Confidence intervals for the Lévy density A pointwise CLT

    On the tools behind the proof

    1 cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0,1) will follow from the CLT for i.i.d.

    2

    ∣∣∣∣Eϕ (X∆)∆ −∫ϕ(y)ν(dy)

    ∣∣∣∣ ≤ K (ϕ) supy∈[c,d ]

    ∣∣∣∣ 1∆P [X∆ ≥ y ]− ν([y ,∞))∣∣∣∣,

    where K (ϕ) := (‖ϕ‖∞ + ‖ϕ′‖1) if ϕ ∈ C1([c,d ]) and supp(ϕ) ⊂ [c,d ].

    3 Suppose that ν(dx) = s(x)dx with s bounded and Lipschitz on every

    [c,d ] ⊂ R\{0}. Then, for some k 0,supy∈D

    ∣∣ 1t P [Xt ≥ y ]− ν([y ,∞))

    ∣∣ ≤ kt , whenever t < t0.4 Taylor’s expansions:

    s(y)− s(x) =r∑

    j=1

    s(j)(x)j!

    (y − x)j +∫ y

    x

    (s(r)(v)− s(r)(x)

    ) (y − v)r−1(r − 1)!

    dv ,

    where r := bαc for α > 1.

  • Confidence intervals for the Lévy density A pointwise CLT

    On the tools behind the proof

    1 cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0,1) will follow from the CLT for i.i.d.

    2

    ∣∣∣∣Eϕ (X∆)∆ −∫ϕ(y)ν(dy)

    ∣∣∣∣ ≤ K (ϕ) supy∈[c,d ]

    ∣∣∣∣ 1∆P [X∆ ≥ y ]− ν([y ,∞))∣∣∣∣,

    where K (ϕ) := (‖ϕ‖∞ + ‖ϕ′‖1) if ϕ ∈ C1([c,d ]) and supp(ϕ) ⊂ [c,d ].

    3 Suppose that ν(dx) = s(x)dx with s bounded and Lipschitz on every

    [c,d ] ⊂ R\{0}. Then, for some k 0,supy∈D

    ∣∣ 1t P [Xt ≥ y ]− ν([y ,∞))

    ∣∣ ≤ kt , whenever t < t0.4 Taylor’s expansions:

    s(y)− s(x) =r∑

    j=1

    s(j)(x)j!

    (y − x)j +∫ y

    x

    (s(r)(v)− s(r)(x)

    ) (y − v)r−1(r − 1)!

    dv ,

    where r := bαc for α > 1.

  • Confidence intervals for the Lévy density A pointwise CLT

    On the tools behind the proof

    1 cT (ŝT (x)− EŝT (x))D→ σ̄(x)N (0,1) will follow from the CLT for i.i.d.

    2

    ∣∣∣∣Eϕ (X∆)∆ −∫ϕ(y)ν(dy)

    ∣∣∣∣ ≤ K (ϕ) supy∈[c,d ]

    ∣∣∣∣ 1∆P [X∆ ≥ y ]− ν([y ,∞))∣∣∣∣,

    where K (ϕ) := (‖ϕ‖∞ + ‖ϕ′‖1) if ϕ ∈ C1([c,d ]) and supp(ϕ) ⊂ [c,d ].

    3 Suppose that ν(dx) = s(x)dx with s bounded and Lipschitz on every

    [c,d ] ⊂ R\{0}. Then, for some k 0,supy∈D

    ∣∣ 1t P [Xt ≥ y ]− ν([y ,∞))

    ∣∣ ≤ kt , whenever t < t0.4 Taylor’s expansions:

    s(y)− s(x) =r∑

    j=1

    s(j)(x)j!

    (y − x)j +∫ y

    x

    (s(r)(v)− s(r)(x)

    ) (y − v)r−1(r − 1)!

    dv ,

    where r := bαc for α > 1.

  • Confidence bands for the Lévy density A uniform CLT

    Outline

    1 Introduction

    Some Lévy-based financial models

    Formulation of the problems

    2 Estimation of Lévy densities

    Minimax rate of convergence

    Nonparametric sieve estimators

    The rate of convergence of the risk

    3 Confidence intervals for the Lévy density

    A pointwise CLT

    4 Confidence bands for the Lévy density

    A uniform CLT

    5 Final remarks

    Feasibility in realty

  • Confidence bands for the Lévy density A uniform CLT

    General ideas

    • Tools coming from [Bickel & Rosenblatt 1973] on confidence bands for

    kernel density estimators.

    • Set-up: Regular piece-wise polynomials as sieves and regular sampling

    {tnk := kδn}nk=0, where δn :=tnn → 0 and tn →∞.

    • Express ŝn(x) in terms of the empirical distribution F n of {Xtnk+1 − Xtnk }nk=0:

    ŝn(x) :=m∑

    i=1

    k∑j=0

    β̂n(ϕi,j )ϕi,j (x) = L(x ; m, δ−1n , F̄

    n) ,where F̄ n := 1− F n and

    L(x ; m, κ,F ) := κm∑

    i=1

    k∑j=0

    ϕi,j (x)∫ϕi,j (u)dF̄ (u).

  • Confidence bands for the Lévy density A uniform CLT

    General ideas

    • Tools coming from [Bickel & Rosenblatt 1973] on confidence bands for

    kernel density estimators.

    • Set-up: Regular piece-wise polynomials as sieves and regular sampling

    {tnk := kδn}nk=0, where δn :=tnn → 0 and tn →∞.

    • Express ŝn(x) in terms of the empirical distribution F n of {Xtnk+1 − Xtnk }nk=0:

    ŝn(x) :=m∑

    i=1

    k∑j=0

    β̂n(ϕi,j )ϕi,j (x) = L(x ; m, δ−1n , F̄

    n) ,where F̄ n := 1− F n and

    L(x ; m, κ,F ) := κm∑

    i=1

    k∑j=0

    ϕi,j (x)∫ϕi,j (u)dF̄ (u).

  • Confidence bands for the Lévy density A uniform CLT

    General ideas

    • Tools coming from [Bickel & Rosenblatt 1973] on confidence bands for

    kernel density estimators.

    • Set-up: Regular piece-wise polynomials as sieves and regular sampling

    {tnk := kδn}nk=0, where δn :=tnn → 0 and tn →∞.

    • Express ŝn(x) in terms of the empirical distribution F n of {Xtnk+1 − Xtnk }nk=0:

    ŝn(x) :=m∑

    i=1

    k∑j=0

    β̂n(ϕi,j )ϕi,j (x) = L(x ; m, δ−1n , F̄

    n) ,where F̄ n := 1− F n and

    L(x ; m, κ,F ) := κm∑

    i=1

    k∑j=0

    ϕi,j (x)∫ϕi,j (u)dF̄ (u).

  • Confidence bands for the Lévy density A uniform CLT

    General ideas

    • Tools coming from [Bickel & Rosenblatt 1973] on confidence bands for

    kernel density estimators.

    • Set-up: Regular piece-wise polynomials as sieves and regular sampling

    {tnk := kδn}nk=0, where δn :=tnn → 0 and tn →∞.

    • Express ŝn(x) in terms of the empirical distribution F n of {Xtnk+1 − Xtnk }nk=0:

    ŝn(x) :=m∑

    i=1

    k∑j=0

    β̂n(ϕi,j )ϕi,j (x) = L(x ; m, δ−1n , F̄

    n) ,where F̄ n := 1− F n and

    L(x ; m, κ,F ) := κm∑

    i=1

    k∑j=0

    ϕi,j (x)∫ϕi,j (u)dF̄ (u).

  • Confidence bands for the Lévy density A uniform CLT

    • Similarly, ŝn(x)− Eŝn(x) = L(

    x ; m, δ−1n , F̄ n − F̄δn)

    , where Fδn is the

    distribution of Xδn .

    • [Bickel & Rosenblatt]: Let Z 0n (x) = n1/2 (F ∗n (x)− x), where F ∗n is theempirical distribution of

    {Fδn(

    Xtnk+1 − Xtnk)}n

    k=1(uniform random sample).

    • Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )• Approximate Z 0n by the Brownian bridge Z 0(x) := Z (x)− xZ (1), where{Z (x)}x∈[0,1] is a B.M. If Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0 (Fδn (·))

    ),

    ‖Y n0 − Y n1 ‖∞ =mtn

    Op(

    n1/4(log n)1/2(log log n)1/4).

    • Strategy: Devise successive approximation Y n2 , . . . ,Ynl such that

    • For some an and bn an (‖Y nl ‖∞ − bn)D→ G, non-degenerate distribution,

    • an‖Y np+1 − Y np ‖∞ = op(1), for p = 1, . . . , l − 1.

  • Confidence bands for the Lévy density A uniform CLT

    • Similarly, ŝn(x)− Eŝn(x) = L(

    x ; m, δ−1n , F̄ n − F̄δn)

    , where Fδn is the

    distribution of Xδn .

    • [Bickel & Rosenblatt]: Let Z 0n (x) = n1/2 (F ∗n (x)− x), where F ∗n is theempirical distribution of

    {Fδn(

    Xtnk+1 − Xtnk)}n

    k=1(uniform random sample).

    • Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )• Approximate Z 0n by the Brownian bridge Z 0(x) := Z (x)− xZ (1), where{Z (x)}x∈[0,1] is a B.M. If Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0 (Fδn (·))

    ),

    ‖Y n0 − Y n1 ‖∞ =mtn

    Op(

    n1/4(log n)1/2(log log n)1/4).

    • Strategy: Devise successive approximation Y n2 , . . . ,Ynl such that

    • For some an and bn an (‖Y nl ‖∞ − bn)D→ G, non-degenerate distribution,

    • an‖Y np+1 − Y np ‖∞ = op(1), for p = 1, . . . , l − 1.

  • Confidence bands for the Lévy density A uniform CLT

    • Similarly, ŝn(x)− Eŝn(x) = L(

    x ; m, δ−1n , F̄ n − F̄δn)

    , where Fδn is the

    distribution of Xδn .

    • [Bickel & Rosenblatt]: Let Z 0n (x) = n1/2 (F ∗n (x)− x), where F ∗n is theempirical distribution of

    {Fδn(

    Xtnk+1 − Xtnk)}n

    k=1(uniform random sample).

    • Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )• Approximate Z 0n by the Brownian bridge Z 0(x) := Z (x)− xZ (1), where{Z (x)}x∈[0,1] is a B.M. If Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0 (Fδn (·))

    ),

    ‖Y n0 − Y n1 ‖∞ =mtn

    Op(

    n1/4(log n)1/2(log log n)1/4).

    • Strategy: Devise successive approximation Y n2 , . . . ,Ynl such that

    • For some an and bn an (‖Y nl ‖∞ − bn)D→ G, non-degenerate distribution,

    • an‖Y np+1 − Y np ‖∞ = op(1), for p = 1, . . . , l − 1.

  • Confidence bands for the Lévy density A uniform CLT

    • Similarly, ŝn(x)− Eŝn(x) = L(

    x ; m, δ−1n , F̄ n − F̄δn)

    , where Fδn is the

    distribution of Xδn .

    • [Bickel & Rosenblatt]: Let Z 0n (x) = n1/2 (F ∗n (x)− x), where F ∗n is theempirical distribution of

    {Fδn(

    Xtnk+1 − Xtnk)}n

    k=1(uniform random sample).

    • Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )• Approximate Z 0n by the Brownian bridge Z 0(x) := Z (x)− xZ (1), where{Z (x)}x∈[0,1] is a B.M. If Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0 (Fδn (·))

    ),

    ‖Y n0 − Y n1 ‖∞ =mtn

    Op(

    n1/4(log n)1/2(log log n)1/4).

    • Strategy: Devise successive approximation Y n2 , . . . ,Ynl such that

    • For some an and bn an (‖Y nl ‖∞ − bn)D→ G, non-degenerate distribution,

    • an‖Y np+1 − Y np ‖∞ = op(1), for p = 1, . . . , l − 1.

  • Confidence bands for the Lévy density A uniform CLT

    • Similarly, ŝn(x)− Eŝn(x) = L(

    x ; m, δ−1n , F̄ n − F̄δn)

    , where Fδn is the

    distribution of Xδn .

    • [Bickel & Rosenblatt]: Let Z 0n (x) = n1/2 (F ∗n (x)− x), where F ∗n is theempirical distribution of

    {Fδn(

    Xtnk+1 − Xtnk)}n

    k=1(uniform random sample).

    • Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )• Approximate Z 0n by the Brownian bridge Z 0(x) := Z (x)− xZ (1), where{Z (x)}x∈[0,1] is a B.M. If Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0 (Fδn (·))

    ),

    ‖Y n0 − Y n1 ‖∞ =mtn

    Op(

    n1/4(log n)1/2(log log n)1/4).

    • Strategy: Devise successive approximation Y n2 , . . . ,Ynl such that

    • For some an and bn an (‖Y nl ‖∞ − bn)D→ G, non-degenerate distribution,

    • an‖Y np+1 − Y np ‖∞ = op(1), for p = 1, . . . , l − 1.

  • Confidence bands for the Lévy density A uniform CLT

    • Similarly, ŝn(x)− Eŝn(x) = L(

    x ; m, δ−1n , F̄ n − F̄δn)

    , where Fδn is the

    distribution of Xδn .

    • [Bickel & Rosenblatt]: Let Z 0n (x) = n1/2 (F ∗n (x)− x), where F ∗n is theempirical distribution of

    {Fδn(

    Xtnk+1 − Xtnk)}n

    k=1(uniform random sample).

    • Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )• Approximate Z 0n by the Brownian bridge Z 0(x) := Z (x)− xZ (1), where{Z (x)}x∈[0,1] is a B.M. If Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0 (Fδn (·))

    ),

    ‖Y n0 − Y n1 ‖∞ =mtn

    Op(

    n1/4(log n)1/2(log log n)1/4).

    • Strategy: Devise successive approximation Y n2 , . . . ,Ynl such that

    • For some an and bn an (‖Y nl ‖∞ − bn)D→ G, non-degenerate distribution,

    • an‖Y np+1 − Y np ‖∞ = op(1), for p = 1, . . . , l − 1.

  • Confidence bands for the Lévy density A uniform CLT

    Successive approximation

    1 Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )2 Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0

    (F̄δn (·)

    )), ({Z 0(x)}x≤1 Brownian bridge);

    3 Y n2 (x) := L(

    x ; m, n1/2

    tn,Z(F̄δn (·)

    ))({Z (x)}x≤1 Brownian motion);

    4 Y n3 (x) := L(

    x ; m, t−1/2n ,Z(

    1δn

    F̄δn (·)))

    ;

    5 Y n4 (x) := L(

    x ; m, t−1/2n ,Z(∫∞· s(u)du

    ));

    6 Y n5 (x) := L(

    x ; m, t−1/2n ,∫∞· s

    1/2(u)dZ (u))

    =

    t−1/2n∑m

    i=1∑k

    j=0 ϕi,j (x)∫ xi

    xi−1s1/2(u)ϕi,j (u)dZ (u);

    7 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u) ≈ s−1/2(x)Y n5 (x);

  • Confidence bands for the Lévy density A uniform CLT

    Successive approximation

    1 Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )2 Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0

    (F̄δn (·)

    )), ({Z 0(x)}x≤1 Brownian bridge);

    3 Y n2 (x) := L(

    x ; m, n1/2

    tn,Z(F̄δn (·)

    ))({Z (x)}x≤1 Brownian motion);

    4 Y n3 (x) := L(

    x ; m, t−1/2n ,Z(

    1δn

    F̄δn (·)))

    ;

    5 Y n4 (x) := L(

    x ; m, t−1/2n ,Z(∫∞· s(u)du

    ));

    6 Y n5 (x) := L(

    x ; m, t−1/2n ,∫∞· s

    1/2(u)dZ (u))

    =

    t−1/2n∑m

    i=1∑k

    j=0 ϕi,j (x)∫ xi

    xi−1s1/2(u)ϕi,j (u)dZ (u);

    7 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u) ≈ s−1/2(x)Y n5 (x);

  • Confidence bands for the Lévy density A uniform CLT

    Successive approximation

    1 Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )2 Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0

    (F̄δn (·)

    )), ({Z 0(x)}x≤1 Brownian bridge);

    3 Y n2 (x) := L(

    x ; m, n1/2

    tn,Z(F̄δn (·)

    ))({Z (x)}x≤1 Brownian motion);

    4 Y n3 (x) := L(

    x ; m, t−1/2n ,Z(

    1δn

    F̄δn (·)))

    ;

    5 Y n4 (x) := L(

    x ; m, t−1/2n ,Z(∫∞· s(u)du

    ));

    6 Y n5 (x) := L(

    x ; m, t−1/2n ,∫∞· s

    1/2(u)dZ (u))

    =

    t−1/2n∑m

    i=1∑k

    j=0 ϕi,j (x)∫ xi

    xi−1s1/2(u)ϕi,j (u)dZ (u);

    7 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u) ≈ s−1/2(x)Y n5 (x);

  • Confidence bands for the Lévy density A uniform CLT

    Successive approximation

    1 Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )2 Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0

    (F̄δn (·)

    )), ({Z 0(x)}x≤1 Brownian bridge);

    3 Y n2 (x) := L(

    x ; m, n1/2

    tn,Z(F̄δn (·)

    ))({Z (x)}x≤1 Brownian motion);

    4 Y n3 (x) := L(

    x ; m, t−1/2n ,Z(

    1δn

    F̄δn (·)))

    ;

    5 Y n4 (x) := L(

    x ; m, t−1/2n ,Z(∫∞· s(u)du

    ));

    6 Y n5 (x) := L(

    x ; m, t−1/2n ,∫∞· s

    1/2(u)dZ (u))

    =

    t−1/2n∑m

    i=1∑k

    j=0 ϕi,j (x)∫ xi

    xi−1s1/2(u)ϕi,j (u)dZ (u);

    7 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u) ≈ s−1/2(x)Y n5 (x);

  • Confidence bands for the Lévy density A uniform CLT

    Successive approximation

    1 Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )2 Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0

    (F̄δn (·)

    )), ({Z 0(x)}x≤1 Brownian bridge);

    3 Y n2 (x) := L(

    x ; m, n1/2

    tn,Z(F̄δn (·)

    ))({Z (x)}x≤1 Brownian motion);

    4 Y n3 (x) := L(

    x ; m, t−1/2n ,Z(

    1δn

    F̄δn (·)))

    ;

    5 Y n4 (x) := L(

    x ; m, t−1/2n ,Z(∫∞· s(u)du

    ));

    6 Y n5 (x) := L(

    x ; m, t−1/2n ,∫∞· s

    1/2(u)dZ (u))

    =

    t−1/2n∑m

    i=1∑k

    j=0 ϕi,j (x)∫ xi

    xi−1s1/2(u)ϕi,j (u)dZ (u);

    7 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u) ≈ s−1/2(x)Y n5 (x);

  • Confidence bands for the Lévy density A uniform CLT

    Successive approximation

    1 Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )2 Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0

    (F̄δn (·)

    )), ({Z 0(x)}x≤1 Brownian bridge);

    3 Y n2 (x) := L(

    x ; m, n1/2

    tn,Z(F̄δn (·)

    ))({Z (x)}x≤1 Brownian motion);

    4 Y n3 (x) := L(

    x ; m, t−1/2n ,Z(

    1δn

    F̄δn (·)))

    ;

    5 Y n4 (x) := L(

    x ; m, t−1/2n ,Z(∫∞· s(u)du

    ));

    6 Y n5 (x) := L(

    x ; m, t−1/2n ,∫∞· s

    1/2(u)dZ (u))

    =

    t−1/2n∑m

    i=1∑k

    j=0 ϕi,j (x)∫ xi

    xi−1s1/2(u)ϕi,j (u)dZ (u);

    7 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u) ≈ s−1/2(x)Y n5 (x);

  • Confidence bands for the Lévy density A uniform CLT

    Successive approximation

    1 Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )2 Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0

    (F̄δn (·)

    )), ({Z 0(x)}x≤1 Brownian bridge);

    3 Y n2 (x) := L(

    x ; m, n1/2

    tn,Z(F̄δn (·)

    ))({Z (x)}x≤1 Brownian motion);

    4 Y n3 (x) := L(

    x ; m, t−1/2n ,Z(

    1δn

    F̄δn (·)))

    ;

    5 Y n4 (x) := L(

    x ; m, t−1/2n ,Z(∫∞· s(u)du

    ));

    6 Y n5 (x) := L(

    x ; m, t−1/2n ,∫∞· s

    1/2(u)dZ (u))

    =

    t−1/2n∑m

    i=1∑k

    j=0 ϕi,j (x)∫ xi

    xi−1s1/2(u)ϕi,j (u)dZ (u);

    7 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u) ≈ s−1/2(x)Y n5 (x);

  • Confidence bands for the Lévy density A uniform CLT

    Successive approximation

    1 Y n0 (x) := ŝn(x)− Eŝn(x) = L(

    x ; m, n1/2

    tn,−Z 0n (Fδn (·))

    )2 Y n1 (x) := L

    (x ; m, n

    1/2

    tn,−Z 0

    (F̄δn (·)

    )), ({Z 0(x)}x≤1 Brownian bridge);

    3 Y n2 (x) := L(

    x ; m, n1/2

    tn,Z(F̄δn (·)

    ))({Z (x)}x≤1 Brownian motion);

    4 Y n3 (x) := L(

    x ; m, t−1/2n ,Z(

    1δn

    F̄δn (·)))

    ;

    5 Y n4 (x) := L(

    x ; m, t−1/2n ,Z(∫∞· s(u)du

    ));

    6 Y n5 (x) := L(

    x ; m, t−1/2n ,∫∞· s

    1/2(u)dZ (u))

    =

    t−1/2n∑m

    i=1∑k

    j=0 ϕi,j (x)∫ xi

    xi−1s1/2(u)ϕi,j (u)dZ (u);

    7 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u) ≈ s−1/2(x)Y n5 (x);

  • Confidence bands for the Lévy density A uniform CLT

    Maxima of the last approximation

    1 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u)

    2 supx∈D |Y n6 (x)|D= t−1/2n m1/2 max1≤i≤m ζi , where, given Zj

    iid∼ N (0,1),

    ζiiid∼ ζ := sup

    x∈[−1,1]

    ∣∣∣∣∣∣k∑

    j=0

    √2j + 1

    2Qj (x)Zj

    ∣∣∣∣∣∣ .3 Question: What is the extreme value distribution and normalizing

    constants of Mm := max{ζi : 1 ≤ i ≤ m}?

    4 If k = 0, then

    limm→∞

    P(

    Mm ≤y

    am+ bm

    )= e−2e

    −y,

    with am = (2 log m)1/2 and

    bm = (2 log m)1/2 − 12 (2 log m)−1/2 (log log m + log 4π).

    5 The case of k = 1 can also be worked out. The extreme value distribution

    will Gumbel: e−4e−y

    .

  • Confidence bands for the Lévy density A uniform CLT

    Maxima of the last approximation

    1 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u)

    2 supx∈D |Y n6 (x)|D= t−1/2n m1/2 max1≤i≤m ζi , where, given Zj

    iid∼ N (0,1),

    ζiiid∼ ζ := sup

    x∈[−1,1]

    ∣∣∣∣∣∣k∑

    j=0

    √2j + 1

    2Qj (x)Zj

    ∣∣∣∣∣∣ .3 Question: What is the extreme value distribution and normalizing

    constants of Mm := max{ζi : 1 ≤ i ≤ m}?

    4 If k = 0, then

    limm→∞

    P(

    Mm ≤y

    am+ bm

    )= e−2e

    −y,

    with am = (2 log m)1/2 and

    bm = (2 log m)1/2 − 12 (2 log m)−1/2 (log log m + log 4π).

    5 The case of k = 1 can also be worked out. The extreme value distribution

    will Gumbel: e−4e−y

    .

  • Confidence bands for the Lévy density A uniform CLT

    Maxima of the last approximation

    1 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u)

    2 supx∈D |Y n6 (x)|D= t−1/2n m1/2 max1≤i≤m ζi , where, given Zj

    iid∼ N (0,1),

    ζiiid∼ ζ := sup

    x∈[−1,1]

    ∣∣∣∣∣∣k∑

    j=0

    √2j + 1

    2Qj (x)Zj

    ∣∣∣∣∣∣ .3 Question: What is the extreme value distribution and normalizing

    constants of Mm := max{ζi : 1 ≤ i ≤ m}?

    4 If k = 0, then

    limm→∞

    P(

    Mm ≤y

    am+ bm

    )= e−2e

    −y,

    with am = (2 log m)1/2 and

    bm = (2 log m)1/2 − 12 (2 log m)−1/2 (log log m + log 4π).

    5 The case of k = 1 can also be worked out. The extreme value distribution

    will Gumbel: e−4e−y

    .

  • Confidence bands for the Lévy density A uniform CLT

    Maxima of the last approximation

    1 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u)

    2 supx∈D |Y n6 (x)|D= t−1/2n m1/2 max1≤i≤m ζi , where, given Zj

    iid∼ N (0,1),

    ζiiid∼ ζ := sup

    x∈[−1,1]

    ∣∣∣∣∣∣k∑

    j=0

    √2j + 1

    2Qj (x)Zj

    ∣∣∣∣∣∣ .3 Question: What is the extreme value distribution and normalizing

    constants of Mm := max{ζi : 1 ≤ i ≤ m}?

    4 If k = 0, then

    limm→∞

    P(

    Mm ≤y

    am+ bm

    )= e−2e

    −y,

    with am = (2 log m)1/2 and

    bm = (2 log m)1/2 − 12 (2 log m)−1/2 (log log m + log 4π).

    5 The case of k = 1 can also be worked out. The extreme value distribution

    will Gumbel: e−4e−y

    .

  • Confidence bands for the Lévy density A uniform CLT

    Maxima of the last approximation

    1 Y n6 (x) := t−1/2n

    ∑i∑

    j ϕi,j (x)∫ xi

    xi−1ϕi,j (u)dZ (u)

    2 supx∈D |Y n6 (x)|D= t−1/2n m1/2 max1≤i≤m ζi , where, given Zj

    iid∼ N (0,1),

    ζiiid∼ ζ := sup

    x∈[−1,1]

    ∣∣∣∣∣∣k∑

    j=0

    √2j + 1

    2Qj (x)Zj

    ∣∣∣∣∣∣ .3 Question: What is the extreme value distribution and normalizing

    constants of Mm := max{ζi : 1 ≤ i ≤ m}?

    4 If k = 0, then

    limm→∞

    P(

    Mm ≤y

    am+ bm

    )= e−2e

    −y,

    with am = (2 log m)1/2 and

    bm = (2 log m)1/2 − 12 (2 log m)−1/2 (log log m + log 4π).

    5 The case of k = 1 can also be worked out. The extreme value distribution

    will Gumbel: e−4e−y

    .

  • Confidence bands for the Lévy density A uniform CLT

    Confidence bands for the Lévy density

    1 Suppose that

    • s is positive and has smoothness α > 2 on [a, b];

    • s is bounded away from the origin

    • s is C1 on an open interval (c, d) containing [a, b].

    2 Thus, there exists ε0 > 0 and κ > 0 (explicitly computable) such that for

    any 0 < ε < ε0,

    limn→∞

    P

    (an

    {κn

    13−ε sup

    x∈[a,b]s−1/2(x) |ŝn(x)− s(x)| − bn

    }≤ y

    )= e−2e

    −y,

    Asymptotic 100(1− α)% confidence bands for s(x):

    s(x) ∈(

    ŝn(x)± 1κ(

    y∗αan

    + bn)

    n−13 +εŝ1/2n (x)

    )e−2e

    −y∗α = 1− α

  • Confidence bands for the Lévy density A uniform CLT

    Confidence bands for the Lévy density

    1 Suppose that

    • s is positive and has smoothness α > 2 on [a, b];

    • s is bounded away from the origin

    • s is C1 on an open interval (c, d) containing [a, b].

    2 Thus, there exists ε0 > 0 and κ > 0 (explicitly computable) such that for

    any 0 < ε < ε0,

    limn→∞

    P

    (an

    {κn

    13−ε sup

    x∈[a,b]s−1/2(x) |ŝn(x)− s(x)| − bn

    }≤ y

    )= e−2e

    −y,

    Asymptotic 100(1− α)% confidence bands for s(x):

    s(x) ∈(

    ŝn(x)± 1κ(

    y∗αan

    + bn)

    n−13 +εŝ1/2n (x)

    )e−2e

    −y∗α = 1− α

  • Confidence bands for the Lévy density A uniform CLT

    Confidence bands for the Lévy density

    1 Suppose that

    • s is positive and has smoothness α > 2 on [a, b];

    • s is bounded away from the origin

    • s is C1 on an open interval (c, d) containing [a, b].

    2 Thus, there exists ε0 > 0 and κ > 0 (explicitly computable) such that for

    any 0 < ε < ε0,

    limn→∞

    P

    (an

    {κn

    13−ε sup

    x∈[a,b]s−1/2(x) |ŝn(x)− s(x)| − bn

    }≤ y

    )= e−2e

    −y,

    Asymptotic 100(1− α)% confidence bands for s(x):

    s(x) ∈(

    ŝn(x)± 1κ(

    y∗αan

    + bn)

    n−13 +εŝ1/2n (x)

    )e−2e

    −y∗α = 1− α

  • Confidence bands for the Lévy density A uniform CLT

    Confidence bands for the Lévy density

    1 Suppose that

    • s is positive and has smoothness α > 2 on [a, b];

    • s is bounded away from the origin

    • s is C1 on an open interval (c, d) containing [a, b].

    2 Thus, there exists ε0 > 0 and κ > 0 (explicitly computable) such that for

    any 0 < ε < ε0,

    limn→∞

    P

    (an

    {κn

    13−ε sup

    x∈[a,b]s−1/2(x) |ŝn(x)− s(x)| − bn

    }≤ y

    )= e−2e

    −y,

    Asymptotic 100(1− α)% confidence bands for s(x):

    s(x) ∈(

    ŝn(x)± 1κ(

    y∗αan

    + bn)

    n−13 +εŝ1/2n (x)

    )e−2e

    −y∗α = 1− α

  • Confidence bands for the Lévy density A uniform CLT

    An example: Variance Gamma process

    Figure: Confidence bands for the right-tail of the variance Gamma Levy density.

  • Final remarks Feasibility in realty

    Outline

    1 Introduction

    Some Lévy-based financial models

    Formulation of the problems

    2 Estimation of Lévy densities

    Minimax rate of convergence

    Nonparametric sieve estimators

    The rate of convergence of the risk

    3 Confidence intervals for the Lévy density

    A pointwise CLT

    4 Confidence bands for the Lévy density

    A uniform CLT

    5 Final remarks

    Feasibility in realty

  • Final remarks Feasibility in realty

    Feasibility and robustness

    • High-frequency real data will recover the tick-by-tick data, which exhibit

    very particular features called microstructure noise.

    • How frequent to sample? There is a tradeoff: The higher sampling

    frequency, the smaller the error of the non-parametric methods (under

    absence of noise), but the higher the microstructure noise.

    • Need to analyze robustness of the methods towards “microstructure

    noise” (or other kind of noise).

  • Final remarks Feasibility in realty

    Feasibility and robustness

    • High-frequency real data will recover the tick-by-tick data, which exhibit

    very particular features called microstructure noise.

    • How frequent to sample? There is a tradeoff: The higher sampling

    frequency, the smaller the error of the non-parametric methods (under

    absence of noise), but the higher the microstructure noise.

    • Need to analyze robustness of the methods towards “microstructure

    noise” (or other kind of noise).

  • Final remarks Feasibility in realty

    Feasibility and robustness

    • High-frequency real data will recover the tick-by-tick data, which exhibit

    very particular features called microstructure noise.

    • How frequent to sample? There is a tradeoff: The higher sampling

    frequency, the smaller the error of the non-parametric methods (under

    absence of noise), but the higher the microstructure noise.

    • Need to analyze robustness of the methods towards “microstructure

    noise” (or other kind of noise).

  • Appendix Bibliography

    For Further Reading I

    Figueroa-López.

    Model selection for Lévy processes based on discrete-sampling.

    To appear IMS volume of the 3rd Erich L. Lehmann Symposium, 2008.

    Figueroa-López.

    Sieve-based confidence intervals and bands for Lévy densities.

    Preprint, 2009.

    Figueroa-López.

    Small-time moment asymptotics for Lévy processes.

    Statistics and Probability Letters, 78, 3355-3365, 2008.

  • Appendix Bibliography

    For Further Reading II

    Figueroa-Lopez & Houdré.

    Risk bounds for the non-parametric estimation of Lévy processes.

    IMS Lecture Notes - Monograph Series. High Dimensional Probability,

    51:96–116, 2006.

  • Appendix Additional details

    Small-time behavior of moments

    Regularity Condition (?)

    1 ϕ is continuous (ν-almost everywhere).

    2 ϕ(x) = o(x2), as x → 0.

    3 ϕ(x) = O(g(x)), as |x | → ∞, where g is submultiplicative or subadditivesuch that

    ∫|x|>1

    g(x)s(x)dx 0, or g(x) = ec|x|, c > 0).

    Theorem (Woerner 02, Jacod 06, Figueroa 08)

    limt→0

    1tE {ϕ (Xt )} =

    ∫ϕ(x)s(x)dx .

    Back

  • Appendix Additional details

    Small-time behavior of moments

    Regularity Condition (?)

    1 ϕ is continuous (ν-almost everywhere).

    2 ϕ(x) = o(x2), as x → 0.

    3 ϕ(x) = O(g(x)), as |x | → ∞, where g is submultiplicative or subadditivesuch that

    ∫|x|>1

    g(x)s(x)dx 0, or g(x) = ec|x|, c > 0).

    Theorem (Woerner 02, Jacod 06, Figueroa 08)

    limt→0

    1tE {ϕ (Xt )} =

    ∫ϕ(x)s(x)dx .

    Back

    IntroductionSome Lévy-based financial modelsFormulation of the problems

    Estimation of Lévy densitiesMinimax rate of convergenceNonparametric sieve estimatorsThe rate of convergence of the risk

    Confidence intervals for the Lévy densityA pointwise CLT

    Confidence bands for the Lévy densityA uniform CLT

    Final remarksFeasibility in realty

    AppendixAppendix