non-newtonian flows in porous media: upscaling problems · 2018-09-17 · 6/26/18 transport in...

27
6/26/18 Transport in Porous Media 1/27 M. Quintard 1 Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS-INPT-UPS, Toulouse FRANCE 2 Total, CSTJF, Avenue Larribau, 64018 Pau, France Non-Newtonian Flows in Porous Non-Newtonian Flows in Porous Media: upscaling problems Media: upscaling problems Davit Y. 1 , Zami-Pierre F. 1,2 , de Loubens R. 2 and Quintard M. 1 4th Cargèse Summer School, 2018 https://www.dropbox.com/s/mcgg0ifpogsznv2/non_newtonian_V00.pdf?dl=0

Upload: others

Post on 21-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

6/26/18

Transport in Porous Media1/27

M. Quintard

1Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS-INPT-UPS, Toulouse FRANCE2Total, CSTJF, Avenue Larribau, 64018 Pau, France

Non-Newtonian Flows in Porous Non-Newtonian Flows in Porous Media: upscaling problemsMedia: upscaling problems

Davit Y.1, Zami-Pierre F.1,2 , de Loubens R.2 and Quintard M.1

4th Cargèse Summer School, 2018

https://www.dropbox.com/s/mcgg0ifpogsznv2/non_newtonian_V00.pdf?dl=0

Page 2: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 2/27M. Quintard

Objective/OutlineObjective/Outline

Motivation: flow of polymer solutions, question about heuristic models in Res. Engng

Upscaling

– Introduction (generalized Stokes)

– Transition

– Induced anisotropy, effect of disorder, effect of size of the UC, ...

Further problems: exclusion zone, viscoelastic Conclusions

Page 3: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 3/27M. Quintard

Multi-Scale AnalysisMulti-Scale Analysis

()=0

=g(x)

*(⟨ψ⟩)=0

⟨ψ =⟩= g*(x)

Pore-Scale Darcy-Scale

Sequential multi-scale pattern Used in DRP, Res. Engng,

Hydro., etc... Objectives of macro-scale

theories:– Smoothing operator . → Macro ⟨.⟩ → Macro ⟩ → Macro

variables, Eqs & BCs– Micro-macro link →

Determination of Effective Properties

Needs Scale Separation:

lβ ,lσ REV?≪REV?≪ ≪REV?≪ L

η-region

ω-region

L

Pore-ScaleV

Darcy-Scale

Reservoir-Scale

V∞

β-phase

σ-phaselβ

lηlω

(process dependent)

Page 4: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 4/27M. Quintard

Multi-Scale Analysis: Upscaling Multi-Scale Analysis: Upscaling TechniquesTechniques Form of the equations?

– averaging and TIP (Marle, Gray, Hassanizadeh, …)– averaging and closure (Whitaker, …)– homogenization (Bensoussan et al., Sanchez-Palencia, Tartar, …), also

“closure”– stochastic approaches (Dagan, Gelhar, ...)

Effective properties calculations?– Assuming the form of Eqs: interpret experiments or DNS– Upscaling with “closure” (averaging, homogenization, stochastic):

provides local Unit Cell problems Many Open Problems: High non-linearities, Strong couplings,

Evolving pore-scale structure, ...

Page 5: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 5/27M. Quintard

A simple introduction to A simple introduction to upscaling with “closure”upscaling with “closure”

x

x

x

DNS

aver.cClosure:

Macro

Micro

Macro-scale Equation

bx

● Tomography● Reconstruction● Geostatistics● ...

Effective property

Page 6: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 6/27M. Quintard

Flow of a non-Newtonian fluidFlow of a non-Newtonian fluid

Pore-Scale problem (Re~0)

Upscaling: (vol. aver. ⟨ψβ⟩=εβ ψ⟨ψ β⟩β with εβ=Vβ/V)?

10-3 10-2 10-1 100 101 102 103

10-1

100

γ̇ / γ̇c

µ/µ

0

plateau + power lawCarreau

cross-fluid

Rheology:

Case of Generalized Stokes equation

Page 7: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 7/27M. Quintard

Typical local (over a REV) featuresTypical local (over a REV) features

30°

velocity

viscosity

Pressure dev.

Remark (far from BCs)

Page 8: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 8/27M. Quintard

Upscaling flow of a non-Upscaling flow of a non-Newtonian fluidNewtonian fluid

Averaging (vol. aver. ⟨ψβ⟩=εβ ψ⟨ψ β⟩β with εβ=Vβ/V)

+...Closure?

macro

micro

⇒ Problem must be solved for each value of ⟨ψvβ⟩β!

Page 9: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 9/27M. Quintard

““Closure”?Closure”?Under several constraints: scale separation, far from BCs, ...

⇒ Problem must be solved for each value of v⟨vβ⟩β!

Tentatively:

Page 10: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 10/27M. Quintard

A classical story: the linear case A classical story: the linear case and Darcy’s lawand Darcy’s law

Closure (any solution is a linear combination of elementary solutions for ⟨ψvβ⟩β=ei for i=1,2,3)

Macro-Scale equation and effective properties

Important: Proof of symmetry of K0 requires periodicity!

Intrinsic permeability:

Darcy’s law:

(see Sanchez-Palencia, Whitaker, ….)

over a UC!

Page 11: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 11/27M. Quintard

Calculations of the permeabilityCalculations of the permeability

3 possibilities– Initial closure problem

– Transformation of closure problem into ~Stokes with source term and periodic pressure and velocity

– “permeameters”: no-periodicity

Making image periodic? – I: Percolation problem

– II: Loss of anisotropy

– III: potentially various bias

See discussion in Guibert et al., 2015

Case of “diffusion” problem: e.g., permeability, effective diffusion

● thin layers + periodicity

● Eff. Medium

● …..

I II III

Page 12: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 12/27M. Quintard

Calculations over non-periodic Calculations over non-periodic imagesimages

“permeameters”– All methods have bias

– ⟨ψvx⟩β≠0

– Kxy≠Kyx

P1

⇒x

y P2

P1

P2classical

Bamberger

See discussion in: Manwart et al. 2002; Piller et al. 2009; Guibert et al., 2015; ...

Note: minimal bias if large sample and anisotropy along the axis

Page 13: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 13/27M. Quintard

Non-Linear Case: Non-Non-Linear Case: Non-Newtonian FluidNewtonian Fluid

Fluid rheology

No generic closure independent of fluid velocity! Generic macro-scale law:

Representation as a deviation from Darcy’s law

– kn, P (rotation “matrix”): depend on ⟨ψvβ⟩β

(modulus and orientation)

10-3 10-2 10-1 100 101 102 103

10-1

100

γ̇ / γ̇c

µ/µ

0

plateau + power lawCarreau

cross-fluid

PLCO

Page 14: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 14/27M. Quintard

Test casesTest cases

HPC center EOS-Calmip:Typically: 108 mesh cells105 cores×hours

Clashach Bentheimer 2D

Needs very fine grid!

often limited to~ mm3!

Page 15: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 15/27M. Quintard

Resolution with OpenFoamResolution with OpenFoam● FVM with OpenFOAM (SIMPLE, second-order scheme)● Use of HPC, calculations up to 100 millions mesh elements● a total of 100000 hours of CPU time.● Conform orthogonal hexahedral elements.● Multi-criteria grid convergence study = OK.

Page 16: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 16/27M. Quintard

ResultsResults

Computations allows to analyze various features:– Properties of pore-

scale fields (PDFs)– Transition:

• Starts in a few narrow constrictions

• Scaling for transition?⟨Uc⟩FL

non-Newtonian regime

Newtonian regime

k n= 1

k n≠1

⟨U ⟩FLk

(ap

pare

nt)

⟨ψ.⟩FL

= intrinsic fluid

average

∝U(1

-n)

Page 17: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 17/27M. Quintard

Structure of the Velocity FieldStructure of the Velocity Fieldbackflow

Normalized pdf ~similar between Newtonian and non-Newtonian flow! Not valid for pdf of ∇⟨ψp

β⟩β

z

y

newtonian

non-newtonian

Page 18: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 18/27M. Quintard

Transition ScalingTransition Scaling

10-2 103

101

⟨ψU c⟩FL

10-2 10-1

1

(a ) k ∗ v s ⟨ψU ⟩FL µm .s-1

10-1

A1A2C1C2B1B2P 1P 2

(b ) k ∗ v s U∗

100

100 101

Zami-Pierre et al., 2015

Page 19: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 19/27M. Quintard

Impact of Domain SizeImpact of Domain Size

16

18

20

22

24

1 2 3 4 5 6 7

L

k n

σ = 0σ = 0.2

− 6

− 4

− 2

0

2

4

6

1 2 3 4 5 6 7

L

α (d

egre

e)

σ = 0σ = 0.2

● Anisotropy induced by non-linear behavior decreases with ↗ L for disordered media

● Effective property variance decreases with ↗ L

θ=22°

~x

~y

⟨vn ≠1β ⟩

α⟨v

n =1β ⟩

θ ∇⟨ p β⟩β-ρβg

Page 20: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 20/27M. Quintard

Impact of Domain SizeImpact of Domain Size

0 20 40 60 0

2

4

6

L/Req

k n

B m edium : k n

0 20 40 60− 3

− 2

− 1

0

L/Req

Rot

atio

n A

ngle

s (°

)

B medium: αB medium: β

Disorder → no anisotropy induced by non-linearity if L large enough!

θ=22°

Req

(pore size)

L Bentheimer

Page 21: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 21/27M. Quintard

Impact of disorder and velocityImpact of disorder and velocity

10−1 100 101

1

2

3

4

5

U∗

kn

Aσ=0

Aσ=0.05 1

Aσ=0.10 1

Aσ=0.20 1

Aσ=0.30 1B

10−2 10−1 100 101

−4

−2

0

U∗

Angle

αof

P

Aσ=0

Aσ=0.05 1

Aσ=0.10 1

Aσ=0.20 1

Aσ=0.30 1B

Page 22: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 22/27M. Quintard

Practical ConsequencesPractical Consequences

Eng. Practice: apparent Darcy’s law

Discussion:– P=I for all ⟨vvβ⟩β if isotropic disordered media and REV (→ need tests for

various sizes)!

– Apparent permeability ~ scales with (K0)½ → classical scaling “may” introduce artificial dependence upon parameters such as porosity:

– Description of transition near the critical velocity may not be well described by an apparent viscosity (no observed angle in the apparent permeability in the case of PLCO)

Fitting parameter (rock dependent)

versus

Page 23: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 23/27M. Quintard

Further upscalingFurther upscaling

η-region

ω-region

L

Pore-Scale

V

Darcy-Scale

Reservoir-Scale

V

β-phase

σ-phaselβ

lηlω

cont. DLVO

effective BC

zone model

SubPore-Scale

Depletion layer treated as an effective BC

Zami-Pierre et al., 2017

see Chauveteau (1982), Sorbie & Huang (1991) (double-layer model)

Page 24: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 24/27M. Quintard

Further upscalingFurther upscaling

Viscoelastic fluids

Rheological modelsFENE-P:

upper convected Derivative

Page 25: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 25/27M. Quintard

⛐ -see previous discussion on “apparent permeability”, etc… - elastic turbulence?

Deborah number:

Example of results: De et al., soft matter, 2018Example of results: De et al., soft matter, 2018

...also Weissenberg number ☺

Normal stress along average flow direction

De= 0.001 0.1

Steady-state!

Page 26: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 26/27M. Quintard

Further perspectives: N-momentum Further perspectives: N-momentum equations, multi-component aspects, ...equations, multi-component aspects, ...

Superfluid: 2 momentum equations → complex behavior → macro-scale model?

Polymer solution as multi-component systems:

– Mechanical segregation, degradation (bio., mech.)

– Model?

• Momentum balances:– diffusion theory or– N-momentum equations

• Composition:– Continuous models or– PBM (population balance model), ...

see Allain et al. (2010, 2013, 2015), Soulaine et al. (2015, 2017)

mol. weight

pdf

Page 27: Non-Newtonian Flows in Porous Media: upscaling problems · 2018-09-17 · 6/26/18 Transport in Porous Media 1/27 M. Quintard 1Institut de Mécanique des Fluides de Toulouse (IMFT)

Transport in Porous Media 27/27M. Quintard

ConclusionsConclusions

Upscaling tells that this is not always possible to separate in an apparent Darcy’s law permeability and viscosity

Specific anisotropy effects Simplifications arise for disordered media Various results published in the literature for various rheology:

power-law (...), Ellis and Herschel–Bulkley fluids (Sochi & Blunt, 2008), Yield-Stress Fluids (Sochi, 2008), etc…

Additional problems: retention effects, Inaccessible Pore Volume (IPV), mobile/immobile effects

Perspectives: viscoelastic, multicomponent, coupling with other transport problems (transport of species, heat transfer, etc…), ...