non-commutative solitons and integrable equationshamanaka/040120t.pdf · 2004-01-17 · relativity...

23
Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA (Tokyo U. present) (Nagoya U. from Feb. 2004) MH, ``Commuting Flows and Conservation Laws for NC Lax Hierarches,’’ [hep-th/0311206] cf. MH,``Noncommutative Solitons and D-branes,’’ Ph.D thesis [hepth/0303256]

Upload: others

Post on 05-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

Relativity Seminar at Oxford

Non-commutative Solitonsand Integrable Equations

Masashi HAMANAKA(Tokyo U. present)

(Nagoya U. from Feb. 2004)

MH, ``Commuting Flows andConservation Laws for NC Lax Hierarches,’’ [hep-th/0311206]cf. MH,``Noncommutative Solitonsand D-branes,’’ Ph.D thesis [hepth/0303256]

Page 2: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

1. Introduction• Noncommutative spaces are

defined by noncommutativityof spatial coordinates:

This looks like CCR in QM:

``space-space uncertainly relation’’

Resolution of singulality( New physical objects)

e.g. resolution of small instanton singularity( U(1) instantons)

ijji ixx θ=],[

hipq =],[

Page 3: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

NC gauge theories(real physics)

Commutative gauge theories in background of magnetic fields

• Gauge theories are realized on D-branes which are solitons in string theories

• In this contect, NC solitons are (lower-dim.) D-branesAnalysis of NC solitons (easy)

Analysis of D-branesVarious successful applicationse.g. confirmation of Sen’sconjecture on decay of D-branes

NC soliton theories are worthwhile !

Page 4: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

Soliton equations indiverse dimensions

4 Anti-Self-Dual Yang-Mills eq.(instantons)

2(+1)

KP eq. BCS eq. 2-dim. AKNS system …

3 Bogomol’nyi eq.(monopoles)

1(+1)

KdV eq. mKdV eqBoussinesq eq.NLS eq. Burgers eq. sine-Gordon eq.Sawada-Kotera eq.…

µνµν FF ~−=

Dim. of space

NC extension (Successful)

NC extension (This talk)

NC extension(Successful)

NC extension(This talk)

Page 5: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

Ward’s observation:Almost all integrableequations are reductions of the ASDYM eqs.

ASDYM eq.

KP eq. BCS eq. KdV eq. Boussinesq eq.

NLS eq. mKdV eq. sine-Gordon eq.

Burgers eq. …(Almost all ! )

Reductions

e.g. [Mason&Woodhouse]

R.Ward,Phil.Trans.Roy.Soc.Lond.A315(’85)451

Page 6: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

NC Ward’s observation: Almost all NC integrableequations are reductions of the NC ASDYM eqs.

MH&K.Toda,PLA316(‘03)77[hepth/0211148]

NC ASDYM eq.

NC KP eq. NC BCS eq. NC KdV eq. NC Boussinesq eq.

NC NLS eq. NC mKdV eq. NC sine-Gordon eq.NC Burgers eq. …

(Almost all !?)

Reductions

Successful

Successful?

Sato’s theory may answer

Page 7: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

Plan of this talk

1. Introduction2. NC Gauge Theory3. NC Sato’s Theory4. Conservation Laws5. Conclusion and Discussion

Page 8: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

2. NC Gauge Theory• NC gauge theories are equivalent

to ordinary gauge theories in background of magnetic fields.

• They are obtained from ordinary commutative gauge theories by replacing products of fields with star-products.

• The star product:

)(2

exp)(:)()( xgixfxgxf jiij ⎟

⎠⎞

⎜⎝⎛ ∂∂=∗

rsθ

)()()(2

)()( 2θθ Oxgxfixgxf jiij +∂∂+=

A deformed product

hgfhgf ∗∗=∗∗ )()( Associative

ijijjiji ixxxxxx θ=∗−∗=∗ :],[ NC !

Page 9: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

(Ex.) 4-dim. (Euclidean) G=U(N) Yang-Mills theory

• Action

• Eq. Of Motion:

• BPS eq. (=(A)SD eq.)

∫= µνµν FFTrxdS 4

( )( )[ ]µνµνµνµν

µνµνµνµν

FFFFTrxd

FFFFTrxd~2~

~~

24

4

±=

+=

∫∫

m

]),[:( νµµννµµν AAAAF +∂−∂=

0]],[,[ =µνν DDD

µνµν FF ~±= instantons

0,0212211==+ zzzzzz FFF

Page 10: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

(Ex.) 4-dim. NC (Euclidean) G=U(N) Yang-Mills theory

(All products are star products)

• Action

• Eq. Of Motion:

• BPS eq. (=(A)SD eq.)

∫ ∗= µνµν FFTrxdS 4

( )( )[ ]µνµνµνµν

µνµνµνµν

FFFFTrxd

FFFFTrxd~2~

~~

24

4

∗±=

∗+∗=

∗∫∫

m

0]],[,[ =∗∗µνν DDD

µνµν FF ~±= NC instantons

0,0212211==+ zzzzzz FFF

)],[:( ∗+∂−∂= νµµννµµν AAAAF

Don’t omit evenfor G=U(1)

))()1(( ∞≅UUQ

Page 11: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

ADHM construction of instantonsAtiyah-Drinfeld-Hitchin-Manin, PLA65(’78)185

ADHM eq. (G=``U(k)’’): k times k matrix eq.

0],[0],[],[

21

2211

=+=−++ ∗∗∗∗

IJBBJJIIBBBB

kNNk

kk

JIB

××

×

:,:,:2,1

NNA ×:µ

0

0

21

2211

=

=+

zz

zzzz

F

FF

ASD eq. (G=U(N), C2=-k): N times N PDE

ADHM data

Instatntons

1:1 k D0-branes

BPS

N D4-branes

BPS

Page 12: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

ADHM construction of BPST instantons (N=2,k=1)

ADHM eq. (G=``U(1)’’)

0],[0],[],[

21

2211

=+=−++ ∗∗∗∗

IJBBJJIIBBBB

⎟⎠⎞

⎜⎝⎛

===ρ

ρα0

( ),0,,2,12,1 JIB

position size

)(222

2

22

)(

))((2,

)()( −

+−=

+−−

= µνµνµν

ν

µ ηρ

ρρ

ηbx

iFbxbxi

A

0→ρASD eq. (G=U(2), C2=-1)

singular

0

0

21

2211

=

=+

zz

zzzz

F

FFM

0=ρ

Small instanton singulality

Page 13: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

ADHM construction ofNC BPST instantons (N=2,k=1)

ADHM eq. (G=``U(1)’’)

0],[],[],[

21

2211

=+=−++ ∗∗∗∗

IJBBJJIIBBBB ζ

⎟⎠⎞

⎜⎝⎛

=+==ρ

ζρα02( ),0,,2,12,1 JIB

Size slightly fat?position

µνµ FA , : something smooth0→ρ

ASD eq. (G=U(2), C2=-1) Regular! (U(1) instanton!)

0

0

21

2211

=

=+

zz

zzzz

F

FFM

0=ρ

Resolution of the singulality

Page 14: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

3. NC Sato’s Theory• Sato’s Theory : one of the most

beautiful theory of solitons– Based on the exsitence of

hierarchies and tau-functions• Sato’s theory reveals essential

aspects of solitons:– Construction of exact solutions– Structure of solution spaces– Infinite conserved quantities– Hidden infinite-dim. symmetry

Is it possible to extend it

to NC spaces ? YES!

Page 15: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

NC (KP) Hierarchy:

∗=∂∂ ],[ LBxL

mm

L+∂∂

+∂∂

+∂∂

34

23

12

xm

xm

xm

u

u

u

L+∂

+∂

+∂

34

23

12

)(

)(

)(

xm

xm

xm

uF

uF

uF

Huge amount of ```NC evolution equations’’

0

34

23

12

)(::

−−−

∗∗=+∂+∂+∂+∂=

LLBuuuL

m

xxxx

L

L

),,,( 321 Lxxxuu kk =)(33

2

2323

3

22

2

1

uuuB

uB

B

xx

x

x

′++∂+∂=

+∂=

∂=

Noncommutativity is introduced here

ijji ixx θ=],[

m times

Page 16: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

Negative powers of differential operators

jnx

jx

j

nx f

jn

f −∞

=

∂∂⎟⎟⎠

⎞⎜⎜⎝

⎛=∂ ∑ )(:

0o

1)2)(1())1(()2)(1(

L

L

−−−−−−

jjjjnnnn

ffff

fffff

xxx

xxxx

′′+∂′+∂=∂

′′′+∂′′+∂′+∂=∂

2

3322

1233

o

o

Lo

Lo

−∂′′+∂′−∂=∂

−∂′′+∂′−∂=∂−−−−

−−−−

4322

3211

32 xxxx

xxxx

ffff

ffff

)(2

exp)(:)()( xgixfxgxf jiij ⎟

⎠⎞

⎜⎝⎛ ∂∂=∗

rsθ

ijijjiji ixxxxxx θ=∗−∗=∗ :],[

Star product

which makes theories``noncommutative’’:

Page 17: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

Closer look at NC (KP) hierarchyFor m=2

2322 2 uuu ′′+′=∂

M

)

)

)

3

2

1

x

x

x

∗+′∗+′′+′=∂ ],[222 32223432 uuuuuuu

∗+′′∗−′∗+′′+′=∂ ],[2242 4222234542 uuuuuuuuu

Infinite kind of fields are representedin terms of one kind of field uu ≡2

MH&K.Toda, [hep-th/0309265]For m=3

M

)1−∂ x 222243223 3333 uuuuuuuu ′∗+∗′+′′+′′+′′′=∂

∗−− ∂+∂+∗+= ],[

43

43)(

43

41 11

yyxyyxxxxxt uuuuuuu

xuux ∂∂

=:

NC KP equation

),,,( 321 Lxxxuu =

x y t∫ ′=∂− x

x xd:1 etc.

Page 18: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

(KP hie.) (various hies.)

• KdV hierarchyReduction condition

gives rise to NC KdV hierarchywhich includes NC KdV eq.:

):( 22

2 uBL x +∂==

xxxxt uuuu )(43

41

∗+=

02

=∂∂

lxu

Note

: 2-reduction

: dimensional reduction

l -reduction yields other NC hierarchies which include NC Boussinesq, coupled KdV, Sawada-Kotera, mKdV hierarchies and so on.

Page 19: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

NC Burgers hierarchyMH&K.Toda,JPA36(‘03)11981[hepth/0301213]

• NC (1+1)-dim. Burgers equation:

uuuu ′∗+′′= 2& : Non-linear&

Infinite order diff. eq. w.r.t. time !

NC Cole-Hopf transformation

)log( 01 τττ θxu ∂⎯⎯→⎯′∗= →−

ττ ′′=& : Linear &first order diff. eq. w.r.t. time

Integrable !

NC Burgers eq. can be derived from G=U(1) NC ASDYM eq. (One example ofNC Ward’s observation)

Page 20: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

4. Conservation Laws

• We have obtained wide class of NC hierarchies and NC (soliton) equations.

• Are they integrable or specialfrom viewpoints of solitontheories? YES !

Now we show the existence of infinite number of conserved quatities which suggests a hiddeninfinite-dimensional symmetry.

Page 21: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

Conservation Laws• Conservation laws:

Conservation laws for the hierarchies

iit J∂=∂ σ

σ∫= spacedxQ :

∫∫ ==∂=∂inity

spatiali

ispace tt JdSdxQinf

0σQ

σ : Conserved density

Then is a conserved quantity.

Follwing G.Wilson’s approach, we have:

ijij

xxn

m JBAJLres Ξ∂+∂=+∂=∂ ∗− θ],[1

troublesome

I have succeeded in the evaluation explicitly !

Noncommutativity should be introduced in space-time directions only.

:nr Lres− coefficient of in

rx−∂ nL

Page 22: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

Main ResultsInfinite conserved densities for NC hierarchy eqs. (n=1,2,…)

)1(

1

1

11 1

)1( +−−+−−

=

−++

+=

−−+− ◊∂×⎟

⎠⎞

⎜⎝⎛−+= ∑ ∑ −−

− lknmkmiln

m

k

kmn

nl

lknmmin baLresnl

kmθσ

kmx

kkm

mxm

lnx

lln

nx

n

bB

aL

−∞

=−

−∞

=−

∂+∂=

∂+∂=

1

1

◊ : Strachan’s product

mxt ≡

)(21

)!12()1()(:)()(

2

0xg

sxfxgxf

s

jiij

s

s

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛ ∂∂

+−

=◊ ∑∞

=

rsθ

MH, [hep-th/0311206]

)],([ θixt =Example: NC KP and KdV equations

))()((3 22311 uLresuLresLres nnn ′◊+′◊−= −−− θσ

Page 23: Non-commutative Solitons and Integrable Equationshamanaka/040120t.pdf · 2004-01-17 · Relativity Seminar at Oxford Non-commutative Solitons and Integrable Equations Masashi HAMANAKA

5. Conclusion and Discussion

• We proved the existence of infinite conserved quantities for wide class of NC hierarchies and gave the infinite conserved densities explicitly.

• Our results strongly suggest that infinite-dim. symmetry would be hidden in NC (soliton) equations.What is it ?

theories of tau-functions are needed(via e.g. Hirota’s bilinearization)the completion of NC Sato’s theory

• The interpretation of space-time noncommutativity should be clarified.

• What is the twistor descriptions ?

There are many things to be seen.

e.g. Kapustin&Kuznetsov&Orlov, Hannabuss,…