no. 27 d guidelines for the baltic monitoring … · i baltic sea environment proceedings .. · no....

88
I ' . BALTIC SEA ENVIRONMENT PROCEEDINGS .. · No. 27 D GUIDELINES FOR THE BALTIC MONITORING PROGRAMME FOR THE THIRD STAGE PART D. BIOLOGICAL DETERMINANDS BALTIC MA RINE ENV IRONMENT PROTECTI ON COMM I SS ION - HELSI NK I COMM I SS IO -

Upload: buiminh

Post on 22-May-2018

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

I ' .

BALTIC SEA ENVIRONMENT PROCEEDINGS

.. ·

No. 27 D

GUIDELINES FOR THE BALTIC MONITORING PROGRAMME FOR

THE THIRD STAGE

PART D. BIOLOGICAL DETERMINANDS

BALTIC MARINE ENVIRONMENT PROTECTION COMMISSION - HELSINKI COMMISSIO -

Page 2: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

BALTIC SEA ENVIRONMENT PROCEEDINGS

No. 27 D

GUIDELINES FOR THE BALTIC MONITORING PROGRAMME FOR

THE THIRD STAGE

PART D. BIOLOGICAL DETERMINANDS

BALTIC MARINE ENVIRONMENT PROTECTION COMMISSION - HELSINKI COMMISSION -

December 1988

Page 3: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

For bibliographic purposes this document should be dted Baltic Marine Environment Protection CommiSSIOn

- Helsinki Commission -1988

Guidelines for the Baltic Monitoring Programme for the Third Stage; Part D. Biological Determinands

Baltic Sea Environment Proceedings No. 27 D

Copyright by the Baltic Mari~e Environr:r-ent Protection Commission - Helsmki Commission

ISSN 0357-2994

Helsinki 1988- Government Printing Centre

as:

PREFACE

The Guidelines for the Third Stage of the Baltic Monitoring

Programme (BMP) are based on the Guidelines for the Second Stage

of the BMP, published by the Commission as Baltic Sea Environment

Proceedings No. 12 (BSEP No.l2). They have been revised by an

expert group nominated by the Commission. The group was chaired

by Dr. Gunni Aertebj erg and experts from all the Baltic Sea

States participated in the work, with assistance from the

International Council for Exploration of the Sea (ICES) and

experts of the Baltic Marine Biologists (BMB).

·The nint.h meeting of the Helsinki Commission ( 15-19 February

1988) accepted the Guidelines in general as HELCOM Recommendation

9/7. The Commission recommends that the Governments of the

Contracting Parties to the Helsinki Convention should apply the

Guidelines for the Third Stage of the BMP, i.e. from 198 9 to

1993, and also, whenever possible, to follow the Guidelines in

the monitoring of the internal waters as well. The data is to be

submitted to the data bases of the Commission, as specified in

the Guidelines.

The Guidelines for the Third Stage of the BMP are published in

the BSEP series as four separate volumes (27 A, 27 B, 27 C, 27 D)

and also as one combined volume of loose sheets.

The contents of the Guidelines for the Third Stage of the BMP is

as follows:

BSEP 27 A; Part A; Introductory Chapters

27 B; Part B; Physical and Chemical Determinands in Sea

Water

27 C; Part C; Harmful Substances in Biota and Sediments

27 D; Part D· ' Biological Determinands

Volumes B, C and D are intended to be used together with Part A '

which contains general information on e.g. station networks,

sampling requirements and data submission.

1 483184A

Page 4: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

''"''<.f::;;z;-;;s"'Y}i!JFJJ£!4!;ii'W.'*. -----------------------------------------~

Any corrections or proposals for improvements concerning the

content of these Guidelines are welcomed, and to be addressed to:

Baltic Marine Environment Protection Commission

- Helsinki Commission -

Mannerheimintie 12 A

SF - 00100 Helsinki

Finland

Tel.: 90 - 602 366

Tlx.: 125105 hlcom sf

Tfx.: 90 - 644 577

Possible comments concerning the formats prepared by the ICES

should be addressed to the ICES, accordingly, as indicated in the

formats.

GUIDELINES FOR THE BALTIC MONITORING PROGRAMME FOR THE THIRD STAGE

C 0 N T E N T S

of the Baltic Sea Environment Proceedings No. 27 A, B, C, D

A.

B.

B. I

INTRODUCTORY CHAPTERS (Baltic Sea Environment Proceedings No. 27 A)

Table of contents of Part A

1. Introduction 2. Station grid and maps 3, Sampling frequency and timetable 4. Data 5. Conditions required for carrying out scientific

research in the fishing/economic zone (for programmes adopted by the Helsinki Commission)

6. Format for notification of proposed research cruises 7. Research vessels operating in the Baltic Sea Area

PHYSICAL AND CHEMICAL DETERMINANDS IN SEA WATER (Baltic Sea Environment Proceedings No. 27 B)

Table of contents of Part B

Basic Hydrographic and Hydrochemical Determinands

1. Temperature 2. Salinity 3. Density structure 4. Oxygen 5. Hydrogen sulphide 6. pH 7. Alkalinity 8. Nutrients 9. Sampling and preservation of samples

10. References in Chapter B I 11. Reporting format for hydrographic and hydrochemical

data

B. II Heavy Metals, Petroleum Hydrocarbons and Chlorinated Hydrocarbons in Sea Water

1. Heavy metals 2. Petroleum hydrocarbons (PHCs) 3. Chlorinated hydrocarbons (CHCs) 4. Sampling and preservation of samples 5. References in Chapter B II 6. Reporting format for contaminants in sea water 7. Exchange of data'on contaminants in sea water via

magnetic tape

Page 5: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

c.

C. I

HARMFUL SUBSTANCES IN BIOTA AND SEDIMENTS (Baltic Sea Environment Proceedings No. 27 C)

Table of contents of Part C

Harmful Substances in Biota

1. Harmful substances in selected species 2. Analytical procedures for mercury, cadmium and lead in

biological material 3. Chlorinated hydrocarbons in biological material 4. References in Chapter C I 5. Reporting format for contaminants in marine biota 6. Exchange of data on contaminants in fish and shellfish

via magnetic tape

C. II Trend Monitoring of Contaminants in the Coastal Zone

1. Choice of monitoring organisms 2. Sampling procedures 3. Subsampling and handling 4. References in Chapter c II

c. III Harmful Substances in Sediments

1. Contaminants in sediments 2. Reporting format for contaminants in sediments

D. BIOLOGICAL DETERMINANDS (Baltic Sea Environment Proceedings No. 27 D)

Table of contents of Part D

1. Phytoplankton primary production 2. Phytoplankton chlorophyll-a and phaeopigments 3. Phytoplankton -4. Checklist of phytoplankton 5. Rubin codes of phytoplankton 6. Phytoplankton identification sheets 7. Zooplankton 8. Macrozoobenthos 9. Micro-organisms

10. Biological data reporting format 11. Forms to be used in relation to the biological data

reporting format 12. Microbiological data reporting format

TABLE OF CONTENTS OF PART D

D. BIOLOGICAL DETERMINANDS

1. Phytoplankton primary production 2. Phytoplankton chlorophyll-~ and

phaeopigments 3. Phytoplankton 4. Checklist of phytoplankton 5. Rubin codes of phytoplankton 6. Phytoplankton identification sheets 7. Zooplankton 8. Macrozoobenthos 9. Micro-organisms

10. Biological data reporting format 11. Forms to be used in relation to

the biological data reporting format 12. Microbiological data reporting format

Tables:

Tab.D.l. The factor, F, for calculating total co2 from carbonate alkalinity, temperature, pH, and salinity

Tab.D.2. Stereometrical formulas for common phyto­plankton taxa in the Baltic

Figures:

Fig.D.l. Girdle view of a centric diatom with diameter d, height h and plasma thickness c

Fig.D.2. Flow chart of TTI-measurement technique; sample volumes, incubation times and liquid scintillation (LSC) procedure may vary between sites

Page

2 16

23 61 87 87 88 91

101 116 154

161

10

42

52

108

Page 6: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-1-

D. BIOLOGICAL DETERMINANDS

Biological determinands to be monitored

Phytoplankton primary production

Phytoplankton chlorophyll-~ and phaeopigments *)

Phytoplankton (species composition, number of

counting units, biomass)

Zooplankton (species composition, abundance and

biomass of mesozooplankton, protozooplankton *))

Soft bottom macrozoobenthos (species composition,

abundance, biomass)

Micro-organisms *) (total number and biomass of

bacteria, production of bacteria, number of colony­

forming bacteria)

New sampling methods: To improve the significance and

reliability of pelagic sampling, the use of additional

new sampling methods is recommended, such as automatic

sampling and sediment trapping.

Remark:

It is essential that sampling of macrozoobenthos is accompanied by some hydrographic measurements to provide information about the hydrographic situation. Therefore, as a minimum requirement, water should be sampled as close to the sea bottom as possible for determination of salinity, temperature and oxygen/H2s concentration. Preferably a complete hydrographlc series should be taken.

Sampling depths

The sampling depths are described under the sections

for each determinand.

*) tentative determinands

Page 7: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-2-

1. Phytoplankton primary production

Introduction

In order to make it possible to calculate the daily

phytoplankton primary production per m2 water surface

by the data consultant the following measurements are

obligatory and shall be reported:

Temperature corrected potential production at the

sampling depths, measured in incubator

Irradiance in the incubator used

Vertical irradiance attenuation in the water at the

sampling station, measured either by Secchi-disc or

an irradiance meter.

a) Production measurements

Sampling depths

Sampling depths are selected to give an adequate

vertical production curve. The standard sampling depths

are l m, 2.5 m, 5 m, (7.5 m,) 10m, 15m and (20m)

(non-obligatory depths in brackets).

In water bodies with a thermocline and/or a halocline,

a higher concentration of phytoplankton is often ob-

served in the

this layer.

discontinuity layer than above or below

If a pycnocline is found within the

euphotic zone and does not correspond to one of the

standard sampling depths, it is recommended to collect

an additional sample in the discontinuity layer.

Sampling time

Water samples for

preferably be sampled

European Time.

production measurements should

between 8 a.m. and 4 p.m. Central

-3-

Samplers

Non-transparent and non-toxic sampling devices must be

used.

Experimental bottles

25 cm3 bottles made of high quality laboratory glass

and with standard grinding and glass stoppers are

recommended.

The experimental bottles must be thoroughly cleaned

before every experiment in order to avoid bacterial

film ox; adsorption of toxic substances to the inside of

the bottles. The bottles must be cleaned with a 10 %

HCl-solution, then rinsed in tapwater and in distilled

water. If possible the bottles should be dried at

170°C. Before use the bottles must be washed with water

from the respective samples.

All handling of samples before and after the incubation

experiment must take place in dimmed light.

The incubator experiment must be carried out as soon as

possible after sampling.

From each

bottles are

sampling depth,

filled with water.

two clear experimental

Additionally, two dark

experimental bottles are filled with water from 1 m and

15 m depths, respectively.

,. determination of the irradiance production

celation (the PI-curve) seven clear experimental

bottles are filled with water from 1 m depth or, with

water from the integrated phytoplankton sample (see

Section D. 3. a)). If a pycnocline is found within the

euphotic zone, additionally seven clear experimental

bottles are filled with water from 15 m depth.

Page 8: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

.·:cwo);>;;~--------------------------------~·

-4-

The experimental bottles must not be filled totally,

but space for the 14c-solution and a little air bubble

should be left.

14c-solution

The 14c-ampoules for use in production studies can be

purchased from different manufacturers. These ampoules

must fulfill the following specifications:

- alkalinity 1.5 mM/dm'

specific activity 4 - 20 !" Ci/cm'

Standardization of 14c -solution

Liquid scintillation counting shall be used as the

basis for determination of the absolute activity.

14 . Concentration of c-solut1on

The 14c-solution should be added to the experimental

bottles in such concentrations that statistically suf­

ficient estimations of the radioactivity fixed by

photosynthesis in the sample can be obtained. However,

it is also important not to disturb the co2 equilibrium 14

in the water sample by adding too much NaH co3 solution.

' 14 1 . Concentrations corresponding to a 1 em C-so ut1on

with a radioactivity of 1 - 4 ~Ci/cm' per 25 em' sample

have been shown to be applicable for primary pr•)duction

studies in the Baltic.

Dark fixation of carbon

As the dark fixation of carbon is not directly related

to photosynthetic production, it has to be reported

separately.

Incubator

The incubator

specifications:

used

-5-

must have the following

- thermostatically controllable

- irradiance

saturation:

(400-700 nm)

(Philips TLD

conditions ensuring photosynthetic

at least 250. 1018 quanta -2 -1

m • s . -2 -1

100 JOUles m • s (400-700 nm). or

18 W/33 meets these demands).

Measurements of irradiance in the incubator

A calibrated irradiance meter (quanta meter, 400-700

nm) shall be used.

The irradiance meter is placed in the water-filled

incubator facing the light source of the incubator and

at the same distance from the light source as the

experimental bottles during experiments.

The irradiances are measured in five different pos­

itions: At the center of the bottle-wheel of the

incubator and at the outermost positions of the

experimental bottles on each side and above and below

the center of the bottle-wheel.

The measured irradiances are corrected for the

immersion effect by multiplying by the immersion factor

of the irradiance meter used.

Immersion factor: The ratio between the sensitivity of

the irradiance meter in air and in water.

The mean of the four outermost measurements are

calculated, and the irradiance ·in the incubator is '

expressed as the mean of the center measurement and the

calculated mean of the four outermost measurements.

Page 9: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

''?)iJ.~%~'1.-""""------------------------------------

-6-

Incubation temperature

The temperature in the incubator during the experiment

has to be adjusted to the mean temperature of the

euphotic zone, or to the mean temperature found above

an eventual pycnocline if a pycnocline is present

within the euphotic zone.

Incubation

The experimental bottles are placed at the bottle-wheel

of the incubator in such a manner that only clear ex­

perimental bottles face the irradiance source.

Five of the experimental bottles in each of the series

for determination of the PI-curves are covered with

neutral filters of different transmissions, for example

5 %, 10 %, 15 %, 25 % and 50 %. The exact transmission

should be known. Further, the production is determined

at 100 % incubator irradiance by the 6th bottle of the

series and at 17 5 % incubator irradiance by the 7th

bottle of the series. The 175 % incubator irradiance is

obtained by applying a tinfoil coating as reflector

behind the experimental bottles.

Incubation period

The incubation period is 120 minutes.

Filtration of samples

The samples should be filtered immediately after the

production experiment is stopped, in order to avoid

loss of 14c due to respiration.

-7-

Filters with even distribution of pore size, and good

solubility with respect to scintillation liquids are

preferred. Pore size should not exceed 0. 4 5 ~m. The

filters should be wetted before the filtration starts.

The suction pressure should not exceed 0. 3 10 5 Nm - 2

(0.3 atm.).

The whole filtration procedure should not exceed 0. 5

hour for the entire series of bottles. It is possible

to comply with this requirement by arranging a series

of filtration units. In case it is impossible to filter

the whole contents of a single sample, a subsample may

be filtered. The subsample shall be of at least 15 em'.

If filtering a subsample, both the volume of the sub­

sample and the whole volume of the experimental bottle

has to be measured. In the case of filtering the whole

volume of an experimental bottle, such measurements are

not necessary.

The filters should not be washed but, whenever bottles

and filtration funnels need to be rinsed, this should

occur at the end of the filtration procedure, but

before the last em' has passed through the filter.

Preparation of filters

In order to stop all biodegradation and thus losses of

radioactivity, and to remove possible 14c precipitates

extracellularly, immediately after filtration the wet

membrane filters are placed in a desiccator and exposed

to vapours of fuming HCl for 3 minutes.

When scintillation counting is used, the filters can

now be placed 'at the bottom of the empty scintillation

vials.

Page 10: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

/,-:,;;.;y¢.,.""·--------------------------------

-8-

When Geiger counting is used, the filters must be dried

in a desiccator with freshly dried silicagel and with

soda lime, the latter for removal of excess HCl-fumes.

Radioactivity measurements

Various counting techniques are now available, ranging

from Geiger counting and proportional counting to

liquid scintillation counting and combustion. There are

numerous and specific problems with all methods. It is

therefore strongly recommended to consult specialized

publications for details.

As liquid scintillation counting is one of the most ef­

ficient and has the highest versatility, the radio­

activity measurements shall be carried out according to

the liquid scintillation technique. When this is not

possible, the Geiger counting technique shall be used.

In both cases, the efficiency of the counting technique

has to be known, including the relation of efficiency

to the amount and nature of filtered material

(quenching and self-absorption problems).

The counting results should be given as disintegrations

per minute (dpm).

Total co2 concentration

For estimating the total carbon dioxide concentration,

the formulae given by Buch (1) and reproduced by Gargas

(2) are recommended:

2 4S3184A

TA = l. 26 + TA = 0.90 + TA = 0.90 + TA = 0.43 + TA = 0.48 + TA = 0.16 +

where:

Titration

-9-

0.031 s for 18 < s < 25

0.080 s for ll<S<l8

0.083 s for 8<S<ll

0.156 s for 5 < s < 8

0.157 s for 3<s< 5

0.198 s for l<s< 3

TA = titration alkalinity in mM/dm3

S =salinity in °joo

alkalinity is not equal to carbonate

alkalinity due to other weak acids present in the

water. Titration alkalinity can be expressed:

The concentration of H2Bo3 is about 1 % of the

titration alkalinity in the Baltic Sea. Carbonate

alkalinity is then: 0.99 x TA. To get a value for total

co2 , temperature, pH and salinity must be determined.

Knowing these parameters a factor F can be found in

Table D.l. The total co2 can then be expressed:

C02 = Carbonate alkalinity x F.

If more accurate co2 values are requested, which is

recommended at higher salinities (the Kattegat and Belt

Sea) and also in coastal areas, where the relations

given by Buch (1) are less suitable, they can be

estimated according to Strickland & Parsons (11),

Glowifiska et al. (4) or Mackereth et al. (9).

Page 11: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-10-

TABLE D.l. The factor, F, for calculating total co2 ,

from carbonate alkalinity, temperature,

pH, and salinity.

pH 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3

s •/00 1 1.284 1.234 1.189 1.150 1.117 1.093 1.074 1.057 1.043 1.031 1.022 1.014 1.008 1.002 4 1.240 1.196 1.154 1.121 1.095 1.074 1.057 1.049 1,032 1,022 1.013 1.004 0.997 0.989

0 7 1.212 1.158 1.132 1.104 1.082 1.064 1.050 1.037 1.025 1.015 1.006 0.998 0.990 0,981

11 1.192 1.154 1.120 1.094 1.073 1.056 1.041 1.028 1.016 1.007 0.998 0.990 0.981 0.971 18 1.170 1.133 1.104 1,080 1.060 1.046 1.032 1.020 1.009 0.998 0.988 0.977 0.966 0,954 25 1.152 1.107 1.087 1.067 1.048 1.034 1.020 1.010 0.998 0.987 0.976 0.964 0.952 0.938

1 1.271 1.223 1.175 1.136 1.104 1.084 1.066 1.050 1.040 1.030 1.020 1.011 1.004 0.998 4 1.220 1.180 1.140 1.109 1.084 1.065 1.050 1.036 1.024 1.016 1.008 1.000 0.992 0.984 7 1,192 1.153 1.120 1.093 1.074 1.056 1.042 1.030 1.020 1.010 1.000 0.992 0.984 0.974

11 1.172 1.138 1.107 1.084 1.066 1.049 1.034 1.021 1.011 1.002 0.993 0.986 0.975 0.964 5

18 1.152 1.118 1.090 1.066 1.050 1.037 1.024 1.012 1.000 0.991 0.981 0.970 0.956 0.944 25 1.132 1.102 1.076 1.056 1.040 1,028 1.016 1.004 0.992 0.982 0.970 0.958 0.944 0.928

1 1.244 1.190 1.152 1.121 1.098 1.078 1.062 1.048 1.036 1.026 1.016 1,008 1.000 0.993 4 1.204 1.160 1.126 1.100 1.080 1.063 1.048 1.034 1.024 1.015 1.006 0,996 0.988 0.981 7 1.174 1.138 1.110 1.086 1.068 1.052 1.038 1.026 1.016 1.007 0.998 0.988 0.980 0.970

11 1.156 1.122 1.096 1.076 1.060 1.044 1.031 1.020 1.009 0.999 0.988 0.978 0.968 0,956 10

18 1.136 1.104 1.082 1.062 1.046 1.030 1.018 1.008 0.998 0.988 0.978 0.966 0.952 0.938 25 1.118 1.092 1.071 1.052 1.034 1.020 1.008 0.997 0.986 0.974 0.962 0.950 0.933 0,915

1 1.229 '1.178 1.143 1.114 1.090 .1.070 1.056 1.041 1.030 1.020 1.010 1.002 0.996 0.989 4 1.188 1.144 1.115 1.091 1.074 1.056 1.041 1.030 1.020 1l. 010 ; 1.001 0.992 0.985 0.978 7 1.160 1.128 1.101 1.079 1.060 1.046 1.034 1.022 1.011 1.002 0.992 0.984 0.975 0.984

11 1.141 1.114 1.089 1.066 1.050 1.036 1.023 1.012 1.002 0.994 0,985 0.975 0.964 0.951 15

18 1.126 1.092 1.075 1.056 1.040 1.027 1.014 1.004 0.993 0.982 0.961 0.958 0.944 0.928 25 1.108 1.062 1.060 1.043 1.028 1.015 1.004 0.994 0.982 0,971 0.958 0.942 0.924 0.902

1 1.210 1.166 1.130 1.102 1.080 1.084 1.050 1.040 1.028 1.018 1.010 1.001 0.992 0.984 4 1.170 1.130 1.106 1.084 1.068 1,054 1.040 1.029 1.018 1.007 0.996 0.986 0.976 0.966 7 1.144 1.114 1.090 1.072 1.056 1.040 1.028 1.018 1.008 0.998 0.988 0.978 0.968 0.956

11 1.130 1.100 1.080 1.062 1.045 1.031 1.020 1.010 1.000 0.990 0.980 0.968 0.956 0.943 20

18 1.112 1.086 1.066 1.050 1.034 1.021 1.009 0.998 0.986 0.974 0.962 0.950 0.936 0.920 25 1.098 1.064 1.054 1.040 1.024 1.011 1.000 0.988 0,976 0.962 0.948 0.932 0.916 0.896

b)

8.4

0.996 0,982 0.971 0.960 0.940 0.923

0.992 0.978 0.964 0.952 0.930 0.908

0.988 0.973 0.960 0.944 0.921 0.896

0.984 0.971 0.952 0.936 0.912 0.884

0.978 0.959 0.944 0,930 0.901 0.872

-11-

Production calculations

Calculation of carbon uptake

The total carbon uptake, Pt during the time t, is

calculated for all of the experimental bottles from the

following equation:

dpm(a).total co2 (c). 12(d).l.05(e).l.06(f).k1~2~3 dpm(b)

where:

Pt =total carbon uptake, mg c m- 3h-l

(a) = filter dpm - background dpm = net dpm/filter

(b) = the activity of the added 14c-solution, dpm

(c) = concentration of total co2 in the experimental

water, mM/dm3

(d) = 12: the atomic weight of carbon, converts mM/dm3

to mg/dm 3

(e) = a correction for the effect of 14c discrimi­

nation, the uptake of the 14c-isotope is 5 %

slower than that of the 12c-isotope

(f) = a correction for the

matter produced during

empirically been found

optimal photosynthesis.

respiration of

the experiment.

to represent

The production

organic

This has

6 % at

rate is

thus corrected to represent the rate of gross

production

k1 = a correction factor for subsampling, e.g. 15 cm3

were filtered from a sample of 27 cm3 and 1 cm3

NaH14

co3 was added, then k 1 = 28/15 = 1.87

a time correction

production per 2

then k 2 ;, 0.5

factor,

hours to

e.g. when

production

converting

per hour,

a unit conversion factor, e.g. when converting mg -3 ; -3 3

C dm to mg C m , then k 3 = 10 .

Page 12: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

~~,, ________________________ _ -12- -13-

Subtraction of dark fixation c) Measurements of vertical irradiance attenuation

At stations with homogeneous water within the euphotic Introduction

zone, the mean carbon uptake in the two dark exper-

imental bottles is subtracted from the total carbon

uptake in all the clear experimental bottles. At

stations with a pycnocline within the euphotic zone,

the dark-uptake at the 1 m depth is subtracted from all

the clear experimental bottles from the pycnocline and

above, and the dark-uptake at 15 m depth is subtracted

from all the clear experimental bottles from below the

pycnocline.

Calculation of potential production

The potential production at a sampling depth is ex--3 -1 pressed in mg C m h , and calculated as the mean of

the production rates measured in the 2 clear experi­

mental bottles from that depth and exposed to 100 %

incubator irradiance, with the dark fixation sub­

tracted.

Temperature correction

The potential production rates obtained must be cor­

rected for eventual differences between the mean tern-

perature in the incubator during

in situ temperatures at the

the experiment and the

sampling depths. The

temperature correction factors are determined from the

equation:

Temp. correction factor= exp. (ln 2 x (t 2 -t1 ))

10

where t 1 = the mean temperature in the incubator during

the experiment

t 2 = the temperature at the sampling depth

In order to make it possible to calculate the daily

phytoplankton primary production per m' water surface

by the data consultant, the following measurements are

obligatory and shall be reported:

temperature-corrected potential production at the

sampling depths, measured in incubator,

irradiance in the incubator used,

vertical irradiance attenuation in the water at the

sampling station, measured either by Secchi disc or

a qj.lanta meter.

Secchi disc measurements

In cases when irradiance meters are not available, a

Secchi disc must be used to estimate the vertical

attenuation of irradiance in the water column.

When a Secchi disc is used, the Secchi depth measured

must be corrected for the wave height:

Do = DH (1 + 0.4.H) m, where

Do = Corrected Secchi depth,

DH = Measured Secchi depth,

H = Wave height, m

The corrected Secchi depth, D0

the 10 % quanta depth.

m

m

equals approximately

The relative irradiance at a given depth, or the depth

for a given relative irradiance, is determined by

graphical in~erpolation. On semi-logarithmic paper

(irradiance: log scale, two decades; depth: linear

scale), the curve becomes a straight line through 100 %

irradiance at 0 m depth and 10 % irradiance at Do m

depth.

Page 13: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

,,,,,,,,~---------------------------

-14-

Irradiance meter measurements

If possible, instead of Secchi disc measurements, the

vertical attenuation of irradiance in the water at the

sampling stations should be measured using a quanta

meter (400-700 nm).

The underwater detector is lowered from the side of the

ship facing the sun and so far from the side of the

ship that the disturbance of the normal distribution of

light is minimized.

The irradiance above

measured with the

the water surface, Ed (air), is

dry underwater detector. The

irradiance immediately below the water surface, Ed

(z=o), is then calculated as 93 % of Ed (air). (The

mean reflection of irradiance by the water surface

approximates 7 %.)

The underwater detector is lowered into the water and

the depths and irradiances are measured at the sampling

depths of primary production.

All underwater irradiance readings are corrected for

the immersion effect by multiplying the reading by the

immersion factor of the underwater detector used.

Immersion factor: The ratio between the sensitivity of

the detector in air and in water.

In immediate connection with every measurement with the

underwater detector, the irradiance in air is measured

using a deck detector. From the deck detector

measurements, the underwater measurements are corrected

for eventual changes in the irradiance above the water

surface after the measurement in air with the under­

water detector.

-15-

The relative irradiances in the different water depths

are calculated, setting Ed (z=o) = 100 %.

The relative irradiance at a given depth, or the depth

for a given relative irradiance, is determined by

graphical interpolation: The measured relative ir­

radiances are depicted (log scale) as a function of the

water depth (linear scale) on semi-logarithmic paper (2

decades), and a smooth curve is drawn through the

points.

d) Data reporting

Al~ data should be reported according to the details

given in Sections D.lO and D.ll.

e)) References in Chapter D.l.

1. Buch, K. 1945. Kolsyrejamvikten i Baltiska havet. Fennia 68(5). 1-208.

2. Gargas, E. (ed.) 1975. A Manual for phytoplankton primary production studies in the Baltic, BMB Publ. 2. 1-88.

3. Gargas, E. estimating measured in 2. 1-75.

and I. Hare 1976. User's the daily phytoplankton an incubator. Contr. Water

manual for production

Qual. Inst.

4. Glowifiska, A., s. Ochocki, B. Popowska, H. Renk and H. Torbicki 1975. Studia por6wnawcze nad meodami oznacznia weg1a nieorganiczego w badaniach produkoji pierwotnej (Comparative studies on methods of inorganic carbon determination in research works on primary production). Stud. Mater. MIR 15.

5. Guidelines for the measurement of phytoplankton primary production. BMB Publ. 1, 2nd ed. 1984.

6. Guidelines for the measurement of primary produc­tion in the ICES area. C. M. 1981/L:46.

Page 14: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

':.--,Z"J!:'f}%;o'' ________________________________ _

2.

7.

-16-

Hojerslev, N.K. 1979. Daylight appropriate for photosynthetic natural sea water. J. Cons. int. 38. 131-146.

measurements studies in

Explor. Mer.,

8. Incubator method for determining the carbon

9.

10.

f~similation by plankton algae using C-technique. Danish Standards Association.

DS 293, 1983. 1-18.

Mackereth, F. J. H. , J. Heron and J. 1978. Water analysis. Freshwater Association. Sci. Publ. No. 36.

Photosynthetically active irradiance Danish Standards Association, DS 1-10 (in Danish).

F. Talling Biological

in water. 294, 1983.

11. Strickland, J. D. H. and T. R. Parsons 1972. A practical handbook of seawater analysis, 2nd ed. Bull. Fish. Res. Bd. Can. 167. 1-310.

Phytoplankton chlorophyll-a and phaeopigments

Measurements of phytoplankton chlorophyll-~ are

obligatory, while measurements of phaeopigments are

only tentative.

a) Sampling

Water for chlorophyll-~ analyses should be taken from

the same samples as for primary production and

phytoplankton and, if possible, for chemical analyses.

The standard sampling depths for chlorophyll-~ are the

same as for primary production: 1 m, 2. 5 m, 5 m,

(7.5 m,) 10m, 15m and (20 m), non-obligatory depths

being given in brackets.

Chlorophyll should also be analysed from the integrated

phytoplankton sample (see Section D.3.a)). Additional

chlorophyll sampling depths are recommended, e.g., one

just above and one below the halocline.

-17-

Non-transparent and non-toxic sampling devices must be

used.

b) Storage of water samples

c)

It is important that the water is filtered as soon as

possible. If the filtration cannot be carried out im-

mediately,

preferably

hours.

the sample must be stored cool and dark,

in a refrigerator, and no longer than 8

Volume to be filtered

In the,B~ltic Sea Area the chlorophyll a concentration

varies from about 0.1 mg m- 3 during win~er and in the -3 deep water to 15 mg m or more in the surface water

during the spring bloom. During summer the concen-

tration

m- 3 and

in the surface water is most often between 1 mg -3 5 mg m

-3 At a concentration of 0.1 mg m and the use of 10 cm3

extraction solvent and a 5 em cuvette, at least 12 dm3

have to be filtered to get a spectrophotometric

absorbance of at least 0.05.

When using 10 cm3 extraction solvent and a

at chlorophyll-a concentrations of 1 mg -3 - 3

mg m at least 6 dm and 0.6 dm3 water,

1 em cuvette -3 m and 10

respectively,

have to be filtered to get absorbances of at least

0.05.

d) Filtration

The samples shall be filtered in subdued light through

Whatman GF/C filters.

The suction pressure should not exceed 0. 5 • 1 o5 Nm - 2

(0.5 atm). After filtration the filter shall be folded

together.

Page 15: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

":--,,,W,'1.'>-JM=--------------------------------~

-18-

The filtration time should not exceed 1/2 hour per

sample. If this is not possible, a smaller water volume

has to be used.

e) Drying of filters

As drying of filters has been shown in several

experiments to increase the amount of extractable

chlorophyll pigments, it is recommended to dry the

folded filter wrapped in a piece of clean filter paper

in a room temperature airstream in darkness.

f) Storage of filters

The filters ought to be analysed immediately after

drying.

If storage is necessary, the filters shall be stored

deepfrozen (-20°C) in a desiccator with silica gel, for

no longer than three months.

g) Extraction

96 % ethanol shall be used as extraction solvent.

All work with the chlorophyll extract shall be carried

out in subdued or green light.

Storage of the extract shall be in total darkness.

The folded filter is transferred to a graduated

centrifuge tube, 10 em'. 96 % ethanol is added, and the

tube is stoppered to avoid evaporation.

Extraction shall last 24 hours at room temperature in

total darkness. The samples

during the extraction time.

are shaken a few times

-19-

h) Centrifugation

If necessary, the extract volume is adjusted to 10 em'

before centrifugation. The stoppered centrifuge tube is

shaken vigorously to get a homogeneous distribution of

the chlorophyll in the extraction solvent.

The sample is centrifuged for 10-20 minutes at about

10,000 m s- 2 , in order to reduce the spectrophotometric

blank reading (750 nm) which should not exceed 0.005

for a 1 em cuvette.

i) Storage of extract

The measurements shall be made immediately after

centrifugation. If this is not possible the extract may

be stored in a deep freezer (-20°C) for no more than 24

hours.

j) Chlorophyll-a measurement procedure

The measurements of chlorophyll-~ may either be made by

a spectrophotometer or a fluorometer, depending on the

equipment available. The measurements of phaeopigments

shall only be made by a fluorometer.

1) Spectrophotometric readings

A spectrophotometer with a bandwidth of 2 nm should be

used. 96 % ethanol should be used as a reference.

--to-cell blanks should be measured at all wave­

Lengths used. The absorbence should be measured at 750

nm and 663-665 nm (at the peak).

For the measurement of '

non-obligatory, the extract

phaeopigment, which

shall be acidified with

is

1 M

Page 16: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-20-

HCl ( 0. 06 cm3 to 5 cm3 of extract) after all other

readings have been taken. 0. 5-3 min. after acidifi­

cation, the absorbence at 750 and 663-665 nm should be

measured.

Calculations

To calculate the

spectrophotometric

should be used:

chlorophyll-~ content using the

technique, the following equation

cv e

A( 665 k)

1

v 83

= 10 3 .e. A(665 k) 83. v. 1

= Chlorophyll-~ concentration,

= volume of ethanol, ern'

mg/rn3

= absorbence at 665 nrn (the peak) minus

absorbence at 750 nrn after correction by

cell-to-cell blanks

= length of cuvette, ern

= water volume filtered, drn'

= absorption coefficient in 96% ethanol

The volume of chlorophyll sample, volume of ethanol

the length of cell (cuvette) must be chosen to give

sorbence values at 663-665 nrn of 0.05-0.8, i.e.

optimum range of the spectrophotometer.

2) Fluorornetric reading

the

the

and

ab­

the

The sample vol urne and the quantity of ethanol hco· ,; o be

chosen so that the fluorescence reading is • · ~

optimum range of the equipment used (normally 50 · .c ().

crn3 water and 5-10 ern' ethanol).

-21-

A fluorometer with excitation setting of 425-430 nrn and

emission setting of 663-665 nrn, or a filter fluorometer

equipped with a blue lamp corresponding to GE F4T5B,

red-sensitive photomultiplier and primary filter corre­

sponding to Corning 5-60 and secondary filter corre­

sponding to Corning 2-64 should be used.

The fluorescence shall be measured with the appropriate

slit.

For the measurement of phaeopigment the extract shall

be acidified with 1 M HCl (0.06

extract) after the first reading.

crn3 to 5 crn3 of

0. 5-3 minute after

acidification, a new reading should be made.

Calculations

Use the equation:

-3 -1 Chl.-~ (rng.rn ) = R.f.s.e.V

R = fluorescence reading

f = calibration factor

s = slit correction

e = volume of ethanol (ern' )

v = volume of filtered water ( drn' )

The calibration factor is determined as follows:

f = -1 -1 K.R .v.e

K = concentration of chlorophyll-~ (rng.rn- 3 ) deter­

mined spectrophotometrically as described in

Section D.2.k) and (1).

Page 17: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

""'''''~' ---------------------------------

k)

-22-

When phaeopigment is to be calculated use the equation:

-3 -1 Phaeopigment (mg.m ) =fa. ((r. Ra)- R) • s • e . V

r

fa f, R, s, e, V

Reproducibility

= fluorescence reading after acidifi­

cation

= ration R/R obtained from an extract a

free from phaeopigment

= f . r .. ( r-1) -l

= see above

Every worker should check the reproducibility of the

method at least once a year by doing 10 replicate

samples. The value of the coefficient of variation

(CV %) should be stated for each pigment.

1) Data reporting

For the data reporting see Sections D.lO and D.ll.

Any deviation from the procedure recommended here

should be stated on the Plain Language Record when

reporting the data.

m) References in Chapter D.2.

1. Arvola, L. 1981. Spectrophotometric determination of chlorophyll a and phaeopigments in ethanol extraction. Ann.-Bot. Fennici, 18, 221-227.

2. Jeffrey, S.W. and G.F. Humprey 1975. New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 , in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pfl., 167, 191-194.

3. Jespersen, A.-M. Measurements phytoplankton solvent. Arch.

& K. Christoffersen 1987. of chlorophyll a from

using ethanol as extraction Hydrobiol. 109, 445-454.

-23-

4. Lenz, J. & P. Fritsche 1980. The estimation of chlorophyll !:, in water samples: a comparative study on retention in a glass-fiber and membrane filter and on the reliability of two storage methods. Arch. Hydrobiol. Beih. Ergebn. Limnol., 14, 46-51.

5. Lorenzen, C.F. 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equa­tions. Limnol. Oceanogr. 12: 343-346.

6. Nusch, E.A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol., 14, 14-36.

7. Nusch, E.A. 1984. Ergebnisse eines zur Chlorophyll - a - Bestimmung z. Wasser-Ab-Wasser-Forsch., 17,

Ringversuches im Wasser. 89-94.

8. Wintermanns, J.F.G.M. & A. de Mots 1965. Spectrophotometric characteristics of chloro­phyll a and b and their phaeophytins in ethanol 7 Biochiiiiica et Biophysic a Acta, 109, 448-453.

3. Phytoplankton

a) Sampling design

For the purpose of quantitative studies, an integrated

sample from the uppermost 10 m shall be obtained by

pooling equal volumes of discrete water samples taken * with a water sampler from 0-1 m, 2.5 m, 5 m, 7.5 m and

10 m. If possible, a true integrated sample can be made

instead using a tube sampler (Willen 1986, Ramberg

1976).

*) Blue-green algae may concentrate close to surface. Care should be taken to ensure that blue-green algae, become represented in integrated sample.

the these

the

Page 18: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-24-

The integrated sample (independent of the sampling

design) should be thoroughly mixed in a large bucket. A

first-level subsample of 200 ml is drawn from the

well-mixed sample for quantitative phytoplankton

counts. A second-level subsample is drawn for chloro­

phyll-~ analysis (see Section D.2).

A third-level subsample might be drawn for measurements

of the irradiance-primary production relation (see

Section D.l.b)).

Other determinands (e.g. nutrients) might also be

determined from the integrated sample.

Additionally, two quantitative samples are recommended:

one just above and one below the halocline.

It is recommended that a net sample be taken from the

0-10 m water column for qualitative study of the

microplankton fraction. A plankton net made of gauge

with 10-20 (-25) 11m meshes, with a mouth diameter of

15-20 em, a cylindrical part 25-30 em long, and a

tapering tail end 15-20 em long will work quite

satisfactorily.

If net samples are used for biometric measurements, it

should be noted that for species with the smallest

dimension around or below the size of the meshes, cells

towards the lower size range tend to be under­

represented. Therefore, the quant.i tati ve samples have

to be used for biometric measurements of these and

smaller species.

-25-

b) Preservation and storage of samples

'i >llUlMA

Qualitative samples

Net samples should be preserved immediately with about

5 ml cone. formalin per 100 ml. If coccolithophorids

are present, 5-10 ml hexamine-neutralized formalin

should be used if the coccoliths need to be preserved.

Any glass container with a tight screw cap will do,

preferably a rather wide-necked one. Plastic containers

are not recommended, since some plastics may be

permeable to formaldehyde vapour. The samples should be

stored in the dark at room temperature, since

formalc;'!ehyde may polymerize to a white precipitate of

paraformaldehyde at low temperatures. Properly stored

samples will deteriorate only slowly over a period of

several years. Weakly silicified diatom frustules are

dissolved first.

Subsamples to be studied alive can be kept fresh for a

few hours in an open container in a refrigerator. If

water samples are to be processed alive according to

the relevant parts of Annex I of this Chapter, it

should be done as soon as possible. They can be kept

unpreserved for up to 24 h in 0.5-1.0 1 polypropylene

or polyethylene bottles at in situ temperature if it is

below +10° C or 1 month in a deep freeze. Warmer

samples should be refrigerated.

Quantitative samples

Samples for quantitative phytoplankton counts should be

preserved immediately with 0.5-1,0 ml acid Lugol's

solution per 200 ml subsample. If coccolithophorids

need to be preserved with the coccoliths intact, a

parallel subs ample should be fixed with 0. 5-l. 0 ml

alkaline Lugol's solution or 4 ml neutralized formalin.

Clear, colourless 2 00 ml glass bottles with tightly

Page 19: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

··:.;.;;;;;:s:m,'kw· .m·· ________ ...,. ..... ..,..,......., ____________________________ _,._-----------------------------------------

-26-

fitting screw caps should be used for iodine-preserved

material. With such bottles it is easy to see when the

iodine becomes depleted and more preservative needs to

be added.

Plastic containers should not be used. Formalin should

not be added to samples preserved with Lugol's solution

unless the storage period is going to exceed one year.

The samples should be counted as soon as possible,

-27-

Analytic grade formalin is to be preferred. Still

better is a solution freshly made from paraformal­

dehyde. Commercial formalin may contain up to lS %

methanol as a stabilizer, and will not give as good

fixation. Filter after one week if the solution forms

precipitate or becomes turbid. Add 4 ml per 200 ml

water sample. Net samples require S-10 ml per 100 ml.

c) Qualitative determinations

preferably within half a year. They should be stored General

dark and cool (ca. +4° C). Samples stored for more than

one year are frequently of little use.

Preservatives

Acid Lugol's solution (Willen 1962):

1000 ml distilled or deionized water

100 g potassium iodide (KI)

SO g resublimated iodine (I 2 )

100 ml glacial acetic acid (cone. CH3COOH)

Mix in the order listed. Make sure the previous

ingredient has .. dissolved completely before adding the

next one. Store in a tightly stoppered glass bottle at

+4° c. Add O.S-1.0 ml per 200 ml sample.

Alkaline Lugol's solution

(modified after Utermohl 19S8):

Replace the acetic acid of the acid solution by SO g

sodium acetate (CH3COONa). Use a small part of the

water to dissolve the acetate. Other comments as above.

Neutralized formalin (Throndsen 1978):

SOO ml cone. formalin (37-40 % aqueous HCHO solution)

500 ml distilled or deionized water

100 g hexamethylenetetramine (CH 2 ) 6N4 (hexamine)

While quantitative investigations have a long standing,

and are. performed routinely by most laboratories, the

greatest weakness has proved to be the identification

of the organisms.

It is becoming more and more evident that the taxo­

nomical composition of phytoplankton and the species

succession have considerable value as indicators of the

trophic status of a water mass. Especially the nano­

plankton (2-20 flm) and picoplankton ( < 2 flm) fractions

need much more attention than they have hitherto

received.

Quantitative phytoplankton counting is a labour­

intensive procedure, and the cost-benefit of the

resulting data is questionable. Investing less effort

in the actual counting process, and more in cheap

chlorophyll-a determinations and skill-requiring survey

of the floristic content of samples would apparently

give more useful results, provided the taxonomic

knowledge of the analyst is good enough.

Page 20: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

,.,.,,,,..-..., ______________________________ ------

-28-

Determination

Because of the limitations of the Utermohl technique

and the inverted microscope, accessory techniques are

needed for the determination of a number of phyto­

plankton species and groups, especially when as

complete as possible species lists are required. Some

of these non-obligatory methods are reviewed in Annex I

of this Chapter.

Net samples are recommended to be taken routinely for

the investigation of sparsely occurring microplankton

species with a standard research microscope. The

advantages include potentially higher resolution,

thinner preparations and the possibility to turn the

cells around by tapping the cover glass. This is

especially helpful when examining the plate structure

of dinoflagellates.

d) Quantitative determinations (phytoplankton counting)

Introduction

The recommendation is based on the counting technique

with an inverted microscope as described by Utermohl

(7). In order to elucidate sources of error caused by

subsampling and the settling and

subsamples, the practical application of

counting of

the method is

emphasized. To make phytoplankton counting less time­

consuming and the results more comparable, a simplified

procedure along the lines proposed by Willen (11) has

been adopted.

Statistically settling and counting represent two more

subsampling stages (unless the preserved subsample is

counted in toto, which is unrealistic), which reduce

the precision of the population estimates (cf. 8, 9).

-29-

Settling procedure

Before sedimentation the sample should be adapted to

room temperature for about 24 hours to avoid excessive

formation of gas bubbles in the sedimentation chambers.

Gas bubbles will adversely affect sedimentation, the

distribution of cells in the bottom-plate chamber, and

microscopy.

Immediately before the sample is poured into the

combined sedimentation chamber, the bottles should be

shaken firmly but gently in irregular jerks to homo­

genize the contents. Too violent shaking will produce a

lot of _small bubbles which may be difficult to elimin­

ate. If the sample must be shaken vigorously in order

to disperse tenacious clumps, this should not be done

later than one hour before starting sedimentation.

The chambers should be placed on a horizontal surface

and should not be exposed to temperature changes or

direct sunlight. Covering the settling chamber(s) with

an overturned plastic box will provide a fairly safe

and uniform environment for sedimentation. If moistened

tissue paper is included under the hood, problems

caused by evaporation will be reduced considerably. It

is essential that the supporting surface is vibration­

free, since vibrations will cause the cells to collect

in ridges.

Settling time is dependent on the height of the chamber

and the preservative (e.g. 1, 4). The times given below

are recommended as minimum. If vibration caused e.g. by

traffic is a problem, the minimum time should not be

significantly exceeded. Otherwise it is suggested that

counting be p'erformed within four days. Sedimented

samples not counted within a week should be discarded.

Separated bottom chambers not counted immediately

should be kept in an atmosphere saturated with

humidity.

Page 21: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-30-

Settling time (h)

Volume of Height of Lugol's Neutr.

chamber ( rnl) chamber (ern) solution formalin

2 1 3 12

10 2 8 24

50 10 24 48

100 20 48 48

One hundred rnl chambers should be used with caution

since convection currents are reported to interfere

with the settling of plankton in chambers taller than

five times their diameter (2, 1). Such chambers can be

used only when phytoplankton is very sparse, as in late

autumn and winter.

If the cells are too strongly stained by iodine for

comfortable identification, surplus iodine can be

chemically reduced to iodide by dissolving a small

amount of sodium thiosulfate (Na2s 2o3 • 5 H20) in the

aliquot to be sedirnented.

Counting procedure

In order to save time and to achieve a reasonable

accuracy in counting, the sedirnented sample should

first be examined for general distribution of cells on

the chamber bottom, and the abundance and size

distribution of the organisms. All species found should

be listed. If the distribution is visually uneven,

one-sided or in ridges, indicating convection or vi­

bration, respectively, the settled sample should be

discarded. If this occurs consistently, measures should

be taken to eliminate the sources of disturbance.

How much of the chamber area should be counted and the

magnification to be used is dependent on the size of

the organisms and their abundance, and on the kind of

counting units used. The following counting units are

recommended:

CELL:

COLONY:

-31-

All non-colonial unicellular species Dinobryon Uroglena (disintegrated colonies) Aulacosira Chaetoceros Detonula Leptocylindrus Melosira Skeletonerna (and other chain-forming

diatoms) Planktonerna (and other filamentous green

algae)

Aphanothece Coelosphaeriurn Gornphosphaeria Microcystis (incl. Aphanocapsa) Gloeotrichia Uroglena (when colonies well preserved) Halosphaera Sphaerocystis (and similar genera)

COENOBIUM, with a± fixed number of cells (n): Eudorina (32) Pandorina (16) Coelastrurn (8, 16) Crucigenia (4) Micractiniurn (4) Pediastrurn (4, 8, 16, 32, etc.) Scenedesrnus (2, 4, 8)

SOME COLONIAL ALGAE are most conveniently counted as groups of four cells, e.g.: Chroococcus Merisrnopedia Crucigeniella Dictyosphaeriurn

FILAMENTS to be counted in lengths of 100 ~rn: Achroonerna Anabaena Anabaenopsis Aphanizornenon Beggiatoa Lyngbya Nodularia Oscillatoria (etc. filamentous blue-green algae)

The following combinations of objectives and oculars

are recommended for quantitative microscopy with the

inverted microscope:

Page 22: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

Microplankton> 20 [lm

-32-

Nanoplankton 2- 20 [lm Picoplankton <2 [lm

Objective lOx or 16x or 25x 40x or 63x

Oculars 12.5-16x 10-12.5x 10-12.5x 12.5-16x 10-12.5x

Small microplankton species can preferably be counted

together with the nanoplankton when they occur in

abundance, or they can be counted using an objective

with intermediate magnification, 20-25 x. A grid of 5x5

squares in one of the oculars is very helpful when

counting dense fields of small cells.

Counting should normally be restricted to the 10-12

most abundant species. When the diversity of a sample

is high, however, up to 15 species may have to be

counted, and during bloom conditions probably less than

ten will be enough. According to Willen (11) 90 per

cent or more of the total biomass was made up by six

species in nutrient-rich,

nutrient-poor, lake waters.

and by 7-8 species in

At least 50 counting units of each taxon should be

counted, and the total count should exceed 500. Fewer

counted units will progressively decrease the precision

of the count and increase the statistical error of the

population estimate. The approximate 95 % confidence

limits of a selected number of counted units are given

below. They have been calculated according to the

formula:

95 % C.L. = n

where n is the number of units counted. (Actually the

error is not symmetrical, but increasingly asymmetrical

with lower counts. Thus, for four units counted the

theoretical limits are -73 to +156 %.)

-33-

Count 95 % C.L. ( % )

4 100 5 89 7 76

10 63 15 52 20 45 25 40 40 32 50 28 75 23

100 20 200 14 400 10 500 8.9 700 7.6

1000 6.3 2000 4.5 5000 2.8

10000 2.0

It should be recognized that these are not maximum

errors. The statistics assume perfectly random distri­

bution of cells on the bottom of the sedimentation

chamber, a condition which is probably never realized.

The several subsampling steps involved also tend to

increase the variance (cf. 9, 10).

With species for which the counting unit is smaller

than the individual, e.g. some colonial forms, chain­

forming diatoms, and filamentous species with average

filament length in excess of 100 [Am, the distribution

of the counting units will be aggregated even in

perfectly sedimented samples. The variance will be

higher, and the precision accordingly lower. If it is

necessary to keep the error within the same limits as

for "randomly" distributed units, the number of counted

units should be increased in the ratio average size of

individual/size of counting unit.

At low magnification, a sufficient number of crossed

transects should be counted to reach the required

number of counting units. At high magnification, fields

Page 23: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-34-

of view evenly spaced along crossed transects should be

used. At intermediate magnifications either method can

be employed, depending on the density of the units to

be counted. Considering the many other sources of error

involved in the method, it is unnecessary to spend time

on randomization of the fields to be counted. Only

exceptionally will it be necessary to count the whole

chamber bottom for very large cells, such as Ceratium

and Coscinodiscus.

The number of counting units per dm3 sea water is

calculated by multiplying the number of units counted

with the

following

c A = N

where

coefficient

formulas:

1000

al . v

C,

or

which is obtained from the

c = A . 1000

a2

• V

A = cross-section area of the top cylinder of the

combined sedimentation chamber; the usual

N =

al =

a2 =

v =

inner diameter is 25.0 mm, giving A = 491 000 000 ~m' (the inner diameter

bottom-plate being irrelevant)

number of counted fields or transects

area of single field or transect

total counted area

volume (cm3 ) of sedimented aliquot

of the

Reliable quantitative counting of the picoplankton

fraction requires fluorescence microscopy (cf. Annex I

of this Chapter).

When counting phytoplankton in a sedimentation chamber,

it is suitable to count protozooplankton (e.g. ciliates

and colourless flagellates). This recommendation is

also valid for these forms (cf. Annex I of this

Chapter). However, it must be stressed that the

-35-

protozooplankton are a separate group and must not be

mixed with the phytoplankton. Thus, they must not be

included in abundance or biomass values of phyto­

plankton.

Cleaning of the sedimentation chambers

After use no part of the combined sedimentation chamber

should be allowed to dry out before it is carefully

cleaned. Dried phytoplankton or formalin preservative

may be quite difficult to remove. The separate parts

are first rinsed under running tapwater, then soaked

for a few minutes in luke-warm water with some non­

abrasive detergent added, then cleaned with a soft

brush or soft tissue paper, and rinsed with tapwater.

Finally they are given a rinse with deionized or dis­

tilled water, and are put away to dry. Special care

should be taken not to scratch either end of the top

cylinder and the entire upper surface of the bottom

plate.

e) References in Chapter D.3.

1.

2.

3.

4.

5.

Hasle, G.R. 1978. The inverted-microscope In: Sournia, A. (ed.): Phytoplankton UNESCO Monogr. Oceanogr. Method. 6: Paris.

method. manual.

88-96.

Nauwerck, A. 1963. Die Beziehungen zwischen zooplankton und Phytoplankton im See Erken. Symb. Bot. Ups. 17(5): 1-163.

Ramberg, L. 1976. Relations between phytoplankton and environment in two Swedish forest lakes. Scripta Limnologica Upsaliensis 426, Limno­logical Inst., Univ. Uppsala.

Rott, E. 1981. Some results from counting intercalibrations. Hydr~l. 43: 34-62.

phytoplankton Schweiz. S.

Throndsen, J. 1978. Preservation and storage. In: Sournia, A, ( ed.) : Phytoplankton manual. UNESCO Monogr. Oceanogr. Method. 6: 69-74. Paris.

Page 24: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

6.

7.

8.

9.

-36-

Utermohl, H. 1931. Neue Wege Erfassung des Planktons. Limnol. 5: 567-596.

in der quantitativen Verh. int. Verein.

Utermohl, H. 1958. zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt int. verein. theor. angew. Limnol. 9: l-38.

Venrick, E.L. 1972. The statistics of subsampling. Limnol. Oceanogr. 16: 811-818.

Venrick, E.L. 1978a. The subsampling. In: Sournia, plankton manual. UNESCO Method. 6: 75-87.

implications of A. (ed.): Phyto­

Monogr. Oceanogr.

10. Venrick E.L. 1978b. How many cells to count? In: Sournia, A. (ed.): Phytoplankton manual. UNESCO Monogr. Oceanogr. Method. 6: 167-180.

11. Willen, E. 1976. A simplified method of phyto­plankton counting. Br. phycol. J. 11: 265-278.

12. Willen, E. 1985. Vaxtplankton Rakning och volymbestamning. In: Recipient kontroll vatten Metodunderlag. Naturvardsverket Rapport 307 5, National Environmental Protection Board, Solna, Sweden, 18 pp.

13. Willen, T. 1962. Studies on the phytoplankton of some lakes connected with or recently isolated from the Baltic. Oikos. 13: 169-199.

f) Identification literature

The following list is not complete. Articles concerning

single or only a few species have not been included.

Phytoplankton identification literature

Balech, E., 1976. Some Norwegian Dinophysis species (Dinoflagellata). Sarsia, 61.

Bourrelly, P., 1966. Les algues d'eau doL Les algues vertes. Paris.

- 1968. Les algues d' eau douce. 2. Les jaunes et brunes. Paris.

- 1970. Les algues d' eau douce. 3. Les bleues et rouges. Paris.

1 ' .

algues

-37-

Butcher, R.W., 1959-1967. An introductory account of smaller algae of British coastal waters. Part I. Introduction and Chlorophyceae. Part IV. Cryptophyceae. Part VIII. Euglenophyceae. Fish. Invest. Ser. 4. London.

Cleve-Euler, A., 1951-1955. Die Diatomeen von Schweden und Finnland. 1-5. Kungliga svenska vetensk.-akad. handl. Ser. 4. Stockholm.

Cupp, E.E., 1943. Marine plankton diatoms of the west coast of North America. Bull. Scripps Inst. Oceanogr. Univ. Calif. La Jolla. 5(1). London.

Dodge, J.D. 1982. Marine British Isles. Her Office, London.

dinoflagellates of the Majesty's Stationery

- 1985. Atlas of Dinoflagellates. Farrand London.

Press,

Drebes, G., 1974. Marines Phytoplankton Eine Auswahl der Helgolander Planktonalgen (Diatomeen, Peridineen). 1. Aufl. Stuttgart.

Ettl, H. 1978. Xanthophyceae. 1. Teil. Sliss­wasserflora von Mitteleuropa 3: 1-530.

- 198 3. Chlorophyta I. Phytomonadina. Sliss­wasserflora von Mitteleuropa 9: 1-807.

Fott, B., 1959 and 1971. Algenkunde. Jena. - 1972. Chlorophyceae (Grlinalgen). Ordnung:

Tetrasporales. Die Binnengewasser 16, Das Phytoplankton des Slisswassers 6: 1-116, pl. 1-47.

Geitler, L., 1925. Cyanophyceae. Die Slisswasser­flora Mitteleuropas. 12. Leipzig.

- 1932. Cyanophyceae. Rabenhorst Krypto-gamenflora von Deutschland, Osterreich und der Schweiz. 14. Leipzig.

Gran, H.H., 1905. Nordisches Plankton. Botanischer Teil. 19. Kiel.

Hendey, N.I., 1964. An introductory account of the smaller algae of British coastal waters. 5. Bacillariophyceae. Fish. Invest. Ser. 4. London.

Huber- pestalozzi, G., 1938-1961. Das phyto­plankton des Slisswassers. Die Binnengewasser. 16: 1. Blaualgen, Bakterien, Pilze. 2. Chryso­phyceen, fqrblose Flagellaten, Heterokonten, Diatomeen. 3. Cryptophyceen, Chloromonadinen, Peridineen. 4. Euglenophyceen. 5. Chloro­phyceae - Volvocales. Stuttgart.

Page 25: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-38-

Hustedt, F., 1930. Bacillariophyta (Diatomeae). Die Slisswasserflora Mitterleuropas. 10. Jena.

- 1930-1966. Die Kiselalgen. Rabenhorst Krypto­gamenflora von Deutschland, Osterreich und der Schweiz. 7.1-.3. Leipzig.

Jlrnefelt, H., Naulapll, A., Tikkanen, T., 1963. Plankton-opas. Helsinki.

Komarek, J. & Fott, B. 1983. Chlorophyceae (Grlinalgen). Ordnung: Chlorococcales. Die Binnengewlsser 16, Das Phytoplankton des Slisswassers 7(1): 1-1044.

Komark, J. & Ettl, H., 1958. Algologische Studien. Prag.

Lebour, M., 1925. The dinoflagellates of northern seas. Plymouth.

Pankow, H., 1976. Algenflora der Ostsee II. Plankton. Jena.

Peters, N., 1930. Peridinea. In: Grimpe & Wagler (Ed.), Tierwelt der Nord- und Ostsee. II.

Reinhardt, P., 1972. Coccolithen. Plankton seit Jahrmillionen. Lutherstadt.

Kalkiges Wittenberg

Schiller, J., 1933-1937. Dinoflagellatae. Rabenhorst Kryptogamenflora von Deutschland, Osterreich und der Schweiz. 10:3. Leipzig.

Simonsen, R. 1987. Atlas and Catalogue of the Diatom types of Friedrich Hustedt. Volume 1. Catalogue. Volume 2. Atlas, Plates 1-395, op.2-106 Volume 3. Atlas, Plates 396-772, op.l07-175

Skuja, H., 1934. Beitrag zur Algenflora Lettlands. I. Acta Horti. Bot. Univ. Latviensis. 7:1932. Riga. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae botanicae upsaliensis. 9:3. Uppsala.

- 1956. Taxonomische und biologische Studien tiber das Phytoplankton schwedischer Binnen­gewlsser. Nova acta regiae societatis scientiarum upsaliensis. Ser. 4. 16:3. Uppsala.

- 1964. Grundzlige der Algenflora und Alpenflora der Fjeldgegenden urn Abisko in Schwedisch­Lappland. Nova acta societatis scientiarum upsaliensis. Ser. 4. 18:3. Uppsala.

-39-

Smith, G.M., 1920-1924. Phytoplankton of the inland lakes of Wisconsin. 1-2. Wisconsin geological and natural history survey bulletin. 57. Madison.

Sournia, A. 1978. A guide to the literature for identification. In: Sournia, A. (ed.): Phytoplankton manual. UNESCO Monogr. Oceanogr. Methodol. 6: 154-159.

Starmach, K., 1966. Cyanophyta, Glausophyta. Flora slodkowodna polski. 2. Warszawa.

- 1968. Chrysophyta 1. Chrysophyceae. Flora slodkowodna polski. 5. Warszawa.

- 1968. Chrysophyta 3. Xantophyceae. Flora slodkowodna polski. 7. Warszawa.

- 1972. Chlorophyta 3. Ulotrichales, Ulvales, Prasiolales, Sphaeropleales, Cladophorales, Chaetophorales, Trentepholiales, Siphonales, Dichotomisiphonales. Flora slodkowodna polski. 10. Warszawa.

- 1974. Pyrrophyta. Cryptophyceae, Dinophyceae, Raphidophyceae. Flora slodkowodna polski. 4. Warszawa.

- 1985. Chrysophyceae und Haptophyceae. Sliss­wasserflora von Mitteleuropa 1: 1-515.

Tikkanen, T. 1986. Kasviplanktonopas. 278 pp. Helsinki.

Phytoplankton checklists

In the BMP the Preliminary Check-list of the Phyto­

plankton of the Baltic Sea (Section D.4.) shall be

used. Additional information can be found in the

following check-lists:

Christensen, T. & Thomsen, H .A., 1974. Algefortegnelse. Kobenhavn.

Christensen, T., Koch, c. & Thomsen, H.A., 1985. Distribution of algae in Danish salt and brackish waters. 64 pp. Copenhagen.

Drebes, G. & Elbrlchter, M., 1976. ~Checklist of Planktonic Diatoms and Dinoflagellates from Helgoland and List (Sylt), German Bight. Botanica Marina. 29.

Page 26: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-40-

Edler, L., HiHlfors, G. and Niemi, A., 1984. A preliminary check-list of the phytoplankton of the Baltic Sea. Acta Bot. Fennica 128: 1-26.

Heimdal, B.R., Hasle, G.R. and Throndsen, J., 1973. An annotated checklist of plankton algae from the Oslofjord, Norway (1951-1972). Norw. J. Bot. 2 0.

Hendey, M.I., 1974. A Revised Checklist of British Marine Diatoms. J. Mar. Biol. Ass. U.K. 54.

HiHlfors, G., 1979. A preliminary check-list of the phytoplankton of the northern Baltic Sea. National Board of Waters, Helsinki.

Parke, M. & Dixon, P.S., 1976. Checklist of British Marine Algae - Third Revision. J. Mar. Biol. Ass. U.K. 56.

Zetterberg, G. 1986. Phytoplankton Code List P4, Version 86165-GUZ. Code Centre, Swedish Museum of Natural History.

Protozooplankton identification literature

Bock, K.J., 1967. Protozoa. Fich. Ident. Plancton. Cons. int. Explor. Mer, 110, 4 pp.

Brandt, K. Plankton. Kiel.

& Apstein, C., 1964. Zoologischer Teil. 7.

Nordisches Protozoa.

Corliss, J.O. 1979. The ciliated protozoa. Characterization, Classification and Guide to the Literature. 2. ed. Pergamon Press. Oxford.

Grimpe, G. 1940. Die Tierwelt der Nord- und Ostsee. Leipzig.

Akademische Verlagsgesellschaft,

Kahl, A., 1935. Protozoa. Tierwelt Deutschlands. Jena.

I. Ciliata. begr. von

In: Die F. Dahl.

Kofoid, A. & Campbell, T., 1929. Conspectus of the Tintinnoinea. Univ. of Calif. Publ. in Zoology. 34.

- 1939. The Tintinnoinea. Bull. of the Mus. of Comp. Zoo!. at Harvard Coll. 84.

Schwarz, s. 1964. Die Tintinnoidea. Hydrobiologia 23.

-41-

g) Biomass transformations

4 483184A

Introduction

Depending on the purpose of the investigation,

phytoplankton biomass can for example be expressed as

cell volume (weight), plasma volume or carbon. The

transformations to cell volume rely on measurements of

the size of the species, and a large number of shapes

have to be used for the different organisms. The

transformation of cell volume to plasma volume includes

an estimate of the vacuole volume, and the calculation

of cell carbon is in turn based on the plasma volume.

The focrmulas recommended below are a step towards a

more uniform treatment of counted organisms, in order

to get comparable results from different parts of the

Baltic.

Stereometric shapes and formulas for common phyto­

plankton and protozooplankton in the Baltic

Volumes of species with a small size variation can be

calculated as annual median values. For species present

only seasonally, median

be used. Species with

values from several years can

a large size variation are

suitably divided into size groups during counting (e.g.

diatoms and monads).

Methods for calculating volumes of different plankton

species are given in Table D.2.

For comparison of the volume of different species in

some parts of the Baltic Sea reference is made to ( 1,

2, 3, 4, and 12).

Page 27: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

TABLE 0.2.

-42-

Stereometrical formulas for common

phytoplankton taxa in the Baltic

STEREOMETRIC FORMULAS USED

CYLINDER

()

SPHERE

~ ~

()

n • d' -6-

ROTATIONAL ELLIPSOID WITH ELLIPSE-SHAPED CROSS-SECTION

ROTATIONAL ELLIPSOID WITH CIRCULAR CROSS-SECTION

ELLIPSOID

PARALLELEPIPED

rt-----n I b

9l 0. d

-43-

CONE

TRUNCATED CONE

l•h• (R 2 +Rr+r 2 )

3

TRAPEZOID

IDd b

I h

-•

SPECIES

x obligate heterotrophic

xx facultative heterotrophic

1 autotrophic/heterotrophic unknown

NOSTOCOPHYCEAE (Cyanophyceae)

x Achroonema! cylinder

Anabaena: cylinder

Aphanizomenon: cylinder

h•d•(a+b) 2

l•h•(d 2 +d d +d 2 ) l 1 2 2

1 2

Chroococcus: cells as spheres, dividing cells as spheres/2

Gomphosphaeria: outer sphere - inner sphere

Page 28: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-44-

[yY!.qbya. lir.:neti,:-a: cylinder

:'·fe"t'1;smopedi:::.: cells as spheres, dividing cells as spheres/2

:'1iarocystis: cells as spheres (cf. Reynolds & Jaworski, 1978)

:Vodu.laria: cylinder

Jsc·iZlatoria: cyLinder

P~onmidium: cylinder

Pseudoanabaen~: cylinder

CRYPTOPHYCEAE

x Chilomonas: cone+ sphere/2, rotational ellipsoid (ellipse-shaped

cross-section)

Chroomonas: cone + sphere/2, rotational ellipsoid (ellipse-shaped

cross-section)

Cryptomonas: rotational ellipsoid (ellipse-shaped cross-section)

Rhodomonas: cone + sphere/2

DINOPHYCEAE

XX . . d 2 Amphidinium: rotational elltpsot · j (ellipse-shaped cross-section)

Cerotiwn fu'!'ca:

lineatum: cone + parallelepiped + trapezoid + cylinder

-c::::::D ';--------- ro '

<:D "t:! ===:::J

Ce~atiwn fusus: cylinder + truncated cone

Ceratium longipes:

macrocer-=>s: cone + cylinder + sphere/2

-45-

? CochZ.odinium: rotat\·onal ellipsoid

Dinophysis acuminata: two truncated cones - 50%

norvegioa: "

x Dinophysis rotundata: cylinder

X

XX

Dinophysis acuta: ellipsoid

Ebria: sphere/2 - 307.. If the skeleton is missing calculate the

volume as a sphere

Glenodinium: sphere - 10 to 407.

Gonyaulax caterr.ata: sphere/2

Gonyau~ diacantha:

t:riacantha: trapezoid + parallelepiped/2

Page 29: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

Gor:ya:.-~ lax grindleyi:

polyedra:

tc.:narens-i.s :

-46-

sphere

!Jt:;niodoma: sphere

xx Gymnod.;ni:,vn spp. : 2 cones or 2 sp~eres/2 - 10 to 40%

Cy't'odiniwn spp.:

Gymnodinium simplex: 2 spheres/2

Gymnodinium splendens: (sphere/2 + cone)/2

.::eteroocapsa triquetra: 2 cones - 207.

Min:...scula bipes: cone - 507.

x Noctiluca mill-aris: sphere

xx Oxytoxum: 2 cones

Polykrikos: cylinder

Prorocentrum Oalticum: sphere- 10%, measurement should be made

at maximum diameter

Prorocentrum micans: parallelepiped+ parallelepiped/2

FTotoperidinium: General formulas for volume calculations:

cone + sphere/2, 2 cones, sphere, 2 cones +

cone. Generally the volumes have to be reduced

by 10 to 30% because of the concavity of the

ventral side.

x P. :.:reve:

X

X

X

X

X

X

X

X

X

X

brevipes:

co:'l.icoides:

steinii:

cone + sphere/2

cl~~dicans: (cone + 2 cones) - 30%

conicum: (cone + 2 cones) - 257.

depPesswn: (cone + 2 cones) - 307.

di~ergens: (cone+ 2 cones) - 307.

J'Nlnii: (cone + sphere/2) - 20%

?allidum: (cone + sphere/2) - 30%

pellucidum: (cone+ sphere/2) - 10%

Scrippsiella faeroense: sphere

? ~arnouia: rotational ellipsoid

-47-

CHRYSOPHYCEAE

x Bicocoeca:

Dinobryon: rotational ellipsoid or sphere

Kephyrion:

Dictyocha: cylinder

h

MaZZ.cmona~: cone + sphere/2

Symqc: cone + sphere/2

Vrog Z.tJI".a:

UrcgtlJnopsis:

BACILLARIOPHYCEAE

sphere or rotational ellipsoid (ellipse-shaped

cross-section)

Aohnanthes: parallelepiped

ActinoayoZ.us: cylinder

Amphipro~: ellipsoid

Amphora: ellipsoid

Aster·ione lZa: parallelepiped

Attheya: ellipsoid

Baciltaria: parallelepiped

Biddulphia: .ellipsoid

Cerataulina: cylinder

Chaetooeros: ellipsoid

Cocooneis: ellipsoid

Cosoinodisous: cylinder + two caps

Cymbe!la: ellipsoid

DaotyZ.iosolen: cylinder

Detor.uZa,: cylinder

~iatoma: parallelepiped

DipZoneis: ellipsoid

Ditylwn: cylinder ·,

Page 30: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

"'""'~-,, ---------------------~-----------------·

-48-

Spithemia: ellipsoid

£~notia: ellipsoid

?~gila~;a: parallelepiped

Gomphonema: ellipsoid

Gl'amr.la.taphom: parallelepiped

Gui~nrdia: cylinder

Gyrosigma: ellipsoid

Hantzschia: cylinder

Lauderia: cylinder

Leptocy[indrus: cylinder

Licmophora: parallelepiped/2

.''4elosira: cylinder

Navicula: parallelepiped, parallelepiped/2

Nitzschia: parallelepiped, parallelepiped/2

Pinnularia: parallelepiped, parallelepiped/2

Porosira: cylinder

Rhabdonema: parallelepiped

Rhizosolenia: cylinder

Rhoicosphenia: parallelepiped/2

Rhopalodia: ellipsoid

Skeletonema: cylinder

Stephnnodiscus: cylinder

Surirella: ellipsoid

Synedra: parallelepiped, parallelepiped/2

TaOellaria: parallelepiped

T.iulassionema: parallelepiped

Thalassio3i~a: cylinder

XANTHOPHYCEAE

Centritractus: rotational ellipsoid

Gloeochloris: cells as spheres or rotational ellipsoids

Ophiocytium: cylinder

EUGLENOPHYCEAE

Colacium: rotational ellipsoid

E:uqZena:

Eu trep tia : cylinder + cone, cone or rotational ellipsoid

Et< treptie Lla:

Trachelomonas: sphere or rotational ellipsoid

-49-

PRAS!NOPHYC£AE

Pyra:nimonas: trapezoid:

CHLOROPHYCEAE

Ankistrodesm~s: cone+ cone

Carteria: sphere or rotational ellipsoid

Chlamydomonas: sphere or rotational ellipsoid

Chlorel~: sphere

Chlorogonium: cone + cone

Dich~yospha~rium: cells as spheres

Golenkinia: sphere

Kirchneriel~: cone+ cone or rotational ellipsoid

Monor~phidium: cone + cone or rotational ellipsoid

Oocystis: rotational ~llipsoid

Pediastrum: cylinder with height as the shortest side of one cell

in the middle of the coenobium

h

P~nctonema: cylinder

Scenedesmus: cells as rotational ellipsoid or cone+ cone

XX Monads size groups 2 - .(3 )lm 3 -<5 )lffi

5 -<7 )lm sphere or rotational ellipsoid 7 -< 10 )lm

10 -< 15 )lffi

15 -< 20 )lm, etc.

P !COPLANKTON < 2 )lm

CHOANOFLAGELL!DA

Acal':thoeaa:

Aoanthoecopsis:

CalZiacantha: rotational ellipsoids or spheres

Crinolina:

Desmarel~:

Page 31: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-50-

Dia.phcx~oeca:

Dipiotheca:

Mor;osiga:

Parvic:o't'bicula:

Pleu.rasiga: rotational ellipsoids or spheres

Salpingoeca:

Sa"i'oeca:

Stephanoeca:

Sa vi Zlea:

CILIATES WITH ENDOSYMB!OTIC ALGAE

Mesodiniwn < 30 1

um: 2 · sphere

> 30 1

um: sphere

CILIATES

. l 4 Cl ate: sphere • 3 , cone or ellipsoid

Didynium: truncated cone

Lohmanniella: sphere

Str>ombidium conicwn: cone

Strombidium lagenula: cone

Strombidium stylifer: cone

Tiarina: cylinder + cone

Tontonia gracillima: sphere

5 8

Tontonia appendicu l::;_rij'orrnes: 2 truncated cones

Tintinnids

Coxliaila helix: cylinder + cone

Favella denticulata: cylinder +cone

Helicostomella subuZata: sphere- 307.

Stenosomella nucula: sphere- 30%

Stenosomella ventricosa: cone

Tintinnopsis beroidea: cone

Tintinnopsis tubulosa: cone

Volume calculations for J'intinnids may be difficul-: due :;.::' :::re shens of

the _organisms. The measurements rrrv.st be do;:.e when ~he :JiZ~:ate iz :::·!1r:.side

the shell. In preserved sa:nples, ho1Jever, the ci~i.:~.te ~s<.1an;,. stays inside

the shell. In that case a certai.>; aJ110unt .'n'..tst be su.O~r:zcted frcm the sJ:elZ

volume. This amount nrust be j'c!md from meas~{remenr::s of the she~l and ~he

ciliate. It is sufficient to measure this in one sample.

-51-

Plasma volume calculations

All phytoplankton, except diatoms.

In this recommendation it is assumed that plasma volume

(PV) equals cell volume (CV). See, however, Sicko-Goad

et al. ( 5) .

PV = CV

unit:

Diatoms

Different methods for calculation of the

have been suggested by (6 and 7).

plasma

The

volume

method

recommended here is a modification of that given by

Strathmann to include pennate diatoms. Plasma volume

(PV) equals cell volume (CV) minus vacuole volume (VV).

The vacuole volume is calculated by subtracting plasma

thickness (c) from the measurements of length, breadth

etc. (see Figure D.l. below). If a measurement extends

from cell wall to cell wall, 2 c should be subtracted

from the measured value. When using a measurement such

as radius that is not bounded by the cell wall and thus

contains only one layer of plasma, only c should be

subtracted. Values of c have been given by Lohmann (8)

and Smayda (6) and are in the range of 1 ~m.

D•e to the high content of organic matter in the

..~ole, only 90 % of the vacuole volume should be

subtracted from the cell volume to give the plasma

volume.

PV = CV - (0.9 VV)

unit: ~m3

Page 32: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

~--~:::wp~·'''·'~. -------------------------------------·--"-

FIGURE D.l.

-52-

Girdle view of a centric diatom with

diameter d, height h and plasma

-53-

For comparison of the carbon content of different

species in some parts of the Baltic Sea, see Smetacek

thickness c. (2) and Edler (4).

unit:

I

I ~-

c

PV • CV - (0.9 • VV)

3 /<J!Jl

0

..... - - - f c

c

d

Carbon content calculation

h

~ • d' • h Cell Volu~e: --- - 4

V•cuole Volume: t•{d·2c)'•(h·2c) - - 4

!l~sm• ~olume: CV ~ (0.9 · VV}

Based on the above biomass expressions, it is possible

to calculate the carbon content of phytoplankton.

Several equations based on both cell volume and plasma

volume have been proposed by e.g. Strickland (9),

Mullin et al. (10), Strathmann (7), Eppley et al. (11).

It is recommended that the plasma volume be multiplied

by a factor of 0.13 for armoured dinoflagellates (2)

and 0.11 for all other phytoplankton (7) and ciliates

(2). 0.13 has been chosen because of the higher carbon

content of the cell walls of armoured dinoflagel_ s

armoured dinoflagellates:

all other phytoplankton

and ciliates:

C = PV • 0.13

C = PV . 0.11

units: c (carbon) - picogram

PV (plasma volume) - ~m'

h) Presentation of results and data reporting

For the data reporting see Sections D.lO and D.ll.

i) References

1. Melvasalo, T., Viljamaa, H. and Huttunen, M., 1973. Plankton methods in the Water Conser­vation Laboratory in 1966-1972. Reports of the Water Conservation Laboratory Helsinki. 5.

2. Smetacek, V., 1975. Die Sukzession des Phyto­plankton in der westlichen Kieler Bucht. Diss. Kiel.

3. McKellar, H. & Hobro, R., 1976. Phytoplankton -Zooplankton Relationships in 100-Liter Plastic Bags. Asko Contr. No. 13.

4. Edler, L. 1977. Phytoplankton and primary production in the Sound. Diss. Goteborg.

5. Sicko-Goad, L., Stoemer, E.F. and Ladewski, B.G., 1977. A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma 93.

6. Smayda, T.J., 1965. A quantitative analysis of the phytoplankton of the 1~lf of Panama II. On the relationship between C assimilation and the diatom standing crop. Inter-Amer. Trop. Tuna. Comm. 9:7.

7. Strathmann, R.R., 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12.

8.

9.

Lohmann, H., 1908. Untersuchungen des vollstandigen Gehaltes Plankton. Wiss. Abt. Kiel NF.

zur Feststellung des Meeres an

10 •.

Strickland, J.D.H., 1960. Measuring the of marine phytoplankton. Fish. ~anada, Bull. No. 122.

production Res. Bd.

Page 33: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

10.

11.

12.

-54-

Mullin, M.M., Sloan, P.R. Relationship between Volume and Area in Oceanogr. 11.

and Eppley, R.W., 1966. Carbon Content, Cell Phytoplankton. Limnol.

Eppley, R.W., Reid, F.M.H. and Strickland, J.D:H., 1970. Estimates of phytoplankton crop s~ze, growth rate and primary production. Bull. Scripps Inst. Oceanogr. 17.

Kononen, K., Forsskahl, M., Huttunen, M., Sandell, M. and Viljamaa, H., 1983: Practical problems encountered in phytoplankton cell volume calculations using the BMB recommendation in the Gulf of Finland. Limnologia 15/2.

-55-

ANNEX I

Annex I to Section D.3. Phytoplankton

Notes on accessory methods for species determination,

and on the determination of protozooplankton vs. non­

photosynthetic phytoplankton.

Fluorescence microscopy is needed in order to obtain

reliable counts of unicellular autotrophic picoplankton

species. Experienced workers may reach order-of­

magnitude accuracy with relatively large cells such as

Micromonas pusilla and Nannochloropsis sp. by the

Utermohl technique, but if mineral particles are

abundant, the results may be questionable. Coccoid

blue-green algal cells about 1 ~m in diameter or

smaller can be distinguished

thus quantified, only by

Methodological details are

(3), Vargo (8) and Haas (2).

from true bacteria, and

fluorescence microscopy.

given by Hoppe et al.

Centrifugation of living water samples is recommended

for the study of delicate nanoplankton flagellates

whose morphology usually deteriorates upon fixation to

the extent that they become virtually unrecognizable

(e.g. small naked dinoflagellates, many chrysophytes

and prymnesiophytes, some prasinophytes, and most

zooflagellates). Besides, several genera or even some

species are well characterized by their mode of

swimming (e.g. Pseudopedinella, Prymnesium' Chryso­

ehromu lin a' Pavlova, Mieromonas pusi lla , Nephroselmis·) •

A simple bench centrifuge with a swing-out head taking

4-6 25 ml pointed centrifuge tubes is adequate. At

1500-2000 rpm ·a centrifugation time of 10 min is

sufficient.

Page 34: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

--------------------------,-------------------------------------------

-56-

To optimize the viability of the cells under the

microscope, the glassware should be as clean as

possible (cf. 9).

Dry preparations

phase-contrast

determination of

observed with a

objective make

a limited number

good oil immersion

possible the

of species in the

genera Paraphysomonas and Chrysoehromu Lina on the basis

of their scale morphology, some coccolithophorids, and

most choanoflagellates.

Suitably concentrated material obtained by centri­

fugation as described above is pipetted onto cleaned

cover glasses, fixed by exposure to the vapour of a few

small drops

for 30-45 s

of 1-2 % Oso4 solution inside a Petri dish

(under a fume hood) , and allowed to dry.

The salt is washed away by immersing the cover glasses

into distilled or deionized water for 10 min, after

which they are dried again. Finally the cover glasses

are turned specimen side downwards, and are glued to

glass slides.

Electron microscopy is required for a positive

determination to species level of most scale-covered

organisms. These include most prymnesiophytes and

prasinophytes, some chrysophytes (Mallomonadaceae and

Paraphysomonadaceae), and certain protozoan groups.

The method of making direct preparations onto specimen

grids is very similar to that described for dry

preparations. A detailed account of the technique has

been given by Moestrup & Thomsen (5). Species with thin

organic scales require shadowing for TEM. Most

silicified scales can also be determined without

shadowing. Strongly calcified coccolithophorids usually

require SEM, as do a number of dinoflagellates with

thin thecal plates.

5 483184A

-57-

Diatom preparations are necessary for the determination

of most nanoplanktonic disc-shaped centric diatoms

(e.g. CyeLoteLLa, Stephanodiseus and ThaLassiosira)

even at the generic level. The majority of littoral

pennate diatoms also require diatom preparations for

determination at the species level; for some navi­

culoids, even at the generic level.

A rapid and satisfactory method of making diatom

preparations is as follows: Put less than 0. 5 ml of

concentrated sample into a test tube. Add ca. 1 ml

cone. HN03 . Hold the test tube with a clothes-peg or

similar, and heat on a small flame inclining the test

tube 45-60" from the vertical and continuously shaking

with caution in order to avoid overheating and

spitting. Keep the opening of the test tube away from

yourself in a safe direction. Boil for 1-5 minutes

until the solution is clear and white vapours start to

form. If the material is not completely oxidized after

5 min., add a few drops of cone. H2so4

(beware of

overheating) and repeat.

The oxidation with acids should be performed under a

fume hood. If a fume hood is not available, the acids

can be replaced by enough K2s 2o 8 to make a nearly

saturated solution at +100" c. The sample volume can be

increased to ca. 2 ml. Heat for 1-2 h in a boiling

water bath occasionally replacing the evaporated water.

Cool and dilute the contents of the test tube by adding

at least 10 ml water and transfer to a centrifuge tube.

Spin the material down at 1500-2000 rpm for 20 min.

Remove the supernatant preferably using a Pasteur

pipette attached to a water suction pump. Resuspend the

sediment with a jet of water from a wash bottle, and

spin it down again for 10 min. Repeat the rinsing pro­

cedure at least five ~imes. Use distilled or deionized

water in no less than the two last rinses. Dilute with

Page 35: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-58-

water to a suitable (by experience) turbidity and

transfer a few drops to a clean cover glass. Evaporate

the water, preferably slowly under cover to achieve an

even distribution. Add a sui table amount of embedding

medium with a high refraction index (e.g.

Clophenharpiks, Hyrax, Styrax) onto a clean slide,

place the cover glass on the top (or pick it up with

the embedding medium on the slide), and

a hot plate to expel air bubbles and

solvent.

heat gently on

evaporate the

It should be recognized, however, that some of the

smallest centric species, and small species of the

genera Fragi Laria, Achnanthes.

and some Nitzschia species,

microscopy (TEM or SEM) for a

and NavicuLa, at least,

still require electron

safe determination.

Protozoa and non-photosynthetic phytoplankton

When working with phytoplankton, it is convenient to

determine the protozooplankton as well. The distinction

between algal

vague to the

classify them

and protozoan higher systematic units is

extent that some researchers tend to

together as protists. Most genuine algal

classes contain species or even whole genera which are

non-photosynthetic, and which thus functionally should

be regarded as zooplankton, for example, Cryptophyceae:

CryptauLax,

Dinophyceae:

Cya t homonas,

Amphidinium

KatabLepharis, Leucocryptos1

p •P • I Gymnodinium p .p.,

Gyrodinium p.p., Oxyrrhis, NoctiLuca' ObLea'

Protoperidinium, Ebria 1 Prymnesiophyceae: Ba Laniger 1

Chrysophyceae: Paraphysomonas1 Euglenophyceae: Astasia.'

Peranematales1 Chlorophyceae: PoLytoma.

A major obstacle to a uniform treatment is the distinc­

tion between the Botanical and Zoological Nomenclatural

Codes and the incompatibility of the systematic super­

structures. A number of different phyletic groups gen-

-59-

erally considered by botanists as algal classes within

a number of divisions (e.g. 1) are treated by

zoologists as orders of the class Phytomastigophorea

(Phylum Sarcomastigophora, Subphylum Mastigophora 1 4) .

While groups like the choanoflagellates and the

bodonoid flagellates, which until recently were claimed

by phycologists, now seem to be generally accepted to

belong in the animal kingdom, some groups are still

disputed or uncertain, or lack a satisfactory system­

atic superstructure, e.g. the bicosoecoids and many

colourless members of the Proto- and Polyblepharidinae

and Polymastiginae ( 6, 7), etc. On the other hand,

connections have been found in the Pedinellales ( 9)

between a chrysophyceaen lineage and members of the

protozoan order Actinophryida (Phylum

mastigophora, Class Heliozoea). There are also

Sarco­

a few

true animals which function as plants because

intracellular photosynthetic symbionts

Mesodinium).

they have

(e.g.

Even with the procaryotes, a uniform conception is

lacking regarding the limits of the systematic entities

and their names. The blue-green algae seem to be a

rather homogeneous group, regardless of whether they

are referred to as Cyanophyceae, Nostocophyceae or

Cyanobacteria. Problems of delimitation arise when

morphologically similar non-photosynthetic types are

included (e.g. Beggiatoa, Achroonema), or when the

organisms are so small, i.e. usually less than 1-1.5 ~m

wide, that special methods (e.g. fluorescence

microscopy) are required to determine whether the cells

contain chlorophyll or not. This concerns for instance

narrow OsciLLatoria spp.

Merismopedia wa,rmingiana vs.

very small photosynthetic

bacteria.

vs. Achroonema

Lampropedia hya tina , coccoid cells vs.

spp.,

and

true

Page 36: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-60-

References to Annex I of D.3.

1. Edler, L., Hallfors, G. & preliminary checklist of the Baltic Sea. Acta Bot.

Niemi, A. 1984. the phytoplankton Fennica 128: 1-26.

A of

2. Haas, L. W. 1982. Improved epifluorescence

3.

4.

5.

6.

7.

8.

9.

microscope technique for observing planktonic microorganisms. Ann. Inst. Oceanogr. 58: 261-266.

Hoppe, J.E., Daily, R.J. & Jasper, S. 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225-1228.

Levine, N.D. fication 37-58.

et al. or the

1980. A newly revised classi­Protozoa. J. Protozool. 27:

Moestrup, 0. & Thomsen, H. 1980. Preparation of shadowcast whole mounts. In.: Gantt, E. (ed.): Handbook of phycological methods. Developmental and cytological methods, pp. 385-390. Cambridge University Press.

Skuja, H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden, Symb. Bot. Ups. 9(3): 1-399, pl. 1-39.

Skuja, H. 1956. Taxonomische und biologische Studien tiber das Phytoplankton schwedischer Binnengewasser. Nova Acta Reg. Soc. Sci. Ups. (Ser. IV) 16(3): 1-404, pl. 1-63.

Vargo, G.A. 1978. Using microscope. In: Sournia, plankton manual. UNESCO Method. 6: 197-201.

the fluorescence A. (ed.): Phyto­Monogr. Oceanogr.

z immermann, B. , Chrysophyte studies on pedinella comments on 20: 591-612.

Moestrup, o. & Hallfors, G. 1985. or heliozoon: Ultrastructural

a cultured species of Pseudo­(Pedinellales ord. nov.), with

species taxonomy. Protistologica

-61-

4. Checklist of phytoplankton

Acta Bot. Fennica 128: l-26, 1984

A preliminary check-list of the phytoplankton of the Baltic Sea

LARS EDLER, GUY HALLFORS and AKE NIEMI'

Edler. L., Hiillfors. G. & Ni~mt. A. !984: A prcltmlnary check·l!st oft he phytoplankton of the Balttc Sea.- Acta Bot. Fenntca 128:1-26. Hcls1nk1. ISBN 95l-9469-22-2.1SSN 0001-5369

This check-list summarizes the prest:nt state ol knowledge concerning the spcctes compositwn. nomenclature and, to some degree. the ~p<ltlal and temporal di~tnbuuons of phytoplankton species tn the Baltic Sea. Th~: area has been dtvtded ln\l) ten subareas the outermost being the Kattcgat. The occurrence of the spectes. and when pmstbk, their ecologiCa charactenzatton. are given withm each ~ubarea

Key words: Phytoplankton. check-list. the Bailie Sea

Lars Edler. Deparrmenf of Manne Borany. l./mvcnuy of Lund. Bo-.: IN. S-221 00 Lund. Sweden: Guy Hiil/fors and Ake Ntemi. Unnws11y of Helsmkt, Tvarmmne Zoolu~tcat Station. SF-10850 Tvdrminne. Finland

INTRODUCTION

Studies of phytoplankton in the Baltic Sea have a long tradition. They started about one hundred years ago (Hensen 1887) and, since then. numerous investigations have been carried out. During the past 15 years it has become more and more evident that phytoplankton research has been hampered by the lack of a modern determination manual. Usually deter· mination has to be based on extensive taxa· nomicalliterature which very often is difficult to obtain.

The objective of compiling the present list was to record available information concerning species composition of Baltic Sea phyto­plankton, the nomenclature of the species, and to some degree their spatial and temporal distributions. By this means we hope to facilitate

and encourage further research. The list IS tn~ tended to be used as an easily cited source in matters concerning nomenclature and the dis­tribution of phytoplankton species in the Baltic Sea. It is an extension of the list of Hallfors ( 1979) and includes the whole Baltic Sea.

The list is not 10 be considered as complete. It is mainly based on our own material and ex­perience supplemented with literature data. However. the literature coverage is not ex. tensive. We Jack material from certain regions (especially AS and RB). and have been unable to secure enough published information. For these subareas, as well as other subareas we shall be grateful to receive records, corrections and improvements in order to make the next edition as useful as possible.

ARRANGEMENT OF THE LIST

For the purpose of the check-list the Baltic Sea has been divided into ten subareas (Fig. I), the

1 Work1ng Group 15 of the Ba1t1c Manne Biologists. Baltic Marine Biologists Publication No ll

Bothnian Bay (BB). the Bothnian Sea (BS), the Archipelago Sea (AS), the Gulf of Finland (GF). the Riga Bay (RB), the Northern Baltic proper (NB), the Central Baltic proper (CB), the Southern Baltic proper (SB), the Arkona Basin

Page 37: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

.. ,*'·······-·· ------------------------------

-62-

2 L Edla, G. Hdll{or.\ & .4. Nu•mJ

v ,./···-~~

Fig. f The Ba!ttt.: Sea with the ~ubareas 1ndtcated fDr whKh rcnHth ~~~ plankwntc ~P~'t.:l..:~ ar~· tndut.h:llin the chct.:k·lht. BB = the Bothnta.n Bay, BS =the Bothntan Sea, AS= the An.:h1peL!gu Sc:.t. GF:::.: the <Jult ''! F1ni.wJ. RB = tht.· Rq,!;.~ Bay. ""iH:::: the Nonh~:rn Baltu.: proper. CB =the Central Baltit.: proper. SB =the Southern B:dtH.: pr<>p<.:r . .-\B =the Ad, una Ba ... l!l. dtHI

KB =the Kattegat and Belt Sea Area

(AB). and the Kattegat and Belt Sea Area (KB). To facilitate rapid location of samples, well defined borders have been drawn which differ somewhat from previously proposed ·natural' borders. When considering division of the area for other purposes the borders suggested by Ekman ( 193 I) and by Wattenberg ( 1949) should be taken into consideration.

Species are listed alphabetically under each Order. We have tried to consider recent nomen-

clatural changes and have included the most important synonyms used tn the Baltic S~!a tn brackets below each species. The numbcr(s) 1n

brackets after a name refers to an annotation at the end of the list. For the sake of clarity. author's names are mostly g1ven m full. For abbreviations. see Christensen & Thomsen (1974) and Parke & Dixon (1976).

When a spec1es has been recorded from an area, there is a symbol in the proper column.

Explanation of the symbols

.,- \KO.:urr.-no: w1thout ccologlCi.!l o.:hur:.~o.:tcnzatlon

c 0.:1liJ w<.Ho:r 'PCO.:IC~ 1<10'' Ci ~~o v.urm w:>ter ~pedes 1>10° Cl

mam oco.:urn:n<:e 1n the ltthHal t're~hwato.:r -.pec1c.:~ whtch Joc.:s not tolerate the t"ull

b ~peo.:1c~ bclung1ng to waters of lower ~:.illnlly than that ot the area

CYANOPHYTA (CYANOBACTERIA) Nostocophyceae (Cyanophyceae)

CHRuOCOCC'A LES Aphunon!psu N<igdi

t'fachHIU W. & G.S.West var. efuchtl"la var. pfannomcu G. M. Smtth

Aphanolhtce ~dgelt ~-tathrala W __ & G.S.-We~t

1 -1 cfathr"Ora var. brevn R:h:hmann\ ChroocuCCU\ SJgeli

limnt'/ICU\" Lemmerman mrnUIU\ ~ K l!IZlflg.) NJgelt r ! ) ruretdto 1Kut~1ngl Nageli

Cot'fmphaenum 0:<~geli 121 ~uet::tn~?wnum Nil.geli

Cfoeotht't e N3gdl compo~lla (G.M.Smithl Martens & Pankow

c.unpho~phacna Klitztng aponina Kiltzing /anlltr/1" Chodat var. facuJ·tnJ·

lllforafi1· HayrenJ nllt'~c/iana ILngerl Lcmmcrm~nn

1 Cot'fo:.ph(lfnum nat:"~eliunum l.Jnger) pu.1dla (v~n Goorl Kom:.\rek

Memmopedta \1cyen (3) ~:.laue a !Ehrenberg) Nageli p.mCfllt(l Mcyen Harrmm::HI!w LJgerhe!m

w!li.Hl ?.R1..:htcrJ tnumma G.Bc..:kl 1puncww L minor Lagerheim) lll!flU/SSimu Lemmermann)

Micmcruo1· P Rtchter sahtdicofa ( L.1gcrheim) Geuler

,\.1lcmCI·.I"tn Kut1.1ng

KB

+

anwuno\ll ( Kutnng) Kutz1ng 14) wf (jlu1-aqum• 1 Wtttftl~k l Kirchner)

halophtfa \1ancns & Pankow ( 4) retnbofdit (Rlo.:hter) Foni (4) w

!Aphanocapw deficali.n·ima W. & G.S.West) ( ,\.-ficron·st1s tncerta { Lemmcrmann) Lcmmermannl (M. pulverea (WoOO) Foru) LW. pufverea var. incena tLemmermann) Crow)

wesenbergu ( Ktlm:irek) Scarmach Rhahdoderma Schm1dle & Lauterborn

lmeare Schmidle & Lauterborn-

-63-

AB

+

wf

w

ACTA BOT. FENNICA 12H t 191S4J

species belongmg to waters of htgher ~al1n11y than that of the area

e matn occurrence 1n eutrophi<:J waters questiOnable record

( ) symbol not very stnct!y <!ppllcabk. e.g. {cl:::::: gt:ner:.~ll~ but not exclusively cold-water spec1es

- no record

58 CB RB

+

w

w

wf wf

w we

GF

wf wf

wf

wf w

wf

w

+

wf

we

AS 85 88

w

+ w

+

~

+ w w

Page 38: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

. '·'""~01!: -------------------------------------········

-64- -65-

4 L. Edler. G. Ha'//fors & A. l1ilemt ACTA BOT. FENNICA 128119841 5

KB AB SB CB ~B RB GF AS BS BB KB AB SB CB NB RB GF AS BS BB

NOSTOCALES

Achroonema Skuja ( 5) subtilissima (Ki.itzing) Gamont (8) + /enrum Sk UJa + renuts C.A.Agardh ex Gamont we we proieiforme Skujo + + Phormidium Ki.itzing ex Gamont proteus SkuJO + autumnalr: (C.A.Agardh) Gamont ex Go mom

Anabaena Bory e.>; Barnet & Flahault I 11) ba/nca Schmtdt w w w w w w muctco!a Huber-Pestalozzi & Naumann

{A. spiroides f. baluca {Schmidt) Pankow) Raphidiopsis Fntsch enema/is Rabenhorst wf medirerranea Skuja ( 37)

lA. sptrotdes f. hassallii (Klitzing) Pankow) Sptrulina Turpin ex Gamont cylindnca Lemmermann + + wlf wlf balflca Manens & Pankow

lA. subcylmdnca Borge) {6) ma;vr Ki.itz~ng ex Gomor\t inaequalis IKU.tzing) Barnet & wbsalsa Orstedt ex Go mont + Flahauh w w w Th1orhrix Winogradsky ( 14) lrmmermannii P. Richter { 7) w w w w + annulara Molisch le

{A. flos·aquae f. femmermannu (P.Richter) nl>'ra (Rabenhorst) Winogradsky le Canabaeus)

osclllari01des Bory ex Barnet & Flahault r 10) CRYPTOPHYTA scherrmenewi Elenkin (8) Cryptophyceae spiro/des Klebahn (9) wf CRYPTOMONADALES <5) torulosa /Carmichel ex Harvey tn Hooker)

Chroomonas Hansgirg ( 18: Lagerheim ex Barnet et Flahault r IOl 19) + vanabi/is Klitzing ex Barnet & Flahault (10, CrrptaultJX sli."uja II. 12) wf manna Throndsen (37) +

Anabaenopsis V.Miller Crrptomonas Ehrenberg {3)

e/enk1nii V.Miller ( 13) we ba/nca I Karsten) Butcher + + Aphanizomenon Morren ex Barnet & Flahault erosa Ehrenberg +

flos-aquae (L.) Ralfs ex Barnet & Ol'ata Ehrenberg + Flahault ( 15) wb w w w w w w w w + pelaf(Jca \Lohmann; Butcher + gracile (lemmermann) Lemmermann w w + + pus1f/a Bachmann +

&ggiaroa Trevisan ( 14) Karablepharis Skuja alba (Vaucher) Trevisan wle wle m·alis Sk uja ( J 7) + /epromiuformis ( Meneghinil Leucocryp1os Butcher Trevtsan wle wle manna ( Braarud J Butcher ( II) + mmima Winogradsky wk wle Rhodomonas Karsten mirabilis Cohn wle wle minuw Skuja (I) + +

G/oeorrichia J.G.Agardh ex Barnet & Flahauh DINOPHYTA echinu/ara (J.E.Smtth) R1chter

Lyngbya C.A.Agardh ex Go mont Dinophyceae conrorra Lemmermann PROROCENTRALES

limne1ica Lemme:rmann + + + Prorocenlrum Ehrenberg Nodulana Mertens ex Barnet & Flahau!t btJ//Icum (Lohmnnn) Loeblich 1!! w w w w w w w w

harveyana (Thwalles) Thuret ex Barnet & ( Exu\litJ, i/o bailie a Lohmann) Flahault + + + + + cu_\.\uhl(-um 1 Wolo~zyr\ska J Dodgl! spumigena Mertens ex Barnet & Flahault ( 15) wb w w w w w w w w + lima /Ehrenberg) Dodge

Osci/laroria Vaucher ex Go mont tExuviaella marina Cienkowski) ( 10) agardhii Go mont var. m1cans Ehrenberg w w WS agardhii we we we we mintmum Schiller w w w

· var. iso1hrix Skuja wf (Exuviael/a minima P<lVillard) amphibia C.A.Agardh ex Gamont wlf bornelii (Zukal) Fortt f. borneti wf

DINOPHYSIALES f. 1enuis Skuja wf cha/ybaea (Mertens) Gamont wf Dmophysn Ehrenberg chlorina (KUtzing) Gamont 18) acuminaw IClapart:d~ & curviceps C.A.Agardh ex Go mont wf Lachmann) (w) ]w) ]w) ]w) ]w) [w) ]W) + ]w) [w) lacusrris (Klebahn) Geitler (lachmannti Paulsen) limnerica Lemmermann ( 16) w + w + w + acuta Ehrenberg (20) (W) lw) (w) limosa C.A.Agardh ex Gamont wle wle arc flea Mereschowsky ( 10) T

okenii C.A.Agardh ex Gamont we ba/uca (Paulsen) Kofoid & Skogsberg (I) + + + + + + + planctonica Wo!oszyr\ska + (ovum var. ba/uca Paulsen) sancta (KUtzing) Gamont (8) groenlandica (Schiller) Bale.:h (4) splendida Greville ex Gamont + (Pha/tJcroma groen/and1ca St:hdlcr\

Page 39: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-66- -67-

6 L. Edler. (i. Hallfors & A. ,Viemt ACTA BOT FENNI(A 128 I 19X4l 7

KB AB SB CB ~B RB GF AS BS BB KB AB SB CB NB RB GF AS BS BB

PYROCYSTALES

hastata Ste1n + Dissodinium Klebs 1n Pascher

norveg/Ca C\apun!de &. lachmann !20) (W) (w) (W) (W) (w) {W) {w) {W) pseudolunula Swift + + (+)

roiUndara C!aparede & Lachmann w w w w w w w w w (G_~'mnodinium lunula SchUt!)

(Phalachroma rorundatum !Clap. & Lachm.) (Pvronstis /unula (SchUtt) SchUtt) {24)

Kofo1d & M1chener} mpos Gourret ( 21) PERIDINIALES

Ceranum Schrank

GYMNODINIALES arcrwm f Ehrenberg) Cleve + bucephalum (Cleve) Cleve +

Actimscus (Ehrenberg) Ehrenberg fUrca f Ehrenberg) Claparede & Lachmann w WS

penrasrenas Ehrenberg + tUsu.s rEhrenberg) Dujardin w WS WS

( Gymnaster pentasurias (Ehrenberg) hmmdinel/a (0.F.Mtil!er) Schrank

Schtittl homdum (Cleve) Gran w

Amplridinium Claparede & Lachmann tmermedium (JOrgensen) JOrgensen + carter/ Hulburt + linea/urn (Ehrenberg) Cleve w

crass urn Lohmann\ 22) /ongiper (Batley) Gran w WS

longum Lohmann (II. 22) " + + mucroct'fOJ (Ehrenberg) VanhOff~:n w WS

(?acurum Lohmann) ./-;;tpo1 tO.F.Mi.illcr} N1tzseh w w WS

apercu/alum Clapan!de & Lachmann (8) C/adopyxis Stein

pellucidum C. Herdman + + cfavronii R.W.Holm.es + semi/una tum C. Herdman ( 10) Ent::za Lebour'' JWNii ( Lemmerm;~nnl K0fc11d & Swezy + acura { Apsteln) Lebour

Cochiodinium Schlitt ( Peridinium /arum Paulsen)

helicoides Lebour ( 2:!) Gfenodimum Ehrenberg ( 3)

pel/ucidum Lohmann + damcum Paulsen + + Gymnodinium Ste1n (3, 5) + folwceum Stetn ( !0)

gracile Bergh + gymnodimum Penard

lohmanmi Paulsen + paululum Lmdemann (II) + Hmplex (Lohmann) Kofoid & Swezy iII) + + + + c penard(forme (Lindemann) Schiller ( ll) + splendens Lebour + a·armingfi Bergh

westificii Schtitt + Goniodoma Stein

Gyrodimum Kofoid & Swezy {5) 01/enfe/dii Paulsen ( l) + aureolum Hulburt w Gonyaulax Dtesing

fissum {Levander} Kofo1d & Swezy + + cart•na/0 (Levander) Kofoid cb cb c c c c c c c

( G,rmrwdimum fissum Levander) digiiUI/.1 1 Pouc he{) Kof01d + (SpircxlimumjiSJum (Lev.) Lemm.) nctJvata fBraarudJ Balech +

.fusiforme Kofoid & Swezy + uamaren.l'ls Lebour)

/onRum (Lohmann) Kofo1d & Swt"zy + .f!.nnt/lcyi Reinecke w w w w w w w w

sp~raie (Bergh) Kofo1d & Swt'Zy + + + tProtoceratium reticula tum (C!aparede &

Hemtdimum Stein Lachmannl Btit~hhl

nasu1um Stt:1n ' heft:n.\1\ w~lio~zyriska { 1) + ochraceum Levander 123\ + pol_t•edru Stem + +

Kazodinium Fott (5) + rp1m[era fClaparecte & Lachmannl Diesing w w w w w w

(Massartia Conrad) tnacantha JOrgensen w w w w w w w w

rotundatum (Lohmann) Fott + + verior Sournta w w w w w w w

Oxyrrhis Dujardin I diacantha (Meunier) Schiller)

marina Dujardin (23) + + + -r Heterocapsa Stein

Polykrikos Bi.itschli mquerra (Ehrenberg} Stem w w w w w w w

schwartzi/ BUtsch!i w IPendinium triquetrum (Ehrenberg) Lebour)

Pronoctiluca Fabre·Domerque Micracanthodinium Deflandre

pe/agica Fabre-Domerque {22) sel/ferum /Lohmann) Deflandre + Torodinium Kofoid & Swezy i C/adopy:ds setifera Lohmann)

ttredo (Pouchetl Kofoid & S~zy + Oblt:a 8ak.:h

Warnowia Lindemann rorunda (LebouT) Balech w w w w w we w w w

parva (Lohmann) Lindemann (22) {Pendinopsis rotunda Lebour) ( Gll?nodinium rotundum (Lebour) Sch1ller) (Peridinium ftmnophilum Lindemann)

NOCTILUCALES Pendinium Ehrenberg balticum I Levander) lemmermann + + + + +

Nocti/uca Suriray scintil/ans (Macartney) Ehrenberg w w

{ Glenodinium balticum Levandt"r)

Page 40: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-69--68-

ACTA BOT. FENNICA 128t1984l 9

8 L. Edler. G. HdlljOrs &. A. Niemt KB AB S8 C8 N8 R8 GF AS 8S 88

S8 C8 N8 RB GF AS BS BB KB A8

p,vn(orme (Paulsen) Balech +

cmctum (O.F.Mi.illerl Ehrenberg + wle) + (Pmdimum pyr(!Orme Paulsen)

roseum (Paulsen) Balech + hangoei Schiller /Pendinium roseum Paulsen)

tgractle Lindemann) ueinit {JOrgensen) Balech + inconspicuum Lemmermann (Pendinium swnii J6rgensen) wtllet Huitfeld·Kaas wbinerme (Paulsen) Loeblich III +

Protoperidimum Bergh /Peridimum ~ubinerme Paulsen) ( Peridintum p. p. l w w w w w Pyrophacus Stein

achromattcum (Levander) Balech + horo/ogtcum S1e1n w w

IPendimum achromau·cum Levander) + + + + Scnpp.1tel/a Balech ex Loebllch III ave !lana Meunier (II l rrochoidea !Stein) loeblich Ill (I I, 25) w w w w w w

1 Peridinium ave/lana (Meunier) Lebour) cw CW CW CW IPeridinium 1roch01deum (Stein) CW CW cw bipts (Paulsen) Balech Lemmermann)

{Gienodinium bipes Paulsen) Zygabtkodinium Loebhch tiL & Loeblich Ill (Peridinium minusculum Pavi\lard) !enllculatum Loeb\ich fil. & Loeblich III (26) + + w w w w (Minuscula bipe.r (Paulsen) Lebour)

+ ' (Diplopsalfs !enucula f. minor Paulsen) brtvt (Paulsen) Balech cw CW cw cw ( Glenodimum /emicu/a f. minor (Paulsen) brevipts (Paulsen) Balech cw CW cw

Pavd\ardl (Peridimum brevipes Paulsen)

+ ( Dtplopel10psis minor ( Pauhcn l Pavi\lard) arasus (Paulsen) Ba!ech "- Amphtdtmopsts Wo\o~zyris~a

(Ptridinium cerasus Paulsen) kotutJ/1 W~!oszyr.!.ka + + daudicans (Paulsen) Balech +

(Pendinium claudicans Paulsen) + EBRIALES 114)

conico1des (Paulsen) Balech (Peridimum conicoides Paulsen)

+ Ebna Bogen

comcum (Gran) Balech mpar111a (Schumann) Lemmermann CW cw cw cw cw c~ CW cw cw (Peridinium conicum Gran)

+ crassipes 1Kofoid) Ba!ech , (Pendinium crassipes Kofo1d)

+ PRYMNESIOPHYTA (HAPTOPHYTA)

curvipn {Ostenfeld) Ba\ech , Prymnesiophyceae (Haptophyceae) (Pmdinium curvipes Osten\eldl

+ ISOCHRYSIDAI.ES dtclpiens (JOrgensen) Parke & Dodge

(Peridinium decip1ens JOrgensen) " + Gephyrocapsa Kamptner

deficiens (Meunier) Balech (8) huxleyi (Lohmann) Reinhardt + + (Pertdimum defiCiens Meumer)

+ + (Cocco/irhus hux/eyi (Lohmann) Kamptner)

depressum (Bailey) Balech . (Emtfiana huxle.vi (Lohmann) Hay & (Peridinium depressum Badey) +

Mohler) divergens (Ehrenberg) Balech + Pleurochrysis E. G. Pringsheim

!Peridinium divergens Ehrenberg) +

canerae (8raarud & Fagerland) excenrricum (Paulsen) Ba\ech T. Christ.:nsen + +

(Peridimum excenmcum Paulsen) ' ( Cncosphaera carraae ( Braanxi &

granii (Ostenfeldl Bakch c c Fagerlandl Braarud) (Peridimum granii Ostenfeld) ( Hytn~''"/'.·monas carrerae ( Braarud & tPeridinium finlandicum Paulsen) . Fagerlandl Manton & Peterfll {Peridimum divergens var. levanden

PAPPOSPHAERALES Lemmermann)

leoms (Pavi\lard) Balech + Acanrhoica Lohmann (Peridinium leonis Pavillard) quamospina Lohmann +

longispinum (Kofoid) Ba\ech (22) +

Balaniger Thomsen & Oates oblongum (Aurivillius) Parke_e~ Dodge balticus Thomsen & Oates +

(Peridinium oblongum Aunvdhus) Braarudosphaera Deflandre oceanicum (VanhOffenl Balech btgelowii (Gran & Braarud) Deflandre +

(Peridimum oceanicum VanhOffen) Ca(rptr01phaera Lohmann + ovatum Pouchet + Di1·cosphaera Haeckel

(Ptridinium ova tum (Pouchet) SchUtt) tub(fer (Murray et Blackman) Ostenfeld (8) ?

pallidum Ostenfeld) Balech CW

Pappomonas Manton & Oates (Ptridimum pa/lidum Ostenfeld) w w + vtrgulosa Manton & Sutherland + CW + w pellucidum Bergh . ..

PRYMNESIALES (Pmdinium pef!uCidum (Bergh) Schutt) penragonum (Gran) Balech + Chrysochromu/in.a Lackey ( 5)

(Per~dinium penragonum Gran) + acanrha Leadbeater & Manton +

punctulatum {Paulsen) Balech (Pmdinium puncrulatum Paulsen)

Page 41: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-71--70-

ACTA BOT. FENNICA 12811984> II

10 L Edll'f. (i. Hdll{vrs & A . .t•b!'mt

KB AB SB CB NB RB GF AS BS 88 KB AB SB CB 1'18 RB GF AS BS BB

bavancum Imhof cylindncum Imhof

u/1/<'r Park<! <!t M<Jnt<IO 1n Par lo-t:. Mant<Hl &

Clarke +

bergenenm Leadbt=ater +

diver:;:ens Imhof

.birgen H:illfors & Ntemi +

pe11olatum Willen

hre~·t}ll"'m Parke & Manton tn Parke. Manton

sertulana Ehrenberg w w w w w

-.-w w I+)

& C\arkt: +

wnale Ehrenberg f

campanuft/era Manton & Leadbeater +

wectcum Lemmermann r

chi/on Parke & Manton :n Parke. Manton &

.\1al/omona.r Pertv r

Clarke +

akrokomos Ruitner (27)

cyatophora Thomsen w w

caudata lwanolf f

cymbtum Leadbeater & Manton +

producta {Zachanasllwanoff r

ephtppEUm Parke & ~anton in Parke, Manton

puncu(era KorStkov f

& Clarke +

lre,~tnae Tedtng) r

enema Parke & Manton tn Parke. Manton &

IOnsurata Telling

Clarke +

Paraphysomonas de Saedekt=r ( 5)

fra.~llis Leadbeater

bourre/lii {Takahashi) Hibberd & Preisig

herdfenSIS Leadbeater +

butchen Penn1ck & Clarke +

manwniae Leadbeater (27) +

+ tmperfora/a Lucas

+

megacylindra Leadbeater +

vestl/a IS tokes) de Saede!eer +

mtcrocvllndn.J L~adbeater -r

Chromop_hysomonas Hibberd & Preisig r

parkeae Green & L~adbeater +

mora/a (Takahashi) Hibberd & Preisig

polylepts Manton & Parke +

Synura Ehrenberg . +

pringshe1mii Parke & Manton +

petersen// KtrrSikov (27)

>;!roh!lu.\ P:.~rkc ..:\ Yl..HI\Iln 1n Park..:. Manton &

.lpha_'(mco/a (KorSikov) KorSikov r

(Iarke +

sp1nosa KorSikov (27) r

prramtdosa Thomsen +

uve/la Ehrenberg 129) r

+

PhaeocySIIS Lagerhetm

Croglota Ehrenb..:rg r

amoeb01dea BUttner (22) +

amencana C:.~!kins

pouchew ( Harriot) Lagerhe1m

1·o!vox Ehrenberg w w w

sphaeroides BUttner ( ::!2) T

w

Prymneswm Massan

CHR0MULINALES

parvum Caner (II) + + +

Apedmel!a Throndsen 1P1mfaa !Tilrondsenl Throndsen

Calw omnnas Lohmann ( 11) + +

Tngonaspts Thomsen d1skoens1s Thomsen

+

m111Utiss1ma Thomsen +

f!\•alo- Wulff

W1gwamma M:.~nwn. Sutherland & 0ates

vungoon !C<>nrad) Lund w w w

scenozonwn Thomsen +

wu/tfn' Conmd & Kufferath w w

Chr\·j·ococcus Klebs w w

w w w w

bt,70rus Sk u)a ru,·ercen~· Kkbs

PAVLOV ALES

Pavlova Butcher !5) /when <Droopl Green !:!3)

+

Keph1rion Pascher

(Monochryns !utheri Droop)

hemuphaericum ( Ladcv) Conrad Pcdinella Wy<,otzki ·

+

tricouaw Rouchijajnen Pseudopedineila N. Carter ( 5!)

+

e/a.Hica Skuja + pynforme N. Carter +

CHRYSOPHYTA Chrysophyceae OCHR0M0NADALES

STJCHOGL0EALES

Anthophysa Bory

Suchogloea Chodat

vegeta/15 (0. F. MUller) Stein

+

Bicosoeca James-Clark (14. 28)

doederle11111 rSchmidle) Wille

ainikkiae Jarnefelt

r + DICTY0CHALES

/acustris James-Clark

r Diomcha Ehrenberg

muitian11ulara Skuja

r +

periolata (Stein) E. G. Pringsheim

r fibula Ehrenberg +

Dwephanus StOhr

Chrysosphaerella Lauterborn

speculum (Ehrenberg) Hacckel

brevispina KorSikov ( 27)

+

sa/ina Birch-Andersen ( 14)

+ Eustigmatophyceae

Dinobryon Ehrenberg balllcum {SchUH I Lemmermann

cw CW CW cw (C)W (c)w {c)w EUSTIGMATALES

Nannochloropsis Htbberd (37) +

{pel/uctdum Levander)

Page 42: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-72--73-

ACTA BOT. FENNICA 128 119841 13

12 L. Edler. G. Hdllfon & A. N1emt KB AB SB CB NB RB GF AS BS BB

SB CB NB RB GF AS BS BB KB AB

lens Ehrenbo:rg _._

Tribophvceae (Xanthophyceae, Heterocontae) mobi/JenHs (Bailey) Grunow ex Van Heurck + obrusa !Kutz!ng) Ra!fs in Pritchard + RHIWCHLORIDALES pulfhella Gray (4) + +

Rh1:och/orrs Paschcr _._ rhombus (Ehrenberg) W. Smith + nodufanae Bursa + 5/nen.m Greville + so/irana Bursa )uhaequa ( KUtzing) Ralfs in Pritchard +

Cera/au/ina Peragallo MISCHOCOCCALES pela.~!Ca (Cleve) Hendey w

tba.~onil Peragat!o) .Weringosphaera Lohmann (I. 141

Ceraraulus Ehrenberg + mediterranea Lohmann + 1urg1dus (Ehrenberg) Ehrenberg + rad1ans Lohmann + Chaetoceros Ehrenberg

serrara Lohmann a(finJJ Lauder {4~) CW r Ophwcynum Nageli anastomosans Grunow + e/ongatum W & G. S. West at/anucus Cleve s Schil/emlla Pascher + borealis Bailey + T anuraea Pascher (!. 30\ bre\1/s SchOtt + + ca/curaf!S !Paulsen) Taka no + TRIBONEMATALES !Hmplex var. calcitrans Paulsen) (I l)

Tnbonema Derbes & Solier If cerai05porus 0stenfdd ( ~2) cw CW cw CW c(w) C(W) c(w) (w) affine G. S. West If nnctus Gran T

v.iride Pascher comprenus ·Lauder CW + < oncal'lcorne Mangin <'onsrrictus Gran + ,. emrnltnus Castracane f. com·olun.~s + Diatomophyceae (Bacillariophyceae) LES) - r mseto5a Brunei ' EUPODISCALES iBIDDULPH!ALES. CENTRA c•nonarus Gran T

coHutus Pavdlard c Acanrhoceras Honigmann mnuus SchUtt ( 33) IC)W ;achanasii ( Brun l Simonsen cun·1serus Cleve CW + {Ailheya ;achariasii Bruni damcus Cleve ( 34) cw cw cw CW {C)W (c)w + (c)w (C)W Ac 11nocyclus Ehrenberg deh1/i> Cleve cw T octonanus Ehrenberg

w denptens Cleve + + (ehrenbergii Ralfs) w + w denws Cleve + _._ + cw CW w w _ var. ncronarius dwdema (Ehrenberg) Gran c(w} T _ var. crassus (W. Smnh) Hendey I 10)

!.1Ub1·ecundus (Grunow) HustedU _ var. 1enellus 1 Breb.) Hendey I 10\ dHhmus Ehrenber~ cw

A.cllnoptychus Ehrenberg + gra< i11s SchUtt + senanus {Ehrenberg) Ehrenberg ho/.wticus SchUtt be c c c ' (undulatus (Bailey) Ralfs) mgo(lianus Ostenfeld in Gran c

Auhe1·a T. West lunmosus SchUtt c + de~ora T. West .'uudai Ralfs !n Lauder + A.ulacosira Thwa1te:-; furenzl<uJUJ Grunow w

U4elosira p.p.l mue/!at Lemmermann W< WO WO WO WO ambi>;ua l Grunow\ Stmon:>en rerpusdlus Cleve + dista~s (Ehrenberg) Stmon~n (31 l preudocrinuus Ostenfeld + l(ranulata (Ehrenberg) Stmons.en rod1ans SchOtt T '_ var. f(ranulata . radicans SchUll + - var. angustissima (0_ MUller) Simonsen 'it'lrOCan!hus Gran w w isfandica (0. MUller) Simonsen \·cp1enmonalis bstrup cw CW cw CW CW cw CW ssp. hetvn1ca {0. MUller) Simonsen r1mt/is Cleve c + ~

italica (Ehrenberg} Simonsen f Simplex Ostenfe!d + + + ssp. 1talica var. ltalica . f wC!alis Lauder ' - var. va/ida (Grunow) S1monsen f subtilis Cleve c(w) + + + ' ssp. subarctica (0. MUller) Simonsen teres Cleve c + Bacreriastrum Shadboh + .-.cighamii Brightwell {33) CW CW cw cw CW CW cw cw cw elongarum Cleve 1\'tliel Gran _._

hyalinum Lauder + Corethron Castracane

Bacteriosira Gran cnophi/um Castracane .,. fragllis Gran +

Coscmndhcus Ehrenberg Biddulphia Gray antra/is Ehrenberg + + + aurita {Lyngbye) Breb1sson

+ granulata Roper

6 4831B4A

Page 43: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-74--75-

ACTA BOT FENNICA 128 (19841 15

14 L. Edler. (J_ Hdll(vrs & A ."•hem/

KB AB SB CB NB RB GF AS BS 88 KB AB SB CB NB RB GF AS BS 88

lon_((tJl'IO Zachanas

concmnus W. Smith + +

granii Gough (35) + + + + w + w + w mtntma Le\·ander w we

granulosus Grunow ( 10)

pun_!ffrtJ A. Cleve +

ocuius·irld/5 Ehrenberg (36) +

H.'lf.f?t'ra Brightwell + +

radiarus Ehrenberg + +

~-hruhYolei Cleve f

rorhii {Ehrenberg) Grunow

Holtedothn Peragal!o +

sub-bulliens Jorgensen +

Hyliform1.'i Brightwell +

Cyclore!la Ki.itzing

Ropena Grunow I!;( Van Heurck

atom us Husted! { 37) we /eHellara ( R1)per\ Grunow

caspta Grunow .,_ w w w w w Skeletonema Grevllle i52)

comta !Ehrenberg) Ki.itzing

COI'/Otum tGrc=vdkl Cleve cw cw cw cw {C)W

kuelttngtana Thwaites (3~) + wbsalsum I Cleve· Euler) Bethge

c(w) T C(W) C(W)

meneghimana KUwng f

Stephanodiscus Ehrenberg e e

srelligua Cleve & Grunow r a:straea I Ehrenb~rgJ Grunow

smora (Kilwngl Grunow in Cleve & Grunow + + ~

(asrraea var. mmutula (Kiltzing) H~ndev) +

Deronula SchUll

(")row/a I Kiltllng) Hendev) ·

confervacea (Cleve) Gran c c

dubws I Fmkel Hustedt -

pumi/a (Castracane) Schlitt + hant:schli Grunow (..1.!)

!Schroederel/a delicawla (Peragallol

lhant:.1chtt var. pu.1tlla Grunow)

Pavdlardl

StephanopyHI Ehrenberg

Dtll·lum W. Bailey

turn~ ( Grevllkl Ralls m _Pntchard

bnghtwellii (T. West) Grunow ex Van Heurck w .'J"trepwrht'Cil Shrub~ol~

Eucampta Ehrenberg

tame.\'/.\ Shri.{b<.o!e +

:odiacus Ehrenberg +

Thala.ISIOI"IrO Ckve

Vwnardia Peragallo

ant;?UJte-lmeata (A. S<.:hm!dtl G. Fryxell

flacdda (C:lstracane) Peragallo w & Hask c

Hyalodiscus Ehrenberg

ICtHCinoilra pol_1chorda !Gran) Gran)

scu11cus ( KUmng) Grunow + + haluta IGrunnw) O'>tenfeiJ + + + O::(W)

Lauderia Cleve

bramaputrae I Ehrenberg) Hf.tka n~~on <;(wl + C(W) C(W)

borealis Gran T

& Lo<.:kl.'r -i- + + c

(annulata Cleve)

I Thalasswsira lacu.l'lrH 1 Grunow) Haslel '

Ltptocy!indrus Cleve

rCoscin()(ltSCIH lacu.l/rl\ Grunow)

damcus Cleve +

dectpten.Y !Grunow) Jnrgenscn ' ' mediterraneus (Peragailo) Hasle

+ eccenmca 1 Ehrenberg) Cleve +

tDacty/iosolen mediterraneus Peragallo) +

tCoscinoducus acentncus Ehrenberg)

m1mmus Gran (39) + + gwvida Cleve c

Ltthodesmium Ehrenberg

<.:utllardii Hasle

undulatum Ehrenberg +

h_~alina (Grunow) Gran

~

-i-

Melosira C. A. Agardh

.'eptopus !Grunow) Hasle & G. Frvxell f

arcttca (Ehrenberg) Dickie c c ' c ' ' c I ~O.\CtnodtS<"US lmeaws Ehrenbe~gJ

dubia Kiitzing

!t·~·amlen van Gonr

lineata (Dillwyn) C. A. Agardh

norden.~J.:toeldn Cleve '

Uuergensii C. A. Ag.ardh)

pseudonanu Has!e & HeJmdal

moniiiformis (().F. MUller) C. A. Agardh

rotula i~lcun1cr w

+

nummu/oides (Dillwyn) C. A. Agardh

!{"eJn:{logti /Grunow) G. Fryxell & Hasle tj1uwatili.1· Husu:dtl

varians C. A. Agardh Paralia Heiberg

BACILLARIALES iPENNALESl

sulcata (Ehrenberg) Cleve Podosira Ehrenberg

Achnanthes Bury (42)

montagnei KUtzing (22)

hw.wlettiana ( K Utzing) Grunow

stel/igera (Bailey) Mann

hrt'l'tpes C. A. Agardh

Porosira JOrgensen in Nordgaard

delicatula IKUtzing) Grunow em.

glacio/is (Grunow) JOrgensen c Lange-Bertalot

Rhi:oso/enia Brightwell

- var. delicaiU/a

alara Brightwell + +

gibberula Grunow

calcar-avis Schultze +

I hw ~oletllana ( KUtzmg) Grunow

cylindrus Cleve ( 40) +

Jn Cleve & Grunow)

de/icatula Cleve +

taentata Grunow ' Amphtprora Ehrenberg ' ' c c +

eriensis H. L. Smith

c

fragilissima Berg w + (+) (+)

.a law Ki..itzi ng ( 1 1 J

hebetata f. semi:spina (Hensen) Gran + kjellmanntl Cleve

imbricata Brightwell ...

orna1a Bailey c

Page 44: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

16 L. Edler. 0. Hdllfon & A. N11!m1

pa!udo>a W Sm\\h var. pa!udo~a - var subsalina Ckve

Amphora Ehrenberg {421 coffeaeform!S IC A. Agard hi Ki.iwng

- var. cojfeaeform/S - v<!r. perpusd!a (Grunow) Cleve

ova/IS Kutz1ng var. OI'Oil.\ (var. /Jbyca 1 Ehrenberg\ Clew\

pediculus Ki.itztng Asrenonella Has sa ll

form0.\0 Hassall (graol/ima 1 Hantzschl He1bergl

gtaoalis Castracanc {Japomca Ckve & \1ol!erl

kanona Grunow tn Cleve & Grunow Baollana Gmelin

pax.i/f1[er (0. F. Mi.il\er) Hendey (paradoxa Gmelin\

Berkele_ya Grevdle nmlarH ITrentepuhll Grunow

1Amph1pleura ruu/ans (Trentepohl) Cleve)

Brebissoma Grunow boe<kll !Ehrenberg) Grunow

Caloneis Cleve (42\ amphisbaena 1 Bory\ Cleve var amphtSbaena

143) - var. subwlina (Donkln\ Cleve

permagna (Salley) C\eve (~3) Campr!od1SCUS Ehrenberg t43l

biCoSiatus W. Smith !c/ypeus var. biCostata (W. Smith)

Hu:aedt) fhpeus Ehrenberg echene1s Ehrenberg

Cocconeis Ehrenberg (42l pediculus Ehrenberg placentula Ehrenberg rcutelfum Ehrenberg var. scutellum

- var. parva Grunow stauronet[orme tV an Heurckl Okutw

(scutelfum var. stauronef(ormts Van Heurck)

Cylindrotheca Rabenhorst ~rae~/is ( BrCbt:-~on l Grunvw

cYmatop/eura w. Smllh ( ·0) elliptica (Brebls~on) W. Smnh solea { Brebtsson) W. Sm1th

Cymbe/la CA. Agardh (42> aspera (Ehrenberg) Cleve emu/a (Hempnch) Grunow ventricosa KUtztng

Diatoma De Candolle elongarum (Lyngbyel C. A. Agardh vulgare Bory var. constricta Van Heurck

Dip/antis Ehrenberg { 42) didyma (Ehrenberg) Cleve smithii (Brebisson) Cleve

Epithemia Brebisson { 42\ sorex Ki.itzing turg1da (Ehrenberg) Ki.itzing zebra (Ehrenberg) Kiltz1ng

Eunotia Ehrenberg (42) ptctinalfs {Ki.itzing) Rabenhorst var.

-76-

KB AB SB

+

I'

(+I (+I i+l

+

CB

(+I

NB

+ +

ill I

RB GF

+ +

AS BS BB

+

n n 11

ill + + +

I I

ventralls t Ehrenberg) Hustcdt Fragtlarw Lyngbye {42)

capucma Desm;:LZ!eres consrruens (Ehrenberg) Grunow var. construens

- var. rub salina Hustedt cro10nensu Kitton mrermedta Grunow pmna1a Ehrenberg I l)

Gomphnnema C. A. Agardh {42) llCUmlnatum Ehrenberg consmctum Ehrenberg oft1•aceum I Lyngbye) Ktitztng

( Gomphone/S olivaceum ( Lyngbye) Dawson) Grammarophora Ehrenberg

manna { Lyngbye) KUtZJ ng (I I) oceanica Ehrenberg

Gyros1gma Hassall (4~) acummatum { Ki.iwngl Rabenhorst auenuatum IKUtzing) Rabenhorst balncum {Ehrenberg) Cleve distortum IW. Smith) Cleve var. diHorrum

- var. paiken (Hamson\ Cleve fascio/a (Ehrenberg) Griffith & Henfrcy kuet:ing11 !Grunow) Cleve macn1m IW. Smtth) Cleve JCalprOidcs !Rabenhors!) Cleve

~·ar. t'XImla tThwanc~) Cleve spencer~ I W. Smith\ Cleve Hrlg1fis (W. Smtth) Cleve tenu/roHrts I Grunow\ Ckve·Euler voansbeckti rDnnkinJ Cleve

Hant:.1chw Grunow IP('Ctabl/t.\ t Ehrenberg) Hustedt 153\

Lmnnphnra C A. Agardh t-l2) cvmmun/J l Heiberg) Grunow debt fl., ( Kuwng) Grunow ehrenhert:iJI Kutzing/ Grunow {53\ vao/11 I Ehrenberg\ Grunvw v:~r. ani~ flea

1 Kutz1ng1 Perago.~l:o Muswg/oi(.J Thwa1tt:~ (42\

1tnlfh/l Thwane-; .11/UYI(U/;.J (kry t-!2)

aven11("('11 BrC:b1~son { \'lruiula var. avenacea 1 Breb1~~on) Van Heurck)

nncta I Ehrenberg) Ralfs 10 Pntchard (53) cr_rptocephala Ki.itZlng var. cryptoceplra/a

- var. rent'fa ( KUtzing) Cleve dm•eta { W Smith) Ra!fs 10 Pnt..:hard ('/t·guns W. Sm1th gr,•(!ana Donk1n humaosa Breb1sson manna Ra!fs pela.(!tca Cleve ( 10) pere.~nna (Ehrenberg) KUtzing var. paegr~na

- var. kefvingiensts (Ehrenberg) Cleve pseudomemhranacea Cleve-Eu!er PY.~maea Ki.itzing (53) rad1ow KUtzing rhomhtca Gregory rhynchocephala Ki.i1z1ng

-77-

KB AB SB CB

' '

ACTA BOT. FENNICA 128119841

NB RB GF

If If f

If if I

+ + + + + + + +

+

+ + +

+ I

If

AS BS

+

17

DB

+

Page 45: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-78- -79-

18 L. Edler. G. Hiillfors & A. Ntemi ACTA BOT. FENNICA 128 ( 1984) 19

KB AB SB CB ~B RB GF AS BS BB KB AB SB CB NB RB GF AS BS 88

saltnarum Grunow - var. venmcosa !Kiitzing) Grunow

transuans Cleve var. tluesu (Grunow) Cleve gibbuula (Ehrenberg) 0. Muller

f. de/icatula Hetmdal + Stauroneis Ehrenberg !42)

trrpunctata (0. F. Muller) Bory membranacea (Cleve) Hustedt +

(gracilis Ehrenberg ) spicula Hickte +

•·anhneffemi Gran c c Sunopterobta Brebisson

••mdula Kii!Zing tntumedia L.ewts !43)

."'II:!Chta Hassall (42 ) Surirella Turpin ( 42)

aCicularrs W. Smtth If

.._ capromi Brebisson 1 43) If

deltcausstma Cleve + ~emma (Ehrenberg) Kiitzing + + clnsterrum t Ehrenberg) W. Smith I I. I I) + + + + + or + ovalir Brcbisson var. ova/is ( I) I

cylindrus !Grunow) Hasle c c - var . crumtna (Brcbisson) Van Heurck ( I) I

( Fragtlarra cyltndrus Grunow) ovata Kiitzing (I) I

( fragtlariopsis c.vltndrus (Grunow) Krieger) Striatula Turpin ( 43) I

dubta W. Smith tenua Gregory var. nuvosa A. Schmidt (43) If

Jiliformts ( W. Smith) Hustedt Synedra Ehrenberg (42)

[on/leola Grunow acus Klitzing var. acus If I

f ngrda Grunow c c c - var. angusrisstma Grunow

f rustulum ( K iitzi ng) Grunow I pulchella Ralfs

f +

I( I)

I I

gracilis Hantzsch ex Rabenhorst rum~n.f Klitzing If

grunowii Hasle + tah11/ata !C. A. Agard h) Klitzinl( (45) I

(fra.~i/arra oaanica Cleve) ulna (Nitzschl Ehrenherg If

(fragi/ariopsis oaanica (Cleve) Hasle) •·uuchrriae ·K iitll ng If

hungarica Grunow ( 43) Tuhrllurra Ehrenberg

hybrtda Grunow (43) f entnrura !Lyngbye) Kiitztng If I

mtermedia Hantzsch ex Cleve & Grunow ,11occulosa !Roth) Kiitzing If If

Thala.uwnema Grunow ex Hustedt (capitella Hustedt)

longtSSima I Brebissonl Ralfs + + + + + + .._ nu:schiotdes Hustedt c

lorenztana Grunow (43) I Thulasstothnx Cleve & Grunow

mtcrocephala Grunow I (rauenfe/dii Grunow in Cleve & Grunow +

paleo !Kiitzing) W. Smith I longtwma Cleve & Grunow +

pa/eacea Grunow (44) w w "' "' (l)w Ill Tropidoneis Cleve

pupustl/a (Kiitzing) Lange-Bertalot I dann/tltii Cleve-Euler ... +

pseudodeltcuttssima Hasle + lt ptdopttra (Gregory) Cleve +

puncrata ( W. Smith) Grunow (43) Raphidophyceae ( Chloromonadophyceae) p ungens Grunow + pu;tl/a !Kiilllng) Gruno w em. Lange-Bertalot If RAPHID0MONADALES

tkutt:rngiana Hilse) fionyosromum Diesing ( 18) sca/aris (Ehrenbe rg) W Smith (4.1 ) sutata Cleve c ~

- f. ohtusa Hasle + EUGLENOPHYT A stgma !Kiilllng) W. Smith (43) stgmoidea !Nitz~hl W Smith (4Jl

Euglenoph) ceae

subtilis ( Kiitzing) Gruno w H JG LE NALES

tryblionella Hantzsc h (43) w!rmicularis (Kiitzing) Grunow (431

Afla.Ha 0Ujardin (5) + Optphora Petit

t ula<'lum F.h re nberg arbu;-cu/a Stetn

marryi Hcnbaud Phatodactylum Bohlin

venculo.rum Ehrenberg

tricornurum Bohlin (23) + Eu((lena Ehrenberg (42)

Pinnularia Ehrenberg !ICuJ Ehrenberg f

quadratarea (A. Schmtdt) Cleve var. a .~.1·uns Schmarda

stuxbergii C:leve (I) c c c c proxima Dangeard +

Pleurosigma W. Smith (43) rplfngyra Ehrenberg f

angulatum !Quekett) W. Smith I mpttm ( Dujardin) Klebs f

elongarum W. Smith I vtridis (0. F. Muller) Ehrenberg ef

subsalsum Wislouch & Kolbe If Eutrepria Perty ( S) +

lanuwii Stuer + + Rhotcosphenia Grunow

abbreviara !C. A. Agard h) Lange-Bertalot virtdis Perty +

(curvata (Kiitzing) Grunow ex Rabenhorst) Eurrepuel/a da Cunha (5) + + +

braarudii Throndsen + Rhopalodia 0 . Muller

grbba (Ehrenberg) 0. Muller va r. gibba gymnastica Throndsen + +

Page 46: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-80- -81-

20 L. Edlu. G. Hdllfors & A. Nt~mi ACTA BOT. FENNICA 128 ( 1984) 21

KB AB SB CB NB RB GF AS BS BB KB AB SB CB NB RB GF AS BS 88

L~pocinclts Perty ( 5) Chlorophyceae

ovum Ehr~nberg em. Lemmermann VOL VOC ALES (incl. TETRASPORALES)

Phacus DuJardin ( 5) Brachcomonas Bohlin · fongteauda (Ehrenberg) DuJardin pl~uronecus (() . F. Muller) Dujardin

rubmarina Bohlin (23) +

pyrum ( Ehrenb~rg) Stein Ccm~ria Diesmg (5. 54) + + + + +

Strombomonas Denandrc Chlamydomonas Ehrenberg (5) + + +

marina Cohn (I) c d~J7andm (Roll\ Der1andre Eudonna Ehrenberg

Trachelnmonas Ehrenberg htsptda (Pertyl Stem em. Denandre

elt'gans Ehrenberg unicocca G. M. Smith

volvoccna Ehrenberg Glo~ocysm Nageli planctomca 1 W. & G. S. West) Lemmermann

Conium () . F Muller

CHLOROPHYTA ptCiora/~ 0 . F. Muller

Prasinophyceae (incl. Loxophyceae) roccale ( DuJa rdin) Warming

Pandonna Bory em. Ehrenberg PEDINOMONADALES

Pedinomonas Korsikov (5) +

murum (0. F. Mlillerl Bory Planktococcus Korsikov

1pha~rocyst:formis Korsikov

PTEROSPERMATALES Planktnipha~na G. :vi . Sl)'lith

Micromonas Manton & Parke ge/a11nosa p . M. Smith

pustlla (Butcher) Manton & Parke + + + ... Sphaeroo-stis Chodat em. Korsikov Rhrn~tui Chodat + +

Puudoscourfie/dia Manton marina (Throndsen) Manton

-t-CHLOROCOCCALES

Mantoniel/a Desikachary squamata (Manton et Parke) Desikachary + + Ac11nastrum Lagerheim

Nephroselmis Stein ha111:schit Lagerherm

minuta (Carter) Butcher ? Anktstrodesmus Corda

olivacea Stein em. Moestrup & Ettl (a/cat us (Corda) Ralfs (I)

pyriformts (Carter) Ettl ~ Botryococcus Kiitzing

rotunda (Carter) Fott braunu Kiitzlng + + + +

Pterosperma Poucher Cuelastrum Nageli

crista tum J. S.:hiller + + cambricum Archer

vanhoefftnti (Jorgensen) Ostenfeld mtcroporum Nageli

f

in 0stenfeld et Schmrdt + rwculatum 1 Dangeard) S~nn f

Pachysphaua {)stenfeld in Knudsen et Ostenfeld + Chuduul/a Lemmermann em. Fo tt

f

pe/agica Ostenfeld in Knudsen et Ostenfeld + (ubsalsa Lcmmermann Cruct~~nlcJ Morren

MAMIELLALES quadrata Morren 'tCtangularis !A . Braun! Gdy

e "'-

Mamtella Moestrup l~trap~diu !Kcn:hnerl W. G. S. West gilva (Parke & Rayos) Moestrup (49) + Dtctyv.<pht: '"rum Nageli

ellrenberxtanum Nageli

PYRAMIMONADALES ~l~gans Bachmann

Asteromonas Artari pnmanum Sk UJa +

gracilis Arta ri + (stmpl~x Sku;al

Halosphaera Schmitz pulchellum Wood + + + + + +

minor Ostenfeld + France1a Lemmermann

viridis Schmitz + artt~ala 1 Lemmermann) Korsikov

Pyramimonas Schmarda (5) clroe>< hui (Lemmermann) G. M. Sm11h

grossi Parke + Col~nl<~nta Chodat em. Korsikov

obovata N. Carter + radJala Chodat

orienta/is Butcher + + Kirchneri~/la Schmrdle + + + contona (Schmidle) Bohlin e

PRASINOCLADALES lunam (Kirchner) Mobius

Tetraselmis Stein (55) obesa ( W. West) Schmidle

canvolutat (Parke et Manton) Norris, Hori Lugerheimia Chodat

& Chihara + xen~vens1s Chodat

cordiformis (Carter) Stein + longtseta (Lagerheim) Printz

(Cartena cordiformis (Carter) Diehl) Micractinium Fresenius

(Piarymonas tetrathelt G. S. West) pustllum Fresenius

Page 47: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-82--83-

ACTA BOT. FENNICA 128 ( 19841 23 22 L. Edltr. G. Hiillfors & .f Ni~mt

KB AB SB CB NB RB GF AS BS BB KB AB SB CB NB RB GF AS BS BB

- var. Jisetformts Chodat f ~

Monoraphidium Koniarkova·Legnerova braunu tNagelil Komarkova -Legnerova

tllipsotdeus Chodat

(Ankwrodtsmus braunii (Nagelil

granulatus W. & G. S. West f

Brunnthaler)

gutwinskti Chodat +

capricornutum (Printz) Nygaard

intermedius Chodat f

tSeltnastrum capricornutum Printz)

le!(vrti Deflandre + +

contnrtum (Thuretl Komarkova-Legnerova

obftquuJ (Turpin) Kli!Zing f

(45) + + + + + -t- tacutus Meyenl

+ +

(.~nkwrodtsmus angustus Bernard ?)

opolitn.riJ P. Richter +

grtffithu ( Be rkeley) Kom:lrkova-Legnerova (t) .,. o•·alternu.~ Chodat

+

t.-lnkiSirodesmus acicularis (A. Braun)

wnt Hortohagyi f

Korstkov)

1ptnost11 Chodat f

minutum 1 Nagelil Komarkova-Legnerova + + Schroedtrta Lemmermann

+

(Stltnasrrum mtnutum tNageli) Collins)

stll~ua IS.:hrnderl Lemmermann

mtrabtlt tW. & G. S. West) Pankow + + +

I Ankistrodesmus settguus (Schroder)

(Ankisrrodesmus mtrabilis I W. & G . S.

G. S. Wesn

West) Lemmermannl

Sorastrum Klitz1ng

se11[ormt (Nygaard) Komarkova-Legnerova +

sptnulo.•um Nageli

(Arrkistrodesmusfalcatus va r. setiformis

Tnraedron Klitzing

Nygaard)

coudatum !Corda) Hansg1rg

Nephrocytium Nageli

limnettcum Borge

agardhianum Nageli f

mtmmum (A. Braun) Hansgirg

lunatum W. West f

plane tomcum G. M. Sm1th +

Oocystis Nageli 13)

quadratum -~Remsclil Hansg1rg f

borgti Snow + + + + + + + ... 1-regulare Kiitzmg var. ngulart 14)

lacustrts Chodat .... + + + + + - var. tncus Teiling (4)

parva W. & G. S. Sm1th + trt~onum (Niigeli) Hansg~rg

pelagica Lemmermann + + Treul>arta Bernard

solitario Wittrock 1n Wittrock et Nordstedt + + trtuppendtculata Bernard

submarino Lagerhe1m + + + + + + + + Trochtscw Kii!Zing brachtolata (Mobius) Lemmermann +

Pediastrum Meyen arrgulosum (Ehrenberg) Meneghmi ULCJTR ICH:\ LES biradiatum Meyen bor,vanum (Turpin) Meneghim r. clathra tum (Schroterl Lemmermann f

Elakatothrtx Wille

consmctum Hassan

!!tlattrrosa Wille 1 II)

duplex Meyen r. \'trtdtJ (Snow) Printz (II )

(graci/limum (W. & G. S. West) Thunmark) Klebsormtdtum Silva. Mauox & Blackwell

t limneltcum Thunmarkl

j lacndum I Klitzing) Silva. Mauox &

integrum Nageli f

Blackwe ll II)

kawraiskyi Schmidle f

Koltel/a Hindak c

muticum Kiitzing f

ion~i>tta Hi ndak f. tenutS Nygaard (37)

prtvum (Printz) Hegewald

f'lanktontma S.:hm1dle +

simplex Meyen

lauttrbor'lt! s~t-:nldle + + + +

tetras (Ehrenberg) Ralfs

I Btnll<'!l'arta lauttrhornit 1Schm1dle) + + + +

Prosh kma-Lavrenkol

Polyedriopsis Schmidle spinulosa Schmidle

Scerrtdesmus Meyen (42) acumirratus (lagerheim) Chodat

+ + + + O!:DOGON IALES

apiculatus ( W. & G . S. West ) Chodat f Oedogomum Link ex Hirn (46)

arcuatus Lemmermann - var. arcuatus ZYGNEMATALES - var. platydiscus G. M. Smith

armatus (Chodat) G. M. Smith +

btcaudatus ( Hansgi rg) Chodat f

Arthrodesmur Ehrenberg

bicellulam Chodat (II) + +

tncur 1 Brebls>on) Hassall

brastlitrrsu Bohlin f

Clo.rttrium Nitzs~ h (42. 47)

brevisptrra (G. M. Smith) Chodat f

unculare T. West

carinatus (Lemmermann) Chodat

O<'Utum Brebisson var. voriabtlt +

communis Hegewald + + I Lemmermann) Kneger

(quadricauda auct. p. p.)

montltfaum ( Bory) Ralfs

derrticulatus Lagerheim + + Cosmarium Corda (47)

ecornis (Ralfs) Chodat var. ecornis f

Mou~rotia C. A. A!!ardh (46) + I

Page 48: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-84-

24 L. Edln. G. Hiill(ors & A .. Vtrmt

Spirogyra Link (46) Staurustrum Me ye n (42. 47)

gracile Ralfs ex Ralfs planktomcum Tctl ing

Zl'gnema C. A. Agard h (46)

KB AB SB CB :"liB RB GF AS BS BB

NOTES

(I) Requtres taxonomtc re-1 nvesttgation. ( 2) Hal me & Molder ( 1958') further report the ~pectes C.

dubtum Grunow and C. minuussimun Lemme rmann from the PoJO Bay. See. however. Pankow ( 1976· 261.

( 3) All species tn th is genus need taxono mtc re­In vestigation.

(4) See Pankow ( 1976). (5) In all areas probably ~eve ra l spec1es are present whtch

need to be worked out . (6) Recorded as an Inde pendent species in Hall fors ( 1979). ( 7) Thts spectes has mostly been recorded as Anabaena flos ­

aquae (Lyngbye) Breb1sson. In our opinton A. flos­aquae and A. lemmermannit should be kept as separate spectes. All samples With akinetes from the BaltiC Sea that have been stud 1ed have been A. lemmumannit. It has also been confused with A. baluca (Niemi & Hallfors 1974 ).

(8) Given by Pankow ( 1976) for the southern Balttc Sea. (91 Not 1n the sense of Pankow ( 1965).

( 10) Given by Pankow ( 1976) for the Balt1c Sea. (II) The determinatton needs conftrmatton. ( 121 Record ed from th e sea only without ak1netes. Akinete

fo rma t1on 1s a t t1mes abundant 1n ce rtain brackish­water rock-pools <Hallfors 1984). See also Wa:rn ( 1952: 35).

( 13) Jarne fe lt 11964) re ports what is probably th 1s species unde r the name Anabaenopsts ctrculan s.

1 14) Systematic posltton un.:erta iO . ( 15) This ;pecies 1s a normal component .>t the lh•ra tn th e

southern part of the Kattegat and Belt Sea area (K B). ( 16) Easily .:onfused with spectes of ~ chroonema dnd

Pseudunabaena . ( 17) Acctdentally planktonic filaments are eastly confused

with Oscillatona spp. ( 18) The spe.:ies have not been worked ..; ut. ( 19) C. balttca ( BUttner) Carter and C marina ( BUttner)

Butcher recorded from the shore at K1el (BUttner 1911 ). (20) D. acuta 10 Ntemi et al. ( 1970) should be referred to D.

norvegica. (21 l Recorded twice in the so uth east Katte!!at 1n 191!3 (Edler

& Wall in. unpubl. ). (22) Give n by Pank ow ( 1976) from the western Baltic Sea. (23) Ma tn occurrence in roc k-poo ls (see Droop 1953) 1n the

northern Balt iC Sea. (24) See Swift ( 1973) . ( 25) See Parke & Dixon( 1976). (26) Erroneously na med Diplopsalis lenucula tNiem1 &

Hallfo rs 1974) and Glenodinium lenucula (N1e rni 1971. 1972). Diplopsalis lenticula Bergh ( = Gl~nodintum lenticula (Bergh) Schiller), however. IS a dtfferent species.

( 27) T he reco rd ts based on the ob,ervation of s1ngle >Cale' onl y.

12l!l Marte m & Pa nkow 11972) and Pankow 11916) 1n add1t10n re.:ord Btcoeca orata Lemmermann. wh1ch. however. probablv does not belong here .

( 29) E~pecta lly in older ltter:lture the spectes has been comprehended 1n a collecti ve sense. inc luding the other spec1es of the 11enus ( = S. uvt'lla Ehrenberg) Such determ ina tions ~hould ra ther be gtven a~ Synura 'P· Sensu stncto the spectes should be Cited S. avella Ste1n em. Korst kO\'. Electron micros.:opy of the scale' 1s usually requtred for corre ct d ete rm10auon of most spec1es of the genus.

(30) Recorded by :-.: 1em1 et al. ( 1970). Sys tema tiC pO\Itlon uncert:lln. see P~rke & D1xon ( 1976: 557). The Ba lttc Sea fi nd 1S probably a reduced iorm of Chaetoceros wbtilis.

( 31) In addition. Hal me & ~! olde r ( 1958) me ntton f. sutatu 0 . Mulle r. var. alptgena Grunow and var. ltrata 1 Ehrenberg) Bethge from the tnne rmost part of the Po1o Bay

(32) Leegaard 119201 Incorrectly u'ed the name C. debt!H fo r th1s ~pectes .

(33 ) In the northern BaltiC Sea. chatns of C. wtghamtt with ve ry narrow aperture, have prevtously erroneou>ly heen determ1ned as C cnnuus accord tng to Hu,tedt I IQ27-19301. However. gen u1ne C. cnnuus •~ quite J1ffercnt (sec Grentved 195ol.

( 34) In add1ttvn to >OIItJf\ cd!s the spectcs also form' .:halO> whtch apparent !~ have been referred to C etbenu G1 un,;w le g. WoJo,l~lhb 193 51 and C. borealis Batley {!>~\er:.! p ... per)J.

( 35) N1c m1 et at. 11970) repo rt th ts sp.:ctes erroneously as C. oculus-trtdts Ehrenberg. Apparently the same spe.:tes 1s also reported as C. asteromphalus Ehrenberg tn several papers. C. grami IS well .:hara.~ te rized by the eccentrt.:al cu rvat ure of the •ahe. g1rdle bands tapenng to wards the ends and the wedge-shaped gtrdle view. C. oculus­indis and C. usternmphalu; probably do not belong to the recent nora of the northern Baltic Sea.

(36) C. oculus-tridts tS probably restn .:ted to the southern and weste rn Ba lttc Sea . Reports from G F are erroneous (Niemt et al. 1970) or dub1ous (Hal me & Molder 1958. Molder & Tyn n1 1968) .

(37) Hallfors & Hallfors f 19&3! ( 38) Records o f this speetes from the open sea (Molder 1962)

should probably be ascnbed to C. cas pta ( Hallfors & Niemi 1975) .

(39) See Leegaard ( 1920) The species is very rare tn NB . G F and BS. It should not be confused with the green alga Planktonema lautubornu.

-85-

140) R. rrltndrus ts an a !ten 1n the flora nf the Balttc Sea . The o.:C,ISional re.:ord by N1em1 & Hallfors ( IQ74) p robablv stems from ballast water. ·

(41 ) S . han1:.1chu va r. pusilla has re peatedly been reported from eutrophted waters. In Finnish litera ture . however. th., epit het probably covers several 5mall centric spectes. among others Thalasstostra J?uillardii. T. pseudonana and Cyclotella atom us ( Hallfors & Hall fors 1983).

(42) Additional speetes of this genus occu r occasionallv in the plankton. ·

(4)) Matn occu rrence 1n shallow ha\'< •n the innerm ost a rchtpelago.

(44) In Edler ( 1975) and Hiillfors 1 1979) t h 1~ spedes is called N acunastrotdes.

145) Accordtng to Patnck & Re1mer 1 1966) the cNrect name would be S. fasctculata IAgardhl Kiit ztng.

146) Sten le. accidenticall y planktonte lilaments can generally not be determtned to the spec1es .

(47) Undeter mined $peetes •>f •hts ge nus oc.: ur mt>re or les< regularly in estuarine areas

ACTA BOT. FE NN ICA 128 ( 1984) 25

( 48) The C. cf. afjims of Niemi & Hallfo rs ( 1974) ts probably an undescnbed spectes lcf. Ha llfo rs 1979)

( ~Q) Moestrup I 1984) ·

(50) The r~cord from GF of Luther ( 1934) of Hym~nomonas roseola Ste1n . appears to belong here .

( 511 For a discussion <>f the species co ncept 1n the genus . see Z1mmermann et al. (in press).

(52) In add ition. Kell ( 1981) gi\'es S. pot amos (Weber) Hasle for the eastern and central Ba lric Sea.

(53) Kell ( 1981)

(54) Mos t records appear to be of mt~ldent 1 fied Pyramimonas and Tn raselmts ~pecies .

f 55\ Norris et al. ( 1980)

ACKNOWLEDGEMENTS

We thank Tvtirminne · >t>!ogi~al Station for good work ing factltttes and the Nattonal Swedish Environment Protection Board fo r covering travel expe nses. D r. G. Russell ILtve rpool) k10dly checked th e English.

REFERENCES

Bii tt n~r . J. 1911 D1e farh1gen Flagelhten de' l<1eler Hafens - Wt<~. Meere~un te r; .. At-t Kiel. ':. F. 12: 119-133

Chm tensen. T. & Thomsen. H. A. 1914 .\lgd'ortegnels• -}5 pp .. Kebenhavn . ..

Droop. M. R. 1953: On the ~cology o f nagella te~ from some bracktsh and fresh water rockpool< of F1nla nd. - Acta Bot. Fenntea 51 : 1-~2.

Edler. L. .197;. Seasonal changes of phytopla nk ton 1n the Balttc 1n 1973 anc:l 1974. - Paper g• ·:en a t the 4th BaJt 11 Sympo~1 um on Manne B1 ology. Gdansk 1975. ) I) pp. 1 m1 mcogr. ).

Ekman. S. 1931 : Vorschlag zu e:ne r naturwls~en<chaftlt•. h .. -· E1ntetlung und T~rm1nolng1e Jes ll ·l)q~,·h .. ,, Mc" rts -­Int. Revue ges . H~d roh 1 ~ l. 25. 1(>1 . 1 · '

G·~nt ved . J. 1956: Pla n.: to log lcal cont nhut1on~. fl. T:~xonom1cal stucl1e' ... '• ·me Dani~h ~roas!al localitll'S. -~ed• ' . Darmark~ Fiskert- og Ha vunder~ . N.S If 12\: 1-J .l.

~! all fors. G. 1979: <\ preltminar: ched ·ltst of the phytoplankton of th e northe rn Balu.: "··~ - Pubis. Water Res. lnst. 34·3-24

~;ill fo~s. G. 1984: Ftlamen tous rock-p<lol all!!ae u1 the Tva rmtnne archtpelago. S. coast vf Finland. - Acta Bt•t Fenmca 126: 1- 111.

HaJ :fors. G. & N1cm1 . .\ . 1975: D1atums 1n IIHiace ,cd 1ment lrom deep bas1ns 1n the Balt tc Prnper ~nd th< Gull uf F1nla nc.J . - Mcrentutk1mu,la 1t Jo: lk / H . .-,r,,f\kn1ni!!S· 1nst. Skr. 240:71 - 77

Hallfors. S. & Hallfors. G . 1910: Pohtanp 1ta1anlahde n Ja Tamm1saaren - T varm1nnen aluccn kasv1plankton 05.08.191!2 [Ph ytoplankton of the Po1o R.ty and the ;~mmtsaa rt - . Tvarm10ne a rea on 1)5 0~ 1982 ( tn

nn1sh l 1. - Lans1- Uudenmaan V<,l<n~'.ltlJe luvhd1stvs r.y. MustiOnJo<n. F1skars1 njoen. Po•hJallp1!3Janl~hden ja Tamm1saaren me rtalueen yhte ls tarkka tlun vuo\lvht<en· veto 19K2. TutklmUSJulkai~U 26. Append" 1. 42 pp

Ha lm~. E. & \fold~r. K JOS S: Plank · . 'ogtsche L'n tersuo: hungen 10 cier Poir>-Bucht und angn:nzenden ?cwassern. I ll PhytoplanktN>. - An n. Bot . Soc. Va namo' 30()) · 1 -7 1.

Hensen. V . 188 7 !''ber d1e Bestim mung des Planktons. -13er. Komm . Wt~s . Unters . deu•~ her Meere in Kiel 12-1~ : 1-108.

Hustedt. F. 1927- 19 1(1 '=''" K1~<d; lgc n. - Rabenhorst 's !<rvprr•gamcn- l'.•ra <on Deut>•·hland. bs(erreich und der S~ 1tweu; '1 I ).1 -Q~O

larne1e.lt. H. (Q64: trber das K.1mmerplankton e1ner B•a.: k•L·as,·:rbu.- hl - Verh fnt l.1mnd. 15:402 41 ~.

Ke:t . \ · ·~ .<I f\ ~, ,. ' \l•.t r:lankt,•n ·Jer ns t se~ . - ·· Geod Geoph. ; co, ft R 1 ',' H . . tJ J- 26 .

l.eegaard. C lll 20 · \ ~ wropl~nkton fr0t'1 the Finn •~h waters dunng the mo nth •>f ~f1 y :9t '· -Acta Soc. Scten t. Fen n•cac 41!( 5). 1-~4

Luther. A. 1934· Uber e1ne Cc•cc.-,:.:~ ilee au~ dem Ftnn1schen Meerbusen. - Memoranda Soc. Fauna Flora F·: nn1ca 9·16~ ·I 71.

Martens. B. & Panh•w H. 1972: Taxonomtsche Bemerkungen zu einigen Algen aus den Bodde ngewassern ces Darss und des :Zingst lsiidlic he Os tsee). - Int. Rev'Je ges. H)dr0b 1ol. 57:779-800.

Moestrup. 0 . 1984: Further studtes o n Nephrosel mis and tts a l11es (Pras1noph yceae ). II. Mamiella gen.nov .. Mam1ellaceae fam.nov .. Mamiella l<s o rd .nov. - Nord . J. Bot. 4:109-121.

Molder. K. 1962. Ober die Diatomeennora des Bo unischen Meerbusens und der Ostsee. - Merentutkimuslait. Julk./Ha •sforskningsinst. Skr. 203: 1- 58.

Molder. K. & Tynni . R. 1968: Ober Finnlands reze nte und subfossile Diatomeen II. - Bul l. Geol. Soc. Finland 40: 1 5 1-170.

N1emi . A. 191 1: Late su mmer ph ytOpl" ·'•.ton of the Ktmlto a rch1pelagro 1SW ~oast of Finla.,rfl -- Ml're.,rutk imus·

Page 49: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-86-

26 L. EJ/er. G. Hiilljim & A. Niemi

I alt. Julk ./Havsf•.H'I.nln!!Sinst Skr 2.U: 3-1 7 N . A 1972: Observations o n ph ytopla nkton Ill

1e~~;ropiHed and non-~utrophted archipelago waters ~f the southern coast "f Finland. - M~morJnda so~ . Fauna Flora Fenn1ca 4K·63 - 74.

N. A & Hallfor~. G . 1974: Some phytoplan kton specl~> 1t:ml . · d s F na Flo ra

fr ,, m Balli~ water, . - Mcm\lran a oc. au Fcnn~ea 49:77-93 .

N' . !. SkuJa . H & Wdkn. T . 1970: Phyto pla nkto_n fro m lt:7;,1~ . P~JOV I k~n - T'armlnne area. S. coast of Finland.

-Memoranda Soc Fauna Flora Fennlca 48.63-74 ..

N R E Hon T . & Chiha ra. M. 19gO: ReviSion ot the o m s. · .. · B t Ma•

genus Tetrasc lmi' I Class Praslnoph y~eae) . - o . .,.

(Tokyo) 93:317-339. .

P k H 1965: Bemerkungen zur System~ttk dcr an ow. · . . h b g oder

Anabaena-Formen mtt splraltg, sc rau 1 •

kreisformlg gewundenen T nchome n. - Llmnologlca

1 Berlin) 3:1 63-172. Pankow. H . 1976: Algennora der Ostsee. II. Plankton

(einsc hl. benthi~her Kie~elalgen\ . - 493 PP·: Jena . .

M & D. n p S 1''76: Check-list of Bnush manne Parke. . I XO • . . .,

algae- thtrd revision. - J . ma r . btOI. Ass . U. K. 5(>:521-

594. . h u d P · k R &Retmer.C.W . t966: The dtatomsolt e nne .nne . . .

States. _ Vol. 1. 688 pp .. Philaddphta . Swift . E. 1913 : Dissodi ntum pseudolunula n. 'P· -

Phy,ologta 12:90-91. .. W M 1952: Rockv-shore algae in the OreJ!.rund

a::~~hip~lago . _ Acta ·PhytogeoJ!.r. Suect~a 30: 1-29K. I-

XVI. F. ' 1 W b H I 0 49· Entwurf etner nallirllchcn .tntct ung atten erg. . ., . .

dcr Ostscc. - Kiele r M~crcstors~h . 6: 10-15. .

W I . ·k J l9' 5· Ob~r c1nc Wa"crhlutc v11n o oszyns a. . · · . Cyanophy..:~en on dcr Danztgcr Bud ll _und cone Wuche rung d~r Dtatome~ Chactocerus Eobcnn.~run . -:-Bull. Acad . Polon . S..:. L~tt r .. Cl. Math . Nat .. Scr. B. s, .

Nat. (1): 101-114. pis. 6. 7. . . G . Zimmermann. B.. Moestrup. 0 . & Halltors. ..

Ch rysophyte o r heliozoon: Ultra stru,tural stud tes ''n a cultured specoes of Pse udopcdi nella (Pedtndla les ord . nov.). with comments on spcctcs taxo nomy. -

Pr otistologica (in press).

Received 14.V.1984

-87-

5. Rubin codes of phytoplankton

Code List P2, Phytoplankton, version 84334-GUZ, which

was distributed as Annex IX of the Guidelines for the

Second Stage of the BMP (amendment to the Baltic Sea

Environment Proceedings No . 12, 19 June 1985), should

be substituted by the new list published in:

Gunilla Zetterberg

Code List P 4, Phytoplankton

version 86165-GUZ

Published 1986, Stockholm

ISSN 0282-8375

17~- PP ,

Contact address: 86165-GUZ, Kodcentralen,

Riksmuseet

S-104 05 ·Stockholm

6. Phytoplankton identification sheets

The phytoplankton identification sheets are under pre­

paration by the expert group convened by Dr. Ulrich

Horstmann of the Federal Republic of Germany.

The phytoplankton sheets will be printed in the series

Annales Botanici Fennici, Acta Botanic a Fennica,

published by the Finnish Botanical Publishing Board,

Helsinki. The reprint copies will be distributed to the

Baltic Sea States through the Secretariat of the

Helsinki Commission.

Page 50: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

7.

-88-

Zooplankton

For the Baltic Monitoring Programme (BMP), meso­

zooplankton ( 0. 2-20 mm) is the only obligatory

determinand. However, the undisputed significance of

nano- (2-20 ~m) and microzooplankton (20-200 ~m) in the

pelagic ecosystem justifies a recommendation to include

them into the Monitoring Programme, but only as a

tentative parameter (see also Section D.3.d) and D.3.

Annex I).

a) Sampling

Mesoplankton shall be sampled by means of vertical

hauls with a plankton net (WP-2 net) . The WP-2 net

should have a mesh size of 100 ~m and should be hauled

vertically with a speed of about 0. 5 m/s. The hauls

shall be fractionated and the number of hauls to be

made at each station is dependent on local water

stratification. In principle, the following depth

intervals shall be used:

bottom

halocline

- halocline (included)

- thermocline (included)

thermocline - surface

The wire angle must be kept as small as possible during

sampling to assure that the whole depth fractions are

sampled.

The use of sonars and pingers is recommended to

exact knowledge of the depth position of the net.

Flowmeters can be used, but they are non-obligatory.

get

Pumps and other sampling devices can be used if

calibrated against the WP-2 net for the specific areas

and for different times, and the proper conversion

factors have been

zooplankton should

-89-

determined.

be sampled

Nano- and

by means of

micro­

water

samplers or a plankton pump, macro- (2-20 em) and

megazooplankton (20-200 em) by means of horizontal or

oblique hauls with larger nets (like the Bongo net),

high speed samplers or small trawls (like the IKMWT,

Isaacs-Kidd Midwater Trawl) .

b) Preservation

The samples shall be preserved in 4% formaldehyde

solution (1 part 40% formaldehyde solution and 9 parts

water). The formaldehyde has to be buffered to pH 8-8.2

wi~h d~sodiumtetraborate (borax) (Na2B4o3 • 10 H2o).

c) Subsampling

For subsampling the whirling apparatus by Kott (2) or

the Folsom sample splitter (3) should be used.

d) Species composition and abundance

7 483184A

When subsampling is needed, the volume of the subsample

must be chosen so that at least 500 specimens are re­

tained. Copepods shall be analysed to developmental

stage and sex of adult (c. I-III, c. IV-V, c. VI~ ,

c. VI O).

Since certain copepod nauplii and rotifers

the 100 ~m meshes, they can be excluded

obligatory mesozooplankton analysis.

will pass

from the

Macrozooplankton (medusae, mysids, chaetognaths, etc.)

are not sampled adequately by the WP-2 net either and

thus can be excluded from the obligatory analysis.

Page 51: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-90-

e) Biomass

The biomass is calculated as the sum of individual

volumes. The list of individual volumes elaborated by

BMB WG 14 (4) shall be used.

f) Data reporting

Data shall be reported

(according to Sections D.lO

on standardized formats

and D .11) . The abundance

and the biomass should be expressed both per m' and per

m3 • If flowmeters have been used, both the original and

the corrected values shall be listed.

g) References in Chapter D.7.

1.

2.

3.

4.

sieburth, J. MeN., Smetacek, V. & Lenz, J. 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions • Limnol. Oceanogr., 23: 1256-1263.

Kott, P., 1953. Modified whirling apparatus for the subsampling of plankton. Aust. J. Mar· Freshw. Res., 4 (8): 387-393.

McEven, E.F., Johnson, M.W. & Folsom, T.R. 1954. A statistical analysis of the performance of the Folsom plankton sample splitter based upon test observations. Arch. Met. Geophys. Bioklimatol. Ser. A, 7: 502-527.

Hernroth, L., (ed.), 1985. Recommen~atio~s on methods for marine biological stud1es 1n the Baltic Sea. - Mesozooplankton biomas~ assess­ment by the individual volume techn1que. BMB Publ. No. 10. 32 PP·

~,r

l

-91-

8. Macrozoobenthos

a) Soft bottom macrozoobenthos

The main responsibility for zoobenthos sampling and analysis is as follows:

Denmark: BMP K7, Pl, Ql, R3 Finland: BMP A2, A3, Cl, C4, Dl, F2, F5 German Dem. Rep.: BMP K4, K7, K8, M2 Fed.Rep.Germany: BMP Nl, N2, N3 Poland: BMP Kl, K2, Ll Sweden: BMP Il, K2, K4, R6, R7 Soviet Union: BMP F2, F5, J2, Kl

b) Soft bottom macrozoobenthos analysis

For the purpose of the Baltic Monitoring Programme, the

macrofauna is defined as that part of the soft bottom

fauna which is retained on a sieve with a mesh size of

1.0 x 1.0 rom (see 8).

Sampling

Sampling on

ferably be

shallow stations (70 m or less) should pre-

conducted during the

benthic species have semipelagic

daytime,

activity

since some

during the

night. It is essential that sampling of macrozoobenthos

is accompanied by some hydrographic sampling to provide

information about the hydrographic situation. There­

fore, as a minimum requirement, water should be sampled

as close as possible to the sea bottom, or a profile

with a calibrated CTD and oxygen probe should be taken.

The widely applied 0.1 m' Van Veen grab (modified

version after 2) has to be used as the standard gear

for benthic macrofauna sampling in the Baltic Sea,

because of its comparative reliability and simplicity

of handling at, sea. The grab should weigh about 25-35

kg when emptied. In order to reduce the shock wave

caused by lowering tne grab, the windows on the upper

side shall cover an area as large as possible, in

practice around 60% of its upper surface. The windows

Page 52: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-92-

shall be covered with metal gauze of 0.5 x 0.5 mm mesh

size.

There may be cases where the use of other gear with

smaller sampling area is advisable, e.g. if the fauna

is very dense and uniform. When other gears than the

standard grab are employed, intercalibrations have to

be done on a regional basis and on specific sediments

on which these samplers will be used. When a change of

gear is intended, it is recommended to sample parallel

with both gears for a period of 3-5 years.

Means are to be provided for attaching 20 kg of lead to

the upper edges of the jaws or inside the grab.

Precautions that must be taken when using the grab:

The settling down and the closing of the grab must

be done as gently as possible. This will reduce the

shock wave and the risk of sediment loss as a result

of lifting the grab before completed closure,

The wire angle must be kept as small

ensure that the grab is set down

vertically.

as possible to

and lifted up

If, as often happens on sandy bottom or erosion

sediments, less than 5 1 of sediment is collected, the

sample should be regarded as not quantitative, and a

new sample should be taken after loading the grab with

an extra 20 kg of lead as described above. This may as

much as double the effective sampling depth of the

grab. If less than 5 1 of sediment is still collected,

the sample may be used, but the low sample volume

should be stressed when results are given (cf. 2, p.

64). The evidence of this problem may be different in

different parts of the Baltic Sea, depending on, e.g.,

how deep in the sediment the species live.

/

-93-

The choice of sample size and number of samples is

always a compromise between the need for statistical

accuracy and the effort which can be put into the

study. One way to do this is to calculate an index of

precision. The ratio of standard error to arithmetic

mean may be used ( 3) , i.e. ( x = arithmetic mean,

standard deviation, n = number of samples).

s = A

reasonable error would probably be ::_ 0. 2 -"- 2 0%.

D = (D L 0.2)

On the representative statl' ons, at 1 t f · eas l ve samples

should be taken to enable the investigator to reach a

certain level of precision by sorting as many samples

strongly rec-as necessary. The same procedure is

ommended for all other benthos stations unless another

sampling strategy (area sampling) is employed in

national/coastal monitoring programmes (see also

Sections A.l and A.2).

recor e and documented The depth to bottom must be d d

separately for every sample at the time of sampling.

Nevertheless, the depth range shall be kept as small as

possible.

Each laboratory shall carefully check the exact

sampling area of its grab l. n order t k o rna e possible a

correct calculation of the number of individuals per

square metre.

Sediment description

observation stating

approx. depth .of the

shall be given by

sediment type, colour,

oxygenated surface layer

D.lO, last page).

visual

and the

(Section

Page 53: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-94-

Sieving

The standard sieve for the Baltic Monitoring Programme

shall be of metal gauze (stainless steel, brass or

bronze) and have a mesh size of 1.0 x 1.0 mm. In order

to collect quantitatively developmental stages of the

macrofauna and abundant smaller species it is, however,

recommended to use an additional sieve with mesh size

of 0.5 x 0.5 mm. This sieve must have the same

qualities as the 1 mm sieve. The mesh size of th~~­

sieves has to be checked from time to time for damage

and wear.

Attention must be paid to the following points:

- Each sample must be sieved, stored and documented

separately; - The volume of each sample must be measured. This can

be done by grading the container or by using a ruler;

- The grab has to be emptied into a container and

should be brought portion by portion onto the sieve

as a sediment water suspension. The use of

sprinklers and hand-operated douches to suspend the

sample is recommended. Very stiff clay can be gently

fragmented by hand. Between the pourings the sieve

must be cleaned to avoid clogging and

an equal mesh size during the

procedure;

thus to ensure

whole sieving

- The sieving of the sample has to be done carefully in

order to avoid damage of fragile animals. Therefore,

a direct jet of water against the sieve should be

avoided; - Visible fragile animals, e.g. some polychaetes, shall

be hand-picked during the sieving; stones and big

shells should be picked out to avoid the grinding

effect;

-95-

All residues retained on the sieves should be

carefully flushed off the sieves with water from

below and fixed. Spoons and other tools for sample

transfer should be avoided;

When the 0.5 x 0.5 mm sieve is used, the 0.5 and 1.0

mm sieve fractions must be kept separate throughout

all further processing.

Other sampling methods

Dredge hauls may be valuable as a complement to grab

samples, since mobile as well as large but compara­

tively rare species are more easily caught by dredging.

This is · especially true in areas almost devoid of

benthic fauna, where grab samples may be too small to

collect the remaining specimens. Dredge samples may

also be used for describing the relative dominance.

Descriptions of suitable dredges can be found in (4).

In areas where the burrowing depth of the fauna are

beyond the penetration depth of the grabs (or that type

of gear cannot be used), core samplers may be advisable

to use, provided that

factorily proven by

D.8.b)).

their efficiency has been satis­

intercalibrations. (see Section

In order to survey a large area and interconnect point­

like (station) information on epibenthos, large-scale

survey methods such as side-scan sonar and under­

water-TV may be used.

Fixation

The hand-picked animals and the sieving residue shall

be fixed in buffered 4% formaldehyde solution (1 part

40% formaldehyde solution and 9 parts water). It should

be noted that formaldehyde is regarded as toxic and

Page 54: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-96-

probably carcinogenic. Therefore, it should be handled

with great care and means for waste air exhaustion

should be provided for all laboratory procedures. For

buffering, 100 g of hexamethylenetetramine (Hexamine = Urotropin) shall be used per 1 dm3 of 40% formaldehyde.

Sodiumtetraborate (= Borax) in excess may also be used.

Preservation and storage

The samples shall be stored in

dark. The pH of the samples is

third month and adjusted to about

of buffer if necessary.

Staining

dark jars or in the

to be checked every

pH 7 by the addition

In special cases, i.e. samples from sandy bottoms, it

may be advisable to stain the 1 mm sieve samples to

facilitate the sorting process.

When the 0.5 x 0.5 mm sieve is used, this size fraction

shall always be stained with Rose Bengal for more

effective sorting. The staining shall be done before

sorting by:

- washing the sample free from the preservation fluid

by using a sieve with a mesh size smaller than 0.5 x

0.5 mm;

allowing the sieve to stand in Rose Bengal stain

(1 g/dm3 of tap water + 5 g of phenol for adjustments

to pH 4-5) for 20 minutes with the sample well

covered.

However, Rose Bengal (4 g/dm3 of 40% formaldehyde) may

be added already to the fixation fluid.

-97-

Analyses

Species composition, abundance and biomass should be

determined.

Sorting

Sorting should always be done using magnification aid

(magnification lamp, Stereo-Microscope). Small portions

of the unsorted material shall be put on a 0.5 mm mesh

size sieve and washed with tap water. The portions must

be flushed into a transparent glass dish of about 20 em

diameter covering the bottom of the dish as only a

lo?se and semi-transparent layer. The material shall be

looked through twice by regular scanning. The dish must

be shaken before the repeated search.

During the first examination, a piece of dark foil

shall be placed under the dish while a piece of light­

coloured foil shall be used for the second examination.

This ensures equal visibility of light- and dark­

coloured animals.

After having sorted each sample (except the first!) the

index of precision (3, p. 129; see also the above

paragraph on sampling) has to be calculated. When

reaching the proposed level of precision ( D::::, 0. 2 ~ 2 0%)

no further sample from this station needs to be sorted.

This applies only for the dominant species, each of

which takes up more than 10% of the total abundance.

When the 0.5 x 0.5 mm sieve is used, this size fraction

shall be sorted by scanning the sample twice under a

stereomicroscqpe. Before sorting, the size fraction

could be subsampled using a subsampler described by

Dybern et al. (2, page 61).

Page 55: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-98-

Broken animals shall only be counted as individuals by

their heads (e.g. polychaetes) or hinges of bivalves

with adhering pieces of tissue.

Biomass determination

The biomass shall be determined as formalin wet weight,

formalin dry weight and ash-free dry weight.

The biomass determination shall be carried out for each

taxon separately.

During the initial period after fixation the biomass of

organisms changes, and therefore formalin wet weight

shall be measured not earlier than three months after

preservation (1).

The formalin wet weight is obtained by weighing after

external preservation fluid is removed on filter paper.

While removing the water, the larger animals shall be

carefully and delicately turned over on the filter

paper. The animals are left on the filter paper until

no more distinct, wet traces can be seen. In practice,

tiny animals dry within a few seconds, while larger

ones take 20 seconds or longer to dry. Shelled animals

are weighed together with their shells. In the case of

large bivalves (length over 15 mm), the two shells are

opened with a scalpel and laid on filter paper. The

opened shells must be squeezed so that all the water

flows out of the mantle cavity. As soon as the non­

tissue water has been removed, the organisms are

weighed with an accuracy of 0.1 mg.

The formalin dry weight shall be estimated after drying

the formalin material at 60-80°C to constant weight

(for 12-24 hours, or an even longer

necessary for this process). Ash-free

be estimated after measuring dry

time, as may be

dry weight should

weight. It is

-99-

determined after incineration at 500-520°C in an oven

until weight constancy (about 12 hours, depending on

sample and object size). The temperature in the oven

should be checked with a calibrated thermometer,

because there may be considerable temperature gradients

(up to 50°C) in a muffel furnace. Caution is advised

not to pass a certain temperature ( 550 o) since then a

sudden loss of weight may happen due to the formation

of CaO out of the skeletal material of many invert­

ebrates ( caco3 ). This can reduce the weight of the

mineral fraction by 44%, This decomposition occurs very

abruptly and within a small temperature interval

( 6 ) •

Before weighing, the samples must be kept in a desic­

cator, while cooling down to room temperature after

drying as well as burning. Ash-free dry weight may also

be calculated using the conversion factors published by

BMB ( 5) •

c) Data reporting

All data should be reported according to details given

in Sections D.lO. and D.ll.

Whenever some taxon found

from the reported results,

stated and the reason

on the sieves is excluded

this should be explicitly

explained (e.g. Piscicola

geometra not included because it is a parasite) on the

Plain Language Record. Also results from dredge hauls

and any other survey methods should be reported in the

Plain Language Record.

A sediment description can be given in the Plain

Language Recor'd or, ~f ~ a more comprehensive sediment

analysis has been made, in the reporting format for

contaminants in sediments (see Section c.III).

Page 56: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-100-

d) References in Chapter D.8.

1. Brey, T. 1986. Estimation of annual P /B-ratio and production of marine benthic invertebrates from length-frequency data. OPHELIA, Suppl. 4: 45-54.

2. Dybern, B.I., Ackefors, Recommendations on biological studies in Publ. No. 1, pp. 63-76.

H., Elmgren, R. 1976. methods for marine the Baltic Sea. BMB.

3. Elliott, J.M. 1977. Some Methods for the Statistical Analysis of samples of Benthic Invertebrates. Freshwater Biological Association Scientific Publication No. 25, 158 pp.

4. Holme, N.A. & Mcintyre, A. 1984. Methods for the Study of Marine Benthos. Oxford, 387 pp.

5. Rumohr, H., Brey, T. & Ankar, S. 1987. compilation of biometric conversion factors benthic invertebrates of the Baltic Sea: Publ. No. 9: 69 pp.

A for BMB

6. Winberg, G.G. 1971. Methods for the Estimation of Production of Aquatic Animals. Academic Press. London, 175 pp.

7.

8.

Zetterberg, G. 1988. Code list 01 Baltic invertebrates, version 88163-GUZ. Kodcentralen, Riksmuseet, Stockholm, S-10405.

BMB Publication No. 12, in prep. = edition of the BMB.

revised 2nd

-101-

9. Micro-organisms

Methods to be used for microbiological monitoring

Total number and biomass of bacteria

Production of bacteria

Colony-forming bacteria (colony count)

Sampling sites and frequency

On monitoring cruises, including standard stations,

microbiological measurements should be performed on the

same samples as 14c-primary productivity measurements

are made~

For baseline studies near-shore stations (at least one,

but preferably three) should be monitored with higher

frequency, at least once a month.

Sampling

Water for microbiological analyses should be taken

the same samples as for primary production

ch lorophy 11-!:;.

from

and

The standard sampling depths for

measurements are: 1 m (2 m), ( 3 m), 5

and 20 m,

brackets.

non-obligatory depths

microbiological

m, 10 m, (15 m)

being given in

Sampling should preferably be performed in the morning.

Data reporting

All data repo'rting should follow the biological data

reporting format and should be given along with the '

phytoplankton determinands (primary productivity,

chlorophyll-!:; and phytoplankton):

Page 57: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-102-

for bacteria counts: total number, mean cell volume

and the factor for converting cell volume to carbon

should be given, for production of bacteria: thymidine incorporation

and factors for calculating net production should be

given, for colony-forming bacteria: the number of colony

forming bacteria per ml of water sample should be

given.

a) Method for measuring total number and biomass of

bacteria

The method for measuring total number and biomass of

bacteria with Acridine Orange

essentially the method presented

(AO) staining follows

by Hobbie et al. ( 2) •

However, one should note that other stains, DAPI (3),

ACRIFLAVIN (1) etc. may work better than AO in

different types of waters.

Acridine orange direct count (AODC)

Materials

Scintillation or other glass vials

heated in 500 °C for 4 hours) for

storing the samples

Formalin (35-39%), unbuffered

(particle free,

collecting and

Sterile filtration units for making particle-free

liquids

Syringes

Membrane filters

Nuclepore filters (pore size 0.2 ~m)

-103-

Procedure

Shake the sample well and draw a 20 ml subsample from

the sample bottle.

Add 0. 5 ml of formalin into the 20 ml sample through

the sterile filtration unit. Let a few drops out of the

unit before starting to add it into the sample vials.

Store the samples in the refrigerator for further

processing. Good preparations are obtained if staining

is done within 24 hours after formalin fixation.

However, good preparations have also been obtained

after storage times of several months.

AO-solution

1. Acridine orange (AO) solution: 0.5 mmol

15.1 mg of AO + 98 ml of deionized or distilled

water + 2 ml of unbuffered formalin (35-39%)

- make the solution particle-free by filtration with

a disposable filtration unit (pore size 0.2 ~m) just

prior to staining as described below, or

make the solution particle-free by filtration,

cover it with aluminium foil (solution is light

sensitive) and store it in the refrigerator (may be

stored up to several weeks).

2. Irgalan black solution

2 g of Irgalan black/one liter of deionized water.

Add 20 ml of acetic acid to make the solution 2%

acid.

Page 58: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-104-

Irgalan black staining of Nuclepore filters

Stain the Nuclepore filters (25 rom, pore size 0.2 ~m) 30 min. in 0.2 ~m filtered Irgalan black. Rinse care­

fully 3 times on 0.2 ~m filtered deionized water. Dry

the filters (5-10 minutes) and place them back in their particle-free petri dishes for

case. Use clean,

staining and rinsing.

Sample preparation

Rinse the filtration system thoroughly with sterile

water to start the procedure.

Place the Sartorius, Millipore etc. membrane filter

(pore size 0.2 ~m) on the sinther as the supporter.

Place the Irgalan black stained filter on the wet

Sartorius: avoid air bubbles.

Staining procedure

Add 5 ml of particle-free deionized or distilled water

into the funnel.

Pipette l-2 ml of sample water into the funnel (mark

the date and filtered volume on the sheet) and filter

to dry. Add 2-5 ml of particle-free deionized or

distilled water into the funnel and continue filtering

to dry.

Stain the sample with 300-500 ~l of particle-free AO

solution (0.5 mmol). Use the sterile filtration unit.

Keep the filtration unit covered with aluminium foil.

Allow two to five minutes for staining with AO.

Allow the filter to dry.

. .,.-"'~-'*~--

' -105-

Take off the Nuclepore filter when vacuum is still on

and write with a pen at the edge of it: sample label

and volume of filtration.

Allow the filter to dry for a few minutes (5-10 min)

and place it back into the box.

Store the filters in a dry, dark place (may be stored

for several months).

Microscopy

~ n .. 515) on the Place a drop of immersion o'l ( d 1

objective glass.

Place the filter (or a part of it if you want to look

at it again later) on the oil so that air bubbles are

not caught under it.

Place a drop of immersion oil on the filter.

Place a cover slip on the filter without creating air

bubbles.

Place a drop of immersion o'l h ~ on t e cover slip. The

sample is ready for counting.

Count at least 20 fields (10-20 cells/field). For

calculations, you need the filtration surface area and

the area of the counting (equation 1).

( 1) N (cell/ml) = X * A * d * 106 * a-1 * n-1 * v-1

A = area filtered (e.g. 193.59 mm2)

d = dilution due to formalin (20.5/20) = 1. 025

a = area counted (e.g. 640 ~m' )

n = fields c'ounted (e.g. 20)

v = volume filtered (1-2 ml)

X = total count of cells

Page 59: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-106-

Cell volume determination

Bacterial cell size distribution is determined by cali­

brated ocular graticules e.g. Patterson-Cawood or New

Forton Grids (Graticules, Ltd., England). At least 20

fields and the total of at least 50 cells are measured

(classified). The cells measured must be selected

randomly, e.g. count the cell closest to a pre­

determined spot of the graticule from each field. Do

not hesitate to count 50 fields altogether.

The actual measurement is done with the aid of

different size circles on the graticule. For cocci

select the circle closest to the size of the organism:

With Patterson-Cawood grid, and with about 1200 times

magnification the smallest circle is close to 0.2 ~m. For rods pick the circle that is closest to the width

(W) of the rod and another circle that is closest to

the length (L) of the rod.

Cell volumes are counted according to equation 2.

( 2 ) Biovolume ~m3 = ( n/4)W2 (L-W/3), where

L = cell length

W = cell width

For cocci L = W.

Results

Results must be expressed as:

A. Total number of bacteria, cells ml-l *106

(l.OOE6) " -1

B. Mean cell volume, ~m3 cell , and coefficient of

variation (l.OOOE-3), CV% c. Factor for converting cell volumes to carbon =

-3 0.35 pgC ~m

Biomass of bacteria = A * B * C

-107-

References:

1. Bergstrom, I., Heinanen A & s 1 c . ' · a onen, K. 1986. <;>mpar~s<;>n. of Ac;ridine Orange, Acriflavin and

~~sbentz~m~n sta~ns for enumeration of bacteria ~~ cl:ar and humic waters. Appl. Environ. M~crob~ol. 51: 664-667.

2. Hobbie, J.E., Daley, R.J. & Jasper S 1977. Use of Nuclepore filters for counting. bacteria fluorescence microscopy A 1 by Microbiol. 33: 1225 _1228 • · PP • Environ.

3 • Port:r, K:G •. & Feig, Y.S. 1980. The use ~dent~fy~ng and counting aquatic L~mnol. Oceanogr. 25: 943-948.

. b) Production of bacteria

of DAPI for microflora.

Method for measuring bacterial net production using

Tritiated Thymidine Incorporation

Bacterial production is measured by a modified

TTI-method (Tritiated Thymidine Incorporation), Fuhrman

and Azam ( 1) ( F · see ~gure D • 2 •) • This procedure was

adopted for routine use by Larsen et al. -- (2).

Materials

3 H-methyl-thymidine (20-100 Ci/mmol)

Formalin (35-39%)

Trichloroacetic acid 5% (ice-cold)

Filtration unit (e.g. Sartorius SM 16

1225 Sampling manifold)

Membrane filter (0.2 ~m)

Liquid scintillation equipment

547 or Millipore

Page 60: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-108-

FIGURE 0.2. Flow chart of TTI-measurement technique,

sample volumes, incubation times and

liquid scintillation procedure may vary

between sites.

25 ml seawater 10 nM 3H·thymrdine

t 30 min incubation

t 0.8 ml 37% formalin

10 ml

icecold ""'- J 5% TCA ~

··················0.2}-Jm

500J.ll ethyl· acetate 30 min 1 0 ml Aqualyte

-109-

Procedure

Twenty to twenty-five ml water

with 10 nM tritiated thymidine

samples are incubated

( 3H-methyl-thymidine,

20-100 Ci mmol-1 ) for 30

ture. When temperature is

hours may be used.

Incubations should be

minutes at in situ tempera­

below 5°C incubation up to 2

started immediately after

sampling. If storage cannot be avoided, larger amounts

of water (e.g. 1 1 sample bottles) must be kept at in

situ temperature, in a water bath, in the darkness and

incubations should be started within an hour.

Three formalin-killed (1% final cone.) blanks are

incubated along with three sub samples. Allow 10 min.

before adding label to blanks. Incubations are

by adding formalin to a final concentration

stopped

of 1%.

Formalin-killed samples are stored in the refrigerator

until filtration. A known volume of the samples is

filtered through 0.2

(Sartorius SM 111,

~m membrane 25 mm diameter filters

113, Millipore, Asypore). The

filters are rinsed five times with 1 ml ice-cold TCA

(trichloroacetic acid) and again five times with 1 ml

TCA with the chimneys of the filtration device removed.

The filters are stored in glass (preferably) or plastic

vials and, prior to liquid scintillation counting,

solubilized by 30 minutes' treatment with 0.5 ml ethyl

acetate. Certain scintillants (e.g. PCS, New England)

may make use of a solubilizer unnecessary (with

Millipore BS, Sartorius 113 and Asypore). This alterna­

tive is to be preferred since ethyl acetate is a strong

quenching agent and therefore inaccuracies in pipetting

will introduce large errors in counting efficiency.

Page 61: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

''-<;;:;r:yiJ/i(% ,, .,.Ji~w,. ,._j;l. ~'·

-llO-

After addition of the scintillation cocktail, the 3H-activity is assayed by liquid scintillation counting

and corrected for quench by external standard channels

ratios. Formalin pre-fixed samples are used as blanks.

Thymidine incorporation (TI, mol 1-l h- 1 ) is calculated

as:

TI = dpms - dpmB

SV X T X SA

where dpms and dpmB are the 3H-activities of the sample

and blank, respectively, SV is sample volume {1), T is

incubation time (h), and SA is specific activity of the 3H-thymidine (dpm mol- 1 ).

Batch cultures to evaluate the conversion of thymidine

into bacterial cell production should be performed for

each new sampling site during each of the annual suc­

cession stages (e.g. spring, summer and winter). For a

discussion on this subject, see (3).

For batch cultures, seawater (250 ml) is filtered

aseptically through a 0. 22 11m Millipore filter. As an

inocculum 25 ml seawater, filtered through 0. 6 11m to

remove predators, is added. The batches are incubated

at in situ temperature for 48 h. Every 12 h subsamples

are taken and preserved with formalin for bacterial

enumeration by AODC. TTl-measurements are carried out

at 4-8 h intervals following the procedure described

above. Finally, for each 12 h period the integrated

thymidine incorporation is compared with the observed

increase in cell numbers to obtain an empirical con­

version factor from thymidine incorporation to cell

production. As a guidance,

1018 cells mol-l thymidine

a conversion factor of 1.1 x

incorporated

to coastal marine environments ( 3 ) •

may be applied

The measured

0. 35 pgC 11m- 3 average cell volume and a factor of

should be used to convert production data into carbon

terms.

-lll-

Net production is thus calculated according to:

Net production, mgC m- 3h-l = TI * CF * cv * cc

where TI = thymidine incorporation, mol 1 -1 h-1

CF = 1.1 * 1018 cell mol -1

cv = 3 cell-l !lffi

cc = 3.5 * 10-7 !lgC -3

!lffi

References

1. Fuhrman, J.A. and Azam, F. 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters. Mar. Biol., 66: 109-120.

2. Larsen, J.B., Bjornsen, P.K., Gaertz-Hansen, o. and Olesen, M: 1985. Provisional investigations on the pelag1c carbon flow in open Danish waters. Rep. Mar. Pollut. Lab., 8: 1-49.

3. Riemann, B., Bjornsen, P.K., Newell, s. and Fallon, R. 1987. Calculation of cell production of coastal bacteria based on measured incorporation of H-thymidine. Limnol. Oceanogr 32: 471-476. •

c) Colony-forming bacteria

Determination of the number of colony-forming bacteria

Introduction

The determination of the number of colony-forming

bacteria is routinely performed by most of the

microbiological laboratories. These measurements do not'

require special apparatus other than basic equipment, The number

obtainable

the degree

study. It

of colony-forming bacteria is an easily

parameter which gives some information on

of pollution of the water bodies undo 1

has been found that the colony-forming

Page 62: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-112-

bacteria often react rapidly to environmental stress

( 2, 3 ) • Thus, in eutrophied and polluted areas, the

number of colony-forming bacteria and also its

percentage of the total bacterial number are subs-

tantially higher than in clean waters.

since the number of colony-forming bacteria is affected

by environmental changes, this implies that also the

type of nutrient media, the incubation temperature,

etc. influence to a great extent the results. The

method, therefore, necessarily requires a rigid

standardization.

For the determination of the colony-forming bacteria

the ''pour plate" and the "spread plate'' methods exist.

In most cases the results obtained by the two methods

are quite similar (4). Since the ''pour plate" method is

more frequently employed in routine measurements, it is

suggested that it be used for microbiological

monitoring (1).

Equipment

Microbiological water sampler

- ZoBell-samplers are very convenient.

Dilution vials - Screw cap test tubes with 9 ml of sterile water

having a salinity close to that of the sample may be

used.

Sterilized 1.0 ml pipettes

Petri plates of 9-10 em ¢

-113-

Thermostatically controlled water bath

- The flasks containing the nutrient medium should be

maintained at 42°C.

Nutrient medium

ZoBell's medium 2216 E is suggested. This medium

contains 5 g of peptone, 1 g of yeast extract and 15

g of agar per liter. The pH of the medium should be

7.6.

- Since the composition of peptone, yeast extract and

agar may vary according to the supplier, the products

from DIFCO (Detroit) should be used.

The water used for preparing the medium should be

~ged sea water with a salinity close to that of the

water samples to be studied.

- It is convenient to put 10 ml portions in test tubes,

since the test tubes allow rapid liquefying of the

medium and afterwards fast maintenance at 42°C. The

medium should be sterilized for 20 minutes at 12l°C

in an autoclave.

Incubator

- The incubator should maintain a temperature of 20°C.

Colony counting device

Sampling depths

The water samples should be taken with the microbial

water sampler under sterile conditions from 3 m below

the water surface, 3 m above the sediment, and at the

depth of the halocline. The depths should coincide with

those for phytoplankton and chemical analyses.

Storage

Storage of water samples should be avoided. A storaqo

time of 3 hours, however, in a refrigerator may bo

tolerable.

Page 63: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-114-

Procedure

The whole procedure has to be done under aseptic condi­

tions.

1) samples from the chosen depths are taken

thoroughly shaken.

and

2) The number of colonies growing on the plates should

be between 30 and 300. It may, therefore, be

necessary to dilute the water samples with sterile

water, with the salinity close to that of the sample

water.

The appropriate dilutions are prepared by pipetting

1 ml of the sample to the first dilution vial and

1 ml from there to the second vial and, if

necessary, continuing to the third vial. Mix well

between the dilution steps. Thus, dilutions up to

10-3 are obtained.

In near-shore

10-2 and 10-3 regions, dilutions of the samples of

Baltic

may be necessary, whereas in -1

Sea the original sample or the 10

may be used.

the open

dilution

3) 1.0 ml portions of the water sample or of a suitable

dilution is pipetted into 3 sterile Petri dishes.

4) A 10 ml portion of the 42 °C warm mol ten nutrient

medium is poured into the Petri dish and mixed with

the water sample. This is best done by moving the

dish several times in a clockwise and anticlockwise

direction. The agar medium will solidify within some

minutes.

-115-

5) When the agar medium has cooled down to room temperature, the dishes are placed upside down and

put together into stacks. These are covered with

plastic bags and then incubated at 20°C in the

incubator.

6) The colonies are counted after 7 and 14 days of

incubation. The first counting is considered only in

the case of fungal growth, which usually does not

appear before the second week of incubation.

7) The results are reported as number of colony-forming

bacteria per ml of water sample.

References

1.

2.

3.

4.

Gunkel, W. and G. Rheinheimer (1968): Bakterien, PP • 142-157. In: Methoden der meeres­bGiologischen Forschung (C. Schlieper 1 Ed.) ustav Fischer Verlag, Jena.

Rheinheimer, G. (1977): Regional and seasonal distribution of saprophytic and coliform bacteria •. In: Microbial ecology of a brackish water envlronment. Ecol. Studies, 25: 121-137. Ed: by G. Rheinheimer, Springer Verlag, Berlin, Heldelberg, New York.

Rheinheimer, G. (1984): The role of · h

small eterotrophs (bacteria and protozoa) in a shelf

ecosystem. In: The Biological Productivity of North :Atlantic Shelf Areas. Rapp. P.-v. rieun. Cons. lnt. Explor. Mar. 183: 144-151.

Vii.\iti'inen, P. (1977): Effects of composition ,,r· substrate and inoculation technique on pltll.<? counts of bacteria in the Northern Baltic B••· - J. appl. Bact. 42: 437-443.

Page 64: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-116-

10. Biological data reporting format

International Council for Exploration of the Sea

the

Revised August 1983

REVISIONS TO THE BIOLOGICAL DATA REPORTING FORMAT

In relation to the July 1981 version of the Biological Data Reporting Format, the folloYing changes have been made:

Section 3.2 Phytoplankton Primary Production

3. 2. 1

3. 2. 2

TiE~-~~~!~~-~~£~~~ (pp. 6 and 23 1n July 1981 version and in this version).

Column 53 bas been a.ssigned to "Attenuation determination method".

Columns 54 to 72 are unassigned.

The assignment of columns 70-73 to "Total irradiance (in situ)" and columns 74-77 to "Total irradiance (expe­rimental)" bas been deleted, and

Column 73 bas been assigned to "Irradiance unit".

Columns 74-77 have been assigned to "Incubator irradiance".

Data Cycle RecordWP· 7 and 24 1n July 1981 version and In-tti5-¥e;si0n1~

Columns 24 to 27 have been assigned to "Relative ura­diance".

Columns 45-49 are noY assigned to "Potential prl!:Jary pro­duction" (addition underlined).

Columns 50-54 are noY assigned to "Daily production ~ m3" (addition underlined).

Columns 60-62 are now assiqned to "Carbon d1oxide".

Columns 70-74 have been assigned to "Daily production per m2".

-117-

Section 3.3 Chlorophyll a

Section 3.4

3. 3. 1 TzEe Master Record (pp. 9 and 25 1n July 1981 version and In this-version)~-

Column 53 bas been assigned to "Calculation method".

~oulankton

3. 4.2

Column 24: RUBIN Code

a neY code number has been added for the List PL, Phytoplankton, limnic.

Section 3.5 Mesozooplankton

Q~!~_Qz£!~-~~£~~~ (pp. 14 and 30 1n July 1981 version and in this version).

Column 24: a neY code number has been added for the RUBIN Code List 01 Baltic invertebrates.

Column 37 should be changed to unassigned from identifier.

Column 38 should be changed to "D 1 eve opmental stage and sex".

Section 3.6 Zoobenthos

3.6.2 2~!~_Qz£!~-~~£~~~ (p. 18 in both versions).

Column 24: a d b ne•• co e num er bas been added for the RUBIN Code List 01 Baltic invertebrates.

Page 65: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-118-

CONTE1'TS

1. mRODUCTION •.... · . · · · · • · · · • · • · · · · · • • · • · · · · · • · · · • · · · · · · • · · · · · · · ·

2. OVERVIEvl OF THE SYSTEM • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

DErAILED DESCRJ:Pl'ION · · · · • • • • • • • · • • · • · • • · • • • • • • · • • • • • • • • • • · • • • • • • ). 6

6

Bio:t'Bster Record . ·. · · · · · · · • • · · · · · · · • · · · · · · · · · · • • • • · · · · • · · · 9 ).1.

).2.

).).

).4. ).5. 3. 6.

Phytopl~~ton Primary Production ··•••••·•·•···••••••••·••• 12

Chlorophyll .§:. •••••••••••••• • • • •• • ••• • ••••• • •••••• • •••••• •. 14

Phytoplankton • • · • • · · • • • • • • • · • · • • • • • • • • • • • • • • • • • • • · • • · • • • • • 16 Mesozooplankton •••••••••••••••••••••••••••••••••• 0 •••••

20 Zoobenthos •••••••••• 0 ••••••••••••••••••••••••••• 0 0 •• 0 0 ••••

23 3. 7. Plain Lang'\lage Record ............ • • • · • · · · · • · · · · · · · · · · · · · · ·

24 GENERAL REMARKS FOR ALL RECORDS ••.••••••••••••••••••••••••••••••

APPENDIX 1 -!DC COUNTRY CODES FOR ICES MEMBER COUNTRIES .. ·•·••••• 25

RECORD FORMS :

J3i oMas ter Record ............ • . · · · · · · • · · • · · · • • · · · · · · · • · • • · · · · · ·

Phytoplankton Primary Production

Type Master Record

Data Cycle Record

Chlorophyll §!;

•• 0 •••••• 0 • 0 •• 0 •••••••• 0 ••• 0 •• 0 • 0 0 •• 0 •••••

•• 0 0 ••••••••••••••••••••••••• 0 •••••••••••••

Type Master Record ........ •. • • · · · · • · · • · • · · • · · • · · · · • · · · · · · · • •

Data Cycle Record .... • .. • · • · · · · • • · · · · · • · • · · · · · • · · · · • · • · · • · • •

Phytoplankton

Ty-pe Master Record ... • ... · • · · • • · • • · • • · • · • • · · • · • · • • · · • · • · · • • •

Data Cycle Record ..... • .. • • • • · • • · • • • • • · • · • · · • • • · · • • • • • • • · · · •

Mesozooplankton

Type Ma.ster Record .......•... • • • · · • • • • · • • · • • · • • • • · · • · • · • • • • ·

Data Cycle Record ........ • .. • • • · • • • · • · • • • · · · • · • · · · • • • · • · · • · •

Zoo benthos

Type Master Record ...... •. • · • • • · · • • · • • · · • • · · · · • · • · · • · · · · · • · •

Data Cycle Record ...... • · · • • · • · · • • • · · • • • · · · • • • · · · · • • · • · • · • • •

Plain Language Record ...... • . • · · · · • · · • · • • · · • · • · · · · • • • · · • · · • • • •

Sample Description Form ......... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

- 0 - 0 -

26

27

28

29

30

31

32

33

34

35

36

37

38

-119-

INTERNATIONAL COUNCIL FOR THE EXPLORATION OF THE SEA

BIOLOGICAL DATA REPORTING FORMAT

1. INTRODUCTION

This format has been developed in response to a request to the International Council for the Exploration of the Sea by the Interim Baltic Marine Environment Protection Commission for a data reporting format which could be used for biological measurements obtained in the Baltic Moni taring Programme. The format has been designed to interface with the ICES Oceanographic Data Reporting System (see Manual on ICES Oceanographic Punch Cards, 4th Ed. 1979), which is used to report hydrographic and hydrochemical data relevant to an interpretation of the biological results, and has been based on the IOC GF-3 format for the international exchange of oceanographic data.

The Biological Data Reporting Format is intended to be flexible and is amenable for recording and exchange of data via standard forms, punch cards or magnetic tapes.

2. OVERVIE\1 OF THE SYST&'l

Four types of records are included in this format: a File Header Record (the BioMaster), a Series Header Record (the Type Master), a Data Cycle Record, and a Plain Lang~age Record (see Figure 1).

SERIES READER

RECORD

TYPE MASTER

DATA CYCLE DCR DCR

RECORD

FIIE HEADER RECORD

BIOMASTER

SERIES READER

RECORD

TYPE MASTER

DATA CYCLE

RECORD

I \ DCR DCR

SERIES READER

RECORD

DATA CYCLE

RECORD

i \ DCR D8R DCH

FIGURE 1: OVERVIEW OF FORMAT

Page 66: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-120-

Note:

For the reporting of data on mesozooplankton, the form labelled

"zooplankton" should be used. When data on protozooplankton

(tentative parameter) are to be reported, the "phytoplankton"

reporting form should be used and the Phytoplankton Type

Master Record should be marked with the code Z in column 77. ~ >-'·

" <!>

"' 0 0

" " <!> ~

"' rl-.... 0

" 0 ,.., .... p. <!>

" <+ .... ..., .... 0

"' <+ .... 0

" 0 0 ~

§ "' "' <!> <+ .: (D (D

" '"' tl> 0 0 >; p.

,_, tl> < (J) ~ Ol

~

Country ' f "' ... v<

"' Ship ' I

'"" }

0' Station No. __, '

(J)

-D

} >-' 0 Year >-' >-'

>-'

"' i Parameter ::;; ',;:' Method ' (

~ Specification ' (

i:j

"' <+

" 0 '< 0 ~ <!>

"' (D

0 0 >;

"" 0 >;

"" >-'

"' .... " g ~ "' (D

"' (D 0 0 >; p.

9 483184A

-121-

~

"' Country ' I ~

' Country "' 00 Shi ~ ~ v<

"" p Ship _,.

'"" l f..n

~Station No. .L a-, __, Station No.

CD CJ)

-.[)

b Year ~ 0 ,__, <+

~ >-'

-- .... ------ rl-

>-' ~ ~ ~ "" >-' ~

<!>

"' Parameter "' ~ ::;; ',;:' Jo'iethod ',;:' 0 t-<

0

~ Specification " -~ "' ----- I•'• d

~ r:: 0' p,

"' ~

~ ~ NSEW CJ)

tl> !:;:; ~ Ol "' Year 0 <+ <!> "' '"'

~

"' <!> 0 0

" "" "-' .... Q I~ " [J) ,.,

no ,, :~J' ((>

n 0 ,, p,

Page 67: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-122-

The BioMaster Record serves as the file header for the full series of biological data obtained at one station. The first 27 columns of the BioMaster Record are identical to the first 27 columns of the cards used in the ICES Oceanographic Data System so that the relevant hydrographic, hydrochemical and meteorological data may be easily correlated with the biological data obtained at the same station. The remainder of the BioMaster Record is used to record the types of observations made at that station and the number of Type Master Header Records which have been filled in for each observation type.

The Type Master Record serves as the header for the information relevant to the individual types of observations made. At present, five parameters are included in this format, with code numbers as follows:

Code No.

01 02 03 04 05

Parameter

Phytoplankton Primary Production Chlorophyll ~igments Phytoplankton Zooplankton Zoo benthos

For each parameter measured at a station, one or more Type Master Records will be filled in, according to, e.g., whether one or more than one method of measurement has been used. The first eleven columns are identical to Columns 1-8 and 19-21 of the BioMaster Record to provide for proper identification of the observation series (see Figure 2).

The Data Cycle Record provides the record for the individual data obtained with respect to the relevant Type Vaster Record. For example, the Data Cycle Record may contain information on the number of indi~idual organisms and their biomass according to species for phytoplankton, zooplankton, and zoobenthos. The first 11 columns are identical to Columns 1-8 and 19-21 of the BioMaster Record, while the next 4 columns serve to correlate the Data Cycle Record with the appropriate Type Master Record (see Figure 2).

The Plain Language Record may be used at any level in the format to insert comments which are, e.g., relevant to the interpretation of the data. The first 11 columns of this record are identical to Columns 1-8 and 19-21 on the BioMaster Record. The next 4 columns are used to identify the type of observation to which a particular Plain Language Record is relevant.

DErAILED DESCRIPI'ION

3.1. BioMaster Record

The BioMaster Record is the file header for the full series of biological data obtained at one station. The BioMaster identifies

what type of information is contained in the file, i.e., which·parameters have been measured and how m&~y Type Master Records have been prepared for each parameter.

One BioMaster Record should be filled out for each sampling station according to the scheme given below. The first 27 columns should be filled in with information identical to that given in the corresponding Hydro Master Card for that station. For convenience, part of the scheme concerning these first 27 columns is given here (see page 4); full descriptions can be found in the Manual on ICES Oceanographic Punch Cards (Fourth Edition, 1979).

-123-

BioMaster Record

Column Item Code Description

IOC Country Code (see Appendix 1). 1-2

3-4

5-8

9-12

13-17

18

19-21

22-23

24-25

26--27

28-29 30-31

32-33 34-35

36--37 38-39

40-41 42-43

44-45 46--47

48-72

73-77

78

79-80

Country

Ship

Station No.

Latitude

Longitude

NESW

Year

Month

Day

Station time

Parameter ) No. of Type Masters)

Parameter ) No. of Type Masters)

Parameter ) No. of Type Masters)

Parameter ) No. of Type Masters)

Parameter ) No. of Type Masters)

Number of the vessel, according to national number code.

Consecutive numbers given for one ship (starting anew each year).

Given to nearest minute.

Given to nearest minute.

year and one

Given according to the following code:

0-NandE 1 N and W 2 S and E 3 S and W

In this connection, the following rules are observed:

0° Latitude is taken as N 0° Longitude is taken as E 180° Longitude is taken as w.

Insert last three digits of the year.

Number of the month. J anuary = 01, etc.

Day of the month.

Starting time (to the nearest hour) of the hydrographic station in GMT.

Information on which parameters have been measured at the station is inserted according to the following code:

01 = Phytoplankton Primary Production 02 = Chlorophyll ~!Pigments 03 = Phytoplankton 04 = Zooplankton 05 = Zoobenthos

The number of Type Master Records in the file associated with each parameter is given in the subsequent two columns.

Unassigned Reserved for definition later, as needed •

. Insert blanks.

ICODS Station No.

Unassigned

Bi·oMaster Record Code

Insert station International

number according to the Catalogue of Ocean Data Systems.

Reserved for possible future use for coding purposes. Insert blanks.

Insert the figure 31.

Page 68: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-124-

3.2. Phytoplankton Primary Production

The number of Type Master Records to be filled out will depend on the number of different methods or conditions used to measure

primary production at the station. If only one experimental method (incubator or in situ) is used ~~d if the same 14c counting method and incubation times are used for all samples, then only one Type Master Record should be completed for this parameter. However, if different experimental or counting methods are used or different incubation times or durations are employed, separate Type Master Records should be filled out for each different condition. The means of distinguishing among these variations are contained in Columns 14 and 15, with further specification in Columns 41-48, 49-51 and 52, as applicable.

This Record should be filled out as follows:

Column

1-2 3-4 5-8

9-11

12-13

14

15

16-17

18-23

24-38

Item

Country

No.~ Ship Station

Year

Parameter

Method

Specification

No. of depths

Depth to bottom

Detailed Coordinates (optional)

Code Description

Fill in same information as in Columns l-8 on BioVBster Record.

Insert last three digits of the year.

InsertOl (code number for phytoplankton primary production).

Insert code number of experimental method used, as follows:

l - incubator 2 - in situ ---

If measurements have been carried out using two or more incubation times or temperatures, or if different l4c counting methods have been used, assign a number for each variation, beginning with 1. If no different conditions have been used, insert a blank.

Right justified. Insert the number of depths at which samples have been taken.

Right justified. Insert depth to bottom in meters, to the first decimal if possible or appropriate. If not, insert a blank in Column 23.

These columns are available to specify the coordinates of the sampling site in greater detail, if desired. Otherwise, the columns should be filled with blanks.

If used, the columns should be filled as follows: (see next page)

-125-

24-30 Latitude -------------24 N or S insert letter or

25-26

27-30

1 - North 2 - South

Degrees

Minutes to the second decimal place

~2:~~-:0.:'~g~ tu~~ 31 E or W insert letter or

32-34

35-38

- East 2 - West

Degrees

Minutes to the second decimal place.

Column Item

39-40 SB.mpling time

Code Descriution

Insert the time of sampling ln GMT to the nearest hour.

41-48 Incubation time

49-51

52

53

54-72

73

74-77

78

79-80

Incubation tempe­rature

Counting method

Attentuation determination method

Unassigned

Irradiance unit

Incubator irradiance

Unassigned

Type Master Record Code

Insert incubation time to the nearest minute in GMT:

Cols. 41-44 beginning of incubation Cols. 45-48 end of incubation

Insert temperature of incubation 1n °c to the first decimal place.

Insert the method used to cournt 14c t" · ~ ac 1 v1 ty: 1 Liquid scintillation 2 - Geiger-MUller

Insert the method used to determine the relative irradiance at the sampling depths:

1 - quanta meter 2 - photometer with green filter 3 - Secchi disc

Fill ·•i th blanks.

Insert the unit in which the irradiance 1n the incubator is given:

'

1 - 1018 quanta m-2 2 - 10 18 quanta m-2 3 - Joules m-2 s-1 4 - Joules m-2 s-1

(400 (350 (4oo (350

700 nm) - 3000 nm)

700 nm) - 3000 nm)

Right justified. Insert the mean irradiance in ~he ~~cubator during the experiment (or the mean 1rraa1ance during the in situ experiment).

Reserved for possible future use for coding purposes. Insert blank.

Insert the figure 32.

Page 69: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-126-

3.2.2 ~~~~-Qz£~~-~~£~~~ Record Should be filled in for each sub-sample studied, One Data Cycle

Column

1-15

16-17 18-23

24-27

28-38

39-40

41-42

43

44

45-49

50-54

55-59

60-62 63-69

70-74

as follows:

Unassigned

Observation depth

Relative irradiance

Unassigned

No. of parallel samples

Sample No.

No. of sub-samples

Sub-sample No.

Potential primary production

Daily production per m3

Dark fixation

Carbon dioxide

Unassigned·

Daily production per m2

75-77 Part counted (optional)

78 Unassigned

79-80 Data Cycle Record Code

Code Descrintion

Fill in same information as in Columns 1-15 of the associated Primary Production Type Master Record.

Fill with blanks.

Right justified. Insert depth at which sample was obtained in meters, to one decimal place if applicable. Insert a blank if no decimal place used.

Right justified. Insert the relative irradiance in percentage of the irradiance immediately below the water surface, to one decimal place if applic­able. Insert a blank if no decimal place is used.

Fill with blanks.

Right justified. Insert total n~ber of parallel samples taken at the depth g1ven 1n Columns 18-23.

Insert the number of the particular sample being reported on this record, beginning with 01.

Insert the total number of sub-samples obtained from the sample.

Insert the number of the particular sub-sample being reported on this record, beginning with 1.

Right justified. Insert the temper~tur~ -corrected maximum potential product1on 1n mgC m-3 hr-1 to the second decimal place.

Right justified. Insert the day-integrated actual primary production in mgC m-3 day-1 to the second decimal place.

'n mgC m-3 hr- 1 to the Right justified. Insert • second decimal place.

. . mM dm-3 Insert concentrat1on 1n

Reserved for future definition as necessary. Fill with blanks.

Right justified. Insert the depth-integrated actual primary production in mgC m-2 day- 1 to the first decimal place.

Right justified. Insert as per cent, with no decimal place.

Reserved for possible future use for coding purposes. Insert blanks.

Insert the figure 33.

-127-

3.3. Chlorophyll a

The number of Type Y~ster Records to be filled out will depend on the number of different methods or conditions used to

determine chlorophyll ~ at the station. If only one method is used for all the samples, then only one Type YillEter Record should be completed for this parameter. However, if different solvents, filter types, or measurement techniques (spectrophotometric or fluorometric) are used, then separate Type Master Records should be filled out for each different condition. The means of distinguishing among these variations are contained in Columns 14 and 15, with further specification in Columns 44-52, as applicable.

This record should be f-illed out as follows:

Column

1-8

9-11

12-13

14

15

16-17 18-23 24-38

39-40

41-43

44

45-46

47

Year

Parameter

Method

Specification

No. of depths I Depth to bottom Detailed coordinates (optional)

Sampling time

Sample volume

Filter type

Filter diameter

Solvent

Code Description

Fill in same informab.on as in Columns l-8 on BioMaster Record.

Insert last three digits of the year.

Insert 02 (code for chlorophyll a ).

Insert oode number of measurement method, an follows:

1 - spectrophotometric 2 - fluorometric

If measurements have been carried out using biir

or more types of filters, extraction solvent:', or other condition reported on the Type M::wtor Record, assign a number for each variation beginning with 1. If no different condi t:i.onn have been used, insert a blank.

Follow the instructions given for the idenL)N; i column numbers in the Phytoplankton Primal'.Y Production Type Master Record (Sec. 3. 2.1),

Insert time of sampling in GMT to the m\M.'r'r'''' t; iv,HY,

Right justified. Insert volume of sarnpJ o U1 r!Hr to one decimal place,

Insert the code for the type of filtH as follows:

l - Whatman GF/F or GF/C

Insert the active filter diameter in r1d 11

Insert the code number for the extrrl.GLi.i.Al used, as follows:

1 - 9o% acetone.

Page 70: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

Column

48-50

51-52

53

54-17

79-80

3.3.2.

Column

l-15

16-17

18-23 24-38 39-40

41-42 43 44

45-47

48-50

51-77

78

79-80

Extraction volume

Cuvette size

Calculation method

Unassigned

Unassigned

Type Master Code

~ata_Qyc~~-~~£E~

-128-

Code Description

3 Insert in em •

Insert ~n mm.

Insert the method used for calculation of the concentration of chlorophyll-a according to the following code:

1 Jeffrey & Humphrey equation 2 - Lorenzen equation

Reserved for future definition. Fill with blanks.

Reserved for possible future use for coding purposes. Insert blank.

Insert the figure 32.

One Data Cycle Record should be filled in for each sub-sample, giving the information as follows:

Item

Unassigned

Observation depth Unassigned No. of parallel samples Sample No. No. of sub-samples Sub-sample No.

Chlorophyll ~

Phaeopigment

Unassigned

Unassigned

Data Cycle Record Code

Code Description

Fill in same information as in Columns l-15 of the associated Chlorophyll ~ Type Master Record.

Fill with blanks.

Follow the instructions given for the identical column numbers in the Phytoplankton Primary Production Data Cycle Record (Sec. 3.2.2).

Right justified. Insert in mg m-3 to one decimal place.

Right justified. Insert in mg m- 3 to one decimal place.

Reserved for future definition as needed. Fill with blanks.

Reserved for possible future use for coding purposes. Insert blanks.

Insert the figure 33·

-129-

3.4. Phytoplankton

Normally only one Type Master Record for phytoplankton wi.ll ],,, needed for each station. If, however, different preservati.Vhfl

are used, a separate Type YJaster Record should be completed for each bnd cd preservative. A description of the record is as follows:

Column

l-8

9-ll

12-13

14

15

16-17 18-23 24-38

39-40

41

42-77

78

79-80

Item

Year

Parameter

Method

Specification

No. of depths ~ Depth to bottom Detailed coordina-tes (optional) ) Sampling time )

Preservative

Unassigned

Unassigned

Type Master Record Code

'

Code Description

Fill in same information as in Columns l-8 •>~< BioYJaster Record.

Insert last three digits of the year.

Insert 03 (code number for phytoplankton).

If agreed method is used, leave blank. If il!d, insert 9 and describe differences on Plain Lc"'l' '''.!'' Record.

Insert blank, unless two or more preservatl v•·•tt kF' been used.

Follow the instructions given for the irl••>liiu•i column numbers in the Phytoplankton Prin~•rv Production Type YJaster Record (Sec. 3.2.1) ..

Insert according to the following code:

l - Lugol + acetic acid 2 - Lugol 3 - 2% formaldehyde 4 - "Keefe"

Reserved for future definition, as needed, !Vdi with blanks.

Reserv'ed for possible future use for codil•lK purposes. Insert blank.

Insert the figure 32.

One Data Cycle Record should be filled out for each fl)HAid v•t• found in each counting aliquot, which is a known fracU.on

sub-sample divided for purpose13 of counting the organisms. The reoo:Ni be completed as follows:

Page 71: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

'""ll!l,, -----------------------

Column

1-15

16-17

18-2)

24

25-36

37-38

39-40

41-42 43 44

45

46

Unassigned

Observation depth

Species code identification

Species

Identifiers

No. of parallel )

samples l Sample No. No. of sub-samples Sub-sample No.

No. of counting aliquots

Aliquot No.

47-49 Magnification

50-54 Coefficient

55-58 No. of counting units

-130-

Code Description

Fill in same information as in Columns l-15 of the associated Phytoplankton Type Master Record.

Fill with blanks.

Right justified. Insert sampling depth in meters, with a blank in Column 23 (reserved for decimal place). If an L~tegrated sample is taken over a range of depths, give minimum and maximum depths according to the instructions given for the identic:Ji column numbers in the Zooplankton Data Cycle Record (sec. 3.5.2).

Insert identification number for species code used, as follows:

l - USNODC Taxonomic Code

2 - Plain language abbreviations of Latin name (6 cols. for genus + 6 cols. for species).

3 - RUBIN Code List PL Phytoplankton, limnic.

Left justified. Insert code number of species or plain language abbreviation. Blanks should be inserted in columns not used.

Insert code for appropriate identifiersr e.g., developmental stage, sex, size, etc. L Code to be developed later._7

Follow the instructions given for the identical column numbers in the Phytoplankton Primary Production Data Cycle Record (Sec. 3.2.2).

Insert the number of aliquots into which the sample was divided for counting purposes.

Insert the number of the particular counting aliquot for which results are being reported on this record, beginning with 1.

Insert amount of total magnification used in counting the aliquot.

Right justified. Insert the appropriate coef­ficient for the species reported according to the magnification used and other relevant factors, as is needed to express the number of units of the organisms per dm3.

Right justified. Insert the number of counting units of organisms (as defined for each species -cells, clusters, etc.) observed for the species being reported.

Column

59-63 C0ll volume

64-68 Plasma volume

69-73 Carbon content

74-77 Unassigned

78 Unassigned

79-80 Data Cycle Record Code

3.5. Mesozooplankton

-131-

Code Description

Insert appropriate cell volume for the units of organisms counted in ~rn3 using scientific notation according to the following scheme:

Col. 59 integer Cols. 60-62 decimal places (insert blanks in columns

not otherwise filled) Col. 63 exponent Example:

cell volume is 435 ~3 change to scientific notation: 4.35 x 102

insert in columns:

4 3 5 b 2

59 60 61 62 63

a blank is inserted in Col. 62 as the decimal place is not otherwise filled.

Insert plasma volume in ~3 using scientific notation and the same scheme as for cell vo1urno, above.

Col. 64 integer Cols. 65-67 decimal places (insert blanko Jn '"' 1 UiiHl!>

not otherwise filled) Col. 68 exponent See example for cell volume.

Right justified. Insert in picograms.

Reserved for future definition as necesoal',Y, ll with blanks •

Reserved for possible future use for codJ rltt !H Insert blank.

Insert the figure 33.

The number of Type Master Records to be filled in wiJl number of different methods used to obtain and analyo;,

plankton samples at the station. If only one method is used for ttll only one Type Master Record should be completed for this parameter, if more than one, mesh size sampler is used to obtain the samples, then separate Type Master Records should be filled in for each condition. NOTE: At present,' this record is intended for data oll vertical hauls only. Revisions must be made before data obtained uxd oblique hauls can be recorded for this parameter.

Page 72: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-132-

This record should be completed as follows:

Column

1-8

9-ll Year

12-13 Parameter

14 Method

15

1&--17

lB-23 24-38

39-40

41-42

4)-47

48-50

51-53

54

55

5&--77

78

79-80

Specification

No. of hauls

Depth to bottom ~ Detailed coordinates (optional)

Sampling time

Sampler

A:rea of sampler opening

Sampler volume

Mesh size

Preservative

Wet weight deter­mination method

Unassigned

Unassigned

Type Master Record r.nclP.

Code Descrintion

Fill in same information as in Cols. 1-8 on the BioY~ster Record.

Insert last three digits of the year.

Insert 04 (code for zooplankton).

Insert code number of type of sample obtained, as follows:

1 - net sample 2 - water volume sample

If samples have been obtained using more than one. type of sampler or if they have been preserved us1ng more than one type of preservative, for exampl:, assign a number for each variation begi~n~ w1th 1. If no different conditions have been usee, 1nsert a blank.

Right justified. Insert number of hauls taken at station.

Follow. the instructions given for the identical column numbers in the Phytoplankton Primary Production Type Master Record (Sec. 3.2.1).

Insert the time of sampling in· GMT to the nearest hour.

Insert code number for sampler used, as follows:

Ol - WP-2 net

Right justified.

Right justified.

2 Insert in em •

Insert in dm3.

Insert mesh size of net used to obtain sample in pro,

Insert code, as follows:

1 - 4% formaldehyde buffered with borax 2 - l:l ~ ethanol : 4% formaldehyde

Insert code, as follows:

1 - individual volume (fresh weight) 2 - weighing (formalin weight) 3 - displacement (formalin weight)

Reserved for definition later, as needed. Fill with blanks.

Reserved for possible future use for coding purposurr Insert blank.

Insert 32.

Column

1-15

1&--17

-133-

One Data Cycle Record should be filled out for each species found in each sub-sample counted. The record should be completed as follows:

Haul No.

Code Description

Fill in same information as in Cols. l-15 of the associated Zooplankton Type Master Record.

Right justified. Insert the number of the haul from which the sample being recorded was taken.

18-20 Maximum depth of haul Right justified. Insert maximum depth in meters.

21-23 Minimum depth of haul Right justified. Insert minimum depth in meters.

24

25-36

37

38

39-40

41-42

43

44

45-47

48-51

52-56

Species code identi­fication

Species

Unassigned

Developmental stage and sex

No. of parallel~ samples Sample No.

No. of counted sub­samples

Sub-sample No.

Portion counted

No. of individuals counted

Biomass - wet weight

Insert identification number for species code used, as follows:

1 - USNODC Taxonomic Code.

2 - Plain language abbreviation of Latin name (6 colwms for genus + 6 columns for species).

3 - RUBIN Code List 01 Baltic Invertebrates.

Left justified. Insert code number of species or plain language abbreviation. Blanks should be inserted in columns not used.

Insert a blank.

Insert code for developmental stage and s·ex:

1 - copepodite stage I-III 2 - copepodite stage IV-V 3 - adult female 4 - adult male

Follow the instructions given for the identical column numbers in the Phytoplankton Primary Production Data Cycle Record (Sec. 3.2.2).

Insert the total number of sub-samples in which zooplankton have been counted.

Insert the number of the particular sub-sample being reported on this record, beginning with 1.

Insert the denominator of the fraction into which the sample has been divided, e.g., 1/64 is recorded as 064; 1/8 is recorded as 008.

Right justified. Insert the total number of individual organisms of the species which were counted in the sub-sample.

Insert the wet weight of the individuals counted in ~g. Scientific notation should be used and the number recorded as follows:

Col. 52 integer Cola. 53-54 decimal places Cols. 55-56 exponent

Page 73: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

Column

57-61 Biomass - dry weight

62-66 Ash weight

-134-

Code Description

Example 1:

the wet weight is 56.8 mg convert to ~g = 56800 ~g 4 express in scientific notation: 5.68 x 10 ~g record as follows:

5 6 8 0 4

52 53 54 55 56

insert zero in Col. 55 to fill space.

Example 2:

the wet weight is 0.093 ~ -2 express in scientific notation: 9.3 x 10 ~g record as follows:

9 3 b 2

52 53 54 55 56

insert a blank in Col. 54 and a minus sign in

Col. 55 (if minus sign cannot be used insert the

digit 8).

Example ):

the wet weight is 3.42 ~g record as

3 4 2 0 0

52 53 54 55 56

insert zeros in the exponent columns.

lnBert the dry weight of the individuals counted in ~g. Scientific notation should be used and the number recorded as follows:

Col. 57 integer Cols. 58-59 decimal places Cols. 60-61 exponent

See examples in wet weight biomass, above.

Insert ash weight for the individuals counted in ~g, Scientific notation should be used snd the number recorded as follows:

Col. 62 integer Cols. 63-64 decimal places Cols. 65-66 exponent

See examples in wet weight biomass, above.

Column

67-71

72

73-75

76-77

78

79-80

Carbon content

Unassigned

Filtration efficiency

Wire angle

Unassigned

Data Cycle Record Code

3.6. Zoobenthos

-135-

Code Description

Insert carbon content for the individuals counted in ~· Scientific notation should be used and the number recorded as follows:

Col. 67 integer Cols. 68-69 decimal places Cols. 70-71 exponent,

Insert blank ,

For use only when flow meters are employed on sampling nets. Right justified. Insert filtration efficiency in per cent as the ratio between the amount of water passing through the net and the amount of water flowing outside the net.

If wire during sampling was vertical, insert 00. If wire was not completely vertical, insert approximate angle by which it deviated from the vertical, e.g., the figure 10 would indicate a 10° deviation from the vertical.

Reserved for possible future use for coding purposes, Insert blank.

Insert the figure 33.

The number of Type Master Records to be filled in will depend on the number of different methods used to obtain and analyse the

zoobenthos samples. If only one method is used, only one Type Master Record should be completed, However, if different methods are used to obtain the samples different mesh sizes or preservatives are used to treat the sample, separate Type Master Records should be filled in for each different condition.

This record should be completed as follows:

Column

l-8

9-11 Year

12-13 Parameter

14 Method

Code Description

Fill in same information as in Cole. 1-8 on the EioMaster Record.

Insert last three digits of the year,

Insert 05 (code for Zoobenthos).

Insert the means of obtaining the sample according to the following code:

1 - quantitative ~ab 2 - diving (scuba) 3 - dredge sampling

sampling

Page 74: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

Column

15 Specification

16-23 Unassigned

24-38 Detailed coordinates

39-40 Sampling time

41-42 Sampler

43-46 Sampler area

47-50 Mesh size

51 Preservative

52-68 Unassigned

69-76 Bottom type *)

77 Unassigned

78-79 Type Master Record Code

).6.2. Data Cycle Record ----------

-136-

Code Description

If samples have been obtained using more than one type of sampler or if more than one size of mesh. or type of preservative has been used on the var1ous samples, assign a number for each variation beginniDf, with 1. If no different conditions have been used, insert a blank.

Fill with blanks.

Insert detailed coordinates of sampling position, following the instructions given for the identical column numbers in the Phytoplankton Primary Type ~taster Record (Sec. 3.2.1).

Insert the time of sampling in GMT to the nearest hour.

Insert

Ol -

code number for sampler used, as follows: 2 O.lm van Veen grab.

Right justified.

Right justified. in tliD•

2 Insert in em •

Insert mesh size of sorting sieve

Insert according to the following code:

1 - 4% formaldehyde buffered with hexamine 2 - 4% formaldehyde buffered with borax 3- 1.4% formaldehyde buffered with borax.

Reserved for future definition, as needed. Fill with blanks.

~A code system will be developed to des~ribe i? detail the characteristics of bottom sediments ~n the area where the sample was taken_,]

Reserved for possible future use for coding purposen, Insert blank.

Insert the figure )2.

One Data Cycle Record should be filled out for each species found in each sub-sample counted. The record should be completed as follows:

Column

l-15

*)

Code Description

Fill in same information as in Cols. l-15 of the associated Zoobenthos Type Master Record.

If bottom sediments are sampled the Sample Description Form given on page 38 of this Annex may be used.

Column

16-17

18-23

24

25-36

37-38

39-40

41-42 43 44

45-47

48-51

52-56

57-61

10 483184A

Item

Unassigned

Observation depth

Species identifi­cation code

Species

Identifiers

No. of parallel samples Sample No. No. of sub-samples Sub-sample No.

Portion counted

No. of individuals counted

Formalin wet weight

Formalin drY, weight

-137-

Code Description

Insert blanks.

Right justified. one decimal place insert a blank in

Insert sampling depth in meters tr if possible. If not possible, Col. 23.

Insert identification number for species code used, as follows:

1 - USNODC Taxonomic Co<ie. 2 - Plain language abbreviation of Latin na~e (6

colu=s for genus + 6 colwnilS for species). 3 - RUBIN Code List Dl Baltic Invertebrates.

Left justified. Insert code number of species or plain language abbreviation. Blanks should be inserted in columns not used. Fill with zeros if sample is totally devoid of fauna.

Insert code for appropriate identifiers?' e.g., developmental stage, sex, size, etc. L Code to be developed later._7

Follow the instructions given for the identical col~~ numbers in the Phytoplankton Primary Production Data Cycle Record (Sec. 3.2.2).

Insert the denominator of the fraction into· which the sub-sample has been divided, e.g., 1/8 is recorded as 008.

Right justified. Insert the total nwmber of individual organisms of the species which were counted in the sub-sample.

Insert the formalin wet weight of the individuals counted in mg. Scientific notation should be used and the number recorded as follows:

Col. 52 integer Cols. 53-54 decimal places Cols. 55-56 exponent

See examples in the explanation of Cols. 52-56 of the Zooplankton Data Cycle Record (Sec. 3.5.2).

Insert the formalin dry weight of the individuals counted in mg. Scientific notation should be used and the number recorded as follows:

Col. 57 integer Cols. SB-59 decimal places Cola. 60-61 exponent

See examples mentioned above.

Page 75: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

Column ~

62-66 Ash weight

67-71

72-77

78

79-80

Carbon content

Unassigned

Unassigned

Data Cycle Record Code

3, 7 • Plain Language Record

-138-

Code Description

Insert the ash weight of the individuals counted in mg. Scientific notation should be used and the number recorded as follows:

Col. 62 integer Cols. 63-64 decimal places Cols. 65-66 exponent

See examples mentioned under formalin wet weight above.

Insert the carbon content of the individuals counted in mg. Scientific notation should be used and the number recorded as follows:

Col. 67 integer Cols. 68-69 decimal places Cols. 70-71 exponent

Reserved for definition later, as needed. Fill with blanks.

Reserved for possible future use for coding purposes. Insert blank.

Insert the figure 33·

This record can be used to insert explanatory notes and other information relevant to a proper interpretation of the data. The record may be used

at any level in the format and as many record~ may.be used as are needed to report the desired information. In order to ~dent~fy the re?ord. properlJ:' and. , place it in its appropriate position in the file, the follow~ng l.nformabon snouh be provided on each Plain Language Record:

Column

1-8

9-11

12-13

14 15

Year

Parameter

Method ) Specification)

Code Description

Insert the information contained in Cols. 1-8 of the associated BioMaster Record.

Insert the last three digits of the year.

Insert the code number of the parameter to which the record is relevant. If the record is associated with the BioMaster level, insert 00.

Insert the appropriate figures from the relevant Type Master Records.

Column Item

16-77 Comments

78 Unassigned

-139-

Code Description

Fil~ in with comments in the English language, If l.t ls necessary to identify the record with a particular sample or sub-sample, the numbers of these should be inserted in Cola. 41-42 and 44, respectively. If further identification to a particular species is necessary, the species code should be inserted in Cols. 25-36.

Reserved for possible future use for coding purposes.

79-80 Plain Language Record Insert the figure 99. Code

4. GENERAL REMARKS FOR ALL RECORDS

· Except where stated otherwise in the above sections, whenever an element is missing this should be indicated by filling the whole field for that element with blanks.

All columns must be filled for every observation according to the scheme that columns for missing digits before a decimal point should be filled with zeros while columns for missing digits after a decimal point should be filled with ' blanks. For example:

a depth to bottom of 85m is recorded as 00085 blank

a zooplankton wet weight biomass of 3.9 x 102 ~g is recorded as 39 blank 02.

Many of the code listings for methods, samplers and preservatives are incomplete. Suggestions for additional items for these codes should be mailed to the Environment Officer, International Council for the Exploration of the Sea, Palffigade 2-4, 1261 Copenhagen K, Denmark (after 1 January 1980).

Page 76: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-140-Appendl'X · 1

IOC COUNTRY CODES FOR ICES MEMBER COUNTRIES

Country

l3elgium

Canada

Denmark

Finland

France

German Democratic Republic

Germany, Federal Republic of

Iceland

Ireland

Netherlands

Norway

Poland

Portugal

Spain

Sweden

Union of Soviet Socialist Republics

United Kinsd.om of Great l3ri tain and Northern Ireland

United States of America

11

18

26

34

35

96

06

46

45

64

58

67

68

29

77

90

74

31

'E)

e It; ~

t ~

~ !"':

~

55 cg ~ t;(j ~ ~·

~ i<R ~ f& ~ "' 0

"' ,_, 0\ N

~ ~ f3i 0\ 0\

r8 0\

"' ~ fc5 f;j ~ p ~ ~ ia;

/:i fa; ~ "' 0

' '

Parameter

No. of Type Masters

Parameter

No. of Type Masters

q

" " ro ro ,... '§ " ""

-zch C<+H s"' 0 o'<+O

"""'=' >j 0 Ul

" '

Unassigned

Record Code

-141-

,_, Country

N

f.,< Ship ~"': ;::;;

"' _, Station No.

"' 0

1!=: 1-- --1--- -}--1-'4------

~ ~ 1-'

0

--- - -f--~~~------

N N

-

NSEW

Year

Month

t" 0

Jl .... 11' "" "'

~ H-+-1-+-¥1------" ~ rv Day

H--+-t--+-f=''i---------· N

0\ Station time ~ N CD

~ 'C)

~

Parameter

No. of Type Master~-~

~ ~ Par31Ile t er

ot:J 0 "" ""0 " [,r '-""' 1-'<+

" '1

"' " ()

0 '1

""

Page 77: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

f-+-- --

. . . . . . .

~ ft e "'" --~ Incubation time

~ ~ ~

~

-142-

I. (°C ~ Incubation temperature

. "fi ~ Counting method

~ Attenuation determ. meth.

8 (Unassigned) a--,..,

~ Irradiance unit

~ ~ I~cubator i:::-:-adiance !(;; r: 1;3 (Unassigned)

~ Record code 8

,.., CountrJ

N

"' Ship ""-~

"' I-' Station No.

Ol

'-D

.... Year 0

.... ....

.... N Parameter ....

It: Method

i:;; Specification

.... "' No • of depths .... .... Ol

~ N 0

N Depth to bottom

.... N N . . . . . . . . . . . ~

- - --"- ~!en.~-~ 0

~ N <+ 1-- - ~-- - ~~-- .. ....

<+ N ~ f--l "' N " (;) .. t:J . . . . . . .. " p; <+

" fc; .... ....

~" 0 p.

~~."' 'd

-~-- -+-- .:::: -- M-D ..-.o

~ 0 0

" ~ ~ " p. 0 !:""' ........

0 ~" Y' " " (Jq <+

1-- --~--- .... " - -- -- <+ Ol

~ ~

"' ~ " -.. . . . . .. ~ lc;

~ Sa:opling time It

-143-

.... Country N

tv' Ship ""'" V>

~ Sample No. f;

"' Station No. _, 0>

e No. of sub-samples '-D

rt Sub-sample No.

fs; ~ Potential pri~ary

.... Year 0

.... ....

.... rv Parameter

~ product:i.o:1. . . . . . . . . . . . . .. (mge m-3 hr-1)

~

K:;;

!t: Method

~ ~ Specification

fcg f;::; Daily oroduction

per m3 ..

. . . . . . . . . . . .. ~ (mge m-3 day-1)

~ t;;; ~

.... "'(Unassigned) .... 1-' 0>

~ N 0 Observation depth N 1-'

N

'(j; Dark fixation

. . . . .. . . . . "' N

. . . . . . . . ... .. ';\ (mge m-3 hr-1) \£

'"' ~

~ ~ Relative N irradiance

8 "' ... . . . . . . . . . . . . . . m Carbon dioxide ~ ....

mM dm-3 m

N co

N

~ .)12

~ "'

~ ic';

(Unassigned) ;:: ~

m (Unassigned) ~ "' 0>

~ f(3

Daily oroduc~ion f;:; per ,2·

1;:; (mgC o-2 C.ay-1 )

f--' . . . . . . . . . . ... -~-t;;:

~ ~ ~ ic;',

~ lc;

~ No. of parallel

Po sarople•

p . Part counted (%) !(;; '

f-.<

~ (Unassigned)

fZ Record code 0> 0

Page 78: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-144-

>-'

"' Country

~ Ship fl>..

f;:

.. ~ Sample volume (ctm3) . . . . ... . . . ...

tv' "' No. Station r ())

~ It: Filter type >-'

0 Year

~ Filter diameter >-' >-'

~ ~ Solvent

>-'

"' Parameter >-' ~

!g vol=e (cm3) f:i; Extraction

t:' Method

~ Specification

~

~ (mm) ~

Cuvette size

>-'

"' of depths I-' No. t:::' >-' ())

~ Calculation method ~ ~ ~

"' 0 Depth to bottom

"' >-'

~

~ "' . . . . . . . . . . "! "' '-"

tcG

li "' UJZ

- t-- -- r-- - f'= --~ 0 1:"

8 "' >-'

"' "' "'t--- "" - - - r- - ,... N "" r c

P<

"' "' "' c "' " p "' "' "' ~

,_.. '§

g; <l> P<

N <l> ()) t1 . . . . . . .. - <l> . . ~ "" "' ,_..

:co ~>-' 0 <l>

"'"' !;.::: "'"' "" ·- () -- r-- -- r- -- - r---- 0 0

I'Ki " 0 ID H f-'P<

"' " ~ 0 ~,...

t" " 0 "' "' ())

~ lc3

~ " "" "' <l>

-r-- -- --!:':; ____

C'· m ---~ 2"

P< rc;_ <l>

. . . . . . . . .. -r;::; ~ r;:;; ~

~ ~;::· fi>

f::D Sa.mn ling ti;:ce 13 -

~ to; b a; Unassigned

:;; :fRecord Code 0

"" ~ <l>

"' (l)

<l>

"

.

0 N

. .

. .

. . . . . . . . ..

. . . . .. . .

It fl;; Sample No.

\:;; No. of sub-samples

It: Sub-sample No.

~ Chlorophyll ~ f0, (;ng m-3) ~ ~

Phaeopig:nent

~· (mg m-3)

~ ~

~ ~ f:;i ~ ~ ~

~ "' 0

"' >-'

"' "' ::;;'

(\JP.assigned) Z' 3;'

"' "' ~

"' ())

~ 1-3 1;::)

r;:; f:;! f;: '

~ 1;:;:' "' ' t-!

a; (\Jnassigned)

::;3 C)

Record code 0

···r '""""··v··""""~• ~-""

~· Country N -- ~--"~ r-~ M>--~ ~·-··

lv- Ship

"'" r-- ---tv' m Station No. r

OJ

t"' b Year >-' >-'

>-'

N Parameter 0: fl;: Method

~ Specification 1-'

"' ~

(Unassigned)

>-' OJ

~ "' 0 Observation depth N >-'

"' .. . . . . . . . . ry

~

~ ~ N

"' "' (-'

"' "' ~ rc;

(Unassigned) i;:;

~

~ fi: ~ to:, ~ ~ ...

~ No. of parall·•l

lt samples

Page 79: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

I ,... ...

I \0 .. rl I

Phytoplankton (Parameter No. 03) Data Cycle Tiecord, Code 33

0 z ,_,

"' i7 " +' 0 " "" +' ·.-1 ~ 0

§ p, +' ~ .a :2 "' ~

+'

0 ~ ~ ~ iii l 2 _3 4 15 6 7 8 9 10 ll 12 l) 14

-

"' +' 0 g.

·.-I

"' rl

"' "' rl

"' il' ~ .

0 ·.-1 " "' z +' 0 I § . ·.-1 . p "' 0 +'

0 " rl 0 z "' z "' "' 0 0

~ +' ..... "' .... .... 0 ....

.--< 0 '" 0 & 1 "' I

~ p . ·.-1

0 a 0 .-1 U) z z ...

" 0 -.-< +'

"' 0 ·.-< .... ·.-< +' .a " +' Q)

"' "" Q) -.-<

" "" 0 ~ Q)

·.-I "" " "" +' Q) 0 0

"' e, ·.-1 0 0 +'

·.-1 ..... "' "' .... "' t; Q)

·.-1 "' __ ,

0 ~ "' 0

"' "' "' "' p p "' "' ~ 0 U)

1'i 16 17 18 19 20 21 22· 21 24 . - -

"' ~'

§ il' .... +'

+' § " "' 0 -.-1 0 0 ..... ....

.'H 0 .... "' . 0 0

0 z 141 42 I 4' 144 145 146 ! 47 48 45 I 50 51 52 53 54 I 55 56 57 58

Phytoplankton (Parameter No. 03) Type Master Record, Code 32

0 z ,_,

"' i7 " +' 0 "' "" +' ·.-I ~ 0

§ "' +' ~ .a :2 "' ~ +'

0 +' "' "' 0 "' "' >-< "' ;.::

-----

El 0

" ., +'

0 .a +' ·.-1 +' 0 +' "' p

"' "' () "" 0 ..... +' .... .... .... 0 .a () +'

"' . Po p, 0 Q)

Ul z A

1 2fl:41s 6 1 8\9 10 n\12 l3jl4jl5jl6 i7jl8 12 20 21 22 :z

"' > ..... +'

~

~ rl

"' ~ "'

.--< Q)

.--<

.-1

"' "' ·~ :J "' ·.-1 '"'' "' '·-~ Q) ·.-I 4< __ ,

<' 0 0 " "' U< p, "' ~ "' H

25 26 27 28 29 30 31 22 33 34 35 JG 17 ';8 39 40 I

- I

-~

"' "' ~ s "" "' -.3-El +' 3 "' " @ Q) ~

"' +' ''d

@ rl " "' 0 0 f;, .--< ,. 0 0 •.-I ,.

~ " "' 0 " .--< "' p ~ .-1 ol ~ U> ~·

p 0 P-< 0 ~

I 59: 60 61 621 Gl 6~: 65 66 67:68 69~0~1 ~2 _I 7 4 75 76 7 . I I I

I .

! . . l ! I

j . _l

Detailed coordinates (optional)

Latitude Longitude

-- -···

"' -~ +'

~ ..... .--< p,

I . E 0 ! ' ~ W I Ul

28:29_30 "\1 32 33 34! 32_38:37 38 39 40 -, ' 1

I

' _]_

I I

I I

' _]_

I I

I _L

"' t; Unassigned

"' "' "' &-:

i4l .12 ,j_~ .1.1 45 46 47 .18 .19 50 51 52 53 'J4 55 'i6 'i7 'i8 59 60 61 62 6) 64 6'i 66 67 68 69 70 71 72 7"1 74 7'i 76 "71

~

"" Q)

"' "" §, 0 0 .....

"' "' "' f-l

a 0 0

leo "' ~ "' 78 79 80

i

"' 'CJ "" "' 0

fi, 0

·.-1 "" "' ,_,

I

"' 0

~ 0

"' p "' ]8 79 80.

Page 80: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-148-

>-'

It: If': Sampler N

~ ~ ~Area of sampler opening ( cm

2)

~ \:"':

N Country

tv< Ship p. ~

"' 1-< Station No.

CD

)-!: >-' Year 0

>-' >-'

>-' N Parameter >-'

>-' Country N

~ Ship (,.

f-1'

"' Station 1-'

No.

CD

f-a >-' Year 0

>-' ,..., >-'

~-·~•W'>>'

N Parameter K;:

No.

counted sub-samples

Sub-sample No.

counted

~ t: Method >-' Method

f:i; Sampler volume (dm3)

res t;::

;:;; Specification

>-'

"' No. of hauls >-'

~ Specification ..

>-' ~-·"'"

"' Haul No. >-'

o. of individuals

' ~Mesh size (mm) >-'

CD >-' CD

I ~ I

' ~ Preservative

I f-c l-et weight detemination method

p N 0

N Depth to bottom (~)

>-'

~ Maxi= depth of haul (m) N 0

N -·"

>-'

' f0 "' c CD

~ "' 0

"' >-'

"' N

::;; 122 f3i cr-.

q

" "' " ~

Ol Ol ,...

cr-. '§ CD " ~

p,

f--c

I 0

~

I f;l p

I I ~ I b

N N .. . . . . . . N -"

~ UlZ

~· I--f--f--- r~ f----fJi N

0

--1---f---I--~ ~----t-<

" \'3 <+ >-'• <+

N c (J) - p, t:J . . .. .. . . " " ~

<1'

" fcj >-'·

~>-'

0 "

--~ '0 p,

>:t':l <+

- ~-'--->-'· ()

-- 0 0

~ " 0 " 'i

~ >-'P.

0 ~>-'·

t-< ~

~-~ 0

" <+

- 1-- --- "' " -- ,.... Ol

2'

~ p,

" .. . . .. .. ~ -Ia; ~ Sampling time ~

N Mi niillUlJl depth N of hau) ( .·,J J

~ I

~ Species code ident.i.ft'ii'i~ H I (J

I

I N cr-. I

\'3 l

N f CD

(25 I i

fcj Species I

~ i )r:; I ~ l ~ I ~ I fa:,

I I

~ •.. {

\Jnassign.ed ' I '

CD Devel01ocent ,,,,., .. ·, l

~ i

~ No. of parall<~l (ii,jt.!(j I

I

I. . . . . . . I

"' . . r-.:

"' sh weight(eg)

Carbon content (eg)

0

"' (Unassigned)

Filtrati~n efficiency (%)

' fa; Wire angle [:::3

fa; \U~.assigned (Unassigned)

~ fRecord code D 0

Record code :;g

Page 81: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

-150-

..... Country "' ~ Ship ~

It [F., Sampler

"'

t--n

"" Station No. f-l

~ ~ 2 fi,. Sampler axea (em ) p; ~ :::;

CD

t--o ..... Yeax 0

.....

.....

..... N Paxameter ..... "' ~ size ( fllil) ~ Mesh

~

~ Method

~ Specification .....

~Preservative

~ ~ ~ f::; ~

"" ~ ..... q

"' ~ ~ "' "' .... "' '§ 0

"' N "' .....

"'

. .. . .

--- -

f::i ~ q

f:s " "' 00 00

3' .... '§

~ "' "' ~ ~ ~ ~ "" ""

N

(;;

~ cnz -~ 0

f--· ~ t:-< -- "' ~

c+ .... c+

"' ~ t:J (D p, " ... . . . . . . . . . . . . . . - " c+

~ "' >"· ~ .....

}() 0 "

""'"' kt>J <+

~ >"· 0

-- f--- f-- f---1-- 0 0 ,--" 0 li; "' ~ f-'P,

... . .

1---1---

... . .

1---1--

f2i ~ G;'

~ f,:: ~

~>"·

~ 0 t:-< ~ 0

" c+

tt ~ " "' f--- :-· --- <+

~ ~ p,

" ~ -.. . . . . . . . . . . . . ~ ~

... ..

f--- --

~ Bottom type

:;;: fil Sampling time It

::;; ;;; :::3 fa; Unassigned

Pi Record code C) 0

----·····<'~'

f.:;

",;:; Sample No.

:"" No. of sub-samples

lt Sub-sample No.

~ ~ Paxt counted

~ ~ (!;

~ No. of individuals

~

~ .. ~-

--~- For:nalin wet weight (mg) ~

~

. . ~ ~ (D

... . . .

- ~- Formalin dry weight (mg) 3'

"" .....

"" N .. ~ ~ Ash weight (mg) -- r= 0i "" "" . . ~ 0'> (D

-- ~ Caxbon content (mg) fc; f;j

~ ~ :;;: ::;; (Unassigned) '

;;; .._,

'

fa; (Unassigned)

f:z C)

Record code 0

•'-' '- ~""•'»-'•••w~~~··-

!-··· .. ('.)

oun t:-y ""W'- ••w"" "-~ . ~---~-~---

Jl ''"<) ' 'JUp .. __ ~:: __ ..

.1•

;:station No.

(D

"' :=)!rear ..... ..... ..... "'!parameter ::;; It;: Method

l--' Specification

..... ; (Unassigned)

..... (D

~ "' ~ bbserva tion depth (m) ..... N . . . . ~ (;;

~ ~pecies identification

pi "' "" ~ N (D

~ ~pecies

15 ~ ~

~ ~ t:;;

~ ~

dentifiers a: ~ lo. It

of parallel samples

code

mo-'""

t:JN

"' 0 <+0

" cr' " O:o> '< c+

0 "" >-'0

"' "' "'~ "' ., g ~ 8.~ - "' M-om 0 ~ p,

" 0 V' "'~

"'

Page 82: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

::

ill ~ ,

08 6L

"' "' 0 0

" "' 0 0

"' "'

8L q

~ "' "' >'·

'tl "' "'

iLL 9L SL VL U i'.L 1L OL 69 89 L9 99 '9 1>9 >9 Z9 19 09 6S 9<; Ls 9S SS VS loS <;<, 1S OS bV 9V LV 9V £1> VV >V ZV TV

ov 6~ 8' L' % <;~ H " ole H o> 6Z 8C: LG 9C: <;;; VZ ~c: 2G 1Z OZ 61 81 L1 91 !ST l\11 I> 1 Z1 U) :.;:: '"d 'd "' ~ "' <+ 0 "" ~ '\- X B ;L >'· 0 ..., p. "' ..,. IT 0 "' "' " IT >'· 0 p

n o1 6 g--ygt, v ' Z 1

"" (/) (/) 0

"' IT g: 0

~ "' § <+ 'd >'· <+ 0 .:1 " z 0

66 apoo p:ro~au ail"enlitnl1 U1Bld

SAMPLE DESCRIPTION FORM INSTITUTE; I I I I I I I 0 I I I I I I 0 I I I 0 I It 0 I I I I I 0 I I I I 0 I I I I I I o I I I o I 1 1

Crui:Jc no .•. , .I... Core no ..• , , ..•• Subcore no,:, •••• ~ Sample dcp~h ... , , ... ern Equipment

I ,_. lJl

"' I

Po:alion -------------- Date I. time------------

-------~'~~~~------_J~ core pcne l1'.

Ob3erver -----------

nun

20

G

;!

0,

0,

0,0

2

c () ,_

' GllAJN SUI: • f' 0 (l) c E d C: L " 0 0 ··-1 "' c

"0

STONES !-'=- " L

I~ -

GI<A~EL (cy) CO<lr:JC

fllH!

~.A/ HJ { ,3,11HJy)

coat·sc (,

ll!l'd 1 UlD

;>

C1nc 0

SILT (:>llty)

,I CL.A Y (Cl<lyl'y) !

I· IUD ( mud(Jy) - --

00 1.1\ ('\)

A!' PHOX. "f., ' '-' (_} 0 N ~ v

---- ' /"' ~r, 1 '"

50HTlllG: good 0 mc:cllum 0 uo;s:o'.'Lcf-P

--- _______ _:. ___ ~_.:._ -~·_:_'___l_____.i........__ --~-

"-

DESCillPTION: co).our (flunscll/G:iA colour' c)larL) smell 1 11 2s 0

SURFACE

SED!I1ENT

brown oxidizedn __ em flyid layer ~ c1n

ripple.10 hcigllt em ot-hers

black 0 1~ey0 no colour cliCCcrcncc 0 dL;ltwbcd U mounds 0 sej.:Jile organ1sms 0 lcngU1 __ cm

fino 0 me',i-WljJ=:J r]J "d [l ioyc''t---"J"Lcil ov'fll''' ~1ofL L f u

1 ---:- ,. ,~ bun-ow~ L_j

hornou;cneou~ !__j sand lnmln~l :..;;JJJd ll:J,_,c_-, srnucrunlaiK/ '~t--~ =-~+~-------------~---- ---- -----~ t.n

PELLETS

TUDES

Sl !ELLS

l'l_J_Cj oq;anism:

dlamet.-cr·; n(lLe:; : ________ _

1-----Lrr-_j-,-~:--,.,JJ~~~;m_ ( ~,!: LL ' ··1on -- llVC pO::ilL-

size em

--,~-

lengLh ___ em ox. z· 1m~> [_j Op<:' ~

Clil

r: • .I .-" • '---.!' '-';;i!Ci:l D

' sllc)[c. f LfiNTHEt-1.II~I§---DGLe.s~ bcok.ul I'·"····, ~-.Jill layers D -1-- - "'"' .ue·' ' · a L Ol'l'"l• . '" LJ Clii

>' ,)151:<''1' -

DIOH t=I±E Jcx,ucO~ ,,_-___ --~---- -t.ype; ~.;,_t.i-"' ' ., l i --------

f-.--

- . r .Lll.cc, ,=;- --------o..l.~l~l--....-- ··-~-----~--

- -

. - ~~-~ --· ~-- --- --- - -- -

c:::r ,_t :-

-1 __ _

··-----; - '

Hf\1-JHi\DE J_l_J_J___

w I

Page 83: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

BIOMASTER RECORD

Coun - Stolp St•llon No lal.tuda longUud• NS Y .. r """" "'' Station Par1- No Para.

"' EW """' malar of Typo<~ malar

o : I • ; i: ' Mlt..,le<"S

STATION 1 2 IJ • 5 6 7 6 19 10i1! 12 13 14 15 16 17 18 19 20 21 22 2J 24 25 26 27 28 29 30 31 32 3

' L J I I I I l I I I i I I I I I I I I I

' ' I ! ! I I I ; I I I t I I I I I I I I I

' ' I I I I I I i I I I i I I I I I I I I I

' ' I I I I I I j I I I l I I I I I I I I I

' I I I I I I j I I I : I I I I I I I I I

' I I I I I I l I I i l I I I I I I I I I

- ' ' L 1-L . .J I I I i L I I i I I I I I I I I I

' ' _L I I I I I ; I I I t I I I I I I I I I

' ' 1 -J I I I I l I I I l I I I I I I I I I

' ' I I I I I I l I I I t I I I I I I I I I

' ' I _[_ I I I I l I. I I l I I I I I I I I I

' ' I I I I I I l I I I f I I I I I I I I I

' ' 1 I 1 I I I i I I I j I I I I _L I I I I

' ' ' I I J j J I I I I I _Lj_L _!_L_LL _L _[_ _L

' I I I I L 1-L! I

' _j _ _LL (_L I I I II II .. _L _L '

I I I I I ILL _Ll l I I I I I I I I I

' ' I I I I I I f I I I l i I I I I I I I I -

' ' 1 1 I I I I l I I I l I I I ! I I I I I '

I I ; I I I I I I I i_t_ I I I I I I I I

' ' I I I I I f I I I l I I I I I I I I I

' ' I I I I J I i I I I j I I I I I I _[_ I I

' ' I I I I I I i I I I t I I I I I I I I I

' ' I I I I I I l I I I l I I I I I ' I I I ' '

I ' ' I I I I I I I I I I I I I I I I I I t

No F'au- No p.,,.- No P•••-ot Type ..,., .. of Typo matar or Typo mala<

M~,l~r , ~o,~,,,~,

-~ 435 b6 37 3839 0 41 2 43 44 4

I I I _I I I

I I I I . I I

I I I I I I

i I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

_[_ I I I I I

I I I I I. I

I I I I I I

_L I I I I I

_[_ _L I I I I

I I I I I I

I I I I I I

I I I I I I

t I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

I I I I I I

COUNTRY:

INSTITUTION:

No Unaaa;gnood

or Typ.

"'"~ 464 7 48 49 50 51 52 53 54 55 56 57 58 59 60 61

I I I I I I I I I I I I I I

I I I I o I t I t t I I I I

I I I I I I I I I I ' ' ' I I o I I I I I I I I I I I

I I I I I I I I I I I I I I

I I I I I I I I I I I I I I '·

I I I I I I I I I I I I I I

I I I I I I I I I I I I I I

I I I I I I I I I I I I I I

I I I I I I I I I I I I I I I I I I I ! I I I I I I I ! I ~ I I I I I I I I I I I I I I

I I I I I I I o I o < < I I

I I < I o I I I I I I I I I

I I I I I -1 I I I I I I I I

I I I I < t < I I I I I I I

I I I I I I I I I I I 1 I I

I I I I I I I I I I I I I I

I I I I I I I I I I I I t I

I I I I I I I I I < ' ' I I I I I I I I I I I I I I

I I I I I I I I I I I I I I

I < I I I I < I I I I I I I

I ! f I I I l I I I I I I I

1"1 i1) 'tl 0 11 r1' ... ::s

!IQ '

HI 0 11 a Ill r1'

1-' 1-' • "ii 0

~ en

r1' 0

0' i1)

s:: en i1)

a. I"· ::s 11 i1) 1-' Ill r1' I"· 0 ::s r1' 0

r1' ::r i1)

0' I"· 0 1-' 0

IQ ... Cl Ill 1-'

a. Ill r1' Ill

·~ c-

1L! ~ 3 ,I 9 3.1 i 3.1

I

L_J_L_

II~ 31

~! ~ ~ 311'

31 ':X

~ 3Ll_

~ ~ ~ ~ ~ 3,1

I f-' lJ1 lJ1 I

Page 84: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

I I ~ I ~ i II i I I I !

I I I I J I

~ I I

I ~

I ! I ~ ! ,, ~ ~

Coun. Shop St~>t••n Nc. Year P11ra- j gl met•• ~ STATION: PHYTOPLANKTON PRIMARY PRODUCTION

"' 1 2 3 4 5 6 7 8 9 10 11

I I I I I I 1

TYPE MASTER RECORD

12 13

011

; ~

I

14 151

l COUNTRY

INSTITUTION·

No. ol! Oeptl> to bottom Deta•led Coordonates \Optoonat) Samo! lnc>.Jbat10n ,,..,.,\GMT) Incubation., • lJnns•gnod '2 Incubator\ I'~""' dept~ Lahlude l.>fl9•h.>do <"9 tempr!la· ~~ ~ ~ l<r-.dlanc:• C<:lde

N' o' I E, ~' 11mo lure (•C) &~ :!j ~ (up) ! s ' ' w' ' I !GMT) u E c.: ,_.. 1 I

1617!1819 20 21222324!25 26127~81293 Ji[32 33 341JS3fSJ;37 3839404142 43444546 474849 5~511525354 5556575859606162 636465666768697071 n 3 74 75 76 77l7BI7980

I __L ' ' ' ' ' . . I . ' ' I I ' I '

I I I I I I I 1LLLL1 I I I I I Ill I I I _L__L_Ll._L_LLLl_l__LLJ_J._ I I I 312 DATA CYCLE RECORD

~c --· . ·---~--~--... -.-------.----~- "" ........ Un:ll· Observation Relative u,.,,,.,gned No. of P<omllel "f .;. P<om<>ry Dally Dark llxatoon Carbon! Ut>l'''''gnod Daily Port '~""' "9"'" depth parallel sample -g "' production production 3 conted """" 'rradianc ·- No.

0 -g C/mg m·3h;1 C/mg nB~~Y~ Cf mg ,n3 hr-1 dioxici.4 produ2tior

":" dm - 3 ,,, z ~

1JH 1~ 7374 16 17 1819 2021 22 23 24 25 26 27 28 29 30 31 32 33 34 3536 37 38 394 41 42 4344 4546 47 48 49 50 51 52 53 54 55 5657 58 59 6061 62 636465 66 67 6869 ~5 76 7 7 798C

I I I ; :

I I ; I I I I I 313 I I I I

: :-: ~~: :~:~ I _LLLL _L_LLl _II I I I I I I I I

I II II i I I I I I I j I I I ; I I I ; I . I I I I I I I I I I I 313

I I II I j I I I I I I I I I I I I j _j I IIU I I ; I I , ~L _LLL I I I I I I I I 3,3 LLL

I I I I I ; I I I I I I I I I I I I .. .Lt.L - I I I l I I I ; I I I l L L l l_l Ll_l I I L 1 J I I 3,3

I I I II l I I I I I I I I I I I LLr I I I I l_L_ _j_j__l __ L _ _l_Li I I I I I I I I I I I I I I I 3,3

I I I I I j I I I I I I I I LLLL I I "u_ _L_Ll_L J I l I I L J__L I I I I I I I I I l 3,3 '

I I I I I l I I I _I I I I I I I I I I I j I I l I I I l I L I l I . I I l l I I I I I I I I I 313 '

I I I I I l I I I I I I LLLLl_LL .. J I !IlL _LLLL I I l I -I I I I I I I I I I I I I I 3,3

I I I I I j I I I IIIJ.!III_j_j I _L _ .U j I l I _j_L _LL_LL r_l I I I I I I I I I I I 1 j 3,3

I I _I I I l I I I I I I I I I I I I I I I I I l I I I j I I I l I I I I I I I I I I I I I I I 313 I I _I I I l I I I I I I I I I I I I I I I Ll j I I I l I I I l I I I I I II I I I I I I I I 313

I I II I l I I I I I I I I I I I I I L I I I I I I I l I. I I i I I I I I I I I I I I I I I I 3,3

I I .l I I l I I I I I I I I I I I .1 .. 1 I I I I j I I, I l I I l I I I I I I I I I I I I I I I ~3

I I I I I l I I I I I I I I I I I I I I I I I l I I I l I I I l I I I I I I I I I I I I I I 313

I I .I I I i I I I II I I I I I I I I I I I I j I I I i I I I j I I I I I I I I I I I I I I I 313 '

I I I II j I I I I I I I I I I I I I I I I I i I I I j I I l__i_t I I I I I I I I I I I I I I 313

I II II j I I I I I I I I I I I I I I I I I j I LLLI I I i I I I I I I I I I I I I I I I 313 --·

I I I I I ; I I I I I I I I I I I I I I I I I l I I ' .. LLL I I i I . I I I I I I I I I I I I I I 313

Remarks

Co..on- Shop S1a1oon NO y.,,., P;,r3- " meier ~ ~ STATION: CHLOROPHYLL ~ "' ; •

COUNTRY: 1 2 3 4 5 6 7 8 9"10 11 12 13 14 15

INSTITUTION·

I I I I I I I 012 TYPE MASTER RECORD

No orj Depth to bottom I Dol<l<led Coordonates \Opllon<ll) Sampl- Sample ~ Fott<H ~ E.trxtoon vvcue!E,I Unassrgned I IRe<;ord

depth~ La!olude Longrtude 1"9 volume - d>am- 2: volume S>Ze ~ Code N 1 1 E , , time (dnTl) Oi eter $ (cm3) (mm) ro S' Q' 1 W o Q' 1 (GMT) ~ U

i1s 11h8 19 20 21 22 2312~!25 26l272B!293031i32 333413536137 38394041 424 444546 4748495051 5253154 55 56575859606162 636465665768 697011 n13 74 75 76 n[78[79BOj

I I I I I I : I i I i I : I : I I i I i I L_LL_~j I I I I I I I I I .LL I I I I I I I I I I I I I I l I I~ DATA CYCLE RECORD~ - --~-· -- --·----

D --Un~s Qb-,ervatoon deplh Unassogned No or Parall"l • 0 Chloro- Ph3-e0- Unenigned -~

" z ··~ w paral'el ~mp« , . phy11 _! pogment c-D "''"'~ No. . ;,

(mg m-3) (mg..{.l) 0 0 , u . z ~

16 17 18 19 20 21 22123 24 25 26 27 2829 30 31 32 33 343536 37 38 3940 142 4344 4546147 4849150 st 525354555657 58596061626364656667686970 n n 737475 15n 78 7900 REMARKS

~ _l_j II l LLLLLLI._LLL.J.LL L _l_,_ ... _L! I l __ __ L_L_LLLl__LLl_l_L_L..l_l I I I I I I I I I I I I 313 ' __t_l- .... L.L .. LL.I I I I Ll_l_LL.L I I I I I I I I I I 313 1-~.Ll~-- -- _LLLLLLLLJ_LLLJ_ _ ,_L_ _L,_ __Ll _

. . I I I __L_I_l_Lj_l_L.LLLLJ .... L .... L _LI-. - _d LL ___ L_J. LLl_l _ _L_LLL.L.LLL_Ll I I I I I I I I I I 33

~ I I j I I _I 1 I I I I I .L_L.J. .L _Lj __ l .LJ I l _LLLLLLL I I I I I I L I I I I I I I L i I I I 313 '

I I I I j I I I I I I I I I I I ... LL .. 1 I I I j I j I LLI I IIIL_LLLl.l II I I I I II I I I I 313

I II I I i I I I I I I I I LJ_I I I : _: 1 I l I l LJ I I I I I I I I I I I I I I I I I I I I I I I I 313

I I I I j I I I I lj_l I I I I I ' -~~-.j--LL__l_j__j_L_L LLLl I I I I l I I I I I I I I 33 ~-

I I I I l Ll I I I _L_j_l I I I I I I L .LJ '~Leu~''''' '' ''''' '' ''' 33

I II II I __ l_l_l_l_LLLLLL L l l_ -~-'-11- _l_l_ _LL l l J l l_i_L_LLLLLLLl I I I I I I I I I I I 313

I I I I _L~·- ' .Li. _j_L.LLL .. Ll Ll LLLLLLLL.JI I I I I U I 313 __ .... LLLL L l __ LLLJ.. I I 1.. L l /I LL

I I I I I ; IIIIIIILLU_lJ _ _ _[ I - _j_J__ I illllllll_LJIIII.JIIIllilll 313

I I I l l l I I I I I .L.LLLL__l .. LL __ L _ _L_j_ _LLLLLLLLLI I I I I I L.LLI I I I I I I I 313 _L ~- --· _LL

' I I I I I l I I I I I I I I I I I I I j I l I I I I I I I I I I I I I I I I I I I I I I I I l 313

' I I I I I I l 'IIIIIIIIII.U I I I I l I j _l_ll I II I I I I I I I I lj_J__LLLll I I I I 313

I ' ' I I I I j I I I I I I 1 I I I LL.L .. L_ _[_ __ LL ._L j ___ j_L_u_l_LLJ_LLLl_j_l __ j I 1 I LL I I I I I I 33

. ~ ~-- ... L

I I I I I J _l I I I I I .LLL.LLLI I ) . __ ,_ __ LL f-1-j T L LL I I I I Ll I 1 I LJ I I I I I I I I I I l 1 3~3

I I I II I IIIIIUIIIIII _L .L. - ·-· _L_j__ .. LLj __ LLl_l I I I I I I i I I I I I I I I I I I I I I I ~3

I .l I I I l I I ''I I I I I I I I I 11 L I I I I I I I 313

! I

I

.

I ,_. ()1

"' I

l ,_. ()1 ._, l

Page 85: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

, __ ~~~-~ '".C'!I . ,

' ' l.I507301 .~7:L .. ' , I , , I lo.si

"''YPE' I.V.SHR RECORD

Ooi.T cYCLE RECDfiO ' I::;:; ~---1•1

STATION ·

COVN"T~Y;

INSTITUTION:

-160-

"•·~:--4":/1 '"' .. I BOTTOM TYPE: - .. ·~!i .......... !

Z006ENTHOS

] "~ OF SAM"-ES•

1-I•IJ! [C 1010:1021221:. ~i "" ~.fO<Il ("l\.l.l'•H~ (6~

' ' I I _l _li_L. !3,3: , ..... , .. I-- I ... -.. ,.,_,.., ... __ ,. ,__ I ...... -, __ ·-- 1·~:1 ...... _" ............ ......... .,_ ·~·

1 .... 1 {..,,I I ~tl

SP£CIES '-' 1 ;e 'l'9 " " '"' R€1.1AR,.;S 4.8(0~51 •55 1 !>S!>Q e.oe1~2 !><16556'676860 "107tin n 1• 75101

I ' I I I ' I I : I : ; ' . I ' ' ' i I I ; I : ' ' '

I I !_c ._I_ ; ' ; : I

' ' ' I .. l i I ! ; ' : I ' I ; I ' I I I I : I ' ' , ! '

I I ! : : I ! ' I , I

' I : ' : :

I ' ' ' ' i , I 1 Li; I ; I ; ; ' '

I __ , t I I I ' i j I j I ;

' ' ' ' I I I ! ; ' : ' ; : ' ' ' ' ' I ' i ! ! . ' I I ! :

' I I : I I I I I . ' ' ' 1 I I I I I ' I ' ' ' ' ' ' ' ' I I ' ' I I I ' I ; ' ; i 1 i : : ' I I ; ' ' I ' I ! ; I : ' ! : ' ; ; I I I I ' : ' I ' I

' ' I I I I ' I ' : ' ' ' ' '

' ' ' ' I ' I I I ; I I ' ' ' . ' i I

.l I I __j_ ' I I , ; , I : ' ; I : 1 i I ' , ' i ,_,

.1 ' ' I ! ! I i ! I ' , I I ' ' ' '

' ' I I _, _l_ \ ; I : I ' '

I ' I I ' I ' ' ' 1_1 l J._j __j_ i ; ; ' ; I ' j ' ' I

' _j ' L ' ~ ' ' ' ' ' I

I ' I .: ! Li_ i i I ' '

I ' I ! ; I I '

l I

' I ' ' i ' ' ' .

I I l l I ; ' ' ~ ' I I i i i .. J ' ' ' '

I J J I i ; 1

I : ' : I ,i I ! _! I _I I i ' ' ' ' ! '

I : ' : ' ' ' ' I

' ' I ' ' ' ! :

' I i '

I ' i I j ; I : . ' : I '

I

' ' ' ' I I

i , I i ' ! I I ' ' I ' '

i I I I I I I • I i ' I I ' ' '

i ' ' ' II i I I I_!_ , : ; ' I I . I i ! . I I ! I I ' ' ' ' '

I I . 1_, 1 . .l ; ' . I : I ; I ' '

I ' :

' !

I ! [ ; I : i I I ' J ' '

I I I I '

' ; ' ! ' I ' I I,_, I u I i I 1 i I ; ' : I i '

' i I . ' . I ' !

' ' ' I ! I I I I I I : I ; I :

I

' ' ' ' ' ' ' ' ' I " ! , I J .. LL i : , I : i : : I ' ' ' ' ' ' : ' I i I I I~J ' l

I : I ; i ; 1 ! I ! I ' ' ' ' ' ' '

, " " I I ' ' ' ' I I , , __ L ; J • 1 i ; ' ' I ' ' ' ' I

u L1 I I i ! I : , ; ; ' : I j : I! ' ' ' ' ' i ' ' ' . ' I ' I I I t I.~ ' i ' ' I ; ' ; I : I I

' i ' i I ; I

I ' ' ' i I i ' I ; ' : I ' ' '

I ' , I I I I ll I ; ' i I :

' I ' ' ! :

' I ' ' I ' ' I

I I I : • i I i ' I ; , I I ' I I I . ' ' ' ' ' '

161

12. Microbiological data reporting format

reporting The microbiological data

prepared by ICES, as

Commission (HELCOM 9/16,

requested by

Paragraph 6.9).

format

the

will be

Helsinki

Page 86: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

No. 1

No. 2

No. 3

No. 4

No. SA

No. SB

No. 6

No. 7

No. 8

BALTIC SEA ENVIRONMENT PROCEEDINGS

JOINT ACTIVITIES OF THE BALTIC SEA STATES WITHIN THE FRAMEWORK OF THE CONVENTION ON THE PROTECTION OF THE MARINE ENVIRONMENT OF THE BALTIC SEA AREA 1974-1978 (1979)*

REPORT OF THE INTERIM COMMISSION ( IC) TO THE BALTIC MARINE ENVIRONMENT PROTECTION COMMISSION (1981)

ACTIVITIES OF THE COMMISSION 1980 - Report on the activities of the Baltic Marine Envi­

ronment Protection Commission during 1980 - HELCOM Recommendations passed during 1980 (1981)

BALTIC MARINE ENVIRONMENT BIBLIOGRAPHY 1970-1979 (1981)

ASSESSMENT OF THE EFFECTS OF POLLUTION ON THE NATURAL RESOURCES OF THE BALTIC SEA, 1980 PART A-1: OVERALL CONCLUSIONS (1981)*

ASSESSMENT OF THE EFFECTS OF POLLUTION ON THE NATURAL RESOURCES OF THE BALTIC SEA, 1980 PART A-1: OVERALL CONCLUSIONS PART A-2: SUMMARY OF RESULTS PART B: SCIENTIFIC MATERIAL (1981)

WORKSHOP ON THE ANALYSIS OF HYDROCARBONS IN SEAWATER Institut fUr Meereskunde an der Universitlt Kiel, Department of Marine Chemistry, March 23 - April 3, 1981 (1982)

ACTIVITIES OF THE COMMISSION 1981 - Report of the activities of the Baltic Marine Envi­

ronment Protection Commission during 1981 including the Third Meeting of the Commission held in Helsinki 16-19 February 1982

- HELCOM Recommendations passed during 1981 and 1982 (1982)

ACTIVITIES OF THE COMMISSION 1982 - Report of the activities of the Baltic Marine Envi­

ronment Protection Commission during 1982 including the Fourth Meeting of the Commission held in Helsinki 1-3 February 1983

- HELCOM Recommendations passed during 1982 and 1983 (1983)

* out of print

No. 9

No. 10

No. 11

No. 12

No. 13

No. 14

No. 15

No. 16

No. 17A

No. 17B

SECOND BIOLOGICAL INTERCALIBRATION WORKSHOP Marine Pollution Laboratory and Marine Division of the National Agency of Environmental Protection, Denmark, August 17-20, 1982, R0nne, Denmark (1983)

TEN YEARS AFTER THE SIGNING OF THE HELSINKI CONVENTION National Statements by the Contracting Parties on the Achievements in Implementing the Goals of the Convention on the Protection of the Marine Environment of the Baltic Sea Area (1984)

STUDIES ON SHIP CASUALTIES IN THE BALTIC SEA 1979-1981 Helsinki University of Technology, Ship Hydrodynamics Laboratory, Otaniemi, Finland P. Tuovinen, V. Kostilainen and A. Hlmlllinen (1984)

GUIDELINES FOR THE BALTIC MONITORING PROGRAMME FOR THE SECOND STAGE (1984)

ACTIVITIES OF THE COMMISSION 1983 - Report of the activities of the Baltic Marine Envi­

ronment Protection Commission during 1983 including the Fifth Meeting of the Commission held in Helsinki 13-16 March 1984

- HELCOM Recommendations passed during 1983 and 1984 (1984)

SEMINAR ON REVIEW OF PROGRESS MADE IN WATER PROTECTION MEASURES 17-21 October 1983, Espoo, Finland (1985)

ACTIVITIES OF THE COMMISSION 1984 - Report on the activities of the Baltic Marine Envi­

ronment Protection Commission during 1984 including the Sixth Meeting of the Commission held in Helsinki 12-15 March 1985

- HELCOM Recommendations passed during 1984 and 1985 (1985)

WATER BALANCE OF THE BALTIC SEA A Regional Cooperation Project of the Baltic Sea States; International Summary Report (1986)

FIRST PERIODIC ASSESSMENT OF THE STATE OF THE MARINE ENVIRONMENT OF THE BALTIC SEA AREA, 1980-1985; GENERAL CONCLUSIONS (1986)

' FIRST PERIODIC ASSESSMENT OF THE STATE OF THE MARINE ENVIRONMENT OF THE BALTIC SEA AREA, 1980-1985; BACKGROUND DOCUMENT (1987)

Page 87: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

No. 18

No. 19

No. 20

No. 21

No. 22

No. 23

No. 24

No. 25

No. 26

ACTIVITIES OF THE COMMISSION 1985 - Report on the activities of the Baltic Marine Envi­

ronment Protection Commission during 1985 including the Seventh Meeting of the Commission held in Helsinki 11-14 February 1986

- HELCOM Recommendations passed during 1986 (1986)*

BALTIC SEA MONITORING SYMPOSIUM Tallinn, USSR, 10-15 March 1986 (1986)

FIRST BALTIC SEA POLLUTION LOAD COMPILATION (1987)*

SEMINAR ON REGULATIONS CONTAINED IN ANNEX II OF MARPOL 73/78 AND REGULATION 5 OF ANNEX IV OF THE HELSINKI CONVENTION National Swedish Administration of Shipping and Navigation; 17-18 November 1986, Norrkoping, Sweden (1987)

SEMINAR ON OIL POLLUTION QUESTIONS 19-20 November 1986, Norrkoping, Sweden (1987)

ACTIVITIES OF THE COMMISSION 1986 - Report on the activities of the Baltic Marine Envi­

ronment Protection Commission during 1986 including the Eighth Meeting of the Commission held in Helsinki 24-27 February 1987

- HELCOM Recommendations passed during 1987 (1987)*

PROGRESS REPORTS ON CADMIUM, MERCURY, COPPER AND ZINC (1987)

SEMINAR ON WASTEWATER TREATMENT IN URBAN AREAS 7-9 September 1986, Visby, Sweden (1987)

ACTIVITIES OF THE COMMISSION 1987 - Report on the activities of the Baltic Marine Envi­

ronment Protection Commission during 1987 including the Ninth Meeting of the Commission held in Helsinki 15-19 February 1988

- HELCOM Recommendations passed during 1988 (1988)

* out of print

Page 88: No. 27 D GUIDELINES FOR THE BALTIC MONITORING … · i baltic sea environment proceedings .. · no. 27 d guidelines for the baltic monitoring programme for the third stage part d

Baltic Marine Environment Protection Commission

- Helsinki Commission -Mannerheimintie 12 A

SF-00100 Helsinki

ISSN 0357-2994

Helsinki !988. Government Printing Centre