nine chapters on the semigroup artalanc/pub/c_semi...ย ยท for example, a right zero semigroup is a...

270
Alan J. Cain Nine Chapters on the Semigroup Art Lecture notes for a tour through semigroups Porto & Lisbon 2020

Upload: others

Post on 10-Aug-2020

18 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Alan J. Cain

Nine Chapters on theSemigroup Art

Lecture notes for a tour through semigroups

Porto & Lisbon2020

Page 2: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

version 0.66.62 (2020-06-13) [A4 / Two-sided / Colour]3b9596955641bc1af1e88645064dd8dc6c2cf041 : 000000005ee533ff

To download the most recent version, and files suitable forcolour or greyscale printing, or for viewing on tablets andebook readers, visit

http://www-groups.mcs.st-andrews.ac.uk/~alanc/pub/c_

semigroups/

โ€ข

ยฉ2012โ€“20 Alan J. Cain ([email protected])

This work is licensed under the Creative Commons Attribu-tionโ€“Non-Commercialโ€“NoDerivs 4.0 International Licence.To view a copy of this licence, visit

https://creativecommons.org/licenses/by-nc-nd/4.0/

Page 3: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Contents

Preface vPrerequisites vii โ—† Acknowledgements vii

Chapter 1 | Elementary semigroup theory 1Basic concepts and examples 1 โ—† Generators and subsemi-groups 8 โ—† Binary relations 11 โ—† Orders and lattices 15 โ—†Homomorphisms 19 โ—† Congruences and quotients 20 โ—†Generating equivalences and congruences 22 โ—† Subdirectproducts 28 โ—† Actions 29 โ—† Cayley graphs 30 โ—† Exercises 32โ—† Notes 34

Chapter 2 | Free semigroups & presentations 37Alphabets and words 37 โ—† Universal property 38 โ—† Proper-ties of free semigroups 41 โ—† Semigroup presentations 42 โ—†Exercises 51 โ—† Notes 53

Chapter 3 | Structure of semigroups 55Greenโ€™s relations 55 โ—† Simple and 0-simple semigroups 58โ—† D-class structure 60 โ—† Inverses and D-classes 63 โ—†Schรผtzenberger groups 65 โ—† Exercises 68 โ—† Notes 70

Chapter 4 | Regular semigroups 73Completely 0-simple semigroups 75 โ—† Ideals and completely0-simple semigroups 81 โ—† Completely simple semigroups 82โ—† Completely regular semigroups 84 โ—† Left and rightgroups 86 โ—† Homomorphisms 88 โ—† Exercises 89 โ—† Notes 91

Chapter 5 | Inverse semigroups 93Equivalent characterizations 93 โ—† Vagnerโ€“Preston theo-rem 97 โ—† The natural partial order 100 โ—† Clifford semi-groups 102 โ—† Free inverse semigroups 106 โ—† Exercises 116โ—† Notes 119

Chapter 6 | Commutative semigroups 121Cancellative commutative semigroups 121 โ—† Free commut-ative semigroups 123 โ—† Rรฉdeiโ€™s theorem 125 โ—† Exercises 128โ—† Notes 129

โ€ข iii

Page 4: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Chapter 7 | Finite semigroups 131Greenโ€™s relations and ideals 131 โ—† Semidirect and wreathproducts 133 โ—† Division 135 โ—† Krohnโ€“Rhodes decompositiontheorem 140 โ—† Exercises 147 โ—† Notes 148

Chapter 8 | Varieties & pseudovarieties 149Varieties 149 โ—† Pseudovarieties 157 โ—† Pseudovarieties ofsemigroups and monoids 159 โ—† Free objects for pseudovari-eties 161 โ—† Projective limits 162 โ—† Pro-V semigroups 164 โ—†Pseudoidentities 167 โ—† Semidirect products of pseudovarie-ties 172 โ—† Exercises 173 โ—† Notes 174

Chapter 9 | Automata & finite semigroups 175Finite automata and rational languages 175 โ—† Syntactic sem-igroups and monoids 184 โ—† Eilenberg correspondence 188 โ—†Schรผtzenbergerโ€™s theorem 195 โ—† Exercises 201 โ—† Notes 202

Solutions to exercises 203

Bibliography 251

Index 255

List of Tables

Table 8.1 Varieties of semigroups 156Table 8.2 Varieties of monoids 156Table 8.3 Varieties of semigroups with a unary operation โˆ’1 157Table 8.4 S-pseudovarieties of semigroups 169Table 8.5 M-pseudovarieties of monoids 169

Table 9.3 Varieties of rational โˆ—-languages 193Table 9.4 Varieties of rational +-languages 193

โ€ข

iv โ€ข

Page 5: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Preface

โ€˜ A preface is frequently a superior composition to the work itself โ€™โ€” Isaac Dโ€™Israeli,

โ€˜Prefacesโ€™. In: Curiosities of Literature.

โ€ข This course is a tour through selected areas of semi-group theory. There are essentially three parts:โ—† Chapters 1โ€“3 study general semigroups, including presentations for

semigroups and basic structure theory.โ—† Chapters 4โ€“6 examine special classes: namely regular, inverse, and

commutative semigroups.โ—† Chapters 7โ€“9 study finite semigroups, their classification using pseu-

dovarieties, and connections with the theory of automata and regularlanguages.

The course is broad rather than deep. It is not intended to be comprehens-ive: it does not try to study (for instance) structure theory as deeply asHowie, Fundamentals of Semigroup Theory, pseudovarieties as deeply asAlmeida, Finite Semigroups and Universal Algebra, or languages as deeplyas Pin, Varieties of Formal Languages; rather, it samples highlights fromeach area. It should be emphasized that there is very little that is originalin this course. It is heavily based on the treatments in these and otherstandard textbooks, as the bibliographic notes in each chapter make clear.The main novelty is in the selection and arrangement of material, theslightly slower pace, and the general policy of avoiding leaving proofs tothe reader when the corresponding results are required for later proofs.

Figure P.1 shows the dependencies between the chapters. At the endof each chapter, there are a number of exercises, intended to reinforceconcepts introduced in the chapter, and also to explore some relatedtopics that are not covered in the main text. The most important exercisesare marked with a star โœด . Solutions are supplied for all exercises. Atthe end of each chapter are bibliographic notes, which give sources andsuggestions for further reading.

Warnings against potential misunderstandings are marked (like this)with a โ€˜dangerous bendโ€™ symbol, as per Bourbaki or Knuth.

Important observations that are not potential misunderstandings per seare marked with an โ€˜exclamationโ€™ symbol (like this).

This course was originally delivered to masterโ€™s students at the Uni-

โ€ข v

Page 6: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

FIGURE P.1Chart of the dependenciesbetween the chapters. Dottedarrows indicate that thedependency is only in theexercises, not in the main text.

Chapter 1Elementary semigroup theory

Chapter 2Free semigroups & presentations

Chapter 3Structure of semigroups

Chapter 4Regular semigroups

Chapter 5Inverse semigroups

Chapter 6Commutative semigroups

Chapter 7Finite semigroups

Chapter 8Varieties & pseudovarieties

Chapter 9Automata & finite semigroups

versities of Porto and Santiago de Compostella. The course was coveredduring 56 hours of classes, which included lectures and discussions ofthe exercises. Revisions have increased the length of the notes, and about70 hours of class time would now be required to cover them fully.

These notes were heavily revised in 2013โ€“15. Most of the main text isnow stable, but Chapter 8 will be further revised, and further exerciseswill be added. At present, the index is limited to names and โ€˜namedresultsโ€™ only. There may be minor typesetting problems that arise fromthe โ€˜in-developmentโ€™ status of the LuaLaTEX software and many of therequired packages.

The author welcomes any corrections, observations, or constructivecriticisms; please send them to the email address on the copyright page.

vi โ€ขPreface

Page 7: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Prerequisites

There are few formal prerequisites: general mathematicalmaturity is the main one. An understanding of the most basic conceptsfrom elementary group theory is assumed, such as the definition of groups,cosets, and factor groups. Some knowledge of linear algebra will help withunderstanding certain examples, but is not vital. For Chapters 1 and 5,knowledge of the basic definitions of graph theory is assumed. Some basictopology is necessary to appreciate part of Chapter 8 fully (although mostof the chapter can be understood without it, and the relevant sections cansimply be skipped), and some background in universal algebra is useful,but not essential. For Chapter 9, some experience with formal languagetheory and automata is useful, but again not essential.

Acknowledgements

Attila Egri-Nagy, Darij Grinberg, AkihikoKoga, andGuil-herme Ritomade valuable suggestions and indicated various errors. Someexercises were suggested by Victor Maltcev. Typos were pointed out byNick Ham, Samuel Herman, Josรฉ Manuel dos Santos dos Santos, andAlexandre Trocado. Many improvements are due to the students whotook the first version of this course: Miguel Couto, Xabier Garcรญa, andJorge Soares. The imperfections that remain are my responsibility.

The title alludes toไน็ซ ็ฎ—่ก“ (Jiuzhฤng Suร nshรน), Nine Chapters on theMathematical Art.

A. J. C.

โ€ข

Prerequisites โ€ข vii

Page 8: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

viii โ€ข

Page 9: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

1Elementarysemigroup theory

โ€˜ I use the word โ€œelementaryโ€ in the sensein which professional mathematicians use it โ€™

โ€” G.H. Hardy, A Mathematicianโ€™s Apology, ยง 21.

โ€ข A binary operation โˆ˜ on a set ๐‘† is a map โˆ˜ โˆถ ๐‘† ร— ๐‘† โ†’ ๐‘†. Binary operationThis operation is associative if ๐‘ฅ โˆ˜ (๐‘ฆ โˆ˜ ๐‘ง) = (๐‘ฅ โˆ˜ ๐‘ฆ) โˆ˜ ๐‘ง for all elements๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘†. A semigroup is a non-empty set equipped with an associative Semigroupbinary operation.

Semigroups are therefore one of the most basic types of algebraicstructure. We could weaken the definition further by removing the as-sociativity condition and requiring only a binary operation on a set. Astructure that satisfies this weaker condition is called a magma or group-oid. (These โ€˜groupoidsโ€™ are different from the category-theoretic notionof groupoid.)

On the other hand, we can strengthen the definition by requiring anidentity and inverses. Structures satisfying this stronger condition are ofcourse groups. However, there are many more semigroups than groups.For instance, there are 5 essentially different groups with 8 elements (thecyclic group ๐ถ8, the direct products ๐ถ4 ร— ๐ถ2 and ๐ถ2 ร— ๐ถ2 ร— ๐ถ2, the dihed-ral group๐ท4, and the quaternion group ๐‘„8), but there are 3 684 030 417different (non-isomorphic) semigroups with 8 elements.

Some authors define a semigroup as a (possibly empty) set equippedwith โ€˜Empty semigroupโ€™an associative binary operation. That is, the empty set forms the โ€˜emptysemigroupโ€™. This has advantages from a category-theoretic viewpoint.Note, however, that other definitions must be adjusted if a semigroupcan be empty. In these notes, semigroups are required to be non-empty.

Basic concepts and examples

Throughout this chapter, ๐‘† will denote a semigroup withoperation โˆ˜. Formally, we write (๐‘†, โˆ˜) to indicate that we are consideringthe set ๐‘† with the operation โˆ˜, but we will only do this when we need todistinguish a particular operation. Unless we need to distinguish between

โ€ข 1

Page 10: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

different operations, wewill oftenwrite๐‘ฅ๐‘ฆ instead of๐‘ฅโˆ˜๐‘ฆ (where๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†)and we will call the operation multiplication and the element ๐‘ฅ๐‘ฆ (i.e. theMultiplication, productresult of applying the operation to ๐‘ฅ and ๐‘ฆ) the product of the elements ๐‘ฅand ๐‘ฆ.

In order to compute a product like ๐‘ฅ๐‘ฆ๐‘ง๐‘ก (or, equivalently, ๐‘ฅ โˆ˜ ๐‘ฆ โˆ˜ ๐‘ง โˆ˜ ๐‘ก),where ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก โˆˆ ๐‘†, we have to insert balanced pairs of brackets into theproduct to show in what order we perform the multiplications. We mightinsert brackets in any of the following five ways:

((๐‘ฅ๐‘ฆ)๐‘ง)๐‘ก, (๐‘ฅ(๐‘ฆ๐‘ง))๐‘ก, (๐‘ฅ๐‘ฆ)(๐‘ง๐‘ก), ๐‘ฅ((๐‘ฆ๐‘ง)๐‘ก), ๐‘ฅ(๐‘ฆ(๐‘ง๐‘ก)).

The following result shows that the choice of how to insert balanced pairsof brackets is unimportant:

P ro p o s i t i on 1 . 1. Let ๐‘ 1,โ€ฆ , ๐‘ ๐‘› โˆˆ ๐‘†. Every way of inserting balancedAssociativitypairs of brackets into the product ๐‘ 1๐‘ 2โ‹ฏ๐‘ ๐‘› gives the same result.

Proof of 1.1. We will prove that any insertion of brackets into the productgives the same result as ๐‘ 1(๐‘ 2(๐‘ 3โ‹ฏ๐‘ ๐‘›)โ‹ฏ). We proceed by induction on ๐‘›.For ๐‘› = 1, the result is trivially true, for there is only one way to insertbalanced pairs of brackets into the product ๐‘ 1. This is the base case of theinduction.

So assume that the result holds for all ๐‘› < ๐‘˜; we aim to show it istrue for ๐‘› = ๐‘˜. Take some bracketing of the product ๐‘ 1๐‘ 2โ‹ฏ๐‘ ๐‘˜ and let ๐‘ก bethe result. This bracketing is a product of some bracketing of ๐‘ 1โ‹ฏ๐‘ โ„“ andsome bracketing of ๐‘ โ„“+1โ‹ฏ๐‘ ๐‘˜, for some โ„“ with 1 โฉฝ โ„“ < ๐‘˜. Now considertwo cases:โ—† Suppose โ„“ = 1. By the assumption, the result of inserting brack-

ets into ๐‘ โ„“+1โ‹ฏ๐‘ ๐‘˜ = ๐‘ 2โ‹ฏ๐‘ ๐‘˜ is equal to ๐‘ 2(๐‘ 3(โ‹ฏ ๐‘ ๐‘˜)โ‹ฏ). Thus ๐‘ก =๐‘ 1(๐‘ 2(๐‘ 3(โ‹ฏ ๐‘ ๐‘˜)โ‹ฏ)), which is the result with ๐‘› = ๐‘˜.

โ—† Suppose โ„“ > 1. By the assumption, the result of the bracketing of๐‘ 1โ‹ฏ๐‘ โ„“ is ๐‘ 1(๐‘ 2(โ‹ฏ ๐‘ โ„“)โ‹ฏ) and the result of the bracketing of ๐‘ โ„“+1โ‹ฏ๐‘ ๐‘˜is ๐‘ โ„“+1(๐‘ โ„“+2(โ‹ฏ ๐‘ ๐‘˜)โ‹ฏ). Thus

๐‘ก = (๐‘ 1(๐‘ 2(โ‹ฏ ๐‘ โ„“)โ‹ฏ))(๐‘ โ„“+1(๐‘ โ„“+2(โ‹ฏ ๐‘ ๐‘˜)โ‹ฏ))

= ๐‘ 1(((๐‘ 2(โ‹ฏ ๐‘ โ„“)โ‹ฏ))(๐‘ โ„“+1(๐‘ โ„“+2(โ‹ฏ ๐‘ ๐‘˜)โ‹ฏ))) [by associativity]

= ๐‘ 1(๐‘ 2(๐‘ 3โ‹ฏ๐‘ ๐‘˜)โ‹ฏ), [by assumption with ๐‘› = ๐‘˜ โˆ’ 1]

which is the result with ๐‘› = ๐‘˜.Hence, by induction, the result holds for all ๐‘›. 1.1

Thus, by Proposition 1.1, there is no ambiguity in writing a product๐‘ 1๐‘ 2โ‹ฏ๐‘ ๐‘› (where each ๐‘ ๐‘– โˆˆ ๐‘†): the product is the same regardless of howwe insert the brackets.

Any group is also a semigroup. The most familiar example of a semi-group that is not a group is the set of natural numbersโ„• = {1, 2, 3,โ€ฆ}

2 โ€ขElementary semigroup theory

Page 11: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

under the operation of addition. This is not a group since it does notcontain inverses.

Note that, for our purposes, the set of natural numbersโ„• = {1, 2, 3,โ€ฆ}does not include 0.Let ๐‘’ be an element of ๐‘†. If ๐‘’๐‘ฅ = ๐‘ฅ for all ๐‘ฅ โˆˆ ๐‘†, the element ๐‘’ is a Identity, monoid

left identity. If ๐‘ฅ๐‘’ = ๐‘ฅ for all ๐‘ฅ โˆˆ ๐‘†, the element ๐‘’ is a right identity. If๐‘’๐‘ฅ = ๐‘ฅ๐‘’ = ๐‘ฅ for all ๐‘ฅ โˆˆ ๐‘†, then ๐‘’ is a two-sided identity or simply anidentity. A semigroup that contains an identity is called a monoid.

Let ๐‘ง be an element of ๐‘†. If ๐‘ง๐‘ฅ = ๐‘ง for all ๐‘ฅ โˆˆ ๐‘†, the element ๐‘ง is a left Zerozero. If ๐‘ฅ๐‘ง = ๐‘ง for all ๐‘ฅ โˆˆ ๐‘†, the element ๐‘ง is a right zero. If ๐‘ง๐‘ฅ = ๐‘ฅ๐‘ง = ๐‘งfor all ๐‘ฅ โˆˆ ๐‘†, then ๐‘ง is a two-sided zero or simply a zero.

E x ampl e 1 . 2. Let us give some examples of semigroups:a) The integers โ„ค form a semigroup under two different operations:

addition + and multiplication โ‹… . The semigroup (โ„ค, +) is a monoidwith identity 0; but in (โ„ค, โ‹… ), the element 0 is a zero.

b) The trivial semigroup contains only one element ๐‘’, with multiplication Trivial semigroupobviously defined by ๐‘’๐‘’ = ๐‘’. Since ๐‘’ is (trivially) an identity, thissemigroup is also called the trivial monoid.

c) A null semigroup is a semigroup with a zero ๐‘ง in which the product Null semigroupof any two elements is ๐‘ง. It is easy to see that this multiplication isassociative. Notice that we can define a null semigroup on any non-empty set by choosing some element ๐‘ง and defining all products tobe ๐‘ง.

d) If every element of ๐‘† is a left zero (that is, ๐‘ฅ๐‘ฆ = ๐‘ฅ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†), Right/left zero semigroupthen ๐‘† is a left zero semigroup. If every element of ๐‘† is a right zero(that is, ๐‘ฅ๐‘ฆ = ๐‘ฆ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†), then ๐‘† is a right zero semigroup. Wecan define a left zero semigroup on any non-empty set๐‘‹ by definingthe multiplication ๐‘ฅ๐‘ฆ = ๐‘ฅ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹; it is easy to see that thismultiplication is associative. Similarly, we can define a right zerosemigroup on any non-empty set ๐‘‹ by defining the multiplication๐‘ฅ๐‘ฆ = ๐‘ฆ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹.

e) Any ring is a semigroup under multiplication.

P ro p o s i t i on 1 . 3. If ๐‘’ is a left identity of ๐‘† and ๐‘’โ€ฒ is a right identity Uniqueness of an identityof ๐‘† then ๐‘’ = ๐‘’โ€ฒ. Consequently, a semigroup contains at most one identity.

Proof of 1.3. Since ๐‘’ is a left identity ๐‘’๐‘’โ€ฒ = ๐‘’โ€ฒ. Since ๐‘’โ€ฒ is a right identity,๐‘’ = ๐‘’๐‘’โ€ฒ. Hence ๐‘’ = ๐‘’๐‘’โ€ฒ = ๐‘’โ€ฒ. 1.3

Pro p o s i t i on 1 . 4. If ๐‘ง is a left zero of ๐‘† and ๐‘งโ€ฒ is a right zero of ๐‘† then Uniqueness of a zero๐‘ง = ๐‘งโ€ฒ. Consequently, a semigroup contains at most one zero.

Proof of 1.4. Since ๐‘ง is a left zero, ๐‘ง๐‘งโ€ฒ = ๐‘ง. Since ๐‘งโ€ฒ is a right zero, ๐‘ง๐‘งโ€ฒ = ๐‘งโ€ฒ.Hence ๐‘ง = ๐‘ง๐‘งโ€ฒ = ๐‘งโ€ฒ. 1.4

Basic concepts and examples โ€ข 3

Page 12: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

It therefore makes sense to use the special notations 0 and 1 for theunique zero and identity of a semigroup. If we need to specify the zero oridentity of a particular semigroup ๐‘†, we will use 0๐‘† and 1๐‘†.

Let 1 be a new element not in the semigroup ๐‘†. Extend the multiplic-Adjoining an identity or zeroation on ๐‘† to ๐‘† โˆช {1} by 1๐‘ฅ = ๐‘ฅ1 = ๐‘ฅ for all ๐‘ฅ โˆˆ ๐‘† and 11 = 1. It is easyto prove that this extended multiplication is associative. Then ๐‘† โˆช {1} isa monoid with identity 1. Similarly, let 0 be a new element not in ๐‘† andextend the multiplication on ๐‘† to ๐‘† โˆช {0} by 0๐‘ฅ = ๐‘ฅ0 = 00 = 0 for all๐‘ฅ โˆˆ ๐‘†. Again, this extended multiplication is associative. Then ๐‘† โˆช {0} is asemigroup with zero 0. For any semigroup ๐‘†, define

๐‘†1 = {๐‘† if ๐‘† has an identity,๐‘† โˆช {1} otherwise;

๐‘†0 = {๐‘† if ๐‘† has a zero,๐‘† โˆช {0} otherwise.

The semigroups ๐‘†1 and ๐‘†0 are called, respectively, the monoid obtainedby adjoining an identity to ๐‘† if necessary and the semigroup obtained byadjoining a zero to ๐‘† if necessary.

Throughout these notes, maps are written on the right and composedNotation for mapsleft to right. To clarify: let ๐œ‘ โˆถ ๐‘‹ โ†’ ๐‘Œ and ๐œ“ โˆถ ๐‘Œ โ†’ ๐‘ be maps. The resultof applying ๐œ‘ to an element ๐‘ฅ of ๐‘‹ is denoted ๐‘ฅ๐œ‘. The composition of๐œ‘ and ๐œ“ is denoted ๐œ‘ โˆ˜ ๐œ“ or simply ๐œ‘๐œ“, and is a map from ๐‘‹ to ๐‘ with๐‘ฅ(๐œ‘๐œ“) = (๐‘ฅ๐œ‘)๐œ“ for all ๐‘ฅ โˆˆ ๐‘‹. For๐‘‹โ€ฒ โŠ† ๐‘‹, the restriction of the map ๐œ‘ to๐‘‹โ€ฒ is denoted ๐œ‘|๐‘‹โ€ฒ.

Let X = {๐‘‹๐‘– โˆถ ๐‘– โˆˆ ๐ผ } (where ๐ผ is an index set) be a collection ofCartesian productsets. Informally, the cartesian product โˆ๐‘–โˆˆ๐ผ ๐‘‹๐‘– of the sets in X is the setof tuples with |๐ผ| components, where, for each ๐‘– โˆˆ ๐ผ, the ๐‘–-th componentis an element of๐‘‹๐‘–. More formally, the cartesian productโˆ๐‘–โˆˆ๐ผ ๐‘‹๐‘– is theset of maps ๐œŽ from ๐ผ toโ‹ƒ๐‘–โˆˆ๐ผ ๐‘‹๐‘– such that ๐‘–๐œŽ โˆˆ ๐‘‹๐‘– for each ๐‘– โˆˆ ๐ผ. We thinkof the map ๐œŽ as a tuple with ๐‘–-th component ๐‘–๐œŽ. We will use both mapnotation and (especially when the index set ๐ผ is finite) tuple notation forelements of cartesian products. When ๐ผ = {1,โ€ฆ , ๐‘›} is finite, we write๐‘‹1 ร— โ€ฆ ร— ๐‘‹๐‘› for โˆ๐‘–โˆˆ๐ผ ๐‘‹๐‘–, and we say the cartesian product is finitary.Finitary cartesian productWhen the sets๐‘‹๐‘– are all equal to a set๐‘‹ (that is, when we consider thecartesian product of |๐ผ| copies of the set๐‘‹), we write๐‘‹๐ผ forโˆ๐‘–โˆˆ๐ผ ๐‘‹๐‘–.

Let S = { ๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ } (where ๐ผ is an index set) be a collection ofDirect productsemigroups. The direct product of the semigroups in S is their cartesianproductโˆ๐‘–โˆˆ๐ผ ๐‘†๐‘– with componentwise multiplication: (๐‘–)(๐‘ ๐‘ก) = (๐‘–)๐‘ (๐‘–)๐‘ก, or,using tuple notation,

(โ€ฆ , ๐‘ ๐‘–,โ€ฆ )(โ€ฆ , ๐‘ก๐‘–,โ€ฆ ) = (โ€ฆ , ๐‘ ๐‘–๐‘ก๐‘–,โ€ฆ ).

It is easy to prove that this componentwise multiplication is associative,and so the direct product is itself a semigroup.

4 โ€ขElementary semigroup theory

Page 13: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

For ๐‘ฅ โˆˆ ๐‘† and ๐‘› โˆˆ โ„•, define Exponent

๐‘ฅ๐‘› =๐‘› timesโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž๐‘ฅ๐‘ฅโ‹ฏ๐‘ฅ . (1.1)

Notice that, in general, ๐‘ฅ๐‘› is only defined for positive ๐‘›. If ๐‘† is a monoid,define ๐‘ฅ0 = 1๐‘†. Any element ๐‘ฅ๐‘›, where ๐‘› โˆˆ โ„• โˆช {0} is a power of ๐‘ฅ; if Power, positive power๐‘› > 0, it is a positive power of ๐‘ฅ. Notice that if ๐‘† is not a monoid, thenevery power is a positive power.

As an immediate consequence of Proposition 1.1, ๐‘ฅ๐‘š๐‘ฅ๐‘› = ๐‘ฅ๐‘š+๐‘› for Exponent lawsall ๐‘ฅ โˆˆ ๐‘† and๐‘š, ๐‘› โˆˆ โ„•. If ๐‘† is a monoid, then ๐‘ฅ๐‘š๐‘ฅ๐‘› = ๐‘ฅ๐‘š+๐‘› for all ๐‘ฅ โˆˆ ๐‘†and๐‘š, ๐‘› โˆˆ โ„• โˆช {0}.

Let ๐‘ฅ โˆˆ ๐‘† and consider the positive powers ๐‘ฅ, ๐‘ฅ2, ๐‘ฅ3,โ€ฆ. There are Periodic element,index, periodtwo possibilities: either all these positive powers of ๐‘ฅ are distinct or there

is some ๐‘˜, โ„“ โˆˆ โ„• with ๐‘˜ < โ„“ such that ๐‘ฅ๐‘˜ = ๐‘ฅโ„“. In the latter case, ๐‘ฅ is saidto be periodic; notice that in a finite semigroup, this latter case must hold.Choose โ„“ as small as possible; then ๐‘ฅโ„“ is the first positive power of ๐‘ฅ thatis equal to some earlier positive power. Let ๐‘š = โ„“ โˆ’ ๐‘˜; then ๐‘ฅ๐‘˜ = ๐‘ฅ๐‘˜+๐‘š.Repeatedly multiplying this equality by ๐‘ฅ๐‘š, one sees that ๐‘ฅ๐‘˜ = ๐‘ฅ๐‘˜+๐‘Ÿ๐‘š forall ๐‘Ÿ โˆˆ โ„•โˆช{0}. Let ๐‘› โˆˆ โ„•โˆช{0}. Then ๐‘› = ๐‘š๐‘Ÿ+ ๐‘– for some ๐‘Ÿ โˆˆ โ„•โˆช{0} and๐‘– โˆˆ {0,โ€ฆ ,๐‘š โˆ’ 1}, and so ๐‘ฅ๐‘˜+๐‘› = ๐‘ฅ๐‘˜+๐‘š๐‘Ÿ+๐‘– = ๐‘ฅ๐‘˜+๐‘–. Therefore every powerof ๐‘ฅ after ๐‘ฅ๐‘˜ is equal to one of

๐‘ฅ๐‘˜, ๐‘ฅ๐‘˜+1,โ€ฆ , ๐‘ฅ๐‘˜+๐‘šโˆ’1.

Thus, by the minimality of the choice of โ„“, there are ๐‘˜ + ๐‘š โˆ’ 1 distinctpositive powers of ๐‘ฅ, namely

๐‘ฅ, ๐‘ฅ2,โ€ฆ , ๐‘ฅ๐‘˜โˆ’1, ๐‘ฅ๐‘˜, ๐‘ฅ๐‘˜+1,โ€ฆ , ๐‘ฅ๐‘˜+๐‘šโˆ’1.

We call ๐‘˜ the index of ๐‘ฅ and๐‘š the period of ๐‘ฅ. A periodic semigroup is Periodic semigroupone in which every element is periodic. Note that all finite semigroupsare periodic.

An element ๐‘ฅ of ๐‘† is an idempotent if ๐‘ฅ2 = ๐‘ฅ. The set of idempotents Idempotent, ๐ธ(๐‘†),semigroup of idempotentsof ๐‘† is denoted ๐ธ(๐‘†). If every element of ๐‘† is an idempotent, then ๐‘† is

a semigroup of idempotents. For example, a right zero semigroup is asemigroup of idempotents.

For any subsets๐‘‹ and๐‘Œ of ๐‘†, define๐‘‹๐‘Œ = { ๐‘ฅ๐‘ฆ โˆถ ๐‘ฅ โˆˆ ๐‘‹, ๐‘ฆ โˆˆ ๐‘Œ }.Write Product of subsets๐‘ฅ๐‘Œ for {๐‘ฅ}๐‘Œ and๐‘‹๐‘ฆ for๐‘‹{๐‘ฆ}. Since multiplication in ๐‘† is associative, sois this product of subsets: for subsets๐‘‹, ๐‘Œ, and ๐‘ of ๐‘†, we have๐‘‹(๐‘Œ๐‘) =(๐‘‹๐‘Œ)๐‘. By analogy with (1.1), for๐‘‹ โŠ† ๐‘† and ๐‘› โˆˆ โ„•, define

๐‘‹๐‘› =๐‘› timesโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž๐‘‹๐‘‹โ‹ฏ๐‘‹ .

The semigroup ๐‘† is nilpotent if it contains a zero and there exists some Nilpotent semigroup,nilsemigroup๐‘› โˆˆ โ„• such that ๐‘†๐‘› = {0}. The semigroup ๐‘† is a nilsemigroup if it contains

a zero and for every ๐‘ฅ โˆˆ ๐‘†, there exists some ๐‘› โˆˆ โ„• such that ๐‘ฅ๐‘› = 0.

Basic concepts and examples โ€ข 5

Page 14: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Note that this is incompatible with the definition of a โ€˜nilpotent groupโ€™.A non-trivial group is never nilpotent in this semigroup sense.

The semigroup ๐‘† is left-cancellative ifCancellativity

(โˆ€๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘†)(๐‘ง๐‘ฅ = ๐‘ง๐‘ฆ โ‡’ ๐‘ฅ = ๐‘ฆ);

right-cancellative if

(โˆ€๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘†)(๐‘ฅ๐‘ง = ๐‘ฆ๐‘ง โ‡’ ๐‘ฅ = ๐‘ฆ);

and cancellative if it is both left- and right-cancellative. Note that a non-trivial semigroup with zero cannot be cancellative.

The semigroup ๐‘† is commutative if ๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. ForCommutativityinstance, (โ„ค, +) and (โ„ค, โ‹… ) are both commutative. A non-trivial left zerosemigroup is not commutative.

Let๐‘€ be amonoid. Let๐‘ฅ โˆˆ ๐‘€. Suppose that there exists an element๐‘ฅโ€ฒLeft and right inversesuch that ๐‘ฅ๐‘ฅโ€ฒ = 1. Then ๐‘ฅโ€ฒ is a right inverse for ๐‘ฅ, and ๐‘ฅ is right invertible.Similarly, suppose there exists an element ๐‘ฅโ€ณ such that ๐‘ฅโ€ณ๐‘ฅ = 1. Then๐‘ฅโ€ณ is a left inverse for ๐‘ฅ, and ๐‘ฅ is left invertible. If ๐‘ฅ is both left and rightinvertible, then ๐‘ฅ is invertible.

P ro p o s i t i on 1 . 5. Let๐‘€ be a monoid, and let ๐‘ฅ โˆˆ ๐‘€. Suppose ๐‘ฅRight and leftinverses coincide is invertible and let ๐‘ฅโ€ฒ be a right inverse of ๐‘ฅ and ๐‘ฅโ€ณ a left inverse. Then

๐‘ฅโ€ฒ = ๐‘ฅโ€ณ.

Proposition 1.5 says that right and left inverses coincide when they bothexist. The existence of one does not imply the existence of the other.

Proof of 1.5. Since ๐‘ฅโ€ฒ and ๐‘ฅโ€ณ are, respectively, right and left inverses of ๐‘ฅ,we have ๐‘ฅ๐‘ฅโ€ฒ = 1 and ๐‘ฅโ€ณ๐‘ฅ = 1. Hence ๐‘ฅโ€ฒ = 1๐‘ฅโ€ฒ = ๐‘ฅโ€ณ๐‘ฅ๐‘ฅโ€ฒ = ๐‘ฅโ€ณ1 = ๐‘ฅโ€ณ. 1.5

Thus if ๐‘ฅ is an invertible element of a monoid๐‘€, denote the uniqueGroupright and left inverse of ๐‘ฅ by ๐‘ฅโˆ’1. A monoid in which every element isinvertible is of course a group.

Let ๐‘ฅ โˆˆ ๐‘†. If there is an element ๐‘ฆ โˆˆ ๐‘† such that ๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ฅ, then theRegular elementelement ๐‘ฅ is regular. Notice that in this case, ๐‘ฅ๐‘ฆ and ๐‘ฆ๐‘ฅ are idempotent,since (๐‘ฅ๐‘ฆ)2 = ๐‘ฅ๐‘ฆ๐‘ฅ๐‘ฆ = (๐‘ฅ๐‘ฆ๐‘ฅ)๐‘ฆ = ๐‘ฅ๐‘ฆ and (๐‘ฆ๐‘ฅ)2 = ๐‘ฆ๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ฆ(๐‘ฅ๐‘ฆ๐‘ฅ) = ๐‘ฆ๐‘ฅ.If every element of ๐‘† is regular, then ๐‘† is a regular semigroup.Regular semigroup

An element ๐‘ฅโ€ฒ โˆˆ ๐‘† such that ๐‘ฅ = ๐‘ฅ๐‘ฅโ€ฒ๐‘ฅ and ๐‘ฅโ€ฒ๐‘ฅ๐‘ฅโ€ฒ = ๐‘ฅโ€ฒ is an inverse ofInverse๐‘ฅ.

Notice that this is entirely different from the notion of left/right inversesabove. We will never use โ€˜inverseโ€™ (on its own) to refer to a left or rightinverse.

Pro p o s i t i on 1 . 6. Let ๐‘ฅ โˆˆ ๐‘†. Then ๐‘ฅ has an inverse if and only if ๐‘ฅ isregular.

6 โ€ขElementary semigroup theory

Page 15: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 1.6. Obviously if ๐‘ฅ has an inverse, then it is regular. So suppose ๐‘ฅis regular. Then there exists ๐‘ฆ โˆˆ ๐‘† such that ๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ฅ. Let ๐‘ฅโ€ฒ = ๐‘ฆ๐‘ฅ๐‘ฆ. Then๐‘ฅ๐‘ฅโ€ฒ๐‘ฅ = ๐‘ฅ(๐‘ฆ๐‘ฅ๐‘ฆ)๐‘ฅ = (๐‘ฅ๐‘ฆ๐‘ฅ)๐‘ฆ๐‘ฅ = ๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ฅ and ๐‘ฅโ€ฒ๐‘ฅ๐‘ฅโ€ฒ = (๐‘ฆ๐‘ฅ๐‘ฆ)๐‘ฅ(๐‘ฆ๐‘ฅ๐‘ฆ) =๐‘ฆ(๐‘ฅ๐‘ฆ๐‘ฅ)๐‘ฆ๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ๐‘ฆ๐‘ฅ๐‘ฆ = ๐‘ฆ(๐‘ฅ๐‘ฆ๐‘ฅ)๐‘ฆ = ๐‘ฆ๐‘ฅ๐‘ฆ = ๐‘ฅโ€ฒ, so ๐‘ฅโ€ฒ is an inverse of๐‘ฅ. 1.6

In the proof of Proposition 1.6, the element ๐‘ฆmight not be an inverse of๐‘ฅ: for example, let ๐‘† be a semigroup with a zero and let ๐‘ฅ = 0 and ๐‘ฆ โ‰  0.Then ๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ฅ but ๐‘ฆ๐‘ฅ๐‘ฆ โ‰  ๐‘ฆ.An element ๐‘ฅ can have more than one inverse; see Example 1.7(e). The Set of inverses ๐‘‰(๐‘ฅ)

set of inverses of๐‘ฅ is denoted๐‘‰(๐‘ฅ). Notice also that a zero 0 of a semigrouphas an inverse, namely 0 itself. In general, if ๐‘’ โˆˆ ๐‘† is idempotent, then๐‘’3 = ๐‘’2 = ๐‘’ and so ๐‘’ is an inverse of itself. In particular, every idempotentis regular.

E x a m p l e 1 . 7. a) Let ๐‘ˆ = {0,โ€ฆ , ๐‘˜} for some ๐‘˜ โฉพ 0. Define anoperationโ–ณ on ๐‘ˆ by ๐‘šโ–ณ ๐‘› = min{๐‘š, ๐‘›}. It is easy to see thatโ–ณ isassociative, and so (๐‘ˆ,โ–ณ) is a semigroup. Notice that 0โ–ณ๐‘š = ๐‘šโ–ณ0 =0 and ๐‘˜ โ–ณ ๐‘š = ๐‘š โ–ณ ๐‘˜ = ๐‘š for all ๐‘š โˆˆ ๐‘ˆ. Hence ๐‘ˆ has zero 0 andidentity ๐‘˜. Furthermore,๐‘šโ–ณ๐‘š = ๐‘š for all๐‘š โˆˆ ๐‘ˆ, so every elementof ๐‘ˆ is an idempotent. Finally,๐‘šโ–ณ ๐‘› = ๐‘› โ–ณ ๐‘š for all๐‘š, ๐‘› โˆˆ ๐‘ˆ andso ๐‘ˆ is commutative.

b) Similarly, define an associative operationโ–ณ onโ„• โˆช {0} = {0, 1, 2,โ€ฆ}by ๐‘š โ–ณ ๐‘› = min{๐‘š, ๐‘›}. Then (โ„• โˆช {0},โ–ณ) has a zero 0 but has noidentity. It is commutative and all its elements are idempotents.

c) Consider the set of all 2 ร— 2 integer matrices:

๐‘€2(โ„ค) = {[๐‘Ž ๐‘๐‘ ๐‘‘] โˆถ ๐‘Ž, ๐‘, ๐‘, ๐‘‘ โˆˆ โ„ค}.

With the usualmatrixmultiplication,๐‘€2(โ„ค) is amonoidwith identity

[1 00 1] and zero [0 00 0]. It is easy to see that๐‘€2(โ„ค) is not commut-

ative, and that not all of its elements are idempotent. Since๐‘€2(โ„ค)contains a zero, it is not cancellative.

d) Now let ๐‘‰ be the set of all 2 ร— 2 integer matrices with non-zero de-terminant:

๐‘‰ = {[๐‘Ž ๐‘๐‘ ๐‘‘] โˆถ ๐‘Ž, ๐‘, ๐‘, ๐‘‘ โˆˆ โ„ค โˆง det [๐‘Ž ๐‘๐‘ ๐‘‘] โ‰  0}.

Again, ๐‘‰ is a monoid. Let ๐‘ƒ,๐‘„, ๐‘… โˆˆ ๐‘‰. Suppose ๐‘…๐‘ƒ = ๐‘…๐‘„. Sincedet๐‘… โ‰  0, the matrix ๐‘… has a (left and right) inverse ๐‘…โˆ’1 โˆˆ ๐‘€2(โ„š).[Note that ๐‘…โˆ’1 โˆ‰ ๐‘‰ whenever det๐‘… โ‰  ยฑ1, so ๐‘‰ is not a group.] So๐‘…โˆ’1๐‘…๐‘ƒ = ๐‘…โˆ’1๐‘…๐‘„ and so ๐‘ƒ = ๐‘„. Hence๐‘‰ is left-cancellative. Similarly,it is right-cancellative and therefore cancellative.

Basic concepts and examples โ€ข 7

Page 16: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

e) Let ๐ฟ be a left zero semigroup and ๐‘… a right zero semigroup. LetRectangular band๐ต = ๐ฟร—๐‘…. The semigroup ๐ต is an |๐ฟ| ร— |๐‘…| rectangular band, or simplya rectangular band. For (โ„“1, ๐‘Ÿ1), (โ„“2, ๐‘Ÿ2) โˆˆ ๐ต, we have

(โ„“1, ๐‘Ÿ1)(โ„“2, ๐‘Ÿ2) = (โ„“1โ„“2, ๐‘Ÿ1๐‘Ÿ2) = (โ„“1, ๐‘Ÿ2),

since (in particular) โ„“1 is a left zero and ๐‘Ÿ2 is a right zero. Thus everyelement of ๐ต is idempotent, since (โ„“, ๐‘Ÿ)(โ„“, ๐‘Ÿ) = (โ„“, ๐‘Ÿ) for all (โ„“, ๐‘Ÿ) โˆˆ ๐ต.Furthermore, for any (โ„“1, ๐‘Ÿ1), (โ„“2, ๐‘Ÿ2) โˆˆ ๐ต, we have

(โ„“1, ๐‘Ÿ1)(โ„“2, ๐‘Ÿ2)(โ„“1, ๐‘Ÿ1) = (โ„“1โ„“2โ„“1, ๐‘Ÿ1๐‘Ÿ2๐‘Ÿ1) = (โ„“1, ๐‘Ÿ1)(โ„“2, ๐‘Ÿ2)(โ„“1, ๐‘Ÿ1)(โ„“2, ๐‘Ÿ2) = (โ„“2โ„“1โ„“2, ๐‘Ÿ2๐‘Ÿ1๐‘Ÿ2) = (โ„“2, ๐‘Ÿ2).

Hence (โ„“2, ๐‘Ÿ2) is an inverse of (โ„“1, ๐‘Ÿ1). Thus every element is an inverseof every element.

The name โ€˜rectangular bandโ€™ comes from the following diagram-matic interpretation of the multiplication. The elements of the sem-igroup correspond to the cells of a grid whose rows are indexed by๐ฟ and whose columns are indexed by ๐‘…. So (โ„“1, ๐‘Ÿ1) corresponds to(โ„“1, ๐‘Ÿ1) (โ„“1, ๐‘Ÿ2)

(โ„“2, ๐‘Ÿ2)

FIGURE 1.1Diagrammatic interpretation ofmultiplication in a rectangular

band.

the cell in row โ„“1 and column ๐‘Ÿ1. In terms of cells, the product of twoelements is the cell in the row of the first multiplicand and the columnof the second multiplicand; see Figure 1.1. [The reason for indexingrows by the first coordinate and columns by the second coordinatewill become clear in Chapter 4.]

The opposite semigroup ๐‘†opp of ๐‘† is the semigroup with the same set asOpposite semigroup๐‘† but โ€˜reversed multiplicationโ€™. That is, for ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†, the product ๐‘ฅ๐‘ฆ in ๐‘†oppis equal to the product ๐‘ฆ๐‘ฅ in ๐‘†. It is easy to check that ๐‘†opp is indeed asemigroup. Notice that if ๐‘† is commutative, then ๐‘†opp and ๐‘† are the samesemigroup.

Generators and subsemigroups

A non-empty subset ๐‘‡ of ๐‘† is a subsemigroup if it is closedSubsemigroupunder multiplication; that is, if ๐‘‡๐‘‡ โŠ† ๐‘‡. A proper subsemigroup is anysubsemigroup except ๐‘† itself. A submonoid is a subsemigroup that hap-pens to be a monoid. A subgroup is a subsemigroup that happens to be agroup.

P ro p o s i t i on 1 . 8. The set of invertible elements of a monoid forms asubgroup.

Proof of 1.8. Let ๐‘‡ be the set of invertible elements of a monoid๐‘€. Notethat ๐‘‡ is non-empty since 1 โˆˆ ๐‘‡. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‡. Then since ๐‘ฅ and ๐‘ฆ areinvertible we have ๐‘ฆโˆ’1๐‘ฅโˆ’1๐‘ฅ๐‘ฆ = ๐‘ฆโˆ’1๐‘ฆ = 1 and ๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1 = ๐‘ฅ๐‘ฅโˆ’1 = 1.

8 โ€ขElementary semigroup theory

Page 17: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Hence ๐‘ฅ๐‘ฆ is invertible and so lies in ๐‘‡. Hence ๐‘‡ is a subsemigroup of๐‘€.Furthermore, 1 โˆˆ ๐‘‡ is also an identity for ๐‘‡ and so ๐‘‡ is a submonoid of๐‘€. Finally, let ๐‘ฅ โˆˆ ๐‘‡; then ๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฅโˆ’1๐‘ฅ = 1 and so ๐‘ฅโˆ’1 is invertible andthus ๐‘ฅโˆ’1 โˆˆ ๐‘‡. Hence ๐‘‡ is closed under taking inverses. Therefore ๐‘‡ is asubgroup of๐‘€. 1.8

The set of invertible elements of a monoid is called its group of units; Group of unitsProposition 1.8 justifies this name.

The following result is a useful characterization of subgroups of asemigroup:

L emma 1 . 9. Let ๐บ be a non-empty subset of ๐‘†. Then ๐‘”๐บ = ๐บ๐‘” = ๐บ forall ๐‘” โˆˆ ๐บ if and only if ๐บ is a subgroup of ๐‘†.

Proof of 1.9. Notice first that if ๐บ is a subgroup and ๐‘” โˆˆ ๐บ, then ๐บ =๐‘”๐‘”โˆ’1๐บ โŠ† ๐‘”๐บ โŠ† ๐บ, so ๐บ = ๐‘”๐บ. Similarly, ๐บ = ๐บ๐‘”.

For the converse, suppose that ๐‘”๐บ = ๐บ๐‘” = ๐บ for all ๐‘” โˆˆ ๐บ. For any๐‘”, โ„Ž โˆˆ ๐บ, the product ๐‘”โ„Ž lies in ๐‘”๐บ = ๐บ. Hence ๐บ is a subsemigroup.

Let ๐‘” โˆˆ ๐บ. Since ๐บ = ๐บ๐‘”, it follows that ๐‘” โˆˆ ๐บ๐‘”, and so there exists๐‘’ โˆˆ ๐บ such that ๐‘” = ๐‘’๐‘”. Let โ„Ž โˆˆ ๐บ. Since ๐บ = ๐‘”๐บ, there exists ๐‘ฅ โˆˆ ๐บ suchthat โ„Ž = ๐‘”๐‘ฅ. Hence ๐‘’โ„Ž = ๐‘’๐‘”๐‘ฅ = ๐‘”๐‘ฅ = โ„Ž. Since โ„Ž โˆˆ ๐บ was arbitrary, ๐‘’ is aleft identity for ๐บ. Similarly ๐บ contains a right identity ๐‘“, and so ๐‘’ = ๐‘“ isan identity for ๐บ by Proposition 1.3. So ๐บ is a submonoid with identity1๐บ.

Finally, since 1๐บ โˆˆ ๐‘”๐บ = ๐บ๐‘”, the element ๐‘” is right and left invertibleand its right and left inverses coincide by Proposition 1.5. Since ๐‘” โˆˆ ๐บwas arbitrary, ๐บ is a subgroup. 1.9

Let ๐‘‡ be a non-empty subset of ๐‘†. The subset ๐‘‡ is a left ideal of ๐‘† if it is Idealclosed under left multiplication by any element of ๐‘†; that is, if ๐‘†๐‘‡ โŠ† ๐‘‡. Itis a right ideal of ๐‘† if it is closed under right multiplication by any elementof ๐‘†; that is, if ๐‘‡๐‘† โŠ† ๐‘‡. It is a two-sided ideal, or simply an ideal, of ๐‘†if it is closed under both left and right multiplication by elements of ๐‘†;that is, if ๐‘†๐‘‡ โˆช ๐‘‡๐‘† โŠ† ๐‘‡. Every ideal, whether left, right, or two-sided, is asubsemigroup.

For any ๐‘ฅ โˆˆ ๐‘†, define Principal ideal

๐ฟ(๐‘ฅ) = ๐‘†1๐‘ฅ = {๐‘ฅ} โˆช ๐‘†๐‘ฅ,๐‘…(๐‘ฅ) = ๐‘ฅ๐‘†1 = {๐‘ฅ} โˆช ๐‘ฅ๐‘†,๐ฝ(๐‘ฅ) = ๐‘†1๐‘ฅ๐‘†1 = {๐‘ฅ} โˆช ๐‘ฅ๐‘† โˆช ๐‘†๐‘ฅ โˆช ๐‘†๐‘ฅ๐‘†.

Then ๐ฟ(๐‘ฅ), ๐‘…(๐‘ฅ), and ๐ฝ(๐‘ฅ) are, respectively, the principal left ideal gener-ated by ๐‘ฅ, the principal right ideal generated by ๐‘ฅ, and the principal idealgenerated by ๐‘ฅ. As their names imply, they are, respectively, a left ideal, aright ideal, and a (two-sided) ideal.

Generators and subsemigroups โ€ข 9

Page 18: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

E x a m p l e 1 . 1 0. a) Consider the semigroup (โ„•, +). Let ๐‘› โˆˆ โ„• andlet ๐ผ๐‘› = {๐‘š โˆˆ โ„• โˆถ ๐‘š โฉพ ๐‘› }. Then ๐ผ๐‘› is an ideal of โ„•; indeed, ๐ผ๐‘› =๐ฟ(๐‘›) = ๐‘…(๐‘›) = ๐ฝ(๐‘›).

b) Let ๐‘† be a right zero semigroup. Let ๐‘‡ be a non-empty subset of ๐‘†.Then ๐‘†๐‘‡ = ๐‘‡ since ๐‘ฅ๐‘ฆ = ๐‘ฆ for any ๐‘ฅ โˆˆ ๐‘† and ๐‘ฆ โˆˆ ๐‘‡. So ๐‘‡ is a left idealof ๐‘†. On the other hand, ๐‘‡๐‘† = ๐‘† and so ๐‘‡ is a right ideal if and only if๐‘‡ = ๐‘†.

c) Let ๐บ be a group. Let ๐‘‡ be a non-empty subset of ๐บ. For any ๐‘ฅ โˆˆ ๐บand ๐‘ฆ โˆˆ ๐‘‡, we have ๐‘ฅ = ๐‘ฅ๐‘ฆโˆ’1๐‘ฆ โˆˆ ๐บ๐‘ฆ; hence ๐บ๐‘ฆ = ๐บ. So ๐‘‡ is a leftideal if and only if ๐‘‡ = ๐บ; similarly ๐‘‡ is a right ideal if and only if๐‘‡ = ๐บ. So the only left ideal or right ideal of ๐บ is ๐บ itself.

Let T = { ๐‘‡๐‘– โˆถ ๐‘– โˆˆ ๐ผ } be a collection of subsemigroups of ๐‘†. It isGenerating a subsemigroupeasy to see that if their intersectionโ‹‚T = โ‹‚๐‘–โˆˆ๐ผ ๐‘‡๐‘– is non-empty, it is alsoa subsemigroup. So let ๐‘‹ be a non-empty subset of ๐‘† and let T be thecollection of subsemigroups of ๐‘† that contain๐‘‹. The collection T has atleast onemember, namely the semigroup ๐‘† itself, and every subsemigroupinT contains๐‘‹, soโ‹‚T is non-empty and is thus a subsemigroup. Indeed,it is the smallest subsemigroup of ๐‘† that contains๐‘‹. This subsemigroup,denoted โŸจ๐‘‹โŸฉ, is called the subsemigroup generated by๐‘‹.

If ๐‘‹ โŠ† ๐‘† is such that โŸจ๐‘‹โŸฉ = ๐‘†, then ๐‘‹ is a generating set for ๐‘† andGenerating set๐‘‹ generates ๐‘†. If there is a finite generating set for ๐‘†, then ๐‘† is said to befinitely generated.

P ro p o s i t i on 1 . 1 1. Let๐‘‹ be a non-empty subset of ๐‘†. Then โŸจ๐‘‹โŸฉ ={ ๐‘ฅ1๐‘ฅ2โ‹ฏ๐‘ฅ๐‘› โˆถ ๐‘› โˆˆ โ„•, ๐‘ฅ๐‘– โˆˆ ๐‘‹ }.

Proof of 1.11. Let ๐‘ˆ = { ๐‘ฅ1๐‘ฅ2โ‹ฏ๐‘ฅ๐‘› โˆถ ๐‘› โˆˆ โ„•, ๐‘ฅ๐‘– โˆˆ ๐‘‹ }. Then ๐‘ˆ is closedunder multiplication and so is a subsemigroup of ๐‘†. Furthermore,๐‘‹ โŠ† ๐‘ˆ.Hence ๐‘ˆmust be one of the ๐‘‡๐‘– in T, and so โŸจ๐‘‹โŸฉ โŠ† ๐‘ˆ. Since๐‘‹ โŠ† โŸจ๐‘‹โŸฉ andโŸจ๐‘‹โŸฉ is closed under multiplication, ๐‘ˆ โŠ† โŸจ๐‘‹โŸฉ. Therefore โŸจ๐‘‹โŸฉ = ๐‘ˆ. 1.11

Suppose ๐‘† is generated by a single element ๐‘ฅ; that is, ๐‘† = โŸจ{๐‘ฅ}โŸฉ (whichMonogenic semigroupwe abbreviate to ๐‘† = โŸจ๐‘ฅโŸฉ). Then ๐‘† is a monogenic semigroup, and, byProposition 1.11, ๐‘† = { ๐‘ฅ๐‘› โˆถ ๐‘› โˆˆ โ„• }. If the element ๐‘ฅ is periodic withindex ๐‘˜ and period๐‘š, then ๐‘† = {๐‘ฅ, ๐‘ฅ2,โ€ฆ , ๐‘ฅ๐‘˜+๐‘šโˆ’1}. Let

๐พ = {๐‘ฅ๐‘˜, ๐‘ฅ๐‘˜+1,โ€ฆ , ๐‘ฅ๐‘˜+๐‘šโˆ’1}.

It is easy to see that ๐พ is an ideal of ๐‘†.

P ro p o s i t i on 1 . 1 2. The ideal ๐พ is a subgroup of ๐‘†.

Proof of 1.12. Let ๐ผ = {๐‘˜, ๐‘˜ + 1,โ€ฆ , ๐‘˜ + ๐‘š โˆ’ 1}, so that ๐พ = { ๐‘ฅ๐‘› โˆถ ๐‘› โˆˆ๐ผ }. Then ๐ผ is a complete set of representatives for congruence classesof the integers modulo ๐‘š. In particular there is some ๐‘ โˆˆ ๐ผ such that๐‘ โ‰ก 0 mod ๐‘š; note that ๐‘ = ๐‘Ÿ๐‘š for some ๐‘Ÿ โˆˆ โ„•. Let ๐‘’ = ๐‘ฅ๐‘ = ๐‘ฅ๐‘Ÿ๐‘š. Then

10 โ€ขElementary semigroup theory

Page 19: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐‘ฅ๐‘›๐‘’ = ๐‘ฅ๐‘›๐‘ฅ๐‘Ÿ๐‘š = ๐‘ฅ๐‘›+๐‘Ÿ๐‘š = ๐‘ฅ๐‘› and similarly ๐‘’๐‘ฅ๐‘› = ๐‘ฅ๐‘› for any ๐‘› โˆˆ ๐ผ; hence๐‘’ is an identity for ๐พ.

Now let ๐‘› โˆˆ ๐ผ. Choose ๐‘ž โˆˆ ๐ผ with ๐‘ž โ‰ก โˆ’๐‘› mod ๐‘š. Then ๐‘ž + ๐‘› โ‰ก0 mod ๐‘š and so ๐‘ž + ๐‘› = ๐‘ ๐‘š for some ๐‘  โˆˆ โ„•. Hence ๐‘ฅ๐‘ž๐‘ฅ๐‘› = ๐‘ฅ๐‘ž+๐‘› = ๐‘ฅ๐‘ ๐‘š.Since ๐‘ ๐‘š โฉพ ๐‘˜ and since ๐‘Ÿ๐‘š is the unique multiple of๐‘š in ๐ผ, it follows that๐‘ ๐‘š = ๐‘Ÿ๐‘š + ๐‘ก๐‘š for some ๐‘ก โˆˆ โ„• โˆช {0}. Hence ๐‘ฅ๐‘ž๐‘ฅ๐‘› = ๐‘ฅ๐‘Ÿ๐‘š+๐‘ก๐‘š = ๐‘ฅ๐‘Ÿ๐‘š = ๐‘’,and similarly ๐‘ฅ๐‘›๐‘ฅ๐‘ž = ๐‘’. Hence ๐‘ฅ๐‘ž is a right and left inverse for ๐‘ฅ๐‘›; since๐‘› โˆˆ ๐ผ was arbitrary, every element of ๐พ has an inverse in ๐พ. 1.12

Note that๐‘ฅ๐‘šmay not be an identity for๐‘š. It is true that๐‘ฅ๐‘›๐‘ฅ๐‘š = ๐‘ฅ๐‘š๐‘ฅ๐‘› =๐‘ฅ๐‘›, but if ๐‘˜ > ๐‘š, then ๐‘ฅ๐‘š โˆ‰ ๐พ.Given a subset๐‘‹ of a monoid๐‘€, we can also define the submonoid Generating a submonoid

generated by๐‘‹. Let T be the collection of submonoids of๐‘€ that contain๐‘‹โˆช{1๐‘€}. The intersection of the submonoids inT is non-empty and thusa submonoid. This is the smallest submonoid of๐‘€ with identity 1๐‘€ thatcontains๐‘‹. This submonoid, denoted MonโŸจ๐‘‹โŸฉ, is called the submonoidgenerated by๐‘‹. Reasoning similar to the proof of Proposition 1.11 yieldsthe following result:

P ro p o s i t i on 1 . 1 3. Let๐‘‹ โŠ† ๐‘€. ThenMonโŸจ๐‘‹โŸฉ = { 1๐‘€๐‘ฅ1๐‘ฅ2โ‹ฏ๐‘ฅ๐‘› โˆถ๐‘› โˆˆ โ„• โˆช {0}, ๐‘ฅ๐‘– โˆˆ ๐‘‹ }. 1.13

Essentially, when we generate a submonoid of a monoid, we always Monoid generatorinclude the identity of the monoid. If๐‘‹ โŠ† ๐‘€ is such that MonโŸจ๐‘‹โŸฉ = ๐‘€,then๐‘‹ is a monoid generating set for๐‘€ and๐‘‹ generates๐‘€ as a monoid.

Notice that if ๐‘‹ is a generating set for๐‘€, then ๐‘‹ is also a monoid Generating set andmonoid generating setgenerating set; on the other hand, if๐‘‹ is a monoid generating set for๐‘€,

then ๐‘‹ โˆช {1๐‘€} is a generating set for๐‘€. Thus๐‘€ is finitely generated ifand only if there is a finite monoid generating set for๐‘€.

Binary relations

Recall that a relation ๐œŒ between a set ๐‘‹ and a set ๐‘Œ issimply a subset of ๐‘‹ ร— ๐‘Œ, and ๐‘ฅ ๐œŒ ๐‘ฆ is equivalent to (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ. Theidentity relation on๐‘‹ is the relation Identity relation

id๐‘‹ = { (๐‘ฅ, ๐‘ฅ) โˆถ ๐‘ฅ โˆˆ ๐‘‹ }.

The converse ๐œŒโˆ’1 of ๐œŒ is the relation Converse of a relation

๐œŒโˆ’1 = { (๐‘ฆ, ๐‘ฅ) โˆถ (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ }.

The converse relation ๐œŒโˆ’1 is not in general a left or right inverse of ๐œŒ,even when ๐œŒ is a map.Let ๐œŒ be a relation between ๐‘‹ and ๐‘Œ and ๐œŽ be a relation between ๐‘Œ Composition of relations

Binary relations โ€ข 11

Page 20: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

and ๐‘. Define the composition of ๐œŒ and ๐œŽ to be

๐œŒ โˆ˜ ๐œŽ = { (๐‘ฅ, ๐‘ง) โˆˆ ๐‘‹ ร— ๐‘ โˆถ (โˆƒ๐‘ฆ โˆˆ ๐‘Œ)((๐‘ฅ ๐œŒ ๐‘ฆ) โˆง (๐‘ฆ ๐œŽ ๐‘ง)) }. (1.2)

Notice that ๐œŒ โˆ˜ ๐œŽ is a relation between๐‘‹ and ๐‘. Furthermore, notice that๐œŒ โˆ˜ id๐‘Œ = ๐œŒ and id๐‘Œ โˆ˜ ๐œŽ = ๐œŽ.

For any ๐‘ฅ โˆˆ ๐‘‹, let ๐‘ฅ๐œŒ = { ๐‘ฆ โˆˆ ๐‘Œ โˆถ ๐‘ฅ ๐œŒ ๐‘ฆ }. Then ๐œŒ is a partial mapPartial/full mapfrom ๐‘‹ to ๐‘Œ if |๐‘ฅ๐œŒ| โฉฝ 1 for all ๐‘ฅ โˆˆ ๐‘‹. Furthermore, ๐œŒ is a full map, orsimply a map from๐‘‹ to ๐‘Œ if |๐‘ฅ๐œŒ| = 1 for all ๐‘ฅ โˆˆ ๐‘‹.

Suppose ๐œŒ is a partial map from ๐‘‹ to ๐‘Œ. When ๐‘ฅ๐œŒ is the empty set,we say that ๐‘ฅ๐œŒ is undefined; when ๐‘ฅ๐œŒ is the singleton set {๐‘ฆ}, we say that๐‘ฅ๐œŒ is defined and write ๐‘ฅ๐œŒ = ๐‘ฆ instead of ๐‘ฅ๐œŒ = {๐‘ฆ}.

The definition of a map given here, and the notation in the last para-graph, agree with the standard concept and notation of a map. Further-more, when ๐œŒ and ๐œŽ are maps, (1.2) simply defines the usual compositionof maps. Thus we have recovered the usual notion of maps in a moregeneral setting.

For any partial map ๐œŒ from๐‘‹ to ๐‘Œ, the domain of ๐œŒ is the setDomain, image, preimage

dom ๐œŒ = { ๐‘ฅ โˆˆ ๐‘‹ โˆถ (โˆƒ๐‘ฆ โˆˆ ๐‘Œ)((๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ) }. (1.3)

That is, dom ๐œŒ is the subset of๐‘‹ on which ๐œŒ is defined. If ๐œŒ is a map, wehave dom ๐œŒ = ๐‘‹. The image of ๐œŒ is the set

im ๐œŒ = { ๐‘ฆ โˆˆ ๐‘Œ โˆถ (โˆƒ๐‘ฅ โˆˆ ๐‘‹)((๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ) }. (1.4)

The preimage under ๐œŒ of ๐‘Œโ€ฒ โŠ† ๐‘Œ is the set

๐‘Œโ€ฒ๐œŒโˆ’1 = { ๐‘ฅ โˆˆ ๐‘‹ โˆถ (โˆƒ๐‘ฆ โˆˆ ๐‘Œโ€ฒ)((๐‘ฆ, ๐‘ฅ) โˆˆ ๐œŒโˆ’1) }= { ๐‘ฅ โˆˆ ๐‘‹ โˆถ (โˆƒ๐‘ฆ โˆˆ ๐‘Œโ€ฒ)((๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ) }.

We will be particularly interested in binary relations on ๐‘‹; that is,Binary relations, B๐‘‹relations from ๐‘‹ to itself. Let B๐‘‹ denote the set of all binary relationson ๐‘‹. It is easy to show that โˆ˜ is an associative operation on B๐‘‹ andso (B๐‘‹, โˆ˜) is a semigroup, called the semigroup of binary relations on๐‘‹.Furthermore, id๐‘‹ is an identity and so B๐‘‹ is a monoid.

A partial map from ๐‘‹ to itself is called a partial transformation ofPartial/full transformation๐‘‹. A map from ๐‘‹ to itself is called a full transformation, or simply atransformation of๐‘‹. The set of all partial transformations of๐‘‹ isP๐‘‹; theP๐‘‹, T๐‘‹, S๐‘‹set of all [full] transformations of๐‘‹ is T๐‘‹. Finally, S๐‘‹ denotes the set ofbijections on ๐‘‹. This is the well-known symmetric group on ๐‘‹. ClearlyS๐‘‹ โŠ† T๐‘‹ โŠ† P๐‘‹ โŠ† B๐‘‹.

P r o p o s i t i o n 1 . 1 4. a) P๐‘‹ is a submonoid of B๐‘‹;b) T๐‘‹ is a submonoid of P๐‘‹;c) S๐‘‹ is a subgroup of T๐‘‹.

12 โ€ขElementary semigroup theory

Page 21: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 1.14. a) Let ๐œŒ, ๐œŽ โˆˆ P๐‘‹ and suppose ๐‘ฆ, ๐‘ฆโ€ฒ โˆˆ ๐‘ฅ(๐œŒ โˆ˜ ๐œŽ). Then by thedefinition of โˆ˜, there exist ๐‘ง, ๐‘งโ€ฒ โˆˆ ๐‘‹ such that (๐‘ฅ, ๐‘ง) โˆˆ ๐œŒ and (๐‘ง, ๐‘ฆ) โˆˆ ๐œŽ,and (๐‘ฅ, ๐‘งโ€ฒ) โˆˆ ๐œŒ and (๐‘งโ€ฒ, ๐‘ฆโ€ฒ) โˆˆ ๐œŽ. Since ๐œŒ โˆˆ P๐‘‹, we have |๐‘ฅ๐œŒ| โฉฝ 1 andso ๐‘ง = ๐‘งโ€ฒ. Since ๐œŽ โˆˆ P๐‘‹, we have |๐‘ง๐œŽ| โฉฝ 1 and so ๐‘ฆ = ๐‘ฆโ€ฒ. Hence|๐‘ฅ(๐œŒ โˆ˜ ๐œŽ)| โฉฝ 1 and so ๐œŒ โˆ˜ ๐œŽ โˆˆ P๐‘‹.

b) Let ๐œŒ, ๐œŽ โˆˆ T๐‘‹. Let ๐‘ฅ โˆˆ ๐‘‹. Since ๐œŒ โˆˆ T๐‘‹, we have |๐‘ฅ๐œŒ| = 1. So let๐‘ง = ๐‘ฅ๐œŒ. Since ๐œŽ โˆˆ T๐‘‹, we have |๐‘ง๐œŽ| = 1. So ๐‘ฅ(๐œŒ โˆ˜ ๐œŽ) contains (๐‘ฅ, ๐‘ง๐œŽ)and so |๐‘ฅ(๐œŒ โˆ˜ ๐œŽ)| โฉพ 1. By part a), |๐‘ฅ(๐œŒ โˆ˜ ๐œŽ)| = 1. Therefore ๐œŒ โˆ˜ ๐œŽ โˆˆ T๐‘‹.

c) This is immediate because the composition of two bijections is abijection. 1.14

In light of Proposition 1.14, T๐‘‹ is called the semigroup of transforma-tions on๐‘‹ and P๐‘‹ is called the semigroup of partial transformations on๐‘‹.

Any bijection ๐œŒ โˆˆ S๐‘‹ can be denoted by the usual disjoint cycle Two-line notationfor transformationsnotation from group theory. A partial (or full) transformation ๐œŒ โˆˆ P๐‘‹

can be denoted using a 2 ร— |๐‘‹| matrix: the (1, ๐‘ฅ)-th entry is ๐‘ฅ and the(2, ๐‘ฅ)-th entry is either ๐‘ฅ๐œŒ (when ๐‘ฅ๐œŒ is defined) or โˆ— (indicating that ๐‘ฅ๐œŒ isundefined). For example, if๐‘‹ = {1, 2, 3} and 1๐œŒ = 2, and 2๐œŒ is undefined,and 3๐œŒ = 1, then

๐œŒ = (1 2 32 โˆ— 1) .

E xampl e 1 . 1 5. Let๐‘‹ = {1, 2}. Thenโ—† S๐‘‹ consists of two elements:

id๐‘‹ = (1 21 2) and (1 22 1) ;

โ—† T๐‘‹ consists of four elements: the two elements in S๐‘‹, and the trans-formations

(1 21 1) and (1 22 2) ;

โ—† P๐‘‹ consists of nine elements: the four elements inT๐‘‹, and the partialtransformations

(1 21 โˆ—) , (1 22 โˆ—) , (

1 2โˆ— 1) , (

1 2โˆ— 2) , and (

1 2โˆ— โˆ—) ;

โ—† B๐‘‹ consists of all sixteen possible subsets of ๐‘‹ ร— ๐‘‹, including theempty setโˆ… and๐‘‹ ร— ๐‘‹ itself.

Let us illustrate how elements of the semigroups of partial and fulltransformations multiply:

Binary relations โ€ข 13

Page 22: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

E xampl e 1 . 1 6. Let๐‘‹ = {1, 2, 3}.a) LetMultiplication in T๐‘‹

๐œŒ = (1 2 33 1 1) and ๐œŽ = (1 2 32 2 3)

be elements of T๐‘‹. Let us compute the product ๐œŒ๐œŽ. First, ๐œŒ containsthe pair (1, 3) and ๐œŽ contains the pair (3, 3), so ๐œŒ๐œŽ contains the pair(1, 3). Using our notation for partial and full maps, this says that1๐œŒ = 3 and 3๐œŽ = 3, and thus 1๐œŒ๐œŽ = 3๐œŽ = 3. Similarly, 2๐œŒ๐œŽ = 1๐œŽ = 2and 3๐œŒ๐œŽ = 1๐œŽ = 2. Hence

๐œŒ๐œŽ = (1 2 33 2 2) .

b) LetMultiplication in P๐‘‹

๐œŒ = (1 2 33 โˆ— 2) and ๐œŽ = (1 2 31 โˆ— 2)

be elements ofP๐‘‹. Let us compute the product ๐œŒ๐œŽ. First, 1๐œŒ๐œŽ = 3๐œŽ =2; this part of the computation is just like the case of a full map. Next,2๐œŒ is undefined: that is, ๐œŒ does not contain the pair (2, ๐‘ฅ) for any๐‘ฅ โˆˆ ๐‘‹. Hence ๐œŒ๐œŽ cannot contain the pair (2, ๐‘ฆ) for any ๐‘ฆ โˆˆ ๐‘‹. Thatis, 2๐œŒ๐œŽ is undefined. Finally, 3๐œŒ = 2, but ๐œŽ does not contain the pair(2, ๐‘ฅ) for any ๐‘ฅ โˆˆ ๐‘‹, and hence ๐œŒ๐œŽ cannot contain the pair (3, ๐‘ฅ) forany ๐‘ฅ โˆˆ ๐‘‹. That is, 3๐œŒ๐œŽ is undefined. Hence

๐œŒ๐œŽ = (1 2 32 โˆ— โˆ—) .

[During this computation, it may be helpful to think of โ€˜โˆ—โ€™ as anadditional element of๐‘‹ that is mapped to itself by every partial trans-formation of P๐‘‹. Then one can think โ€˜๐œŒmaps 2 to โˆ— and ๐œŽmaps โˆ—to โˆ—, so ๐œŒ๐œŽ maps 2 to โˆ—โ€™ and โ€˜๐œŒ maps 3 to 2 and ๐œŽ maps 2 to โˆ—, so๐œŒ๐œŽmaps 3 to โˆ—โ€™. Remember, however, that โˆ— is not an element of๐‘‹,but is simply a notational convenience to indicate where a partialtransformation is undefined.]

There are several important properties that a binary relationmay have:Reflexive, (anti-)symmetric,transitive a relation ๐œŒ โˆˆ B๐‘‹ is

โ—† reflexive if ๐‘ฅ ๐œŒ ๐‘ฅ for all ๐‘ฅ โˆˆ ๐‘‹, or, equivalently, if id๐‘‹ โŠ† ๐œŒ;โ—† symmetric if ๐‘ฅ ๐œŒ ๐‘ฆ โ‡’ ๐‘ฆ ๐œŒ ๐‘ฅ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, or, equivalently, if๐œŒ = ๐œŒโˆ’1;

โ—† anti-symmetric if (๐‘ฅ ๐œŒ ๐‘ฆ) โˆง (๐‘ฆ ๐œŒ ๐‘ฅ) โ‡’ ๐‘ฅ = ๐‘ฆ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, or,equivalently, if ๐œŒ โˆฉ ๐œŒโˆ’1 โŠ† id๐‘‹;

14 โ€ขElementary semigroup theory

Page 23: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

โ—† transitive if (๐‘ฅ ๐œŒ ๐‘ฆ) โˆง (๐‘ฆ ๐œŒ ๐‘ง) โ‡’ ๐‘ฅ ๐œŒ ๐‘ง for all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹, or,equivalently, if ๐œŒ2 โŠ† ๐œŒ.Notice that โ€˜anti-symmetricโ€™ is not the same as โ€˜not symmetricโ€™: forexample, the identity relation id๐‘‹ is both symmetric and anti-symmetric.An equivalence relation is a relation that is reflexive, symmetric, and Equivalence relation

transitive. An equivalence relation on๐‘‹ partitions the set๐‘‹ into equival-ence classes, each made up of related elements.

Orders and lattices

Let ๐œŒ โˆˆ B๐‘‹. The binary relation ๐œŒ is a partial order if it is Partial orderreflexive, anti-symmetric, and transitive. We normally use symbols likeโฉฝ, โ‰ผ, and โŠ‘ for partial orders. We write ๐‘ฅ < ๐‘ฆ to mean that ๐‘ฅ โฉฝ ๐‘ฆ and๐‘ฅ โ‰  ๐‘ฆ; the obvious analogies apply for symbols like โ‰บ and โŠ. A partiallyordered set or poset is a set๐‘‹ equipped with a partial order โฉฝ, formallydenoted (๐‘‹, โฉฝ).

If (๐‘‹, โฉฝ) is a partially ordered set and ๐‘Œ is a subset of ๐‘‹, then ๐‘Œโ€˜inheritsโ€™ the partial order โฉฝ from๐‘‹. That is, the restriction of the relationโฉฝ to ๐‘Œ (that is, โฉฝ โˆฉ (๐‘Œ ร— ๐‘Œ)) is a partial order on ๐‘Œ, and so ๐‘Œ is also apartially ordered set. We use the same notation for the original partialorder on๐‘‹ and for its restriction to ๐‘Œ.

A Hasse diagram of a partial order โฉฝ on a set ๐‘‹ is a diagrammatic Hasse diagramrepresentation of โฉฝ. Every element of๐‘‹ is represented by a point on theplane, arranged so that ๐‘ฅ appears below ๐‘ฆ whenever ๐‘ฅ < ๐‘ฆ. If ๐‘ฅ < ๐‘ฆ andthere is no element ๐‘ง such that ๐‘ฅ < ๐‘ง < ๐‘ฆ, then a line segment is drawnbetween ๐‘ฅ and ๐‘ฆ.

Suppose โฉฝ is a partial order on๐‘‹. Two elements ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹ are compar- Total orderable if ๐‘ฅ โฉฝ ๐‘ฆ or ๐‘ฆ โฉฝ ๐‘ฅ. The partial order โฉฝ is a total order, or simply anorder, if all pairs of elements of๐‘‹ are comparable.

Suppose โฉฝ is a partial order on๐‘‹. A chain is a subset ๐‘Œ of๐‘‹ in which Chain, antichainevery pair of elements are comparable. An antichain is a subset ๐‘Œ of๐‘‹ inwhich no pair of distinct elements is comparable. Note that it is possiblefor ๐‘‹ itself to be a chain or an antichain. If ๐‘‹ is a chain (respectively,antichain), then any subset of๐‘‹ is also a chain (respectively, antichain).

E x a m p l e 1 . 1 7. a) For example, the relation โฉฝ on the integers โ„คis a partial order: it is reflexive, since ๐‘š โฉฝ ๐‘š for all ๐‘š; it is anti-symmetric, since๐‘š โฉฝ ๐‘› and ๐‘› โฉฝ ๐‘š imply๐‘š = ๐‘›; and it is transitive,since๐‘š โฉฝ ๐‘› and ๐‘› โฉฝ ๐‘ imply๐‘š โฉฝ ๐‘.

b) Let๐‘‹ be a set. Recall that the power set โ„™๐‘‹ is the set of all subsets of๐‘‹. The relation โŠ† on โ„™๐‘‹ is a partial order. Figure 1.2 shows the Hasse

{1, 2, 3}

{1, 3}{1, 2} {2, 3}

{2}{1} {3}

{}FIGURE 1.2Hasse diagram for โŠ† onโ„™{1, 2, 3}.

diagram of โ„™{1, 2, 3}. Notice that โŠ† is not a total order: for instance,{1} and {2, 3} are not comparable.

Orders and lattices โ€ข 15

Page 24: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

c) Let โˆฃ be the divisibility relation onโ„•; that is, ๐‘ฅ โˆฃ ๐‘ฆ if and only if thereexists ๐‘ โˆˆ โ„• such that ๐‘ฆ = ๐‘๐‘ฅ. Then โˆฃ is reflexive, since ๐‘ฅ โˆฃ ๐‘ฅ forall ๐‘ฅ โˆˆ โ„•. It is anti-symmetric, since ๐‘ฅ โˆฃ ๐‘ฆ and ๐‘ฆ โˆฃ ๐‘ฅ imply ๐‘ฆ = ๐‘๐‘ฅand ๐‘ฅ = ๐‘โ€ฒ๐‘ฆ for some ๐‘, ๐‘โ€ฒ โˆˆ โ„•, which implies ๐‘ฅ = ๐‘โ€ฒ๐‘๐‘ฅ and so๐‘ = ๐‘โ€ฒ = 1, which implies ๐‘ฅ = ๐‘ฆ. It is transitive, since ๐‘ฅ โˆฃ ๐‘ฆ and๐‘ฆ โˆฃ ๐‘ง imply ๐‘ฆ = ๐‘๐‘ฅ and ๐‘ง = ๐‘โ€ฒ๐‘ฆ for some ๐‘, ๐‘โ€ฒ โˆˆ โ„•, which implies๐‘ง = (๐‘โ€ฒ๐‘)๐‘ฅ and so ๐‘ฅ โˆฃ ๐‘ง. So โˆฃ is a partial order onโ„•.

If ๐‘ฅ โˆˆ ๐‘‹ is such that there is no element ๐‘ฆ โˆˆ ๐‘‹ with ๐‘ฆ < ๐‘ฅ (respect-Minimal/minimum,maximal/maximum ively, ๐‘ฅ < ๐‘ฆ), then ๐‘ฅ is minimal (respectively, maximal). If ๐‘ฅ โˆˆ ๐‘‹ is such

that for all elements ๐‘ฆ โˆˆ ๐‘‹, we have ๐‘ฅ โฉฝ ๐‘ฆ (respectively ๐‘ฆ โฉฝ ๐‘ฅ), then ๐‘ฅ isa minimum (respectively, maximum). Therefore, in summary:

๐‘ฅ is minimalโ‡” (โˆ€๐‘ฆ โˆˆ ๐‘‹)(๐‘ฆ โฉฝ ๐‘ฅ โ‡’ ๐‘ฆ = ๐‘ฅ);๐‘ฅ is minimumโ‡” (โˆ€๐‘ฆ โˆˆ ๐‘‹)(๐‘ฅ โฉฝ ๐‘ฆ);๐‘ฅ is maximalโ‡” (โˆ€๐‘ฆ โˆˆ ๐‘‹)(๐‘ฅ โฉฝ ๐‘ฆ โ‡’ ๐‘ฆ = ๐‘ฅ);๐‘ฅ is maximumโ‡” (โˆ€๐‘ฆ โˆˆ ๐‘‹)(๐‘ฆ โฉฝ ๐‘ฅ).

Notice that a minimum element is also minimal, but that the conversedoes not hold. A poset does not have to contain minimum or minimalelements. It contains at most one minimum element, for if ๐‘ฅ1 and ๐‘ฅ2are both minimum, then ๐‘ฅ1 โฉฝ ๐‘ฅ2 and ๐‘ฅ2 โฉฝ ๐‘ฅ1, and so ๐‘ฅ1 = ๐‘ฅ2 by anti-symmetry. It may contain many distinct minimal elements.

E x a m p l e 1 . 1 8. a) The poset (โ„ค, โฉฝ) does not contain either max-imal elements or minimal elements.

b) Let๐‘‹ = {๐‘ฅ, ๐‘ฆ1, ๐‘ฆ2}; define โฉฝ on๐‘‹ by

๐‘ข โฉฝ ๐‘ข for all ๐‘ข โˆˆ ๐‘‹,๐‘ฆ1 โฉฝ ๐‘ฅ,๐‘ฆ2 โฉฝ ๐‘ฅ.

The Hasse diagram for (๐‘‹, โฉฝ) is as shown in Figure 1.3(a): ๐‘ฅ is a (ne-cessarily unique) maximum element, and ๐‘ฆ1 and ๐‘ฆ2 are both minimalelements.

c) Let๐‘‹ = {๐‘ฅ, ๐‘ฆ, ๐‘ง1, ๐‘ง2,โ€ฆ} and define โฉฝ by

๐‘ข โฉฝ ๐‘ข for all ๐‘ข โˆˆ ๐‘‹,๐‘ฆ โฉฝ ๐‘ฅ,๐‘ง๐‘– โฉฝ ๐‘ฅ for all ๐‘– โˆˆ โ„•,๐‘ง๐‘– โฉฝ ๐‘ง๐‘— for all ๐‘–, ๐‘— โˆˆ โ„• with ๐‘– โฉพ ๐‘—.

The Hasse diagram for (๐‘‹, โฉฝ) is as shown in Figure 1.3(b): ๐‘ฅ is a(necessarily unique) maximum element, and ๐‘ฆ is the unique minimalelement, but ๐‘ฆ is not a minimum.

16 โ€ขElementary semigroup theory

Page 25: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐‘ฅ๐‘ฆ1 ๐‘ฆ2

๐‘ง1

๐‘ง2๐‘ง3๐‘ง4๐‘ง๐‘–

๐‘ฆ๐‘ฅ

(a) (b)

FIGURE 1.3Examples of partial orders, illus-trating minimal/maximal andminimum/maximum elements:(a) has a maximum ๐‘ฅ and twominimal elements ๐‘ฆ1 and ๐‘ฆ2 ;(b) has a unique minimal ele-ment ๐‘ฆ but has no minimumelement.

There is a natural partial order of idempotents of a semigroup ๐‘† that Partial order of idempotentswill re-appear in several different settings. Define the relation โ‰ผ on theset of idempotents ๐ธ(๐‘†) by ๐‘’ โ‰ผ ๐‘“ โ‡” ๐‘’๐‘“ = ๐‘“๐‘’ = ๐‘’.

P ro p o s i t i on 1 . 1 9. The relation โ‰ผ is a partial order.

Proof of 1.19. Since ๐‘’2 = ๐‘’, we have ๐‘’ โ‰ผ ๐‘’ and so โ‰ผ is reflexive. If ๐‘’ โ‰ผ ๐‘“and ๐‘“ โ‰ผ ๐‘’, then ๐‘’๐‘“ = ๐‘“๐‘’ = ๐‘’ and ๐‘“๐‘’ = ๐‘’๐‘“ = ๐‘“ and so ๐‘’ = ๐‘“; hence โ‰ผ isanti-symmetric. If ๐‘’ โ‰ผ ๐‘“ and ๐‘“ โ‰ผ ๐‘”, then ๐‘’๐‘“ = ๐‘“๐‘’ = ๐‘’ and ๐‘“๐‘” = ๐‘”๐‘“ = ๐‘“and so ๐‘”๐‘’ = ๐‘”๐‘“๐‘’ = ๐‘“๐‘’ = ๐‘’ and ๐‘’๐‘” = ๐‘’๐‘“๐‘” = ๐‘’๐‘“ = ๐‘’ and thus ๐‘’ โ‰ผ ๐‘”; henceโ‰ผ is transitive. Therefore โ‰ผ is a partial order. 1.19

Let โฉฝ be a partial order on a set๐‘‹. Let ๐‘Œ โŠ† ๐‘‹. A lower bound for ๐‘Œ is Lower boundany element ๐‘ง of๐‘‹ such that ๐‘ง โฉฝ ๐‘ฆ for all ๐‘ฆ โˆˆ ๐‘Œ. Let ๐ต be the set of lowerbounds for ๐‘Œ. If ๐ต is non-empty and has a maximum element ๐‘ง, then ๐‘งis the greatest lower bound or meet or infimumof ๐‘Œ. The meet of ๐‘Œ, if it Greatest lower bound, meetexists, is unique and is denoted byโจ…๐‘Œ, or, in the case where ๐‘Œ = {๐‘ฅ, ๐‘ฆ},by ๐‘ฅ โŠ“ ๐‘ฆ.

If ๐‘ฅ โŠ“ ๐‘ฆ exists for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹, then ๐‘‹ is a meet semilattice or lower Semilatticesemilattice. Ifโจ…๐‘Œ exists for all๐‘Œ โŠ† ๐‘‹, then๐‘‹ is a completemeet semilatticeor complete lower semilattice.

The obvious definitions apply for upper bound, least upper bound or Upper bound, joinjoin or supremum,โจ†๐‘Œ, ๐‘ฅ โŠ” ๐‘ฆ, join semilattice or upper semilattice, andcomplete join semilattice or complete upper semilattice.

Most texts use โˆง, โˆจ, โ‹€, and โ‹ in place of โŠ“, โŠ”, โจ…, and โจ†. The squarevariants are used here to avoid confusion with the symbols for logicalconjunction (โ€˜andโ€™) โˆง and disjunction (โ€˜orโ€™) โˆจ.

The partially ordered set (๐‘‹, โฉฝ) is a lattice if it is an upper and lower Latticesemilattice. It is a complete lattice if it is an complete upper semilatticeand complete lower semilattice.

E x a m p l e 1 . 2 0. a) In the example of the relation โŠ† on the powersetโ„™{1, 2, 3}, we have {1, 2} โŠ“ {1, 3} = {1} and {1, 2} โŠ“ {3} = {}. Indeed,(โ„™{1, 2, 3}, โŠ†) is a complete lattice.

Orders and lattices โ€ข 17

Page 26: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

b) Let๐‘‹ = {๐‘ก, ๐‘ฅ, ๐‘ฆ, ๐‘ง1, ๐‘ง2,โ€ฆ} and define โฉฝ by

๐‘ฅ โฉฝ ๐‘ก,๐‘ฆ โฉฝ ๐‘ก,๐‘ง๐‘– โฉฝ ๐‘ก for all ๐‘– โˆˆ โ„•,๐‘ง๐‘– โฉฝ ๐‘ฅ for all ๐‘– โˆˆ โ„•,๐‘ง๐‘– โฉฝ ๐‘ฆ for all ๐‘– โˆˆ โ„•,๐‘ง๐‘– โฉฝ ๐‘ง๐‘— for all ๐‘–, ๐‘— โˆˆ โ„• with ๐‘– โฉฝ ๐‘—.

Figure 1.4 shows a partial Hasse diagram for (๐‘‹, โฉฝ). Notice that ๐‘ฅ and

๐‘ง1

๐‘ง2

๐‘ง3๐‘ง4

๐‘ง๐‘–

๐‘ฅ ๐‘ฆ๐‘ก

FIGURE 1.4Partial Hasse diagram for the

partially ordered set (๐‘‹, โฉฝ).

๐‘ฆ do not have a meet, but that every pair of elements has a join. So(๐‘‹, โฉฝ) is an upper semilattice but not a lower semilattice. However,it is not a complete upper semilattice because the subset { ๐‘ง๐‘– โˆถ ๐‘– โˆˆ โ„• }does not have a join.

T h e o r e m 1 . 2 1. a) Let (๐‘‹, โฉฝ) be a non-empty lower semilattice.

Semilattice = commutativesemigroup of idempotents

Then (๐‘‹, โŠ“) is a commutative semigroup of idempotents.Conversely, let (๐‘†, โˆ˜) be a commutative semigroup of idempotents.

Define a relation โฉฝ on ๐‘† by ๐‘ฅ โฉฝ ๐‘ฆ โ‡” ๐‘ฅ โˆ˜ ๐‘ฆ = ๐‘ฅ. Then โฉฝ is a partialorder and (๐‘†, โฉฝ) is a lower semilattice.

b) Let (๐‘‹, โฉฝ) be a non-empty upper semilattice. Then (๐‘‹, โŠ”) is a commut-ative semigroup of idempotents.

Conversely, let (๐‘†, โˆ˜) be a commutative semigroup of idempotents.Define a relation โฉฝ on ๐‘† by ๐‘ฅ โฉฝ ๐‘ฆ โ‡” ๐‘ฅ โˆ˜ ๐‘ฆ = ๐‘ฆ. Then โฉฝ is a partialorder and (๐‘†, โฉฝ) is an upper semilattice.

Proof of 1.21. We prove part a); the reasoning for part b) is dual. Suppose(๐‘‹, โฉฝ) is a lower non-empty semilattice. Let ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘‹. First, ๐‘ฅ โŠ“ (๐‘ฆ โŠ“ ๐‘ง)and (๐‘ฅ โŠ“ ๐‘ฆ) โŠ“ ๐‘ง are both the meet of {๐‘ฅ, ๐‘ฆ, ๐‘ง} and hence ๐‘ฅ โŠ“ (๐‘ฆ โŠ“ ๐‘ง) =(๐‘ฅ โŠ“ ๐‘ฆ) โŠ“ ๐‘ง. So โŠ“ is associative. Next, ๐‘ฅ โŠ“ ๐‘ฆ and ๐‘ฆ โŠ“ ๐‘ฅ are both the meetof {๐‘ฅ, ๐‘ฆ}, and so ๐‘ฅ โŠ“ ๐‘ฆ = ๐‘ฆ โŠ“ ๐‘ฅ. So (๐‘‹, โŠ“) is commutative. The meet of {๐‘ฅ}is ๐‘ฅ itself, so ๐‘ฅ โŠ“ ๐‘ฅ = ๐‘ฅ. Hence every element of (๐‘‹, โŠ“) is idempotent. So(๐‘‹, โŠ“) is a commutative semigroup of idempotents.

Suppose (๐‘†, โˆ˜) is a commutative semigroup of idempotents and defineโฉฝ as in the statement of the result. Let ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘†. First, ๐‘ฅ is idempotent,and so ๐‘ฅ โˆ˜ ๐‘ฅ = ๐‘ฅ, and thus ๐‘ฅ โฉฝ ๐‘ฅ. Hence โฉฝ is reflexive. Second, supposethat ๐‘ฅ โฉฝ ๐‘ฆ and ๐‘ฆ โฉฝ ๐‘ฅ. Then ๐‘ฅ โˆ˜ ๐‘ฆ = ๐‘ฅ and ๐‘ฆ โˆ˜ ๐‘ฅ = ๐‘ฆ. Since (๐‘†, โˆ˜) iscommutative, this shows that ๐‘ฅ = ๐‘ฆ. Hence โฉฝ is anti-symmetric. Third,suppose ๐‘ฅ โฉฝ ๐‘ฆ and ๐‘ฆ โฉฝ ๐‘ง. Then ๐‘ฅ โˆ˜ ๐‘ฆ = ๐‘ฅ and ๐‘ฆ โˆ˜ ๐‘ง = ๐‘ฆ. So ๐‘ฅ โˆ˜ ๐‘ง =(๐‘ฅ โˆ˜ ๐‘ฆ) โˆ˜ ๐‘ง = ๐‘ฅ โˆ˜ (๐‘ฆ โˆ˜ ๐‘ง) = ๐‘ฅ โˆ˜ ๐‘ฆ = ๐‘ฅ, and so ๐‘ฅ โฉฝ ๐‘ง. Hence โฉฝ is transitive.

Finally, wewant to show that๐‘ฅโŠ“๐‘ฆ = ๐‘ฅโˆ˜๐‘ฆ. First of all (๐‘ฅโˆ˜๐‘ฆ)โˆ˜๐‘ฅ = (๐‘ฅโˆ˜๐‘ฆ),so ๐‘ฅ โˆ˜ ๐‘ฆ โฉฝ ๐‘ฅ and similarly ๐‘ฅ โˆ˜ ๐‘ฆ โฉฝ ๐‘ฆ. So ๐‘ฅ โˆ˜ ๐‘ฆ is a lower bound for {๐‘ฅ, ๐‘ฆ}.Let ๐‘ง be some lower bound for {๐‘ฅ, ๐‘ฆ}. Then ๐‘ง โฉฝ ๐‘ฅ and ๐‘ง โฉฝ ๐‘ฆ. Hence๐‘ง โˆ˜ ๐‘ฅ = ๐‘ง and ๐‘ง โˆ˜ ๐‘ฆ = ๐‘ง. So ๐‘ง โˆ˜ (๐‘ฅ โˆ˜ ๐‘ฆ) = (๐‘ง โˆ˜ ๐‘ฅ) โˆ˜ ๐‘ฆ = ๐‘ง โˆ˜ ๐‘ฆ = ๐‘ง, and so๐‘ง โฉฝ (๐‘ฅ โˆ˜ ๐‘ฆ). Hence ๐‘ฅ โˆ˜ ๐‘ฆ is the greatest lower bound for {๐‘ฅ, ๐‘ฆ}. Thus (๐‘†, โฉฝ)is a lower semilattice. 1.21

18 โ€ขElementary semigroup theory

Page 27: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Homomorphisms

Let ๐‘† and ๐‘‡ be semigroups. A map ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ is a homo- Homomorphismmorphism if (๐‘ฅ๐‘ฆ)๐œ‘ = (๐‘ฅ๐œ‘)(๐‘ฆ๐œ‘) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. If ๐‘† and ๐‘‡ are monoids,then ๐œ‘ is a monoid homomorphism if (๐‘ฅ๐‘ฆ)๐œ‘ = (๐‘ฅ๐œ‘)(๐‘ฆ๐œ‘) for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†and 1๐‘†๐œ‘ = 1๐‘‡.

A monomorphism is an injective homomorphism. If ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ Monomorphism,isomorphismis a surjective homomorphism, then ๐‘‡ is a homomorphic image of ๐‘†.

An isomorphism is a bijective homomorphism. It is easy to prove that ahomomorphism ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ is an isomorphism if and only if there is ahomomorphism ๐œ‘โˆ’1 โˆถ ๐‘‡ โ†’ ๐‘† such that ๐œ‘๐œ‘โˆ’1 = id๐‘† and ๐œ‘โˆ’1๐œ‘ = id๐‘‡. Ifthere is an isomorphism ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡, then we say ๐‘† and ๐‘‡ are isomorphicand denote this by ๐‘† โ‰ƒ ๐‘‡.

When two semigroups are isomorphic, we can think of them as theโ€˜sameโ€™ abstract structure in different settings.

It is easy to prove that if ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ is a homomorphism and ๐‘†โ€ฒ and ๐‘‡โ€ฒare subsemigroups of ๐‘† and๐‘‡ respectively, then ๐‘†โ€ฒ๐œ‘ is a subsemigroup of๐‘‡and ๐‘‡โ€ฒ๐œ‘โˆ’1 is a subsemigroup of ๐‘† if it is non-empty. In particular, putting๐‘†โ€ฒ = ๐‘† shows that im๐œ‘ is a subsemigroup of ๐‘‡. If ๐œ‘ is a monomorphism,then ๐‘† is isomorphic to the subsemigroup im๐œ‘ of ๐‘‡.

The kernel of a homomorphism ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ is the binary relation Kernel of a homomorphism

ker๐œ‘ = { (๐‘ฅ, ๐‘ฆ) โˆˆ ๐‘† ร— ๐‘† โˆถ ๐‘ฅ๐œ‘ = ๐‘ฆ๐œ‘ }.

Notice that ๐œ‘ is a monomorphism if and only if ker๐œ‘ is the identityrelation (that is, ker๐œ‘ = id๐‘†).

We now give a result showing that every semigroup is isomorphic to asubsemigroup of a semigroup of transformations. This is the analogue ofCayleyโ€™s theorem for groups, which states that every group is isomorphicto a subgroup of a symmetric group. For any ๐‘ฅ โˆˆ ๐‘†, let ๐œŒ๐‘ฅ โˆˆ T๐‘†1 be the ๐œŒ๐‘ฅmap defined by ๐‘ ๐œŒ๐‘ฅ = ๐‘ ๐‘ฅ for all ๐‘  โˆˆ ๐‘†1.

T h eorem 1 . 2 2. The map ๐œ‘ โˆถ ๐‘† โ†’ T๐‘†1 given by ๐‘ฅ โ†ฆ ๐œŒ๐‘ฅ is a mono- Right regular representationmorphism.

Proof of 1.22. Let ๐‘ฅ, ๐‘ฆ, ๐‘  โˆˆ ๐‘†. Then ๐‘ ๐œŒ๐‘ฅ๐œŒ๐‘ฆ = (๐‘ ๐‘ฅ)๐œŒ๐‘ฆ = (๐‘ ๐‘ฅ)๐‘ฆ = ๐‘ (๐‘ฅ๐‘ฆ) =๐‘ ๐œŒ๐‘ฅ๐‘ฆ; hence (๐‘ฅ๐œ‘)(๐‘ฆ๐œ‘) = ๐œŒ๐‘ฅ๐œŒ๐‘ฆ = ๐œŒ๐‘ฅ๐‘ฆ = (๐‘ฅ๐‘ฆ)๐œ‘. Therefore ๐œ‘ is a homomor-phism. Furthermore

๐‘ฅ๐œ‘ = ๐‘ฆ๐œ‘ โ‡’ ๐œŒ๐‘ฅ = ๐œŒ๐‘ฆ โ‡’ 1๐œŒ๐‘ฅ = 1๐œŒ๐‘ฆ โ‡’ 1๐‘ฅ = 1๐‘ฆ โ‡’ ๐‘ฅ = ๐‘ฆ;

hence ๐œ‘ is injective. 1.22

An endomorphism is a homomorphism from a semigroup to itself.The set of all endomorphisms of ๐‘† is denoted End(๐‘†) and forms a sub- End(๐‘†)semigroup of T๐‘†.

The semigroup ๐‘† is group-embeddable if there exists a group ๐บ and a Group-embeddability

Homomorphisms โ€ข 19

Page 28: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

monomorphism ๐œ‘ โˆถ ๐‘† โ†’ ๐บ. In this case, ๐‘† is isomorphic to the subsemi-group im๐œ‘ of๐บ. Clearly any group-embeddable semigroup is cancellative,but we shall see that there exist cancellative semigroups that are not group-embeddable (see Example 2.14).

A map ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ is an anti-homomorphism if (๐‘ฅ๐‘ฆ)๐œ‘ = (๐‘ฆ๐œ‘)(๐‘ฅ๐œ‘) forAnti-homomorphismall ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†.

Congruences and quotients

A binary relation ๐œŒ on ๐‘† isCongruence

โ—† left-compatible if (โˆ€๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘†)(๐‘ฅ ๐œŒ ๐‘ฆ โ‡’ ๐‘ง๐‘ฅ ๐œŒ ๐‘ง๐‘ฆ);โ—† right-compatible if (โˆ€๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘†)(๐‘ฅ ๐œŒ ๐‘ฆ โ‡’ ๐‘ฅ๐‘ง ๐œŒ ๐‘ฆ๐‘ง);โ—† compatible if (โˆ€๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก โˆˆ ๐‘†)((๐‘ฅ ๐œŒ ๐‘ฆ) โˆง (๐‘ง ๐œŒ ๐‘ก) โ‡’ ๐‘ฅ๐‘ง ๐œŒ ๐‘ฆ๐‘ก).

A left-compatible equivalence relation is a left congruence; a right-compat-ible equivalence relation is a right congruence; a compatible equivalencerelation is a congruence.

P ro p o s i t i on 1 . 2 3. A relation ๐œŒ on ๐‘† is a congruence if and only ifCongruences areleft/right congruences it is both a left and a right congruence.

Proof of 1.23. Suppose that the relation ๐œŒ is both a left and a right congru-ence. Let ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก โˆˆ ๐‘† be such that ๐‘ฅ ๐œŒ ๐‘ฆ and ๐‘ง ๐œŒ ๐‘ก. Since ๐œŒ is a rightcongruence, ๐‘ฅ๐‘ง ๐œŒ ๐‘ฆ๐‘ง. Since ๐œŒ is a left congruence, ๐‘ฆ๐‘ง ๐œŒ ๐‘ฆ๐‘ก. Since ๐œŒ istransitive, ๐‘ฅ๐‘ง ๐œŒ ๐‘ฆ๐‘ก. Hence ๐œŒ is a congruence.

Suppose now that ๐œŒ is a congruence. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† be such that ๐‘ฅ ๐œŒ ๐‘ฆ.Let ๐‘ง โˆˆ ๐‘†. Since ๐œŒ is reflexive, ๐‘ง ๐œŒ ๐‘ง. Since ๐œŒ is a congruence, ๐‘ง๐‘ฅ ๐œŒ ๐‘ง๐‘ฆ and๐‘ฅ๐‘ง ๐œŒ ๐‘ฆ๐‘ง. Hence ๐œŒ is both a left and a right congruence. 1.23

Let ๐œŒ be a congruence on ๐‘†. Let ๐‘†/๐œŒ denote the quotient set of ๐‘† byFactor semigroup๐œŒ (that is, the set of ๐œŒ-classes of ๐‘†). For any ๐‘ฅ โˆˆ ๐‘†, let [๐‘ฅ]๐œŒ โˆˆ ๐‘†/๐œŒ be the๐œŒ-class of ๐‘ฅ; that is, [๐‘ฅ]๐œŒ = { ๐‘ฆ โˆˆ ๐‘† โˆถ ๐‘ฆ ๐œŒ ๐‘ฅ }. Define a multiplication on๐‘†/๐œŒ by

[๐‘ฅ]๐œŒ[๐‘ฆ]๐œŒ = [๐‘ฅ๐‘ฆ]๐œŒ.

This multiplication is well-defined, in the sense that if we chose differentrepresentatives for the ๐œŒ-classes [๐‘ฅ]๐œŒ and [๐‘ฆ]๐œŒ, we would get the sameanswer:

([๐‘ฅ]๐œŒ = [๐‘ฅโ€ฒ]๐œŒ) โˆง ([๐‘ฆ]๐œŒ = [๐‘ฆโ€ฒ]๐œŒ)โ‡’ (๐‘ฅ ๐œŒ ๐‘ฅโ€ฒ) โˆง (๐‘ฆ ๐œŒ ๐‘ฆโ€ฒ)โ‡’ ๐‘ฅ๐‘ฆ ๐œŒ ๐‘ฅโ€ฒ๐‘ฆโ€ฒ [since ๐œŒ is a congruence]โ‡’ [๐‘ฅ๐‘ฆ]๐œŒ = [๐‘ฅโ€ฒ๐‘ฆโ€ฒ]๐œŒ.

20 โ€ขElementary semigroup theory

Page 29: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

The factor set ๐‘†/๐œŒ, with thismultiplication, is a semigroup and is called thequotient or factor of ๐‘† by ๐œŒ. The map ๐œŒโ™ฎ โˆถ ๐‘† โ†’ ๐‘†/๐œŒ, defined by ๐‘ฅ๐œŒโ™ฎ = [๐‘ฅ]๐œŒis clearly a surjective homomorphism, called the natural map or natural Natural maphomomorphism.

T h eorem 1 . 2 4. Let ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ be a homomorphism. Then ker๐œ‘ is a First isomorphism theoremcongruence, and the map ๐œ“ โˆถ ๐‘†/ker๐œ‘ โ†’ im๐œ‘ with [๐‘ฅ]ker๐œ‘๐œ“ = ๐‘ฅ๐œ‘ is anisomorphism, and so ๐‘†/ker๐œ‘ โ‰ƒ im๐œ‘.

Proof of 1.24. Let ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก โˆˆ ๐‘†. Then

(๐‘ฅ, ๐‘ฆ) โˆˆ ker๐œ‘ โˆง (๐‘ง, ๐‘ก) โˆˆ ker๐œ‘โ‡’ (๐‘ฅ๐œ‘ = ๐‘ฆ๐œ‘) โˆง (๐‘ง๐œ‘ = ๐‘ก๐œ‘) [by definition of ker๐œ‘]โ‡’ (๐‘ฅ๐œ‘)(๐‘ง๐œ‘) = (๐‘ฆ๐œ‘)(๐‘ก๐œ‘)โ‡’ (๐‘ฅ๐‘ง)๐œ‘ = (๐‘ฆ๐‘ก)๐œ‘ [since ๐œ‘ is a homomorphism]โ‡’ (๐‘ฅ๐‘ง, ๐‘ฆ๐‘ก) โˆˆ ker๐œ‘; [by definition of ker๐œ‘]

thus ker๐œ‘ is a congruence. Now,

[๐‘ฅ]ker๐œ‘ = [๐‘ฆ]ker๐œ‘โ‡” (๐‘ฅ, ๐‘ฆ) โˆˆ ker๐œ‘ [by definition of ker๐œ‘-classes]โ‡” ๐‘ฅ๐œ‘ = ๐‘ฆ๐œ‘ [by definition of ker๐œ‘]โ‡” [๐‘ฅ]ker๐œ‘๐œ“ = [๐‘ฆ]ker๐œ‘๐œ“. [by definition of ๐œ“]

}}}}}}}}}}}

(1.5)

The forward implication of (1.5) shows that ๐œ“ is well-defined. The reverseimplication shows that ๐œ“ is injective. The image of ๐œ“ is clearly im๐œ‘. Themap ๐œ“ is a homomorphism since ๐œ‘ is a homomorphism. Hence ๐œ“ is anisomorphism and so ๐‘†/ker๐œ‘ โ‰ƒ im๐œ‘. 1.24

Let ๐ผ be an ideal of ๐‘†. Then ๐œŒ๐ผ = (๐ผ ร— ๐ผ) โˆช id๐‘† is a congruence on ๐‘†. Rees factor semigroupThe factor semigroup ๐‘†/๐œŒ๐ผ is also denoted ๐‘†/๐ผ, and the element [๐‘ฅ]๐œŒ๐ผ isdenoted [๐‘ฅ]๐ผ. The congruence ๐œŒ๐ผ is called the Rees congruence induced by๐ผ, and ๐‘†/๐ผ is a Rees factor semigroup.The elements of ๐‘†/๐ผ are the ๐œŒ๐ผ-classes,which comprise ๐ผ and singleton sets {๐‘ฅ} for each ๐‘ฅ โˆˆ ๐‘† โˆ– ๐ผ. It is easy tosee that ๐ผ is a zero of the factor semigroup ๐‘†/๐ผ, so it is often convenient toview ๐‘†/๐ผ as having elements (๐‘† โˆ– ๐ผ) โˆช {0}, and to think of forming ๐‘†/๐ผ bystarting with ๐‘† and merging all elements of ๐ผ to form a zero; see Figure 1.5.

๐‘†/๐ผ๐‘†

๐‘† โˆ– ๐ผ ๐‘† โˆ– ๐ผ

๐ผ 0๐‘†/๐ผ

FIGURE 1.5Forming๐‘†/๐ผ from๐‘†bymergingelements of ๐ผ to form a zero.

The following result shows that the ideals of ๐‘†/๐ผ are in one-to-onecorrespondence with the ideals of ๐‘† that contain ๐ผ.

P ro p o s i t i on 1 . 2 5. Let ๐ผ be an ideal of ๐‘†. Let A be the collection ofideals of ๐‘† that contain ๐ผ. Let B be the collection of the ideals of ๐‘†/๐ผ. Thenthe map ๐œ‘ โˆถ A โ†’ B given by ๐ฝ๐œ‘ = ๐ฝ/๐ผ is a bijection from A to B thatpreserves inclusion, in the sense that ๐ฝ โŠ† ๐ฝโ€ฒ โ‡’ ๐ฝ๐œ‘ โŠ† ๐ฝโ€ฒ๐œ‘. 1.25

Congruences and quotients โ€ข 21

Page 30: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

A semigroup ๐ธ is an ideal extension of ๐‘† by ๐‘‡ if ๐‘† is an ideal of ๐ธIdeal extensionand ๐ธ/๐‘† โ‰ƒ ๐‘‡. Note that for an ideal extension of ๐‘† by ๐‘‡ to exist, ๐‘‡mustcontain a zero. Note further that there may be many non-isomorphicsemigroups that are ideal extensions of ๐‘† by ๐‘‡.

Generating equivalencesand congruences

In this section, we will study how an equivalence rela-tion or congruence on a semigroup ๐‘† is generated by a relation on ๐‘†.This section is rather technical, but fundamentally important for futurechapters.

Throughout this section, let๐‘‹ be a non-empty set. For any ๐œŒ โˆˆ B๐‘‹,Generating equivalenceslet

๐œŒR = โ‹‚{๐œŽ โˆˆ B๐‘‹ โˆถ ๐œŒ โŠ† ๐œŽ โˆง ๐œŽ is reflexive };

๐œŒS = โ‹‚{๐œŽ โˆˆ B๐‘‹ โˆถ ๐œŒ โŠ† ๐œŽ โˆง ๐œŽ is symmetric };

๐œŒT = โ‹‚{๐œŽ โˆˆ B๐‘‹ โˆถ ๐œŒ โŠ† ๐œŽ โˆง ๐œŽ is transitive };

๐œŒE = โ‹‚{๐œŽ โˆˆ B๐‘‹ โˆถ ๐œŒ โŠ† ๐œŽ โˆง ๐œŽ is an equivalence relation }.

There is at least one element ๐œŽ โˆˆ B๐‘‹ fulfilling the condition in each of thecollections above, namely ๐œŽ = ๐‘‹ ร— ๐‘‹. Furthermore, since every elementin these collections contains ๐œŒ, the intersections ๐œŒR, ๐œŒS, ๐œŒT, and ๐œŒE allcontain ๐œŒ. It is easy to see thatโ—† ๐œŒR, called the reflexive closure of ๐œŒ, is the smallest reflexive relation

containing ๐œŒ;โ—† ๐œŒS, called the symmetric closure of ๐œŒ, is the smallest symmetric relation

containing ๐œŒ;โ—† ๐œŒT, called the transitive closure of ๐œŒ, is the smallest transitive relation

containing ๐œŒ;โ—† ๐œŒE, called the equivalence relation generated by ๐œŒ, is the smallest equi-

valence relation containing ๐œŒ.

P ro p o s i t i on 1 . 2 6. For any ๐œŒ โˆˆ B๐‘‹,a) ๐œŒR = ๐œŒ โˆช id๐‘‹;b) ๐œŒS = ๐œŒ โˆช ๐œŒโˆ’1;c) ๐œŒT = โ‹ƒโˆž๐‘›=1 ๐œŒ

๐‘›;d) (๐œŒR)S = (๐œŒS)R = ๐œŒ โˆช ๐œŒโˆ’1 โˆช id๐‘‹;e) (๐œŒR)T = (๐œŒT)R = ๐œŒT โˆช id๐‘‹;f) ๐œŒE = ((๐œŒR)S)T = ((๐œŒS)T)R = id๐‘‹ โˆช โ‹ƒ

โˆž๐‘›=1(๐œŒ โˆช ๐œŒ

โˆ’1)๐‘›.

22 โ€ขElementary semigroup theory

Page 31: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 1.26. a) Since ๐œŒR is a reflexive relation containing ๐œŒ, it is immedi-ate that ๐œŒโˆช id๐‘‹ โŠ† ๐œŒR. On the other hand, ๐œŒโˆช id๐‘‹ is a reflexive relationcontaining ๐œŒ; since ๐œŒR is the smallest reflexive relation containing ๐œŒ,we have ๐œŒR โŠ† ๐œŒ โˆช id๐‘‹. Hence ๐œŒR = ๐œŒ โˆช id๐‘‹.

b) Since ๐œŒS is a symmetric relation containing ๐œŒ, it is immediate that๐œŒ โˆช ๐œŒโˆ’1 โŠ† ๐œŒS. On the other hand, ๐œŒ โˆช ๐œŒโˆ’1 is a symmetric relationcontaining ๐œŒ; since ๐œŒS is the smallest symmetric relation containing๐œŒ, we have ๐œŒS โŠ† ๐œŒ โˆช ๐œŒโˆ’1. Hence ๐œŒS = ๐œŒ โˆช ๐œŒโˆ’1.

c) Since ๐œŒT contains ๐œŒ, transitivity implies that it contains ๐œŒ2 = ๐œŒ โˆ˜ ๐œŒ.Transitivity again implies that ๐œŒT contains ๐œŒ3 = ๐œŒ โˆ˜ ๐œŒ2. Continuinginductively, we see that ๐œŒT contains ๐œŒ๐‘› for all ๐‘› โˆˆ โ„•; henceโ‹ƒโˆž๐‘›=1 ๐œŒ

๐‘› โŠ†๐œŒT.

On the other hand,

(๐‘ฅ, ๐‘ฆ), (๐‘ฆ, ๐‘ง) โˆˆ โ‹ƒโˆž๐‘›=1๐œŒ๐‘›

โ‡’ (โˆƒ๐‘˜, โ„“ โˆˆ โ„•)((๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ๐‘˜ โˆง (๐‘ฆ, ๐‘ง) โˆˆ ๐œŒโ„“)โ‡’ (โˆƒ๐‘˜, โ„“ โˆˆ โ„•)((๐‘ฅ, ๐‘ง) โˆˆ ๐œŒ๐‘˜ โˆ˜ ๐œŒโ„“)โ‡’ (โˆƒ๐‘˜, โ„“ โˆˆ โ„•)((๐‘ฅ, ๐‘ง) โˆˆ ๐œŒ๐‘˜+โ„“)

โ‡’ (๐‘ฅ, ๐‘ง) โˆˆ โ‹ƒโˆž๐‘›=1๐œŒ๐‘›.

Soโ‹ƒโˆž๐‘›=1 ๐œŒ๐‘› is a transitive relation containing ๐œŒ. Since ๐œŒT is the smallest

such relation, we have ๐œŒT โŠ† โ‹ƒโˆž๐‘›=1 ๐œŒ๐‘›. Hence ๐œŒT = โ‹ƒโˆž๐‘›=1 ๐œŒ

๐‘›.d) We have

(๐œŒR)S (1.6)= ๐œŒR โˆช (๐œŒR)โˆ’1 [by part b)]= ๐œŒ โˆช id๐‘‹ โˆช (๐œŒ โˆช id๐‘‹)โˆ’1 [by part a)]= ๐œŒ โˆช id๐‘‹ โˆช ๐œŒโˆ’1 โˆช idโˆ’1๐‘‹ [by definition of converse]= ๐œŒ โˆช ๐œŒโˆ’1 โˆช id๐‘‹ [since idโˆ’1๐‘‹ = id๐‘‹] (1.7)= ๐œŒS โˆช id๐‘‹ [by part b)]

= (๐œŒS)R. [by part a)] (1.8)

The result is given by lines (1.6), (1.7), and (1.8).e) Since id๐‘‹ โŠ† ๐œŒR, we have idT๐‘‹ โŠ† (๐œŒR)T. Since id๐‘‹ โˆ˜ id๐‘‹ = id๐‘‹, it follows

from part c) that idT๐‘‹ = id๐‘‹. So id๐‘‹ โŠ† (๐œŒR)T. Since ๐œŒ โŠ† ๐œŒR, we have๐œŒT โŠ† (๐œŒR)T. So (๐œŒT)R = ๐œŒT โˆช id๐‘‹ โŠ† (๐œŒR)T.

Now let (๐‘ข, ๐‘ฃ) โˆˆ (๐œŒR)T. Then by parts a) and c), (๐‘ข, ๐‘ฃ) โˆˆ โ‹ƒโˆž๐‘›=1(๐œŒ โˆชid๐‘‹)๐‘›. So there exists ๐‘› โˆˆ โ„• and ๐‘ฅ0,โ€ฆ , ๐‘ฅ๐‘› โˆˆ ๐‘‹ such that ๐‘ข = ๐‘ฅ0,๐‘ฃ = ๐‘ฅ๐‘›, and (๐‘ฅ๐‘–, ๐‘ฅ๐‘–+1) โˆˆ ๐œŒโˆช id๐‘‹ for ๐‘– = 0,โ€ฆ , ๐‘›โˆ’1. Fix such a sequencewith ๐‘› minimal. Then if ๐‘› โฉพ 2, no pair (๐‘ฅ๐‘–, ๐‘ฅ๐‘–+1) is in id๐‘‹, for thiswould imply that ๐‘ฅ๐‘– = ๐‘ฅ๐‘–+1 and so we could shorten the sequence by

Generating equivalences and congruences โ€ข 23

Page 32: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

deleting one of ๐‘ฅ๐‘– or ๐‘ฅ๐‘–+1, contradicting the minimality of ๐‘›. So

(๐‘ข, ๐‘ฃ) โˆˆ id๐‘‹ โˆช ๐œŒ โˆชโˆž

โ‹ƒ๐‘›=2๐œŒ๐‘› = id๐‘‹ โˆช ๐œŒT = (๐œŒT)R.

Hence (๐œŒR)T โŠ† (๐œŒT)R and so (๐œŒR)T = (๐œŒT)R.f) Since๐œŒE is reflexive and contains๐œŒ, it contains๐œŒR. Since it is symmetric

and contains ๐œŒR, it contains (๐œŒR)S. Since it is transitive and contains(๐œŒR)S, it contains ((๐œŒR)S)T. Hence ((๐œŒR)S)T โŠ† ๐œŒE.

On the other hand, ((๐œŒR)S)T is transitive by the definition of T.Furthermore, ((๐œŒR)S)T โŠ‡ (๐œŒR)S) โŠ‡ ๐œŒR โŠ‡ id๐‘‹ and so ((๐œŒR)S)T is reflex-ive. Let (๐‘ฅ, ๐‘ฆ) โˆˆ ((๐œŒR)S)T = โ‹ƒโˆž๐‘›=1((๐œŒ

R)S)๐‘›. Then (๐‘ฅ, ๐‘ฆ) โˆˆ ((๐œŒR)S)๐‘› forsome ๐‘› โˆˆ โ„•. Hence there exist ๐‘ฅ0,โ€ฆ , ๐‘ฅ๐‘› โˆˆ ๐‘‹ with ๐‘ฅ0 = ๐‘ฅ, ๐‘ฅ๐‘› = ๐‘ฆ,and (๐‘ฅ๐‘–, ๐‘ฅ๐‘–+1) โˆˆ (๐œŒR)S for ๐‘– = 0,โ€ฆ , ๐‘› โˆ’ 1. Since (๐œŒR)S is symmetric,(๐‘ฅ๐‘–+1, ๐‘ฅ๐‘–) โˆˆ (๐œŒR)S for each ๐‘–, and so (๐‘ฆ, ๐‘ฅ) โˆˆ ((๐œŒR)S)๐‘› โŠ† ((๐œŒR)S)T. So((๐œŒR)S)T is symmetric. Hence ((๐œŒR)S)T is an equivalence relation con-taining ๐œŒ. Since ๐œŒE is the smallest equivalence relation containing ๐œŒ,we have ๐œŒE โŠ† ((๐œŒR)S)T. Hence ๐œŒE = ((๐œŒR)S)T.

Finally, notice that

๐œŒE = ((๐œŒR)S)T [by the above reasoning] (1.9)= ((๐œŒS)R)T [by part d)]

= ((๐œŒS)T)R [by part e)] (1.10)= id๐‘‹ โˆช (๐œŒS)T [by part a)]

= id๐‘‹ โˆช (๐œŒ โˆช ๐œŒโˆ’1)T [by part b)]= id๐‘‹ โˆช โ‹ƒ

โˆž๐‘›=1(๐œŒ โˆช ๐œŒ

โˆ’1). [by part c)] (1.11)

Lines (1.9), (1.10), and (1.11) give the three required equalities. 1.26

For any ๐œŒ โˆˆ B๐‘†, letGenerating congruences

๐œŒC = โ‹‚{๐œŽ โˆˆ B๐‘† โˆถ ๐œŒ โŠ† ๐œŽ โˆง ๐œŽ is left and right compatible },

๐œŒ# = โ‹‚{๐œŽ โˆˆ B๐‘† โˆถ ๐œŒ โŠ† ๐œŽ โˆง ๐œŽ is a congruence }.

It is easy to see thatโ—† ๐œŒC is the smallest left and right compatible relation containing ๐œŒ;โ—† ๐œŒ#, called the congruence generated by ๐œŒ, is the smallest congruence

containing ๐œŒ.

P ro p o s i t i on 1 . 2 7. For any ๐œŒ โˆˆ B๐‘†, we have ๐œŒC = { (๐‘๐‘ฅ๐‘ž, ๐‘๐‘ฆ๐‘ž) โˆˆ๐‘† ร— ๐‘† โˆถ ๐‘, ๐‘ž โˆˆ ๐‘†1 โˆง (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ }.

Proof of 1.27. Let ๐œŽ = { (๐‘๐‘ฅ๐‘ž, ๐‘๐‘ฆ๐‘ž) โˆˆ ๐‘† ร— ๐‘† โˆถ ๐‘, ๐‘ž โˆˆ ๐‘†1, (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ }. Toprove that ๐œŽ = ๐œŒC, we have to show that ๐œŽ is the smallest left and rightcompatible relation on ๐‘† containing ๐œŒ. Notice first that if (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ, then

24 โ€ขElementary semigroup theory

Page 33: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

(๐‘ฅ, ๐‘ฆ) = (1๐‘ฅ1, 1๐‘ฆ1) โˆˆ ๐œŽ. Hence ๐œŽ contains ๐œŒ. Let (๐‘ข, ๐‘ฃ) โˆˆ ๐œŽ and ๐‘Ÿ โˆˆ ๐‘†.Then ๐‘ข = ๐‘๐‘ฅ๐‘ž and ๐‘ฃ = ๐‘๐‘ฆ๐‘ž for some (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ. Let ๐‘โ€ฒ = ๐‘Ÿ๐‘. Then(๐‘Ÿ๐‘ข, ๐‘Ÿ๐‘ฃ) = (๐‘โ€ฒ๐‘ฅ๐‘ž, ๐‘โ€ฒ๐‘ฆ๐‘ž) โˆˆ ๐œŽ. Hence ๐œŽ is left-compatible. Similarly, ๐œŽ isright compatible.

Now let ๐œ be some left and right compatible relation that contains๐œŒ. Let (๐‘๐‘ฅ๐‘ž, ๐‘๐‘ฆ๐‘ž) โˆˆ ๐œŽ, where (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ and ๐‘, ๐‘ž โˆˆ ๐‘†1. Then (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œsince ๐œŒ โŠ† ๐œ. Hence (๐‘๐‘ฅ๐‘ž, ๐‘๐‘ฆ๐‘ž) โˆˆ ๐œ since ๐œ is left and right compatible.Thus ๐œŽ โŠ† ๐œ. Therefore ๐œŽ is the smallest left and right compatible relationcontaining ๐œŒ. 1.27

Pro p o s i t i on 1 . 2 8. For any ๐œŒ, ๐œŽ โˆˆ B๐‘†,a) (๐œŒ โˆช ๐œŽ)C = ๐œŒC โˆช ๐œŽC;b) (๐œŒโˆ’1)C = (๐œŒC)โˆ’1.

Proof of 1.28. a) For ๐‘ข, ๐‘ฃ โˆˆ ๐‘†,

(๐‘ข, ๐‘ฃ) โˆˆ (๐œŒ โˆช ๐œŽ)C

โ‡” (โˆƒ๐‘, ๐‘ž โˆˆ ๐‘†1, (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ โˆช ๐œŽ)(๐‘ข = ๐‘๐‘ฅ๐‘ž โˆง ๐‘ฃ = ๐‘๐‘ฆ๐‘ž)[by Proposition 1.27]

โ‡” (โˆƒ๐‘, ๐‘ž โˆˆ ๐‘†1, (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ)(๐‘ข = ๐‘๐‘ฅ๐‘ž โˆง ๐‘ฃ = ๐‘๐‘ฆ๐‘ž)โˆจ (โˆƒ๐‘, ๐‘ž โˆˆ ๐‘†1, (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŽ)(๐‘ข = ๐‘๐‘ฅ๐‘ž โˆง ๐‘ฃ = ๐‘๐‘ฆ๐‘ž)

โ‡” (๐‘ข, ๐‘ฃ) โˆˆ ๐œŒC โˆจ (๐‘ข, ๐‘ฃ) โˆˆ ๐œŽC [by Proposition 1.27]

โ‡” (๐‘ข, ๐‘ฃ) โˆˆ ๐œŒC โˆช ๐œŽC.

b) For ๐‘ข, ๐‘ฃ โˆˆ ๐‘†,

(๐‘ข, ๐‘ฃ) โˆˆ (๐œŒโˆ’1)C

โ‡” (โˆƒ๐‘, ๐‘ž โˆˆ ๐‘†1, (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒโˆ’1)(๐‘ข = ๐‘๐‘ฅ๐‘ž โˆง ๐‘ฃ = ๐‘๐‘ฆ๐‘ž)[by Proposition 1.27]

โ‡” (โˆƒ๐‘, ๐‘ž โˆˆ ๐‘†1, (๐‘ฆ, ๐‘ฅ) โˆˆ ๐œŒ)(๐‘ฃ = ๐‘๐‘ฆ๐‘ž โˆง ๐‘ข = ๐‘๐‘ฅ๐‘ž)โ‡” (๐‘ฃ, ๐‘ข) โˆˆ ๐œŒC [by Proposition 1.27]

โ‡” (๐‘ข, ๐‘ฃ) โˆˆ (๐œŒC)โˆ’1. 1.28

Pro p o s i t i on 1 . 2 9. For any ๐œŒ โˆˆ B๐‘†, Characterizinggenerated congruences

๐œŒ# = (๐œŒC)E = id๐‘† โˆชโˆž

โ‹ƒ๐‘›=1(๐œŒC โˆช (๐œŒC)โˆ’1)๐‘›.

Proof of 1.29. By Proposition 1.26(f),

(๐œŒC)E = id๐‘† โˆชโˆž

โ‹ƒ๐‘›=1(๐œŒC โˆช (๐œŒC)โˆ’1)๐‘›,

so we must prove that ๐œŒ# = (๐œŒC)E. That is, we must show that (๐œŒC)E is thesmallest congruence containing ๐œŒ. By definition, (๐œŒC)E is an equivalencerelation containing ๐œŒC, which in turn contains ๐œŒ. So ๐œŒ โŠ† (๐œŒC)E.

Generating equivalences and congruences โ€ข 25

Page 34: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Now let ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘† and suppose that (๐‘ฅ, ๐‘ฆ) โˆˆ (๐œŒC)E. If (๐‘ฅ, ๐‘ฆ) โˆˆ id๐‘†,then ๐‘ฅ = ๐‘ฆ, and so ๐‘ง๐‘ฅ = ๐‘ง๐‘ฆ, and thus (๐‘ง๐‘ฅ, ๐‘ง๐‘ฆ) โˆˆ id๐‘† โŠ† (๐œŒC)E. Further-more,

(๐‘ฅ, ๐‘ฆ) โˆˆ โ‹ƒโˆž๐‘›=1(๐œŒC โˆช (๐œŒC)โˆ’1)๐‘›

โ‡’ (๐‘ฅ, ๐‘ฆ) โˆˆ โ‹ƒโˆž๐‘›=1((๐œŒ โˆช ๐œŒโˆ’1)C)๐‘› [by Proposition 1.28]

โ‡’ (โˆƒ๐‘› โˆˆ โ„•)(โˆƒ๐‘ฅ0, ๐‘ฅ1,โ€ฆ , ๐‘ฅ๐‘› โˆˆ ๐‘†)[(๐‘ฅ = ๐‘ฅ0) โˆง (๐‘ฅ๐‘› = ๐‘ฆ)โˆง (โˆ€๐‘–)((๐‘ฅ๐‘–, ๐‘ฅ๐‘–+1) โˆˆ (๐œŒ โˆช ๐œŒโˆ’1)C)] [by definition of โˆ˜]

โ‡’ (โˆƒ๐‘› โˆˆ โ„•)(โˆƒ๐‘ฅ0, ๐‘ฅ1,โ€ฆ , ๐‘ฅ๐‘› โˆˆ ๐‘†)[(๐‘ง๐‘ฅ = ๐‘ง๐‘ฅ0) โˆง (๐‘ง๐‘ฅ๐‘› = ๐‘ง๐‘ฆ)โˆง (โˆ€๐‘–)((๐‘ง๐‘ฅ๐‘–, ๐‘ง๐‘ฅ๐‘–+1) โˆˆ (๐œŒ โˆช ๐œŒโˆ’1)C)]

[since (๐œŒ โˆช ๐œŒโˆ’1)C is left and right compatible]

โ‡’ (โˆƒ๐‘› โˆˆ โ„•)((๐‘ง๐‘ฅ, ๐‘ง๐‘ฆ) โˆˆ ((๐œŒ โˆช ๐œŒโˆ’1)C)๐‘›) [by definition of โˆ˜]

โ‡’ (๐‘ง๐‘ฅ, ๐‘ง๐‘ฆ) โˆˆ โ‹ƒโˆž๐‘›=1(๐œŒC โˆช (๐œŒC)โˆ’1)๐‘› [by Proposition 1.28]

โ‡’ (๐‘ง๐‘ฅ, ๐‘ง๐‘ฆ) โˆˆ (๐œŒC)E.

Hence (๐‘ฅ, ๐‘ฆ) โˆˆ (๐œŒC)E implies (๐‘ง๐‘ฅ, ๐‘ง๐‘ฆ) โˆˆ (๐œŒC)E. Therefore (๐œŒC)E is left-compatible. Similarly, (๐œŒC)E is right-compatible. Hence (๐œŒC)E is a congru-ence containing ๐œŒ.

Now suppose that ๐œ is a congruence containing ๐œŒ. Then ๐œ is left andright compatible and so must contain ๐œŒC, which is the smallest left andright compatible relation containing ๐œŒ. Furthermore, ๐œ is an equivalencerelation, and so it must contain (๐œŒC)E, which is the smallest equivalencerelation containing ๐œŒC. Hence (๐œŒC)E โŠ† ๐œ. Therefore (๐œŒC)E is the smallestcongruence containing ๐œŒ. 1.29

Let E๐‘† be the set of equivalence relations on ๐‘† and let C๐‘† be the set ofLattice of congruencescongruences on ๐‘†. Then E๐‘† and C๐‘† both admit โŠ† as a partial order. It iseasy to see that both (E๐‘†, โŠ†) and (C๐‘†, โŠ†) are actually lattices:โ—† for any ๐œŒ, ๐œŽ โˆˆ E๐‘†, we have ๐œŒ โŠ“ ๐œŽ = ๐œŒ โˆฉ ๐œŽ and ๐œŒ โŠ” ๐œŽ = (๐œŒ โˆช ๐œŽ)E;โ—† for any ๐œŒ, ๐œŽ โˆˆ C๐‘†, we have ๐œŒ โŠ“ ๐œŽ = ๐œŒ โˆฉ ๐œŽ and ๐œŒ โŠ” ๐œŽ = (๐œŒ โˆช ๐œŽ)#.

Suppose ๐œŒ, ๐œŽ โˆˆ C๐‘†. There seems to be an ambiguity in writing ๐œŒ โŠ” ๐œŽ: dowe mean the join (๐œŒ โˆช ๐œŽ)E in the lattice of equivalence relations E๐‘†, or thejoin (๐œŒ โˆช ๐œŽ)# in the lattice of congruences C๐‘†? However,

(๐œŒ โˆช ๐œŽ)#

= ((๐œŒ โˆช ๐œŽ)C)E [by Proposition 1.29]

= (๐œŒC โˆช ๐œŽC)E [by Proposition 1.28(a)]

= (๐œŒ โˆช ๐œŽ)E. [since ๐œŒ and ๐œŽ are compatible]

So there is really no ambiguity in writing ๐œŒ โŠ” ๐œŽ.

26 โ€ขElementary semigroup theory

Page 35: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Pro p o s i t i on 1 . 3 0. Let ๐œŒ, ๐œŽ โˆˆ E๐‘†. Then ๐œŒ โŠ” ๐œŽ = (๐œŒ โˆ˜ ๐œŽ)T. Characterizing join ofequivalence relations

Proof of 1.30. Since ๐œŒ โˆช ๐œŽ contains both ๐œŒ and ๐œŽ, it follows that

๐œŒ โˆ˜ ๐œŽ โŠ† (๐œŒ โˆช ๐œŽ) โˆ˜ (๐œŒ โˆช ๐œŽ) = (๐œŒ โˆช ๐œŽ)2,

and more generally that (๐œŒ โˆ˜ ๐œŽ)๐‘› โŠ† (๐œŒ โˆช ๐œŽ)2๐‘›. Thus

(๐œŒ โˆ˜ ๐œŽ)T =โˆž

โ‹ƒ๐‘›=1(๐œŒ โˆ˜ ๐œŽ)๐‘› โŠ†

โˆž

โ‹ƒ๐‘›=1(๐œŒ โˆช ๐œŽ)๐‘› = (๐œŒ โˆช ๐œŽ)T. (1.12)

On the other hand, ๐œŒ โˆ˜ ๐œŽ contains ๐œŒ โˆ˜ id๐‘† = ๐œŒ (since ๐œŽ is reflexive) andcontains id๐‘† โˆ˜ ๐œŽ = ๐œŽ (since ๐œŒ is reflexive), and thus ๐œŒ โˆช ๐œŽ โŠ† ๐œŒ โˆ˜ ๐œŽ. Hence(๐œŒ โˆช ๐œŽ)T โŠ† (๐œŒ โˆ˜ ๐œŽ)T. Combine this with (1.12) to see that

(๐œŒ โˆช ๐œŽ)T = (๐œŒ โˆ˜ ๐œŽ)T. (1.13)

Then

๐œŒ โŠ” ๐œŽ= (๐œŒ โˆช ๐œŽ)E

= (((๐œŒ โˆช ๐œŽ)R)S)T [by Proposition 1.26(f)]

= ((๐œŒ โˆช ๐œŽ) โˆช (๐œŒ โˆช ๐œŽ)โˆ’1 โˆช id๐‘†)T [by Proposition 1.26(d)]

= (๐œŒ โˆช ๐œŽ โˆช ๐œŒโˆ’1 โˆช ๐œŽโˆ’1 โˆช id๐‘†)T

= (๐œŒ โˆช ๐œŽ)T [since ๐œŒ and ๐œŽ are reflexive and symmetric]

= (๐œŒ โˆ˜ ๐œŽ)T. [by (1.13)]

This completes the proof. 1.30

Pro p o s i t i on 1 . 3 1. Let ๐œŒ, ๐œŽ โˆˆ E๐‘†. If ๐œŒ โˆ˜ ๐œŽ = ๐œŽ โˆ˜ ๐œŒ, then ๐œŒโŠ”๐œŽ = ๐œŒ โˆ˜ ๐œŽ. Join of commutingequivalence relations

Proof of 1.31. Suppose ๐œŒ โˆ˜ ๐œŽ = ๐œŽ โˆ˜ ๐œŒ. Then

(๐œŒ โˆ˜ ๐œŽ)2 = ๐œŒ โˆ˜ ๐œŽ โˆ˜ ๐œŒ โˆ˜ ๐œŽ = ๐œŒ โˆ˜ ๐œŒ โˆ˜ ๐œŽ โˆ˜ ๐œŽ = ๐œŒ2 โˆ˜ ๐œŽ2. (1.14)

But ๐œŒ2 โŠ† ๐œŒ and ๐œŽ2 โŠ† ๐œŽ since ๐œŒ and ๐œŽ are transitive. Furthermore, ๐œŒ =๐œŒ โˆ˜ id๐‘† โŠ† ๐œŒ2 since ๐œŒ is reflexive, and similarly ๐œŽ โŠ† ๐œŽ2. Hence ๐œŒ2 = ๐œŒ and๐œŽ2 = ๐œŽ and so (๐œŒ โˆ˜ ๐œŽ)2 = ๐œŒ โˆ˜ ๐œŽ by (1.14). Hence (๐œŒ โˆ˜ ๐œŽ)๐‘› = ๐œŒ โˆ˜ ๐œŽ for all๐‘› โˆˆ โ„•, and thus

๐œŒ โŠ” ๐œŽ = (๐œŒ โˆ˜ ๐œŽ)T [by Proposition 1.30]= โ‹ƒโˆž๐‘›=1(๐œŒ โˆ˜ ๐œŽ)

๐‘› [by Proposition 1.26(c)]= ๐œŒ โˆ˜ ๐œŽ. 1.31

Generating equivalences and congruences โ€ข 27

Page 36: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Subdirect products

Let S = { ๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ } be a collection of semigroups. Foreach ๐‘— โˆˆ ๐ผ, there is a projection map from the direct productโˆ๐‘–โˆˆ๐ผ ๐‘†๐‘– to๐‘†๐‘—, taking an element of the direct product to its ๐‘—-th component:

๐œ‹๐‘— โˆถ โˆ๐‘–โˆˆ๐ผ๐‘†๐‘– โ†’ ๐‘†๐‘—, ๐‘ฅ๐œ‹๐‘— = (๐‘—)๐‘ฅ.

Notice that every ๐œ‹๐‘— is a surjective homomorphism.A subdirect product of S is [a semigroup isomorphic to] a subsemi-Subdirect product

group ๐‘ƒ of the direct productโˆ๐‘–โˆˆ๐ผ ๐‘†๐‘– such that ๐‘ƒ๐œ‹๐‘— = ๐‘†๐‘— for all ๐‘— โˆˆ ๐ผ.Let ๐‘† be a semigroup. A collection of surjective homomorphismsSeparation by surjective

homomorphisms ๐›ท = { ๐œ‘๐‘– โˆถ ๐‘† โ†’ ๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ } is said to separate the elements of ๐‘† if they havethe property that

(โˆ€๐‘– โˆˆ ๐ผ)(๐‘ฅ๐œ‘๐‘– = ๐‘ฆ๐œ‘๐‘–) โ‡’ ๐‘ฅ = ๐‘ฆ.

Pro p o s i t i on 1 . 3 2. A semigroup ๐‘† is a subdirect product of a collec-tion of semigroups S = { ๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ } if and only if there exists a collectionof surjective homomorphisms ๐›ท = { ๐œ‘๐‘– โˆถ ๐‘† โ†’ ๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ } that separate theelements of ๐‘†.

Proof of 1.32. If ๐‘† is a subdirect product of S, then the collection of projec-tion maps restricted to ๐‘† (that is, the collection { ๐œ‹๐‘–|๐‘† โˆถ ๐‘† โ†’ ๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ })separates the elements of ๐‘†.

On the other hand, suppose the collection ๐›ท separates the elementsof ๐‘†. Define ๐œ“ โˆถ ๐‘† โ†’ โˆ๐‘–โˆˆ๐ผ ๐‘†๐‘– by letting the ๐‘–-th component of ๐‘ ๐œ“ be๐‘ ๐œ‘๐‘–; that is, (๐‘–)(๐‘ ๐œ“) = ๐‘ ๐œ‘๐‘–. Then ๐œ“ is a homomorphism since each ๐œ‘๐‘– isa homomorphism. Furthermore, ๐‘ ๐œ“ = ๐‘ก๐œ“ implies that ๐‘ ๐œ‘๐‘– = ๐‘ก๐œ‘๐‘– for all๐‘– โˆˆ ๐ผ, which implies ๐‘  = ๐‘ก since ๐›ท separates the elements of ๐‘†. Hence ๐œ“ isinjective. So ๐‘† is isomorphic to the subsemigroup im๐œ“ ofโˆ๐‘–โˆˆ๐ผ ๐‘†๐‘–. Finally,the projection maps ๐œ‹๐‘– are all surjective since each ๐œ‘๐‘– is surjective. Soim๐œ‘ is a subdirect product of S. 1.32

Prop o s i t i on 1 . 3 3. Let ๐‘† be a semigroup and let ๐›ด = { ๐œŽ๐‘– โˆถ ๐‘– โˆˆ ๐ผ }be a collection of congruences on ๐‘†. Let ๐œŽ = โ‹‚๐›ด. Then ๐‘†/๐œŽ is a subdirectproduct of { ๐‘†/๐œŽ๐‘– โˆถ ๐‘– โˆˆ ๐ผ }.

Proof of 1.33. For each ๐‘– there is a homomorphism ๐œ‘๐‘– โˆถ ๐‘†/๐œŽ โ†’ ๐‘†/๐œŽ๐‘– with[๐‘ฅ]๐œŽ๐œ‘๐‘– = [๐‘ฅ]๐œŽ๐‘– . (These maps are well-defined since ๐œŽ โŠ† ๐œŽ๐‘–.) Clearly, thehomomorphisms ๐œ‘๐‘– are surjective. Furthermore, the collection๐›ท = { ๐œ‘๐‘– โˆถ๐‘– โˆˆ ๐ผ } separates the elements of ๐‘†/๐œŽ, since if [๐‘ฅ]๐œŽ๐œ‘๐‘– = [๐‘ฆ]๐œŽ๐œ‘๐‘– for all๐‘– โˆˆ ๐ผ, then [๐‘ฅ]๐œŽ๐‘– = [๐‘ฆ]๐œŽ๐‘– and thus (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŽ๐‘– for all ๐‘– โˆˆ ๐ผ, which implies(๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŽ = โ‹‚๐›ด and so [๐‘ฅ]๐œŽ = [๐‘ฆ]๐œŽ. Therefore ๐‘†/๐œŽ is a subdirect productof { ๐‘†/๐œŽ๐‘– โˆถ ๐‘– โˆˆ ๐ผ } by Proposition 1.32. 1.33

Prop o s i t i on 1 . 3 4. Let๐‘€ be a monoid and let ๐ธ be an ideal ex-Ideal extensions of monoidsare subdirect products tension of๐‘€ by a semigroup ๐‘‡. Then ๐ธ is a subdirect product of๐‘€ and

๐‘‡.

28 โ€ขElementary semigroup theory

Page 37: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 1.34. By definition,๐‘€ is an ideal of ๐ธ and ๐‘‡ is the Rees factorsemigroup ๐ธ/๐‘€. Let ๐œ‘ โˆถ ๐ธ โ†’ ๐‘‡ be the natural homomorphism ๐‘ฅ๐œ‘ =[๐‘ฅ]๐‘€. Let ๐œ“ โˆถ ๐ธ โ†’ ๐‘€ be given by ๐‘ฅ๐œ“ = ๐‘ฅ1๐‘€. Then

(๐‘ฅ๐œ“)(๐‘ฆ๐œ“) = ๐‘ฅ1๐‘€๐‘ฆ1๐‘€= ๐‘ฅ๐‘ฆ1๐‘€ [since ๐‘ฆ1๐‘€ lies in the ideal๐‘€ of ๐ธ]= (๐‘ฅ๐‘ฆ)๐œ“.

Thus ๐œ“ is a homomorphism. Both ๐œ‘ and ๐œ“ are clearly surjective. Further-more, if๐‘ฅ๐œ‘ = ๐‘ฆ๐œ‘ and๐‘ฅ๐œ“ = ๐‘ฆ๐œ“, then either๐‘ฅ, ๐‘ฆ โˆˆ ๐ธโˆ–๐‘€ and [๐‘ฅ]๐‘€ = [๐‘ฆ]๐‘€and so ๐‘ฅ = ๐‘ฆ, or ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€ and ๐‘ฅ1๐‘€ = ๐‘ฆ1๐‘€ and so ๐‘ฅ = ๐‘ฆ. Thus the collec-tion of surjective homomorphisms {๐œ‘, ๐œ“} separates elements of ๐ธ and so๐ธ is a subdirect product of๐‘€ and ๐‘‡. 1.34

Actions

A semigroup action of a semigroup ๐‘† on a set๐ด is an oper- Semigroup actionation โ‹… โˆถ ๐ด ร— ๐‘† โ†’ ๐ด that is compatible with the semigroup multiplication,in the sense that

(๐‘Ž โ‹… ๐‘ฅ) โ‹… ๐‘ฆ = ๐‘Ž โ‹… (๐‘ฅ๐‘ฆ) (1.15)

for all ๐‘Ž โˆˆ ๐ด and ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. We call such a semigroup action an action of ๐‘†on ๐ด, or an ๐‘†-action on ๐ด, and say that ๐‘† acts on ๐ด.

E x a m p l e 1 . 3 5. a) Any subsemigroup ๐‘† of T๐ด acts on๐ด by ๐‘Ž โ‹… ๐œŒ =๐‘Ž๐œŒ (where ๐œŒ โˆˆ T๐ด).

b) Let ๐‘† be a subsemigroup of a semigroup ๐‘‡. Then ๐‘† acts on ๐‘‡ via๐‘ก โ‹… ๐‘ฅ = ๐‘ก๐‘ฅ for all ๐‘ก โˆˆ ๐‘‡ and ๐‘ฅ โˆˆ ๐‘†. In particular, this holds when ๐‘‡ = ๐‘†or when ๐‘‡ = ๐‘†1.

Given an action โ‹…, we can define a map ๐œ‘ โˆถ ๐‘† โ†’ T๐ด, where thetransformation ๐‘ ๐œ‘ is such that ๐‘Ž(๐‘ ๐œ‘) = ๐‘Ž โ‹… ๐‘ . The condition (1.15) impliesthat ๐œ‘ is a homomorphism. Conversely, given a homomorphism ๐œ‘ โˆถ ๐‘† โ†’T๐ด, we can define an action โ‹… by ๐‘Ž โ‹… ๐‘  = ๐‘Ž(๐‘ ๐œ‘), which satisfies (1.15) since ๐œ‘is a homomorphism. There is thus a one-to-one correspondence betweenactions of a semigroup ๐‘† on ๐ด and homomorphisms ๐œ‘ โˆถ ๐‘† โ†’ T๐ด.

An action of ๐‘† on ๐ด is free if distinct elements of ๐‘† act differently on Free, transitive,regular actionsevery element of ๐ด, or, equivalently,

(โˆ€๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†)((โˆƒ๐‘Ž โˆˆ ๐ด)(๐‘Ž โ‹… ๐‘ฅ = ๐‘Ž โ‹… ๐‘ฆ) โ‡’ ๐‘ฅ = ๐‘ฆ).

An action of ๐‘† on ๐ด is transitive if ๐ด is non-empty and for all ๐‘Ž, ๐‘ โˆˆ ๐ด,there is some element ๐‘  โˆˆ ๐‘† such that ๐‘Ž โ‹… ๐‘  = ๐‘. That is, the action istransitive if one can reach start at any element of๐ด and reach any element

Actions โ€ข 29

Page 38: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

(possibly the same one) by acting by some element of ๐‘†. An action isregular if it is both free and transitive. It is easy to see that if ๐‘† has aregular action on ๐ด, then |๐‘†| = |๐ด|.

Suppose ๐ด is also a semigroup. An action of ๐‘† on ๐ด is by endomorph-Action by endomorphismsisms if ๐‘ ๐œ‘ โˆˆ End๐ด for each ๐‘  โˆˆ ๐‘†; in this case,

๐‘Ž๐‘ โ‹… ๐‘ฅ = (๐‘Ž โ‹… ๐‘ฅ)(๐‘ โ‹… ๐‘ฅ)

for all ๐‘Ž, ๐‘ โˆˆ ๐ด and ๐‘ฅ โˆˆ ๐‘†.The above discussions concern right semigroup actions. There is aLeft action

dual notion of a left semigroup action of ๐‘† on ๐ด, which is an operationโ‹… โˆถ ๐‘† ร— ๐ด โ†’ ๐ด satisfying

๐‘  โ‹… (๐‘ก โ‹… ๐‘Ž) = (๐‘ ๐‘ก) โ‹… ๐‘Ž;

this corresponds to a map ๐œ‘ โˆถ ๐‘† โ†’ T๐ด, where ๐‘Ž(๐‘ ๐œ‘) = ๐‘  โ‹… ๐‘Ž. This map ๐œ‘is an anti-homomorphism since

๐‘Ž(๐‘ก๐œ‘)(๐‘ ๐œ‘) = (๐‘ก โ‹… ๐‘Ž)(๐‘ ๐œ‘) = ๐‘  โ‹… (๐‘ก โ‹… ๐‘Ž) = ๐‘ ๐‘ก โ‹… ๐‘Ž = ๐‘Ž((๐‘ ๐‘ก)๐œ‘).

The definitions of actions being free, transitive, regular, and by endo-morphisms also apply to left actions.

The correspondence of right actions with homomorphisms and leftactions with anti-homomorphisms depends on writing maps on theright and composing them left-to-right. When maps are written onthe left and composed right-to-left, right actions correspond to anti-homomorphisms and left actions to homomorphisms.

Cayley graphs

Let ๐‘† be a semigroup or monoid with a generating set ๐ด.The right (respectively, left) Cayley graph ๐›ค(๐‘†, ๐ด) (respectively, ๐›คโ€ฒ(๐‘†, ๐ด))of ๐‘†with respect to๐ด is the directed graph with vertex set ๐‘† and, for every๐‘ฅ โˆˆ ๐‘† and ๐‘Ž โˆˆ ๐ด, an edge from ๐‘ฅ to ๐‘ฅ๐‘Ž (respectively, ๐‘Ž๐‘ฅ) labelled by ๐‘Ž. Bydefault โ€˜Cayley graphโ€™ means โ€˜right Cayley graphโ€™.

E x a m p l e 1 . 3 6. a) Let๐‘€ be the monoid (โ„•โˆช{0})ร— (โ„•โˆช{0}). Let๐‘Ž = (1, 0) and ๐‘ = (0, 1) and let ๐ด = {๐‘Ž, ๐‘}. The Cayley graph ๐›ค(๐‘€,๐ด)is an infinite grid; part of it is shown in Figure 1.6.

b) Let๐‘‹ = {1, 2}. Let ๐ด = {๐œŽ, ๐œ‹, ๐œ} โŠ† P๐‘‹, where

๐œŽ = (1 22 1) , ๐œ‹ = (1 21 1) , and ๐œ = (

1 21 โˆ—) .

Then ๐ด generatesP๐‘‹. The Cayley graph ๐›ค(P๐‘‹, ๐ด) is shown in Figure

1.7. Note the subgroup S๐‘‹ and the subsemigroupT๐‘‹, and that(1 2โˆ— โˆ—)

is a zero and a sink vertex of the graph.

30 โ€ขElementary semigroup theory

Page 39: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

(0, 0)

(1, 1)

(1, 2)

(1, 3)

(2, 1)

(2, 2)

(2, 3)

(3, 1)

(3, 2)

(3, 3)

(1, 0) (2, 0) (3, 0)

(0, 1)

(0, 2)

(0, 3)

๐‘

๐‘Ž

๐‘

๐‘Ž

๐‘

๐‘Ž

๐‘

๐‘Ž

๐‘

๐‘Ž

๐‘

๐‘Ž

๐‘

๐‘Ž

๐‘

๐‘Ž

๐‘

๐‘Ž

๐‘Ž ๐‘Ž ๐‘Ž

๐‘

๐‘

๐‘

FIGURE 1.6Cayley graph of ๐‘€ = (โ„• โˆช{0}) ร— (โ„• โˆช {0}).

(1 2โˆ— โˆ—)

(1 2โˆ— 1) (1 2โˆ— 2)(1 21 โˆ—) (1 22 โˆ—)

(1 21 1) (1 22 2)

(1 21 2) (1 22 1)๐œŽ

๐œŽ

๐œŽ

๐œŽ,๐œ‹

๐œŽ

๐œŽ,๐œ‹

๐œŽ

๐œŽ,๐œ‹

๐œŽ,๐œ‹, ๐œ

๐œ‹ ๐œ‹

๐œ‹, ๐œ

๐œ‹, ๐œ ๐œ‹, ๐œ

๐œ๐œ

๐œ

๐œ๐œ

FIGURE 1.7Cayley graph ofP{1,2} .

c) Let ๐‘† = {๐‘ฅ, ๐‘ฆ} be a two-element right zero semigroup and let ๐ด = ๐‘†.The i) right and ii) left Cayley graphs ๐›ค(๐‘†, ๐ด) and ๐›คโ€ฒ(๐‘†, ๐ด) are shownin Figure 1.8.

For groups, Cayley graphs have special properties. First, the left andright Cayley graphs are isomorphic under the map sending each vertexand each edge label to its inverse. Second, theCayley graphs are connected,and indeed strongly connected. Third, the Cayley graphs are homogen-eous, which essentially means that a neighbourhood of any vertex โ€˜lookslikeโ€™ the corresponding neighbourhood of any other vertex. The graphs inExample 1.36(c) show that the left and right Cayley graphs of a semigroupneed not be isomorphic; the second graph shows that the Cayley graph ofa semigroup need not be connected. All the graphs in Example 1.36 except(c)(ii) show that Cayley graphs of semigroups need not be homogeneous.

Cayley graphs โ€ข 31

Page 40: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

FIGURE 1.8Right (i) and left (ii) Cayleygraphs of a two-element right

zero semigroup {๐‘ฅ,๐‘ฆ}.

๐‘ฆ

๐‘ฅ

๐‘ฆ

๐‘ฅ

๐‘ฅ

๐‘ฆ ๐‘ฆ

๐‘ฅ ๐‘ฅ,๐‘ฆ

๐‘ฅ,๐‘ฆ

(i) (ii)

Exercises

[See pages 203โ€“209 for the solutions.]1.1 Prove that if ๐‘† is a semigroup and ๐‘’ โˆˆ ๐‘† is both a right zero and a right

identity, then ๐‘† is trivial.1.2 Prove the following:

a) If ๐‘† is a monoid with identity 1, the semigroup ๐‘†0 obtained byadjoining a zero if necessary is also a monoid with identity 1.

b) If ๐‘† is a semigroup with zero 0, the monoid ๐‘†1 obtained by adjoin-ing an identity if necessary also has zero 0.

โœด1.3 Let ๐‘† be a left-cancellative semigroup. Suppose that ๐‘’ โˆˆ ๐‘† is an idem-potent. Prove that ๐‘’ is a left identity. Deduce that a cancellative semi-group can contain at most one idempotent, which must be an identity.

โœด1.4 Prove that a right zero semigroup is left-cancellative.โœด1.5 Prove that a finite cancellative semigroup is a group.1.6 Prove from the definition that id๐‘‹ is an identity for B๐‘‹. Does B๐‘‹

contain a zero?1.7 Does there exist a non-trivial semigroup that does not contain any

proper subsemigroups?โœด1.8 Give an [easy] example of an infinite periodic semigroup.1.9 Does either T๐‘‹ orP๐‘‹ contain a zero? A left zero? A right zero? [Note

that the answer may depend on |๐‘‹|.]1.10 The power semigroup of a semigroup ๐‘† is the set โ„™๐‘† of all subsets ofPower semigroup๐‘† under the operation ๐‘‹๐‘Œ = { ๐‘ฅ๐‘ฆ โˆถ ๐‘ฅ โˆˆ ๐‘‹, ๐‘ฆ โˆˆ ๐‘Œ } for ๐‘‹,๐‘Œ โˆˆ โ„™๐‘†.(Recall from page 5 that๐‘‹(๐‘Œ๐‘) = (๐‘‹๐‘Œ)๐‘ for all๐‘‹,๐‘Œ, ๐‘ โˆˆ โ„™๐‘†.)a) Prove that โ„™๐‘† contains a subsemigroup isomorphic to ๐‘†.b) Prove thatโˆ… is a zero of โ„™๐‘†. Prove that (โ„™๐‘†) โˆ– {โˆ…} is a subsemi-

group of โ„™๐‘†.c) Let๐‘€ be a monoid. Prove that (โ„™๐‘€) โˆ– {โˆ…} is cancellative if and

only if๐‘€ is trivial.d) Prove that (โ„™๐‘†) โˆ– {โˆ…} is a right zero semigroup if and only if ๐‘† is

a right zero semigroup.โœด1.11 Let ๐‘‹ = {1,โ€ฆ , ๐‘›} with ๐‘› โฉพ 2. Recalling the cycle notation for per-

mutations from group theory, let ๐œ = (1 2) and ๐œ = (1 2 โ€ฆ ๐‘› โˆ’ 1 ๐‘›).Note that ๐œ, ๐œ โˆˆ S๐‘‹; indeed, from elementary group theory, we know

32 โ€ขElementary semigroup theory

Page 41: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

that S๐‘‹ = โŸจ๐œ, ๐œโŸฉ. For any ๐‘–, ๐‘— โˆˆ ๐‘‹ with ๐‘– โ‰  ๐‘—, let |๐‘– ๐‘—| denote thetransformation ๐œ‘๐‘–,๐‘— โˆˆ T๐‘‹ such that ๐‘–๐œ‘๐‘–,๐‘— = ๐‘—๐œ‘๐‘–,๐‘— = ๐‘—, and ๐‘ฅ๐œ‘๐‘–,๐‘— = ๐‘ฅ for๐‘ฅ โˆ‰ {๐‘–, ๐‘—}.a) Prove the following four identities when ๐‘› โฉพ 3, and only the last

identity for ๐‘› โฉพ 2; note that the elements appearing in first threeidentities all lie in T๐‘‹ only when ๐‘› โฉพ 3:

(1 ๐‘–)|1 2|(1 ๐‘–) = |๐‘– 2| for ๐‘– โฉพ 3;(2 ๐‘—)|1 2|(2 ๐‘—) = |1 ๐‘—| for ๐‘— โฉพ 3;

(1 ๐‘–)(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–) = |๐‘– ๐‘—| for ๐‘–, ๐‘— โฉพ 3 and ๐‘– โ‰  ๐‘—;(๐‘– ๐‘—)|๐‘– ๐‘—|(๐‘– ๐‘—) = |๐‘— ๐‘–| for ๐‘–, ๐‘— โฉพ 1 and ๐‘– โ‰  ๐‘—.

b) Let ๐œ‘ โˆˆ T๐‘‹. Suppose | im๐œ‘| = ๐‘Ÿ < ๐‘›. Let ๐‘–, ๐‘— โˆˆ ๐‘‹ with ๐‘– โ‰  ๐‘— besuch that ๐‘–๐œ‘ = ๐‘—๐œ‘. Let ๐‘˜ โˆˆ ๐‘‹ โˆ– im๐œ‘. Show that ๐œ‘ = |๐‘– ๐‘—|๐œ‘โ€ฒ, where๐‘–๐œ‘โ€ฒ = ๐‘˜ and ๐‘ฅ๐œ‘โ€ฒ = ๐‘ฅ๐œ‘ for ๐‘ฅ โ‰  ๐‘–.

c) Deduce that T๐‘‹ = โŸจ๐œ, ๐œ, |1 2|โŸฉ.1.12 Let ๐‘† be a finite monoid. Prove that ๐‘ฅ โˆˆ ๐‘† is right-invertible if and

only if it is left-invertible. [Hint: use the fact that ๐‘ฅ is periodic.]โœด1.13 Prove than an element of T๐‘‹ is

a) left-invertible if and only if it is surjective;b) right-invertible if and only if it is injective.

1.14 Let (๐‘†, โฉฝ) be a lattice.a) Prove that (๐‘ฅ โŠ“ ๐‘ฆ) โŠ” ๐‘ฅ = ๐‘ฅ and (๐‘ฅ โŠ” ๐‘ฆ) โŠ“ ๐‘ฅ = ๐‘ฅ for any ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†.b) Deduce that

(โˆ€๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘†)(๐‘ฅ โŠ“ (๐‘ฆ โŠ” ๐‘ง) = (๐‘ฅ โŠ“ ๐‘ฆ) โŠ” (๐‘ฅ โŠ“ ๐‘ง))โ‡” (โˆ€๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘†)(๐‘ฅ โŠ” (๐‘ฆ โŠ“ ๐‘ง) = (๐‘ฅ โŠ” ๐‘ฆ) โŠ“ (๐‘ฅ โŠ” ๐‘ง)).

[Equivalently: โŠ“ distributes over โŠ” if and only if โŠ” distributes overโŠ“.]

โœด1.15 Give an example of a map ๐œ‘ from a monoid ๐‘† to a monoid ๐‘‡ that is ahomomorphism but not a monoid homomorphism.

โœด1.16 Let ๐‘† and ๐‘‡ be semigroups and let ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ be a homomorphism.The homomorphism ๐œ‘ is a categorical monomorphism if, for any sem-igroup ๐‘ˆ and homomorphisms ๐œ“1, ๐œ“2 โˆถ ๐‘ˆ โ†’ ๐‘†,

๐œ“1 โˆ˜ ๐œ‘ = ๐œ“2 โˆ˜ ๐œ‘ โ‡’ ๐œ“1 = ๐œ“2, (1.16)

and a categorical epimorphism if, for any semigroup ๐‘ˆ and homomor-phisms ๐œ“1, ๐œ“2 โˆถ ๐‘‡ โ†’ ๐‘ˆ,

๐œ‘ โˆ˜ ๐œ“1 = ๐œ‘ โˆ˜ ๐œ“2 โ‡’ ๐œ“1 = ๐œ“2. (1.17)

[These are the definitions of โ€˜monomorphismโ€™ and โ€˜epimorphismโ€™ usedin category theory; the word โ€˜categoricalโ€™ is simply being used to avoidambiguity here.]

Exercises โ€ข 33

Page 42: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

a) Prove that ๐œ‘ is a monomorphism (as defined on page 19) if andonly if it is a categorical monomorphism. [Therefore, for semi-groups, monomorphisms and categorical monomorphisms coin-cide and there is no risk of confusion in using the term โ€˜mono-morphismโ€™.]

b) i) Prove that a surjective homomorphism is a categorical epi-morphism.

ii) Prove that the inclusion map ๐œ„ โˆถ โ„• โ†’ โ„ค is a categoricalepimorphism. [Hint: prove the contrapositive of (1.17) with๐œ‘ = ๐œ„.]

[Therefore, for semigroups, categorical epimorphisms are notnecessarily surjective. For groups, โ€˜surjective homomorphismโ€™ andโ€˜categorical epimorphismโ€™ are equivalent. Some authors defineโ€˜epimorphismโ€™ as โ€˜surjective homomorphismโ€™ for semigroups, butthis risks confusion.]

1.17 Prove that if we restrict the maps ๐œŒ๐‘ฅ in Theorem 1.22 to ๐‘† (instead of๐‘†1), then the map ๐‘ฅ โ†ฆ ๐œŒ๐‘ฅ may or may not be injective. [Hint: showthat this map is injective if ๐‘† is a right zero semigroup but not if it is aleft zero semigroup.]

1.18 Let ๐‘Œ be a semilattice. Prove that ๐‘Œ is a subdirect product of copies ofthe two-element semilattice ๐‘‡ = {๐‘’, ๐‘ง}, where ๐‘’ > ๐‘ง.

1.19 Let ๐ผ and ๐ฝ be ideals of ๐‘† such that ๐ผ โŠ† ๐ฝ. Prove that ๐‘†/๐ฝ โ‰ƒ (๐‘†/๐ผ)/(๐ฝ/๐ผ).1.20 Let ๐ผ and ๐ฝ be ideals of ๐‘†. Prove that ๐ผโˆฉ๐ฝ and ๐ผโˆช๐ฝ are ideals. [Remember

to prove that ๐ผ โˆฉ ๐ฝ โ‰  โˆ….] Prove that (๐ผ โˆช ๐ฝ)/๐ฝ โ‰ƒ ๐ผ/(๐ผ โˆฉ ๐ฝ).1.21 Let ๐‘† be a semigroupwith a zero and let๐‘‡ be a subset of ๐‘† that contains0๐‘† and at least one other element. Prove that ๐‘‡ = ๐บ โˆช {0๐‘†} for somesubgroup ๐บ of ๐‘† if and only if ๐‘ก๐‘‡ = ๐‘‡๐‘ก = ๐‘‡ for all ๐‘ก โˆˆ ๐‘‡ โˆ– {0๐‘†}. [Thisis an analogue of Lemma 1.9 for groups with a zero adjoined.]

Notes

Most of the definitions and results in this chapter are โ€˜folkloreโ€™.โ—† The exposition owes much to the standard accounts in Clifford& Preston,TheAlgebraic Theory of Semigroups, ch. 1 and Howie, Fundamentals of SemigroupTheory, ch. 1, which are probably the ne plus ultra of how to explain this material,and to a lesser extent Grillet, Semigroups, ch. i and Higgins, Techniques of Semi-group Theory, ch. 1. โ—† The number of non-isomorphic semigroups of order 8 isfrom Distler, โ€˜Classification and Enumeration of Finite Semigroupsโ€™, Table A.16.Exercise 1.11 appears as Howie, Fundamentals of Semigroup Theory, Exercise 1.6,but contains a minor error in the original. โ—† For an alternative approach tobasic semigroup theory, Ljapin, Semigroups covers fundamental topics in muchgreater detail. For an account of structure theory that allows a semigroup to be

34 โ€ขElementary semigroup theory

Page 43: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

empty, see Grillet, Semigroups. For further reading on the issues discussed inExercise 1.16, the standard text on category theory remains Mac Lane, Categoriesfor the Working Mathematician. For the situation for groups, see Linderholm, โ€˜Agroup epimorphism is surjectiveโ€™.

โ€ข

Notes โ€ข 35

Page 44: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

36 โ€ข

Page 45: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

2Free semigroups& presentations

โ€˜ how canwe think both of presentations as conforming to objects, andobjects as conforming to presentations? is, not the first,but the highest task of transcendental philosophy. โ€™

โ€” Friedrich Wilhelm Joseph von Schelling,System of Transcendental Philosophy, ยง 3.

โ€ข Informally, a free semigroup on a set ๐ด is the uniquebiggest, most โ€˜generalโ€™ semigroup generated by [any set in bijection with]๐ด, in the sense that all other semigroups generated by๐ด are homomorphicimages (and thus factor semigroups) of the free semigroup on ๐ด. Thischapter studies some of the interesting properties of free semigroupsand then explains their role in semigroup presentations, which can beused to define and manipulate semigroups as factor semigroups of freesemigroups.

Alphabets and words

An alphabet is an abstract set of elements called letters Alphabet, letter, wordor symbols. Let ๐ด be an alphabet. A word over ๐ด is a finite sequence(๐‘Ž1, ๐‘Ž2,โ€ฆ , ๐‘Ž๐‘š), where each term ๐‘Ž๐‘– of the sequence is a letter from ๐ด.The length of this word is ๐‘š. There is also a word of length 0, whichis the empty sequence (). This is called the empty word. The set of all ๐ด+, ๐ดโˆ—

words (including the empty word) over ๐ด is denoted ๐ดโˆ—. The set of allnon-empty words (that is, of length 1 or more) over ๐ด is denoted ๐ด+.

Multiplication of words is simply concatenation: that is, for all words Multiplication of words(๐‘Ž1, ๐‘Ž2,โ€ฆ , ๐‘Ž๐‘š), (๐‘1, ๐‘2,โ€ฆ , ๐‘๐‘›) โˆˆ ๐ดโˆ—,

(๐‘Ž1, ๐‘Ž2,โ€ฆ , ๐‘Ž๐‘š)(๐‘1, ๐‘2,โ€ฆ , ๐‘๐‘›) = (๐‘Ž1, ๐‘Ž2,โ€ฆ , ๐‘Ž๐‘š, ๐‘1, ๐‘2,โ€ฆ , ๐‘๐‘›)

It is easy to see that this multiplication is associative and so ๐ดโˆ— is a sem-igroup; furthermore, the empty word () is an identity and so ๐ดโˆ— is amonoid. Since the product of two words of non-zero length must itselfhave non-zero length, ๐ด+ is a subsemigroup of๐ดโˆ—; indeed,๐ดโˆ— is [isomor-phic to] (๐ด+)1.

Because of associativity, we simply write ๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘› for (๐‘Ž1, ๐‘Ž2,โ€ฆ , ๐‘Ž๐‘›) Notation for words

โ€ข 37

Page 46: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

FIGURE 2.1Part of the Cayley graph๐›ค(๐ดโˆ—,๐ด), where๐ด = {๐‘Ž, ๐‘}. ๐œ€ ๐‘Ž

๐‘

๐‘Ž2

๐‘๐‘Ž

๐‘Ž๐‘

๐‘2

๐‘Ž3

๐‘3

๐‘Ž๐‘๐‘Ž

๐‘๐‘Ž2

๐‘2๐‘Ž

๐‘Ž2๐‘

๐‘Ž๐‘2

๐‘๐‘Ž๐‘

๐‘Ž

๐‘

๐‘Ž

๐‘

๐‘Ž

๐‘

๐‘Ž๐‘

๐‘Ž๐‘

๐‘Ž๐‘

๐‘Ž๐‘

and write ๐œ€ for the empty word. For any word ๐‘ข โˆˆ ๐ดโˆ—, denote the lengthof ๐‘ข by |๐‘ข|, and notice that |๐‘ข| = 0 if and only if ๐‘ข = ๐œ€. Note further that|๐‘ข๐‘ฃ| = |๐‘ข| + |๐‘ฃ| for any ๐‘ข, ๐‘ฃ โˆˆ ๐ดโˆ—.

A subword of a word ๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘› (where ๐‘Ž๐‘– โˆˆ ๐ด) is any word of theSubwordform ๐‘Ž๐‘–โ‹ฏ๐‘Ž๐‘—, where 1 โฉฝ ๐‘– โฉฝ ๐‘— โฉฝ ๐‘›. A prefix of ๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘› is a subword๐‘Ž1โ‹ฏ๐‘Ž๐‘–, where 1 โฉฝ ๐‘– โฉฝ ๐‘›.

TheCayley graph๐›ค(๐ดโˆ—, ๐ด) is an infinite tree; an example for๐ด = {๐‘Ž, ๐‘}is shown in Figure 2.1. This is obvious, because if we start at ๐œ€ and followthe path labelled by ๐‘ข โˆˆ ๐ดโˆ—, then we end up at the vertex ๐‘ข. Thus a pathuniquely determines a vertex and so the graph must be a tree.

Universal property

Let ๐น be a semigroup and let ๐ด be an alphabet. Let ๐œ„ โˆถFree semigroup๐ด โ†ชโ†’ ๐น be an embedding of ๐ด into ๐น. Then (๐น, ๐œ„) is a free semigroupon ๐ด if, for any semigroup ๐‘† and map ๐œ‘ โˆถ ๐ด โ†’ ๐‘†, there is a uniquehomomorphism ๐œ‘+ โˆถ ๐น โ†’ ๐‘† that extends ๐œ‘ (that is, with ๐œ„๐œ‘+ = ๐œ‘). Using

38 โ€ขFree semigroups & presentations

Page 47: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

diagrams, this definition says that (๐น, ๐œ„) is a free semigroup on ๐ด if

for all๐ด ๐น

๐‘†

๐œ„

๐œ‘, there exists a unique

homomorphism ๐œ‘+ such that๐ด ๐น

๐‘†

๐œ„

๐œ‘๐œ‘+ .

}}}}}}}}}}}}}}}}}}}

(2.1)

Usually, we just write โ€˜๐น is a free semigroup on ๐ดโ€™ instead of the preciselycorrect โ€˜(๐น, ๐œ„) is a free semigroup on ๐ดโ€™.

P ro p o s i t i on 2 . 1. Let ๐ด be an alphabet and let ๐น be a semigroup. Uniqueness of thefree semigroup on ๐ดThen ๐น is a free semigroup on ๐ด if and only if ๐น is isomorphic to ๐ด+.

Proof of 2.1. Part 1. Let us first show that ๐ด+ is a free semigroup on ๐ด. Let๐œ„ โˆถ ๐ด โ†ชโ†’ ๐ด+ be the natural embedding map. Let ๐‘† be a semigroup and๐œ‘ โˆถ ๐ด โ†’ ๐‘† be a map. Define ๐œ‘+ โˆถ ๐ด+ โ†’ ๐‘† by

(๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘›)๐œ‘+ = (๐‘Ž1๐œ‘)(๐‘Ž2๐œ‘)โ‹ฏ (๐‘Ž๐‘›๐œ‘). (2.2)

It is easy to see that ๐œ‘+ is a homomorphism and that ๐œ„๐œ‘+ = ๐œ‘. We nowhave to prove that ๐œ‘+ is unique. So let ๐œ“ โˆถ ๐ด+ โ†’ ๐‘† be an arbitraryhomomorphism with ๐œ„๐œ“ = ๐œ‘. For any ๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘› โˆˆ ๐ด+,

(๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘›)๐œ“= (๐‘Ž1๐œ“)(๐‘Ž2๐œ“)โ‹ฏ (๐‘Ž๐‘›๐œ“) [since ๐œ“ is a homomorphism]= (๐‘Ž1๐œ‘+)(๐‘Ž2๐œ‘+)โ‹ฏ (๐‘Ž๐‘›๐œ‘+) [since ๐œ„๐œ“ = ๐œ‘ = ๐œ„๐œ‘+]= (๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘›)๐œ‘+. [since ๐œ‘+ is a homomorphism]

and so ๐œ“ = ๐œ‘+. Hence ๐œ‘+ is the unique homomorphism from ๐ด+ to ๐‘†with ๐œ„๐œ‘+ = ๐œ‘, and so ๐ด+ is free on ๐ด.

Now suppose that ๐น is isomorphic to ๐ด+ via an isomorphism ๐œ— โˆถ๐ด+ โ†’ ๐น. The embedding map is ๐œ—๐œ„ โˆถ ๐ด โ†ชโ†’ ๐น. Let ๐œ‘ โˆถ ๐ด โ†’ ๐‘† be a map.Let ๐œ = ๐œ—๐œ‘+ (where ๐œ‘+ is the homomorphism defined in (2.2)); then๐œ โˆถ ๐น โ†’ ๐‘† is a homomorphism extending ๐œ‘. To see that it is unique, let๐œŽ โˆถ ๐น โ†’ ๐‘† be an arbitrary homomorphism extending ๐œ‘. Then ๐œ—โˆ’1๐œŽ โˆถ๐ด+ โ†’ ๐‘† is a homomorphism extending ๐œ‘. Since ๐ด+ is a free semigroup,๐œ—โˆ’1๐œŽ = ๐œ‘+, and so ๐œŽ = id๐น๐œŽ = ๐œ—๐œ—โˆ’1๐œŽ = ๐œ—๐œ‘+ = ๐œ. So ๐œ โˆถ ๐น โ†’ ๐‘† is theunique homomorphism extending ๐œ‘ and so ๐น is a free semigroup on ๐ด.Part 2. Suppose that ๐น is a free semigroup on ๐ด; the aim is to show that ๐นis isomorphic to ๐ด+. Let ๐œ„1 โˆถ ๐ด โ†ชโ†’ ๐ด+ and ๐œ„2 โˆถ ๐ด โ†ชโ†’ ๐น be the embeddingmaps. Since ๐ด+ is free on ๐ด, we can put ๐œ„1, ๐ด+, ๐œ„2 and ๐น in the places of ๐œ„,๐น, ๐œ‘ and ๐‘† in (2.1) to see that there is a homomorphism ๐œ„+2 such that

๐ด ๐ด+

๐น

๐œ„1

๐œ„2 ๐œ„+2 . (2.3)

Universal property โ€ข 39

Page 48: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Similarly, since ๐น is free on ๐ด, we can put ๐œ„2, ๐น, ๐œ„1 and ๐ด+ in the places of๐œ„, ๐น, ๐œ‘ and ๐‘† in (2.1) to see that there is a homomorphism ๐œ„+1 such that

๐ด ๐น

๐ด+

๐œ„2

๐œ„1 ๐œ„+1 . (2.4)

Combining (2.3) and (2.4) in two ways, we get the following diagrams:

๐ด ๐ด+

๐น

๐ด+

๐œ„1

๐œ„2

๐œ„1

๐œ„+2

๐œ„+1

and

๐ด ๐น

๐ด+

๐น

๐œ„2

๐œ„1

๐œ„2

๐œ„+1

๐œ„+2

. (2.5)

Therefore ๐œ„1 = ๐œ„1๐œ„+2 ๐œ„+1 and ๐œ„2 = ๐œ„2๐œ„+1 ๐œ„+2 . In diagrammatic terms, this corres-ponds to simplifying the diagrams in (2.5) to give

๐ด ๐ด+

๐ด+

๐œ„1

๐œ„1 ๐œ„+2 ๐œ„+1 and๐ด ๐น

๐น

๐œ„2

๐œ„2 ๐œ„+1 ๐œ„+2 . (2.6)

Clearly the following diagrams commute:

๐ด ๐ด+

๐ด+

๐œ„1

๐œ„1 id๐ด+ and๐ด ๐น

๐น

๐œ„2

๐œ„2 id๐น . (2.7)

Therefore, by the left-hand diagrams in (2.6) and (2.7), if we put ๐œ„1, ๐ด+,๐œ„1 and ๐ด+ in place of ๐œ„, ๐น, ๐œ‘, and ๐‘† in (2.1), then the homomorphisms๐œ„+2 ๐œ„+1 and id๐ด+ are both possibilities for ๐œ‘+. But (2.1) requires that there isa unique such homomorphism ๐œ‘+, so ๐œ„+2 ๐œ„+1 = id๐ด+ . Similarly, using theright-hand diagrams in (2.6) and (2.7), we obtain ๐œ„+1 ๐œ„+2 = id๐น. Hence ๐œ„+1and ๐œ„+2 are mutually inverse isomorphisms, and so ๐น is isomorphic to๐ด+. 2.1

We could repeat the discussion above, but for monoids instead ofFree monoidssemigroups. Let๐น be amonoid and let๐ด be an alphabet, and let ๐œ„ โˆถ ๐ด โ†ชโ†’ ๐นbe an embedding of ๐ด into ๐น. Then (๐น, ๐œ„) is a free monoid on ๐ด if, for anymonoid ๐‘† and map ๐œ‘ โˆถ ๐ด โ†’ ๐‘†, there is a unique monoid homomorphism๐œ‘โˆ— โˆถ ๐น โ†’ ๐‘† extending ๐œ‘; that is, with ๐œ„๐œ‘โˆ— = ๐œ‘. One can prove an analogyof Proposition 2.1 for monoids, showing that a monoid ๐น is a free on ๐ด ifand only if ๐น โ‰ƒ ๐ดโˆ—. As with free semigroups, we usually write โ€˜๐น is thefree monoid on ๐ดโ€™ instead of โ€˜(๐น, ๐œ„) is the free monoid on ๐ดโ€™.

40 โ€ขFree semigroups & presentations

Page 49: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Properties of free semigroups

In preparation for our study of presentations, we beginby examining the structure of free semigroups and monoids.

P ro p o s i t i on 2 . 2. Let๐‘€ be a submonoid of ๐ดโˆ—. Let๐‘ = ๐‘€ โˆ– {๐œ€}.Then๐‘ โˆ–๐‘2 is the unique minimal (monoid) generating set for๐‘€.

Proof of 2.2. Clearly, any generating set for๐‘€must contain๐‘โˆ–๐‘2. So wemust show thatMonโŸจ๐‘โˆ–๐‘2โŸฉ = ๐‘€. ClearlyMonโŸจ๐‘โˆ–๐‘2โŸฉ โŠ† ๐‘€; we haveto prove that๐‘€ โŠ† MonโŸจ๐‘โˆ–๐‘2โŸฉ.We already know that ๐œ€ โˆˆ MonโŸจ๐‘โˆ–๐‘2โŸฉ,so it remains to show that๐‘ โŠ† MonโŸจ๐‘ โˆ– ๐‘2โŸฉ.

Assume that all words of length less than โ„“ in๐‘ lie in MonโŸจ๐‘ โˆ–๐‘2โŸฉ.Let ๐‘ข โˆˆ ๐‘ with |๐‘ข| = โ„“. If ๐‘ข โˆˆ ๐‘ โˆ– ๐‘2, then ๐‘ข โˆˆ MonโŸจ๐‘ โˆ– ๐‘2โŸฉ. Onother other hand, if ๐‘ข โˆ‰ ๐‘ โˆ– ๐‘2, then ๐‘ข โˆˆ ๐‘2 and so ๐‘ข = ๐‘ขโ€ฒ๐‘ขโ€ณ for๐‘ขโ€ฒ, ๐‘ขโ€ณ โˆˆ ๐‘. Hence |๐‘ขโ€ฒ| = |๐‘ข| โˆ’ |๐‘ขโ€ณ| and |๐‘ขโ€ณ| = |๐‘ข| โˆ’ |๐‘ขโ€ฒ|. Since neither ๐‘ขโ€ฒnor ๐‘ขโ€ณ is the empty word, this gives |๐‘ขโ€ฒ|, |๐‘ขโ€ณ| < |๐‘ข| = โ„“. So, by assumption,๐‘ขโ€ฒ, ๐‘ขโ€ณ โˆˆ MonโŸจ๐‘ โˆ– ๐‘2โŸฉ and so ๐‘ข โˆˆ MonโŸจ๐‘ โˆ– ๐‘2โŸฉ. Hence, by induction,๐‘ โŠ† MonโŸจ๐‘ โˆ– ๐‘2โŸฉ. 2.2

The base of a submonoid or subsemigroup๐‘€ of ๐ดโˆ— is defined to be Base๐‘โˆ–๐‘2, where๐‘ = ๐‘€โˆ–{๐œ€}. Thus the base is the unique minimal monoidgenerating set for๐‘€ if๐‘€ is a submonoid, and is the unique minimalgenerating set for๐‘€ if๐‘€ is a subsemigroup that is not a submonoid. Asan immediate application of Proposition 2.2, we see that ๐ด is the base of๐ดโˆ— and ๐ด+.

P ro p o s i t i on 2 . 3. A semigroup ๐‘† is free if and only if every elementof ๐‘† has a unique representative as a product of elements of ๐‘† โˆ– ๐‘†2.

Proof of 2.3. Clearly every element of ๐ด+ has a unique representative as aproduct of elements of ๐ด = ๐ด+ โˆ– (๐ด+)2.

So assume that every element of ๐‘† has a unique representative as aproduct of elements of ๐ด = ๐‘† โˆ– ๐‘†2. We will show that ๐‘† satisfies the defin-ition of freedom. Let ๐‘‡ be a semigroup and ๐œ‘ โˆถ ๐ด โ†’ ๐‘‡ a map. Define amap ๐œ‘+ โˆถ ๐‘† โ†’ ๐‘‡ by letting ๐‘ ๐œ‘+ = (๐‘Ž1๐œ‘)(๐‘Ž2๐œ‘)โ‹ฏ (๐‘Ž๐‘›๐œ‘), where ๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘›is the unique representative of ๐‘  as a product of elements ๐‘Ž๐‘– โˆˆ ๐ด. Noticethat if ๐‘ก โˆˆ ๐‘† is uniquely represented ๐‘1โ‹ฏ๐‘๐‘š where ๐‘๐‘– โˆˆ ๐ด, then ๐‘ ๐‘ก hasunique representative ๐‘Ž1โ‹ฏ๐‘Ž๐‘›๐‘1โ‹ฏ๐‘๐‘š. Hence ๐œ‘+ is a homomorphism.It is clear that ๐œ‘+ is the unique homomorphism extending ๐œ‘ and so ๐‘† isfree on ๐ด. 2.3

Prop o s i t i on 2 . 4. Let ๐ด = {๐‘ฅ, ๐‘ฆ}. Let ๐ต = { ๐‘๐‘– โˆถ ๐‘– โˆˆ โ„• }. Then ๐ดโˆ— Free monoid of rank 2contains a free monoid ofcountably infinite rank

contains a submonoid isomorphic to ๐ตโˆ—.

Proof of 2.4. Define a map ๐œ‘ โˆถ ๐ต โ†’ ๐ดโˆ— by ๐‘๐‘–๐œ‘ = ๐‘ฅ๐‘ฆ๐‘–๐‘ฅ. Since ๐ตโˆ— is free on๐ต, this map ๐œ‘ extends to a unique homomorphism, which we also denote๐œ‘, from ๐ตโˆ— to ๐ดโˆ—.

Properties of free semigroups โ€ข 41

Page 50: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Suppose, with the aim of obtaining a contradiction, that ๐œ‘ is notinjective. Then there exist ๐‘ข, ๐‘ฃ โˆˆ ๐ตโˆ— with ๐‘ข๐œ‘ = ๐‘ฃ๐œ‘.

Suppose ๐‘ข and ๐‘ฃ begin with the same symbol ๐‘; that is, ๐‘ข = ๐‘๐‘ขโ€ฒ and๐‘ฃ = ๐‘๐‘ฃโ€ฒ.Then (๐‘๐œ‘)(๐‘ขโ€ฒ๐œ‘) = (๐‘๐œ‘)(๐‘ฃโ€ฒ๐œ‘) and so ๐‘ขโ€ฒ๐œ‘ = ๐‘ฃโ€ฒ๐œ‘ by cancellativity in๐ดโˆ—. So we can replace ๐‘ข by ๐‘ขโ€ฒ and ๐‘ฃ by ๐‘ฃโ€ฒ and repeat this process until wehave words ๐‘ข and ๐‘ฃ beginning with different symbols. Therefore assumethat ๐‘ข and ๐‘ฃ begin with symbols ๐‘๐‘– and ๐‘๐‘— respectively, where ๐‘– โ‰  ๐‘—; thatis, ๐‘ข = ๐‘๐‘–๐‘ขโ€ฒ and ๐‘ฃ = ๐‘๐‘—๐‘ฃโ€ฒ.

Then ๐‘ฅ๐‘ฆ๐‘–๐‘ฅ(๐‘ขโ€ฒ๐œ‘) = (๐‘๐‘–๐œ‘)(๐‘ขโ€ฒ๐œ‘) = (๐‘๐‘—๐œ‘)(๐‘ฃโ€ฒ๐œ‘) = ๐‘ฅ๐‘ฆ๐‘—๐‘ฅ(๐‘ฃโ€ฒ๐œ‘). Assume ๐‘– >๐‘—; the other case is similar. By cancellativity in ๐ดโˆ—, we have ๐‘ฆ๐‘–โˆ’๐‘—๐‘ฅ(๐‘ขโ€ฒ๐œ‘) =๐‘ฅ(๐‘ฃโ€ฒ๐œ‘), which is a contradiction since ๐‘– โˆ’ ๐‘— > 0. Therefore ๐œ‘ is injectiveand so ๐ตโˆ— is isomorphic to im๐œ‘. 2.4

As a consequence of Proposition 2.4, we see that the free monoid on{๐‘ฅ, ๐‘ฆ} contains submonoids isomorphic to all free monoids on countablesets. A similar result holds for free semigroups.

E x ampl e 2 . 5. Let๐ด = {๐‘ฅ} and let ๐‘† = โŸจ๐‘ฅ2, ๐‘ฅ3โŸฉ.Then ๐‘†โˆ–๐‘†2 = {๐‘ฅ2, ๐‘ฅ3}.Free semigroups can containnon-free subsemigroups But ๐‘ฅ5 โˆˆ ๐‘† and ๐‘ฅ5 = ๐‘ฅ2๐‘ฅ3 = ๐‘ฅ3๐‘ฅ2, so ๐‘ฅ5 has two distinct representatives

as a product of elements of {๐‘ฅ2, ๐‘ฅ3}. Hence ๐‘† is not a free semigroup byProposition 2.3.

Example 2.5 shows that a free semigroup contains subsemigroups thatare not themselves free. In contrast, every subgroup of a free group isitself a free group by the famous Nielsenโ€“Schreier theorem.

Semigroup presentations

The reason why free semigroups are interesting is thatEvery semigroup is aquotient of a free semigroup every semigroup is isomorphic to a quotient of a free semigroup. To see

this, let ๐œ‘ โˆถ ๐ด โ†’ ๐‘† be such that im๐œ‘ generates ๐‘†. (We could, for instance,choose ๐ด to be a set of the same cardinality as ๐‘† and ๐œ‘ to be a bijection.)Then, ๐œ‘ extends to a homomorphism ๐œ‘+ โˆถ ๐ด+ โ†’ ๐‘†. Since im๐œ‘ generates๐‘†, we have im๐œ‘+ = ๐‘†. By Theorem 1.24, ๐ด+/ker๐œ‘+ โ‰ƒ im๐œ‘+ = ๐‘†. That is,๐‘† is isomorphic to the quotient ๐ด+/ker๐œ‘+.

This is slightly interesting, but its real importance is when we turnit around. Instead of starting with a semigroup and knowing that it is aquotient of a free semigroup, we can specify a free semigroup ๐ด+ and acongruence ๐œŽ and so define the corresponding quotient semigroup ๐ด+/๐œŽ.

This is the idea of a semigroup presentation. It allows us to specifyand reason about a semigroup as a quotient of a free semigroup: that is,as a quotient ๐ด+/๐œŽ for some congruence ๐œŽ on the free semigroup ๐ด+. ByProposition 2.1, in order to specify the free semigroup, it is sufficient to

42 โ€ขFree semigroups & presentations

Page 51: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

specify the alphabet๐ด. In order to specify the congruence ๐œŽ, it is sufficientto specify some binary relation ๐œŒ that generates ๐œŽ.

A semigroup presentation is a pair SgโŸจ๐ด | ๐œŒโŸฉ, where ๐ด is an alphabet Presentationsand ๐œŒ is a binary relation on ๐ด+. The elements of ๐ด are called generatingsymbols, and the elements of ๐œŒ (which are pairs of words in ๐ด+) arecalled defining relations. The presentation SgโŸจ๐ด | ๐œŒโŸฉ defines, or presents,any semigroup isomorphic to ๐ด+/๐œŒ#.

Let ๐‘† be a semigroup presented by SgโŸจ๐ด | ๐œŒโŸฉ. Then ๐‘† is isomorphic to๐ด+/๐œŒ# and so there is a one-to-one correspondence between elementsof ๐‘† and ๐œŒ#-classes. Thus we can think of a word ๐‘ค โˆˆ ๐ด+ as representingthe element of ๐‘† corresponding to [๐‘ค]๐œŒ# . If ๐‘ข, ๐‘ฃ โˆˆ ๐ด+ represent the sameelement of ๐‘† (that is, if (๐‘ข, ๐‘ฃ) โˆˆ ๐œŒ#, or, equivalently, if [๐‘ข]๐œŒ# = [๐‘ฃ]๐œŒ# ), wesay that ๐‘ข and ๐‘ฃ are equal in ๐‘† and write ๐‘ข =๐‘† ๐‘ฃ.

Let๐‘‡ be a semigroup. Let ๐œ‘ โˆถ ๐ด โ†’ ๐‘‡ be a map such that๐ด๐œ‘ generates Assignment of generators๐‘‡; such amap is called an assignment of generators. In this case, the uniquehomomorphism ๐œ‘+ โˆถ ๐ด+ โ†’ ๐‘‡ extending ๐œ‘ is surjective.

The semigroup ๐‘‡ satisfies a defining relation (๐‘ข, ๐‘ฃ) โˆˆ ๐œŒ with respect Satisfying a defining relationto an assignment of generators ๐œ‘ โˆถ ๐ด โ†’ ๐‘‡ if ๐‘ข๐œ‘+ = ๐‘ฃ๐œ‘+. Notice that ๐‘‡satisfies all defining relations in ๐œŒ with respect to ๐œ‘ โˆถ ๐ด โ†’ ๐‘‡ if and onlyif ๐œŒ โŠ† ker๐œ‘+. By definition, any semigroup defined by the presentationSgโŸจ๐ด | ๐œŒโŸฉ satisfies the defining relations ๐œŒ with respect to the assignmentof generators (๐œŒ#)โ™ฎ|๐ด โˆถ ๐ด โ†’ ๐ด+/๐œŒ#.

P ro p o s i t i on 2 . 6. Let ๐‘‡ be a semigroup, and suppose ๐‘‡ satisfiesthe defining relations in ๐œŒ with respect to an assignment of generators๐œ‘ โˆถ ๐ด โ†’ ๐‘‡. Then ๐‘‡ is a homomorphic image of the semigroup presentedby SgโŸจ๐ด | ๐œŒโŸฉ.

Proof of 2.6. Since ๐‘‡ satisfies the defining relations ๐œŒ with respect to ๐œ‘,we have ๐œŒ โŠ† ker๐œ‘+. Since ker๐œ‘+ is a congruence by Theorem 1.24, and๐œŒ# is the smallest congruence containing ๐œŒ, it follows that ๐œŒ# โŠ† ker๐œ‘+.So the map ๐œ“ โˆถ ๐ด+/๐œŒ# โ†’ ๐‘‡ defined by [๐‘ข]๐œŒ#๐œ“ = ๐‘ข๐œ‘+ is a well-definedhomomorphism, and is clearly surjective since ๐œ‘+ is surjective. 2.6

By Proposition 2.6, we can think of semigroup presented by SgโŸจ๐ด | ๐œŒโŸฉas the largest semigroup generated by ๐ด and satisfying the defining rela-tions in ๐œŒ.

An elementary ๐œŒ-transition is a pair (๐‘ค, ๐‘คโ€ฒ) โˆˆ (๐œŒC)S = ๐œŒC โˆช (๐œŒC)โˆ’1, Elementary transitionwhich we denote ๐‘ค โ†”๐œŒ ๐‘คโ€ฒ. By Proposition 1.27, ๐‘ค โ†”๐œŒ ๐‘คโ€ฒ if and only if๐‘คโ€ฒ can be obtained from ๐‘ค by substituting a subword ๐‘ฆ for a subword๐‘ฅ of ๐‘ค, where (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ or (๐‘ฆ, ๐‘ฅ) โˆˆ ๐œŒ. In this situation, we say that weapply the defining relation (๐‘ฅ, ๐‘ฆ) or (๐‘ฆ, ๐‘ฅ) to the word ๐‘ค and obtain ๐‘คโ€ฒ.

Let ๐‘ข, ๐‘ฃ โˆˆ ๐ด+. If there is a sequence of elementary ๐œŒ-transitions ๐‘ข =๐‘ค0 โ†”๐œŒ โ€ฆ โ†”๐œŒ ๐‘ค๐‘› = ๐‘ฃ, then we say (๐‘ข, ๐‘ฃ) is a consequence of ๐œŒ, or(๐‘ข, ๐‘ฃ) can be deduced from ๐œŒ. The following result shows the connectionbetween this notion and presentations:

Semigroup presentations โ€ข 43

Page 52: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Pro p o s i t i on 2 . 7. Let ๐‘† be presented by SgโŸจ๐ด | ๐œŒโŸฉ and let ๐‘ข, ๐‘ฃ โˆˆ ๐ด+.Then ๐‘ข =๐‘† ๐‘ฃ if and only if (๐‘ข, ๐‘ฃ) is a consequence of ๐œŒ; that is, if and only ifthere is a sequence of elementary ๐œŒ-transitions

๐‘ข = ๐‘ค0 โ†”๐œŒ ๐‘ค1 โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘ค๐‘› = ๐‘ฃ.

Proof of 2.7. First of all, note that

๐‘ข =๐‘† ๐‘ฃโ‡” (๐‘ข, ๐‘ฃ) โˆˆ ๐œŒ#

โ‡” (๐‘ข, ๐‘ฃ) โˆˆ (๐œŒC)E [by Proposition 1.29]

โ‡” (๐‘ข, ๐‘ฃ) โˆˆ id๐ด+ โˆช โ‹ƒโˆž๐‘›=1(๐œŒ

C โˆช (๐œŒC)โˆ’1)๐‘› [by Proposition 1.26(f)]

โ‡” (๐‘ข = ๐‘ฃ) โˆจ (โˆƒ๐‘› โˆˆ โ„•)((๐‘ข, ๐‘ฃ) โˆˆ (๐œŒC โˆช (๐œŒC)โˆ’1)๐‘›)โ‡” (โˆƒ๐‘› โˆˆ โ„• โˆช {0})(โˆƒ๐‘ค0,โ€ฆ ,๐‘ค๐‘› โˆˆ ๐ด+)

[(๐‘ข = ๐‘ค0) โˆง (๐‘ค๐‘› = ๐‘ฃ)โˆง (โˆ€๐‘–)((๐‘ค๐‘–, ๐‘ค๐‘–+1) โˆˆ ๐œŒC โˆช (๐œŒC)โˆ’1)]

โ‡” (โˆƒ๐‘› โˆˆ โ„• โˆช {0})(โˆƒ๐‘ค0,โ€ฆ ,๐‘ค๐‘› โˆˆ ๐ด+)[(๐‘ข = ๐‘ค0) โˆง (๐‘ค๐‘› = ๐‘ฃ) โˆง (โˆ€๐‘–)(๐‘ค๐‘– โ†”๐œŒ ๐‘ค๐‘–+1))].

Hence ๐‘ข =๐‘† ๐‘ฃ if and only if there is there is a sequence of elementary๐œŒ-transitions from ๐‘ข to ๐‘ฃ. 2.7

The next result gives a usable condition for when a given presentationdefines a particular semigroup. Afterwards, we will see how this resultyields a practical proof method.

P ro p o s i t i on 2 . 8. Let ๐‘† be a semigroup. Then SgโŸจ๐ด | ๐œŒโŸฉ presents ๐‘† ifCondition forSgโŸจ๐ด | ๐œŒโŸฉ to define ๐‘† and only if there is an assignment of generators ๐œ‘ โˆถ ๐ด โ†’ ๐‘† such that

a) ๐‘† satisfies the defining relations in ๐œŒ with respect to ๐œ‘, andb) if ๐‘ข, ๐‘ฃ โˆˆ ๐ด+ are such that ๐‘ข๐œ‘+ = ๐‘ฃ๐œ‘+, then (๐‘ข, ๐‘ฃ) is a consequence of ๐œŒ.

Proof of 2.8. Suppose first that SgโŸจ๐ด | ๐œŒโŸฉ presents ๐‘†. Then ๐‘† is isomorphicto ๐ด+/๐œŒ#, so we can let ๐œ‘ be the restriction of natural homomorphism(๐œŒ#)โ™ฎ|๐ด โˆถ ๐ด+ โ†’ ๐ด+/๐œŒ#. Then condition a) holds from the definition andcondition b) holds from Proposition 2.7.

Now suppose that conditions a) and b) hold. Since ๐‘† satisfies thedefining relations in ๐œŒ, we have ๐œŒ โŠ† ker๐œ‘+ and so ๐œŒ# โŠ† ker๐œ‘+. If (๐‘ข, ๐‘ฃ) โˆˆker๐œ‘+, then ๐‘ข๐œ‘+ = ๐‘ฃ๐œ‘+ and so (๐‘ข, ๐‘ฃ) is a consequence of ๐œŒ and hence(๐‘ข, ๐‘ฃ) โˆˆ ๐œŒ# by Proposition 2.7. Hence ๐œŒ# = ker๐œ‘+ and therefore ๐‘† โ‰ƒ๐ด+/ker๐œ‘+ โ‰ƒ ๐ด+/๐œŒ#; thus SgโŸจ๐ด | ๐œŒโŸฉ presents ๐‘†. 2.8

There is a standard three-step method for directly proving that apresentation defines a particular semigroup:

M ethod 2 . 9. To prove that a presentation SgโŸจ๐ด | ๐œŒโŸฉ defines a particu-Method for provingSgโŸจ๐ด | ๐œŒโŸฉ defines ๐‘† lar semigroup ๐‘†:

44 โ€ขFree semigroups & presentations

Page 53: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

1) Define an assignment of generators ๐œ‘ โˆถ ๐ด โ†’ ๐‘†, and prove that ๐‘†satisfies the defining relations in ๐œŒ with respect to ๐œ‘.

2) Find a set of words๐‘ โŠ† ๐ด+ such that for every word ๐‘ค โˆˆ ๐ด+ there isa word ๐‘ค โˆˆ ๐‘ such that (๐‘ค, ๐‘ค) is a consequence of ๐œŒ.

3) Prove that ๐œ‘+|๐‘ is injective.

In Method 2.9, step 1 establishes that condition a) of Proposition 2.8holds. Now let ๐‘ข, ๐‘ฃ โˆˆ ๐ด+ be such that ๐‘ข๐œ‘+ = ๐‘ฃ๐œ‘+. Step 2 shows that(๐‘ข, ๐‘ข) and (๐‘ฃ, ๐‘ฃ) are consequences of ๐œŒ; that is, there are sequences ofelementary ๐œŒ-transitions ๐‘ข โ†”๐œŒ โ€ฆ โ†”๐œŒ ๐‘ข and ๐‘ฃ โ†”๐œŒ โ€ฆ โ†”๐œŒ ๐‘ฃ. Since ๐‘†satisfies the relations in ๐œŒ, this implies that ๐‘ข๐œ‘+ = ๐‘ฃ๐œ‘+, so step 3 showsthat ๐‘ข = ๐‘ฃ, and thus there is a sequence of elementary ๐œŒ-transitions๐‘ข โ†”๐œŒ โ€ฆ โ†”๐œŒ ๐‘ข = ๐‘ฃ โ†”๐œŒ โ€ฆ โ†”๐œŒ ๐‘ฃ; that is, (๐‘ข, ๐‘ฃ) is a consequence of๐œŒ. This establishes condition b) of Proposition 2.8 and so proves thatSgโŸจ๐ด | ๐œŒโŸฉ presents ๐‘†.

Before giving some examples to illustrate the theory described above,we introduce a convention to simplify notation. When we explicitly listgenerating symbols and defining relations in a presentation, we do notwrite the braces { } enclosing the list of elements in the two sets. So insteadof SgโŸจ{๐‘Ž1, ๐‘Ž2,โ€ฆ} | {(๐‘ข1, ๐‘ฃ1), (๐‘ข2, ๐‘ฃ2),โ€ฆ}โŸฉ, wewrite SgโŸจ๐‘Ž1, ๐‘Ž2,โ€ฆ | (๐‘ข1, ๐‘ฃ1),(๐‘ข2, ๐‘ฃ2),โ€ฆโŸฉ.

E x a m p l e 2 . 1 0. a) Let us prove that the presentation SgโŸจ๐ด | โŸฉ (withno defining relations) defines the free semigroup ๐ด+. To see this, itsuffices to notice thatโˆ…# = id๐ด+ , and ๐ด+/id๐ด+ โ‰ƒ ๐ด+.

[Following Method 2.9 for the sake of illustration, let ๐œ‘ be theembedding map ๐œ„ โˆถ ๐ด โ†ชโ†’ ๐ด+. Clearly ๐ด+ trivially satisfies all definingrelations with respect to ๐œ‘; this is step 1. Let๐‘ = ๐ด+; then every wordin ๐ด+ itself in๐‘ and so step 2 is immediately proved. Finally, step 3 istrivial since ๐œ‘+ is the identity map and so injective.]

b) Now we prove that the presentation SgโŸจ๐‘Ž | (๐‘Ž2, ๐‘Ž)โŸฉ defines the trivialsemigroup {๐‘’}. To see this, it suffices to notice that {(๐‘Ž2, ๐‘Ž)}# = {๐‘Ž}+ ร—{๐‘Ž}+.

[FollowingMethod 2.9 for the sake of illustration, let๐œ‘ โˆถ {๐‘Ž} โ†’ {๐‘’}be given by ๐‘Ž๐œ‘ = ๐‘’. Then ๐‘Ž2๐œ‘+ = (๐‘Ž๐œ‘+)2 = ๐‘’2 = ๐‘’ = ๐‘Ž๐œ‘+ and so thesemigroup {๐‘’} satisfies the defining relation (step 1). Let๐‘ = {๐‘Ž}.Thenany word in {๐‘Ž}+ can be transformed to the unique word ๐‘Ž โˆˆ ๐‘ byrepeatedly applying the defining relation (step 2). Finally,๐‘ containsonly a single element and hence ๐œ‘+|๐‘ is trivially injective (step 3).]

c) Less trivially, we now prove that the presentation SgโŸจ๐ด | (๐‘Ž๐‘, ๐‘Ž) โˆถ๐‘Ž, ๐‘ โˆˆ ๐ดโŸฉ defines a left zero semigroup on a set of size |๐ด|. FollowingMethod 2.9, let ๐‘† be the left zero semigroup with |๐ด| elements and let๐œ‘ โˆถ ๐ด โ†’ ๐‘† be a bijection. Then (๐‘Ž๐‘)๐œ‘+ = (๐‘Ž๐œ‘+)(๐‘๐œ‘+) = ๐‘Ž๐œ‘+ since ๐‘† isa left zero semigroup, and so ๐‘† satisfies the defining relations (step 1).Let๐‘ = ๐ด; then any word in ๐ด+ can be transformed to one in๐‘ by

Semigroup presentations โ€ข 45

Page 54: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

applying defining relations to replace a subword ๐‘Ž๐‘ by ๐‘Ž; this yields ashorter word and so ends with a word in๐ด (step 2). Finally, if ๐‘Ž, ๐‘ โˆˆ ๐‘are such that ๐‘Ž๐œ‘+ = ๐‘๐œ‘+, then ๐‘Ž๐œ‘ = ๐‘Ž๐œ‘+ = ๐‘๐œ‘+ = ๐‘๐œ‘, which implies๐‘Ž = ๐‘ since ๐œ‘ is a bijection; thus ๐œ‘+|๐‘ is injective (step 3).

d) Consider the set๐‘€3(โ„ค) of all 3 ร— 3 integer matrices. Let

๐‘ƒ = [

[

1 0 00 1 10 0 1]

], ๐‘„ = [

[

1 1 00 1 00 0 1]

], ๐‘… = [

[

1 0 10 1 00 0 1]

],

and let ๐‘† be the subsemigroup of๐‘€3(โ„ค) generated by {๐‘ƒ, ๐‘„, ๐‘…}. Letus prove that ๐‘† is presented by

SgโŸจ๐‘Ž, ๐‘, ๐‘ | (๐‘๐‘Ž, ๐‘Ž๐‘๐‘), (๐‘๐‘Ž, ๐‘Ž๐‘), (๐‘๐‘, ๐‘๐‘)โŸฉ.

First, let ๐œ‘ โˆถ {๐‘Ž, ๐‘, ๐‘} โ†’ ๐‘† be given by ๐‘Ž๐œ‘ = ๐‘ƒ, ๐‘๐œ‘ = ๐‘„, and ๐‘๐œ‘ = ๐‘….Straightforward calculations show that ๐‘† satisfies the defining relationswith respect to ๐œ‘+ (step 1). Let

๐‘ = { ๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜ โˆถ ๐‘–, ๐‘—, ๐‘˜ โˆˆ โ„• โˆช {0} โˆง ๐‘–, ๐‘—, ๐‘˜ not all 0 }.

Every word in {๐‘Ž, ๐‘, ๐‘}+ can be transformed to one in ๐‘ as follows:First, by applying the second and third defining relations from left toright, we move all symbols ๐‘ to the right of the word. Then, if there issome symbol ๐‘ to the left of a symbol ๐‘Ž, we apply the first definingrelation, and move the โ€˜newโ€™ symbol ๐‘ to the right of the word. Werepeat this step until there is no symbol ๐‘ to the left of a symbol ๐‘Ž. Thisprocess must terminate because no application of a relation changesthe number of symbols ๐‘Ž or ๐‘ in the word. At the end of the process,we are left with a word in ๐‘ (step 2). Finally, a simple calculationshows that

(๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜)๐œ‘+ = [

[

1 ๐‘— ๐‘˜0 1 ๐‘–0 0 1]

],

and so if ๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜ =๐‘† ๐‘Ž๐‘–โ€ฒ๐‘๐‘—โ€ฒ๐‘๐‘˜โ€ฒ, then ๐‘– = ๐‘–โ€ฒ, ๐‘— = ๐‘—โ€ฒ, and ๐‘˜ = ๐‘˜โ€ฒ; hence๐œ‘+|๐‘ is injective (step 3). [Note that the subgroup of๐‘€3(โ„ค) generatedby {๐‘ƒ, ๐‘„, ๐‘…} is the famous discrete Heisenberg group๐ป3(โ„ค).]

We could repeat the discussion of presentations above, but reasoningMonoid presentationsabout monoids instead of semigroups. Every monoid is a quotient of afree monoid. In a monoid presentation MonโŸจ๐ด | ๐œŒโŸฉ the defining relationsin ๐œŒ are of the form (๐‘ข, ๐‘ฃ) for ๐‘ข, ๐‘ฃ โˆˆ ๐ดโˆ—. In particular, they can be of theform (๐‘ข, ๐œ€) or (๐œ€, ๐‘ข) or (๐œ€, ๐œ€). The presentation MonโŸจ๐ด | ๐œŒโŸฉ presents themonoid ๐ดโˆ—/๐œŒ#. The notion of an assignment of generators carries overto monoids. The analogies of Propositions 2.6, 2.7, and 2.8 all hold for

46 โ€ขFree semigroups & presentations

Page 55: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

monoids, using๐ดโˆ— instead of๐ด+ and๐œ‘โˆ— instead of๐œ‘+ as appropriate.Thusthemonoid presented byMonโŸจ๐ด | ๐œŒโŸฉ is the largestmonoid generated by๐ดand satisfying the defining relations in ๐œŒ. If๐‘€ is presented byMonโŸจ๐ด | ๐œŒโŸฉ,then for ๐‘ข, ๐‘ฃ โˆˆ ๐ดโˆ—, we have ๐‘ข =๐‘€ ๐‘ฃ if and only if there is a sequenceof elementary ๐œŒ-transitions from ๐‘ข to ๐‘ฃ. Finally, Method 2.9 works formonoids, again with ๐œ‘โˆ— instead of ๐œ‘+.

E x a m p l e 2 . 1 1. a) Let us prove that the monoid (โ„• โˆช {0}) ร— (โ„• โˆช{0}) is presented by MonโŸจ๐‘Ž, ๐‘ | (๐‘Ž๐‘, ๐‘๐‘Ž)โŸฉ. Following the monoid ver-sion of Method 2.9, let ๐œ‘ โˆถ {๐‘Ž, ๐‘} โ†’ (โ„• โˆช {0}) ร— (โ„• โˆช {0}) be definedby ๐‘Ž๐œ‘ = (1, 0) and ๐‘๐œ‘ = (0, 1). Then (๐‘Ž๐‘)๐œ‘โˆ— = (1, 0)(0, 1) = (1, 1) =(0, 1)(1, 0) = (๐‘๐‘Ž)๐œ‘โˆ—, so (โ„• โˆช {0}) ร— (โ„• โˆช {0}) satisfies the definingrelations with respect to ๐œ‘ (step 1). Let ๐‘ = { ๐‘Ž๐‘–๐‘๐‘— โˆถ ๐‘–, ๐‘— โˆˆ โ„• โˆช {0} }Then every word in {๐‘Ž, ๐‘}โˆ— can be transformed to one in๐‘ by apply-ing the defining relation to move symbols ๐‘Ž to the left of symbols ๐‘(step 2). Finally, note that if ๐‘Ž๐‘–๐‘๐‘—๐œ‘โˆ— = ๐‘Ž๐‘–โ€ฒ๐‘๐‘—โ€ฒ๐œ‘โˆ—, then (๐‘–, ๐‘—) = (๐‘–โ€ฒ, ๐‘—โ€ฒ)and so ๐‘– = ๐‘–โ€ฒ and ๐‘— = ๐‘—โ€ฒ; thus ๐œ‘โˆ—|๐‘ is injective (step 3).

b) Let ๐œ, ๐œŽ โˆˆ Tโ„• be given by

๐œ = (1 2 3 4 โ€ฆ2 3 4 5 โ€ฆ) , ๐œŽ = (1 2 3 4 โ€ฆ1 1 2 3 โ€ฆ) ,

and let ๐ต be the submonoid generated by {๐œ, ๐œŽ}. Let us prove that ๐ต ispresented by MonโŸจ๐‘, ๐‘ | (๐‘๐‘, ๐œ€)โŸฉ. Define ๐œ‘ โˆถ {๐‘, ๐‘} โ†’ ๐ต by ๐‘๐œ‘ = ๐œ and๐‘๐œ‘ = ๐œŽ. Then (๐‘๐‘)๐œ‘โˆ— = ๐œ๐œŽ = idโ„• = ๐œ€๐œ‘โˆ—, so ๐ต satisfies the definingrelation with respect to ๐œ‘ (step 1). Let ๐‘ = { ๐‘๐‘–๐‘๐‘— โˆถ ๐‘–, ๐‘— โˆˆ โ„• โˆช {0} };then every word in {๐‘, ๐‘}โˆ— can be transformed to one in๐‘ by usingthe defining relations to replace subwords ๐‘๐‘ by ๐œ€ (effectively โ€˜deletingโ€™the subword ๐‘๐‘) and ultimately yielding one in๐‘ (step 2). Finally,

(๐‘๐‘–๐‘๐‘—)๐œ‘โˆ—

= (1 2 โ€ฆ ๐‘– + 1 ๐‘– + 2 โ€ฆ1 1 โ€ฆ 1 2 โ€ฆ)

( 1 2 3 4 โ€ฆ๐‘— + 1 ๐‘— + 2 ๐‘— + 3 ๐‘— + 4 โ€ฆ)

= ( 1 2 โ€ฆ ๐‘– + 1 ๐‘– + 2 โ€ฆ๐‘— + 1 ๐‘— + 1 โ€ฆ ๐‘— + 1 ๐‘— + 2 โ€ฆ) ,

and so in the image of ๐‘๐‘–๐‘๐‘—, the image of 1 is ๐‘— + 1 and the maximumelement of the domain with image ๐‘— + 1 is ๐‘– + 1. That is, the imagedetermines ๐‘– and ๐‘—. Hence ๐œ‘โˆ—|๐‘ is injective (step 3).

This monoid ๐ต defined byMonโŸจ๐‘, ๐‘ | (๐‘๐‘, ๐œ€)โŸฉ is the bicyclic monoid. Bicyclic monoidEvery element of the bicyclic monoid is represented by a uniqueword of the form ๐‘๐‘–๐‘๐‘—, where ๐‘–, ๐‘— โˆˆ โ„• โˆช {0}, and we normally workwith these representatives of elements of ๐ต. Multiplying using these

Semigroup presentations โ€ข 47

Page 56: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

representatives is concatenation followed by deletion of subwords ๐‘๐‘.That is,

๐‘๐‘–๐‘๐‘— ๐‘๐‘˜๐‘โ„“ =๐ต {๐‘๐‘–+๐‘˜โˆ’๐‘—๐‘โ„“ if ๐‘˜ โฉพ ๐‘—,๐‘๐‘–๐‘๐‘—โˆ’๐‘˜+โ„“ if ๐‘˜ โฉฝ ๐‘—.

A presentation is finite if both ๐ด and ๐œŒ are finite. The semigroup isFinite presentationfinitely presented if is defined by some finite presentation.

P ro p o s i t i on 2 . 1 2. Suppose ๐‘† is finitely presented and let ๐œ‘ โˆถ ๐ด โ†’ ๐‘†Finite presentabilityis independent ofthe generating set

be an assignment of generators (with ๐ด possibly being infinite). Then thereexists a finite subset ๐ต of ๐ด and ๐œŒ โŠ† ๐ต+ ร— ๐ต+ such that SgโŸจ๐ต | ๐œŒโŸฉ is a finitepresentation defining ๐‘†.

Proof of 2.12. Since ๐‘† is finitely presented, it is defined by a finite present-ation SgโŸจ๐ถ | ๐œโŸฉ. For brevity, let ๐œ“ โˆถ ๐ถ โ†’ ๐‘† be the natural assignment ofgenerators (๐œ#)โ™ฎ|๐ถ, so that ๐‘๐œ“ = [๐‘]๐œ# .

For each ๐‘ โˆˆ ๐ถ, there exists aword ๐‘๐œ โˆˆ ๐ด+ such that ๐‘ and ๐‘๐œ representthe same element of ๐‘†. (We can choose ๐‘๐œ to be any word in (๐‘๐œ“)(๐œ‘+)โˆ’1.)Thus we have a map ๐œ โˆถ ๐ถ โ†’ ๐ด+ such that ๐œ+๐œ‘+ = ๐œ“+. Let

๐ต = { ๐‘ โˆˆ ๐ด โˆถ (โˆƒ๐‘ โˆˆ ๐ถ)(๐‘ appears in ๐‘๐œ) };

thus ๐ถ๐œ โŠ† ๐ต+ and so ๐œ+๐œ‘|+๐ต = ๐œ“+. Notice that ๐ต is finite since ๐ถ is finite.Notice that โŸจ๐ต๐œ‘|๐ตโŸฉ โŠ‡ โŸจ๐ถ๐œ“โŸฉ = ๐‘†, so ๐œ‘|๐ต โˆถ ๐ต โ†’ ๐‘† is an assignment ofgenerators.

Similarly, for every ๐‘ โˆˆ ๐ต, there exists a word ๐‘๐œ‚ โˆˆ ๐ถ+ such that ๐‘ and๐‘๐œ‚ represent the same element of ๐‘†. (We can choose ๐‘๐œ‚ to be any wordin (๐‘๐œ‘|๐ต)(๐œ“+)โˆ’1.) Thus we have a map ๐œ‚ โˆถ ๐ต โ†’ ๐ถ+ such that ๐œ‚+๐œ“+ = ๐œ‘|+๐ต .(Figure 2.2 shows the relationship between ๐œ‘|+๐ต , ๐œ“+, ๐œ+, and ๐œ‚+.)

๐ต ๐ถ

๐ต+ ๐ถ+

๐‘†

๐œ‚ ๐œ

๐œ‘|+๐ต

๐œ‚+

๐œ“+๐œ+

FIGURE 2.2Maps used in the proof of Pro-

position 2.12

Let

๐œŒ = { (๐‘๐œ+, ๐‘ž๐œ+) โˆถ (๐‘, ๐‘ž) โˆˆ ๐œ } โˆช { (๐‘, ๐‘๐œ‚+๐œ+) โˆถ ๐‘ โˆˆ ๐ต }.

Note first that ๐œŒ โŠ† ๐ต+ร—๐ต+. Now, if (๐‘, ๐‘ž) โˆˆ ๐œ, then ๐‘† satisfies this definingrelation with respect to ๐œ“, so ๐‘๐œ“+ = ๐‘ž๐œ“+, and hence ๐‘๐œ+๐œ‘|+๐ต = ๐‘ž๐œ+๐œ‘|+๐ต .Furthermore, if ๐‘ โˆˆ ๐ต, then ๐‘๐œ‘|+๐ต = ๐‘๐œ‚+๐œ“+ = ๐‘๐œ‚+๐œ+๐œ‘|+๐ต . So ๐‘† satisfiesevery defining relation in ๐œŒ with respect to ๐œ‘|๐ต.

It remains to prove that if ๐‘ข, ๐‘ฃ โˆˆ ๐ต+ are such that ๐‘ข๐œ‘|+๐ต = ๐‘ฃ๐œ‘|+๐ต , then(๐‘ข, ๐‘ฃ) is a consequence of ๐œŒ. So suppose ๐‘ข๐œ‘|+๐ต = ๐‘ฃ๐œ‘|+๐ต . Then ๐‘ข๐œ‚+๐œ“+ =๐‘ฃ๐œ‚+๐œ“+. So (๐‘ข๐œ‚+, ๐‘ฃ๐œ‚+) is a consequence of ๐œ. That is, there is a sequenceof elementary ๐œ-transitions

๐‘ข๐œ‚+ = ๐‘ค0 โ†”๐œ ๐‘ค1 โ†”๐œ โ€ฆโ†”๐œ ๐‘ค๐‘› = ๐‘ฃ๐œ‚+.

So, applying ๐œ+ to this sequence, we see that by the definition of ๐œŒ, thereis a sequence of elementary ๐œŒ-transitions

๐‘ข๐œ‚+๐œ+ = ๐‘ค0๐œ+ โ†”๐œŒ ๐‘ค1๐œ+ โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘ค๐‘›๐œ+ = ๐‘ฃ๐œ‚+๐œ+. (2.8)

48 โ€ขFree semigroups & presentations

Page 57: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Suppose ๐‘ข = ๐‘ข1๐‘ข2โ‹ฏ๐‘ข๐‘˜ and ๐‘ฃ = ๐‘ฃ1๐‘ฃ2โ‹ฏ๐‘ฃโ„“, where ๐‘ข๐‘–, ๐‘ฃ๐‘– โˆˆ ๐ต. By thedefinition of ๐œŒ, there are also sequences of elementary ๐œŒ-transitions

๐‘ข = ๐‘ข1๐‘ข2โ‹ฏ๐‘ข๐‘˜ โ†”๐œŒ (๐‘ข1๐œ‚+๐œ“+)๐‘ข2โ‹ฏ๐‘ข๐‘˜ โ†”๐œŒ โ€ฆโ†”๐œŒ (๐‘ข1๐œ‚+๐œ“+)(๐‘ข2๐œ‚+๐œ“+)โ‹ฏ (๐‘ข๐‘˜๐œ‚+๐œ“+) = ๐‘ข๐œ‚+๐œ+

} (2.9)

and๐‘ฃ๐œ‚+๐œ+ = (๐‘ฃ1๐œ‚+๐œ“+)(๐‘ฃ2๐œ‚+๐œ“+)โ‹ฏ (๐‘ฃโ„“๐œ‚+๐œ“+) โ†”๐œŒ โ€ฆ

โ†”๐œŒ (๐‘ฃ1๐œ‚+๐œ“+)๐‘ฃ2โ‹ฏ๐‘ฃโ„“ โ†”๐œŒ ๐‘ฃ1๐‘ฃ2โ‹ฏ๐‘ฃโ„“ = ๐‘ฃ.} (2.10)

Concatenating the sequences (2.8), (2.9), and (2.10) shows that (๐‘ข, ๐‘ฃ) is aconsequence of ๐œŒ and so completes the proof. 2.12

We now give two more important examples. Example 2.13 showsthat a semigroup can be finitely generated but not finitely presented.Example 2.14 then shows that cancellativity is not a sufficient conditionfor group-embeddability.

E x ampl e 2 . 1 3. Let๐‘‹ = {๐‘ฅ๐‘ฆ๐‘ง, ๐‘ฆ๐‘ง, ๐‘ฆ๐‘ก, ๐‘ฅ๐‘ฆ, ๐‘ง๐‘ฆ, ๐‘ง๐‘ฆ๐‘ก} โŠ† {๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก}+. Let Finitely generated butnot finitely presented๐‘† be the subsemigroup of {๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก}+ generated by๐‘‹.

Suppose, with the aim of obtaining a contradiction, that ๐‘† is finitelypresented. Let ๐ด = {๐‘Ž, ๐‘, ๐‘, ๐‘‘, ๐‘’, ๐‘“} and let ๐œ‘ โˆถ ๐ด โ†’ ๐‘† be given by

๐‘Ž๐œ‘ = ๐‘ฅ๐‘ฆ๐‘ง, ๐‘๐œ‘ = ๐‘ฆ๐‘ง, ๐‘๐œ‘ = ๐‘ฆ๐‘ก,๐‘‘๐œ‘ = ๐‘ฅ๐‘ฆ, ๐‘’๐œ‘ = ๐‘ง๐‘ฆ, ๐‘“๐œ‘ = ๐‘ง๐‘ฆ๐‘ก.

Clearly ๐‘† is presented by SgโŸจ๐ด | ker๐œ‘+โŸฉ, since ๐ด+/ker๐œ‘+ โ‰ƒ ๐‘† by Theo-rem 1.24. Thus, by Proposition 2.12, ๐‘† is defined by a finite presentationSgโŸจ๐ด | ๐œŽโŸฉ. Assume without loss of generality that ๐œŽ contains no definingrelations of the form (๐‘ข, ๐‘ข).

Let ๐›ผ be greater than the maximum length of a side of a definingrelation in ๐œŽ. Now,

(๐‘Ž๐‘๐›ผ๐‘)๐œ‘+ = ๐‘ฅ(๐‘ฆ๐‘ง)๐›ผ+1๐‘ฆ๐‘ก = (๐‘‘๐‘’๐›ผ๐‘“)๐œ‘+.

That is, ๐‘Ž๐‘๐›ผ๐‘ =๐‘† ๐‘‘๐‘’๐›ผ๐‘“. By Proposition 2.7, there is a sequence of element-ary ๐œŽ-transitions

๐‘Ž๐‘๐›ผ๐‘ โ†”๐œŽ โ€ฆโ†”๐œŽ ๐‘‘๐‘’๐›ผ๐‘“. (2.11)

For any ๐›ฝ โˆˆ โ„•โˆช{0}, the word ๐‘Ž๐‘๐›ฝ is the unique word over๐ด representing(๐‘Ž๐‘๐›ฝ)๐œ‘ = ๐‘ฅ(๐‘ฆ๐‘ง)๐›ฝ+1, the word ๐‘๐›ฝ๐‘ is the unique word over ๐ด representing(๐‘๐›ฝ๐‘)๐œ‘ = (๐‘ฆ๐‘ง)๐›ฝ๐‘ฆ๐‘ก, and for ๐›ฝ โ‰  0 the word ๐‘๐›ฝ is the unique word over๐ด representing (๐‘๐›ฝ)๐œ‘ = (๐‘ฆ๐‘ง)๐›ฝ. Hence ๐œŽ cannot contain any definingrelation of the form (๐‘Ž๐‘๐›ฝ, ๐‘ข) or (๐‘๐›ฝ๐‘, ๐‘ฃ) or (๐‘๐›ฝ, ๐‘ค). Thus in the sequenceof elementary ๐œŽ-transitions (2.11), the first step must involve applying adefining relation of which one side is ๐‘Ž๐‘๐›ผ๐‘. This contradicts the fact that๐›ผ is greater than the maximum length of a side of a defining relation in ๐œŽ.Therefore ๐‘† is not finitely presented.

Semigroup presentations โ€ข 49

Page 58: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Example 2.5 showed that it is possible for a free semigroup to containsubsemigroups that are not themselves free. By showing that a free sem-igroup can contain finitely generated subsemigroups that are not evenfinitely presented, Example 2.13 provides an even stronger contrast to theNielsenโ€“Schreier theorem.

E x ampl e 2 . 1 4. Let ๐‘† be the semigroup presented by SgโŸจ๐ด | ๐œŒโŸฉ, whereCancellative but notgroup-embeddable ๐ด = {๐‘Ž, ๐‘, ๐‘, ๐‘‘, ๐‘’, ๐‘“, ๐‘”, โ„Ž} and let ๐œŒ = {(๐‘Ž๐‘’, ๐‘๐‘“), (๐‘๐‘“, ๐‘‘๐‘’), (๐‘‘๐‘”, ๐‘โ„Ž)}. We will

prove that ๐‘† is cancellative but not group-embeddable.Proving that ๐‘† is cancellative involves many cases, so we prove the

left-cancellativity condition for the generator represented by ๐‘; the othercases are similar. Suppose that ๐‘๐‘ข =๐‘† ๐‘๐‘ฃ; we aim to prove that ๐‘ข =๐‘† ๐‘ฃ.Then there is a sequence of elementary ๐œŒ-transitions

๐‘๐‘ข = ๐‘ค0 โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘ค๐‘› = ๐‘๐‘ฃ. (2.12)

Without loss of generality, assume that ๐‘› is minimal among all suchsequences. Suppose, with the aim of obtaining a contradiction, that atsome step in this sequence the initial symbol ๐‘ is altered.Thismust involveapplying one of the defining relations (๐‘๐‘“, ๐‘‘๐‘’) or (๐‘‘๐‘”, ๐‘โ„Ž). Assume theformer; the latter case is similar. Thus (2.12) is of the form

๐‘๐‘ข = ๐‘ค0 โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘๐‘“๐‘คโ€ฒ โ†”๐œŒ ๐‘‘๐‘’๐‘คโ€ฒ โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘ค๐‘› = ๐‘๐‘ฃ.

Now, no defining relation has one side starting with a symbol ๐‘’, so thesymbol ๐‘’ must remain in the terms of the sequence until the definingrelation (๐‘๐‘“, ๐‘‘๐‘’) is applied again to alter the initial symbol ๐‘‘. (We knowthat this relation must be applied because the sequence of elementary๐œŒ-transitions ends with ๐‘ค๐‘› = ๐‘๐‘ฃ.) Thus (2.12) is of the form

๐‘๐‘ข = ๐‘ค0 โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘๐‘“๐‘คโ€ฒ โ†”๐œŒ ๐‘‘๐‘’๐‘คโ€ฒ โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘‘๐‘’๐‘คโ€ณ โ†”๐œŒ ๐‘๐‘“๐‘คโ€ณ โ†”๐œŒ โ€ฆ โ†”๐œŒ ๐‘ค๐‘› = ๐‘๐‘ฃ.

Since the distinguished symbol ๐‘’ is present throughout the subsequence๐‘‘๐‘’๐‘คโ€ฒ โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘‘๐‘’๐‘คโ€ณ, so does the symbol ๐‘‘. Because the symbols ๐‘‘๐‘’ arenot involved in any of the intermediate steps, there is no need to includethe two elementary ๐œŒ-transitions ๐‘๐‘“๐‘คโ€ฒ โ†”๐œŒ ๐‘‘๐‘’๐‘คโ€ฒ and ๐‘‘๐‘’๐‘คโ€ณ โ†”๐œŒ ๐‘๐‘“๐‘คโ€ณ.That is, we can remove the elementary ๐œŒ-transitions ๐‘๐‘“๐‘คโ€ฒ โ†”๐œŒ ๐‘‘๐‘’๐‘คโ€ฒ and๐‘‘๐‘’๐‘คโ€ณ โ†”๐œŒ ๐‘๐‘“๐‘คโ€ณ and replace the prefixes ๐‘‘๐‘’ by ๐‘๐‘“ in the subsequence๐‘‘๐‘’๐‘คโ€ฒ โ†”๐œŒ โ€ฆ โ†”๐œŒ ๐‘‘๐‘’๐‘คโ€ณ and obtain a strictly shorter sequence of ele-mentary ๐œŒ-transitions from ๐‘๐‘ข to ๐‘๐‘ฃ. This contradicts the minimality of ๐‘›.Therefore the initial symbol ๐‘ is never altered. Thus we can delete the ini-tial symbol ๐‘ from each step in (2.12) to obtain a sequence of elementary๐œŒ-transitions from ๐‘ข to ๐‘ฃ. Hence ๐‘ข =๐‘† ๐‘ฃ.

This argument proves that the left-cancellativity condition holds forthe generator ๐‘. Reasoning similarly for the symbols in ๐ด โˆ– {๐‘} shows

50 โ€ขFree semigroups & presentations

Page 59: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

that ๐‘† is left-cancellative; symmetrical arguments show that ๐‘† is rightcancellative. Thus ๐‘† is cancellative.

Suppose ๐‘† is group-embeddable. Then there is a monomorphism๐œ‘ โˆถ ๐‘† โ†’ ๐บ, where ๐บ is a group. Then

(๐‘Ž๐‘”)๐œ‘ = (๐‘Ž๐œ‘)(๐‘”๐œ‘)= (๐‘Ž๐œ‘)(๐‘’๐œ‘)(๐‘’๐œ‘)โˆ’1(๐‘”๐œ‘)= (๐‘๐œ‘)(๐‘“๐œ‘)(๐‘’๐œ‘)โˆ’1(๐‘”๐œ‘) [since ๐‘Ž๐‘’ =๐‘† ๐‘๐‘“]= (๐‘๐œ‘)(๐‘๐œ‘)โˆ’1(๐‘๐œ‘)(๐‘“๐œ‘)(๐‘’๐œ‘)โˆ’1(๐‘”๐œ‘)= (๐‘๐œ‘)(๐‘๐œ‘)โˆ’1(๐‘‘๐œ‘)(๐‘’๐œ‘)(๐‘’๐œ‘)(๐‘”๐œ‘) [since ๐‘๐‘“ =๐‘† ๐‘‘๐‘’]= (๐‘๐œ‘)(๐‘๐œ‘)โˆ’1(๐‘‘๐œ‘)(๐‘”๐œ‘)= (๐‘๐œ‘)(๐‘๐œ‘)โˆ’1(๐‘๐œ‘)(โ„Ž๐œ‘) [since ๐‘‘๐‘” =๐‘† ๐‘โ„Ž]= (๐‘๐œ‘)(โ„Ž๐œ‘)= (๐‘โ„Ž)๐œ‘.

But ๐‘Ž๐‘” โ‰ ๐‘† ๐‘โ„Ž, since there is no sequence of elementary ๐œŒ-transitions from๐‘Ž๐‘” to ๐‘โ„Ž because ๐‘Ž๐‘” does not contain a subword that forms one side of adefining relation in ๐œŒ. This contradicts ๐œ‘ being a monomorphism and so๐‘† is not group-embeddable.

Several of the syntactic arguments used in this chapter and in the exer-cises could be simplified by using the tools of string-rewriting. However,presenting the necessary theory is beyond the scope of this course.

Exercises

[See pages 209โ€“215 for the solutions.]โœด2.1 A semigroup ๐‘† is equidivisible if for all ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก โˆˆ ๐‘†, the following Equidivisibility

holds:

๐‘ฅ๐‘ฆ = ๐‘ง๐‘ก โ‡’ (โˆƒ๐‘ โˆˆ ๐‘†)(๐‘ฅ = ๐‘ง๐‘ โˆง ๐‘ก = ๐‘๐‘ฆ)โˆจ (โˆƒ๐‘ž โˆˆ ๐‘†)(๐‘ง = ๐‘ฅ๐‘ž โˆง ๐‘ฆ = ๐‘ž๐‘ก).

a) Prove that groups are equidivisible.b) Prove that free monoids are equidivisible.

โœด2.2 Let ๐‘ข, ๐‘ฃ โˆˆ ๐ด+. Prove that

๐‘ข๐‘ฃ = ๐‘ฃ๐‘ข โ‡” (โˆƒ๐‘ค โˆˆ ๐ด+)(โˆƒ๐‘–, ๐‘— โˆˆ โ„•)(๐‘ข = ๐‘ค๐‘– โˆง ๐‘ฃ = ๐‘ค๐‘—).

[Hint: to prove the left-hand side implies the right-hand side, useinduction on |๐‘ข๐‘ฃ|.]

2.3 Let ๐‘ข, ๐‘ฃ, ๐‘ค โˆˆ ๐ด+ be such that ๐‘ข๐‘ฃ = ๐‘ฃ๐‘ค.

Exercises โ€ข 51

Page 60: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

a) Using induction on |๐‘ฃ|, prove that there exist ๐‘ , ๐‘ก โˆˆ ๐ดโˆ— and ๐‘˜ โˆˆโ„• โˆช {0} such that ๐‘ข = ๐‘ ๐‘ก, ๐‘ฃ = (๐‘ ๐‘ก)๐‘˜๐‘ , and ๐‘ค = ๐‘ก๐‘ .

b) Prove part a) in a different way by letting ๐‘˜ be maximal (possibly๐‘˜ = 0) such that ๐‘ฃ = ๐‘ข๐‘˜๐‘  for some ๐‘  โˆˆ ๐ดโˆ—.

2.4 Let ๐‘ข, ๐‘ฃ โˆˆ ๐ด+. Show that the subsemigroup โŸจ๐‘ข, ๐‘ฃโŸฉ is free if and only if๐‘ข๐‘ฃ โ‰  ๐‘ฃ๐‘ข.

2.5 Let ๐‘† be a semigroup and let ๐‘‹ be a generating set for ๐‘†, with |๐‘‹| โฉพ2. Suppose that for all ๐‘ฅ๐‘–, ๐‘ฆ๐‘– โˆˆ ๐‘‹ and ๐‘› โˆˆ โ„•, we have ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘› =๐‘ฆ1โ‹ฏ๐‘ฆ๐‘› โ‡’ (โˆ€๐‘– โˆˆ {1,โ€ฆ , ๐‘›})(๐‘ฅ๐‘– = ๐‘ฆ๐‘–). Prove that ๐‘† is free with basis๐‘‹.

โœด2.6 Let ๐‘› โˆˆ โ„•. Let ๐‘‹ = {๐‘ฅ1, ๐‘ฅ2,โ€ฆ , ๐‘ฅ๐‘›}. Let๐‘€ be the set โ„™๐‘‹ under theoperation of union; then๐‘€ is a monoid with identity โˆ…. The aimof this exercise is to use Method 2.9 to prove that๐‘€ is defined byMonโŸจ๐ด | ๐œŒโŸฉ, where ๐ด = {๐‘Ž1,โ€ฆ , ๐‘Ž๐‘›} and ๐œŒ = { (๐‘Ž2๐‘– , ๐‘Ž๐‘–), (๐‘Ž๐‘–๐‘Ž๐‘—, ๐‘Ž๐‘—๐‘Ž๐‘–) โˆถ๐‘–, ๐‘— โˆˆ {1,โ€ฆ , ๐‘›} }.a) Do step 1 of Method 2.9: define an assignment of generators ๐œ‘ โˆถ๐ด โ†’ ๐‘€ and show that ๐‘€ satisfies the defining relations in ๐œŒwith respect to ๐œ‘. [Hint: the monoid๐‘€ is generated by elements{๐‘ฅ1}, {๐‘ฅ2},โ€ฆ , {๐‘ฅ๐‘›}.]

b) Do step 2 of Method 2.9: let ๐‘ = { ๐‘Ž๐‘’11 ๐‘Ž๐‘’22 โ‹ฏ๐‘Ž๐‘’๐‘›๐‘› โˆถ ๐‘’๐‘– โฉฝ 1 } and

prove that for every ๐‘ค โˆˆ ๐ดโˆ— there is a word ๐‘ค โˆˆ ๐‘ such that(๐‘ค, ๐‘ค) is a consequence of ๐œŒ.

c) Do step 3 of Method 2.9: prove that ๐œ‘โˆ—|๐‘ is injective.โœด2.7 Prove that MonโŸจ๐‘Ž, ๐‘ | (๐‘Ž๐‘๐‘Ž, ๐œ€)โŸฉ defines (โ„ค, +).2.8 Let๐‘€ be defined byMonโŸจ๐ด | ๐œŒโŸฉ, where๐ด = {๐‘Ž, ๐‘, ๐‘} and๐œŒ = {(๐‘Ž๐‘๐‘, ๐œ€)}.

Let๐‘ = ๐ดโˆ— โˆ– ๐ดโˆ—๐‘Ž๐‘๐‘๐ดโˆ—, so that๐‘ consists of all words over ๐ด thatdo not contain a subword ๐‘Ž๐‘๐‘. Prove that every element of๐‘€ has aunique representative in ๐‘, and that this representative can be ob-tained by taking any word representing that element and iterativelydeleting subwords ๐‘Ž๐‘๐‘.

โœด2.9 Let ๐ต2 be the semigroup consisting of the following five matrices:

[0 00 0] , [0 10 0] , [

0 01 0] , [

1 00 0] , [

0 00 1] .

Show that ๐ต2 is presented by SgโŸจ๐ด | ๐œŽ โˆช ๐œโŸฉ, where ๐ด = {๐‘Ž, ๐‘, ๐‘ง} and

๐œŽ = {(๐‘Ž2, ๐‘ง), (๐‘2, ๐‘ง), (๐‘Ž๐‘๐‘Ž, ๐‘Ž), (๐‘๐‘Ž๐‘, ๐‘)},๐œ = {(๐‘ง๐‘Ž, ๐‘ง), (๐‘Ž๐‘ง, ๐‘ง), (๐‘ง๐‘, ๐‘ง), (๐‘๐‘ง, ๐‘ง), (๐‘ง2, ๐‘ง)}.

[Hint: note that the defining relations in ๐œ imply that ๐‘ง is mapped tothe zero of ๐ต2.]

2.10 Let ๐ต be the bicyclic monoid MonโŸจ๐‘, ๐‘ | (๐‘๐‘, ๐œ€)โŸฉ.a) Prove that ๐‘๐›พ๐‘๐›ฝ is idempotent if and only if ๐›ฝ = ๐›พ.

52 โ€ขFree semigroups & presentations

Page 61: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

b) Prove that ๐‘๐›พ๐‘๐›ฝ is right-invertible if and only if ๐›พ = 0. [Dualreasoning will show that ๐‘๐›พ๐‘๐›ฝ is left-invertible if and only if๐›ฝ = 0.]

โœด2.11 Let ๐ต be the bicyclic monoid MonโŸจ๐‘, ๐‘ | (๐‘๐‘, ๐œ€)โŸฉ. Draw a part of theCayley graph ๐›ค(๐ต, {๐‘, ๐‘}) including all elements ๐‘๐›พ๐‘๐›ฝ with ๐›พ, ๐›ฝ โฉฝ 4.

โœด2.12 Let ๐‘† be a semigroup and let ๐‘’, ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† be such that ๐‘’๐‘ฅ = ๐‘ฅ๐‘’ = ๐‘ฅ,๐‘’๐‘ฆ = ๐‘ฆ๐‘’ = ๐‘ฆ, ๐‘ฅ๐‘ฆ = ๐‘’, and ๐‘ฆ๐‘ฅ โ‰  ๐‘’.a) Prove that all powers of ๐‘ฅ and all powers of ๐‘ฆ are distinct. (That

is, ๐‘ฅ and ๐‘ฆ are not periodic elements.)b) Prove that if ๐‘ฅ๐‘˜ = ๐‘ฆโ„“ for some ๐‘˜, โ„“ โˆˆ โ„• โˆช {0}, then ๐‘˜ = โ„“ = 0.c) Prove that if ๐‘ฆ๐‘˜๐‘ฅโ„“ = ๐‘’ for some ๐‘˜, โ„“ โˆˆ โ„• โˆช {0}, then ๐‘˜ = โ„“ = 0.d) Prove that if ๐‘ฆ๐‘˜๐‘ฅโ„“ = ๐‘ฆ๐‘š๐‘ฅ๐‘› for some ๐‘˜, โ„“, ๐‘š, ๐‘› โˆˆ โ„• โˆช {0}, then๐‘˜ = ๐‘š and โ„“ = ๐‘›.

e) Deduce that the subsemigroup โŸจ๐‘ฅ, ๐‘ฆโŸฉ of ๐‘† is isomorphic to thebicyclic monoid.

โœด2.13 Let ๐ต be the bicyclic monoid and ๐œ‘ โˆถ ๐ต โ†’ ๐‘† a surjective homomor-phism. Prove that ๐‘† is either isomorphic to the bicyclic monoid or agroup.

Notes

The section on properties of free semigroups and monoidsis largely based on Howie, Fundamentals of Semigroup Theory, ch. 7. โ—† Thediscussion of semigroup presentations is partly based on Ruลกkuc, โ€˜SemigroupPresentationsโ€™, chs 1 & 3. โ—† For further reading on free semigroups and monoidssee Harju, โ€˜Lecture Notes on Semigroupsโ€™, ยง 4.1โ€“2 and Howie, Fundamentalsof SemigroupTheory, ยง 7.2 on submonoids of free monoids and connections tocoding theory. Lothaire, Combinatorics on Words is a broad study of words andcontains a great deal of relevant material. For further reading on semigrouppresentations, Ruลกkuc, โ€˜Semigroup Presentationsโ€™ is an essential text, but see alsoHiggins,Techniques of SemigroupTheory, ยง 1.7& ch. 5 for an introduction to usingdiagrams to reason about semigroup presentations. โ—† For string-rewriting andits application to semigroup theory, see Book & Otto, String Rewriting Systems;for rewriting more generally, see Baader&Nipkow, Term Rewriting and All That.โ—† Example 2.14 is derived from the criterion for group-embeddability in Malcev,โ€˜On the immersion of an algebraic ring into a fieldโ€™. โ—† Exercise 2.5 is adaptedfromGallagher, โ€˜On the Finite Generation and Presentability of Diagonal Actsโ€ฆโ€™,Proof of Proposition 3.1.12.

โ€ข

Notes โ€ข 53

Page 62: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

54 โ€ข

Page 63: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

3Structure of semigroups

โ€˜ structure can be considered as a complex ofrelations, and ultimately as multi-dimensional order. โ€™

โ€” Alfred KorzybskiScience and Sanity, bk I, pt. I, ch. 2.

โ€ข The aim of this chapter is to understand better thestructure of semigroups. We want to divide the semigroup into sectionsin such a way that we can understand the semigroup in terms of thoseparts and their interaction. One goal is to understand the semigroup interms of groups; then we assume that our work is done and we hand onthe problem to a group theorist.

Greenโ€™s relations

The most fundamental tools in understanding a semi- Greenโ€™s relationsgroup are its Greenโ€™s relations. These relate elements depending on theideals they generate, and, as we shall see, give a lot of information aboutthe structure of a semigroup and how its elements interact. On a sem-igroup, there are five Greenโ€™s relations: H, L, R, D, and J. We start bydefining L, R, and J: for a semigroup ๐‘†, define L, R, and J

๐‘ฅ L ๐‘ฆ โ‡” ๐‘†1๐‘ฅ = ๐‘†1๐‘ฆ,๐‘ฅ R ๐‘ฆ โ‡” ๐‘ฅ๐‘†1 = ๐‘ฆ๐‘†1,๐‘ฅ J ๐‘ฆ โ‡” ๐‘†1๐‘ฅ๐‘†1 = ๐‘†1๐‘ฆ๐‘†1.

}}}}}

(3.1)

It is easy to see that L, R, and J are all equivalence relations. Usefulcharacterizations of these relations, which we will use at least as often asthe definitions in (3.1), are given by the following result:

P ro p o s i t i on 3 . 1. The relations L, R, and J on a semigroup ๐‘† satisfy Characterization of L, R, Jthe following:

๐‘ฅ L ๐‘ฆ โ‡” (โˆƒ๐‘, ๐‘ž โˆˆ ๐‘†1)((๐‘๐‘ฅ = ๐‘ฆ) โˆง (๐‘ž๐‘ฆ = ๐‘ฅ));๐‘ฅ R ๐‘ฆ โ‡” (โˆƒ๐‘, ๐‘ž โˆˆ ๐‘†1)((๐‘ฅ๐‘ = ๐‘ฆ) โˆง (๐‘ฆ๐‘ž = ๐‘ฅ));๐‘ฅ J ๐‘ฆ โ‡” (โˆƒ๐‘, ๐‘ž, ๐‘Ÿ, ๐‘  โˆˆ ๐‘†1)((๐‘๐‘ฅ๐‘Ÿ = ๐‘ฆ) โˆง (๐‘ž๐‘ฆ๐‘  = ๐‘ฅ)).

โ€ข 55

Page 64: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 3.1. We prove the result for L; similar reasoning applies for Rand J.

Suppose ๐‘ฅ L ๐‘ฆ. Then by (3.1), ๐‘†1๐‘ฅ = ๐‘†1๐‘ฆ. Since ๐‘ฆ โˆˆ ๐‘†1๐‘ฆ, it followsthat ๐‘ฆ โˆˆ ๐‘†1๐‘ฅ and so there exists ๐‘ โˆˆ ๐‘†1 such that ๐‘๐‘ฅ = ๐‘ฆ. Similarly, thereexists ๐‘ž โˆˆ ๐‘†1 such that ๐‘ž๐‘ฆ = ๐‘ฅ.

Now suppose that there exist ๐‘, ๐‘ž โˆˆ ๐‘†1 such that ๐‘๐‘ฅ = ๐‘ฆ and ๐‘ž๐‘ฆ = ๐‘ฅ.Then ๐‘†1๐‘ฅ = ๐‘†1๐‘ž๐‘ฆ โŠ† ๐‘†1๐‘ฆ, and similarly ๐‘†1๐‘ฆ = ๐‘†1๐‘๐‘ฅ โŠ† ๐‘†1๐‘ฅ. Hence๐‘†1๐‘ฅ = ๐‘†1๐‘ฆ and so ๐‘ฅ L ๐‘ฆ. 3.1

Pro p o s i t i on 3 . 2. L โˆ˜ R = R โˆ˜ L.L and R commute

Proof of 3.2. Let (๐‘ฅ, ๐‘ฆ) โˆˆ L โˆ˜ R. Then there exists ๐‘ง โˆˆ ๐‘† such that ๐‘ฅ L ๐‘งand ๐‘ง R ๐‘ฆ. By Proposition 3.1, there exist ๐‘, ๐‘ž, ๐‘Ÿ, ๐‘  โˆˆ ๐‘†1 such that ๐‘๐‘ฅ = ๐‘ง,๐‘ž๐‘ง = ๐‘ฅ, ๐‘ง๐‘Ÿ = ๐‘ฆ, and ๐‘ฆ๐‘  = ๐‘ง.

Let ๐‘งโ€ฒ = ๐‘ž๐‘ง๐‘Ÿ. Then ๐‘ฅ๐‘Ÿ = ๐‘ž๐‘ง๐‘Ÿ = ๐‘งโ€ฒ and ๐‘งโ€ฒ๐‘  = ๐‘ž๐‘ง๐‘Ÿ๐‘  = ๐‘ž๐‘ฆ๐‘  = ๐‘ž๐‘ง = ๐‘ฅ, so๐‘ฅ R ๐‘งโ€ฒ, and ๐‘ž๐‘ฆ = ๐‘ž๐‘ง๐‘Ÿ = ๐‘งโ€ฒ and ๐‘๐‘งโ€ฒ = ๐‘๐‘ž๐‘ง๐‘Ÿ = ๐‘๐‘ฅ๐‘Ÿ = ๐‘ง๐‘Ÿ = ๐‘ฆ, so ๐‘งโ€ฒ L ๐‘ฆ.Hence (๐‘ฅ, ๐‘ฆ) โˆˆ R โˆ˜ L.

Thus L โˆ˜ R โŠ† R โˆ˜ L. Similarly R โˆ˜ L โŠ† L โˆ˜ R and so L โˆ˜ R =R โˆ˜ L. 3.2

As a consequence of Propositions 1.31 and 3.2, we see that L โŠ”R =L โˆ˜R. Recall from page 26 that the meet of two equivalence relations istheir intersection, soL โŠ“R = L โˆฉR. The meet and join ofL andR playan important role, so they are also counted as Greenโ€™s relations and haveparticular notations:H and D

H = L โŠ“R = L โˆ˜R,D = L โŠ”R = L โˆฉR.

From either (3.1) or Proposition 3.1, one sees that L โŠ† J and R โŠ† J.So J is an upper bound for {L,R} and so D = L โŠ” R โŠ† J. Furthermore,it is immediate that H โŠ† L and H โŠ† R. In fact, all of these inclusionsare in general strict by Exercises 3.5, 3.6, and 3.7, or by Exercise 3.11; seeFigure 3.1. However, in some special classes of semigroups we do haveequality of some of the relations.

J

D

L R

HFIGURE 3.1

Hasse diagram of Greenโ€™s rela-tions in a general semigroup

For instance, let ๐บ be a group. Then in ๐บ, all of Greenโ€™s relations areequal to the universal relation ๐บร—๐บ. That is, all elements of ๐บ areH-,L-,R-, D-, and J-related.

P ro p o s i t i on 3 . 3. In a periodic semigroup, the Greenโ€™s relations DD = J for periodic

semigroupsand J coincide.

Proof of 3.3. Suppose ๐‘† is periodic. We already know D โŠ† J, so we haveto prove the opposite inclusion.

Let ๐‘ฅ J ๐‘ฆ. Then there exist ๐‘, ๐‘ž, ๐‘Ÿ, ๐‘  โˆˆ ๐‘†1 such that ๐‘๐‘ฅ๐‘Ÿ = ๐‘ฆ and๐‘ž๐‘ฆ๐‘  = ๐‘ฅ. So ๐‘ฅ = ๐‘ž๐‘๐‘ฅ๐‘Ÿ๐‘  and so ๐‘ฅ = (๐‘ž๐‘)๐‘›๐‘ฅ(๐‘Ÿ๐‘ )๐‘› for all ๐‘› โˆˆ โ„•, and

56 โ€ขStructure of semigroups

Page 65: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

similarly ๐‘ฆ = (๐‘๐‘ž)๐‘›๐‘ฆ(๐‘ ๐‘Ÿ)๐‘› for all ๐‘› โˆˆ โ„•. Since ๐‘† is periodic, there exist๐‘˜, โ„“ โˆˆ โ„• such that (๐‘ž๐‘)๐‘˜ and (๐‘ ๐‘Ÿ)โ„“ are idempotent. Let ๐‘ง = ๐‘๐‘ฅ. Then

๐‘ฅ = (๐‘ž๐‘)๐‘˜๐‘ฅ(๐‘Ÿ๐‘ )๐‘˜ = (๐‘ž๐‘)2๐‘˜๐‘ฅ(๐‘Ÿ๐‘ )๐‘˜

= (๐‘ž๐‘)๐‘˜((๐‘ž๐‘)๐‘˜๐‘ฅ(๐‘Ÿ๐‘ )๐‘˜) = (๐‘ž๐‘)๐‘˜๐‘ฅ = ((๐‘ž๐‘)๐‘˜โˆ’1๐‘ž)๐‘ง.

Hence ๐‘ฅ L ๐‘ง. Furthermore, ๐‘ง๐‘Ÿ = ๐‘๐‘ฅ๐‘Ÿ = ๐‘ฆ and

๐‘ง = ๐‘๐‘ฅ = ๐‘(๐‘ž๐‘)โ„“+1๐‘ฅ(๐‘Ÿ๐‘ )โ„“+1 = (๐‘๐‘ž)โ„“+1๐‘๐‘ฅ๐‘Ÿ(๐‘ ๐‘Ÿ)โ„“๐‘ = (๐‘๐‘ž)โ„“+1๐‘๐‘ฅ๐‘Ÿ(๐‘ ๐‘Ÿ)2โ„“๐‘  = (๐‘๐‘ž)โ„“+1๐‘ฆ(๐‘ ๐‘Ÿ)2โ„“๐‘ = (๐‘๐‘ž)โ„“+1๐‘ฆ(๐‘ ๐‘Ÿ)โ„“+1(๐‘ ๐‘Ÿ)โ„“โˆ’1๐‘  = ๐‘ฆ((๐‘ ๐‘Ÿ)โ„“โˆ’1๐‘ ).

Hence ๐‘ง R ๐‘ฆ.Therefore ๐‘ฅ D ๐‘ฆ. Thus J โŠ† D and so D = J. 3.3

P r o p o s i t i o n 3 . 4. a) The relation L is a right congruence.b) The relation R is a left congruence.

Proof of 3.4. For any ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘†,

๐‘ฅ L ๐‘ฆ โ‡’ ๐‘†1๐‘ฅ = ๐‘†1๐‘ฆ โ‡’ ๐‘†1๐‘ฅ๐‘ง = ๐‘†1๐‘ฆ๐‘ง โ‡’ ๐‘ฅ๐‘ง L ๐‘ฆ๐‘ง,

and so L is a right congruence. Dual reasoning shows that R is a leftcongruence. 3.4

In general,L is not a left congruence andR is not a right congruence;see Exercise 3.4.

For ๐‘Ž โˆˆ ๐‘†, denote by๐ป๐‘Ž, ๐ฟ๐‘Ž, ๐‘…๐‘Ž, ๐ท๐‘Ž, and ๐ฝ๐‘Ž the H-, L-, R-, D, and ๐ป๐‘Ž, ๐ฟ๐‘Ž, ๐‘…๐‘Ž, ๐ท๐‘Ž, and ๐ฝ๐‘ŽJ-classes of ๐‘Ž, respectively. By the containment between Greenโ€™s relationsdescribed above,

๐ป๐‘Ž โŠ† ๐ฟ๐‘Ž, ๐ป๐‘Ž โŠ† ๐‘…๐‘Ž, ๐ฟ๐‘Ž โŠ† ๐ท๐‘Ž, ๐‘…๐‘Ž โŠ† ๐ท๐‘Ž, and ๐ท๐‘Ž โŠ† ๐ฝ๐‘Ž.

There are natural partial orders on the collection ofL-classes ๐‘†/L, the Partial order of๐‘†/L, ๐‘†/R, and ๐‘†/Jcollection of R-classes ๐‘†/R, and the collection of J-classes ๐‘†/J induced

by inclusion order of ideals:

๐ฟ๐‘ฅ โฉฝ ๐ฟ๐‘ฆ โ‡” ๐‘†1๐‘ฅ โŠ† ๐‘†1๐‘ฆ,๐‘…๐‘ฅ โฉฝ ๐‘…๐‘ฆ โ‡” ๐‘ฅ๐‘†1 โŠ† ๐‘ฆ๐‘†1,๐ฝ๐‘ฅ โฉฝ ๐ฝ๐‘ฆ โ‡” ๐‘†1๐‘ฅ๐‘†1 โŠ† ๐‘†1๐‘ฆ๐‘†1.

}}}}}}}

(3.2)

It follows immediate from (3.2) that for all ๐‘ฅ โˆˆ ๐‘† and ๐‘, ๐‘ž โˆˆ ๐‘†1,

๐ฟ๐‘๐‘ฅ โฉฝ ๐ฟ๐‘ฅ, ๐‘…๐‘ฅ๐‘ž โฉฝ ๐‘…๐‘ฅ, ๐ฝ๐‘๐‘ฅ๐‘ž โฉฝ ๐ฝ๐‘ฅ.

Greenโ€™s relations โ€ข 57

Page 66: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Simple and 0-simple semigroups

A semigroup is simple if it contains no proper ideals; thusSimple/0-simple๐‘† is simple if its only ideal is ๐‘† itself. A semigroup ๐‘† with a zero is 0-simpleif it is not a null semigroup and its only proper ideal is {0}; thus ๐‘† is0-simple if ๐‘†2 โ‰  โˆ… and ๐‘† and {0} are the only ideals of ๐‘†.

The notion of a simple semigroup is not a generalization of a โ€˜simplegroupโ€™, in the sense of a group that contains no proper non-trivial normalsubgroups. Groups never contains proper ideals, so groups are alwayssimple semigroups.Let ๐‘† be a semigroup and let ๐ผ be an ideal (respectively, left ideal,Minimal/0-minimal ideal

right ideal) of ๐‘†. Then ๐ผ is minimal if there is no ideal (respectively, leftideal, right ideal) ๐ฝ of ๐‘† that is strictly contained in ๐ผ. Suppose now that๐‘† contains a zero. Then ๐ผ is 0-minimal if ๐ผ โ‰  {0} and there is no ideal(respectively, left ideal, right ideal) ๐ฝ โ‰  {0} of ๐‘† that is strictly containedin ๐ผ.

P ro p o s i t i on 3 . 5. A semigroup contains at most one minimal ideal.Uniqueness ofminimal ideals

Proof of 3.5. Suppose ๐ผ and ๐ฝ are minimal ideals of a semigroup ๐‘†.Then ๐ผ๐ฝis an ideal of ๐‘† and ๐ผ๐ฝ โŠ† ๐ผ๐‘† โŠ† ๐ผ and ๐ผ๐ฝ โŠ† ๐‘†๐ฝ โŠ† ๐ฝ. Hence, by the minimalityof ๐ผ and ๐ฝ, we have ๐ผ = ๐ผ๐ฝ and ๐ฝ = ๐ผ๐ฝ and hence ๐ผ = ๐ฝ. 3.5

A semigroup ๐‘†might not contain a minimal ideal. For example, theKernel of a semigroupideals ๐ผ๐‘› of (โ„•, +) defined in Example 1.10(a) form an infinite descendingchain: โ„• = ๐ผ1 โŠ‡ ๐ผ2 โŠ‡ ๐ผ3 โŠ‡ โ€ฆ. But Proposition 3.5 shows that if asemigroup ๐‘† contains aminimal ideal, it is unique. Such a uniqueminimalideal is called the kernel of ๐‘† and is denoted ๐พ(๐‘†). Notice that if ๐‘† is a๐พ(๐‘†)semigroup with zero, ๐พ(๐‘†) = {0}.

L emma 3 . 6. If a semigroup ๐‘† is 0-simple, then ๐‘†2 = ๐‘†.๐‘†2 = ๐‘† for 0-simplesemigroups

Proof of 3.6. Note that ๐‘†2 is an ideal of ๐‘†, since ๐‘†๐‘†2 โŠ† ๐‘†2 and ๐‘†2๐‘† โŠ† ๐‘†2.Now, ๐‘†2 โ‰  {0} since ๐‘† is not null (by the definition of 0-simple). Hence๐‘†2 = ๐‘† since ๐‘† is 0-simple. 3.6

L emma 3 . 7. A semigroup ๐‘† is 0-simple if and only if ๐‘†๐‘ฅ๐‘† = ๐‘† for all๐‘ฅ โˆˆ ๐‘† โˆ– {0}.

Proof of 3.7. Suppose ๐‘† is 0-simple. Then ๐‘†2 = ๐‘† by Lemma 3.6 and so๐‘†3 = ๐‘†2๐‘† = ๐‘†๐‘† = ๐‘†.

For any ๐‘ฅ โˆˆ ๐‘†, the principal ideal ๐‘†๐‘ฅ๐‘† is either {0} or ๐‘† since ๐‘† is0-simple. Let ๐‘‡ = { ๐‘ฅ โˆˆ ๐‘† โˆถ ๐‘†๐‘ฅ๐‘† = {0} }. It is easy to prove that ๐‘‡ is anideal of ๐‘†. Since ๐‘† is 0-simple, it follows that ๐‘‡ = ๐‘† or ๐‘‡ = {0}. Supposethat ๐‘‡ = ๐‘†. Then ๐‘†๐‘ฅ๐‘† = {0} for all ๐‘ฅ โˆˆ ๐‘†, which implies ๐‘†3 = {0}, which isa contradiction since ๐‘†3 = ๐‘† by the previous paragraph. Hence ๐‘‡ = {0},and so ๐‘†๐‘ฅ๐‘† = ๐‘† for all ๐‘ฅ โˆˆ ๐‘† โˆ– {0}.

58 โ€ขStructure of semigroups

Page 67: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

For the converse, suppose ๐‘†๐‘ฅ๐‘† = ๐‘† for all ๐‘ฅ โˆˆ ๐‘† โˆ– {0}. Note first that๐‘† cannot be null. Let ๐ผ be some ideal of ๐‘†. Suppose ๐ผ โ‰  {0}. Then thereexists some ๐‘ฆ โˆˆ ๐ผโˆ– {0}, and ๐‘†๐‘ฆ๐‘† = ๐‘†. Hence ๐‘† = ๐‘†๐‘ฆ๐‘† โŠ† ๐ผ โŠ† ๐‘† and so ๐ผ = ๐‘†.So for any ideal ๐ผ of ๐‘†, either ๐ผ = {0} or ๐ผ = ๐‘†, and so ๐‘† is 0-simple. 3.7

P r o p o s i t i o n 3 . 8. a) A 0-minimal ideal of a semigroup with a 0-minimal idealsare 0-simple or nullzero is either null or 0-simple.

b) A minimal ideal of a semigroup is simple.

Proof of 3.8. a) Let ๐‘† be a semigroup with a zero, and let ๐ผ be a 0-minimalideal of ๐‘†. Suppose ๐ผ is not null. Then ๐ผ2 โ‰  {0}. Hence, since ๐ผ2 โŠ† ๐ผ isan ideal of ๐‘† and ๐ผ is 0-minimal, we have ๐ผ2 = ๐ผ and so ๐ผ3 = ๐ผ.

Let ๐‘ฅ โˆˆ ๐ผ โˆ– {0}. Then ๐‘†1๐‘ฅ๐‘†1 is an ideal of ๐‘† contained in ๐ผ. Since๐‘ฅ โˆˆ ๐‘†1๐‘ฅ๐‘†1, we have ๐‘†1๐‘ฅ๐‘†1 โ‰  {0}; hence ๐‘†1๐‘ฅ๐‘†1 = ๐ผ since ๐ผ is 0-minimal.Thus ๐ผ = ๐ผ3 = ๐ผ๐‘†1๐‘ฅ๐‘†1๐ผ โŠ† ๐ผ๐‘ฅ๐ผ โŠ† ๐ผ. Therefore ๐ผ๐‘ฅ๐ผ = ๐ผ for all ๐‘ฅ โˆˆ ๐ผโˆ– {0}and so ๐ผ is 0-simple by Lemma 3.7. So ๐ผ is either null or 0-simple.

b) First, note that if ๐‘† has a zero 0, its unique minimal ideal is {0}, whichis simple. So suppose that ๐ผ is a minimal ideal of a semigroup ๐‘† thatdoes not contain a zero. Then ๐ผ2 is an ideal of ๐‘† and ๐ผ2 โŠ† ๐ผ. So ๐ผ2 = ๐ผsince ๐ผ is minimal. Hence ๐ผ3 = ๐ผ.

Suppose ๐ฝ is an ideal of ๐ผ. Let ๐‘ฅ โˆˆ ๐ฝ. Then ๐ผ๐‘ฅ๐ผ โŠ† ๐ฝ since ๐ฝ is anideal of ๐ผ. Then ๐‘†1๐‘ฅ๐‘†1 is an ideal of ๐‘† and ๐‘†1๐‘ฅ๐‘†1 โŠ† ๐ผ; hence ๐‘†1๐‘ฅ๐‘†1 = ๐ผsince ๐ผ is minimal. Therefore ๐ฝ โŠ† ๐ผ = ๐ผ3 = ๐ผ๐‘†1๐‘ฅ๐‘†1๐ผ โŠ† ๐ผ๐‘ฅ๐ผ โŠ† ๐ฝ and so๐ฝ = ๐ผ. So ๐ผ is simple. 3.8

For any ๐‘ฅ โˆˆ ๐‘†, recall that ๐ฝ(๐‘ฅ) = ๐‘†1๐‘ฅ๐‘†1, and that the J-class of ๐‘ฅ,denoted ๐ฝ๐‘ฅ, is the set of all elements of the semigroup that generate (asa principal ideal) ๐ฝ(๐‘ฅ). Let ๐ผ(๐‘ฅ) = ๐ฝ(๐‘ฅ) โˆ– ๐ฝ๐‘ฅ. Notice that ๐ผ(๐‘ฅ) = { ๐‘ฆ โˆˆ ๐‘† โˆถ ๐ผ(๐‘†)๐ฝ๐‘ฆ < ๐ฝ๐‘ฅ }.

L emma 3 . 9. Let ๐‘† be a semigroup and ๐‘ฅ โˆˆ ๐‘†. Then ๐ผ(๐‘ฅ) is either emptyor an ideal of ๐‘†.

Proof of 3.9. Suppose ๐ผ(๐‘ฅ) โ‰  โˆ…. Let ๐‘ฆ โˆˆ ๐ผ(๐‘ฅ) and ๐‘ง โˆˆ ๐‘†. Then ๐‘ฆ๐‘ง โˆˆ ๐ฝ(๐‘ฅ)since ๐ฝ(๐‘ฅ) is an ideal. But ๐ฝ(๐‘ฆ๐‘ง) โŠ† ๐ฝ(๐‘ฆ) โŠŠ ๐ฝ(๐‘ฅ) (since ๐ฝ(๐‘ฆ) = ๐ฝ(๐‘ฅ) wouldimply ๐‘ฆ โˆˆ ๐ฝ๐‘ฅ). Hence ๐‘ฆ๐‘ง โˆˆ ๐ผ(๐‘ฅ). Similarly ๐‘ง๐‘ฆ โˆˆ ๐ผ(๐‘ฅ). Hence ๐ผ(๐‘ฅ) is anideal. 3.9

The factor semigroups ๐ฝ(๐‘ฅ)/๐ผ(๐‘ฅ) (where ๐‘ฅ is such that ๐ผ(๐‘ฅ) โ‰  0) and Principal factorsthe kernel ๐พ(๐‘†) are called the principal factors of ๐‘†.

P ro p o s i t i on 3 . 1 0. Let ๐‘† be a semigroup. If the kernel ๐พ(๐‘†) exists, Principal factors arenull or 0-simpleit is simple. All other principal factors of ๐‘† are either null or 0-simple.

Proof of 3.10. By Proposition 3.8(b), if ๐พ(๐‘†) exists, it is simple.The principal factor ๐ฝ(๐‘ฅ)/๐ผ(๐‘ฅ) is a 0-minimal ideal of ๐‘†/๐ผ(๐‘ฅ) and so

is 0-simple by Proposition 3.8(a). 3.10

Simple and 0-simple semigroups โ€ข 59

Page 68: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

A principal series of a semigroup ๐‘† is a finite chain of idealsPrincipal series

๐พ(๐‘†) = ๐‘†1 โŠŠ ๐‘†2 โŠŠ โ€ฆ โŠŠ ๐‘†๐‘› = ๐‘† (3.3)

that is maximal in the sense that there is no ideal ๐ผ such that ๐‘†๐‘– โŠŠ ๐ผ โŠŠ ๐‘†๐‘–+1.Not all semigroups admit principal series. Indeed, even if a semigrouphas a kernel, it may not admit a principal series: for example, let ๐‘† bethe semigroup (โ„•, +). Then ๐‘†0 has a minimal ideal {0} but no principalseries.We now have an analogy for semigroups of the Jordanโ€“Hรถlder the-

orem for groups, which states that any composition series for a groupcontains the the same composition factors in some order.

T h eorem 3 . 1 1. Let ๐‘† be a semigroup admitting a principal seriesโ€˜Jordanโ€“Hรถlder theoremโ€™for semigroups (3.3). Then the factors ๐‘†๐‘–+1/๐‘†๐‘– are, in some order, isomorphic to the principal

factors of ๐‘†.

Proof of 3.11. [Not especially difficult, but technical and omitted.] 3.11

D-class structure

Since L โŠ† D and R โŠ† D, every D-class must be botha union of L-classes and a union of R-classes. On other hand, supposethat anL-class ๐ฟ๐‘ฅ and aR-class ๐‘…๐‘ฆ intersect. Then there is some element๐‘ง โˆˆ ๐ฟ๐‘ฅ โˆฉ ๐‘…๐‘ฆ. So ๐‘ฅ L ๐‘ง R ๐‘ฆ and so ๐‘ฅ D ๐‘ฆ. Hence ๐ฟ๐‘ฅ and ๐‘…๐‘ฆ are bothcontained within the same D-class. Therefore an L-class and an R-classintersect if and only if they are contained within the same D-class.

Thus we can visualize a D-class in the following useful way: Imaginethe elements of thisD-class arranged in a rectangular pattern.This patternis divided into a grid of cells. Each column of cells is an L-class; eachrow is an R-class, and every cell is the H-class that is the intersection ofthe L- and R-class forming the column and row that contain that cell.This visualization is called an egg-box diagram; see Figure 3.2. A usefulmnemonic for remembering the arrangement of an egg-box diagram is:R-classes are Rows and L-classes are coLumns. For a concrete exampleof an egg-box diagram, see Figure 3.7 on page 69, which is drawn usingthe result in Exercise 3.3.

G r e e n โ€™ s L e m m a 3 . 1 2. a) Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† be such that ๐‘ฅ L ๐‘ฆ andGreenโ€™s lemmalet ๐‘, ๐‘ž โˆˆ ๐‘†1 be such that ๐‘๐‘ฅ = ๐‘ฆ and ๐‘ž๐‘ฆ = ๐‘ฅ. Then the โ€˜left multi-plicationโ€™ maps ๐œ†๐‘|๐‘…๐‘ฅ and ๐œ†๐‘ž|๐‘…๐‘ฆ (where ๐‘ก๐œ†๐‘ง = ๐‘ง๐‘ก) are mutually inversebijections between๐‘…๐‘ฅ and๐‘…๐‘ฆ. Furthermore, both of these maps preserveL-classes, in the sense that ๐‘ก๐œ†๐‘|๐‘…๐‘ฅ L ๐‘ก and ๐‘ก๐œ†๐‘ž|๐‘…๐‘ฆ L ๐‘ก, and so ๐œ†๐‘|๐ป๐‘ฅand ๐œ†๐‘ž|๐ป๐‘ฆ are mutually inverse bijections between ๐ป๐‘ฅ and ๐ป๐‘ฆ. (SeeFigure 3.3.)

60 โ€ขStructure of semigroups

Page 69: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐ฟ๐‘ฅ

๐‘…๐‘ฅ ๐ป๐‘ฅ๐‘ฅ

FIGURE 3.2An egg-box diagram for theD-class ๐ท๐‘ฅ . The R-class ๐‘…๐‘ฅ andtheL-class ๐ฟ๐‘ฅ are representedby the row and column thatintersect in the box represent-ing theH-class๐ป๐‘ฅ , which con-tains the element ๐‘ฅ.

๐ฟ๐‘ฅ = ๐ฟ๐‘ฆ

๐‘…๐‘ฅ

๐‘…๐‘ฆ

๐‘ฅ

๐‘ฆ

๐œ†๐‘๐œ†๐‘ž ๐œ†๐‘|๐‘…๐‘ฅ๐œ†๐‘ž|๐‘…๐‘ฆ

๐œ†๐‘|๐‘…๐‘ฅ๐œ†๐‘ž|๐‘…๐‘ฆ = id๐‘…๐‘ฅ

๐œ†๐‘ž|๐‘…๐‘ฆ๐œ†๐‘|๐‘…๐‘ฅ = id๐‘…๐‘ฆ

๐œ†๐‘|๐‘…๐‘ฅ๐œ†๐‘ž|๐‘…๐‘ฆ

FIGURE 3.3Greenโ€™s lemma: if ๐‘ and ๐‘ž re-spectively left-multiply ๐‘ฅ togive ๐‘ฆ and ๐‘ฆ to give ๐‘ฅ, thenthe left multiplication maps ๐œ†๐‘and ๐œ†๐‘ž restrict to mutually in-verse bijections between theR-classes๐‘…๐‘ฅ and๐‘…๐‘ฆ (the rowscontaining ๐‘ฅ and ๐‘ฆ), and bothof these restricted maps pre-serveL-classes (columns).

b) Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† be such that ๐‘ฅ R ๐‘ฆ and let ๐‘, ๐‘ž โˆˆ ๐‘†1 be such that ๐‘ฅ๐‘ = ๐‘ฆand ๐‘ฆ๐‘ž = ๐‘ฅ.Then the โ€˜right multiplicationโ€™ maps ๐œŒ๐‘|๐ฟ๐‘ฅ and ๐œŒ๐‘ž|๐ฟ๐‘ฆ (where๐‘ก๐œŒ๐‘ง = ๐‘ก๐‘ง) are mutually inverse bijections between ๐ฟ๐‘ฅ and ๐ฟ๐‘ฆ, and bothof these maps preserve R-classes.

Proof of 3.12. We prove only part a); the other part is proved by a dualargument.

First, notice that

๐‘ง โˆˆ ๐‘…๐‘ฅ โ‡’ ๐‘ง R ๐‘ฅโ‡’ ๐‘ง๐œ†๐‘|๐‘…๐‘ฅ = ๐‘๐‘ง R ๐‘๐‘ฅ = ๐‘ฆ [since R is a left congruence]

โ‡’ ๐‘ง๐œ†๐‘|๐‘…๐‘ฅ โˆˆ ๐‘…๐‘ฆ.

So ๐œ†๐‘|๐‘…๐‘ฅ maps ๐‘…๐‘ฅ to ๐‘…๐‘ฆ and similarly ๐œ†๐‘ž|๐‘…๐‘ฆ maps ๐‘…๐‘ฆ to ๐‘…๐‘ฅ.Second, suppose ๐‘ง โˆˆ ๐‘…๐‘ฅ. Then there exists ๐‘Ÿ โˆˆ ๐‘†1 such that ๐‘ฅ๐‘Ÿ = ๐‘ง.

Then ๐‘ง๐œ†๐‘|๐‘…๐‘ฅ๐œ†๐‘ž|๐‘…๐‘ฆ = (๐‘ฅ๐‘Ÿ)๐œ†๐‘|๐‘…๐‘ฅ๐œ†๐‘ž|๐‘…๐‘ฆ = ๐‘ž๐‘๐‘ฅ๐‘Ÿ = ๐‘ž๐‘ฆ๐‘Ÿ = ๐‘ฅ๐‘Ÿ = ๐‘ง. Hence

D-class structure โ€ข 61

Page 70: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐œ†๐‘|๐‘…๐‘ฅ๐œ†๐‘ž|๐‘…๐‘ฆ = id๐‘…๐‘ฅ . Similarly ๐œ†๐‘ž|๐‘…๐‘ฆ๐œ†๐‘|๐‘…๐‘ฅ = id๐‘…๐‘ฆ . So ๐œ†๐‘|๐‘…๐‘ฅ and ๐œ†๐‘ž|๐‘…๐‘ฆ aremutually inverse bijections.

Finally, if ๐‘ง = ๐‘ก๐œ†๐‘|๐‘…๐‘ฅ , then ๐‘ง = ๐‘๐‘ก and ๐‘ก = ๐‘ง(๐œ†๐‘|๐‘…๐‘ฅ )โˆ’1 = ๐‘ง๐œ†๐‘ž|๐‘…๐‘ฆ = ๐‘ž๐‘ง

and so ๐‘ง L ๐‘ก. Hence ๐œ†๐‘|๐‘…๐‘ฅ preserves L-classes. 3.12

Prop o s i t i on 3 . 1 3. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† be such that ๐‘ฅ D ๐‘ฆ. Then |๐ป๐‘ฅ| =H-classes in thesame D-class have

the same cardinality|๐ป๐‘ฆ|.

Proof of 3.13. Assume ๐‘ฅ D ๐‘ฆ. So there exists ๐‘ง such that ๐‘ฅ L ๐‘ง and ๐‘ง R ๐‘ฆ.Let ๐‘, ๐‘ž, ๐‘Ÿ, ๐‘  โˆˆ ๐‘†1 be such that ๐‘๐‘ฅ = ๐‘ง, ๐‘ž๐‘ง = ๐‘ฅ, ๐‘ง๐‘Ÿ = ๐‘ฆ, and ๐‘ฆ๐‘  = ๐‘ง. ByLemma 3.12, ๐œ†๐‘|๐ป๐‘ฅ โˆถ ๐ป๐‘ฅ โ†’ ๐ป๐‘ง is a bijection, and ๐œŒ๐‘Ÿ|๐ป๐‘ง โˆถ ๐ป๐‘ง โ†’ ๐ป๐‘ฆ isa bijection. So ๐œ†๐‘|๐ป๐‘ฅ๐œŒ๐‘Ÿ|๐ป๐‘ง โˆถ ๐ป๐‘ฅ โ†’ ๐ป๐‘ฆ is a bijection, and hence |๐ป๐‘ฅ| =|๐ป๐‘ฆ|. 3.13

Pro p o s i t i on 3 . 1 4. Let๐ป be an H-class of ๐‘†. Then either:Two types of H-class

a) ๐ป2 โˆฉ ๐ป = โˆ…, orb) the following equivalent statements hold:

i) ๐ป2 โˆฉ ๐ป โ‰  โˆ…;ii) ๐ป contains an idempotent;iii) ๐ป2 = ๐ป;iv) ๐ป is a subsemigroup of ๐‘†;v) ๐ป is a subgroup of ๐‘†.

Proof of 3.14. If๐ป2 โˆฉ๐ป = โˆ… there is nothing further to prove. So supposethat๐ป2 โˆฉ๐ป โ‰  โˆ…. Then there exist ๐‘ , ๐‘ก โˆˆ ๐ป such that ๐‘ ๐‘ก โˆˆ ๐ป. Then ๐‘  H ๐‘ ๐‘ก.In particular, ๐‘  R ๐‘ ๐‘ก. So by Lemma 3.12(b), ๐œŒ๐‘ก|๐ป is a bijection from ๐ปto itself. Similarly ๐‘ก L ๐‘ ๐‘ก, and thus, by Lemma 3.12(a), ๐œ†๐‘ |๐ป is a bijectionfrom๐ป to itself.

Now let ๐‘ง โˆˆ ๐ป. Then ๐‘ ๐‘ง = ๐‘ง๐œ†๐‘ |๐ป and ๐‘ง๐‘ก = ๐‘ง๐œŒ๐‘ก|๐ป are both in๐ป. Againby Lemma 3.12, ๐œŒ๐‘ง|๐ป and ๐œ†๐‘ง|๐ป are bijections from๐ป to itself. Since ๐‘ง โˆˆ ๐ปwas arbitrary, it follows that ๐‘ง๐ป = ๐ป๐‘ง = ๐ป for all ๐‘ง โˆˆ ๐ป. Therefore๐ป isa subgroup by Lemma 1.9.

We have shown that statement i) implies statement v). Statement v)clearly implies statements ii), iii), and iv), and each of these implies state-ment i). So all five statements are equivalent. 3.14

A maximal subgroup is a subgroup that does not lie inside any largersubgroup.

P ro p o s i t i on 3 . 1 5. The maximal subgroups of ๐‘† are precisely theMaximal subgroup =H-classcontaining an idempotent H-classes of ๐‘† that contain idempotents.

Proof of 3.15. Since every element of a subgroup is H-related, it followsthat any subgroup is contained within a single H-class. So a maximalsubgroup ๐บ is contained within a single H-class ๐ป. But ๐ป thereforecontains an idempotent 1๐บ and so is itself a subgroup by Proposition 3.14.Hence๐ป = ๐บ. 3.15

62 โ€ขStructure of semigroups

Page 71: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

C oro l l a ry 3 . 1 6. AnH-class contains at most one idempotent. 3.16

Prop o s i t i on 3 . 1 7. Let ๐‘’ โˆˆ ๐‘† be idempotent. Then ๐‘’๐‘ฅ = ๐‘ฅ for all Idempotents areโ€˜left/right identitiesโ€™for their R/L-classes

๐‘ฅ โˆˆ ๐‘…๐‘’ and ๐‘ฆ๐‘’ = ๐‘ฆ for all ๐‘ฆ โˆˆ ๐ฟ๐‘’.

Proof of 3.17. Suppose ๐‘ฅ โˆˆ ๐‘…๐‘’. Then there exists ๐‘ โˆˆ ๐‘†1 such that ๐‘’๐‘ = ๐‘ฅ.Hence ๐‘’๐‘ฅ = ๐‘’๐‘’๐‘ = ๐‘’๐‘ = ๐‘ฅ. Hence ๐‘’ is a left identity for ๐‘…๐‘’. Similarly ๐‘’ isa right identity for ๐ฟ๐‘’. 3.17

Pro p o s i t i on 3 . 1 8. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† with ๐‘ฅ D ๐‘ฆ. Then ๐‘ฅ๐‘ฆ โˆˆ ๐ฟ๐‘ฆ โˆฉ ๐‘…๐‘ฅ if Products locatedby idempotentsand only if ๐ฟ๐‘ฅ โˆฉ ๐‘…๐‘ฆ contains an idempotent. (See Figure 3.4.)

๐ฟ๐‘ฅ ๐ฟ๐‘ฆ

๐‘…๐‘ฅ

๐‘…๐‘ฆ

๐‘ฅ

๐‘’

๐‘ฅ๐‘ฆ

๐‘ฆ

FIGURE 3.4Products are located by idem-potents: ๐‘ฅ๐‘ฆ โˆˆ ๐ฟ๐‘ฆ โˆฉ ๐‘…๐‘ฅ if andonly if ๐ฟ๐‘ฅ โˆฉ ๐‘…๐‘ฆ contains ๐‘’ โˆˆ๐ธ(๐‘†).

Proof of 3.18. Suppose that ๐‘ฅ๐‘ฆ โˆˆ ๐ฟ๐‘ฆ โˆฉ ๐‘…๐‘ฅ. In particular ๐‘ฅ๐‘ฆ R ๐‘ฅ. Hencethere exists ๐‘ž โˆˆ ๐‘†1 such that ๐‘ฅ๐‘ฆ๐‘ž = ๐‘ฅ. By Lemma 3.12, ๐œŒ๐‘ฆ|๐ฟ๐‘ฅ โˆถ ๐ฟ๐‘ฅ โ†’ ๐ฟ๐‘ฅ๐‘ฆand ๐œŒ๐‘ž|๐ฟ๐‘ฅ๐‘ฆ โˆถ ๐ฟ๐‘ฅ๐‘ฆ โ†’ ๐ฟ๐‘ฅ are mutually inverseR-class preserving bijectionsbetween ๐ฟ๐‘ฅ and ๐ฟ๐‘ฅ๐‘ฆ. Since ๐‘ฅ๐‘ฆ L ๐‘ฆ, these maps are in fact mutuallyinverse R-class preserving bijections between ๐ฟ๐‘ฅ and ๐ฟ๐‘ฆ

Hence (๐‘ฆ๐‘ž)2 = ๐‘ฆ๐‘ž๐‘ฆ๐‘ž = ๐‘ฆ๐œŒ๐‘ž|๐ฟ๐‘ฆ๐œŒ๐‘ฆ|๐ฟ๐‘ฅ๐œŒ๐‘ž|๐ฟ๐‘ฆ = ๐‘ฆ๐œŒ๐‘ž|๐ฟ๐‘ฆ = ๐‘ฆ๐‘ž. Hence ๐‘ฆ๐‘ž isidempotent. Furthermore, ๐‘ฆ๐‘ž = ๐‘ฆ๐œŒ๐‘ž|๐ฟ๐‘ฆ โˆˆ ๐ฟ๐‘ฅ โˆฉ ๐‘…๐‘ฆ.

Now suppose that ๐ฟ๐‘ฅ โˆฉ ๐‘…๐‘ฆ contains an idempotent ๐‘’. Then ๐‘’๐‘ฆ = ๐‘ฆby Proposition 3.17. Since ๐‘’ R ๐‘ฆ, the map ๐œŒ๐‘ฆ|๐ฟ๐‘’ โˆถ ๐ฟ๐‘’ โ†’ ๐ฟ๐‘ฆ is an R-classpreserving bijection by Lemma 3.12. Hence ๐‘ฅ๐‘ฆ โˆˆ ๐‘…๐‘ฅ โˆฉ ๐ฟ๐‘ฆ. 3.18

Inverses and D-classes

Proposition 3.18 shows a close relationship between theproduct of two elements of a D-class and idempotents in that D-class. Itis thus not surprising that idempotents and inverses in a D-class are alsoconnected.

P ro p o s i t i on 3 . 1 9. If ๐‘ฅ โˆˆ ๐‘† is regular, then every element of ๐ท๐‘ฅ is Either every element of๐ท๐‘ฅ is regular or none areregular.

Proof of 3.19. Suppose ๐‘ฅ is regular. Then there exists ๐‘ฆ โˆˆ ๐‘† such that๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ฅ. Suppose ๐‘ง L ๐‘ฅ. Then there exist ๐‘, ๐‘ž โˆˆ ๐‘†1 such that ๐‘๐‘ง = ๐‘ฅand ๐‘ž๐‘ฅ = ๐‘ง. Hence ๐‘ง = ๐‘ž๐‘ฅ = ๐‘ž๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ง๐‘ฆ๐‘๐‘ง and so ๐‘ง is regular. So everyelement of ๐ฟ๐‘ฅ is regular. A dual argument shows that if ๐‘ก โˆˆ ๐‘† is regular,every element of ๐‘…๐‘ก is regular. Combining these, we see that if ๐‘ฅ is regular,every element of๐ท๐‘ฅ is regular. 3.19

A D-class is regular if all its elements are regular, and otherwise is Regular/irregular D-classirregular.

P ro p o s i t i on 3 . 2 0. In a regular D-class, every L-class and every Idempotents in aregular D-classR-class contains an idempotent.

Inverses and D-classes โ€ข 63

Page 72: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 3.20. Let๐‘ฅ โˆˆ ๐‘† be such that๐ท๐‘ฅ is regular. In particular,๐‘ฅ is regularand so ๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ฅ for some ๐‘ฆ โˆˆ ๐‘†. Now, ๐‘ฆ๐‘ฅ L ๐‘ฅ and (๐‘ฆ๐‘ฅ)2 = ๐‘ฆ๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ฆ๐‘ฅ.So ๐‘ฆ๐‘ฅ is an idempotent in ๐ฟ๐‘ฅ. Similarly ๐‘ฅ๐‘ฆ is an idempotent in ๐‘…๐‘ฅ. Thusevery L-class and R-class contains an idempotent. 3.20

Recall that ๐‘‰(๐‘ฅ) denotes the set of inverses of ๐‘ฅ.

P ro p o s i t i on 3 . 2 1. If ๐‘ฅ lies in a regular D-class, then:a) if ๐‘ฅโ€ฒ โˆˆ ๐‘‰(๐‘ฅ), then ๐‘ฅ R ๐‘ฅ๐‘ฅโ€ฒ L ๐‘ฅโ€ฒ and ๐‘ฅ L ๐‘ฅโ€ฒ๐‘ฅ R ๐‘ฅโ€ฒ and so ๐‘ฅ D ๐‘ฅโ€ฒ;b) if ๐‘ง โˆˆ ๐ท๐‘ฅ is such that ๐ฟ๐‘ง โˆฉ ๐‘…๐‘ฅ contains an idempotent ๐‘’ and ๐‘…๐‘ง โˆฉ ๐ฟ๐‘ฅ

contains an idempotent ๐‘“, then๐ป๐‘ง contains some ๐‘ก โˆˆ ๐‘‰(๐‘ฅ) with ๐‘ฅ๐‘ก = ๐‘’and ๐‘ก๐‘ฅ = ๐‘“;

c) an H-class contains at most one member of ๐‘‰(๐‘ฅ).

Proof of 3.21. a) Let ๐‘ฅโ€ฒ โˆˆ ๐‘‰(๐‘ฅ). Then ๐‘ฅ๐‘ฅโ€ฒ๐‘ฅ = ๐‘ฅ and ๐‘ฅโ€ฒ๐‘ฅ๐‘ฅโ€ฒ = ๐‘ฅโ€ฒ. Then๐‘ฅ R ๐‘ฅ๐‘ฅโ€ฒ L ๐‘ฅโ€ฒ and so ๐‘ฅ D ๐‘ฅโ€ฒ; furthermore ๐‘ฅ L ๐‘ฅโ€ฒ๐‘ฅ R ๐‘ฅโ€ฒ. (SeeFigure 3.5.)

๐ฟ๐‘ฅ ๐ฟ๐‘ฅโ€ฒ

๐‘…๐‘ฅ

๐‘…๐‘ฅโ€ฒ

๐‘ฅ

๐‘ฅโ€ฒ๐‘ฅ

๐‘ฅ๐‘ฅโ€ฒ

๐‘ฅโ€ฒ

FIGURE 3.5๐‘ฅ and ๐‘ฅโ€ฒ โˆˆ ๐‘‰(๐‘ฅ) in a regular

D-class

b) Since ๐‘ฅ R ๐‘’, there exists ๐‘, ๐‘ž โˆˆ ๐‘†1 with ๐‘ฅ๐‘ = ๐‘’ and ๐‘’๐‘ž = ๐‘ฅ. Let๐‘ก = ๐‘“๐‘๐‘’. Then

๐‘ฅ๐‘ก๐‘ฅ = ๐‘ฅ๐‘“๐‘๐‘’๐‘ฅ [by definition of ๐‘ก]= ๐‘ฅ๐‘๐‘ฅ [since ๐‘ฅ๐‘“ = ๐‘ฅ and ๐‘’๐‘ฅ = ๐‘ฅ by Proposition 3.17]= ๐‘’๐‘ฅ [since ๐‘ฅ๐‘ = ๐‘’]= ๐‘ฅ [since ๐‘’๐‘ฅ = ๐‘ฅ by Proposition 3.17]

and

๐‘ก๐‘ฅ๐‘ก = ๐‘“๐‘๐‘’๐‘ฅ๐‘“๐‘๐‘’ [by choice of ๐‘ก]= ๐‘“๐‘๐‘ฅ๐‘๐‘’ [since ๐‘ฅ๐‘“ = ๐‘ฅ and ๐‘’๐‘ฅ = ๐‘ฅ by Proposition 3.17]= ๐‘“๐‘๐‘’2 [since ๐‘ฅ๐‘ = ๐‘’]= ๐‘“๐‘๐‘’ [since ๐‘’ is idempotent]= ๐‘ก. [by definition of ๐‘ก]

Hence ๐‘ก โˆˆ ๐‘‰(๐‘ฅ). Furthermore, ๐‘ฅ๐‘ก = ๐‘ฅ๐‘“๐‘๐‘’ = ๐‘ฅ๐‘๐‘’ = ๐‘’2 = ๐‘’. Finally,note that ๐œŒ๐‘|๐ฟ๐‘ฅ โˆถ ๐ฟ๐‘ฅ โ†’ ๐ฟ๐‘’ and ๐œŒ๐‘ž|๐ฟ๐‘’ โˆถ ๐ฟ๐‘’ โ†’ ๐ฟ๐‘ฅ are mutually inverseR-class preserving bijections by Lemma 3.12(b). Hence

๐‘ก๐‘ฅ = ๐‘“๐‘๐‘’๐‘ฅ [by definition of ๐‘ก]= (๐‘“๐œŒ๐‘|๐ฟ๐‘ฅ )๐‘’๐‘ฅ [by definition of ๐œŒ๐‘|๐ฟ๐‘ฅ ]

= (๐‘“๐œŒ๐‘|๐ฟ๐‘ฅ )๐‘’2๐‘ž [since ๐‘’๐‘ž = ๐‘ฅ]

= (๐‘“๐œŒ๐‘|๐ฟ๐‘ฅ )๐‘’๐‘ž [since ๐‘’ is idempotent]

= (๐‘“๐œŒ๐‘|๐ฟ๐‘ฅ )๐‘ž [by Proposition 3.17, since ๐‘“๐œŒ๐‘|๐ฟ๐‘ฅ โˆˆ ๐ฟ๐‘’]

= ๐‘“๐œŒ๐‘|๐ฟ๐‘ฅ๐œŒ๐‘ž|๐ฟ๐‘’ [by definition of ๐œŒ๐‘ž|๐ฟ๐‘’ ]

= ๐‘“. [since ๐œŒ๐‘|๐ฟ๐‘ฅ and ๐œŒ๐‘ž|๐ฟ๐‘’ are mutually inverse]

64 โ€ขStructure of semigroups

Page 73: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Now combine some of the facts we have established: from ๐‘ก = ๐‘“๐‘๐‘’and ๐‘’ = ๐‘ฅ๐‘ก, we see that ๐‘ก L ๐‘’; from ๐‘ก = ๐‘“๐‘๐‘’ and ๐‘“ = ๐‘ก๐‘ฅ, we see that๐‘ก R ๐‘“. Hence ๐‘ก โˆˆ ๐ฟ๐‘’ โˆฉ ๐‘…๐‘“ = ๐ป๐‘ง. (See Figure 3.6.)

๐ฟ๐‘ฅ ๐ฟ๐‘ง

๐‘…๐‘ฅ

๐‘…๐‘ง

๐‘ฅ

๐‘“

๐‘’

๐‘ง, ๐‘ก

FIGURE 3.6Inverse ๐‘ก corresponding toidempotents ๐‘’ and ๐‘“ in aregularD-class

c) Suppose ๐‘ฅโ€ฒ, ๐‘ฅโ€ณ โˆˆ ๐‘‰(๐‘ฅ) and ๐‘ฅโ€ฒ H ๐‘ฅโ€ณ; we aim to show ๐‘ฅโ€ฒ = ๐‘ฅโ€ณ. Then๐‘ฅ๐‘ฅโ€ฒ and ๐‘ฅ๐‘ฅโ€ณ are idempotents lying inside ๐ฟ๐‘ฅโ€ฒ โˆฉ๐‘…๐‘ฅ = ๐ฟ๐‘ฅโ€ณ โˆฉ๐‘…๐‘ฅ. Hence๐‘ฅ๐‘ฅโ€ฒ = ๐‘ฅ๐‘ฅโ€ณ by Corollary 3.16. Similarly ๐‘ฅโ€ฒ๐‘ฅ = ๐‘ฅโ€ณ๐‘ฅ. Therefore ๐‘ฅโ€ฒ =๐‘ฅโ€ฒ๐‘ฅ๐‘ฅโ€ฒ = ๐‘ฅโ€ฒ๐‘ฅ๐‘ฅโ€ณ = ๐‘ฅโ€ณ๐‘ฅ๐‘ฅโ€ณ = ๐‘ฅโ€ณ. 3.21

Example 1.7 noted that every element of a rectangular band is aninverse of every element. Exercise 3.5 shows that the H-classes of a rect-angular band are the singleton sets. Thus it is possible for an element ๐‘ฅto have an inverse in every H-class. Exercise 3.5 also notes that a rectan-gular band consists of a single D-class (which must be regular, since allelements of a rectangular band are idempotent), so all these inverses of ๐‘ฅare D-related to ๐‘ฅ, which fits with Proposition 3.21(a).

C oro l l ary 3 . 2 2. Let ๐‘’, ๐‘“ โˆˆ ๐‘† be idempotents. Then ๐‘’ D ๐‘“ if andonly if there exist ๐‘ฅ โˆˆ ๐‘† and ๐‘ฅโ€ฒ โˆˆ ๐‘‰(๐‘ฅ) such that ๐‘ฅ๐‘ฅโ€ฒ = ๐‘’ and ๐‘ฅโ€ฒ๐‘ฅ = ๐‘“.

Proof of 3.22. Suppose ๐‘’ D ๐‘“. Then๐ท๐‘’ = ๐ท๐‘“ is a regular D-class since itcontains the regular elements ๐‘’ and๐‘“. Choose ๐‘ฅ โˆˆ ๐‘…๐‘’โˆฉ๐ฟ๐‘“ and ๐‘ง โˆˆ ๐ฟ๐‘’โˆฉ๐‘…๐‘“.Then by Proposition 3.21(b), ๐ป๐‘ง contains some ๐‘ฅโ€ฒ โˆˆ ๐‘‰(๐‘ฅ) such that๐‘ฅ๐‘ฅโ€ฒ = ๐‘’ and ๐‘ฅโ€ฒ๐‘ฅ = ๐‘“.

Suppose now that ๐‘ฅ โˆˆ ๐‘† and ๐‘ฅโ€ฒ โˆˆ ๐‘‰(๐‘ฅ) are such that ๐‘ฅ๐‘ฅโ€ฒ = ๐‘’ and๐‘ฅโ€ฒ๐‘ฅ = ๐‘“. Since ๐‘’ = ๐‘ฅ๐‘ฅโ€ฒ and ๐‘’๐‘ฅ = ๐‘ฅ๐‘ฅโ€ฒ๐‘ฅ = ๐‘ฅ, it follows that ๐‘ฅ R ๐‘’. A dualargument shows that ๐‘ฅ L ๐‘“. Thus ๐‘’ R ๐‘ฅ L ๐‘“ and so ๐‘’ D ๐‘“. 3.22

Schรผtzenberger groups

Let ๐‘† be a semigroup and let ๐ป be an H-class of ๐‘†. LetStab(๐ป) = { ๐‘ฅ โˆˆ ๐‘†1 โˆถ ๐ป๐‘ฅ = ๐ป }. Clearly, the adjoined identity 1 lies in Stab(๐ป)Stab(๐ป). If ๐‘ฅ, ๐‘ฆ โˆˆ Stab(๐ป), then๐ป๐‘ฅ๐‘ฆ = ๐ป๐‘ฆ = ๐ป and so ๐‘ฅ๐‘ฆ โˆˆ Stab(๐ป);thus Stab(๐ป) is a submonoid of ๐‘†1. Define a relation ๐œŽ๐ป on Stab(๐ป) by ๐œŽ๐ป

๐‘ฅ ๐œŽ๐ป ๐‘ฆ โ‡” (โˆ€โ„Ž โˆˆ ๐ป)(โ„Ž๐‘ฅ = โ„Ž๐‘ฆ).

Let ๐‘ฅ ๐œŽ๐ป ๐‘ฆ and ๐‘ง ๐œŽ๐ป ๐‘ก. Let โ„Ž โˆˆ ๐ป. Then โ„Ž๐‘ฅ = โ„Ž๐‘ฆ by the definition of ๐œŽ๐ป.Since ๐‘ฅ, ๐‘ฆ โˆˆ Stab(๐ป), we have โ„Ž๐‘ฅ = โ„Ž๐‘ฆ = โ„Žโ€ฒ โˆˆ ๐ป. Thus โ„Žโ€ฒ๐‘ง = โ„Žโ€ฒ๐‘ก, againby the definition of ๐œŽ๐ป, and so โ„Ž(๐‘ฅ๐‘ง) = โ„Ž(๐‘ฆ๐‘ก). Since โ„Ž โˆˆ ๐ป was arbitrary,๐‘ฅ๐‘ง ๐œŽ๐ป ๐‘ฆ๐‘ก. Therefore ๐œŽ๐ป is a congruence on Stab(๐ป). Let ๐›ค(๐ป) denote ๐›ค(๐ป)the factor semigroup Stab(๐ป)/๐œŽ๐ป.

P ro p o s i t i on 3 . 2 3. Let๐ป be an H-class of a semigroup. Then ๐›ค(๐ป)is a group.

Schรผtzenberger groups โ€ข 65

Page 74: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 3.23. First of all note that ๐›ค(๐ป) is a monoid with identity [1]๐œŽ๐ป ,since it is a quotient of the monoid Stab(๐ป).

Let ๐‘ฅ โˆˆ Stab(๐ป) and let โ„Ž โˆˆ ๐ป. Then โ„Ž๐‘ฅ โˆˆ ๐ป. In particular, โ„Ž๐‘ฅ R โ„Žand so there exists ๐‘ž โˆˆ ๐‘†1 such that โ„Ž๐‘ฅ๐‘ž = โ„Ž. Hence by Lemma 3.12, ๐œŒ๐‘ฅ|๐ปand ๐œŒ๐‘ž|๐ป are mutually inverse bijections. In particular,๐ป๐‘ž = ๐ป๐œŒ๐‘ž = ๐ป,and so ๐‘ž โˆˆ Stab(๐ป).

Thus for any โ„Žโ€ฒ โˆˆ ๐ป, we have

โ„Žโ€ฒ๐‘ฅ๐‘ž = โ„Žโ€ฒ๐œŒ๐‘ฅ|๐ป๐œŒ๐‘ž|๐ป = โ„Žโ€ฒ = โ„Žโ€ฒ1,โ„Žโ€ฒ๐‘ž๐‘ฅ = โ„Žโ€ฒ๐œŒ๐‘ž|๐ป๐œŒ๐‘ฅ|๐ป = โ„Žโ€ฒ = โ„Žโ€ฒ1.

Hence๐‘ฅ๐‘ž ๐œŽ๐ป 1 and ๐‘ž๐‘ฅ ๐œŽ๐ป 1, and so [๐‘ฅ]๐œŽ๐ป [๐‘ž]๐œŽ๐ป = [1]๐œŽ๐ป and [๐‘ž]๐œŽ๐ป [๐‘ฅ]๐œŽ๐ป =[1]๐œŽ๐ป . Since ๐‘ฅ โˆˆ Stab(๐ป) was arbitrary, this proves that ๐›ค(๐ป) is a group.

3.23

The group ๐›ค(๐ป) is called the Schรผtzenberger group of๐ป. This notionSchรผtzenberger groupassociates a group to every H-class, not just those for which๐ป2 โˆฉ๐ป โ‰  โˆ…(see Proposition 3.14). We will see that when๐ป is a group H-class, ๐›ค(๐ป)is actually isomorphic to๐ป.

P ro p o s i t i on 3 . 2 4. Let๐ป be an H-class of a semigroup. Then the๐›ค(๐ป) acts regularly on๐ปSchรผtzenberger group ๐›ค(๐ป) acts regularly on๐ป via โ„Ž โ‹… [๐‘ฅ]๐œŽ๐ป = โ„Ž๐‘ฅ.

Proof of 3.24. First of all, note that the action โ„Žโ‹…[๐‘ฅ]๐œŽ๐ป = โ„Ž๐‘ฅ is well-defined,since if [๐‘ฅ]๐œŽ๐ป = [๐‘ฆ]๐œŽ๐ป , then ๐‘ฅ ๐œŽ๐ป ๐‘ฆ and so โ„Ž๐‘ฅ = โ„Ž๐‘ฆ by the definition of๐œŽ๐ป.

Let โ„Ž, โ„Žโ€ฒ โˆˆ ๐ป. Since in particular โ„Ž R โ„Žโ€ฒ, there exists ๐‘ โˆˆ ๐‘†1 suchthat โ„Ž๐‘ = โ„Žโ€ฒ. By Lemma 3.12, ๐œŒ๐‘|๐ป is a bijection from๐ป to itself, and so๐‘ โˆˆ Stab(๐ป), and hence [๐‘]๐œŽ๐ป โˆˆ ๐›ค(๐ป). Furthermore, โ„Ž โ‹… [๐‘]๐œŽ๐ป = โ„Ž๐‘ = โ„Žโ€ฒ.So ๐›ค(๐ป) acts transitively on๐ป.

To show that ๐›ค(๐ป) acts freely on๐ป, we have to show that [๐‘]๐œŽ๐ป is theunique element that acts on โ„Ž to give โ„Žโ€ฒ. So suppose โ„Ž โ‹… [๐‘ฆ]๐œŽ๐ป = โ„Žโ€ฒ. Let๐‘” โˆˆ ๐ป. Since ๐‘” L โ„Ž, there exists ๐‘ž โˆˆ ๐‘†1 such that ๐‘žโ„Ž = ๐‘”. Then

๐‘”๐‘ฆ = ๐‘žโ„Ž๐‘ฆ = ๐‘žโ„Ž โ‹… [๐‘ฆ]๐œŽ๐ป = ๐‘žโ„Žโ€ฒ = ๐‘žโ„Ž โ‹… [๐‘]๐œŽ๐ป = ๐‘žโ„Ž๐‘ = ๐‘”๐‘.

Since this holds for all ๐‘” โˆˆ ๐ป, it follows that ๐‘ฆ ๐œŽ๐ป ๐‘ and so [๐‘ฆ]๐œŽ๐ป = [๐‘]๐œŽ๐ป .Hence ๐›ค(๐ป) acts freely on๐ป.

Thus the action of ๐›ค(๐ป) on๐ป is regular. 3.24

C oro l l a ry 3 . 2 5. Let๐ป be anH-class of a semigroup.Then |๐›ค(๐ป)| =An H-class and itsSchรผtzenberger group

have the same size|๐ป|.

Proof of 3.25. Since ๐›ค(๐ป) acts regularly on๐ป, there is a one-to-one cor-respondence between the elements of๐ป and the elements of ๐›ค(๐ป) andso |๐ป| = |๐›ค(๐ป)|. 3.25

66 โ€ขStructure of semigroups

Page 75: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Strictly speaking, ๐›ค(๐ป) is the right Schรผtzenberger group of๐ป, be- Left Schรผtzenberger groupcause the definitions of Stab(๐ป) and ๐œŽ๐ป are in terms of right multiplic-ation of elements of ๐ป. This seems arbitrary, because we could makesimilar definitions using left multiplication:

Stabโ€ฒ(๐ป) = { ๐‘ฅ โˆˆ ๐‘†1 โˆถ ๐‘ฅ๐ป = ๐ป };๐‘ฅ ๐œŽโ€ฒ๐ป ๐‘ฆ โ‡” (โˆ€โ„Ž โˆˆ ๐ป)(๐‘ฅโ„Ž = ๐‘ฆโ„Ž);๐›คโ€ฒ(๐ป) = Stabโ€ฒ(๐ป)/๐œŽโ€ฒ๐ป.

Clearly, reasoning dual to the proofs of Propositions 3.23 and 3.24 showsthat ๐›คโ€ฒ(๐ป) is a group that acts regularly on๐ป on the left via [๐‘ฅ]๐œŽโ€ฒ๐ป โ‹… โ„Ž = ๐‘ฅโ„Ž.The group ๐›คโ€ฒ(๐ป) is called the left Schรผtzenberger group of๐ป.

P ro p o s i t i on 3 . 2 6. ๐›ค(๐ป) โ‰ƒ ๐›คโ€ฒ(๐ป). Right and leftSchรผtzenberger groupsare isomorphicProof of 3.26. Fix some โ„Ž โˆˆ ๐ป. Define a map ๐œ‘ โˆถ ๐›ค(๐ป) โ†’ ๐›คโ€ฒ(๐ป) as

follows. For any ๐‘  โˆˆ ๐›ค(๐ป), since ๐›คโ€ฒ(๐ป) acts regularly on ๐ป, there is aunique ๐‘ โ€ฒ โˆˆ ๐›คโ€ฒ(๐ป) such that โ„Ž โ‹… ๐‘  = ๐‘ โ€ฒ โ‹… โ„Ž. Define ๐‘ ๐œ‘ to be this ๐‘ โ€ฒ. Similarly,since ๐›ค(๐ป) acts regularly on๐ป, we can define a map ๐œ“ โˆถ ๐›คโ€ฒ(๐ป) โ†’ ๐›ค(๐ป)by letting ๐‘ก๐œ“ be the unique element of ๐›ค(๐ป) such that ๐‘ก โ‹… โ„Ž = โ„Ž โ‹… (๐‘ก๐œ“).Clearly ๐œ‘ and ๐œ“ are mutually inverse and thus are bijections.

Let [๐‘ฅ]๐œŽ๐ป โˆˆ ๐›ค(๐ป) and [๐‘ฆ]๐œŽโ€ฒ๐ป โˆˆ ๐›คโ€ฒ(๐ป). Let ๐‘” โˆˆ ๐ป. Then

[๐‘ฆ]๐œŽโ€ฒ๐ป โ‹… (๐‘” โ‹… [๐‘ฅ]๐œŽ๐ป ) = [๐‘ฆ]๐œŽโ€ฒ๐ป โ‹… (๐‘”๐‘ฅ)= ๐‘ฆ๐‘”๐‘ฅ= (๐‘ฆ๐‘”) โ‹… [๐‘ฅ]๐œŽ๐ป= ([๐‘ฆ]๐œŽโ€ฒ๐ป โ‹… ๐‘”) โ‹… [๐‘ฅ]๐œŽ๐ป .

}}}}}}}}}}}

(3.4)

Let ๐‘ , ๐‘ก โˆˆ ๐›ค(๐ป). Then

(๐‘ ๐œ‘)(๐‘ก๐œ‘) โ‹… โ„Ž = (๐‘ ๐œ‘) โ‹… (โ„Ž โ‹… ๐‘ก) [by definition of ๐œ‘]= ((๐‘ ๐œ‘) โ‹… โ„Ž) โ‹… ๐‘ก [by (3.4)]= (โ„Ž โ‹… ๐‘ ) โ‹… ๐‘ก [by definition of ๐œ‘]= โ„Ž โ‹… (๐‘ ๐‘ก) [by definition of an action; see (1.15)]= ((๐‘ ๐‘ก)๐œ‘) โ‹… โ„Ž. [by definition of ๐œ‘]

Since๐›คโ€ฒ(๐ป) acts regularly on๐ป, it follows that (๐‘ ๐œ‘)(๐‘ก๐œ‘) = (๐‘ ๐‘ก)๐œ‘.Therefore๐œ‘ is an isomorphism. 3.26

Pro p o s i t i on 3 . 2 7. Let ๐‘† be a semigroup and let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. If ๐‘ฅ D ๐‘ฆ, Schรผtzenbergergroups are the samethroughout a D-class

then ๐›ค(๐ป๐‘ฅ) โ‰ƒ ๐›ค(๐ป๐‘ฆ).

Proof of 3.27. Suppose first that ๐‘ฅ L ๐‘ฆ.Then there exist ๐‘, ๐‘ž โˆˆ ๐‘†1 such that๐‘๐‘ฅ = ๐‘ฆ and ๐‘ž๐‘ฆ = ๐‘ฅ. So by Lemma 3.12, ๐œ†๐‘|๐ป๐‘ฅ โˆถ ๐ป๐‘ฅ โ†’ ๐ป๐‘ฆ and ๐œ†๐‘ž|๐ป๐‘ฆ โˆถ๐ป๐‘ฆ โ†’ ๐ป๐‘ฅ are mutually inverse bijections. Hence ๐‘๐ป๐‘ฅ = ๐ป๐‘ฆ and ๐‘ž๐ป๐‘ฆ =

Schรผtzenberger groups โ€ข 67

Page 76: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐ป๐‘ฅ. Suppose that ๐‘ง โˆˆ Stab(๐ป๐‘ฅ). Then๐ป๐‘ฆ๐‘ง = ๐‘๐ป๐‘ฅ๐‘ง = ๐‘๐ป๐‘ฅ = ๐ป๐‘ฆ andso ๐‘ง โˆˆ Stab(๐ป๐‘ฆ). Thus Stab(๐ป๐‘ฅ) โŠ† Stab(๐ป๐‘ฆ) and similarly Stab(๐ป๐‘ฆ) โŠ†Stab(๐ป๐‘ฅ). So Stab(๐ป๐‘ฅ) = Stab(๐ป๐‘ฆ).

Now let ๐‘ง, ๐‘ก โˆˆ Stab(๐ป๐‘ฅ). Suppose ๐‘ง ๐œŽ๐ป๐‘ฅ ๐‘ก. Then ๐‘ฅ๐‘ง = ๐‘ฅ๐‘ก. Let ๐‘ฆโ€ฒ โˆˆ ๐ป๐‘ฆ.Since ๐‘ฅ L ๐‘ฆโ€ฒ, there exists ๐‘โ€ฒ โˆˆ ๐‘†1 such that ๐‘ฆโ€ฒ = ๐‘โ€ฒ๐‘ฅ and so ๐‘ฆโ€ฒ๐‘ง = ๐‘โ€ฒ๐‘ฅ๐‘ง =๐‘โ€ฒ๐‘ฅ๐‘ก = ๐‘ฆโ€ฒ๐‘ก. Since ๐‘ฆโ€ฒ โˆˆ ๐ป๐‘ฆ was arbitrary, ๐‘ง ๐œŽ๐ป๐‘ฆ ๐‘ก. Hence ๐œŽ๐ป๐‘ฅ โŠ† ๐œŽ๐ป๐‘ฆ . Sim-ilarly ๐œŽ๐ป๐‘ฆ โŠ† ๐œŽ๐ป๐‘ฅ and so ๐œŽ๐ป๐‘ฅ = ๐œŽ๐ป๐‘ฆ . Therefore the Schรผtzenberger groups๐›ค(๐ป๐‘ฅ) = Stab(๐ป๐‘ฅ)/๐œŽ๐ป๐‘ฅ and ๐›ค(๐ป๐‘ฆ) = Stab(๐ป๐‘ฆ)/๐œŽ๐ป๐‘ฆ are isomorphic.

On the other hand, if ๐‘ฅ R ๐‘ฆ, dual reasoning shows that the leftSchรผtzenberger groups ๐›คโ€ฒ(๐ป๐‘ฅ) and ๐›คโ€ฒ(๐ป๐‘ฆ) are isomorphic. The resultfollows from Proposition 3.26. 3.27

Notice that from Corollary 3.25 and Proposition 3.27 we immediatelyrecover the result that if ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† are such that ๐‘ฅ D ๐‘ฆ, then |๐ป๐‘ฅ| = |๐ป๐‘ฆ|(Proposition 3.13).

P ro p o s i t i on 3 . 2 8. Let ๐‘† be a semigroup and let๐ป be an H-class of๐‘†. If๐ป is a subgroup of ๐‘†, then ๐›ค(๐ป) โ‰ƒ ๐ป.

Proof of 3.28. Suppose๐ป is a group. Then๐ป โŠ† Stab(๐ป). The restrictionof the natural map ๐œŽโ™ฎ๐ป|๐ป โˆถ ๐ป โ†’ Stab(๐ป)/๐œŽ๐ป, which maps โ„Ž to [โ„Ž]๐œŽ๐ป , is ahomomorphism.

Let ๐‘  โˆˆ ๐›ค(๐ป). Let โ„Ž = 1๐ป โ‹… ๐‘ . Then since 1๐ป โ‹… [โ„Ž]๐œŽ๐ป = โ„Ž and ๐›ค(๐ป) actsfreely on๐ป, we have ๐‘  = [โ„Ž]๐œŽ๐ป . Hence ๐œŽโ™ฎ๐ป|๐ป is surjective.

Let ๐‘”, โ„Ž โˆˆ ๐ป with ๐‘”๐œŽโ™ฎ๐ป|๐ป = โ„Ž๐œŽโ™ฎ๐ป|๐ป. Then [๐‘”]๐œŽ๐ป = [โ„Ž]๐œŽ๐ป and so

๐‘” = 1๐ป โ‹… [๐‘”]๐œŽ๐ป = 1๐ป โ‹… [โ„Ž]๐œŽ๐ป = โ„Ž. Hence ๐œŽโ™ฎ๐ป|๐ป is injective.So ๐œŽโ™ฎ๐ป|๐ป is an isomorphism from๐ป to ๐›ค(๐ป). Hence ๐›ค(๐ป) โ‰ƒ ๐ป. 3.28

Propositions 3.27 and 3.28 have the following consequence:

C o ro l l a ry 3 . 2 9. If๐ป and๐ปโ€ฒ areH-classes that are subgroups withinthe same D-class, then๐ป โ‰ƒ ๐ปโ€ฒ. 3.29

Exercises

[See pages 215โ€“219 for the solutions.]โœด3.1 Prove that any two elements of a subgroup of a semigroup are H-

related.3.2 Prove that in a free monoid๐ดโˆ—, we haveH = L = R = D = J = id๐ดโˆ— .

โœด3.3 Let๐‘‹ be a set and let ๐œŽ, ๐œ โˆˆ T๐‘‹. Prove the following:a) ๐œŽ L ๐œ โ‡” im๐œŽ = im ๐œ;b) ๐œŽ R ๐œ โ‡” ker๐œŽ = ker ๐œ;

68 โ€ขStructure of semigroups

Page 77: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

(1 2 31 2 3) (1 2 32 3 1) (

1 2 33 1 2)

(1 2 31 3 2) (1 2 32 1 3) (

1 2 33 2 1)

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžim๐œŽ = {1, 2, 3}

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž

Kernel classes{1}, {2}, {3}

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž

|im๐œŽ| = 3

(1 2 31 1 2) (1 2 31 1 3) (

1 2 32 2 3)

(1 2 32 2 1)

(1 2 31 2 1)

(1 2 32 1 2)

(1 2 31 2 2)

(1 2 32 1 1)

(1 2 33 3 1) (1 2 33 3 2)

(1 2 31 3 1) (1 2 32 3 2)

(1 2 33 1 3) (1 2 33 2 3)

(1 2 31 3 3) (1 2 32 3 3)

(1 2 33 1 1) (1 2 33 2 2)

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžim๐œŽ = {1, 2}

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžim๐œŽ = {1, 3}

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžim๐œŽ = {2, 3}

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž

Kernel classes{1, 2}, {3}

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž

Kernel classes{1, 3}, {2}

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž

Kernel classes{1}, {2, 3}

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž

|im๐œŽ| = 2

(1 2 31 1 1) (1 2 32 2 2) (

1 2 33 3 3)

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžim๐œŽ = {1}

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžim๐œŽ = {2}

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžim๐œŽ = {3}

โžโžโžโžโžโžโžโžโžโžโžKernel class

{1, 2, 3}

โžโžโžโžโžโžโžโžโžโžโž |im๐œŽ| = 1

FIGURE 3.7The egg-box diagrams of thethree D-classes of T{1,2,3} .Idempotents are shaded.

c) ๐œŽ D ๐œ โ‡” ๐œŽ J ๐œ โ‡” |im๐œŽ| = |im ๐œ|.Note that the eggbox diagrams for the D-classes of T{1,2,3} are asshown in Figure 3.7.

โœด3.4 Give examples to show that L is not in general a left congruence andR is not in general a right congruence. [Hint: Use Exercise 3.3.]

โœด3.5 Let ๐ต = ๐ฟ ร— ๐‘… be a rectangular band. Prove that the R-classes of ๐ตare the sets {โ„“} ร— ๐‘… where โ„“ โˆˆ ๐ฟ, that the L-classes of ๐ต are the sets๐ฟ ร— {๐‘Ÿ} where ๐‘Ÿ โˆˆ ๐‘…, that ๐ต consists of a single D-class, and that H isthe identity relation.

โœด3.6 Prove that if ๐‘† is a cancellative semigroup and does not contain anidentity element, then H = L = R = D = id๐‘†.

โœด3.7 Let

๐‘† = {[๐‘Ž ๐‘0 1] โˆถ ๐‘Ž, ๐‘ โˆˆ โ„, ๐‘Ž, ๐‘ > 0} โŠ† ๐‘€2(โ„).

Exercises โ€ข 69

Page 78: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Prove that ๐‘† is a subsemigroup of๐‘€2(โ„). Prove that ๐‘† is cancellativeand has no identity, so that H = L = R = D = id๐‘† by Exercise 3.6.Prove that ๐‘† is simple, so that J = ๐‘† ร— ๐‘†.

3.8 Let๐‘‹ = {1,โ€ฆ , ๐‘›} for some ๐‘› โˆˆ โ„•. In the semigroup T๐‘‹, prove thattheH-class containing ๐œ is a subgroup if and only if |im ๐œ| = |im(๐œ2)|.

3.9 Recall that the bicyclic monoid ๐ต is presented by MonโŸจ๐‘, ๐‘ | (๐‘๐‘, ๐œ€)โŸฉand that every element of ๐ต has a unique representative of the form๐‘๐›พ๐‘๐›ฝ. Prove that the R-classes of ๐ต are sets { ๐‘๐›พ๐‘๐›ฝ โˆถ ๐›ฝ โˆˆ โ„• โˆช {0} }(where ๐›พ โˆˆ โ„• โˆช {0} is fixed) and L-classes of ๐ต are sets { ๐‘๐›พ๐‘๐›ฝ โˆถ ๐›พ โˆˆโ„• โˆช {0} } (where ๐›ฝ โˆˆ โ„• โˆช {0} is fixed). Deduce that ๐ต has a singleD-class.

3.10 Let ๐‘… be an R-class and ๐ฟ an L-class of a semigroup ๐‘† and suppose๐ฟ โˆฉ ๐‘… contains an idempotent. Let๐ท be theD-class containing ๐ฟ and๐‘…. Prove that ๐ฟ๐‘… = ๐ท.

3.11 Let๐‘€ be defined by MonโŸจ๐ด | ๐œŒโŸฉ, where ๐ด = {๐‘Ž, ๐‘, ๐‘} and ๐œŒ = (๐‘Ž๐‘๐‘, ๐œ€).Prove that for any ๐‘ค โˆˆ ๐‘€,

๐‘ค H ๐œ€ โ‡” ๐‘ค =๐‘€ ๐œ€;๐‘ค L ๐œ€ โ‡” ๐‘ค โˆˆ MonโŸจ๐‘๐‘, ๐‘โŸฉ;๐‘ค R ๐œ€ โ‡” ๐‘ค โˆˆ MonโŸจ๐‘Ž, ๐‘Ž๐‘โŸฉ;๐‘ค D ๐œ€ โ‡” ๐‘ค โˆˆ MonโŸจ๐‘๐‘, ๐‘โŸฉMonโŸจ๐‘Ž, ๐‘Ž๐‘โŸฉ;๐‘ค J ๐œ€ โ‡” ๐‘ค โˆˆ MonโŸจ๐‘๐‘, ๐‘โŸฉMonโŸจ๐‘Ž, ๐‘Ž๐‘โŸฉ

โˆชMonโŸจ๐‘๐‘, ๐‘โŸฉ๐‘MonโŸจ๐‘Ž, ๐‘Ž๐‘โŸฉ.

[Hint: Recall from Exercise 2.8 that every element of๐‘€ has a uniquerepresentative in ๐‘ = ๐ดโˆ— โˆ– ๐ดโˆ—๐‘Ž๐‘๐‘๐ดโˆ—, and that such a representat-ive can be obtained by iteratively deleting subwords ๐‘Ž๐‘๐‘.] Note that,consequently, all Greenโ€™s relations are distinct in๐‘€.

3.12 Let ๐‘† be a regular semigroup containing a unique idempotent. Provethat ๐‘† is a group.

3.13 Let๐‘€ be a group-embeddable monoid.a) Prove that an element of ๐‘ฅ is right- and left-invertible if and only

if it is R-related to 1๐‘€.b) Prove that๐‘€ either has one R-class or infinitely many R-classes.

Notes

The exposition of Greenโ€™s relations in this chapter owes muchto Clifford & Preston, The Algebraic Theory of Semigroups, ยงยง 2.1โ€“2.4 and Howie,Fundamentals of Semigroup Theory, ยงยง 2.1โ€“2.4. The discussions of Schรผtzen-berger groups in Clifford & Preston, The Algebraic Theory of Semigroups, ยง 2.6

70 โ€ขStructure of semigroups

Page 79: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

and Grillet, Semigroups, ยง ii.3 use a different, but equivalent, definition. โ—† Theexample in Exercise 3.7 is due to Andersen, โ€˜Ein bericht รผber die Struktur ab-strakter Halbgruppenโ€™. โ—† The definition of the relations L, R, and J, the resultson principal series, Greenโ€™s lemma, and the basic structure of D-classes areall from Green, โ€˜On the structure of semigroupsโ€™. The interaction of inversesand D-classes is due to Miller & Clifford, โ€˜Regular D-classes in semigroupsโ€™.Schรผtzenberger groups first appear, in a rather different form, in Schรผtzenberger,โ€˜D reprรฉsentation des demi-groupesโ€™. โ—† For a proof of Theorem 3.11, see Clifford& Preston, The Algebraic Theory of Semigroups, ยง 2.6. For background readingon the Jordanโ€“Hรถlder theorem for groups, see Robinson, A Course in the Theoryof Groups, ยง 3.1.

โ€ข

Notes โ€ข 71

Page 80: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

72 โ€ข

Page 81: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

4Regular semigroups

โ€˜ It looks just a little more mathematical and regularthan it is; its exactitude is obvious, but itsinexactitude is hidden; its wildness lies in wait. โ€™

โ€” G.K. Chesterton, Orthodoxy, ch. vi.

โ€ข Groups are semigroups that have many of the prop- Properties of groupserties we have encountered in previous chapters. For example, groupsare cancellative, regular, simple, and all of their elements have uniqueinverses. In this chapter, we begin to study regular semigroups, becausewithin the class of regular semigroups there is a very interesting hierarchyof classes of semigroups that are more or less โ€˜group-likeโ€™, some of whichhave very neat structure theorems (in the sense that there is a neat de-scription of the structure of a semigroup in this class). Figure 4.1 outlinesthe relationship between these classes, and it is useful to refer back to thischart to see how new definitions and results fit into the general setting.(Note that we have not yet defined many of the terms in this figure.)

Recall two basic properties of a group ๐บ: every element ๐‘ฅ โˆˆ ๐บ has aunique inverse ๐‘ฅโˆ’1; and the identity 1๐บ is the unique idempotent, and thisidempotent commutes with every element of ๐บ. A semigroup is regular ifand only if every element has an inverse (Proposition 1.6), but there is norequirement that these inverses are unique: in a rectangular band, everyelement is an inverse of every element (Example 1.7(e)). Furthermore,every element of a rectangular band is idempotent, but they do not com-mute. As we shall see, the class of semigroups in which every element hasa unique inverse, which are called โ€˜inverse semigroupsโ€™, is very important,and this turns out to be the class of regular semigroups in which idem-potents commute (Theorem 5.1). If we impose another condition andrequire that the idempotents are central (that is, they commute with everyelement), we obtain the class of Clifford semigroups, which turn out to tohave a very neat characterization as โ€˜strong semilattices of groupsโ€™. If werestrict further, and require that there is only one idempotent, we arriveat the class of groups. This is just an example; Figure 4.1 shows other waysin which we can impose properties that groups satisfy and obtain classesof more โ€˜group-likeโ€™ semigroups.

However, we are going to begin by defining some of these classes ofsemigroups in terms of properties that the inverse operation satisfies; thishelps prepare the way for the study of varieties in Chapter 8. Later, we

โ€ข 73

Page 82: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

FIGURE 4.1Chart of the classes ofsemigroup considered in thischapter and the followingone. Labels on arrows indicatea possible extra condition(there may be others) thatrestricts the larger class to thesmaller. Grey text summarizesthe structure theorem for theadjacent class. (Some of theseclasses have not yet been

defined.)

Semigroup

Regularsemigroup

Completelyregular

semigroup

Inversesemigroup

Completely0-simple

semigroup

Completelysimple

semigroup

Cliffordsemigroup

Leftgroup

Rightgroup

Group

Sem

ilatti

ceof

com

pletely

simpl

ese

migro

ups

Rees

matrix

sem

igro

upov

eragr

oup

0-Re

esm

atrix

sem

igro

upov

eragr

oup

Strongsem

ilatticeofgroups

Dire

ctpr

oduc

tof

grou

pan

dleft

zero

sem

igro

up

Directproductofgroup

andrightzerosem

igroup

All elementsregular

Unique inverses0-simpleand has

primitiveidempotents

Simple andhas primitiveidempotents

All elementsin subgroups

Idempotentscentral

Idempotentscommute

Simple

Idempotentscentral

Idempotentscentral

Only oneL-class

Only oneR-class

Uniqueidempotent

Only oneR-class

Only oneL-class

will show how these classes fit into the chart in Figure 4.1.Let ๐‘† be a semigroup. If ๐‘† is a group, the map ๐‘ฅ โ†ฆ ๐‘ฅโˆ’1 that sends

an element to its inverse is a unary operation on ๐‘† that satisfies certainproperties. For instance, by definition ๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฅโˆ’1๐‘ฅ = 1๐‘† for all ๐‘ฅ โˆˆ ๐‘†.But โˆ’1 also satisfies other properties: for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†,

(๐‘ฅโˆ’1)โˆ’1 = ๐‘ฅ, (๐‘ฅ๐‘ฆ)โˆ’1 = ๐‘ฆโˆ’1๐‘ฅโˆ’1, ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1,๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ, ๐‘ฅ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1 = ๐‘ฆ๐‘ฆโˆ’1๐‘ฅ๐‘ฅโˆ’1, ๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฆ๐‘ฆโˆ’1.

If we require that a semigroup with an operation โˆ’1 satisfies only someof these properties, we may no longer have a group. Instead, we obtaindifferent types of semigroup depending on which conditions are required.

Let ๐‘† be a semigroup equipped with an operation โˆ’1. If ๐‘† satisfies theRegular semigroupcondition that for all ๐‘ฅ โˆˆ ๐‘†,

๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ,

then ๐‘† is clearly regular, as defined on page 6. [Note that in a regularsemigroup, an element may have many different inverses. However, wecan always define an operation โˆ’1 by choosing a particular inverse for

74 โ€ขRegular semigroups

Page 83: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

each element.] If ๐‘† satisfies the two conditions that for all ๐‘ฅ โˆˆ ๐‘†,

(๐‘ฅโˆ’1)โˆ’1 = ๐‘ฅ, ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ, (4.1)

then again ๐‘† is regular and for any ๐‘ฆ โˆˆ ๐‘†, we have ๐‘ฆ๐‘ฆโˆ’1๐‘ฆ = ๐‘ฆ and๐‘ฆโˆ’1๐‘ฆ๐‘ฆโˆ’1 = ๐‘ฆโˆ’1(๐‘ฆโˆ’1)โˆ’1๐‘ฆโˆ’1 = ๐‘ฆโˆ’1 and so ๐‘ฆโˆ’1 is an inverse of ๐‘ฆ. If ๐‘† Completely

regular semigroupsatisfies the three conditions that for all ๐‘ฅ โˆˆ ๐‘†,

(๐‘ฅโˆ’1)โˆ’1 = ๐‘ฅ, ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1, ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ, (4.2)

it is a completely regular semigroup. We will look at regular and completelyregular semigroups in this chapter. If ๐‘† satisfies the four conditions that Inverse semigroupfor all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†,

(๐‘ฅโˆ’1)โˆ’1 = ๐‘ฅ, (๐‘ฅ๐‘ฆ)โˆ’1 = ๐‘ฆโˆ’1๐‘ฅโˆ’1,๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ, ๐‘ฅ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1 = ๐‘ฆ๐‘ฆโˆ’1๐‘ฅ๐‘ฅโˆ’1,

} (4.3)

it is an inverse semigroup. Finally, if ๐‘† satisfies the four conditions that for Clifford semigroupall ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†,

(๐‘ฅโˆ’1)โˆ’1 = ๐‘ฅ, ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1,๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ, ๐‘ฅ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1 = ๐‘ฆ๐‘ฆโˆ’1๐‘ฅ๐‘ฅโˆ’1,

} (4.4)

it is a Clifford semigroup. We will look at inverse semigroups and Cliffordsemigroups in Chapter 5.

Completely 0-simple semigroups

The aim of this section is to introduce the concept of acompletely 0-simple semigroup and to present a classification result forsuch semigroups, the Reesโ€“Suschkewitsch theorem, which was one ofthe most important results in the early development of semigroup the-ory. We study completely 0-simple semigroups for two reasons. First,we saw in Proposition 3.10 that the principal factors of a semigroup areeither 0-simple or null, and completely 0-simple semigroup are an import-ant subclass of 0-simple semigroups. Furthermore, studying completely0-simple semigroups will lead naturally to studying completely simplesemigroups, and we will see that both completely 0-simple and completelysimple semigroups are regular (Lemma 4.6(b) and Proposition 4.13), andthat a simple semigroup is completely simple if and only if it is completelyregular (Theorem 4.16).

Recall that the set of idempotents ๐ธ(๐‘†) of a semigroup ๐‘† admits a Primitive idempotentnatural partial order given by ๐‘’ โ‰ผ ๐‘“ โ‡” ๐‘’๐‘“ = ๐‘“๐‘’ = ๐‘’. (See Proposition1.19.) In a semigroup with a zero, 0 is the unique minimal idempotent; insuch a semigroup, an idempotent is primitive if it is minimal within theset of non-zero idempotents of the semigroup. A semigroup is completely Completely

0-simple semigroup0-simple if it is 0-simple and contains at least one primitive idempotent.

Completely 0-simple semigroups โ€ข 75

Page 84: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Pro p o s i t i on 4 . 1. A finite 0-simple semigroup is completely 0-simple.Finite 0-simpleโ‡’completely 0-simple

Proof of 4.1. Let ๐‘† be a finite 0-simple semigroup. Now, if there are non-zero idempotents in ๐‘†, there must be a primitive idempotent in ๐‘†, sinceotherwise there would be infinite descending chains of idempotents, andthis is impossible since ๐‘† is finite. Sowemust simply rule out the possibilitythat 0 is the only idempotent.

So suppose, with the aim of obtaining a contradiction, that the onlyidempotent in ๐‘† is 0. Let ๐‘ฅ โˆˆ ๐‘† โˆ– {0}. Then by Lemma 3.7 there exist๐‘, ๐‘ž โˆˆ ๐‘† with ๐‘๐‘ฅ๐‘ž = ๐‘ฅ. Hence ๐‘๐‘›๐‘ฅ๐‘ž๐‘› = ๐‘ฅ for all ๐‘› โˆˆ โ„•. Since ๐‘† is finiteand thus periodic, ๐‘๐‘š is idempotent for some ๐‘š โˆˆ โ„•. Thus ๐‘๐‘š = 0since 0 is the only idempotent in ๐‘†. Therefore ๐‘ฅ = ๐‘๐‘š๐‘ฅ๐‘ž๐‘š = 0๐‘ฅ๐‘ž๐‘š = 0,which contradicts the choice of ๐‘ฅ. So it is impossible for 0 to be the onlyidempotent of ๐‘†. This completes the proof. 4.1

We are now going to show how to construct examples of completelyRees matrix semigroup0-simple semigroups. Let ๐บ be a group, let ๐ผ and ๐›ฌ be abstract index sets,and let ๐‘ƒ be a regular ๐›ฌ ร— ๐ผ matrix with entries from ๐บ0. (Recall thata matrix is regular if every row and every column contains at least onenon-zero entry. By a โ€˜๐›ฌ ร— ๐ผmatrixโ€™ we mean simply a matrix whose rowsare indexed by ๐›ฌ and whose columns are indexed by ๐ผ.) Let ๐‘๐œ†๐‘– be the(๐œ†, ๐‘–)-th entry of ๐‘ƒ. Let ๐‘† be the set ๐ผ ร— ๐บ0 ร— ๐›ฌ. Define a multiplicationon ๐‘† by

(๐‘–, ๐‘ฅ, ๐œ†)(๐‘—, ๐‘ฆ, ๐œ‡) = (๐‘–, ๐‘ฅ๐‘๐œ†๐‘—๐‘ฆ, ๐œ‡).

This multiplication is associative since

(๐‘–, ๐‘ฅ, ๐œ†)((๐‘—, ๐‘ฆ, ๐œ‡)(๐‘˜, ๐‘ง, ๐œˆ)) = (๐‘–, ๐‘ฅ, ๐œ†)(๐‘—, ๐‘ฆ๐‘๐œ‡๐‘˜๐‘ง, ๐œˆ)= (๐‘–, ๐‘ฅ๐‘๐œ†๐‘—๐‘ฆ๐‘๐œ‡๐‘˜๐‘ง, ๐œˆ)= (๐‘–, ๐‘ฅ๐‘๐œ†๐‘—๐‘ฆ, ๐œ‡)(๐‘˜, ๐‘ง, ๐œˆ)= ((๐‘–, ๐‘ฅ, ๐œ†)(๐‘—, ๐‘ฆ, ๐œ‡))(๐‘˜, ๐‘ง, ๐œˆ),

and so ๐‘† is a semigroup. Let ๐‘‡ = ๐ผ ร— {0} ร— ๐›ฌ. It is easy to see that ๐‘‡ is anideal of ๐‘†. Clearly, ๐‘†โˆ–๐‘‡ = ๐ผร—๐บร—๐›ฌ. Notice that if (๐‘–, ๐‘ฅ, ๐œ†), (๐‘—, ๐‘ฆ, ๐œ‡) โˆˆ ๐‘†โˆ–๐‘‡,then (๐‘–, ๐‘ฅ, ๐œ†)(๐‘—, ๐‘ฆ, ๐œ‡) โˆˆ ๐‘‡ if and only if ๐‘๐œ†๐‘— = 0.

Let M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] be the Rees factor semigroup ๐‘†/๐‘‡. Then the sem-igroup M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] can be viewed as the set (๐‘† โˆ– ๐‘‡) โˆช {0}: that is,M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] can be viewed as the set (๐ผ ร— ๐บ ร— ๐›ฌ) โˆช {0} under themultiplication

(๐‘–, ๐‘ฅ, ๐œ†)(๐‘—, ๐‘ฆ, ๐œ‡) = {(๐‘–, ๐‘ฅ๐‘๐œ†๐‘—๐‘ฆ, ๐œ‡) if ๐‘๐œ†๐‘— โ‰  0,0 if ๐‘๐œ†๐‘— = 0,

0(๐‘–, ๐‘ฅ, ๐œ†) = (๐‘–, ๐‘ฅ, ๐œ†)0 = 00 = 0.

The semigroup M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] is called the ๐ผ ร— ๐›ฌ Rees matrix semigroupover ๐บ0 with regular sandwich matrix ๐‘ƒ.

76 โ€ขRegular semigroups

Page 85: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

(3, ๐‘ฅ, 5)

(1, ๐‘ฆ, 2)

0 if ๐‘23 = 0

(1, ๐‘ฅ๐‘23๐‘ฆ, 5) if ๐‘23 โ‰  0

๐‘ƒ =[[[[[

[

๐‘11 ๐‘12 ๐‘13๐‘21 ๐‘22 ๐‘23๐‘31 ๐‘32 ๐‘33๐‘41 ๐‘42 ๐‘43๐‘51 ๐‘52 ๐‘53

]]]]]

]

๐‘ƒT =[

[

๐‘11 ๐‘21 ๐‘31 ๐‘41 ๐‘51๐‘12 ๐‘22 ๐‘32 ๐‘42 ๐‘52๐‘13 ๐‘23 ๐‘33 ๐‘43 ๐‘53

]

]

FIGURE 4.2Multiplication in a Rees mat-rix semigroup M0[๐บ; ๐ผ,๐›ฌ;๐‘ƒ].The product (1,๐‘ฆ, 2)(3,๐‘ฅ, 5) iseither (1,๐‘ฆ๐‘23๐‘ฅ, 5) or 0, de-pending on the value of ๐‘23 .The shape of ๐‘ƒT is the sameas the shape of the grid, andthe cells containing the multi-plicands, the cell correspond-ing to ๐‘23 , and cell containingthe product (if it is non-zero)form the corners of a rectangle.

Diagrammatically, we can place the non-zero elements of this Reesmatrix semigroup in a rectangular pattern, divided into a grid of cellsindexed by the sets ๐ผ and ๐›ฌ, so that the (๐‘–, ๐œ†)-th cell contains all elementsof the form (๐‘–, ๐‘”, ๐œ†), where ๐‘” โˆˆ ๐บ. Figure 4.2 illustrates how the multiplic-ation works in terms of this diagram. Compare this with Figure 1.1. Thisis of course reminiscent of an egg-box diagram, and we will see that itactually is an egg-box diagram: the columns, rows, and cells of this gridare the non-zero L-, R-, and H-classes of the Rees matrix semigroup.

P ro p o s i t i on 4 . 2. For any group ๐บ, index sets ๐ผ and ๐›ฌ, and matrix Rees matrixโ‡’completely 0-simple๐‘ƒ over ๐บ0, the semigroup M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] is completely 0-simple.

Proof of 4.2. For brevity, let ๐‘† =M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ].Let (๐‘–, ๐‘ฅ, ๐œ†) โˆˆ ๐‘† โˆ– {0}. Let (๐‘—, ๐‘ฆ, ๐œ‡) โˆˆ ๐‘† โˆ– {0}. Since ๐‘ƒ is regular, we can

choose ๐œˆ โˆˆ ๐›ฌ and ๐‘˜ โˆˆ ๐ผ such that ๐‘๐œˆ๐‘– โ‰  0 and ๐‘๐œ†๐‘˜ โ‰  0. Then

(๐‘—, 1๐บ, ๐œˆ)(๐‘–, ๐‘ฅ, ๐œ†)(๐‘˜, ๐‘โˆ’1๐œ†๐‘˜๐‘ฅโˆ’1๐‘โˆ’1๐œˆ๐‘– ๐‘ฆ, ๐œ‡)= (๐‘—, 1๐บ๐‘๐œˆ๐‘–๐‘ฅ๐‘๐œ†๐‘˜๐‘โˆ’1๐œ†๐‘˜๐‘ฅโˆ’1๐‘โˆ’1๐œˆ๐‘– ๐‘ฆ, ๐œ‡)= (๐‘—, ๐‘ฆ, ๐œ‡).

Hence, since (๐‘—, ๐‘ฆ, ๐œ‡) โˆˆ ๐‘† โˆ– {0} was arbitrary, and since 0 = 0(๐‘–, ๐‘ฅ, ๐œ†)0, wehave ๐‘† โŠ† ๐‘†(๐‘–, ๐‘ฅ, ๐œ†)๐‘†. Since (๐‘–, ๐‘ฅ, ๐œ†) โˆˆ ๐‘† โˆ– {0} was arbitrary, ๐‘† is 0-simple byLemma 3.7.

Now, (๐‘–, ๐‘ฅ, ๐œ†) โˆˆ ๐‘†โˆ–{0} is an idempotent if and only if (๐‘–, ๐‘ฅ, ๐œ†)(๐‘–, ๐‘ฅ, ๐œ†) =(๐‘–, ๐‘ฅ๐‘๐œ†๐‘–๐‘ฅ, ๐œ†) = (๐‘–, ๐‘ฅ, ๐œ†), which is true if and only if ๐‘๐œ†๐‘– โ‰  0 and ๐‘ฅ = ๐‘โˆ’1๐œ†๐‘– .Hence the idempotents in ๐‘† โˆ– {0} are elements of the form (๐‘–, ๐‘โˆ’1๐œ†๐‘– , ๐œ†).Furthermore,

(๐‘–, ๐‘โˆ’1๐œ†๐‘– , ๐œ†) โ‰ผ (๐‘—, ๐‘โˆ’1๐œ‡๐‘— , ๐œ‡)โ‡” (๐‘–, ๐‘โˆ’1๐œ†๐‘– , ๐œ†)(๐‘—, ๐‘โˆ’1๐œ‡๐‘— , ๐œ‡) = (๐‘—, ๐‘โˆ’1๐œ‡๐‘— , ๐œ‡)(๐‘–, ๐‘โˆ’1๐œ†๐‘– , ๐œ†) = (๐‘–, ๐‘โˆ’1๐œ†๐‘– , ๐œ†)โ‡” (๐‘–, ๐‘โˆ’1๐œ†๐‘– ๐‘๐œ†๐‘—๐‘โˆ’1๐œ‡๐‘— , ๐œ‡) = (๐‘—, ๐‘โˆ’1๐œ‡๐‘—๐‘๐œ‡๐‘–๐‘โˆ’1๐œ†๐‘– , ๐œ†) = (๐‘–, ๐‘โˆ’1๐œ†๐‘– , ๐œ†)โ‡” (๐‘– = ๐‘—) โˆง (๐œ† = ๐œ‡)โ‡” (๐‘–, ๐‘โˆ’1๐œ†๐‘– , ๐œ†) = (๐‘—, ๐‘โˆ’1๐œ‡๐‘— , ๐œ‡).

Completely 0-simple semigroups โ€ข 77

Page 86: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Hence every idempotent in ๐‘† โˆ– {0} is primitive. Thus ๐‘† certainly containsprimitive idempotents and so is completely 0-simple. 4.2

Proposition 4.2 gives a method for constructing completely 0-simplesemigroups. In fact, all completely 0-simple semigroups arise in this way:

P ro p o s i t i on 4 . 3. Let ๐‘† be a completely 0-simple semigroup. ThenCompletely 0-simpleโ‡’ Rees matrix ๐‘† โ‰ƒ M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] for some group ๐บ, index sets ๐ผ and ๐›ฌ, and regular

sandwich matrix ๐‘ƒ.

Proof of 4.3. Let ๐‘† be completely 0-simple.We have to define a Reesmatrixsemigroup M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] and show it is isomorphic to ๐‘†.

Since ๐‘† is completely 0-simple, it contains a primitive idempotent. Wefirst describe the R-classes and L-classes of primitive idempotents:

L emma 4 . 4. For any primitive idempotent ๐‘’ of ๐‘†,a) ๐‘…๐‘’ = ๐‘’๐‘† โˆ– {0},b) ๐ฟ๐‘’ = ๐‘†๐‘’ โˆ– {0}.

Proof of 4.4. We prove part a); a dual argument gives part b). Note that bydefinition ๐‘’ โ‰  0. Every element of ๐‘…๐‘’ is a right multiple of ๐‘’ and cannotbe 0. Hence ๐‘…๐‘’ โŠ† ๐‘’๐‘† โˆ– {0}.

Let ๐‘ฅ โˆˆ ๐‘’๐‘†โˆ–{0}. So ๐‘ฅ = ๐‘’๐‘  for some ๐‘  โˆˆ ๐‘†โˆ–{0}. Hence ๐‘’๐‘ฅ = ๐‘’๐‘’๐‘  = ๐‘’๐‘  =๐‘ฅ. Since ๐‘† is 0-simple, by Lemma 3.7 there exist ๐‘, ๐‘ž โˆˆ ๐‘† with ๐‘๐‘ฅ๐‘ž = ๐‘’.Let ๐‘โ€ฒ = ๐‘’๐‘๐‘’. Then ๐‘โ€ฒ๐‘ฅ๐‘ž = ๐‘’๐‘๐‘’๐‘ฅ๐‘ž = ๐‘’๐‘๐‘ฅ๐‘ž = ๐‘’๐‘’ = ๐‘’.

Let ๐‘“ = ๐‘ฅ๐‘ž๐‘โ€ฒ. Then ๐‘“2 = ๐‘ฅ๐‘ž๐‘โ€ฒ๐‘ฅ๐‘ž๐‘โ€ฒ = ๐‘ฅ๐‘ž๐‘’๐‘โ€ฒ = ๐‘ฅ๐‘ž๐‘’๐‘’๐‘๐‘’ = ๐‘ฅ๐‘ž๐‘’๐‘๐‘’ =๐‘ฅ๐‘ž๐‘โ€ฒ = ๐‘“. So ๐‘“ is idempotent. Furthermore, ๐‘’๐‘“ = ๐‘’๐‘ฅ๐‘ž๐‘โ€ฒ = ๐‘ฅ๐‘ž๐‘โ€ฒ = ๐‘“and ๐‘“๐‘’ = ๐‘ฅ๐‘ž๐‘โ€ฒ๐‘’ = ๐‘ฅ๐‘ž๐‘’๐‘๐‘’๐‘’ = ๐‘ฅ๐‘ž๐‘’๐‘๐‘’ = ๐‘ฅ๐‘ž๐‘โ€ฒ = ๐‘“. So ๐‘’๐‘“ = ๐‘“๐‘’ = ๐‘“ andhence ๐‘“ โ‰ผ ๐‘’. Suppose that ๐‘“ = 0; then ๐‘’ = ๐‘’2 = ๐‘โ€ฒ๐‘ฅ๐‘ž๐‘โ€ฒ๐‘ฅ๐‘ž = ๐‘โ€ฒ๐‘“๐‘ฅ๐‘ž = 0,which is a contradiction. Hence ๐‘“ โ‰  0. But ๐‘’ is primitive and therefore โ‰ผ-minimal among non-zero idempotents; thus ๐‘’ = ๐‘“ = ๐‘ฅ๐‘ž๐‘โ€ฒ. Since ๐‘ฅ = ๐‘’๐‘ ,it follows that ๐‘ฅ R ๐‘’ and so ๐‘ฅ โˆˆ ๐‘…๐‘’. Hence ๐‘’๐‘† โˆ– {0} โŠ† ๐‘…๐‘’. 4.4

L emma 4 . 5. For any ๐‘ฅ โˆˆ ๐‘† โˆ– {0},a) ๐‘…๐‘ฅ = ๐‘ฅ๐‘† โˆ– {0},b) ๐ฟ๐‘ฅ = ๐‘†๐‘ฅ โˆ– {0}.

Proof of 4.5. We prove part a); a dual argument gives part b). As in theproof of Lemma 4.4(a), ๐‘…๐‘ฅ โŠ† ๐‘ฅ๐‘† โˆ– {0}. So let ๐‘ฆ โˆˆ ๐‘ฅ๐‘† โˆ– {0}. Then ๐‘ฆ = ๐‘ฅ๐‘ for some ๐‘  โˆˆ ๐‘† โˆ– {0}. Let ๐‘’ be a primitive idempotent of ๐‘†. Since ๐‘† is 0-simple, by Lemma 3.7 there exist ๐‘, ๐‘ž โˆˆ ๐‘† with ๐‘๐‘’๐‘ž = ๐‘ฅ. So ๐‘ฆ = ๐‘๐‘’๐‘ž๐‘ . ByLemma 4.4(a), ๐‘’๐‘ž๐‘ , ๐‘’๐‘ž โˆˆ ๐‘…๐‘’. SinceR is a left congruence by Propostion 3.4,๐‘ฆ = ๐‘๐‘’๐‘ž๐‘  R ๐‘๐‘’๐‘ž = ๐‘ฅ. So ๐‘ฆ โˆˆ ๐‘…๐‘ฅ and hence ๐‘ฅ๐‘† โˆ– {0} โŠ† ๐‘…๐‘ฅ. 4.5

We can now deduce information about the D-class structure of ๐‘†:

L e m m a 4 . 6. a) TheD-classes of ๐‘† are 0 and ๐‘† โˆ– {0}.b) The semigroup ๐‘† is regular.

78 โ€ขRegular semigroups

Page 87: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

c) For all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† โˆ– {0}, if ๐ฟ๐‘ฅ โˆฉ ๐‘…๐‘ฆ contains an idempotent, then ๐‘ฅ๐‘ฆ โˆˆ๐‘…๐‘ฅ โˆฉ ๐ฟ๐‘ฆ; otherwise, ๐‘ฅ๐‘ฆ = 0.

Proof of 4.6. a) Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† โˆ– {0}. Suppose ๐‘ฅ๐‘†๐‘ฆ = {0}. Then

๐‘†2 = ๐‘†๐‘ฅ๐‘†๐‘†๐‘ฆ๐‘† โŠ† ๐‘†(๐‘ฅ๐‘†๐‘ฆ)๐‘† = ๐‘†{0}๐‘† = {0},

which contradicts the fact that 0-simple semigroups are (by definition)not null. Hence ๐‘ฅ๐‘†๐‘ฆ contains some non-zero element ๐‘ก. Now, ๐‘ก โˆˆ๐‘ฅ๐‘† โˆ– {0} and ๐‘ก โˆˆ ๐‘†๐‘ฆ โˆ– {0}. Hence ๐‘ก โˆˆ ๐‘…๐‘ฅ and ๐‘ก โˆˆ ๐ฟ๐‘ฆ by Lemma 4.5.Thus ๐‘ฅ R ๐‘ก L ๐‘ฆ and so ๐‘ฅ D ๐‘ฆ. So the D-classes of ๐‘†must be ๐‘† โˆ– {0}and {0}.

b) The primitive idempotent ๐‘’ lies in ๐‘†โˆ–{0} and so every element of ๐‘†โˆ–{0}is regular by Proposition 3.19. Since 0 is also regular, the semigroup ๐‘†is regular.

c) Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† โˆ– {0}. By part b), ๐‘ฅ D ๐‘ฆ. Suppose ๐ฟ๐‘ฅ โˆฉ ๐‘…๐‘ฆ containsan idempotent. Then ๐‘ฅ๐‘ฆ โˆˆ ๐‘…๐‘ฅ โˆฉ ๐ฟ๐‘ฆ by Proposition 3.18. Suppose๐ฟ๐‘ฅ โˆฉ ๐‘…๐‘ฆ does not contain an idempotent. Then ๐‘ฅ๐‘ฆ โˆ‰ ๐‘…๐‘ฅ โˆฉ ๐ฟ๐‘ฆ, and so๐‘ฅ๐‘ฆ = 0, since if ๐‘ฅ๐‘ฆ = 0, then by Lemma 4.6 ๐‘ฅ๐‘ฆ โˆˆ ๐‘ฅ๐‘† โˆ– {0} = ๐‘…๐‘ฅ and๐‘ฅ๐‘ฆ โˆˆ ๐‘†๐‘ฆ โˆ– {0} = ๐ฟ๐‘ฆ, contradicting ๐‘ฅ๐‘ฆ โˆ‰ ๐‘…๐‘ฅ โˆฉ ๐ฟ๐‘ฆ. 4.6

Let๐ป be anH-class of ๐‘† contained in theD-class ๐‘†โˆ–{0}. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐ป.Then either ๐‘ฅ๐‘ฆ = 0 or ๐‘ฅ๐‘ฆ โˆˆ ๐‘…๐‘ฅ โˆฉ ๐ฟ๐‘ฆ = ๐ป by Lemma 4.6(c).

Suppose first that ๐‘ฅ๐‘ฆ = 0. Let ๐‘ง, ๐‘ก โˆˆ ๐ป. Since ๐‘ง L ๐‘ฅ and ๐‘ก R ๐‘ฆ, wehave ๐‘ง = ๐‘๐‘ฅ and ๐‘ก = ๐‘ฆ๐‘  for some ๐‘, ๐‘  โˆˆ ๐‘†1. Then ๐‘ง๐‘ก = ๐‘๐‘ฅ๐‘ฆ๐‘  = ๐‘0๐‘Ÿ = 0.Since ๐‘ง, ๐‘ก โˆˆ ๐ป were arbitrary,๐ป2 = {0}.

On the other hand, suppose that ๐‘ฅ๐‘ฆ โˆˆ ๐ป. Then๐ป is a subgroup byProposition 3.14. So we can divide the H-classes in the D-class ๐‘† โˆ– {0}into zero H-classes and group H-classes.

Let ๐ผ be the set ofR-classes and let๐›ฌ be the set ofL-classes in ๐‘†โˆ– {0}.Write the R- and L-classes as ๐‘…(๐‘–) and ๐ฟ(๐œ†) for ๐‘– โˆˆ ๐ผ and ๐œ† โˆˆ ๐›ฌ, and write๐ป(๐‘–๐œ†) for ๐‘…(๐‘–) โˆฉ ๐ฟ(๐œ†). We will treat ๐ผ and ๐›ฌ as abstract index sets, and thesewill ultimately be the index sets for the Rees matrix semigroup we areconstructing.

Since ๐‘† โˆ– {0} is a regular D-class by Lemma 4.6(b), every R-classand every L-class contains an idempotent by Proposition 3.20 and thuscontains some group H-class. Therefore assume without loss that there issome element 1 โˆˆ ๐ผ โˆฉ ๐›ฌ such that๐ป(11) is a group H-class. For brevity,write๐ป for๐ป(11).

For each ๐‘– โˆˆ ๐ผ and ๐œ† โˆˆ ๐›ฌ, fix arbitrary elements ๐‘Ÿ๐œ† โˆˆ ๐ป(1๐œ†) โŠ† ๐‘…(1) and๐‘ž๐‘– โˆˆ ๐ป(๐‘–1) โŠ† ๐ฟ(1). Since 1๐ป is idempotent, it is a left identity for ๐‘…(1) anda right identity for ๐ฟ(1) by Proposition 3.17. So 1๐ป๐‘Ÿ๐œ† = ๐‘Ÿ๐œ† and ๐‘ž๐‘–1๐ป = ๐‘ž๐‘–.Therefore, by Lemma 3.12, ๐œŒ๐‘Ÿ๐œ† |๐ฟ(1) โˆถ ๐ฟ

(1) โ†’ ๐ฟ(๐œ†) restricts to a bijectionbetween ๐ป and ๐ป(๐‘–1) and ๐œ†๐‘ž๐‘– |๐‘…(1) โˆถ ๐‘…

(1) โ†’ ๐‘…(1) restricts to a bijectionbetween๐ป(๐‘–1) and๐ป(๐‘–๐œ†) for each ๐œ† โˆˆ ๐›ฌ. Thus there is a unique expression๐‘ž๐‘–๐‘ฅ๐‘Ÿ๐œ†, where ๐‘ฅ โˆˆ ๐ป, for every element of๐ป(๐‘–๐œ†).

๐ฟ(1) ๐ฟ(๐œ†)

๐‘…(๐‘–)

๐‘…(1)

๐‘ž๐‘–

๐‘ฅ

๐‘ž๐‘–๐‘ฅ๐‘Ÿ๐œ†

๐‘Ÿ๐œ†๐œŒ๐‘Ÿ๐œ† |๐ฟ(1)

๐œ†๐‘ž๐‘– |๐‘…(1)

FIGURE 4.3

Choosing ๐‘Ÿ๐œ† โˆˆ ๐ป(1๐œ†) and ๐‘ž๐‘– โˆˆ๐ป(๐‘–1) gives bijections ๐œŒ๐‘Ÿ๐œ† |๐ฟ(1)and ๐œ†๐‘ž๐‘– |๐‘…(1) and so a uniqueexpression ๐‘ž๐‘–๐‘ฅ๐‘Ÿ๐œ† for each ele-ment of๐ป(๐‘–๐œ†0 .

Completely 0-simple semigroups โ€ข 79

Page 88: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Therefore the map ๐œ‘ โˆถ (๐ผ ร— ๐ป ร— ๐›ฌ) โˆช {0} โ†’ ๐‘† defined by (๐‘–, ๐‘ฅ, ๐œ†)๐œ‘ =๐‘ž๐‘–๐‘ฅ๐‘Ÿ๐œ† and 0๐œ‘ = 0 is a bijection.

To turn (๐ผ ร— ๐ป ร— ๐›ฌ) โˆช {0} into a ๐ผ ร— ๐›ฌ Rees matrix semigroup over๐ป0, it remains to define a sandwich matrix ๐‘ƒ. For each ๐‘– โˆˆ ๐ผ and ๐œ† โˆˆ ๐›ฌ,let ๐‘๐œ†๐‘– = ๐‘Ÿ๐œ†๐‘ž๐‘–, and let ๐‘ƒ be the ๐›ฌ ร— ๐ผmatrix whose (๐œ†, ๐‘–)-th entry is ๐‘๐œ†๐‘–.By Lemma 4.6(c), ๐‘๐œ†๐‘– = ๐‘Ÿ๐œ†๐‘ž๐‘– โˆˆ ๐‘…๐‘Ÿ๐œ† โˆฉ ๐ฟ๐‘ž๐‘– = ๐‘…

(1) โˆฉ ๐ฟ(1) = ๐ป if and only if๐‘…๐‘ž๐‘– โˆฉ ๐ฟ๐‘Ÿ๐œ† contains an idempotent and is thus a group H-class; otherwise๐‘๐œ†๐‘– = 0. Hence each ๐‘๐œ†๐‘– lies in ๐ป0. Furthermore, since every R-classand every L-class contains an idempotent, for every ๐‘– โˆˆ ๐ผ there exists๐œ† โˆˆ ๐›ฌ such that ๐‘…๐‘ž๐‘– โˆฉ ๐ฟ๐‘Ÿ๐œ† contains an idempotent and so ๐‘๐œ†๐‘– โˆˆ ๐ป, andthus ๐‘๐œ†๐‘– โ‰  0. Thus every column of ๐‘ƒ contains a non-zero entry. Similarlyevery row of ๐‘‚ contains a non-zero entry. Therefore ๐‘ƒ is a regular matrix.

So ๐œ‘ is now a bijection from M0[๐ป; ๐ผ, ๐›ฌ; ๐‘ƒ] to ๐‘†. For any elements(๐‘–, ๐‘ฅ, ๐œ†), (๐‘—, ๐‘ฆ, ๐œ‡) โˆˆM0[๐ป; ๐ผ, ๐›ฌ; ๐‘ƒ] โˆ– {0},

((๐‘–, ๐‘ฅ, ๐œ†)๐œ‘)((๐‘—, ๐‘ฆ, ๐œ‡)๐œ‘) = (๐‘ž๐‘–๐‘ฅ๐‘Ÿ๐œ†)(๐‘ž๐‘—๐‘ฆ๐‘Ÿ๐œ‡)= ๐‘ž๐‘–๐‘ฅ(๐‘Ÿ๐œ†๐‘ž๐‘—)๐‘ฆ๐‘Ÿ๐œ‡= ๐‘ž๐‘–๐‘ฅ๐‘๐œ†๐‘—๐‘ฆ๐‘Ÿ๐œ‡

= {(๐‘–, ๐‘ฅ๐‘๐œ†๐‘—๐‘ฆ, ๐œ‡)๐œ‘ if ๐‘๐œ†๐‘— โ‰  00๐œ‘ if ๐‘๐œ†๐‘— = 0= ((๐‘–, ๐‘ฅ, ๐œ†)(๐‘—, ๐‘ฆ, ๐œ‡))๐œ‘.

Furthermore, ((๐‘–, ๐‘ฅ, ๐œ†)๐œ‘)(0๐œ‘) = ๐‘ž๐‘–๐‘ฅ๐‘Ÿ๐œ†0 = 0 = ((๐‘–, ๐‘ฅ, ๐œ†)0)๐œ‘ and similarlyfor other multiplications involving 0. Hence the map ๐œ‘ is a homomor-phism and hence an isomorphism between M0[๐ป; ๐ผ, ๐›ฌ; ๐‘ƒ] and ๐‘†. 4.6

Combining Propositions 4.2 and 4.3, we get the following characteriz-ation of completely 0-simple semigroups:

R e e s โ€“ S u s chk ew i t s ch Th eorem 4 . 7. A semigroup ๐‘† is com-Reesโ€“Suschkewitschtheorem pletely 0-simple if and only if there exist a group ๐บ, index sets, ๐ผ and

๐›ฌ, and a regular ๐›ฌ ร— ๐ผ matrix ๐‘ƒ with entries from ๐บ0 such that ๐‘† โ‰ƒM0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ]. 4.7

One of the advantages of this characterization is that it gives us a neatdescription of the H, L, R, D, and J-classes:

P ro p o s i t i on 4 . 8. Let ๐‘† โ‰ƒM0[๐บ; ๐ผ, ๐›ฌ, ๐‘ƒ] be a completely 0-simpleGreenโ€™s relationsin completely

0-simple semigroupssemigroup.a) In ๐‘†, the relations D and J coincide, and ๐‘† has two D-classes {0} and๐‘† โˆ– {0} = ๐ผ ร— ๐บ ร— ๐›ฌ.

b) The L-classes of ๐‘† are {0} and sets of the form ๐ผ ร— ๐บ ร— {๐œ†}.c) TheR-classes of ๐‘† are {0} and sets of the form {๐‘–} ร— ๐บ ร— ๐›ฌ.d) TheH-classes of ๐‘† are {0} and sets of the form {๐‘–} ร— ๐บ ร— {๐œ†}.

80 โ€ขRegular semigroups

Page 89: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 4.8. a) By Lemma 4.6, ๐‘† has twoD-classes, {0} and ๐‘†โˆ–{0}. Since๐‘† is 0-simple, it has only two ideals: ๐‘† and {0}. If ๐‘ฅ โˆˆ ๐‘† โˆ– {0}, then๐‘ฅ โˆˆ ๐‘†1๐‘ฅ๐‘†1, so ๐‘†1๐‘ฅ๐‘†1 = ๐‘†. On the other hand, ๐‘†10๐‘†1 = {0}. So ๐‘† and{0} are also the J-classes of ๐‘†.

b) Since {0} is the D-class of 0, it is alsoe the L-class of 0.Let (๐‘–, ๐‘ฅ, ๐œ†)โˆ–{0}. By Lemma 4.5(b), we have๐ฟ(๐‘–,๐‘ฅ,๐œ†) = ๐‘†(๐‘–, ๐‘ฅ, ๐œ†)โˆ–{0}.

First, note that ๐‘†(๐‘–, ๐‘ฅ, ๐œ†) โˆ– {0} โŠ† ๐ผ ร— ๐บ ร— {๐œ†} โˆ– {0} by the definition ofmultiplication in M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ].

On the other hand, let (๐‘—, ๐‘ฆ, ๐œ†) โˆˆ ๐ผ ร— ๐บ ร— {๐œ†} โˆ– {0}. Let ๐‘  =(๐‘—, ๐‘ฆ๐‘ฅโˆ’1๐‘โˆ’1๐œ‡๐‘– , ๐œ‡), where ๐œ‡ is such that ๐‘๐œ‡๐‘– โ‰  0; such a ๐œ‡ exists because๐‘ƒ is regular. Note that ๐‘๐œ‡๐‘– โˆˆ ๐บ, so ๐‘โˆ’1๐œ‡๐‘– exists. Then

๐‘ (๐‘–, ๐‘ฅ, ๐œ†) = (๐‘—, ๐‘ฆ๐‘ฅ๐‘โˆ’1๐œ‡๐‘– , ๐œ‡)(๐‘–, ๐‘ฅ, ๐œ†)= (๐‘—, ๐‘ฆ๐‘ฅโˆ’1๐‘โˆ’1๐œ‡๐‘– ๐‘๐œ‡๐‘–๐‘ฅ, ๐œ†)= (๐‘—, ๐‘ฆ, ๐œ†).

So ๐ผ ร— ๐บ ร— {๐œ†} โˆ– {0} โŠ† ๐‘†(๐‘–, ๐‘ฅ, ๐œ†) โˆ– {0}.Thus ๐ฟ(๐‘–,๐‘ฅ,๐œ†) = ๐ผ ร— ๐บ ร— {๐œ†} โˆ– {0}.

c) The reasoning is dual to part b).d) First, ๐ป0 = ๐ฟ0 โˆฉ ๐‘…0 = {0}. For (๐‘–, ๐‘ฅ, ๐œ†) โˆˆ ๐‘† โˆ– {0}, we have ๐ป(๐‘–,๐‘ฅ,๐œ†) =๐ฟ(๐‘–,๐‘ฅ,๐œ†) โˆฉ ๐‘…(๐‘–,๐‘ฅ,๐œ†) = (๐ผ ร— ๐บ ร— {๐œ†}) โˆฉ ({๐‘–} ร— ๐บ ร— ๐›ฌ) = {๐‘–} ร— ๐บ ร— {๐œ†}. 4.8

Ideals and completely0-simple semigroups

This section characterizes the 0-simple semigroups thatare also completely 0-simple. We require some definitions. A semigroup๐‘† is group-bound if every ๐‘ฅ โˆˆ ๐‘† has some power ๐‘ฅ๐‘› lying in a subgroup Group-bound semigroupof ๐‘†. A semigroup satisfies the conditionminL (respectively, minR) if any minL, minRsubset of the partial order ๐‘†/L (respectively, ๐‘†/R) has a minimal element.

T h eorem 4 . 9. Let ๐‘† be 0-simple. The following are equivalent: Characterization of0-simple semigroups thatare completely 0-simple

a) ๐‘† is completely 0-simple;b) ๐‘† is group-bound;c) ๐‘† satisfies the conditionsminL andminR.

Proof of 4.9. Part 1 [a)โ‡’ b)]. Suppose ๐‘† is completely 0-simple. Let ๐‘ฅ โˆˆ ๐‘†.Then either๐ป๐‘ฅ is a subgroup and ๐‘ฅ2 โˆˆ ๐ป๐‘ฅ, or else ๐‘ฅ2 = 0. In either case,๐‘ฅ2 lies in a subgroup. Thus ๐‘† is group-bound.

Part 2 [b) โ‡’ c)]. Suppose ๐‘† is group-bound. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† โˆ– {0} besuch that ๐ฟ๐‘ฅ โฉฝ ๐ฟ๐‘ฆ. We are going to show that ๐ฟ๐‘ฅ = ๐ฟ๐‘ฆ. First, no-tice that ๐‘ฅ = ๐‘๐‘ฆ for some ๐‘ โˆˆ ๐‘†1. Furthermore, ๐‘ฆ = ๐‘ž๐‘ฅ๐‘Ÿ for some

Ideals and completely 0-simple semigroups โ€ข 81

Page 90: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐‘ž, ๐‘Ÿ โˆˆ ๐‘† by Lemma 3.7, since ๐‘† is 0-simple. Then ๐‘ฆ = ๐‘ž๐‘ฅ๐‘Ÿ = ๐‘ž๐‘๐‘ฆ๐‘Ÿ and so๐‘ฆ = (๐‘ž๐‘)๐‘›๐‘ฆ๐‘Ÿ๐‘› for all ๐‘› โˆˆ โ„•. Fix ๐‘› so that ๐‘” = (๐‘ž๐‘)๐‘› lies in a subgroup๐บ. Then 1๐บ๐‘ฆ = 1๐บ๐‘”๐‘ฆ๐‘Ÿ๐‘› = ๐‘”๐‘ฆ๐‘Ÿ๐‘› = ๐‘ฆ and so ๐‘ฆ = ๐‘”โˆ’1๐‘”๐‘ฆ = ๐‘”โˆ’1(๐‘ž๐‘)๐‘›๐‘ฆ =๐‘”โˆ’1(๐‘ž๐‘)๐‘›โˆ’1๐‘ž๐‘๐‘ฆ = ๐‘”โˆ’1(๐‘ž๐‘)๐‘›โˆ’1๐‘ž๐‘ฅ. Hence ๐ฟ๐‘ฆ โฉฝ ๐ฟ๐‘ฅ and so ๐ฟ๐‘ฅ = ๐ฟ๐‘ฆ. There-fore ๐ฟ๐‘ฅ โฉฝ ๐ฟ๐‘ฆ โ‡’ ๐ฟ๐‘ฅ = ๐ฟ๐‘ฆ, and this certainly implies that any subset of๐‘†/L is has a minimal element. So ๐‘† satisfiesminL. Similarly, ๐‘†/R satisfiesminR.Part 3 [c)โ‡’ a)]. Suppose ๐‘† satisfies minL and minR. Suppose, with theaim of obtaining a contradiction, that ๐‘† does not contain a primitiveidempotent. Then ๐‘† contains an infinite descending chain of non-zeroidempotents

๐‘’1 โ‰ป ๐‘’2 โ‰ป ๐‘’3 โ‰ป โ€ฆ .

Notice that for ๐‘’, ๐‘“ โˆˆ ๐ธ(๐‘†), by the definition of the partial order โ‰ผ on ๐ธ(๐‘†)and the relation R, we have

๐‘’ โ‰ผ ๐‘“ โ‡’ ๐‘’ = ๐‘“๐‘’ โ‡’ ๐‘’๐‘† = ๐‘“๐‘’๐‘† โŠ† ๐‘“๐‘† โ‡’ ๐‘…๐‘’ โฉฝ ๐‘…๐‘“and similarly ๐‘’ โ‰ผ ๐‘“ โ‡’ ๐ฟ๐‘’ โฉฝ ๐ฟ๐‘“. Hence

๐ฟ๐‘’1 โฉพ ๐ฟ๐‘’2 โฉพ ๐ฟ๐‘’3 โฉพ โ€ฆ and ๐‘…๐‘’1 โฉพ ๐‘…๐‘’2 โฉพ ๐‘…๐‘’3 โฉพ โ€ฆ ,

Since ๐‘† satisfies minL and minR, the set of L-classes { ๐ฟ๐‘’๐‘– โˆถ ๐‘– โˆˆ โ„• }contains a minimal element ๐ฟ๐‘’๐‘— and the set of R-classes { ๐‘…๐‘’๐‘– โˆถ ๐‘– โˆˆ โ„• }contains a minimal element ๐‘…๐‘’๐‘˜ . Let โ„“ = max{๐‘—, ๐‘˜}; then ๐ฟ๐‘’โ„“ = ๐ฟ๐‘’โ„“+1 and๐‘…๐‘’โ„“ = ๐‘…๐‘’โ„“+1 , and so ๐ป๐‘’โ„“ = ๐ป๐‘’โ„“+1 . By Corollary 3.16, ๐‘’โ„“ = ๐‘’โ„“+1, whichis a contradiction. Thus ๐‘† contains a primitive idempotent and so iscompletely 0-simple. 4.9

Completely simple semigroups

An idempotent of a semigroup without zero is primitive ifPrimitive idempotentit is minimal. A semigroup without zero is completely simple if it is simpleCompletely

simple semigroup and contains a primitive idempotent.โ€˜Primitive idempotentโ€™ has different meanings for semigroups with andwithout zero: in a semigroup with a zero, a primitive idempotent is aminimal non-0 idempotent; in a semigroup without zero, a primitiveidempotent is a minimal idempotent.

Pro p o s i t i on 4 . 1 0. A finite simple semigroup is completely simple.Finite simpleโ‡’completely simple

Proof of 4.10. Let ๐‘† be a finite simple semigroup. Since ๐‘† is finite, everyelement has a power which is an idempotent. So ๐‘† contains at least oneidempotent. Furthermore, theremust be a primitive idempotent in ๐‘†, sinceotherwise there would be an infinite descending chain of idempotents,and this is impossible since ๐‘† is finite. 4.10

82 โ€ขRegular semigroups

Page 91: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Define a new version of the Rees matrix construction as follows. Let๐บ be a group, let ๐ผ and ๐›ฌ be abstract index sets, and let ๐‘ƒ be a ๐›ฌ ร— ๐ผmatrix with entries from ๐บ, with the (๐œ†, ๐‘–)-th entry of ๐‘ƒ being ๐‘๐œ†๐‘–. LetM[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] be the set ๐ผ ร— ๐บ ร— ๐›ฌ with multiplication

(๐‘–, ๐‘ฅ, ๐œ†)(๐‘—, ๐‘ฆ, ๐œ‡) = (๐‘–, ๐‘ฅ๐‘๐œ†๐‘—๐‘ฆ, ๐œ‡).

Then we have the following characterization of completely simple semi-groups, paralleling the Reesโ€“Suschkewitsch theorem:

Th eorem 4 . 1 1. A semigroup ๐‘† is completely simple if and only if there Characterizationof completelysimple semigroups

exist a group ๐บ, index sets ๐ผ and ๐›ฌ, and a ๐›ฌร— ๐ผmatrix ๐‘ƒ with entries from๐บ such that ๐‘† โ‰ƒM[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ]. 4.11

Theorem 4.11, and many other properties of completely simple semi-groups, are consequences of the following observations:โ—† ๐‘† is simple if and only if ๐‘†0 is 0-simple;โ—† an idempotent is primitive in ๐‘† if and only if it is primitive in ๐‘†0โ€™;โ—† for any group ๐บ, index sets ๐ผ and ๐›ฌ, and ๐›ฌ ร— ๐ผmatrix ๐‘ƒ with entries

from ๐บ, we have (M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ])0 =M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ].

Notice that in the second condition above, โ€˜primitiveโ€™ means โ€˜minimalโ€™in ๐‘† and โ€˜minimal non-0โ€™ in ๐‘†0.

The proof of the following characterization of Greenโ€™s relations incompletely simple semigroups is similar to the proof of Proposition 4.8.

P ro p o s i t i on 4 . 1 2. Let ๐‘† โ‰ƒ M[๐บ; ๐ผ, ๐›ฌ, ๐‘ƒ] be a completely simple Greenโ€™s relationsin completelysimple semigroups

semigroup.a) In ๐‘†, the relations D and J coincide, and ๐‘† consists of a single D-class.b) The L-classes of ๐‘† are sets of the form ๐ผ ร— ๐บ ร— {๐œ†}.c) TheR-classes of ๐‘† are sets of the form {๐‘–} ร— ๐บ ร— ๐›ฌ.d) TheH-classes of ๐‘† are sets of the form {๐‘–} ร— ๐บ ร— {๐œ†}. 4.12

Pro p o s i t i on 4 . 1 3. A semigroup is completely simple if and only if Characterization ofregular semigroups thatare completely simple

it is regular and every idempotent is primitive.

Proof of 4.13. Suppose ๐‘† is completely simple. Then ๐‘† โ‰ƒ M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ].So ๐‘† consists of a single D-class. Furthermore, ๐‘† contains idempotents,which are regular elements. Hence ๐‘† is regular by Proposition 3.19. Byfollowing the reasoning in the proof of Proposition 4.2 (and ignoringmentions of the zero), every idempotent in ๐‘† is primitive.

Now suppose that ๐‘† is regular and every idempotent is primitive. Wehave to show that ๐‘† is simple. Since ๐‘† is regular, everyD-class contains anidempotent. So every J-class contains an idempotent. Let ๐ฝ๐‘’ be a J-class

Completely simple semigroups โ€ข 83

Page 92: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

and let ๐ฝ๐‘“ โฉฝ ๐ฝ๐‘’, where ๐‘’ and ๐‘“ are idempotents. Then ๐‘“ = ๐‘๐‘’๐‘ž for some๐‘, ๐‘ž โˆˆ ๐‘†1. Let ๐‘” = ๐‘’๐‘ž๐‘“๐‘๐‘’. Then

๐‘”2 = ๐‘’๐‘ž๐‘“๐‘๐‘’๐‘’๐‘ž๐‘“๐‘๐‘’ [by definition of ๐‘”]= ๐‘’๐‘ž๐‘“๐‘๐‘’๐‘ž๐‘“๐‘๐‘’ [since ๐‘’ is idempotent]= ๐‘’๐‘ž๐‘“๐‘“๐‘“๐‘๐‘’ [since ๐‘“ = ๐‘๐‘’๐‘ž]= ๐‘’๐‘ž๐‘“๐‘๐‘’ [since ๐‘“ is idempotent]= ๐‘”; [by definition of ๐‘”]

thus ๐‘” is idempotent. Furthermore ๐‘”๐‘’ = ๐‘’๐‘” = ๐‘” and so ๐‘” โ‰ผ ๐‘’. Since ๐‘’ isprimitive (since all idempotents are primitive), it follows that ๐‘” = ๐‘’.

Therefore ๐‘“ = ๐‘๐‘’๐‘ž and ๐‘’ = ๐‘” = ๐‘’๐‘ž๐‘“๐‘๐‘’. Hence ๐ฝ๐‘’ = ๐ฝ๐‘“. Since allJ-classes contain idempotents, ๐‘† contains only one J-class. Hence allelements๐‘ฅ โˆˆ ๐‘† generates the same principal ideal, ๐‘†1๐‘ฅ๐‘†1, and so ๐‘† = ๐‘†1๐‘ฅ๐‘†1for all ๐‘ฅ โˆˆ ๐‘†. Thus ๐‘† is the only ideal of ๐‘† and so ๐‘† is simple. 4.13

Pro p o s i t i on 4 . 1 4. A completely simple semigroup is a group if andCharacterization ofcompletely simple

semigroups that are groupsonly if it contains exactly one idempotent.

Proof of 4.14. One direction of this result is obvious: a group containsexactly one idempotent.

Suppose ๐‘† is completely simple and contains exactly one idempotent.By Proposition 4.13, ๐‘† is regular. Hence, by Proposition 3.20, every L-and every R-class of ๐‘† contains an idempotent. Since ๐‘† contains only oneidempotent, it contains only one L-class and only one R-class and soconsists of a single H-class, which is a group by Proposition 3.14. 4.14

Completely regular semigroups

Recall that a semigroup ๐‘† is completely regular if it isequipped with a unary operation โˆ’1 satisfying the conditions in (4.2);namely that for all ๐‘ฅ โˆˆ ๐‘†,

(๐‘ฅโˆ’1)โˆ’1 = ๐‘ฅ, ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1, ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ.

Th eorem 4 . 1 5. Let ๐‘† be a semigroup. Then the following are equival-Characterizationof completely

regular semigroupsent:a) ๐‘† is completely regular;b) every element of ๐‘† lies in a subgroup of ๐‘†;c) every H-class of ๐‘† is a subgroup.

Proof of 4.15. Part 1 [a)โ‡’ b)]. Suppose ๐‘† is completely regular. Let ๐‘ฅ โˆˆ ๐‘†.Then ๐‘’ = ๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฅโˆ’1๐‘ฅ is an idempotent, since ๐‘’2 = (๐‘ฅ๐‘ฅโˆ’1)(๐‘ฅ๐‘ฅโˆ’1) =

84 โ€ขRegular semigroups

Page 93: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

(๐‘ฅ๐‘ฅโˆ’1๐‘ฅ)๐‘ฅโˆ’1 = ๐‘ฅ๐‘ฅโˆ’1 = ๐‘’. By Proposition 3.18, ๐‘ฅ โˆˆ ๐‘…๐‘’ โˆฉ ๐ฟ๐‘’ = ๐ป๐‘’, which isa subgroup. So every element of ๐‘† lies in a subgroup.

Part 2 [b)โ‡’ c)]. Suppose every element of ๐‘† lies in a subgroup. Let ๐‘ฅ โˆˆ ๐‘†.Then ๐‘ฅ โˆˆ ๐บ for some subgroup ๐บ of ๐‘†. Then ๐‘ฅ H 1๐บ and so๐ป๐‘ฅ = ๐ป1๐บ ,which contains an idempotent and is thus a subgroup. So every H-classof ๐‘† is a subgroup.

Part 3 [c)โ‡’ a)]. Suppose every H-class of ๐‘† is a subgroup. Define โˆ’1 byletting ๐‘ฅโˆ’1 (where ๐‘ฅ โˆˆ ๐‘†) be the unique inverse of ๐‘ฅ in the subgroup๐ป๐‘ฅ.It is clear that โˆ’1 satisfies the conditions (4.2) and ๐‘† is thus completelyregular. 4.15

The next result is analogous to Theorem 4.9:

T h eorem 4 . 1 6. Let ๐‘† be simple. The following are equivalent: Characterization ofsimple semigroups thatare completely simple

a) ๐‘† is completely simple;b) ๐‘† is completely regular;c) ๐‘† satisfies the conditionsminL andminR;

Proof of 4.16. Part 1 [a)โ‡’ b)]. Suppose ๐‘† is completely simple. Then byTheorem 4.11, every element of ๐‘† lies in a subgroup of ๐‘†. So ๐‘† is completelyregular by Theorem 4.15.

Part 2 [b)โ‡’ c)]. Suppose ๐‘† is completely regular. Then every element of๐‘† lies in a subgroup of ๐‘† by Theorem 4.15. So every element of ๐‘†0 lies ina subgroup and so ๐‘†0 is group-bound and therefore satisfies minL andminR by Theorem 4.9.

Part 3 [c)โ‡’ a)]. Suppose ๐‘† satisfies minL and minR. Then so does ๐‘†0and so ๐‘†0 is completely 0-simple by Theorem 4.9. Hence ๐‘† is completelysimple. 4.16

A semilattice of semigroups is a semigroup ๐‘† for which there exists a Semilattice of semigroupssemilattice ๐‘Œ and a collection of disjoint subsemigroups ๐‘†๐›ผ of ๐‘†, where๐›ผ โˆˆ ๐‘Œ, such that ๐‘† = โ‹ƒ๐›ผโˆˆ๐‘Œ ๐‘†๐›ผ and ๐‘†๐›ผ๐‘†๐›ฝ โŠ† ๐‘†๐›ผโŠ“๐›ฝ (see Figure 4.4). Asemilattice of completely simple semigroups is one in which every ๐‘†๐›ผ iscompletely simple; a semilattice of groups is one in which every ๐‘†๐›ผ is agroup.

T h eorem 4 . 1 7. Every completely regular semigroup is a semilattice of Characterizationof completelyregular semigroups

completely simple semigroups.

Proof of 4.17. Let ๐‘† be a completely regular semigroup.By Theorem 4.15, each H-class of ๐‘† is a subgroup. So for any ๐‘ฅ โˆˆ ๐‘†,

we have ๐‘ฅ2 H ๐‘ฅ and hence ๐‘ฅ2 J ๐‘ฅ. Hence for any ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†, we have๐ฝ๐‘ฅ๐‘ฆ = ๐ฝ(๐‘ฅ๐‘ฆ)2 = ๐ฝ๐‘ฅ(๐‘ฆ๐‘ฅ)๐‘ฆ โฉฝ ๐ฝ๐‘ฆ๐‘ฅ. By symmetry, ๐ฝ๐‘ฆ๐‘ฅ โฉฝ ๐ฝ๐‘ฅ๐‘ฆ and so ๐ฝ๐‘ฅ๐‘ฆ = ๐ฝ๐‘ฆ๐‘ฅ.

Let ๐‘ฅ J ๐‘ฆ. Then there exist ๐‘Ÿ, ๐‘  โˆˆ ๐‘†1 with ๐‘Ÿ๐‘ฆ๐‘  = ๐‘ฅ. Let ๐‘ง โˆˆ ๐‘†. Then

๐ฝ๐‘ง๐‘ฅ = ๐ฝ๐‘ง๐‘Ÿ๐‘ฆ๐‘  โฉฝ ๐ฝ๐‘ง๐‘Ÿ๐‘ฆ = ๐ฝ๐‘Ÿ๐‘ฆ๐‘ง โฉฝ ๐ฝ๐‘ฆ๐‘ง = ๐ฝ๐‘ง๐‘ฆ.

Completely regular semigroups โ€ข 85

Page 94: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

FIGURE 4.4Multiplying in a semilattice ofsemigroups: the product of๐‘ฅ โˆˆ๐‘†๐›ผ and ๐‘ฆ โˆˆ ๐‘†๐›ฝ lies in the sub-

semigroup ๐‘†๐›ผโŠ“๐›ฝ .

๐‘†๐›ผ ๐‘†๐›ฝ

๐‘†๐›ผโŠ“๐›ฝ

๐‘ฅ ๐‘ฆ

๐‘ฅ๐‘ฆ

By symmetry ๐ฝ๐‘ง๐‘ฆ โฉฝ ๐ฝ๐‘ง๐‘ฅ and hence ๐ฝ๐‘ง๐‘ฅ = ๐ฝ๐‘ง๐‘ฆ. So ๐‘ง๐‘ฅ J ๐‘ง๐‘ฆ. Similarly๐‘ฅ๐‘ง J ๐‘ฆ๐‘ง. Therefore J is a congruence. The factor semigroup ๐‘†/J is acommutative semigroup of idempotents since ๐‘ฅ2 J ๐‘ฅ and ๐‘ฅ๐‘ฆ J ๐‘ฆ๐‘ฅ for all๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. Hence ๐‘†/J is a semilattice by Theorem 1.21.

Since J is a congruence, ๐ฝ๐‘ฅ๐ฝ๐‘ฆ โŠ† ๐ฝ๐‘ฅ๐‘ฆ. In particular, ๐ฝ๐‘ฅ๐ฝ๐‘ฅ โŠ† ๐ฝ๐‘ฅ2 = ๐ฝ๐‘ฅ, soeach ๐ฝ๐‘ฅ is a subsemigroup.

The aim is to show ๐ฝ๐‘ฅ๐‘ฆ๐ฝ๐‘ฅ = ๐ฝ๐‘ฅ for all ๐‘ฆ โˆˆ ๐ฝ๐‘ฅ, and so deduce that๐ฝ๐‘ฅ is simple. Let ๐‘ง โˆˆ ๐ฝ๐‘ฅ. Since ๐‘ฆ J ๐‘ง, there exist ๐‘, ๐‘ž, ๐‘Ÿ, ๐‘  โˆˆ ๐‘†1 such that๐‘๐‘ฆ๐‘ž = ๐‘ง and ๐‘Ÿ๐‘ง๐‘  = ๐‘ฆ. [We cannot immediately deduce that ๐‘ง โˆˆ ๐ฝ๐‘ฅ๐‘ฆ๐ฝ๐‘ฅ,because ๐‘ and ๐‘žmay not lie in ๐ฝ๐‘ฅ.] Write 1๐‘ฆ for the identity of๐ป๐‘ฆ and1๐‘ง for the identity of๐ป๐‘ง. Since ๐‘ฆ, ๐‘ง โˆˆ ๐ฝ๐‘ฅ, it follows that 1๐‘ฆ, 1๐‘ง โˆˆ ๐ฝ๐‘ฅ. Then(1๐‘ง๐‘)๐‘ฆ(๐‘ž1๐‘ง) = 1๐‘ง๐‘ง1๐‘ง = ๐‘ง and (1๐‘ฆ๐‘Ÿ)๐‘ง(๐‘ 1๐‘ฆ) = 1๐‘ฆ๐‘ฆ1๐‘ฆ = ๐‘ฆ. Furthermore,๐ฝ1๐‘ง๐‘ โฉพ ๐ฝ(1๐‘ง๐‘)๐‘ฆ(๐‘ž1๐‘ง) = ๐ฝ๐‘ง = ๐ฝ๐‘ฅ and ๐ฝ1๐‘ง๐‘ โฉฝ ๐ฝ1๐‘ง = ๐ฝ๐‘ฅ. Hence 1๐‘ง๐‘ โˆˆ ๐ฝ๐‘ฅ.Similarly ๐‘ž1๐‘ง โˆˆ ๐ฝ๐‘ฅ. Hence ๐‘ง = (1๐‘ง๐‘)๐‘ฆ(๐‘ž1๐‘ง) โˆˆ ๐ฝ๐‘ฅ๐‘ฆ๐ฝ๐‘ฅ. Since ๐‘ง โˆˆ ๐ฝ๐‘ฅ wasarbitrary, ๐ฝ๐‘ฅ โŠ† ๐ฝ๐‘ฅ๐‘ฆ๐ฝ๐‘ฅ. Clearly ๐ฝ๐‘ฅ๐‘ฆ๐ฝ๐‘ฅ โŠ† ๐ฝ๐‘ฅ and so ๐ฝ๐‘ฅ = ๐ฝ๐‘ฅ๐‘ฆ๐ฝ๐‘ฅ. Since ๐‘ฆ โˆˆ ๐ฝ๐‘ฅwas arbitrary, ๐ฝ๐‘ฅ is simple.

Thus, since ๐ฝ๐‘ฅ is completely regular, it is completely simple byTheorem4.16.

To see ๐‘† is a semilattice of completely simple semigroups, let ๐‘Œ be thesemilattice ๐‘†/J and write ๐‘†๐›ผ instead of ๐›ผ โˆˆ ๐‘†/J. 4.17

Left and right groups

This section discusses left and right groups, which aresemigroups that are very close to being groups, andwhich have a very easycharacterization, which we will deduce from our results on completely0-simple semigroups.

A semigroup is left simple if it contains no proper left ideals, and rightLeft/right simple semigroupsimple if it contains no proper right ideals.

P ro p o s i t i on 4 . 1 8. Let ๐‘† be left or right simple. Then ๐‘† is simple.

86 โ€ขRegular semigroups

Page 95: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 4.18. Suppose ๐‘† is left simple; the reasoning for the right simplecase is parallel. Let ๐‘ฅ โˆˆ ๐‘†. Then ๐‘†๐‘ฅ = ๐‘† since ๐‘† is left simple. So ๐‘†2 = ๐‘†๐‘† โŠ‡๐‘†๐‘ฅ = ๐‘† and so ๐‘† = ๐‘†2 = ๐‘†๐‘ฅ. Hence ๐‘†๐‘ฅ๐‘† = ๐‘†3 = ๐‘†2 = ๐‘† and so the onlyideal of ๐‘† is ๐‘† itself. Thus ๐‘† is simple. 4.18

Note that Proposition 4.18 shows that being left simple (or right simple)is a stronger condition than being simple. This contrasts (for example)cancellativity: being left-cancellative is a weaker condition than beingcancellative.

A semigroup is a left group if is left simple and right cancellative, and Left/right groupa right group if it is right simple and left cancellative.

T h eorem 4 . 1 9. Let ๐‘† be a semigroup. The following are equivalent: Characterizationof left groupsa) ๐‘† is a left group;

b) ๐‘† is left simple and contains an idempotent;c) ๐‘† is completely simple semigroup and has only one L-class;d) ๐‘† โ‰ƒ ๐‘ ร— ๐บ, where ๐‘ is a left zero semigroup and ๐บ is a group.

There is a natural analogue of Theorem 4.19 for right groups. Notethat taking ๐บ trivial in part d) shows that a left zero semigroup is a leftgroup.

Proof of 4.19. Part 1 [a)โ‡’ b)] Suppose ๐‘† is a left group. By definition, ๐‘† isleft simple. Let ๐‘ฅ โˆˆ ๐‘†. Since ๐‘† is left simple, ๐‘†๐‘ฅ = ๐‘†. So there exists ๐‘’ โˆˆ ๐‘†such that ๐‘’๐‘ฅ = ๐‘ฅ. Thus ๐‘’2๐‘ฅ = ๐‘’๐‘ฅ. Since ๐‘† is right-cancellative, ๐‘’2 = ๐‘’.

Part 2 [b)โ‡’ c)] Suppose ๐‘† is left simple and ๐ธ(๐‘†) โ‰  โˆ…. Since ๐‘† is leftsimple, ๐‘†1๐‘ฅ = ๐‘† for all ๐‘ฅ โˆˆ ๐‘†, and so ๐‘† consists of a single L-class andthus a single D-class. Since ๐ธ(๐‘†) โ‰  โˆ…, some H-class in this L-classcontains an idempotent, which is a regular element. By Proposition 3.19, allelements of ๐‘† are regular. By Proposition 3.20, everyR-class of ๐‘† containsan idempotent. Since ๐‘† has only one L-class, this means that every H-class of ๐‘† contains an idempotent and so is a group by Proposition 3.14.Thus ๐‘† is completely regular by Theorem 4.15. Since ๐‘† is left simple andthus simple by Proposition 4.18, ๐‘† is completely simple by Theorem 4.16.

Part 3 [c)โ‡’ d)] Since ๐‘† is completely simple, ๐‘† =M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] for somegroup ๐บ, index sets ๐ผ and ๐›ฌ, and matrix ๐‘ƒ. Since ๐‘† has only one L-class,๐›ฌ = {1} by Proposition 4.12.

Make ๐ผ a left zero semigroup by defining ๐‘–๐‘— = ๐‘– for all ๐‘–, ๐‘— โˆˆ ๐ผ. Definea map

๐œ‘ โˆถ ๐ผ ร— ๐บ โ†’ ๐‘†; (๐‘–, ๐‘”)๐œ‘ = (๐‘–, ๐‘โˆ’11๐‘– ๐‘”, 1).

Note that in this definition, the pair (๐‘–, ๐‘”) is in the direct product ๐ผร—๐บ, andthe triple (๐‘–, ๐‘โˆ’11๐‘– ๐‘”, 1) is in the Rees matrix semigroup M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] = ๐‘†.

Left and right groups โ€ข 87

Page 96: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Then

((๐‘–, ๐‘”)๐œ‘)((๐‘—, โ„Ž)๐œ‘)= (๐‘–, ๐‘โˆ’11๐‘– ๐‘”, 1)(๐‘—, ๐‘โˆ’11๐‘— โ„Ž, 1) [by definition of ๐œ‘]

= (๐‘–, ๐‘โˆ’11๐‘– ๐‘”๐‘1๐‘—๐‘โˆ’11๐‘— โ„Ž, 1) [by multiplication in M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ]]

= (๐‘–, ๐‘โˆ’1๐‘–1 ๐‘”โ„Ž, 1) [by multiplication in ๐บ]= (๐‘–, ๐‘”โ„Ž)๐œ‘ [by definition of ๐œ‘]= ((๐‘–, ๐‘”)(๐‘—, โ„Ž))๐œ‘, [by multiplication in ๐ผ ร— ๐บ]

so ๐œ‘ is a homomorphism.Furthermore,

(๐‘–, ๐‘”)๐œ‘ = (๐‘—, โ„Ž)๐œ‘ โ‡’ (๐‘–, ๐‘โˆ’11๐‘– ๐‘”, 1) = (๐‘—, ๐‘โˆ’11๐‘— โ„Ž, 1) [by definition of ๐œ‘]

โ‡’ ๐‘– = ๐‘— โˆง ๐‘โˆ’11๐‘– ๐‘” = ๐‘โˆ’11๐‘— โ„Žโ‡’ ๐‘– = ๐‘— โˆง ๐‘โˆ’11๐‘– ๐‘” = ๐‘โˆ’11๐‘– โ„Ž [using ๐‘– = ๐‘—]โ‡’ ๐‘– = ๐‘— โˆง ๐‘” = โ„Ž [by cancellation in ๐บ]โ‡’ (๐‘–, ๐‘”) = (๐‘—, โ„Ž);

thus ๐œ‘ is injective.Finally, for any (๐‘–, ๐‘”, 1) โˆˆ ๐‘† = M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ], we have (๐‘–, ๐‘1๐‘–๐‘”)๐œ‘ =(๐‘–, ๐‘โˆ’11๐‘– ๐‘1๐‘–๐‘”, 1) = (๐‘–, ๐‘”, 1), so ๐œ‘ is surjective. So ๐œ‘ is an isomorphism, and๐‘† โ‰ƒ ๐ผร—๐บ. Since ๐ผ is a left zero semigroup and๐บ is a group, this completesthis part of the proof.

Part 4 [d)โ‡’ a)] Let (๐‘ฅ, ๐‘”), (๐‘ฆ, โ„Ž), (๐‘ง, ๐‘–) โˆˆ ๐‘ ร— ๐บ. Then

(๐‘ฅ, ๐‘”)(๐‘ฆ, โ„Ž) = (๐‘ฅ, ๐‘”)(๐‘ง, ๐‘–)โ‡’ (๐‘ฆ, ๐‘”โ„Ž) = (๐‘ง, ๐‘”๐‘–) [since ๐‘ is a right zero semigroup]โ‡’ (๐‘ฆ = ๐‘ง) โˆง (๐‘”โ„Ž = ๐‘”๐‘–)โ‡’ (๐‘ฆ = ๐‘ง) โˆง (โ„Ž = ๐‘–) [since ๐บ is a group]โ‡’ (๐‘ฆ, โ„Ž) = (๐‘ง, ๐‘–).

So ๐‘ ร— ๐บ is right-cancellative. Furthermore, (๐‘ฅ, ๐‘”)(๐‘ฆ, ๐‘”โˆ’1โ„Ž) = (๐‘ฆ, โ„Ž) andso (๐‘”, ๐‘ฅ)(๐‘ร—๐บ) = ๐‘ร—๐บ for all (๐‘ฅ, ๐‘”) โˆˆ ๐‘ร—๐บ. Hence๐‘ร—๐บ is left simple,and so ๐‘ ร— ๐บ is a left group. 4.19

Homomorphisms

We close this chapter with the following result, show-ing that homomorphisms preserve regularity and that, within regularsemigroups, the preimage of an idempotent must contain an idempotent.

88 โ€ขRegular semigroups

Page 97: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Pro p o s i t i on 4 . 2 0. Let ๐‘† be a regular semigroup, ๐‘‡ a semigroup (notnecessarily regular), and let ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ be a homomorphism.a) The subsemigroup im๐œ‘ of ๐‘‡ is a regular semigroup and that if ๐‘ฅโ€ฒ โˆˆ ๐‘† is

an inverse of ๐‘ฅ โˆˆ ๐‘†, then ๐‘ฅโ€ฒ๐œ‘ is an inverse of ๐‘ฅ๐œ‘.b) If ๐‘’ โˆˆ im๐œ‘ is idempotent, ๐‘“๐œ‘ = ๐‘’, and ๐‘ง โˆˆ ๐‘† is an inverse of ๐‘“2, then๐‘“๐‘ง๐‘“ is idempotent and (๐‘“๐‘ง๐‘“)๐œ‘ = ๐‘’.

Proof of 4.20. a) Clearly im๐œ‘ is a semigroup; we have to show it is in-verse. Let ๐‘ฆ โˆˆ im๐œ‘. Then there exists ๐‘ฅ โˆˆ ๐‘† with ๐‘ฅ๐œ‘ = ๐‘ฆ. Since๐‘† is regular, there exists an inverse ๐‘ฅโ€ฒ for ๐‘ฅ. Let ๐‘ฆโ€ฒ = ๐‘ฅโ€ฒ๐œ‘. Then๐‘ฆ๐‘ฆโ€ฒ๐‘ฆ = (๐‘ฅ๐œ‘)(๐‘ฅโ€ฒ๐œ‘)(๐‘ฅ๐œ‘) = (๐‘ฅ๐‘ฅโ€ฒ๐‘ฅ)๐œ‘ = ๐‘ฅ๐œ‘ = ๐‘ฆ and similarly ๐‘ฆโ€ฒ๐‘ฆ๐‘ฆโ€ฒ = ๐‘ฆ.So ๐‘ฆโ€ฒ is an inverse for ๐‘ฆ. Since ๐‘ฆ โˆˆ im๐œ‘ was arbirary, im๐œ‘ is regular.

b) Let ๐‘” = ๐‘“๐‘ง๐‘“. Since ๐‘ง is an inverse of ๐‘“2, we have ๐‘ง๐‘“2๐‘ง = ๐‘ง and๐‘“2๐‘ง๐‘“2 = ๐‘“2. Then ๐‘”2 = ๐‘“(๐‘ง๐‘“2๐‘ง)๐‘“ = ๐‘“๐‘ง๐‘“ = ๐‘” and so ๐‘” is idem-potent. Furthermore

๐‘”๐œ‘ = (๐‘“๐‘ง๐‘“)๐œ‘ [by choice of ๐‘”]= (๐‘“๐œ‘)(๐‘ง๐œ‘)(๐‘“๐œ‘) [since ๐œ‘ is a homomorphism]= ๐‘’(๐‘ง๐œ‘)๐‘’ [since ๐‘’ = ๐‘“๐œ‘]= ๐‘’2(๐‘ง๐œ‘)๐‘’2 [since ๐‘’ is idempotent]= (๐‘“๐œ‘)2(๐‘ง๐œ‘)(๐‘“๐œ‘)2 [since ๐‘’ = ๐‘“๐œ‘]= (๐‘“2๐‘ง๐‘“2)๐œ‘ [since ๐œ‘ is a homomorphism]= (๐‘“2๐œ‘) [since ๐‘“2๐‘ง๐‘“2 = ๐‘“2]= (๐‘“๐œ‘)2 [since ๐œ‘ is a homomorphism]= ๐‘’2 [since ๐‘“๐œ‘ = ๐‘’]= ๐‘’. [since ๐‘’ is idempotent]

This completes the proof. 4.20

Exercises

[See pages 220โ€“225 for the solutions.]4.1 Let๐บ be a group, let ๐ผ = {1} and๐›ฌ = {1} be index sets (each containing

only one element), and ๐‘ƒ a ๐›ฌ ร— ๐ผmatrix over ๐บ.a) By defining a suitable isomorphism, prove thatM[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] โ‰ƒ ๐บ.b) Give an example to show that if we replace ๐บ by a monoid๐‘€ and

construct M[๐‘€; ๐ผ, ๐›ฌ; ๐‘ƒ] using the same multiplication, we canhave M[๐‘€; ๐ผ, ๐›ฌ; ๐‘ƒ] โ‰„ ๐‘€.

4.2 Prove that every completely simple semigroup is equidivisible.4.3 Let ๐‘† be a completely simple semigroup. Prove that

Exercises โ€ข 89

Page 98: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

a) L, R, and H are congruences on ๐‘†;b) ๐‘†/L is a right zero semigroup and ๐‘†/R is a left zero semigroup;c) ๐‘†/H is isomorphic to the rectangular band ๐‘†/R ร— ๐‘†/L.

4.4 Let ๐‘† be a completely simple semigroup.a) Suppose |๐‘†| = ๐‘, where ๐‘ is a prime. Prove that ๐‘† is [isomorphic

to] either a right zero semigroup, a left zero semigroup, or a group.b) Suppose |๐‘†| = ๐‘๐‘ž, where ๐‘ and ๐‘ž are primes. Prove that ๐‘† is

[isomorphic to] either a rectangular band, a right group, or a leftgroup.

โœด4.5 a) Let ๐‘† and ๐‘‡ be completely regular semigroups and ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ ahomomorphism. Show that (๐‘ง๐œ‘)โˆ’1 = ๐‘งโˆ’1๐œ‘ for all ๐‘ง โˆˆ ๐‘†.

b) Give an example of regular semigroups ๐‘† and ๐‘‡ that have oper-ations โˆ’1 satisfying (4.1), and a homomorphism ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ suchthat (๐‘ง๐œ‘)โˆ’1 โ‰  ๐‘งโˆ’1๐œ‘ for some ๐‘ง โˆˆ ๐‘†.

โœด4.6 Let ๐บ and ๐ป be groups, ๐ผ, ๐ฝ, ๐›ฌ, and๐›ญ be index sets, ๐‘ƒ be a ๐›ฌ ร— ๐ผregular matrix over ๐บ0, and ๐‘„ be a ๐ฝ ร—๐›ญ regular matrix over๐ป0.a) Suppose ๐œ‘ โˆถ M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] โ†’ M0[๐ป; ๐ฝ,๐›ญ;๐‘„] is an isomor-

phism.i) Prove that there exist bijections ๐›ผ โˆถ ๐ผ โ†’ ๐ฝ and ๐›ฝ โˆถ ๐›ฌ โ†’ ๐›ญ

such that (๐‘–, ๐‘Ž, ๐œ†)๐œ‘ โˆˆ {๐‘–๐›ผ} ร—๐ปร— {๐œ†๐›ฝ} and such that ๐‘๐œ†๐‘– = 0 โ‡”๐‘ž(๐œ†๐›ฝ)(๐‘–๐›ผ) = 0.

ii) Assume without loss that 1 โˆˆ ๐ผ โˆฉ ๐›ฌ. Define an isomorphism๐›พ โˆถ ๐บ โ†’ {1} ร— ๐บ ร— {1} โŠ†M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] and an isomorphism๐œ‚ โˆถ ๐ป โ†’ {1๐›ผ} ร— ๐ป ร— {1๐›ฝ} โŠ† M0[๐ป; ๐ฝ,๐›ญ;๐‘„]. Deduce that๐œ— = ๐›พ๐œ‘๐œ‚โˆ’1 is an isomorphism from ๐บ to๐ป.

iii) Check that (๐‘–, ๐‘ฅ, ๐œ†) = (๐‘–, 1๐บ, 1)(1, ๐‘โˆ’111 ๐‘ฅ, 1)(1, ๐‘โˆ’111 , ๐œ†). Now let๐‘ข๐‘–, ๐‘ฃ๐œ† โˆˆ ๐ป be such that

(๐‘–, 1๐บ, 1)๐œ‘ = (๐‘–๐›ผ, ๐‘ข๐‘–, 1๐›ฝ)

and

(1, ๐‘โˆ’111 , ๐œ†)๐œ‘ = (1๐›ผ, ๐‘žโˆ’1(1๐›ผ)(1๐›ฝ)๐‘ฃ๐œ†, ๐œ†๐›ฝ).

Using the fact that (๐‘–, ๐‘๐œ†๐‘–, ๐œ†) = (๐‘–, 1๐บ, ๐œ†)(๐‘–, 1๐บ, ๐œ†), prove that

๐‘๐œ†๐‘–๐œ— = ๐‘ฃ๐œ†๐‘ž(๐œ†๐›ฝ)(๐‘–๐›ผ)๐‘ข๐‘– (4.5)

for all ๐‘– โˆˆ ๐ผ and ๐œ† โˆˆ ๐›ฌ.b) Suppose that there exists an isomorphism ๐œ— โˆถ ๐บ โ†’ ๐ป, bijections๐›ผ โˆถ ๐ผ โ†’ ๐ฝ and ๐›ฝ โˆถ ๐›ฌ โ†’ ๐›ญ and elements ๐‘ข๐‘– and ๐‘ฃ๐œ† such that(4.5) holds for all ๐‘– โˆˆ ๐ผ and ๐œ† โˆˆ ๐›ฌ. Show that M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] โ‰ƒM0[๐ป; ๐ฝ,๐›ญ;๐‘„].

90 โ€ขRegular semigroups

Page 99: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

โœด4.7 Let ๐บ be a group, ๐ผ and ๐›ฌ index sets, and let ๐‘ƒ be a ๐›ฌ ร— ๐ผ matrixover ๐บ0 that is not necessarily regular (that is, ๐‘ƒ can have rows orcolumns where all the entries are 0). Let ๐‘† = M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ], wherethe multiplication is the same as in the usual Rees matrix semigroup.Prove that ๐‘† is regular (as a semigroup) if and only if ๐‘ƒ is regular (asa matrix).

4.8 Let ๐‘† be a 0-simple semigroup.a) Suppose ๐‘† satisfiesminL. By applying this condition to the set ofL-

classes that are not equal to {0}, show that ๐‘† contains a 0-minimalleft ideal. [Dually, if ๐‘† satisfiesminR, it contains a 0-minimal rightideal.]

b) Now suppose ๐‘† that ๐‘† contains a 0-minimal left ideal and a 0-minimal right ideal.i) Prove that if ๐พ is a 0-minimal left ideal of ๐‘† with ๐พ2 โ‰  {0},

then ๐พ = ๐‘†๐‘ฅ for any ๐‘ฅ โˆˆ ๐พ โˆ– {0}.ii) Let ๐ฟ be a 0-minimal left ideal of ๐‘†, and suppose ๐‘ฅ โˆˆ ๐‘† is such

that ๐ฟ๐‘ฅ โ‰  {0}. Prove that ๐ฟ๐‘ฅ is a 0-minimal left ideal of ๐‘†.[Hint: to prove ๐ฟ๐‘ฅ is 0-minimal, consider the set ๐ฝ = { ๐‘ฆ โˆˆ ๐ฟ โˆถ๐‘ฆ๐‘ฅ โˆˆ ๐พ }.]

iii) By considering the subset ๐ฟ๐‘† of ๐‘†, prove that there exists ๐‘ฅ โˆˆ ๐‘†with ๐ฟ๐‘ฅ โ‰  {0}.

iv) Let๐‘€ = โ‹ƒ{๐ฟ๐‘ฅ โˆถ ๐‘ฅ โˆˆ ๐‘†, ๐ฟ๐‘ฅ โ‰  {0} }. Prove that๐‘€ = ๐‘† anddeduce that ๐‘† is the union of its 0-minimal left ideals. [Dually,๐‘† is the union of its 0-minimal right ideals.]

v) Using part iii), the dual version of part iv), and Exercise 1.21,prove that there exists a 0-minimal right ideal ๐‘… such that๐ฟ๐‘… = ๐‘† and ๐‘…๐ฟ is a group with a zero adjoined.

vi) Let ๐‘’ be the identity of the group ๐‘…๐ฟ โˆ– {0}. Prove that ๐‘’ is aprimitive idempotent.

This proves that ๐‘† is completely 0-simple.Since a completely 0-simple semigroup satisfies minL and minR byTheorem 4.9, this exercise has shown that a 0-simple semigroup iscompletely 0-simple if and only it has a 0-minimal left ideal and a0-minimal right ideal.

4.9 Let ๐‘† be a left-cancellative semigroup. Let ๐บ be a subgroup of ๐‘†. Sup-pose ๐บ is also a left ideal of ๐‘†. Prove that ๐‘† is a right group.

Notes

The exposition here is based on Howie, Fundamentals of Semi-group Theory, ch. 3 and Clifford & Preston, The Algebraic Theory of Semigroups,

Notes โ€ข 91

Page 100: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

ยง 2.5. โ—† The Reesโ€“Suschkewitsch theorem (Theorem 4.7) was originally provedin Rees & Hall, โ€˜On semi-groupsโ€™; the analogue for completely simple semi-groups (Theorem 4.11) is the earlier version, having been essentially proved inSuschkewitsch, โ€˜รœber die endlichen Gruppenโ€ฆโ€™ โ—† The results on the structureof completely regular semigroups are due to Clifford, โ€˜Semigroups admittingrelative inversesโ€™. โ—† The analogy of Theorem 4.19 for right groups is due to Susch-kewitsch, โ€˜รœber die endlichen Gruppenโ€ฆโ€™; for a more accessible proof (whichdoes not use Greenโ€™s relations or the Reesโ€“Suschkewitsch theorem), see Clifford& Preston, The Algebraic Theory of Semigroups, Theorem 1.27 โ—† Exercise 4.9 isfrom Cain, Robertson & Ruลกkuc, โ€˜Cancellative and Malcev presentations forfinite Rees index subsemigroups and extensionsโ€™, Proposition 8.3. โ—† For furtherreading, Petrich, Completely Regular Semigroups seems to be the most recentmonograph in the area.

โ€ข

92 โ€ขRegular semigroups

Page 101: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

5Inverse semigroups

โ€˜ The sensibility of man to trifles, and his insensibilityto great things, indicates a strange inversion. โ€™

โ€” Blaise Pascal, Pensรฉes, ยง iii.198.

โ€ข Recall that an inverse semigroup is one equipped with Inverse semigroupan operation โˆ’1 satisfying the four conditions in (4.3): namely, that for all๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†,

(๐‘ฅโˆ’1)โˆ’1 = ๐‘ฅ, (5.1)(๐‘ฅ๐‘ฆ)โˆ’1 = ๐‘ฆโˆ’1๐‘ฅโˆ’1, (5.2)๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ, (5.3)๐‘ฅ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1 = ๐‘ฆ๐‘ฆโˆ’1๐‘ฅ๐‘ฅโˆ’1. (5.4)

Clifford & Prestonโ€™s 1961 view that โ€˜[i]nverse semigroups constituteprobably the most promising class of semigroups for studyโ€™ has provedaccurate, and the field has grown into a vast and active one. We can onlysurvey a minuscule part of it here.

Equivalent characterizations

We being by giving alternative characterizations of in-verse semigroups. Some texts define inverse semigroups using one ofthese alternative characterizations.

T h eorem 5 . 1. The following are equivalent: Characterizations ofinverse semigroupsa) ๐‘† is an inverse semigroup;

b) every element of ๐‘† has a unique inverse;

c) ๐‘† is regular and its idempotents commute;

d) every L-class and every R-class of ๐‘† contains exactly one idempotent.

Proof of 5.1. The plan is as follows: parts 1โ€“3 of this proof show that b),c), and d) are equivalent. Then parts 4 and 5 show, respectively, that a)implies c) and that b) implies a).

โ€ข 93

Page 102: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Part 1 [b)โ‡’ c)]. Suppose every element of ๐‘† has a unique inverse. Then ๐‘†is clearly regular. Let ๐‘’, ๐‘“ โˆˆ ๐ธ(๐‘†). Then

(๐‘’๐‘“)(๐‘“(๐‘’๐‘“)โˆ’1๐‘’)(๐‘’๐‘“)= ๐‘’๐‘“2(๐‘’๐‘“)โˆ’1๐‘’2๐‘“ [rearranging brackets]= ๐‘’๐‘“(๐‘’๐‘“)โˆ’1๐‘’๐‘“ [since ๐‘’ and ๐‘“ are idempotent]= ๐‘’๐‘“ [by definition of inverse]

and

(๐‘“(๐‘’๐‘“)โˆ’1๐‘’)(๐‘’๐‘“)(๐‘“(๐‘’๐‘“)โˆ’1๐‘’)= ๐‘“(๐‘’๐‘“)โˆ’1๐‘’2๐‘“2(๐‘’๐‘“)โˆ’1๐‘’ [rearranging brackets]= ๐‘“(๐‘’๐‘“)โˆ’1๐‘’๐‘“(๐‘’๐‘“)โˆ’1๐‘’ [since ๐‘’ and ๐‘“ are idempotent]= ๐‘“(๐‘’๐‘“)โˆ’1๐‘’ [by definition of inverse]

and so ๐‘“(๐‘’๐‘“)โˆ’1๐‘’ is an inverse of ๐‘’๐‘“. Since inverses are unique, (๐‘’๐‘“)โˆ’1 =๐‘“(๐‘’๐‘“)โˆ’1๐‘’. Hence

((๐‘’๐‘“)โˆ’1)2

= ๐‘“(๐‘’๐‘“)โˆ’1๐‘’๐‘“(๐‘’๐‘“)โˆ’1๐‘’ [since (๐‘’๐‘“)โˆ’1 = ๐‘“(๐‘’๐‘“)โˆ’1๐‘’]= ๐‘“(๐‘’๐‘“)โˆ’1๐‘’ [by definition of inverse]= (๐‘’๐‘“)โˆ’1 [since (๐‘’๐‘“)โˆ’1 = ๐‘“(๐‘’๐‘“)โˆ’1๐‘’]

and so (๐‘’๐‘“)โˆ’1 is idempotent. Thus (๐‘’๐‘“)โˆ’1(๐‘’๐‘“)โˆ’1(๐‘’๐‘“)โˆ’1 = (๐‘’๐‘“)โˆ’1 and sothe uniqueness of inverses implies that ๐‘’๐‘“ = ((๐‘’๐‘“)โˆ’1)โˆ’1 = (๐‘’๐‘“)โˆ’1 andso ๐‘’๐‘“ is idempotent. A similar argument shows that ๐‘“๐‘’ is idempotent.Hence

(๐‘’๐‘“)(๐‘“๐‘’)(๐‘’๐‘“) = ๐‘’๐‘“2๐‘’2๐‘“ = ๐‘’๐‘“๐‘’๐‘“ = ๐‘’๐‘“

and

(๐‘“๐‘’)(๐‘’๐‘“)(๐‘“๐‘’) = ๐‘“๐‘’2๐‘“2๐‘’ = ๐‘“๐‘’๐‘“๐‘’ = ๐‘“๐‘’.

Hence ๐‘“๐‘’ = (๐‘’๐‘“)โˆ’1 = ๐‘’๐‘“. Thus idempotents of ๐‘† commute.

Part 2 [c)โ‡’ d)]. Suppose that ๐‘† is regular and that its idempotents com-mute. Since ๐‘† is regular, everyL-class contains at least one idempotent byProposition 3.20. So suppose a particular L-class contains idempotents ๐‘’and ๐‘“. Then both ๐‘’ and ๐‘“ are right identities for this L-class by Proposi-tion 3.17. So ๐‘’๐‘“ = ๐‘’ and ๐‘“๐‘’ = ๐‘“. Since idempotents commute, ๐‘’๐‘“ = ๐‘“๐‘’and so ๐‘’ = ๐‘“. So each L-class contains a unique idempotent. Similarlyeach R-class contains a unique idempotent.

Part 3 [d)โ‡’ b)]. Suppose everyL-class and everyR-class of ๐‘† contains aunique idempotent. Let ๐‘ฅ โˆˆ ๐‘†. By Proposition 3.21, the inverses of ๐‘ฅ arein one-to-one correspondence with pairs of idempotents (๐‘’, ๐‘“) โˆˆ ๐‘…๐‘ฅ ร—๐ฟ๐‘ฅ.

94 โ€ขInverse semigroups

Page 103: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Since ๐‘…๐‘ฅ and ๐ฟ๐‘ฅ each contain a unique idempotent, ๐‘ฅ therefore has aunique inverse. So every element of ๐‘† has a unique inverse.

Part 4 [a)โ‡’ c)]. Suppose ๐‘† is an inverse semigroup. Let ๐‘ฅ โˆˆ ๐‘†. Then๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ by (5.3) and so ๐‘† is regular. Let ๐‘’ โˆˆ ๐ธ(๐‘†). Then

๐‘’โˆ’1 = ๐‘’โˆ’1(๐‘’โˆ’1)โˆ’1๐‘’โˆ’1 [by (5.3)]= ๐‘’โˆ’1๐‘’๐‘’โˆ’1 [by (5.1)]= ๐‘’โˆ’1๐‘’๐‘’๐‘’โˆ’1 [since ๐‘’ is idempotent]= ๐‘’โˆ’1(๐‘’โˆ’1)โˆ’1๐‘’๐‘’โˆ’1 [by (5.1)]= ๐‘’๐‘’โˆ’1๐‘’โˆ’1(๐‘’โˆ’1)โˆ’1 [by (5.4)]= ๐‘’๐‘’โˆ’1๐‘’โˆ’1๐‘’ [by (5.1)]= ๐‘’(๐‘’๐‘’)โˆ’1๐‘’ [by (5.2)]= ๐‘’๐‘’โˆ’1๐‘’ [since ๐‘’ is idempotent]= ๐‘’. [by (5.3)]

Hence ๐‘’๐‘’โˆ’1 = ๐‘’2 = ๐‘’ and ๐‘’โˆ’1๐‘’ = ๐‘’2 = ๐‘’ for any ๐‘’ โˆˆ ๐ธ(๐‘†). Now let๐‘’, ๐‘“ โˆˆ ๐ธ(๐‘†). Then ๐‘’๐‘“ = ๐‘’๐‘’โˆ’1๐‘“๐‘“โˆ’1 = ๐‘“๐‘“โˆ’1๐‘’๐‘’โˆ’1 = ๐‘“๐‘’ by (5.4). Thusidempotents of ๐‘† commute.

Part 5 [b)โ‡’ a)]. Suppose every element of ๐‘† has a unique inverse. Thenfor any ๐‘ฅ โˆˆ ๐‘†, we have ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ; thus (5.3) holds. By the uniqueness ofinverses, (๐‘ฅโˆ’1)โˆ’1 = ๐‘ฅ; thus (5.1) holds. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. Then ๐‘ฅ๐‘ฅโˆ’1 and ๐‘ฆ๐‘ฆโˆ’1are idempotents and so commute by parts 1 and 2 of this proof; thus (5.4)holds. Therefore

๐‘ฅ๐‘ฆ(๐‘ฆโˆ’1๐‘ฅโˆ’1)๐‘ฅ๐‘ฆ= ๐‘ฅ(๐‘ฆ๐‘ฆโˆ’1)(๐‘ฅโˆ’1๐‘ฅ)๐‘ฆ [rearranging brackets]= ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฆ [by (5.4), which holds]= ๐‘ฅ๐‘ฆ [by definition of inverse]

and

(๐‘ฆโˆ’1๐‘ฅโˆ’1)๐‘ฅ๐‘ฆ(๐‘ฆโˆ’1๐‘ฅโˆ’1)= ๐‘ฆโˆ’1(๐‘ฅโˆ’1๐‘ฅ)(๐‘ฆ๐‘ฆโˆ’1)๐‘ฅโˆ’1 [rearranging brackets]= ๐‘ฆโˆ’1๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’1 [by (5.4), which holds]= ๐‘ฆโˆ’1๐‘ฅโˆ’1. [by definition of inverse]

Hence, by the uniqueness of inverses, (๐‘ฅ๐‘ฆ)โˆ’1 = ๐‘ฆโˆ’1๐‘ฅโˆ’1; thus (5.2) holds.Thus ๐‘† is an inverse semigroup. 5.1

We now prove some consequences of these alternative characteriza-tions.

P ro p o s i t i on 5 . 2. Let ๐‘† be an inverse semigroup. Then ๐ธ(๐‘†) is a ๐ธ(๐‘†) is a semilatticewhen ๐‘† is inversesubsemigroup of ๐‘† and forms a semilattice.

Equivalent characterizations โ€ข 95

Page 104: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 5.2. By Theorem 5.1, all elements of ๐ธ(๐‘†) commute. Hence, if๐‘’, ๐‘“ โˆˆ ๐ธ(๐‘†), then (๐‘’๐‘“)2 = ๐‘’๐‘“๐‘’๐‘“ = ๐‘’2๐‘“2 = ๐‘’๐‘“ and so ๐‘’๐‘“ โˆˆ ๐ธ(๐‘†). So ๐ธ(๐‘†)is a subsemigroup of ๐‘†. Furthermore, ๐ธ(๐‘†) is a commutative semigroupof idempotents and hence a semilattice by Theorem 1.21. 5.2

Pro p o s i t i on 5 . 3. Let ๐‘† be an inverse semigroup. Then ๐‘† is a groupCharacterization of inversesemigroups that are groups if and only if ๐‘† contains exactly one idempotent.

Proof of 5.3. In one direction, this result is obvious: if ๐‘† is a group, then itis an inverse semigroup and 1๐‘† is the unique idempotent in ๐‘†.

So suppose ๐‘† is an inverse semigroup and ๐‘’ is the unique idempotentin ๐‘†. Let ๐‘ฅ โˆˆ ๐‘†. Then ๐‘ฅ๐‘ฅโˆ’1 and ๐‘ฅโˆ’1๐‘ฅ are idempotents and so ๐‘’ = ๐‘ฅ๐‘ฅโˆ’1 =๐‘ฅโˆ’1๐‘ฅ. Thus ๐‘’๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ and ๐‘ฅ๐‘’ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ. So ๐‘’ is an identity for๐‘†. Furthemore, since ๐‘’ = ๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฅโˆ’1๐‘ฅ for all ๐‘ฅ โˆˆ ๐‘†, every element of ๐‘ฅ isright- and left-invertible and so ๐‘† is a group. 5.3

Let ๐‘† and ๐‘‡ be inverse semigroups. A homomorphism ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ isInverse semigrouphomomorphism an inverse semigroup homomorphism if ๐‘ฅโˆ’1๐œ‘ = (๐‘ฅ๐œ‘)โˆ’1 for all ๐‘ฅ โˆˆ ๐‘†.

In Chapter 1, we saw the distinction between a [semigroup] homomor-phism and a monoid homomorphism: a homomorphism between twomonoids may preserve multiplication, but not preserve the identity (seeExercise 1.15). Thus it is conceivable that there exists a homomorphismbetween two inverse semigroups that is not an inverse semigroup ho-momorphism. However, the following result shows that the two notionscoincide:

P ro p o s i t i on 5 . 4. Let ๐‘† be an inverse semigroup and let ๐‘‡ a semi-Homomorphism froman inverse semigroup is

an inverse semigrouphomomorphism

group (not necessarily inverse), and let ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ be a homomorphism.Then im๐œ‘ is an inverse semigroup, and ๐œ‘ is an inverse semigroup homo-morphism.

Proof of 5.4. By Proposition 4.20(a), im๐œ‘ is regular and ๐‘ฅโˆ’1๐œ‘ is an inverseof ๐‘ฅ๐œ‘ for any ๐‘ฅ โˆˆ ๐‘†. Let ๐‘’, ๐‘“ โˆˆ im๐œ‘ be idempotents. By Proposition4.20(b), there are idempotents ๐‘”, โ„Ž โˆˆ ๐‘† with ๐‘”๐œ‘ = ๐‘’ and โ„Ž๐œ‘ = ๐‘“. Since ๐‘†is an inverse semigroup, ๐‘”โ„Ž = โ„Ž๐‘” by Theorem 5.1. Thus ๐‘’๐‘“ = (๐‘”๐œ‘)(โ„Ž๐œ‘) =(๐‘”โ„Ž)๐œ‘ = (โ„Ž๐‘”)๐œ‘ = (โ„Ž๐œ‘)(๐‘”๐œ‘) = ๐‘“๐‘’. Hence idempotents commute in im๐œ‘and so im๐œ‘ is an inverse semigroup by Theorem 5.1. Since inverses areunique in inverse semigroups, it follows that (๐‘ฅ๐œ‘)โˆ’1 = ๐‘ฅโˆ’1๐œ‘ for all ๐‘ฅ โˆˆ ๐‘†,so ๐œ‘ is an inverse semigroup homomorphism. 5.4

Coro l l a ry 5 . 5. Let ๐บ be a group and let ๐‘‡ a semigroup (not neces-Homomorphism froma group preserves

identity and inversessarily a group or inverse), and let ๐œ‘ โˆถ ๐บ โ†’ ๐‘‡ be a homomorphism. Thenim๐œ‘ is a group, and ๐œ‘ โˆถ ๐บ โ†’ im๐œ‘ is an inverse semigroup homomorphismand a monoid homomorphism. (That is, ๐‘ฅโˆ’1๐œ‘ = (๐‘ฅ๐œ‘)โˆ’1 for all ๐‘ฅ โˆˆ ๐บ and1๐บ๐œ‘ is an identity for im๐œ‘.)

Proof of 5.5. Proposition 5.4 shows that im๐œ‘ is an inverse semigroup and๐œ‘ is an inverse semigroup homomorphism. Let ๐‘ฆ โˆˆ im๐œ‘ and let ๐‘ฅ โˆˆ ๐บ be

96 โ€ขInverse semigroups

Page 105: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

such that ๐‘ฅ๐œ‘ = ๐‘ฆ. Then (1๐บ๐œ‘)๐‘ฆ = ((๐‘ฅ๐‘ฅโˆ’1)๐œ‘)(๐‘ฅ๐œ‘) = (๐‘ฅ๐‘ฅโˆ’1๐‘ฅ)๐œ‘ = ๐‘ฅ๐œ‘ = ๐‘ฆ,and similarly ๐‘ฆ(1๐บ๐œ‘) = ๐‘ฆ. Hence 1๐บ๐œ‘ is an identity for im๐œ‘. 5.5

The last consequence we prove is more technical, but we will makeuse of it in the next section.

L emma 5 . 6. Let ๐‘† be an inverse semigroup.a) For any ๐‘’, ๐‘“ โˆˆ ๐ธ(๐‘†), we have ๐‘†๐‘’ = ๐‘†๐‘“ โ‡’ ๐‘’ = ๐‘“.b) For any ๐‘’, ๐‘“ โˆˆ ๐ธ(๐‘†), we have ๐‘†๐‘’ โˆฉ ๐‘†๐‘“ = ๐‘†๐‘’๐‘“.c) For any ๐‘ฅ โˆˆ ๐‘†, we have ๐‘†๐‘ฅ = ๐‘†๐‘ฅโˆ’1๐‘ฅ.d) For ๐‘ฅ โˆˆ ๐‘† and ๐‘’ โˆˆ ๐ธ(๐‘†), the element ๐‘“ = ๐‘ฅโˆ’1๐‘’๐‘ฅ is idempotent and๐‘’๐‘ฅ = ๐‘ฅ๐‘“.

Proof of 5.6. a) Since ๐‘’ = ๐‘’๐‘’ โˆˆ ๐‘†๐‘’ = ๐‘†๐‘“, we deduce that ๐‘’ = ๐‘ฅ๐‘“ for some๐‘ฅ โˆˆ ๐‘†. Then ๐‘’๐‘“ = ๐‘ฅ๐‘“2 = ๐‘ฅ๐‘“ = ๐‘’. Similarly ๐‘“๐‘’ = ๐‘“. Since idempotentscommute by Theorem 5.1, ๐‘’ = ๐‘“.

b) Obviously ๐‘†๐‘’๐‘“ โŠ† ๐‘†๐‘“ and, since idempotents commute, ๐‘†๐‘’๐‘“ = ๐‘†๐‘“๐‘’ โŠ†๐‘†๐‘’. So ๐‘†๐‘’๐‘“ โŠ† ๐‘†๐‘’ โˆฉ ๐‘†๐‘“. Let ๐‘ฅ โˆˆ ๐‘†๐‘’ โˆฉ ๐‘†๐‘“. Then ๐‘ฅ = ๐‘ฆ๐‘’ and ๐‘ฅ = ๐‘ง๐‘“for some ๐‘ฆ, ๐‘ง โˆˆ ๐‘†. Then ๐‘ฅ = ๐‘ง๐‘“ = ๐‘ง๐‘“2 = ๐‘ฅ๐‘“ = ๐‘ฆ๐‘’๐‘“ โˆˆ ๐‘†๐‘’๐‘“. So๐‘†๐‘’ โˆฉ ๐‘†๐‘“ โŠ† ๐‘†๐‘’๐‘“ and hence ๐‘†๐‘’ โˆฉ ๐‘†๐‘“ = ๐‘†๐‘’๐‘“.

c) Obviously ๐‘†๐‘ฅโˆ’1๐‘ฅ โŠ† ๐‘†๐‘ฅ. But ๐‘†๐‘ฅ = ๐‘†๐‘ฅ๐‘ฅโˆ’1๐‘ฅ โŠ† ๐‘†๐‘ฅโˆ’1๐‘ฅ and so ๐‘†๐‘ฅ =๐‘†๐‘ฅโˆ’1๐‘ฅ.

d) Since ๐‘ฅ๐‘ฅโˆ’1 is an idempotent, and idempotents commute in ๐‘†, ๐‘“2 =๐‘ฅโˆ’1๐‘’๐‘ฅ๐‘ฅโˆ’1๐‘’๐‘ฅ = ๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’1๐‘’๐‘’๐‘ฅ = ๐‘ฅโˆ’1๐‘’๐‘ฅ = ๐‘“, so ๐‘“ is idempotent. Fur-thermore, ๐‘’๐‘ฅ = ๐‘’๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘’๐‘ฅ = ๐‘ฅ๐‘“. 5.6

Vagnerโ€“Preston theorem

Theorem 1.22 showed that every semigroup embeds intoT๐‘‹ for some ๐‘‹. Cayleyโ€™s theorem shows that every group embeds intoS๐‘‹ for some ๐‘‹. The Vagnerโ€“Preston theorem, to which this section isdevoted, is an analogue of these results for inverse semigroups.

Let ๐œ โˆˆ P๐‘‹. Recall from (1.3) that the domain of ๐œ, denoted dom ๐œ, is Partial bijectionthe subset of๐‘‹ on which ๐œ is defined. If ๐œ โˆถ dom ๐œ โ†’ im ๐œ is a bijection,then ๐œ is a partial bijection. The set of partial bijections on๐‘‹ is denotedI๐‘‹. (The symbol I stands for โ€˜injectionโ€™.) Notice that if ๐œ, ๐œŽ โˆˆ I๐‘‹, then I๐‘‹

๐‘ฅ โˆˆ dom(๐œ๐œŽ) โ‡” (โˆƒ๐‘ฆ โˆˆ ๐‘‹)((๐‘ฅ, ๐‘ฆ) โˆˆ ๐œ๐œŽ)โ‡” (โˆƒ๐‘ฆ โˆˆ ๐‘‹)(โˆƒ๐‘ง โˆˆ ๐‘‹)((๐‘ฅ, ๐‘ง) โˆˆ ๐œ โˆง (๐‘ง, ๐‘ฆ) โˆˆ ๐œŽ)โ‡” (โˆƒ๐‘ง โˆˆ ๐‘‹)((๐‘ฅ, ๐‘ง) โˆˆ ๐œ โˆง ๐‘ง โˆˆ dom๐œŽ)โ‡” (๐‘ฅ โˆˆ dom ๐œ) โˆง (๐‘ฅ๐œ โˆˆ dom๐œŽ)โ‡” (๐‘ฅ๐œ โˆˆ im ๐œ) โˆง (๐‘ฅ๐œ โˆˆ dom๐œŽ)

Vagnerโ€“Preston theorem โ€ข 97

Page 106: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

FIGURE 5.1The domain of the compositionof two partial bijections ๐œ and๐œŽ; the shaded area is dom(๐œ๐œŽ).

๐‘‹

dom ๐œ im ๐œ

dom๐œŽ im๐œŽ

๐‘ฅ ๐‘ง๐‘ฆ

๐œ ๐œŽ

โ‡” (๐‘ฅ๐œ โˆˆ im ๐œ โˆฉ dom๐œŽ)โ‡” ๐‘ฅ โˆˆ (im ๐œ โˆฉ dom๐œŽ)๐œโˆ’1.

That is,

dom(๐œ๐œŽ) = (im ๐œ โˆฉ dom๐œŽ)๐œโˆ’1. (5.5)

(See Figure 5.1.) For ๐‘ฅ, ๐‘ฆ โˆˆ dom ๐œ๐œŽ, we have ๐‘ฅ, ๐‘ฆ โˆˆ dom ๐œ and ๐‘ฅ๐œ, ๐‘ฆ๐œ โˆˆdom๐œŽ and so

๐‘ฅ๐œ๐œŽ = ๐‘ฆ๐œ๐œŽ โ‡’ ๐‘ฅ๐œ = ๐‘ฆ๐œ [since ๐œŽ is injective]โ‡’ ๐‘ฅ = ๐‘ฆ. [since ๐œ is injective]

Hence ๐œ๐œŽ is a bijection from dom(๐œ๐œŽ) to im(๐œ๐œŽ) and so ๐œ๐œŽ โˆˆ I๐‘‹. ThusI๐‘‹ is a subsemigroup of P๐‘‹.

For ๐œ โˆˆ I๐‘‹, let ๐œโˆ’1 be the partial bijection with domain im ๐œ andInverse of a partial bijectionimage dom ๐œ defined by (๐‘ฅ๐œ)๐œโˆ’1 = ๐‘ฅ. (That is, ๐œ is defined by invertingthe bijection ๐œ โˆถ dom ๐œ โ†’ im ๐œ.) Note that

๐œ๐œโˆ’1 = iddom ๐œ and ๐œโˆ’1๐œ = idim ๐œ. (5.6)

P ro p o s i t i on 5 . 7. For any set๐‘‹, the semigroup of partial bijectionsI๐‘‹ is an inverse semigroupI๐‘‹ is an inverse semigroup.

Proof of 5.7. Let ๐œ โˆˆ I๐‘‹. Since ๐œ๐œโˆ’1 = iddom ๐œ and ๐œโˆ’1๐œ = idim ๐œ by (5.6),we have ๐œ๐œโˆ’1๐œ = ๐œ and ๐œโˆ’1๐œ๐œโˆ’1 = ๐œโˆ’1. Hence ๐œโˆ’1 is an inverse of ๐œ. ThusI๐‘‹ is regular.

Suppose ๐œŽ โˆˆ I๐‘‹ is an inverse of ๐œ. Then ๐œ๐œŽ๐œ = ๐œ and ๐œŽ๐œ๐œŽ = ๐œŽ.Suppose, with the aim of obtaining a contradiction, that im ๐œ โŠˆ dom(๐œŽ๐œ).So there exists ๐‘ก โˆˆ im ๐œ โˆ– dom(๐œŽ๐œ); thus ๐‘ก โˆˆ im ๐œ but ๐‘ก โˆ‰ im ๐œ โˆฉ dom(๐œŽ๐œ).Hence im ๐œ โˆฉ dom(๐œŽ๐œ) โŠŠ im ๐œ. Therefore

dom ๐œ = dom(๐œ๐œŽ๐œ)= (im ๐œ โˆฉ dom(๐œŽ๐œ))๐œโˆ’1 [by (5.5)]โŠŠ (im ๐œ)๐œโˆ’1

= dom ๐œ.

98 โ€ขInverse semigroups

Page 107: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

The strict inclusion is a contradiction; hence im ๐œ โŠ† dom(๐œŽ๐œ) โŠ† dom๐œŽ.Similarly, from ๐œŽ๐œ๐œŽ = ๐œŽ we obtain dom๐œŽ โŠ† im ๐œ. Therefore dom๐œŽ =im ๐œ = dom ๐œโˆ’1. For any ๐‘ฅ โˆˆ dom๐œŽ, we have ๐‘ฅ โˆˆ im ๐œ and so ๐‘ฅ = ๐‘ฆ๐œfor some ๐‘ฆ โˆˆ ๐‘‹. Hence ๐‘ฅ๐œŽ = ๐‘ฆ๐œ๐œŽ = ๐‘ฆ๐œ๐œŽ๐œ๐œโˆ’1 = ๐‘ฆ๐œ๐œโˆ’1 = ๐‘ฅ๐œโˆ’1. Hence๐œŽ = ๐œโˆ’1. So ๐œโˆ’1 is the unique inverse of ๐œ.

Since each element of I๐‘‹ has a unique inverse, I๐‘‹ is an inverse semi-group by Theorem 5.1. 5.7

Let ๐‘† be an inverse semigroup and let ๐‘‡ be a subsemigroup of ๐‘†. Then Inverse subsemigroup๐‘‡ is an inverse subsemigroup of ๐‘† if it is also an inverse semigroup, or,equivalently, if it is closed under taking inverses in ๐‘†.

Vagn e r โ€“ Pre s ton Th eorem 5 . 8. For any inverse semigroup ๐‘†, Vagnerโ€“Preston theoremthere exists a set๐‘‹ and a monomorphism ๐œ‘ โˆถ ๐‘† โ†’ I๐‘‹. Hence every inversesemigroup is isomorphic to some inverse subsemigroup of I๐‘‹.

Proof of 5.8. Let๐‘‹ = ๐‘†. For each ๐‘ฅ โˆˆ ๐‘†, let ๐œ๐‘ฅ be the partial transformationwith domain ๐‘†๐‘ฅโˆ’1 and defined by ๐‘ฆ๐œ๐‘ฅ = ๐‘ฆ๐‘ฅ. Thus ๐œ๐‘ฅ is simply ๐œŒ๐‘ฅ (asdefined on page 19) restricted to ๐‘†๐‘ฅโˆ’1. Note that im ๐œ๐‘ฅ = (dom ๐œ๐‘ฅ)๐œ๐‘ฅ =๐‘†๐‘ฅโˆ’1๐‘ฅ = ๐‘†๐‘ฅ, by Lemma 5.6(c).

Let us prove that ๐œ๐‘ฅ โˆˆ I๐‘‹. Let ๐‘ฆ, ๐‘ง โˆˆ ๐‘†๐‘ฅโˆ’1, with ๐‘ฆ = ๐‘๐‘ฅโˆ’1 and๐‘ง = ๐‘ž๐‘ฅโˆ’1. Then

๐‘ฆ๐œ๐‘ฅ = ๐‘ง๐œ๐‘ฅ โ‡’ ๐‘ฆ๐‘ฅ = ๐‘ง๐‘ฅโ‡’ ๐‘๐‘ฅโˆ’1๐‘ฅ = ๐‘ž๐‘ฅโˆ’1๐‘ฅโ‡’ ๐‘๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’1 = ๐‘ž๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’1

โ‡’ ๐‘๐‘ฅโˆ’1 = ๐‘ž๐‘ฅโˆ’1

โ‡’ ๐‘ฆ = ๐‘ง.

So ๐œ๐‘ฅ is a partial bijection and so ๐œ๐‘ฅ โˆˆ I๐‘‹.Let us now prove that (๐œ๐‘ฅ)โˆ’1 = ๐œ๐‘ฅโˆ’1 . If ๐‘ง โˆˆ dom ๐œ๐‘ฅ = ๐‘†๐‘ฅโˆ’1, then๐‘ง๐œ๐‘ฅ๐œ๐‘ฅโˆ’1๐œ๐‘ฅ = ๐‘ง๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ง๐‘ฅ = ๐‘ง๐œ๐‘ฅ. If ๐‘ง โˆˆ dom ๐œ๐‘ฅโˆ’1 = ๐‘†๐‘ฅ, then ๐‘ง๐œ๐‘ฅโˆ’1๐œ๐‘ฅ๐œ๐‘ฅโˆ’1 =๐‘ง๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’1 = ๐‘ง๐‘ฅโˆ’1 = ๐‘ง๐œ๐‘ฅโˆ’1 . Furthermore, dom ๐œ๐‘ฅโˆ’1 = ๐‘†๐‘ฅ = im ๐œ๐‘ฅ andim ๐œ๐‘ฅโˆ’1 = ๐‘†๐‘ฅโˆ’1 = dom ๐œ๐‘ฅ. Hence (๐œ๐‘ฅ)โˆ’1 = ๐œ๐‘ฅโˆ’1 .

Define ๐œ‘ โˆถ ๐‘† โ†’ I๐‘‹ by ๐‘ฅ๐œ‘ = ๐œ๐‘ฅ. We first prove that ๐œ‘ is injective. Let๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. Then

๐‘ฅ๐œ‘ = ๐‘ฆ๐œ‘ โ‡’ ๐œ๐‘ฅ = ๐œ๐‘ฆ [by definition of ๐œ‘]

โ‡’ dom ๐œ๐‘ฅ = dom ๐œ๐‘ฆโ‡’ ๐‘†๐‘ฅโˆ’1 = ๐‘†๐‘ฆโˆ’1 [by definition of ๐œ๐‘ฅ and ๐œ๐‘ฆ]

โ‡’ ๐‘†๐‘ฅ๐‘ฅโˆ’1 = ๐‘†๐‘ฆ๐‘ฆโˆ’1 [by Lemma 5.6(c)]โ‡’ ๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฆ๐‘ฆโˆ’1 [by Lemma 5.6(a)]โ‡’ ๐‘ฅ๐‘ฅโˆ’1๐œ๐‘ฅ = ๐‘ฆ๐‘ฆโˆ’1๐œ๐‘ฆ [since ๐œ๐‘ฅ = ๐œ๐‘ฆ]

โ‡’ ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฆ๐‘ฆโˆ’1๐‘ฆ [by definition of ๐œ๐‘ฅ and ๐œ๐‘ฆ]โ‡’ ๐‘ฅ = ๐‘ฆ;

Vagnerโ€“Preston theorem โ€ข 99

Page 108: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

thus ๐œ‘ is injective.Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. Then

dom(๐œ๐‘ฅ๐œ๐‘ฆ) = (im ๐œ๐‘ฅ โˆฉ dom ๐œ๐‘ฆ)๐œโˆ’1๐‘ฅ [by (5.5)]

= (๐‘†๐‘ฅโˆ’1๐‘ฅ โˆฉ ๐‘†๐‘ฆโˆ’1)๐œโˆ’1๐‘ฅ [by definition of ๐œ๐‘ฅ and ๐œ๐‘ฆ]

= (๐‘†๐‘ฅโˆ’1๐‘ฅ โˆฉ ๐‘†๐‘ฆ๐‘ฆโˆ’1)๐œโˆ’1๐‘ฅ [by Lemma 5.6(c)]= (๐‘†๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1)๐œโˆ’1๐‘ฅ [by Lemma 5.6(b)]= (๐‘†๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1)๐œ๐‘ฅโˆ’1 [since ๐œโˆ’1๐‘ฅ = ๐œ๐‘ฅโˆ’1 ]= ๐‘†๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1 [by definition of ๐œ๐‘ฅโˆ’1 ]= ๐‘†๐‘ฅ๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1 [by Lemma 5.6(c)]= ๐‘†๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’1 [since idempotents commute]= ๐‘†๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1

= ๐‘†(๐‘ฅ๐‘ฆ)(๐‘ฅ๐‘ฆ)โˆ’1

= ๐‘†(๐‘ฅ๐‘ฆ)โˆ’1 [by Lemma 5.6(c)]= dom ๐œ๐‘ฅ๐‘ฆ, [by definition of ๐œ๐‘ฅ๐‘ฆ]

and for all ๐‘ง โˆˆ dom ๐œ๐‘ฅ๐‘ฆ, we have ๐‘ง๐œ๐‘ฅ๐œ๐‘ฆ = ๐‘ง๐‘ฅ๐‘ฆ = ๐‘ง๐œ๐‘ฅ๐‘ฆ. Hence (๐‘ฅ๐œ‘)(๐‘ฆ๐œ‘) =๐œ๐‘ฅ๐œ๐‘ฆ = ๐œ๐‘ฅ๐‘ฆ = (๐‘ฅ๐‘ฆ๐œ‘). Thus ๐œ‘ is a monomorphism. 5.8

Notice that the image of ๐‘† in I๐‘‹ is an inverse subsemigroup of I๐‘‹ byProposition 5.4. However, some subsemigroups of I๐‘‹ are not inverse; seeExercise 5.1.

The natural partial order

Elements of I๐‘‹ are maps, and thus relations, and thussimply subsets of๐‘‹ร—๐‘‹. Sowe can apply the partial orderโŠ† to I๐‘‹. However,โŠ† can be characterized using the algebraic structure of I๐‘‹, since

๐œŽ โŠ† ๐œ โ‡” ๐œŽ = ๐œ|dom๐œŽโ‡” ๐œŽ = iddom๐œŽ๐œโ‡” ๐œŽ = ๐œŽ๐œŽโˆ’1๐œ.

Since every inverse monoid embeds into I๐‘‹ for some๐‘‹ by Theorem 5.8,we can transfer this algebraic definition to arbitrary inverse semigroupsby defining ๐‘ฅ โ‰ผ ๐‘ฆ โ‡” ๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฆ.

L emma 5 . 9. For ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†, the following are equivalent:Characterizing the relation โ‰ผ

a) ๐‘ฅ โ‰ผ ๐‘ฆ;b) ๐‘ฅ = ๐‘’๐‘ฆ for some ๐‘’ โˆˆ ๐ธ(๐‘†);c) ๐‘ฅ = ๐‘ฆ๐‘“ for some ๐‘“ โˆˆ ๐ธ(๐‘†);

100 โ€ขInverse semigroups

Page 109: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

d) ๐‘ฅ = ๐‘ฆ๐‘ฅโˆ’1๐‘ฅ.

Proof of 5.9. Part 1 [a) โ‡’ b)]. Suppose ๐‘ฅ โ‰ผ ๐‘ฆ. Then ๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฆ, and๐‘’ = ๐‘ฅ๐‘ฅโˆ’1 is an idempotent.Part 2 [b)โ‡’ c)]. Suppose ๐‘ฅ = ๐‘’๐‘ฆ. Let ๐‘“ = ๐‘ฆโˆ’1๐‘’๐‘ฆ. Then

๐‘“2 = ๐‘ฆโˆ’1๐‘’๐‘ฆ๐‘ฆโˆ’1๐‘’๐‘ฆ = ๐‘ฆโˆ’1๐‘ฆ๐‘ฆโˆ’1๐‘’2๐‘ฆ = ๐‘ฆโˆ’1๐‘’๐‘ฆ = ๐‘“;

thus ๐‘“ is idempotent. Furthermore, ๐‘ฆ๐‘“ = ๐‘ฆ๐‘ฆโˆ’1๐‘’๐‘ฆ = ๐‘’๐‘ฆ๐‘ฆโˆ’1๐‘ฆ = ๐‘’๐‘ฆ = ๐‘ฅ.Part 3 [c)โ‡’ d)]. Suppose ๐‘ฅ = ๐‘ฆ๐‘“. Then ๐‘ฅ๐‘“ = ๐‘ฆ๐‘“2 = ๐‘ฆ๐‘“ = ๐‘ฅ and so๐‘ฆ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฆ๐‘ฅโˆ’1๐‘ฅ๐‘“ = ๐‘ฆ๐‘“๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ.Part 4 [d)โ‡’ a)]. Suppose๐‘ฅ = ๐‘ฆ๐‘ฅโˆ’1๐‘ฅ.Then๐‘ฅ = ๐‘ฆ๐‘ฆโˆ’1๐‘ฆ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฆ๐‘ฅโˆ’1๐‘ฅ๐‘ฆโˆ’1๐‘ฆ.Let ๐‘’ = ๐‘ฆ๐‘ฅโˆ’1๐‘ฅ๐‘ฆโˆ’1, so that ๐‘ฅ = ๐‘’๐‘ฆ. Then

๐‘’2 = ๐‘ฆ๐‘ฅโˆ’1๐‘ฅ๐‘ฆโˆ’1๐‘ฆ๐‘ฅโˆ’1๐‘ฅ๐‘ฆโˆ’1 = ๐‘ฆ๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’1๐‘ฅ๐‘ฆโˆ’1๐‘ฆ๐‘ฆโˆ’1 = ๐‘ฆ๐‘ฅโˆ’1๐‘ฅ๐‘ฆโˆ’1 = ๐‘’,

so ๐‘’ is idempotent. Hence ๐‘’๐‘ฅ = ๐‘’2๐‘ฆ = ๐‘’๐‘ฆ = ๐‘ฅ, and so ๐‘’๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฅ๐‘ฅโˆ’1.Thus

๐‘ฅ๐‘ฅโˆ’1๐‘ฆ = ๐‘’๐‘ฅ๐‘ฅโˆ’1๐‘ฆ = ๐‘ฅ๐‘ฅโˆ’1๐‘’๐‘ฆ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ,

and so ๐‘ฅ โ‰ผ ๐‘ฆ by definition. 5.9

Pro p o s i t i on 5 . 1 0. The relation โ‰ผ is a partial order. โ‰ผ is a partial order

Proof of 5.10. Since ๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ, we have ๐‘ฅ โ‰ผ ๐‘ฅ for any ๐‘ฅ โˆˆ ๐‘†; thus ๐‘ฅ isreflexive. If ๐‘ฅ โ‰ผ ๐‘ฆ and ๐‘ฆ โ‰ผ ๐‘ฅ, then by ๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฆ and ๐‘ฆ = ๐‘ฆ๐‘ฆโˆ’1๐‘ฅ. Hence๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1๐‘ฅ = ๐‘ฆ๐‘ฆโˆ’1๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฆ๐‘ฆโˆ’1๐‘ฅ = ๐‘ฆ; thus โ‰ผ is anti-symmetric.If ๐‘ฅ โ‰ผ ๐‘ฆ and ๐‘ฆ โ‰ผ ๐‘ง, then ๐‘ฅ = ๐‘’๐‘ฆ and ๐‘ฆ = ๐‘“๐‘ง for some ๐‘’, ๐‘“ โˆˆ ๐ธ(๐‘†), and so๐‘ฅ = (๐‘’๐‘“)๐‘ง, and hence ๐‘ฅ โ‰ผ ๐‘ง (since ๐‘’๐‘“ is in the subsemigroup ๐ธ(๐‘†)); thusโ‰ผ is transitive. 5.10

Proposition 5.10 justifies the choice of the symbol โ‰ผ for this relation, Natural partial orderwhich is called the natural partial order on an inverse semigroup. Noticethat if ๐‘ฅ and ๐‘ฆ are idempotents, then by the commutativity of idempotentsthis agrees with the definition of the natural partial order for idempotents(see Proposition 1.19). We are therefore justified in using the same symbolโ‰ผ for both relations.

P r o p o s i t i o n 5 . 1 1. a) The relation โ‰ผ is compatible (with multi-plication); that is, ๐‘ฅ โ‰ผ ๐‘ฆ โˆง ๐‘ง โ‰ผ ๐‘ก โ‡’ ๐‘ฅ๐‘ง โ‰ผ ๐‘ฆ๐‘ก for all ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก โˆˆ ๐‘†.

b) The relation โ‰ผ is compatible with inversion; that is, ๐‘ฅ โ‰ผ ๐‘ฆ โ‡’ ๐‘ฅโˆ’1 โ‰ผ ๐‘ฆโˆ’1for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†.

Proof of 5.11. a) Let ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก โˆˆ ๐‘†. Then

(๐‘ฅ โ‰ผ ๐‘ฆ) โˆง (๐‘ง โ‰ผ ๐‘ก)โ‡’ (โˆƒ๐‘’, ๐‘“ โˆˆ ๐ธ(๐‘†))((๐‘ฅ = ๐‘’๐‘ฆ) โˆง (๐‘ง = ๐‘ก๐‘“)) [by Lemma 5.9]โ‡’ (โˆƒ๐‘’, ๐‘“ โˆˆ ๐ธ(๐‘†))((๐‘ฅ๐‘ง = ๐‘’๐‘ฆ๐‘ง) โˆง (๐‘ฆ๐‘ง = ๐‘ฆ๐‘ก๐‘“))โ‡’ (๐‘ฅ๐‘ง โ‰ผ ๐‘ฆ๐‘ง) โˆง (๐‘ฆ๐‘ง โ‰ผ ๐‘ฆ๐‘ก) [by Lemma 5.9]โ‡’ ๐‘ฅ๐‘ง โ‰ผ ๐‘ฆ๐‘ก. [since โ‰ผ is transitive]

The natural partial order โ€ข 101

Page 110: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

b) Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. Then

๐‘ฅ โ‰ผ ๐‘ฆโ‡’ (โˆƒ๐‘’ โˆˆ ๐ธ(๐‘†))(๐‘ฅ = ๐‘’๐‘ฆ) [by Lemma 5.9]โ‡’ (โˆƒ๐‘’ โˆˆ ๐ธ(๐‘†))(๐‘ฅโˆ’1 = ๐‘ฆโˆ’1๐‘’) [by (5.2) and ๐‘’โˆ’1 = ๐‘’]โ‡’ (โˆƒ๐‘’ โˆˆ ๐ธ(๐‘†))(๐‘ฅโˆ’1 = ๐‘ฆโˆ’1๐‘ฆ๐‘ฆโˆ’1๐‘’)โ‡’ (โˆƒ๐‘’ โˆˆ ๐ธ(๐‘†))(๐‘ฅโˆ’1 = ๐‘ฆโˆ’1๐‘’๐‘ฆ๐‘ฆโˆ’1)โ‡’ (โˆƒ๐‘“ โˆˆ ๐ธ(๐‘†))(๐‘ฅโˆ’1 = ๐‘“๐‘ฆโˆ’1)

[since ๐‘ฆโˆ’1๐‘’๐‘ฆ โˆˆ ๐ธ(๐‘†) by Lemma 5.6(d)]โ‡’ ๐‘ฅโˆ’1 โ‰ผ ๐‘ฆโˆ’1. [by Lemma 5.9] 5.11

The natural partial order can serve as a measure of how โ€˜closeโ€™ aninverse semigroup is to being a group:

P ro p o s i t i on 5 . 1 2. Let ๐‘† be an inverse semigroup. Then ๐‘† is a groupCharacterizing inversesemigroups that

are groups using โ‰ผif and only if โ‰ผ is the identity relation on ๐‘†.

Proof of 5.12. Suppose ๐‘† is a group. Then

๐‘ฅ โ‰ผ ๐‘ฆ โ‡” ๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฆ โ‡” ๐‘ฅ = 1๐‘†๐‘ฆ โ‡” ๐‘ฅ = ๐‘ฆ;

thus โ‰ผ is the identity relation.Now suppose that โ‰ผ is the identity relation. Let ๐‘’, ๐‘“ โˆˆ ๐ธ(๐‘†). Then๐‘’๐‘“ โ‰ผ ๐‘’ and ๐‘’๐‘“ โ‰ผ ๐‘“; hence ๐‘’ = ๐‘’๐‘“ = ๐‘“. Thus ๐‘† contains a uniqueidempotent and so ๐‘† is a group by Proposition 5.3. 5.12

Clifford semigroups

Recall that a semigroup ๐‘† is a Clifford semigroup if itClifford semigroupsatisfies the conditions in (4.4). Thus ๐‘† is a Clifford semigroup if it iscompletely regular and, for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†,

๐‘ฅ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1 = ๐‘ฆ๐‘ฆโˆ’1๐‘ฅ๐‘ฅโˆ’1. (5.7)

We are going to prove a structure theorem for Clifford semigroups,but first we need to a stronger version of the notion of a semilattice ofsemigroups, which we introduced in the previous chapter. If we knowthat ๐‘† is a semilattice of semigroups ๐‘†๐›ผ, we know something of the coarsestructure of ๐‘†: we know that if ๐‘ฅ โˆˆ ๐‘†๐›ผ and ๐‘ฆ โˆˆ ๐‘†๐›ฝ, then ๐‘ฅ๐‘ฆ โˆˆ ๐‘†๐›ผโŠ“๐›ฝ (seeFigure 4.4).

The new version is stronger in that it describes precisely what productsare, rather than simply where they are in the semilattice. Suppose that we

102 โ€ขInverse semigroups

Page 111: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

have a semilattice ๐‘Œ, disjoint semigroups ๐‘†๐›ผ for each ๐›ผ โˆˆ ๐‘Œ, and, for all๐›ผ โฉพ ๐›ฝ, homomorphisms ๐œ‘๐›ผ,๐›ฝ โˆถ ๐‘†๐›ผ โ†’ ๐‘†๐›ฝ satisfying the conditions

(โˆ€๐›ผ โˆˆ ๐‘Œ)(๐œ‘๐›ผ,๐›ผ = id๐›ผ) (5.8)(โˆ€๐›ผ, ๐›ฝ, ๐›พ โˆˆ ๐‘Œ)((๐›ผ โฉพ ๐›ฝ โฉพ ๐›พ) โ‡’ (๐œ‘๐›ผ,๐›ฝ๐œ‘๐›ฝ,๐›พ = ๐œ‘๐›ผ,๐›พ)) (5.9)

Then we can define a multiplication on ๐‘† = โ‹ƒ๐›ผโˆˆ๐‘Œ ๐‘†๐›ผ as follows: for each๐‘ฅ โˆˆ ๐‘†๐›ผ and ๐‘ฆ โˆˆ ๐‘†๐›ฝ, the product ๐‘ฅ๐‘ฆ is defined to be (๐‘ฅ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝ)(๐‘ฆ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝ).That is, we use the homomorphisms to map ๐‘ฅ and ๐‘ฆ โ€˜downโ€™ into ๐‘†๐›ผโŠ“๐›ฝ andmultiply them there; see Figure 5.2. For any ๐‘ฅ โˆˆ ๐‘†๐›ผ, ๐‘ฆ โˆˆ ๐‘†๐›ฝ, ๐‘ง โˆˆ ๐‘†๐›พ,

๐‘†๐›ผ ๐‘†๐›ฝ

๐‘†๐›ผโŠ“๐›ฝ

๐‘ฅ ๐‘ฆ

๐‘ฅ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝ ๐‘ฆ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝ

๐‘ฅ๐‘ฆ

๐œ‘๐›ผ,๐›ผโŠ“๐›ฝ ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝ

FIGURE 5.2Multiplying in a strong semilat-tice of semigroups

๐‘ฅ(๐‘ฆ๐‘ง)= ๐‘ฅ((๐‘ฆ๐œ‘๐›ฝ,๐›ฝโŠ“๐›พ)(๐‘ง๐œ‘๐›พ,๐›ฝโŠ“๐›พ)) [by definition of multiplication]

= (๐‘ฅ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝโŠ“๐›พ)((๐‘ฆ๐œ‘๐›ฝ,๐›ฝโŠ“๐›พ)(๐‘ง๐œ‘๐›พ,๐›ฝโŠ“๐›พ))๐œ‘๐›ฝโŠ“๐›พ,๐›ผโŠ“๐›ฝโŠ“๐›พ[by definition of multiplication]

= (๐‘ฅ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝโŠ“๐›พ)(๐‘ฆ๐œ‘๐›ฝ,๐›ฝโŠ“๐›พ๐œ‘๐›ฝโŠ“๐›พ,๐›ผโŠ“๐›ฝโŠ“๐›พ)(๐‘ง๐œ‘๐›พ,๐›ฝโŠ“๐›พ๐œ‘๐›ฝโŠ“๐›พ,๐›ผโŠ“๐›ฝโŠ“๐›พ)[since ๐œ‘๐›ฝโŠ“๐›พ,๐›ผโŠ“๐›ฝโŠ“๐›พ is a homomorphism]

= (๐‘ฅ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝโŠ“๐›พ)((๐‘ฆ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝโŠ“๐›พ)(๐‘ง๐œ‘๐›พ,๐›ผโŠ“๐›ฝโŠ“๐›พ)) [by (5.9)]

= ((๐‘ฅ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝโŠ“๐›พ)(๐‘ฆ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝโŠ“๐›พ))(๐‘ง๐œ‘๐›พ,๐›ผโŠ“๐›ฝโŠ“๐›พ) [by associativity in ๐‘†๐›ผโŠ“๐›ฝโŠ“๐›พ]

= (๐‘ฅ๐‘ฆ)๐‘ง, [by similar reasoning]

and so this multiplication is associative. This semigroup ๐‘† is a strong Strong semilattice ofsemigroups/groupssemilattice of semigroups and is denoted S[๐‘Œ; ๐‘†๐›ผ; ๐œ‘๐›ผ,๐›ฝ]. If every ๐‘†๐›ผ is a

group, it is a strong semilattice of groups.An element ๐‘ฅ of a semigroup ๐‘† is central if ๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ for all ๐‘ฆ โˆˆ ๐‘†. Central element

Th eorem 5 . 1 3. The following are equivalent: Characterization ofClifford semigroupsa) ๐‘† is a Clifford semigroup;

b) ๐‘† is a semilattice of groups;c) ๐‘† is a strong semilattice of groups;d) ๐‘† is regular, and the idempotents of ๐‘† are central;e) ๐‘† is regular, and every D-class of ๐‘† contains a unique idempotent.

Proof of 5.13. Part 1 [a)โ‡’ b)]. Let ๐‘† be a Clifford semigroup. Then ๐‘† iscompletely regular and so is a semilattice of completely simple semigroups๐‘†๐›ผ by Theorem 4.17. Let ๐‘’, ๐‘“ be idempotents. Then ๐‘’ = ๐‘’๐‘’โˆ’1๐‘’ = ๐‘’๐‘’๐‘’โˆ’1 =๐‘’๐‘’โˆ’1 by (4.2) and similarly ๐‘“ = ๐‘“๐‘“โˆ’1 and so ๐‘’๐‘“ = ๐‘“๐‘’ by (5.7). So allidempotents of ๐‘† commute. Now, ๐‘†๐›ผ is completely simple and so ๐‘†๐›ผ โ‰ƒM[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] for some group ๐บ, index sets ๐ผ and ๐›ฌ, and matrix ๐‘ƒ over๐บ. Let ๐‘’, ๐‘“ โˆˆ ๐‘†๐›ผ be idempotents. Then ๐‘’ = (๐‘–, ๐‘โˆ’1๐œ†๐‘– , ๐œ†) and ๐‘“ = (๐‘—, ๐‘โˆ’1๐œ‡๐‘— , ๐œ‡),and (๐‘–, ๐‘โˆ’1๐œ†๐‘– ๐‘๐œ†๐‘—๐‘โˆ’1๐œ‡๐‘— , ๐œ‡) = ๐‘’๐‘“ = ๐‘“๐‘’ = (๐‘—, ๐‘โˆ’1๐œ‡๐‘—๐‘๐œ‡๐‘–๐‘โˆ’1๐œ†๐‘– , ๐œ†). Hence ๐‘– = ๐‘— and๐œ† = ๐œ‡ and so ๐‘’ = ๐‘“. So each ๐‘†๐›ผ contains only one idempotent. Thus, byProposition 4.14, ๐‘†๐›ผ is a group. Therefore ๐‘† is a semilattice of groups.

Clifford semigroups โ€ข 103

Page 112: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Part 2 [b)โ‡’ c)]. Let ๐‘† be a semilattice of groups ๐‘†๐›ผ, where ๐›ผ โˆˆ ๐‘Œ. To provethat ๐‘† is a strong semilattice of groups, we have to define homomorphisms๐œ‘๐›ผ,๐›ฝ for all ๐›ผ, ๐›ฝ โˆˆ ๐‘Œ, prove that (5.8) and (5.9) hold, and show that thestrong semilattice of groups S[๐‘Œ; ๐‘†๐›ผ; ๐œ‘๐›ผ,๐›ฝ] is isomorphic to ๐‘†.

Write 1๐›ผ for the identity of the group ๐‘†๐›ผ.Then for๐›ผ โฉพ ๐›ฝ and๐‘ฅ โˆˆ ๐‘†๐›ผ, wehave 1๐›ฝ๐‘ฅ โˆˆ ๐‘†๐›ฝ. Hence we can define amap ๐œ‘๐›ผ,๐›ฝ โˆถ ๐‘†๐›ผ โ†’ ๐‘†๐›ฝ by ๐‘ฅ๐œ‘๐›ผ,๐›ฝ = 1๐›ฝ๐‘ฅ.For ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†๐›ผ,

(๐‘ฅ๐œ‘๐›ผ,๐›ฝ)(๐‘ฆ๐œ‘๐›ผ,๐›ฝ)= 1๐›ฝ๐‘ฅ1๐›ฝ๐‘ฆ [by definition of ๐œ‘๐›ผ,๐›ฝ]

= 1๐›ฝ๐‘ฅ๐‘ฆ [since 1๐›ฝ๐‘ฅ โˆˆ ๐‘†๐›ฝ and thus (1๐›ฝ๐‘ฅ)1๐›ฝ = 1๐›ฝ๐‘ฅ]

= (๐‘ฅ๐‘ฆ)๐œ‘๐›ผ,๐›ฝ; [by definition of ๐œ‘๐›ผ,๐›ฝ]

hence ๐œ‘๐›ผ,๐›ฝ is a homomorphism. Clearly ๐œ‘๐›ผ,๐›ผ = id๐‘†๐›ผ , so (5.8) holds. For๐›ผ โฉพ ๐›ฝ โฉพ ๐›พ, for any ๐‘ฅ โˆˆ ๐‘†๐›ผ

๐‘ฅ๐œ‘๐›ผ,๐›ฝ๐œ‘๐›ฝ,๐›พ= (1๐›ฝ๐‘ฅ)๐œ‘๐›ฝ,๐›พ [by definition of ๐œ‘๐›ผ,๐›ฝ]

= 1๐›พ1๐›ฝ๐‘ฅ [by definition of ๐œ‘๐›ฝ,๐›พ]

= (1๐›ฝ๐œ‘๐›ฝ,๐›พ)๐‘ฅ [by definition of ๐œ‘๐›ฝ,๐›พ]

= 1๐›พ๐‘ฅ [by Corollary 5.5]

= ๐‘ฅ๐œ‘๐›ผ,๐›พ; [by definition of ๐œ‘๐›ผ,๐›พ]

hence (5.9) holds. Finally, for any ๐‘ฅ โˆˆ ๐‘†๐›ผ and ๐‘ฆ โˆˆ ๐‘†๐›ฝ,

๐‘ฅ๐‘ฆ = 1๐›ผโŠ“๐›ฝ๐‘ฅ๐‘ฆ [since ๐‘ฅ๐‘ฆ โˆˆ ๐‘†๐›ผโŠ“๐›ฝ]

= 1๐›ผโŠ“๐›ฝ๐‘ฅ1๐›ผโŠ“๐›ฝ๐‘ฆ [since 1๐›ผโŠ“๐›ฝ๐‘ฅ โˆˆ ๐‘†๐›ผโŠ“๐›ฝ]

= (๐‘ฅ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝ)(๐‘ฆ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝ). [by definition of ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝ and ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝ]

Therefore ๐‘† is isomorphic to S[๐‘Œ; ๐‘†๐›ผ; ๐œ‘๐›ผ,๐›ฝ].

Part 3 [c) โ‡’ d)]. A strong semilattice of groups ๐‘† = S[๐‘Œ; ๐‘†๐›ผ; ๐œ‘๐›ผ,๐›ฝ] iscertainly regular: for each ๐‘ฅ โˆˆ ๐‘†๐›ผ, let ๐‘ฅโˆ’1 be the inverse of ๐‘ฅ in the group๐‘†๐›ผ. The idempotents of ๐‘† are the identities of the groups ๐‘†๐›ผ. Write 1๐›ผ forthe identity of ๐‘†๐›ผ. Then for any ๐›ฝ โˆˆ ๐‘Œ and ๐‘ฅ โˆˆ ๐‘†๐›ฝ,

1๐›ผ๐‘ฅ = (1๐›ผ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝ)(๐‘ฅ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝ) = 1๐›ผโŠ“๐›ฝ(๐‘ฅ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝ)= (๐‘ฅ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝ) = (๐‘ฅ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝ)1๐›ผโŠ“๐›ฝ = (๐‘ฅ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝ)(1๐›ผ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝ) = ๐‘ฅ1๐›ผ.

Thus every idempotent of ๐‘† is central.

Part 4 [d)โ‡’ e)]. Each D-class๐ท๐‘ฅ must contain at least one idempotent,namely ๐‘ฅ๐‘ฅโˆ’1. Suppose ๐‘’ and ๐‘“ are idempotent and ๐‘’ D ๐‘“. Then by

104 โ€ขInverse semigroups

Page 113: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proposition 3.21(b) there exists an element ๐‘ฅ and inverse ๐‘ฅโ€ฒ such that๐‘ฅ๐‘ฅโ€ฒ = ๐‘’ and ๐‘ฅโ€ฒ๐‘ฅ = ๐‘“. Therefore

๐‘’ = ๐‘’2

= ๐‘ฅ๐‘ฅโ€ฒ๐‘ฅ๐‘ฅโ€ฒ [since ๐‘ฅ๐‘ฅโ€ฒ = ๐‘’]= ๐‘ฅ๐‘“๐‘ฅโ€ฒ [since ๐‘ฅโ€ฒ๐‘ฅ = ๐‘“]= ๐‘ฅ๐‘ฅโ€ฒ๐‘“ [since ๐‘“ is central]= ๐‘ฅ๐‘ฅโ€ฒ๐‘ฅโ€ฒ๐‘ฅ [since ๐‘“ = ๐‘ฅโ€ฒ๐‘ฅ]= ๐‘’๐‘ฅโ€ฒ๐‘ฅ [since ๐‘ฅ๐‘ฅโ€ฒ = ๐‘’]= ๐‘ฅโ€ฒ๐‘’๐‘ฅ [since ๐‘’ is central]= ๐‘ฅโ€ฒ๐‘ฅ๐‘ฅโ€ฒ๐‘ฅ [since ๐‘’ = ๐‘ฅ๐‘ฅโ€ฒ]= ๐‘“2 = ๐‘“. [since ๐‘“ = ๐‘ฅโ€ฒ๐‘ฅ]

Hence every D-class of ๐‘† contains a unique idempotent.Part 5 [e)โ‡’ a)]. Since everyD-class contains a unique idempotent, everyD-class consists of a single H-class by Proposition 3.20, and so D = H.Furthermore, each of these H-classes is a group by Proposition 3.14, andso every element of ๐‘† lies in a subgroup and thus ๐‘† is completely regularby Theorem 4.15. Thus, by Theorem 4.17, ๐‘† is a semilattice of completelysimple semigroups ๐‘†๐›ผ. Every element of a completely simple semigroup isD-related, and so every ๐‘†๐›ผ is contained within a singleD-class and is thusa group. So ๐‘† is a semilattice of groups and thus, by the second part of thisproof, a strong semilattice of groups S[๐‘Œ; ๐‘†๐›ผ; ๐œ‘๐›ผ,๐›ฝ]. Hence for ๐‘ฅ โˆˆ ๐‘†๐›ผ and๐‘ฆ โˆˆ ๐‘†๐›ฝ, we have ๐‘ฅ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1 = 1๐›ผ1๐›ฝ = 1๐›ผโŠ“๐›ฝ = 1๐›ฝ1๐›ผ = ๐‘ฆ๐‘ฆโˆ’1๐‘ฅ๐‘ฅโˆ’1. 5.13

In particular, Theorem 5.13(d) implies that in a Clifford semigroup,idempotents commute; hence, by Theorem 5.1, Clifford semigroups areinverse semigroups. Notice that this is not obvious from the conditions(4.3) and (4.4).

Let ๐‘† be a Clifford semigroup. By Theorem 5.13, ๐‘† is isomorphic to a Natural partial order onClifford semigroupsstrong semilattice of groups S[๐‘Œ; ๐บ๐›ผ; ๐œ‘๐›ผ,๐›ฝ]. Let ๐‘ฅ โˆˆ ๐บ๐›ผ and ๐‘ฆ โˆˆ ๐บ๐›ฝ. Then

๐‘ฅ โ‰ผ ๐‘ฆ โ‡” ๐‘ฅ = (๐‘ฅ๐‘ฅโˆ’1)๐‘ฆโ‡” ๐‘ฅ = 1๐›ผ๐‘ฆโ‡” ๐‘ฅ = (1๐›ผ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝ)(๐‘ฆ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝ)โ‡” (๐‘ฅ = (1๐›ผ๐œ‘๐›ผ,๐›ผ)(๐‘ฆ๐œ‘๐›ฝ,๐›ผ)) โˆง (๐›ผ โŠ“ ๐›ฝ = ๐›ผ)โ‡” (๐‘ฅ = ๐‘ฆ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝ) โˆง (๐›ผ โฉฝ ๐›ฝ).

Thus the natural partial order โ‰ผ precisely corresponds to the homomor-phisms ๐œ‘๐›ผ,๐›ฝ and the order of the semilattice (๐‘Œ, โฉฝ). In particular, we have

1๐›ผ โ‰ผ 1๐›ฝ โ‡” 1๐›ผ = 1๐›ฝ๐œ‘๐›ฝ,๐›ผ โˆง (๐›ผ โฉฝ ๐›ฝ) โ‡” ๐›ผ โฉฝ ๐›ฝ.

Since the identities of the groups ๐บ๐›ผ are precisely the idempotents of๐‘†, we see that (๐ธ(๐‘†), โ‰ผ) and (๐‘Œ, โฉฝ) are isomorphic. In particular, every

Clifford semigroups โ€ข 105

Page 114: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

semilattice (๐‘Œ, โฉฝ) is a Clifford semigroup S[๐‘Œ; ๐บ๐›ผ, ๐œ‘๐›ผ,๐›ฝ] where the groups๐บ๐›ผ are all trivial.

Free inverse semigroups

Let ๐ด be an alphabet. Let ๐ดโˆ’1 be a set of new symbolsbijectionwith๐ด under themap ๐‘Ž โ†ฆ ๐‘Žโˆ’1. Extend thismap to an involutionof ๐ด โˆช ๐ดโˆ’1 by defining (๐‘Žโˆ’1)โˆ’1 = ๐‘Ž. For any word ๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘› โˆˆ (๐ด โˆช๐ดโˆ’1)โˆ—, define (๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘›)โˆ’1 = ๐‘Žโˆ’1๐‘› โ‹ฏ๐‘Žโˆ’12 ๐‘Žโˆ’11 . Let FInvS(๐ด) be semigrouppresented by SgโŸจ๐ด โˆช ๐ดโˆ’1 | ๐œŒโŸฉ, where

๐œŒ = { (๐‘ข๐‘ขโˆ’1๐‘ข, ๐‘ข) โˆถ ๐‘ข โˆˆ (๐ด โˆช ๐ดโˆ’1)+ }โˆช { (๐‘ข๐‘ขโˆ’1๐‘ฃ๐‘ฃโˆ’1, ๐‘ฃ๐‘ฃโˆ’1๐‘ข๐‘ขโˆ’1) โˆถ ๐‘ข, ๐‘ฃ โˆˆ (๐ด โˆช ๐ดโˆ’1)+ }.

Pro p o s i t i on 5 . 1 4. The semigroup FInvS(๐ด) is an inverse semigroup,where the inverse of [๐‘ข]๐œŒ# โˆˆ FInvS(๐ด) is [๐‘ขโˆ’1]๐œŒ# .

Proof of 5.14. Define ([๐‘ข]๐œŒ#)โˆ’1 = [๐‘ขโˆ’1]๐œŒ# . We aim to prove that the con-

ditions (5.1)โ€“(5.4) are satisfied. First of all, it is necessary to check thatthe operation โˆ’1 is well-defined on FInvS(๐ด). Suppose [๐‘ข]๐œŒ# = [๐‘ฃ]๐œŒ# .Then there is a sequence of elementary ๐œŒ-transitions ๐‘ข = ๐‘ค0 โ†”๐œŒ ๐‘ค1 โ†”๐œŒโ€ฆ โ†”๐œŒ ๐‘ค๐‘› = ๐‘ฃ. Apply โˆ’1 (as an operation on (๐ด โˆช ๐ดโˆ’1)+) to everyterm in this sequence. This yields a sequence of elementary ๐œŒ-transitions๐‘ขโˆ’1 = ๐‘คโˆ’10 โ†”๐œŒ ๐‘คโˆ’11 โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘คโˆ’1๐‘› = ๐‘ฃโˆ’1; hence [๐‘ขโˆ’1]๐œŒ# = [๐‘ฃโˆ’1]๐œŒ# .

Now let ๐‘ข, ๐‘ฃ โˆˆ FInvS(๐ด). It is immediate from the definition of โˆ’1 that

([๐‘ข]โˆ’1๐œŒ# )โˆ’1 = [(๐‘ขโˆ’1)โˆ’1]๐œŒ# = [๐‘ข]๐œŒ#

and

[๐‘ข๐‘ฃ]โˆ’1๐œŒ# = [(๐‘ข๐‘ฃ)โˆ’1]๐œŒ# = [๐‘ฃโˆ’1๐‘ขโˆ’1]๐œŒ#

= [๐‘ฃโˆ’1]๐œŒ# [๐‘ขโˆ’1]๐œŒ# = [๐‘ฃ]โˆ’1๐œŒ# [๐‘ข]โˆ’1๐œŒ# ;

thus (5.1) and (5.2) hold. Furthermore,

[๐‘ข]๐œŒ# [๐‘ข]โˆ’1๐œŒ# [๐‘ข]๐œŒ# = [๐‘ข]๐œŒ# [๐‘ขโˆ’1]๐œŒ# [๐‘ข]๐œŒ#

= [๐‘ข๐‘ขโˆ’1๐‘ข]๐œŒ# [by definition of ๐œŒ]

= [๐‘ข]๐œŒ#

and

[๐‘ข]๐œŒ# [๐‘ข]โˆ’1๐œŒ# [๐‘ฃ]๐œŒ# [๐‘ฃ]โˆ’1๐œŒ# = [๐‘ข]๐œŒ# [๐‘ข

โˆ’1]๐œŒ# [๐‘ฃ]๐œŒ# [๐‘ฃโˆ’1]๐œŒ#

= [๐‘ข๐‘ขโˆ’1๐‘ฃ๐‘ฃโˆ’1]๐œŒ#

106 โ€ขInverse semigroups

Page 115: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

= [๐‘ฃ๐‘ฃโˆ’1๐‘ข๐‘ขโˆ’1]๐œŒ# [by definition of ๐œŒ]

= [๐‘ฃ]๐œŒ# [๐‘ฃโˆ’1]๐œŒ# [๐‘ข]๐œŒ# [๐‘ขโˆ’1]๐œŒ#= [๐‘ฃ]๐œŒ# [๐‘ฃ]โˆ’1๐œŒ# [๐‘ข]๐œŒ# [๐‘ข]

โˆ’1๐œŒ# ;

thus (5.3) and (5.4) hold. Hence FInvS(๐ด) is an inverse semigroup. 5.14

Let ๐น be an inverse semigroup, let๐ด be an alphabet, and let ๐œ„ โˆถ ๐ด โ†’ ๐น Free inverse semigroupbe an embedding of๐ด into๐น.Then the inverse semigroup๐น is a free inversesemigroup on ๐ด if, for any inverse semigroup ๐‘† and map ๐œ‘ โˆถ ๐ด โ†’ ๐‘†, thereis a unique homomorphism ๐œ‘ โˆถ ๐น โ†’ ๐‘† that extends ๐œ‘ (that is, with๐œ„๐œ‘ = ๐œ‘). Using diagrams, this definition says that ๐น is a free inversesemigroup on ๐ด if

for all๐ด ๐น

๐‘†

๐œ„

๐œ‘with ๐‘† inverse, there exists

a unique homomorphism ๐œ‘ such that๐ด ๐น

๐‘†

๐œ„

๐œ‘๐œ‘ .

}}}}}}}}}}}}}}}}}}}

(5.10)

This definition is analogous to the definition of the free semigroup on๐ด (see pages 38 f.). In Chapter 8, we will see definitions of โ€˜free objectsโ€™in a much more general setting. Like the free semigroup on ๐ด, the freeinverse semigroup on ๐ด is unique up to isomorphism:

Pro p o s i t i on 5 . 1 5. Let ๐ด be an alphabet and let ๐น be an inverse Uniqueness of the freeinverse semigroup on ๐ดsemigroup. Then ๐น is a free inverse semigroup on ๐ด if and only if ๐น โ‰ƒ

FInvS(๐ด).

Proof of 5.15. Let ๐œ„ โˆถ ๐ด โ†’ FInvS(๐ด) be the natural map ๐‘Ž๐œ„ = [๐‘Ž]๐œŒ# . Let ๐‘†be a inverse semigroup and ๐œ‘ โˆถ ๐ด โ†’ ๐‘† a map. Extend ๐œ‘ to a map ๐œ‘โ€ฒ โˆถ๐ดโˆช๐ดโˆ’1 โ†’ ๐‘† by defining ๐‘Žโˆ’1๐œ‘โ€ฒ = (๐‘Ž๐œ‘)โˆ’1 for ๐‘Žโˆ’1 โˆˆ ๐ดโˆ’1. Since (๐ดโˆช๐ดโˆ’1)+ isthe free semigroup on๐ด, the map ๐œ‘โ€ฒ extends to a unique homomorphism๐œ‘โ€ณ โˆถ (๐ด โˆช ๐ดโˆ’1)+ โ†’ ๐‘† with (๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘›)๐œ‘โ€ณ = (๐‘Ž1๐œ‘โ€ฒ)(๐‘Ž2๐œ‘โ€ฒ)โ‹ฏ (๐‘Ž๐‘›๐œ‘โ€ฒ),where ๐‘Ž๐‘– โˆˆ ๐ด โˆช ๐ดโˆ’1. Since ๐‘† is an inverse semigroup,

(๐‘ข๐‘ขโˆ’1๐‘ข)๐œ‘โ€ณ = (๐‘ข๐œ‘โ€ณ)(๐‘ขโˆ’1๐œ‘โ€ณ)(๐‘ข๐œ‘โ€ณ) [since ๐œ‘โ€ณ is a homomorphism]= (๐‘ข๐œ‘โ€ณ)(๐‘ข๐œ‘โ€ณ)โˆ’1(๐‘ข๐œ‘โ€ณ) [by definition of ๐œ‘โ€ฒ]= ๐‘ข๐œ‘โ€ณ

and

(๐‘ข๐‘ขโˆ’1๐‘ฃ๐‘ฃโˆ’1)๐œ‘โ€ณ = (๐‘ข๐œ‘โ€ณ)(๐‘ขโˆ’1๐œ‘โ€ณ)(๐‘ฃ๐œ‘โ€ณ)(๐‘ฃโˆ’1๐œ‘โ€ณ)= (๐‘ข๐œ‘โ€ณ)(๐‘ข๐œ‘โ€ณ)โˆ’1(๐‘ฃ๐œ‘โ€ณ)(๐‘ฃ๐œ‘โ€ณ)โˆ’1

= (๐‘ฃ๐œ‘โ€ณ)(๐‘ฃ๐œ‘โ€ณ)โˆ’1(๐‘ข๐œ‘โ€ณ)(๐‘ข๐œ‘โ€ณ)โˆ’1 [since ๐‘† is inverse]= (๐‘ข๐‘ขโˆ’1๐‘ฃ๐‘ฃโˆ’1)๐œ‘โ€ณ

Free inverse semigroups โ€ข 107

Page 116: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

for all ๐‘ข, ๐‘ฃ โˆˆ (๐ด โˆช ๐ดโˆ’1)+. Thus ๐œŒ โŠ† ker๐œ‘โ€ณ and so there is a well-definedhomomorphism ๐œ‘ โˆถ FInvS(๐ด) โ†’ ๐‘† with [๐‘ข]๐œŒ#๐œ‘ = ๐‘ข๐œ‘โ€ณ. That is, thefollowing diagram commutes:

๐ด FInvS(๐ด)

๐ด โˆช ๐ดโˆ’1 (๐ด โˆช ๐ดโˆ’1)+

๐‘†

๐œ„

๐œ‘

๐œ‘

๐œ‘โ€ฒ

(๐œŒ#)โ™ฎ

๐œ‘โ€ณ

It remains to prove that ๐œ‘ is the unique homomorphism such that๐œ„๐œ‘ = ๐œ‘. So let ๐œ“ โˆถ FInvS(๐ด) โ†’ ๐‘† be such that ๐œ„๐œ“ = ๐œ‘. Then for all ๐‘Ž โˆˆ ๐ด,we have [๐‘Ž]๐œŒ#๐œ“ = ๐‘Ž๐œ„๐œ“ = ๐‘Ž๐œ‘ and

[๐‘Žโˆ’1]๐œŒ#๐œ“ = ([๐‘Ž]๐œŒ# )โˆ’1๐œ“ [by definition of โˆ’1 in FInvS(๐ด)]

= ([๐‘Ž]๐œŒ#๐œ“)โˆ’1 [by Proposition 5.4]

= (๐‘Ž๐œ„๐œ“)โˆ’1

= (๐‘Ž๐œ‘)โˆ’1

= ๐‘Žโˆ’1๐œ‘. [by Proposition 5.4]

Hence for any ๐‘Ž๐‘– โˆˆ ๐ด โˆช ๐ดโˆ’1,

([๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘›]๐œŒ# )๐œ“ = ([๐‘Ž1]๐œŒ# [๐‘Ž2]๐œŒ#โ‹ฏ[๐‘Ž๐‘›]๐œŒ# )๐œ“= ([๐‘Ž1]๐œŒ#๐œ“)([๐‘Ž2]๐œŒ#๐œ“)โ‹ฏ ([๐‘Ž๐‘›]๐œŒ# )๐œ“)= (๐‘Ž1๐œ‘)(๐‘Ž2๐œ‘)โ‹ฏ (๐‘Ž๐‘›๐œ‘)= ([๐‘Ž1]๐œŒ#๐œ‘)([๐‘Ž2]๐œŒ#๐œ‘)โ‹ฏ ([๐‘Ž๐‘›]๐œŒ# )๐œ‘)= ([๐‘Ž1๐‘Ž2โ‹ฏ๐‘Ž๐‘›]๐œŒ# )๐œ‘.

Thus ๐œ“ = ๐œ‘. Therefore FInvS(๐ด) is a free inverse semigroup on ๐ด.Now let ๐น be a free inverse semigroup on ๐ด. Let ๐œ„1 โˆถ ๐ด โ†’ FInvS(๐ด)

and ๐œ„2 โˆถ ๐ด โ†’ ๐น be the embedding maps. Following the same argumentas for free semigroups on ๐ด (see the proof of Proposition 2.1), this leadsto ๐œ„2 โˆถ FInvS(๐ด) โ†’ ๐น and ๐œ„1 โˆถ ๐น โ†’ FInvS(๐ด) being mutually inverseisomorphisms. 5.15

We could repeat the discussion above for monoids instead of sem-Free inverse monoidigroups. The monoid FInvM(๐ด) is presented by MonโŸจ๐ด โˆช ๐ดโˆ’1 | ๐œŒโŸฉ. Amonoid ๐น is a free inverse monoid on ๐ด if, for any inverse monoid ๐‘† andmap ๐œ‘ โˆถ ๐ด โ†’ ๐‘†, there is a unique monoid homomorphism ๐œ‘ โˆถ ๐น โ†’ ๐‘†extending ๐œ‘; that is, with ๐œ„๐œ‘ = ๐œ‘. One can prove an analogy of Proposi-tion 5.15 for monoids, showing that an inverse monoid ๐น is a free inversemonoid on ๐ด if and only if ๐น โ‰ƒ FInvM(๐ด). Notice that because there is

108 โ€ขInverse semigroups

Page 117: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

no defining relation in ๐œŒ that has the empty word ๐œ€ as one of its two sides,there is no non-empty word that is equal to ๐œ€ in FInvM(๐ด). ThereforeFInvM(๐ด) โ‰ƒ (FInvS(๐ด))1.

Since free inverse semigroups and monoids are such fundamentalobjects, we would like to be able to solve the word problem: given twowords in (๐ดโˆช๐ดโˆ’1)+ (respectively, (๐ดโˆช๐ดโˆ’1)โˆ—), do they represent the sameelement of FInvS(๐ด) (respectively, FInvM(๐ด))? This appears difficult: forexample,

๐‘Ž๐‘Ž๐‘Žโˆ’1๐‘Žโˆ’1๐‘Žโˆ’1๐‘Ž๐‘๐‘โˆ’1๐‘Ž๐‘โˆ’1๐‘๐‘๐‘Ž๐‘Žโˆ’1๐‘๐‘โˆ’1

=FInvS(๐ด) ๐‘Žโˆ’1๐‘Ž๐‘๐‘โˆ’1๐‘Ž๐‘Ž๐‘Žโˆ’1๐‘๐‘Ž๐‘Žโˆ’1๐‘๐‘โˆ’1๐‘โˆ’1๐‘โˆ’1๐‘๐‘Žโˆ’1๐‘Ž๐‘,} (5.11)

but this not obvious. However, we now introduce a representation ofelements of FInvM(๐ด) that makes it easy to answer this question.

Let ๐‘‡ be a finite non-empty directed tree with edges labelled by sym- Tree with edgelabels from ๐ด โˆช ๐ดโˆ’1bols in ๐ด. Extend the set of labels to ๐ด โˆช ๐ดโˆ’1 by adopting the following

convention: for all ๐‘Ž โˆˆ ๐ด and vertices ๐›ฝ and ๐›พ,

๐›ฝ ๐›พ๐‘Žโˆ’1 means the same as

๐›ฝ ๐›พ๐‘Ž (5.12)

Denote the set of vertices of ๐‘‡ by ๐‘‰(๐‘‡). By definition, |๐‘‰(๐‘‡)| โฉพ 1. Let๐›ฝ, ๐›พ โˆˆ ๐‘‰(๐‘‡). If ๐›ฝ and ๐›พ are adjacent, then ๐›ฝ๐›พ will denote the edge from ๐›ฝto ๐›พ. A (๐›ฝ, ๐›พ)-walk on ๐‘‡ is a sequence ๐›ฝ = ๐›ฟ0, ๐›ฟ1,โ€ฆ , ๐›ฟ๐‘› = ๐›พ such that ๐›ฟ๐‘–โˆ’1and ๐›ฟ๐‘– are adjacent for ๐‘– = 1,โ€ฆ , ๐‘›. A (๐›ฝ, ๐›พ)-walk ๐›ฝ = ๐›ฟ0, ๐›ฟ1,โ€ฆ , ๐›ฟ๐‘› = ๐›พspans ๐‘‡ if every vertex of ๐‘‡ appears at least once among the ๐›ฟ๐‘–. The (๐›ฝ, ๐›พ)-path on ๐‘‡, denoted ๐œ‹(๐›ฝ, ๐›พ), is the unique (๐›ฝ, ๐›พ)-walk ๐›ฝ = ๐›ฟ0, ๐›ฟ1,โ€ฆ , ๐›ฟ๐‘› =๐›พ such that no vertex of๐‘‡ occursmore than once among the ๐›ฟ๐‘–; the integer๐‘› is the length of ๐œ‹(๐›ฝ, ๐›พ). Notice that there is a trivial path at ๐›ฝ, namely๐œ‹(๐›ฝ, ๐›ฝ), which has length 0.

For a (๐›ฝ, ๐›พ)-walk ๐œŽ = (๐›ฝ = ๐›ฟ0,โ€ฆ , ๐›ฟ๐‘š = ๐›พ), definew(๐œŽ) = ๐‘ฅ1๐‘ฅ2โ‹ฏ๐‘ฅ๐‘š,where๐‘ฅ๐‘– โˆˆ ๐ดโˆช๐ดโˆ’1 is the label on the edge ๐›ฟ๐‘–โˆ’1๐›ฟ๐‘– for ๐‘– = 1,โ€ฆ ,๐‘š (recallingthe convention (5.12)). Note that w(๐œ‹(๐›ฝ, ๐›ฝ)) = ๐œ€.

A word tree over ๐ด is a finite non-empty directed tree ๐‘‡ with edges Word tree, Munn treelabelled elements of ๐ด (using the convention (5.12)), and where there isno vertex that has two distinct incoming edges with the same label or twodistinct outgoing edges with the same label. That is,

a word tree does not contain subgraphs

๐‘Ž

๐‘Žor๐‘Ž

๐‘Ž

}}}}}

(5.13)

A Munn tree over ๐ด is a word tree ๐‘‡ with two distinguished vertices ๐›ผ๐‘‡and ๐œ”๐‘‡ (not necessarily distinct).

๐›ผ๐‘‡

5

7

10

1

2 13

15

๐œ”๐‘‡๐‘Ž

๐‘๐‘Ž

๐‘

๐‘Ž๐‘๐‘Ž

๐‘

FIGURE 5.3Munn tree ๐‘‡ for the words๐‘Ž2๐‘Žโˆ’3๐‘Ž๐‘๐‘โˆ’1๐‘Ž๐‘โˆ’1๐‘๐‘๐‘Ž๐‘Žโˆ’1๐‘๐‘โˆ’1and ๐‘Žโˆ’1๐‘Ž๐‘๐‘โˆ’1๐‘Ž2๐‘Žโˆ’1๐‘๐‘Ž๐‘Žโˆ’1๐‘๐‘โˆ’2๐‘โˆ’1๐‘๐‘Žโˆ’1๐‘Ž๐‘.

Figure 5.3 gives an example of a Munn tree. Notice it satisfies the con-dition (5.13). Furthermore, both words in (5.11) label spanning (๐›ผ๐‘‡, ๐œ”๐‘‡)-walks in this Munn tree. This is how Munn trees allow us to solve the

Free inverse semigroups โ€ข 109

Page 118: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

word problem for FInvM(๐ด): we will prove that two words represent thesame element of FInvM(๐ด) if and only if they have isomorphic Munntrees.

To be precise, an isomorphism between two word trees ๐‘‡1 and ๐‘‡2 is abijection ๐œ‘ โˆถ ๐‘‰(๐‘‡1) โ†’ ๐‘‰(๐‘‡2) such that there is an edge ๐‘ฃ๐‘ฃโ€ฒ labelled by ๐‘Žin ๐‘‡1 if and only if there is an edge (๐‘ฃ๐œ‘)(๐‘ฃโ€ฒ๐œ‘) labelled by ๐‘Ž in ๐‘‡2. If ๐‘‡1 and๐‘‡2 are Munn trees, then such a map is an isomorphism if, in addition,๐›ผ๐‘‡1๐œ‘ = ๐›ผ๐‘‡2 and ๐œ”๐‘‡1๐œ‘ = ๐œ”๐‘‡2 .

Suppose we have a word ๐‘ข = ๐‘ฅ1๐‘ฅ2โ‹ฏ๐‘ฅ๐‘›, where ๐‘ฅ๐‘– โˆˆ ๐ด โˆช ๐ดโˆ’1. Let usConstructing a Munntree from a word describe how to construct aMunn tree๐‘‡with a spanning (๐›ผ๐‘‡, ๐œ”๐‘‡)-walk ๐œŽ

such thatw(๐œŽ) = ๐‘ข. We will initially construct a tree ๐‘‡ with distinguishedvertices ๐›ผ๐‘‡ and ๐œ”๐‘‡ such that there is a spanning (๐›ผ๐‘‡, ๐œ”๐‘‡)-walk ๐œŽ on ๐‘‡such that w(๐œŽ) = ๐‘ข. This tree may not satisfy (5.13). We will then modify๐‘‡ to turn it into a Munn tree.

To begin, let ๐‘‡ be the graph with ๐‘› + 1 vertices ๐›ฟ0, ๐›ฟ1, ๐›ฟ2,โ€ฆ , ๐›ฟ๐‘›โˆ’1, ๐›ฟ๐‘›with edges ๐›ฟ๐‘–โˆ’1๐›ฟ๐‘– having label ๐‘ฅ๐‘– for ๐‘– = 1,โ€ฆ , ๐‘› (recall the convention(5.12)). Notice that this tree is simply a path. Let ๐›ผ๐‘‡ = ๐›ฟ0 and ๐œ”๐‘‡ = ๐›ฟ๐‘›.Note that๐‘‡ is a treewith distinguished vertices๐›ผ๐‘‡ and๐œ”๐‘‡. Let๐œŽ be uniquepath from ๐›ผ๐‘‡ to ๐œ”๐‘‡. Then w(๐œŽ) = ๐‘ข. (The graph at the top of Figure 5.4 isthe result of this construction for ๐‘ข = ๐‘Ž2๐‘Žโˆ’3๐‘Ž๐‘๐‘โˆ’1๐‘Ž๐‘โˆ’1๐‘๐‘๐‘Ž๐‘Žโˆ’1๐‘๐‘โˆ’1.) Notethat ๐‘‡ satisfies all the conditions we want except possibly (5.13). Now letus modify ๐‘‡.

If ๐‘‡ satisfies (5.13), then it is a word tree and so a Munn tree and weare finished. So suppose ๐‘‡ does not satisfy (5.13). Then by the convention(5.12), ๐‘‡ contains a subgraph

๐›ฟ๐‘˜

๐›ฟ๐‘—๐›ฟโ„“๐‘ฅ

๐‘ฅ

for some ๐‘ฅ โˆˆ ๐ด โˆช ๐ดโˆ’1.Fix such a subgraph. Modify ๐‘‡ by folding the (identically-labelled)

edges ๐›ฟ๐‘—๐›ฟโ„“ and ๐›ฟ๐‘—๐›ฟโ„“ together and merging the vertices ๐›ฟ๐‘— and ๐›ฟ๐‘˜. If wemerge ๐›ผ๐‘‡ (respectively,๐œ”๐‘‡) with some vertex, the resultingmerged vertexis still ๐›ผ๐‘‡ (respectively, ๐œ”๐‘‡). Then ๐‘‡ is still a tree and the walk ๐œŽ (which is,after all, simply a sequence of vertices) is still a spanning (๐›ผ๐‘‡, ๐œ”๐‘‡)-walkfor ๐‘‡. However, ๐‘‡ now contains one vertex fewer than before.

Repeat this process. Since each such modification reduces the numberof vertices of๐‘‡, then processmust halt with a tree๐‘‡ satisfying (5.13), whichis the desired Munn tree. (Figure 5.4 illustrates this process for the word๐‘ข = ๐‘Ž2๐‘Žโˆ’3๐‘Ž๐‘๐‘โˆ’1๐‘Ž๐‘โˆ’1๐‘๐‘๐‘Ž๐‘Žโˆ’1๐‘๐‘โˆ’1.)

We now establish four lemmata that lead up to the main result. Forbrevity, we write ๐น for FInvM(๐ด). First, we must make some more defini-tions.

Let ๐œŽ = (๐›ฝ = ๐›ฟ0,โ€ฆ , ๐›ฟ๐‘š = ๐›พ) and ๐œ = (๐›พ = ๐œ‚0,โ€ฆ , ๐œ‚๐‘› = ๐œ) be,

110 โ€ขInverse semigroups

Page 119: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐›ผ

5

7

10

1

2 13

15

๐œ”๐‘Ž

๐‘๐‘Ž

๐‘

๐‘Ž๐‘๐‘Ž

๐‘

merging 1& 9

๐›ผ1

2 5

7

9

10

13

15

๐œ”๐‘Ž

๐‘Ž

๐‘Ž

๐‘๐‘Ž

๐‘

๐‘๐‘Ž

๐‘

merging ๐›ผ& 4

๐›ผ 1

2

4

5

7

9

10

13

15

๐œ”๐‘Ž

๐‘Ž

๐‘Ž

๐‘Ž

๐‘๐‘Ž

๐‘

๐‘๐‘Ž

๐‘

merging 1& 3; 4& 6; 6& 8; 9& 11; 12& 14; 14& ๐œ”

๐›ผ1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

๐œ”

๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘ ๐‘ ๐‘Ž ๐‘

๐‘

๐‘

๐‘Ž

๐‘Ž

๐‘

๐‘

FIGURE 5.4Folding a linear graph to pro-duce a Munn tree for the word๐‘Ž2๐‘Žโˆ’3๐‘Ž๐‘๐‘โˆ’1๐‘Ž๐‘โˆ’1๐‘๐‘๐‘Ž๐‘Žโˆ’1๐‘๐‘โˆ’1 .

respectively, a (๐›ฝ, ๐›พ)- and a (๐›พ, ๐œ)-walk on ๐‘‡. Define a (๐›ฝ, ๐œ)-walk ๐œŽ๐œ by

๐œŽ๐œ = (๐›ฝ = ๐›ฟ0,โ€ฆ , ๐›ฟ๐‘šโˆ’1, ๐›พ, ๐œ‚1,โ€ฆ , ๐œ‚๐‘› = ๐œ).

Clearly one can extend this to products of three or more walks and thisproduct is associative (whenever it is defined). We also define ๐œŽโˆ’1 to bethe (๐›พ, ๐›ฝ)-walk (๐›พ = ๐›ฟ๐‘š,โ€ฆ , ๐›ฟ0 = ๐›ฝ). If ๐œŽ is a (๐›ฝ, ๐›ฝ)-walk, then ๐œŽ๐‘˜ has theobvious meaning for all ๐‘˜ โˆˆ โ„•.

L emma 5 . 1 6. Let ๐œŽ be a (๐›ฝ, ๐›พ)-walk and ๐œ a (๐›พ, ๐œ)-walk on a word tree๐‘‡. Then:a) w(๐œŽ๐œ) = w(๐œŽ)w(๐œ);b) ๐œ = ๐œŽโˆ’1 if and only if w(๐œ) = (w(๐œŽ))โˆ’1.

Proof of 5.16. Part a) and the forward implication in part b) are immediatefrom the definition. It remains to prove the reverse implication in part b).So suppose w(๐œ) = (w(๐œŽ))โˆ’1 = ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘š (where ๐‘ฅ๐‘– โˆˆ ๐ด โˆช ๐ดโˆ’1). Then ๐œŽand ๐œ both contain ๐‘š + 1 vertices, with ๐œŽ = (๐›ฝ = ๐›ฟ0,โ€ฆ , ๐›ฟ๐‘š = ๐›พ) and๐œ = (๐›พ = ๐œ‚0,โ€ฆ , ๐œ‚๐‘š = ๐œ). We will prove that ๐›ฟ๐‘šโˆ’๐‘— = ๐œ‚๐‘— by induction on ๐‘—.We already know that ๐›ฟ๐‘š = ๐›พ = ๐œ‚0; this is the base of the induction. Forthe induction step, suppose that ๐›ฟ๐‘šโˆ’๐‘— = ๐œ‚๐‘—. Now, ๐›ฟ๐‘šโˆ’๐‘—๐›ฟ๐‘šโˆ’๐‘—โˆ’1 and ๐œ‚๐‘—๐œ‚๐‘—+1both have label ๐‘ฅ๐‘—. So, since ๐‘‡ satisfies (5.13), ๐›ฟ๐‘šโˆ’๐‘—โˆ’1 = ๐œ‚๐‘—+1. This provesthe induction step. So ๐›ฟ๐‘šโˆ’๐‘— = ๐œ‚๐‘— for all ๐‘— = 1,โ€ฆ ,๐‘š. Hence ๐œ = ๐œŽโˆ’1. 5.16

Free inverse semigroups โ€ข 111

Page 120: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

The next lemma essentially says that each Munn tree is associatedwith a unique element of FInvM(๐ด):

L emma 5 . 1 7. If ๐œŽ and ๐œ are spanning (๐›ผ๐‘‡, ๐œ”๐‘‡)-walks on a Munn tree๐‘‡, then w(๐œŽ) =๐น w(๐œ).

Proof of 5.17. If |๐‘‰(๐‘‡)| = 1, then ๐œŽ and ๐œ consist of the single vertex in๐‘‰(๐‘‡) and so w(๐œŽ) = ๐œ€ = w(๐œ).

In the remaining cases, we use induction on |๐‘‰(๐‘‡)| โฉพ 2 to prove thefollowing statement: If ๐œŽ and ๐œ are spanning (๐›ฝ, ๐›พ)-walks on a word tree๐‘‡, then w(๐œŽ) =๐น w(๐œ).

For the base of the induction, let |๐‘‰(๐‘‡)| = 2. Let ๐œ be the uniquevertex in ๐‘‡ โˆ– {๐›ฝ}, let ๐œ‹ = ๐œ‹(๐›ฝ, ๐œ) and let ๐‘ฅ = w(๐œ‹). Note that ๐‘ฅ โˆˆ ๐ด โˆช๐ดโˆ’1since ๐œ‹ has length 1, because there are only two vertices in ๐‘‡. We nowconsider the cases ๐›พ = ๐›ฝ and ๐›พ = ๐œ separately:โ—† ๐›พ = ๐›ฝ. Then ๐œŽ = (๐œ‹๐œ‹โˆ’1)๐‘˜ and ๐œ = (๐œ‹๐œ‹โˆ’1)โ„“ for some ๐‘˜, โ„“ โˆˆ โ„• โˆช {0}

and so, by Lemma 5.16 and the defining relations in ๐œŒ,

w(๐œŽ) = (๐‘ฅ๐‘ฅโˆ’1)๐‘˜ =๐น ๐‘ฅ๐‘ฅโˆ’1 =๐น (๐‘ฅ๐‘ฅโˆ’1)โ„“ = w(๐œ).

โ—† ๐›พ = ๐œ. Then ๐œŽ = (๐œ‹๐œ‹โˆ’1)๐‘˜๐œ‹ and ๐œ = (๐œ‹๐œ‹โˆ’1)โ„“๐œ‹ for some ๐‘˜, โ„“ โˆˆ โ„• โˆช {0}and so, by Lemma 5.16 and the defining relations in ๐œŒ,

w(๐œŽ) = (๐‘ฅ๐‘ฅโˆ’1)๐‘˜๐‘ฅ =๐น ๐‘ฅ =๐น (๐‘ฅ๐‘ฅโˆ’1)โ„“๐‘ฅ = w(๐œ).

In either case, the result holds for |๐‘‰(๐‘‡)| = 2.For the inductive step, let ๐‘› > 2. Suppose that if ๐œŽ and ๐œ are spanning(๐›ฝ, ๐›พ) walks on a tree ๐‘‡ such that |๐‘‰(๐‘‡)| < ๐‘›, then w(๐œŽ) =๐น w(๐œ).

C l a im . If ๐œŽ0 is a (๐œ‰, ๐œ‰)-walk on a subtree ๐‘‡ of ๐‘‡ such that |๐‘‰(๐‘‡)| < ๐‘›,then (w(๐œŽ0))2 =๐น w(๐œŽ0).

Proof of Claim. Let ๐‘‡0 be the subtree of ๐‘‡ spanned by ๐œŽ0. Then we have|๐‘‰(๐‘‡0)| โฉฝ |๐‘‰(๐‘‡)| < ๐‘› and both ๐œŽ0 and ๐œŽ20 are spanning (๐œ‰, ๐œ‰)-walks on ๐‘‡0.Thus, by the induction hypothesis, w(๐œŽ0) =๐น w(๐œŽ20 ) = (w(๐œŽ0))2. Claim

Now let๐œŽ and ๐œ be spanning (๐›ฝ, ๐›พ)-walks on๐‘‡.We consider separatelythe case where ๐›ฝ is an endpoint of ๐‘‡ and the case where ๐›ฝ is not anendpoint of ๐‘‡.โ—† ๐›ฝ is an endpoint (or leaf vertex) of ๐‘‡. Let ๐œ‰ be the unique vertex of ๐‘‡

adjacent to ๐›ฝ and let ๐‘‡ be the subtree of ๐‘‡ obtained by deleting ๐›ฝ andthe edge ๐›ฝ๐œ‰. Let ๐œ‹ = ๐œ‹(๐›ฝ, ๐œ‰) and let ๐‘ฅ = w(๐œ‹). Now we consider thesub-cases ๐›ฝ = ๐›พ and ๐›ฝ โ‰  ๐›พ separately.โ–  ๐›พ = ๐›ฝ. Then for some (๐œ‰, ๐œ‰)-walks ๐œŽ1, ๐œŽ2,โ€ฆ , ๐œŽโ„Ž on ๐‘‡ and some๐‘˜๐‘– โˆˆ โ„• โˆช {0} (where ๐‘– = 0,โ€ฆ , โ„Ž),

๐œŽ = ๐œ‹(๐œ‹โˆ’1๐œ‹)๐‘˜0๐œŽ1(๐œ‹โˆ’1๐œ‹)๐‘˜1๐œŽ2โ‹ฏ๐œŽโ„Ž(๐œ‹โˆ’1๐œ‹)๐‘˜โ„Ž๐œ‹โˆ’1.

112 โ€ขInverse semigroups

Page 121: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Let ๐‘ข๐‘– = w(๐œŽ๐‘–) for ๐‘– = 1,โ€ฆ , โ„Ž. By Lemma 5.16,

w(๐œŽ) = ๐‘ฅ(๐‘ฅโˆ’1๐‘ฅ)๐‘˜0๐‘ข1(๐‘ฅโˆ’1๐‘ฅ)๐‘˜1๐‘ข2โ‹ฏ๐‘ขโ„Ž(๐‘ฅโˆ’1๐‘ฅ)๐‘˜โ„Ž๐‘ฅโˆ’1

However, ๐‘ข2๐‘– = (w(๐œŽ๐‘–))2 =๐น w(๐œŽ๐‘–) = ๐‘ข๐‘– by the Claim. That is, each๐‘ข๐‘– is idempotent. Hence, since ๐‘ฅโˆ’1๐‘ฅ is also an idempotent, andidempotents commute,

w(๐œŽ) =๐น ๐‘ฅ(๐‘ฅโˆ’1๐‘ฅ)๐‘˜0+๐‘˜1+โ‹ฏ+๐‘˜โ„Ž๐‘ข1๐‘ข2โ‹ฏ๐‘ขโ„Ž๐‘ฅโˆ’1 =๐น ๐‘ฅ๐‘ข๐‘ฅโˆ’1,

where ๐‘ข = ๐‘ข1๐‘ข2โ‹ฏ๐‘ขโ„Ž. Furthermore, we have ๐‘ข = w(๐œŽ), where๐œŽ = ๐œŽ1๐œŽ2โ‹ฏ๐œŽโ„Ž. Note that ๐œŽ is a (๐œ‰, ๐œ‰)-walk. Moreover, since ๐œŽspans ๐‘‡, it follows that ๐œŽ spans ๐‘‡.

Similarly, w(๐œ) =๐น ๐‘ฅ๐‘ฃ๐‘ฅโˆ’1, where ๐‘ฃ = w(๐œ) for some spanning(๐œ‰, ๐œ‰)-walk ๐œ of๐‘‡. But |๐‘‰(๐‘‡)| = ๐‘›โˆ’1 and so๐‘ข =๐น ๐‘ฃ by the inductivehypothesis. Hence

w(๐œŽ) =๐น ๐‘ฅ๐‘ข๐‘ฅโˆ’1 =๐น ๐‘ฅ๐‘ฃ๐‘ฅโˆ’1 =๐น w(๐œ).

โ–  ๐›พ โ‰  ๐›ฝ. Then ๐›พ is a vertex of ๐‘‡. Therefore, for some (๐œ‰, ๐œ‰)-walks๐œŽ1, ๐œŽ2,โ€ฆ , ๐œŽโ„Ž and a (๐œ‰, ๐›พ)-walk ๐œŽโˆž on ๐‘‡ and some ๐‘˜๐‘– โˆˆ โ„• โˆช {0}(where ๐‘– = 0,โ€ฆ , โ„Ž),

๐œŽ = ๐œ‹(๐œ‹โˆ’1๐œ‹)๐‘˜0๐œŽ1(๐œ‹โˆ’1๐œ‹)๐‘˜1๐œŽ2โ‹ฏ๐œŽโ„Ž(๐œ‹โˆ’1๐œ‹)๐‘˜โ„Ž๐œŽโˆž.

Let ๐‘ข๐‘– = w(๐œŽ๐‘–) for ๐‘– = 1,โ€ฆ , โ„Ž and ๐‘ขโˆž = w(๐œŽโˆž). By Lemma 5.16,

w(๐œŽ) = ๐‘ฅ(๐‘ฅโˆ’1๐‘ฅ)๐‘˜0๐‘ข1(๐‘ฅโˆ’1๐‘ฅ)๐‘˜1๐‘ข2โ‹ฏ๐‘ขโ„Ž(๐‘ฅโˆ’1๐‘ฅ)๐‘˜โ„Ž๐‘ขโˆž

By the Claim, ๐‘ข2๐‘– =๐น ๐‘ข๐‘– is idempotent for ๐‘– = 1,โ€ฆ , โ„Ž. Hence

w(๐œŽ) =๐น ๐‘ฅ(๐‘ฅโˆ’1๐‘ฅ)๐‘˜0+๐‘˜1+โ‹ฏ+๐‘˜โ„Ž๐‘ข1๐‘ข2โ‹ฏ๐‘ขโ„Ž๐‘ขโˆž = ๐‘ฅ๐‘ข,

where ๐‘ข = ๐‘ข1๐‘ข2โ‹ฏ๐‘ขโ„Ž๐‘ขโˆž. Furthermore, we have ๐‘ข = w(๐œŽ), where๐œŽ = ๐œŽ1๐œŽ2โ‹ฏ๐œŽโ„Ž๐œŽโˆž is a (๐œ‰, ๐›พ)-walk that spans ๐‘‡ since ๐œŽ spans๐‘‡. Similarly, w(๐œ) =๐น ๐‘ฅ๐‘ฃ, where ๐‘ฃ = w(๐œ) for some spanning(๐œ‰, ๐œ‰)-walk ๐œ of ๐‘‡. By the inductive hypothesis, ๐‘ข =๐น ๐‘ฃ and sow(๐œŽ) = w(๐œ).

โ—† ๐›ฝ is not an endpoint of๐‘‡.Thenwe can split๐‘‡ into two subtrees๐‘‡1 and๐‘‡2 such that |๐‘‰(๐‘‡1)| < ๐‘› and |๐‘‰(๐‘‡2)| < ๐‘›, and ๐‘‰(๐‘‡1) โˆฉ ๐‘‰(๐‘‡2) = {๐›ฝ}.Interchanging ๐‘‡1 and ๐‘‡2 if necessary, assume that ๐›พ โˆˆ ๐‘‰(๐‘‡2). Then

๐œŽ = ๐œŽ1๐œŽ2โ‹ฏ๐œŽโ„Ž,

where โ„Ž is even, the ๐œŽ1, ๐œŽ3, ๐œŽ5,โ€ฆ , ๐œŽโ„Žโˆ’1 are (๐›ฝ, ๐›ฝ)-walks (possibly trivi-al) on the subtree๐‘‡1, the ๐œŽ2, ๐œŽ4, ๐œŽ6,โ€ฆ , ๐œŽโ„Žโˆ’2 are (๐›ฝ, ๐›ฝ)-walks (possiblytrivial) on the subtree ๐‘‡2, and ๐œŽโ„Ž is a (๐›ฝ, ๐›พ)-walk (possibly trivial) on

Free inverse semigroups โ€ข 113

Page 122: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

the subtree ๐‘‡2. Let ๐‘ข๐‘– = w(๐œŽ๐‘–) for ๐‘– = 1,โ€ฆ , โ„Ž. Then for ๐‘– = 1,โ€ฆ , โ„Žโˆ’1,by the Claim we have ๐‘ข2๐‘– =๐น ๐‘ข๐‘– and so ๐‘ข๐‘– is an idempotent. Hence

w(๐œŽ) = ๐‘ข1๐‘ข2๐‘ข3๐‘ข4โ‹ฏ๐‘ขโ„Žโˆ’1๐‘ขโ„Ž=๐น ๐‘ข1๐‘ข3โ‹ฏ๐‘ขโ„Žโˆ’1๐‘ข2๐‘ข4โ‹ฏ๐‘ขโ„Ž= ๐‘ข1๐‘ข2,

where ๐‘ข1 = w(๐œŽ1) and ๐‘ข2 = w(๐œŽ2), and ๐œŽ๐‘˜ = ๐œŽ1๐œŽ3โ‹ฏ๐œŽโ„Žโˆ’1 and ๐œŽ2 =๐œŽ2๐œŽ4โ‹ฏ๐œŽโ„Ž. Note that ๐œŽ1 is a (๐›ฝ, ๐›ฝ)-walk on ๐‘‡1 and ๐œŽ2 is a (๐›ฝ, ๐›พ)-walkon ๐‘‡2. Since ๐œŽ spans ๐‘‡, it follows that ๐œŽ1 spans ๐‘‡1 and ๐œŽ2 spans ๐‘‡2.

Similarly, we can show that w(๐œ) =๐น ๐‘ฃ1๐‘ฃ2, where ๐‘ฃ1 = w(๐œ1) and๐‘ฃ1 = w(๐œ1) for some spanning (๐›ฝ, ๐›ฝ)-walk ๐œ1 of ๐‘‡1 and spanning(๐›ฝ, ๐›พ)-walk ๐œ2 of ๐‘‡2, respectively. Thus, by the inductive hypothesis,w(๐œŽ1) =๐น w(๐œ1) andw(๐œŽ2) =๐น w(๐œ2). Hencew(๐œŽ) = ๐‘ข1๐‘ข2 =๐น ๐‘ฃ1๐‘ฃ2 =๐นw(๐œ).

This completes the inductive step and so the result holds. Claim

Now we want to show each element of FInvM(๐ด) is associated to auniqueMunn tree. As a first step, the next lemma shows that each elementof (๐ด โˆช ๐ดโˆ’1)โˆ— is associated to a unique Munn tree.

L emma 5 . 1 8. Let ๐‘‡ and ๐‘‡ be Munn trees. Let ๐œŽ be a spanning (๐›ผ๐‘‡, ๐œ”๐‘‡)-walk in ๐‘‡ and ๐œ a spanning (๐›ผ๐‘‡, ๐œ”๐‘‡)-walk in ๐‘‡ such that w(๐œŽ) = w(๐œ).Then ๐‘‡ and ๐‘‡ are isomorphic.

Proof of 5.18. Let ๐‘ฅ1๐‘ฅ2โ‹ฏ๐‘ฅ๐‘š = w(๐œŽ) = w(๐œ) and suppose

๐œŽ = (๐›ผ๐‘‡ = ๐›ฟ0,โ€ฆ , ๐›ฟ๐‘š = ๐œ”๐‘‡) and ๐œ = (๐›ผ๐‘‡ = ๐œ‚0,โ€ฆ , ๐œ‚๐‘š = ๐œ”๐‘‡),

where ๐‘ฅ๐‘– is the label on ๐›ฟ๐‘–โˆ’1๐›ฟ๐‘– and ๐œ‚๐‘–โˆ’1๐œ‚๐‘– for ๐‘– = 1,โ€ฆ ,๐‘š. Let ๐‘‡๐‘– and ๐‘‡๐‘– bethe subtrees of ๐‘‡ and ๐‘‡ spanned by the walks (๐›ฟ0,โ€ฆ , ๐›ฟ๐‘–) and (๐œ‚0,โ€ฆ , ๐œ‚๐‘–),respectively, for ๐‘– = 0,โ€ฆ ,๐‘š. Notice that ๐‘‡ = ๐‘‡๐‘š and ๐‘‡ = ๐‘‡๐‘š since ๐œŽ and๐œ span ๐‘‡ and ๐‘‡, respectively.

Clearly the map ๐œ‘0 โˆถ ๐‘‡0 โ†’ ๐‘‡0 defined by ๐›ฟ0๐œ‘0 = ๐œ‚0 is trivially anisomorphism of word trees.

Suppose that we have an isomorphism ๐œ‘๐‘–โˆ’1 โˆถ ๐‘‡๐‘–โˆ’1 โ†’ ๐‘‡๐‘–โˆ’1 such that๐›ฟ๐‘—๐œ‘๐‘–โˆ’1 = ๐œ‚๐‘— for ๐‘— = 0,โ€ฆ , ๐‘– โˆ’ 1. We show that this can be extended toan isomorphism ๐œ‘๐‘– โˆถ ๐‘‡๐‘– โ†’ ๐‘‡๐‘–. We consider the cases ๐›ฟ๐‘– โˆˆ ๐‘‰(๐‘‡๐‘–โˆ’1) and๐›ฟ๐‘– โˆ‰ ๐‘‰(๐‘‡๐‘–โˆ’1) separately.โ—† ๐›ฟ๐‘– โˆˆ ๐‘‰(๐‘‡๐‘–โˆ’1). Then ๐‘‡๐‘– = ๐‘‡๐‘–โˆ’1. Since ๐›ฟ๐‘– is adjacent to ๐›ฟ๐‘–โˆ’1 and ๐›ฟ๐‘–โˆ’1๐›ฟ๐‘–

has label ๐‘ฅ๐‘–, there exists ๐œ โˆˆ ๐‘‰(๐‘‡๐‘–โˆ’1) such that ๐œ = ๐›ฟ๐‘–๐œ‘๐‘–โˆ’1 and ๐œ isadjacent to ๐œ‚๐‘–โˆ’1 with the edge ๐œ‚๐‘–โˆ’1๐œ having label ๐‘ฅ๐‘–. However, ๐œ‚๐‘– isadjacent to ๐œ‚๐‘–โˆ’1 in ๐‘‡ and ๐œ‚๐‘–โˆ’1๐œ‚๐‘– has label ๐‘ฅ๐‘–. Since ๐‘‡ satisfies (5.13),๐œ‚๐‘– = ๐œ = ๐›ฟ๐‘–๐œ‘๐‘–โˆ’1. Thus ๐‘‡๐‘– = ๐‘‡๐‘–โˆ’1. So define ๐œ‘๐‘– โˆถ ๐‘‡๐‘– โ†’ ๐‘‡๐‘– by ๐œ‘๐‘– = ๐œ‘๐‘–โˆ’1;then ๐›ฟ๐‘—๐œ‘๐‘– = ๐œ‚๐‘— for ๐‘— = 0,โ€ฆ , ๐‘– and so ๐œ‘๐‘– is an isomorphism of wordtrees.

114 โ€ขInverse semigroups

Page 123: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

โ—† ๐›ฟ๐‘– โˆ‰ ๐‘‰(๐‘‡๐‘–โˆ’1). Suppose with the aim of obtaining a contradiction that๐œ‚๐‘– โˆˆ ๐‘‡๐‘–โˆ’1. Since ๐œ‚๐‘– is adjacent to ๐œ‚๐‘–โˆ’1 and ๐œ‚๐‘–โˆ’1๐œ‚๐‘– has label๐‘ฅ๐‘–, there exists๐œ‰ โˆˆ ๐‘‰(๐‘‡๐‘–โˆ’1) such that ๐œ‰ = ๐œ‚๐‘–๐œ‘โˆ’1๐‘–โˆ’1 and ๐œ‰ is adjacent to ๐›ฟ๐‘–โˆ’1 with theedge ๐›ฟ๐‘–โˆ’1๐œ‰ having label ๐‘ฅ๐‘–. Since ๐›ฟ๐‘– is adjacent to ๐›ฟ๐‘–โˆ’1 in ๐‘‡ and ๐›ฟ๐‘–โˆ’1๐›ฟ๐‘–has label ๐‘ฅ๐‘–, and ๐‘‡ satisfies (5.13), we have ๐›ฟ๐‘– = ๐œ‰ โˆˆ (๐‘‰(๐‘‡๐‘–โˆ’1))๐œ‘โˆ’1๐‘–โˆ’1 =๐‘‰(๐‘‡๐‘–โˆ’1), which is a contradiction. Hence ๐œ‚๐‘– โˆ‰ ๐‘‡๐‘–โˆ’1.

Thus we can extend ๐œ‘๐‘–โˆ’1 to an isomorphism of word trees ๐œ‘๐‘– โˆถ๐‘‡๐‘– โ†’ ๐‘‡๐‘– by defining ๐›ฟ๐‘–๐œ‘๐‘– = ๐œ‚๐‘–.

By induction on ๐‘–, there exists an isomorphism ๐œ‘๐‘› โˆถ ๐‘‡๐‘› โ†’ ๐‘‡๐‘›. Note that๐›ผ๐‘‡๐œ‘๐‘› = ๐›ฟ0๐œ‘๐‘› = ๐œ‚0๐œ‘๐‘› = ๐›ผ๐‘‡๐œ‘๐‘› and similarly ๐œ”๐‘‡๐œ‘๐‘› = ๐œ”๐‘‡๐œ‘๐‘›. So ๐œ‘๐‘› is anisomorphism of Munn trees. 5.18

The next result strengthens the previous one, showing that each ele-ment of FInvM(๐ด) is associated to a unique Munn tree.

L emma 5 . 1 9. Let ๐‘‡ and ๐‘‡ be Munn trees. Let ๐œŽ be a spanning (๐›ผ๐‘‡, ๐œ”๐‘‡)-walk in ๐‘‡ and ๐œ a spanning (๐›ผ๐‘‡, ๐œ”๐‘‡)-walk in ๐‘‡ such that w(๐œŽ) =๐น w(๐œ).Then ๐‘‡ and ๐‘‡ are isomorphic.

Proof of 5.19. It is sufficient to prove the result when w(๐œŽ) and w(๐œ) differby a single elementary ๐œŒ-transition.โ—† w(๐œŽ) = ๐‘๐‘ข๐‘ž and w(๐œ) = ๐‘๐‘ข๐‘ขโˆ’1๐‘ข๐‘ž for ๐‘, ๐‘ข, ๐‘ž โˆˆ (๐ด โˆช ๐ดโˆ’1)โˆ— with ๐‘ข โ‰  ๐œ€.

So there exist (๐›ผ๐‘‡, ๐›ฝ)-, (๐›ฝ, ๐›พ)-, and (๐›พ, ๐œ”๐‘‡)-walks ๐œŽ1, ๐œŽ2, and ๐œŽ3 on ๐‘‡such that ๐œŽ = ๐œŽ1๐œŽ2๐œŽ3, where w(๐œŽ1) = ๐‘, w(๐œŽ2) = ๐‘ข, and w(๐œŽ3) = ๐‘ž.Let ๐œ be the (๐›ผ๐‘‡, ๐œ”๐‘‡)-walk ๐œŽ1๐œŽ2๐œŽโˆ’12 ๐œŽ2๐œŽ3. Since ๐œŽ spans ๐‘‡, so does ๐œ.By Lemma 5.16, w(๐œ) = ๐‘๐‘ข๐‘ขโˆ’1๐‘ข๐‘ž = w(๐œ). Therefore, by Lemma 5.18,the Munn trees ๐‘‡ and ๐‘‡ are isomorphic.

โ—† w(๐œŽ) = ๐‘๐‘ข๐‘ขโˆ’1๐‘ฃ๐‘ฃโˆ’1๐‘ž andw(๐œ) = ๐‘๐‘ฃ๐‘ฃโˆ’1๐‘ข๐‘ขโˆ’1 for๐‘, ๐‘ข, ๐‘ฃ, ๐‘ž โˆˆ (๐ดโˆช๐ดโˆ’1)โˆ—with ๐‘ข, ๐‘ฃ โ‰  ๐œ€. So there exist (๐›ผ๐‘‡, ๐›ฝ)-, (๐›ฝ, ๐›พ)-, (๐›ฝ, ๐›ฟ)- and (๐›ฝ, ๐œ”๐‘‡)-walks๐œŽ1, ๐œŽ2, ๐œŽ3, and ๐œŽ4 on ๐‘‡ such that ๐œŽ = ๐œŽ1๐œŽ2๐œŽโˆ’12 ๐œŽ3๐œŽโˆ’13 ๐œŽ4, wherew(๐œŽ1) =๐‘, w(๐œŽ2) = ๐‘ข, w(๐œŽ3) = ๐‘ฃ and w(๐œŽ4) = ๐‘ž. Let ๐œ be the (๐›ผ๐‘‡, ๐œ”๐‘‡)-walk๐œŽ1๐œŽ3๐œŽโˆ’13 ๐œŽ2๐œŽโˆ’12 ๐œŽ4. Since ๐œŽ spans ๐‘‡, so does ๐œ. By Lemma 5.16, w(๐œ) =๐‘๐‘ฃ๐‘ฃโˆ’1๐‘ข๐‘ขโˆ’1๐‘ž = w(๐œ). Therefore, by Lemma 5.18, the Munn trees ๐‘‡ and๐‘‡ are isomorphic. 5.19

Th eorem 5 . 2 0. Let ๐‘‡ and ๐‘‡ be Munn trees, and let ๐œŽ be a spanning Equal in FInvM(๐ด) โ‡”isomorphic Munn trees(๐›ผ๐‘‡, ๐œ”๐‘‡)-walk on ๐‘‡, and let ๐œ be a spanning (๐›ผ๐‘‡, ๐œ”๐‘‡) walk on ๐‘‡. Then

w(๐œŽ) =๐น w(๐œ) if and only if ๐‘‡ and ๐‘‡ are isomorphic.

Proof of 5.20. If ๐‘ค(๐œŽ) = w(๐œ), then ๐‘‡ and ๐‘‡ are isomorphic by Lemma5.19.

On the other hand, suppose ๐œ‘ โˆถ ๐‘‡ โ†’ ๐‘‡ is an isomorphism. Then ๐œ‘maps ๐œŽ to a spanning (๐›ผ๐‘‡, ๐œ”๐‘‡)-walk ๐œŽ of ๐‘‡. Note that w(๐œŽ) = w(๐œŽ). Thenby Lemma 5.17, w(๐œŽ) = w(๐œ) and so w(๐œŽ) = w(๐œ). 5.20

We can use Munn trees to compute multiplications in FInvM(๐ด).Suppose we have two Munn trees ๐‘‡1 and ๐‘‡2. Pick a spanning (๐›ผ๐‘‡1 , ๐œ”๐‘‡1 )-walk ๐œŽ1 on๐‘‡1 and a spanning (๐›ผ๐‘‡2 , ๐œ”๐‘‡2 )-walk ๐œŽ1 with elements. Merge the

Free inverse semigroups โ€ข 115

Page 124: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

FIGURE 5.5Multiplying using Munntrees: from Munn trees for๐‘Žโˆ’1๐‘Ž๐‘๐‘โˆ’1๐‘Ž2๐‘Žโˆ’1๐‘โˆ’1๐‘ and๐‘๐‘Ž๐‘Žโˆ’1๐‘๐‘โˆ’1๐‘โˆ’1๐‘๐‘Žโˆ’1๐‘Ž๐‘, wecompute a Munn tree for theproduct by merging the โ€˜๐œ”โ€™of the first tree with the โ€˜๐›ผโ€™ ofthe second and then folding

edges.

๐›ผ๐‘‡1

1

2

4

๐œ”๐‘‡1

3

7

๐›ผ๐‘‡2

8

6

๐œ”๐‘‡2

5

๐‘Ž

๐‘๐‘Ž

๐‘

๐‘Ž ๐‘Ž

๐‘

๐‘๐‘Ž

๐‘

2

๐›ผ๐‘‡

1

4 7

โˆž

3 8

6

๐œ”๐‘‡

5

๐‘Ž

๐‘๐‘Ž๐‘๐‘

๐‘Ž๐‘Ž๐‘๐‘Ž

๐‘๐›ผ๐‘‡

1

2

4

โˆž

3 5

6

๐œ”๐‘‡๐‘Ž

๐‘๐‘Ž

๐‘

๐‘Ž๐‘๐‘Ž

๐‘

merging๐œ”๐‘‡1 & ๐›ผ๐‘‡2

mer

ging

๐›ผ&8;4&7

the vertices ๐œ”๐‘‡1 and ๐›ผ๐‘‡2 to obtain a tree ๐‘‡, and let ๐›ผ๐‘‡ = ๐›ผ๐‘‡1 and ๐œ”๐‘‡ = ๐œ”๐‘‡2 .Let ๐œŽ = ๐œŽ1๐œŽ2. Then ๐œŽ is a spanning (๐›ผ, ๐œ”)-walk on ๐‘‡. It remains to foldedges together until (5.13) is satisfied, as we did to construct Munn treesinitially. Figure 5.5 illustrates the process.

Exercises

[See pages 225โ€“234 for the solutions.]โœด5.1 Let ๐‘‹ = {1, 2}. Find a subsemigroup of I๐‘‹ that contains only two

elements and which is not an inverse subsemigroup.5.2 Let ๐บ be a group and let ๐‘† be the set of isomorphisms between sub-

groups of ๐บ. Prove that ๐‘† is an inverse subsemigroup of I๐บ.5.3 Let๐‘‹ be a set and let ๐œŽ, ๐œ โˆˆ I๐‘‹. Prove the following:

a) ๐œŽ L ๐œ โ‡” im๐œŽ = im ๐œ;b) ๐œŽ R ๐œ โ‡” dom๐œŽ = dom ๐œ;c) ๐œŽ D ๐œ โ‡” ๐œŽ J ๐œ โ‡” |dom๐œŽ| = |dom ๐œ|.

โœด5.4 Let๐‘‹ = {1,โ€ฆ , ๐‘›} with ๐‘› โฉพ 3. Let ๐œ = (1 2) and ๐œ = (1 2 โ€ฆ ๐‘› โˆ’ 1 ๐‘›).As remarked in Exercise 1.11, from elementary group theory, we knowthat S๐‘‹ = โŸจ๐œ, ๐œโŸฉ. For ๐‘˜ = 1,โ€ฆ , ๐‘›, let

๐ฝ๐‘˜ = { ๐œŽ โˆˆ I๐‘‹ โˆถ |dom ๐œ| = ๐‘˜ }.

(Notice that ๐ฝ๐‘› = S๐‘‹.) Fix an element ๐›ฝ of ๐ฝ๐‘›โˆ’1.a) Let ๐›พ โˆˆ ๐ฝ๐‘›โˆ’1 and let ๐œ‹ โˆถ dom ๐›พ โ†’ dom๐›ฝ be a bijection. Prove

that there exists ๐œŒ โˆˆ S๐‘‹ such that ๐œ‹๐›ฝ๐œŒ = ๐›พ. Deduce that ๐ฝ๐‘›โˆ’1 โŠ†โŸจ๐œ, ๐œ, ๐›ฝโŸฉ.

b) Prove that ๐ฝ๐‘˜ โŠ† ๐ฝ๐‘˜+1๐ฝ๐‘›โˆ’1 for ๐‘˜ = 0, 1,โ€ฆ , ๐‘› โˆ’ 2. Deduce thatI๐‘‹ = โŸจ๐œ, ๐œ, ๐›ฝโŸฉ.

116 โ€ขInverse semigroups

Page 125: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

5.5 Let๐‘‹ be an infinite set.a) Let ๐œ โˆˆ I๐‘‹ be such that dom ๐œ = ๐‘‹ and im ๐œ โŠŠ ๐‘‹. (So ๐œ is a

bijection from๐‘‹ to a proper subset of itself.) Prove that โŸจ๐œ, ๐œโˆ’1โŸฉis isomorphic to the bicyclic monoid.

b) Let ๐ผ be an abstract index set with |๐ผ| โฉพ 2 and let { ๐œ๐‘– โˆถ ๐‘– โˆˆ ๐ผ } โŠ† I๐‘‹be a collection of partial bijections such that dom ๐œ๐‘– = ๐‘‹ and allthe images im ๐œ๐‘– are disjoint. (So the ๐œ๐‘– are bijections from ๐‘‹ todisjoint subsets of๐‘‹.) Prove that โŸจ{ ๐œ๐‘–, ๐œโˆ’1๐‘– โˆถ ๐‘– โˆˆ ๐ผ }โŸฉ is an inversemonoid isomorphic to the monoid

MonโŸจ๐‘ง, ๐‘๐‘–, ๐‘๐‘– for ๐‘– โˆˆ ๐ผ โˆฃ (๐‘๐‘–๐‘๐‘–, ๐œ€), (๐‘๐‘–๐‘๐‘—, ๐‘ง),(๐‘๐‘–๐‘ง, ๐‘ง), (๐‘ง๐‘๐‘–, ๐‘ง),(๐‘๐‘–๐‘ง, ๐‘ง), (๐‘ง๐‘๐‘–, ๐‘ง), (๐‘ง๐‘ง, ๐‘ง)for ๐‘–, ๐‘— โˆˆ ๐ผ with ๐‘– โ‰  ๐‘—โŸฉ.

}}}}}}}}}}}

(5.14)

[These monoids are called the polycyclic monoids.] Polycyclic monoid

โœด5.6 A semigroup is orthodox if it is regular and its set of idempotents form Orthodoxa subsemigroup.a) Prove that a Clifford semigroup is orthodox.b) Prove that a semigroup is completely simple and orthodox if and

only if it is isomorphic to the direct product of a rectangular bandand a group.

โœด5.7 Prove that a completely 0-simple semigroup is inverse if and only if itis isomorphic to M0[๐บ; ๐ผ, ๐ผ; ๐‘ƒ] where ๐‘ƒ is a diagonal ๐ผ ร— ๐ผmatrix.

โœด5.8 Let ๐‘† be a cancellative semigroup. An element ๐œ of I๐‘†1 is a partial right Partial right translationtranslation if dom ๐œ is a left ideal of ๐‘†1 and for any ๐‘ฅ โˆˆ dom ๐œ and๐‘ฆ โˆˆ ๐‘†1, we have (๐‘ฆ๐‘ฅ)๐œ = ๐‘ฆ(๐‘ฅ๐œ).a) Prove that if ๐œ โˆˆ I๐‘†1 is a partial right translation, then im ๐œ is a left

ideal of ๐‘†1.b) Note that for each๐‘ฅ โˆˆ ๐‘†, themap ๐œŒ๐‘ฅ โˆถ ๐‘†1 โ†’ ๐‘†1 (where ๐‘ก๐œŒ๐‘ฅ = ๐‘ก๐‘ฅ) is

injective and so lies in I๐‘†1 . Let ๐œ‘ โˆถ ๐‘† โ†’ I๐‘† be the homomorphismdefined by ๐‘ฅ โ†ฆ ๐œŒ๐‘ฅ. Let ๐‘‡ be the inverse subsemigroup of I๐‘†1generated by im๐œ‘. Prove that the set of partial right translationsin I๐‘†1 is an inverse subsemigroup of of I๐‘†1 and contains ๐‘‡.

โœด5.9 Prove that the bicyclic monoid ๐ต = MonโŸจ๐‘, ๐‘ | (๐‘๐‘, ๐œ€)โŸฉ is an inversesemigroup. [Hint: use the characterization of idempotents in Exercise2.10(a).]

โœด5.10 Let ๐‘† be an inverse semigroup, and let ๐‘ฅ โˆˆ ๐‘† and ๐‘’ โˆˆ ๐ธ(๐‘†). Prove that๐‘ฅ โ‰ผ ๐‘’ โ‡’ ๐‘ฅ โˆˆ ๐ธ(๐‘†).

5.11 Prove that the FInvM({๐‘Ž}) is isomorphic to the set

๐พ = { (๐‘, ๐‘ž, ๐‘Ÿ) โˆถ ๐‘, ๐‘ž, ๐‘Ÿ โˆˆ โ„ค, ๐‘ โฉฝ 0, ๐‘Ÿ โฉพ 0, ๐‘ โฉฝ ๐‘ž โฉฝ ๐‘Ÿ }

Exercises โ€ข 117

Page 126: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

with the operation

(๐‘, ๐‘ž, ๐‘Ÿ)(๐‘โ€ฒ, ๐‘žโ€ฒ, ๐‘Ÿโ€ฒ) = (min{๐‘, ๐‘โ€ฒ + ๐‘ž}, ๐‘ž + ๐‘žโ€ฒ,max{๐‘Ÿ, ๐‘ž + ๐‘Ÿโ€ฒ}).

[Hint: each element of FInvM({๐‘Ž}) corresponds to a Munn tree ๐‘‡ ofthe form

๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž๐›ผ๐‘‡ ๐œ”๐‘‡

View vertices along this path as having an โ€˜๐‘ฅ-coordinateโ€™ relative to๐›ผ๐‘‡. Let ๐‘, ๐‘ž, and ๐‘Ÿ be, respectively, the ๐‘ฅ-coordinates of the leftmostendpoint, the vertex ๐œ”๐‘‡, and the rightmost endpoint.]

5.12 Using Exercise 5.11 and the map

๐œ‘ โˆถ ๐พ โ†’ ๐ต ร— ๐ต; (๐‘, ๐‘ž, ๐‘Ÿ)๐œ‘ = (๐‘โˆ’๐‘๐‘โˆ’๐‘+๐‘ž, ๐‘๐‘Ÿ๐‘โˆ’๐‘ž+๐‘Ÿ).

prove that FInvM({๐‘Ž}) is a subdirect product of two copies of thebicyclic monoid.

5.13 Let๐‘€ be a monoid presented by MonโŸจ๐ด | ๐œŒโŸฉ. Let ๐œ‘ โˆถ ๐‘€ โ†’ ๐‘€ be anBruckโ€“Reilly extensionsendomorphism. The Bruckโ€“Reilly extension of๐‘€ with respect to ๐œ‘,denoted BR(๐‘€, ๐œ‘), is the monoid presented by

MonโŸจ๐ด โˆช {๐‘, ๐‘} โˆฃ๐œŒ โˆช { (๐‘๐‘, ๐œ€), (๐‘๐‘Ž, (๐‘Ž๐œ‘)๐‘), (๐‘Ž๐‘, ๐‘(๐‘Ž๐œ‘)) โˆถ ๐‘Ž โˆˆ ๐ด }โŸฉ,

} (5.15)

where we view ๐‘Ž๐œ‘ in the defining relations as some word in ๐ดโˆ— rep-resenting that element of๐‘€.a) Prove that every element of BR(๐‘€๐œ‘) is represented by a word of

the form ๐‘๐›พ๐‘ค๐‘๐›ฝ, where ๐›พ, ๐›ฝ โˆˆ โ„• โˆช {0} and ๐‘ค โˆˆ ๐ดโˆ—.b) i) Prove that if ๐›พ = ๐›พโ€ฒ, and ๐›ฝ = ๐›ฝโ€ฒ, and ๐‘ค =๐‘€ ๐‘คโ€ฒ, then we have๐‘๐›พ๐‘ค๐‘๐›ฝ =BR(๐‘€,๐œ‘) ๐‘๐›พโ€ฒ๐‘คโ€ฒ๐‘๐›ฝโ€ฒ.

ii) Let

๐‘‹ = (โ„• โˆช {0}) ร— ๐‘€ ร— (โ„• โˆช {0})= { (๐›พ, ๐‘ค, ๐›ฝ) โˆถ ๐›พ, ๐›ฝ โˆˆ โ„• โˆช {0}, ๐‘ค โˆˆ ๐‘€ }.

Define

(๐›พ, ๐‘ค, ๐›ฝ)๐œ๐‘Ž = (๐›พ, ๐‘ค(๐‘Ž๐œ‘๐›ฝ), ๐›ฝ) for each ๐‘Ž โˆˆ ๐ด;(๐›พ, ๐‘ค, ๐›ฝ)๐œ๐‘ = (๐›พ, ๐‘ค, ๐›ฝ + 1);

(๐›พ, ๐‘ค, ๐›ฝ)๐œ๐‘ = {(๐›พ + 1, ๐‘ค๐œ‘, 0) if ๐›ฝ = 0,(๐›พ, ๐‘ค, ๐›ฝ โˆ’ 1) if ๐›ฝ > 0.

Prove that the map ๐œ“ โˆถ ๐ด โ†’ T๐‘‹ given by ๐‘ฅ๐œ“ = ๐œ๐‘ฅ for all๐‘ฅ โˆˆ ๐ด โˆช {๐‘, ๐‘} extends to a well-defined homomorphism ๐œ“ โˆถ

118 โ€ขInverse semigroups

Page 127: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

BR(๐‘€, ๐œ‘) โ†’ T๐‘‹. Prove that the homomorphism๐œ“ is injective.Deduce that if ๐‘๐›พ๐‘ค๐‘๐›ฝ =BR(๐‘€,๐œ‘) ๐‘๐›พโ€ฒ๐‘คโ€ฒ๐‘๐›ฝโ€ฒ, then ๐›พ = ๐›พโ€ฒ, ๐›ฝ = ๐›ฝโ€ฒ,and ๐‘ค =๐‘€ ๐‘คโ€ฒ.

[Note that, since๐œ“ is injective,BR(๐‘€, ๐œ‘) is isomorphic to aparticular subsemigroup of T๐‘‹. Since this subsemigroup is in-dependent of the choice of the presentationMonโŸจ๐ด | ๐œŒโŸฉ for๐‘€,the Bruckโ€“Reilly extension BR(๐‘€, ๐œ‘) is also is independentof the choice of the presentation for๐‘€.]

c) Deduce that๐‘€ embeds into BR(๐‘€, ๐œ‘).5.14 Let๐‘€ be a monoid and let ๐œ‘ โˆถ ๐‘€ โ†’ ๐‘€ be defined by ๐‘ฅ๐œ‘ = 1 for

all ๐‘ฅ โˆˆ ๐‘€. Prove that BR(๐‘€, ๐œ‘) is simple. [Thus, as a consequenceof Exercise 5.13, every semigroup ๐‘† embeds into a simple semigroupBR(๐‘†1, ๐œ‘).]

Notes

The exposition of the Vagnerโ€“Preston representation theoremis based on Clifford & Preston, The Algebraic Theory of Semigroups, ยง 1.9 andHowie, Fundamentals of Semigroup Theory, ยง 5.1. The discussion of Cliffordsemigroups is based on Howie, Fundamentals of Semigroup Theory, ยงยง 4.1โ€“2.โ—† The introduction of free inverse semigroups follows Lawson, Inverse Semi-groups, ch. 6; the explanation of Munn trees follows closely Munn, โ€˜Free InverseSemigroupsโ€™ (which is a model of clarity) except that we consider free inversemonoids rather than free inverse semigroups. โ—† See Clifford & Preston, TheAlgebraic Theory of Semigroups, p. 28 for the quotation in the introduction. โ—†The Vagnerโ€“Preston theorem (Theorem 5.8), and much of the basic theory of in-verse semigroups, is found in Vagner, โ€˜Generalized groupsโ€™ and Preston, โ€˜Inversesemi-groups with minimal right idealsโ€™; Preston, โ€˜Representations of inversesemi-groupsโ€™. The structure theorem for Clifford semigroups is due to Clifford,โ€˜Semigroups admitting relative inversesโ€™, though the terminology is later. โ—† Forfurther reading, the standard text on inverse semigroups remains Petrich, In-verse Semigroups, but Lawson, Inverse Semigroups provides a geometric andtopological perspective.

โ€ข

Notes โ€ข 119

Page 128: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

120 โ€ข

Page 129: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

6Commutative semigroups

โ€˜ The two operations, suicide and going to MIT, didnโ€™t commute โ€™โ€” Murray Gell-Mann,

โ€˜The Making of a Physicistโ€™. In: Edge.org.

โ€ข Abelian groups (that is, commutative groups) have asimpler structure and are better understood than general groups, espe-cially in the finitely generated case. It is therefore unsurprising that com-mutative semigroups also have a well-developed theory. However, thereare still many more commutative semigroups than abelian groups. Forinstance, there are three essentially different (non-isomorphic) abeliangroups with 8 elements (the cyclic group ๐ถ8 and the direct products๐ถ4 ร— ๐ถ2 and ๐ถ2 ร— ๐ถ2 ร— ๐ถ2), but there are 221 805 non-isomorphic com-mutative semigroups with 8 elements.

A large theory of commutative semigroups has developed, and wewill sample only two areas: first, in structure theory, how cancellativecommutative semigroups are group-embeddable; second, free commutat-ive semigroups and their congruences, leading to the result that finitelygenerated semigroups are always finitely presented.

Cancellativecommutative semigroups

Example 2.14 showed that a cancellative semigroup is notnecessarily group-embeddable. However, in this section we will see thata cancellative commutative semigroup is always group-embeddable. Themethod used to construct the group from the cancellative semigroupis essentially the same as that used to construct a field from an integraldomain (for example, to construct (โ„š, +, โ‹… ) from (โ„ค, +, โ‹… )).

T h eorem 6 . 1. Let ๐‘† be a cancellative commutative semigroup. Then Cancellative commutativesemigroups aregroup-embeddable.

๐‘† embeds into a group ๐บ via a monomorphism ๐œ‘ โˆถ ๐‘† โ†’ ๐บ such that๐บ = (๐‘†๐œ‘)(๐‘†๐œ‘)โˆ’1 = { ๐‘ฅ๐‘ฆโˆ’1 โˆถ ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† }.

Proof of 6.1. First of all, note that ๐‘† embeds into ๐‘†1 and that if ๐บ = ๐‘†๐‘†โˆ’1,then ๐บ = ๐‘†1(๐‘†1)โˆ’1, and so we assume without loss of generality that ๐‘† is amonoid.

โ€ข 121

Page 130: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Define a relation ๐œŽ on ๐‘† ร— ๐‘† by (๐‘ฅ, ๐‘ฆ) ๐œŽ (๐‘ง, ๐‘ก) โ‡” ๐‘ฅ๐‘ก = ๐‘ง๐‘ฆ. It is trivialto prove ๐œŽ is reflexive and symmetric since ๐‘† is commutative, and ๐œŽ istransitive since

(๐‘ฅ, ๐‘ฆ) ๐œŽ (๐‘ง, ๐‘ก) โˆง (๐‘ง, ๐‘ก) ๐œŽ (๐‘, ๐‘ž)โ‡’ ๐‘ฅ๐‘ก = ๐‘ง๐‘ฆ โˆง ๐‘ง๐‘ž = ๐‘๐‘กโ‡’ ๐‘ฅ๐‘ก๐‘ง๐‘ž = ๐‘ง๐‘ฆ๐‘๐‘กโ‡’ ๐‘ฅ๐‘ž = ๐‘๐‘ฆ [since ๐‘† is cancellative and commutative]โ‡’ (๐‘ฅ, ๐‘ฆ) ๐œŽ (๐‘, ๐‘ž).

Thus ๐œŽ is an equivalence relation. Furthermore,

(๐‘ฅ, ๐‘ฆ) ๐œŽ (๐‘ง, ๐‘ก) โˆง (๐‘ฅโ€ฒ, ๐‘ฆโ€ฒ) ๐œŽ (๐‘งโ€ฒ, ๐‘กโ€ฒ)โ‡’ ๐‘ฅ๐‘ก = ๐‘ง๐‘ฆ โˆง ๐‘ฅโ€ฒ๐‘กโ€ฒ = ๐‘งโ€ฒ๐‘ฆโ€ฒโ‡’ ๐‘ฅ๐‘ก๐‘ฅโ€ฒ๐‘กโ€ฒ = ๐‘ง๐‘ฆ๐‘งโ€ฒ๐‘ฆโ€ฒโ‡’ ๐‘ฅ๐‘ฅโ€ฒ๐‘ก๐‘กโ€ฒ = ๐‘ง๐‘งโ€ฒ๐‘ฆ๐‘ฆโ€ฒ [since ๐‘† is commutative]โ‡’ (๐‘ฅ๐‘ฅโ€ฒ, ๐‘ฆ๐‘ฆโ€ฒ) ๐œŽ (๐‘ง๐‘งโ€ฒ, ๐‘ก๐‘กโ€ฒ).

Thus ๐œŽ is a congruence.Let ๐บ = (๐‘† ร— ๐‘†)/๐œŽ. Let [(๐‘ฅ, ๐‘ฆ)]๐œŽ โˆˆ ๐บ; then (1๐‘†๐‘ฅ)๐‘ฆ = (1๐‘†๐‘ฆ)๐‘ฅ since ๐‘† is

commutative. Hence (1๐‘†๐‘ฅ, 1๐‘†๐‘ฆ) ๐œŽ (๐‘ฅ, ๐‘ฆ) and thus [(1๐‘†, 1๐‘†)]๐œŽ[(๐‘ฅ, ๐‘ฆ)]๐œŽ =[(1๐‘†๐‘ฅ, 1๐‘†๐‘ฆ)]๐œŽ = [(๐‘ฅ, ๐‘ฆ)]๐œŽ. Similarly, [(๐‘ฅ, ๐‘ฆ)]๐œŽ[(1๐‘†, 1๐‘†)]๐œŽ = [(๐‘ฅ, ๐‘ฆ)]๐œŽ. So ๐บis a monoid with identity [(1๐‘†, 1๐‘†)]๐œŽ.

Furthermore, 1๐‘†(๐‘ฅ๐‘ฆ) = (๐‘ฆ๐‘ฅ)1๐‘†, since ๐‘† is commutative, and therefore(๐‘ฅ๐‘ฆ, ๐‘ฆ๐‘ฅ) ๐œŽ (1๐‘†, 1๐‘†). Hence [(๐‘ฅ, ๐‘ฆ)]๐œŽ[(๐‘ฆ, ๐‘ฅ)]๐œŽ = [(๐‘ฅ๐‘ฆ, ๐‘ฆ๐‘ฅ)]๐œŽ = [(1๐‘†, 1๐‘†)]๐œŽand similarly [(๐‘ฆ, ๐‘ฅ)]๐œŽ[(๐‘ฅ, ๐‘ฆ)]๐œŽ = [(1๐‘†, 1๐‘†)]๐œŽ. Thus [(๐‘ฆ, ๐‘ฅ)]๐œŽ is a left andright inverse for [(๐‘ฅ, ๐‘ฆ)]๐œŽ. So ๐บ is a group.

Let ๐œ‘ โˆถ ๐‘† โ†’ ๐บ be defined by ๐‘ ๐œ‘ = [(๐‘ , 1๐‘†)]๐œŽ. It is clear that ๐œ‘ is ahomomorphism. Furthermore, ๐œ‘ is injective since

๐‘ฅ๐œ‘ = ๐‘ฆ๐œ‘ โ‡’ [(๐‘ฅ, 1๐‘†)]๐œŽ = [(๐‘ฆ, 1๐‘†)]๐œŽโ‡’ ๐‘ 1๐‘† = ๐‘ก1๐‘†โ‡’ ๐‘  = ๐‘ก.

Therefore ๐‘† embeds into ๐บ. Finally, note that

[(๐‘ฅ, ๐‘ฆ)]๐œŽ = [(๐‘ฅ, 1๐‘†)]๐œŽ[(1๐‘†, ๐‘ฆ)]๐œŽ = (๐‘ฅ๐œ‘)(๐‘ฆ๐œ‘)โˆ’1 โˆˆ (๐‘†๐œ‘)(๐‘†๐œ‘)โˆ’1;

hence ๐บ = (๐‘†๐œ‘)(๐‘†๐œ‘)โˆ’1. 6.1

Let ๐‘† be a commutative cancellative semigroup. By Theorem 6.1, thereis a monomorphism ๐œ‘ from ๐‘† into a group ๐บ such that ๐บ = (๐‘†๐œ‘)(๐‘†๐œ‘)โˆ’1.We can therefore identify ๐‘† with a subsemigroup of ๐บ such that ๐บ = ๐‘†๐‘†โˆ’1.For any commutative cancellative semigroup ๐‘†, denote by๐บ(๐‘†) some fixedgroup containing ๐‘† as a subsemigroup, such that ๐บ(๐‘†) = ๐‘†๐‘†โˆ’1. (Actually,one can prove that ๐บ(๐‘†) is unique up to isomorphism, but we will notneed this result.)

122 โ€ขCommutative semigroups

Page 131: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Free commutative semigroups

Let ๐ด be an alphabet. Let FCommS(๐ด) be semigrouppresented by SgโŸจ๐ด | ๐œŒโŸฉ, where

๐œŒ = { (๐‘Ž๐‘, ๐‘๐‘Ž) โˆถ ๐‘Ž, ๐‘ โˆˆ ๐ด }.

The following result is essentially immediate:

P ro p o s i t i on 6 . 2. FCommS(๐ด) is a commutative semigroup. 6.2

Let ๐น be a commutative semigroup, let ๐ด be an alphabet, and let ๐œ„ โˆถ Free commutativesemigroups๐ด โ†’ ๐น be an embedding of๐ด into ๐น. Then the commutative semigroup ๐น

is the free commutative semigroup on๐ด if, for any commutative semigroup๐‘† and map ๐œ‘ โˆถ ๐ด โ†’ ๐‘†, there is a unique homomorphism ๐œ‘ โˆถ ๐น โ†’ ๐‘† thatextends ๐œ‘ (that is, with ๐œ„๐œ‘ = ๐œ‘). Using diagrams, this definition says that๐น is a free commutative semigroup on ๐ด if

for all๐ด ๐น

๐‘†

๐œ„

๐œ‘with ๐‘† commutative, there exists

a unique homomorphism ๐œ‘ such that๐ด ๐น

๐‘†

๐œ„

๐œ‘๐œ‘ .

}}}}}}}}}}}}}}}}}}}

(6.1)

This definition is analogous to the definition of the free semigroup on๐ด (see pages 38 f.) and free inverse semigroup on ๐ด (see page 107). Asalready noted, in Chapter 8, we will see definitions of โ€˜free objectsโ€™ in amuch more general setting.

Reasoning analogous to the proof of Proposition 5.15 establishes thefollowing result:

P ro p o s i t i on 6 . 3. Let ๐ด be an alphabet and let ๐น be a commutative Uniqueness of thefree commutativesemigroup on ๐ด

semigroup. Then ๐น is a free commutative semigroup on ๐ด if and only if๐น โ‰ƒ FCommS(๐ด). 6.3

As in the discussions of โ€˜freeโ€™ and โ€˜free inverseโ€™, we could repeat the Free commutative monoidsreasoning above, but for monoids instead of semigroups. The monoidFCommM(๐ด) is presented by MonโŸจ๐ด โˆช ๐ดโˆ’1 | ๐œŒโŸฉ. A monoid ๐น is a freecommutative monoid on ๐ด if, for any commutative monoid ๐‘† and map๐œ‘ โˆถ ๐ด โ†’ ๐‘†, there is a unique monoid homomorphism ๐œ‘ โˆถ ๐น โ†’ ๐‘†extending ๐œ‘, with ๐œ„๐œ‘ = ๐œ‘. A commutative monoid ๐น is a free commutativemonoid on ๐ด if and only if ๐น โ‰ƒ FCommM(๐ด). We have FCommM(๐ด) โ‰ƒ(FCommS(๐ด))1.

P ro p o s i t i on 6 . 4. Let ๐ด be a finite alphabet. Then FCommM(๐ด) โ‰ƒ(โ„• โˆช {0})๐ด.

Free commutative semigroups โ€ข 123

Page 132: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

(Recall the notation for cartesian and direct products from page 4.)

Proof of 6.4. Following Method 2.9, we aim to prove that MonโŸจ๐ด | ๐œŒโŸฉpresents (โ„• โˆช {0})๐ด. Define a map ๐œ‘ โˆถ ๐ด โ†’ (โ„• โˆช {0})๐ด, where ๐‘Ž๐œ‘ issuch that (๐‘Ž)(๐‘Ž๐œ‘) = 1 and (๐‘ฅ)(๐‘Ž๐œ‘) = 0 for ๐‘ฅ โ‰  ๐‘Ž. (That is, ๐‘Ž๐œ‘ is thetuple whose ๐‘Ž-th component is 1 and all other components 0.) Clearly(โ„• โˆช {0})๐ด satisfies the defining relations in ๐œŒ with respect to ๐œ‘. Suppose๐ด = {๐‘Ž1,โ€ฆ , ๐‘Ž๐‘›} and let

๐‘ = { ๐‘Ž๐‘˜11 ๐‘Ž๐‘˜22 โ‹ฏ๐‘Ž๐‘˜๐‘›๐‘› โˆถ ๐‘˜1, ๐‘˜2,โ€ฆ , ๐‘˜๐‘› โˆˆ โ„• โˆช {0} }.

It is obvious that every word in ๐ดโˆ— can be transformed to one in๐‘ byapplying defining relations from ๐œŒ. Finally, since (๐‘Ž๐‘–)((๐‘Ž

๐‘˜11 ๐‘Ž๐‘˜22 โ‹ฏ๐‘Ž๐‘˜๐‘›๐‘› )๐œ‘),

we see that ๐œ‘|๐‘ is injective. So MonโŸจ๐ด | ๐œŒโŸฉ presents (โ„• โˆช {0})๐ด. 6.4

Proposition 6.4 does not hold if ๐ด is infinite. The tuples ๐‘Ž๐œ‘ as definedin the proof do not generate (โ„• โˆช {0})๐ด when ๐ด is infinite, because no(finite) product of these tuples is equal to (for example) the tuple withall components 1.

Pro p o s i t i on 6 . 5. Let ๐‘† be a finite generated commutative semigroup(respectively, commutative monoid), let ๐œ‘ โˆถ ๐ด โ†’ ๐‘† be an assignment ofgenerators (with ๐ด finite), and let ๐œ‘ โˆถ FCommS(๐ด) โ†’ ๐‘† (respectively,๐œ‘ โˆถ FCommM(๐ด) โ†’ ๐‘†) be the homomorphism extending ๐œ‘. Suppose thereis a finite set ๐œŽ โŠ† ker๐œ‘ such that ๐œŽ# = ker๐œ‘. Then ๐‘† is finitely presented.

Proof of 6.5. We prove the result for semigroups; the reasoning for mon-oids is similar. Let ๐œ‘+ โˆถ ๐ด+ โ†’ ๐‘† be the homomorphism extending ๐œ‘. Forbrevity, let ๐œ“ be the natural homomorphism (๐œŒ#)โ™ฎ โˆถ ๐ด+ โ†’ FCommS(๐ด),where ๐‘Ž๐œ“ = ๐‘Ž(๐œŒ#)โ™ฎ = [๐‘Ž]๐œŒ# . Note that ker๐œ“ = ker(๐œŒ#)โ™ฎ๐œŒ#.The followingdiagram commutes:

๐ด ๐ด+ FCommS(๐ด)

๐‘†

๐œ„

๐œ‘

๐œ“ = (๐œŒ#)โ™ฎ

๐œ‘+๐œ‘

To show that ๐‘† is finitely presented, we must find a finite subset of B๐ด+that generates ker๐œ‘+.

For each (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŽ, fix ๐‘ค๐‘ฅ โˆˆ ๐‘ฅ((๐œŒ#)โ™ฎ)โˆ’1 and ๐‘ค๐‘ฆ โˆˆ ๐‘ฆ((๐œŒ#)โ™ฎ)โˆ’1 and let๏ฟฝ๏ฟฝ = { (๐‘ค๐‘ฅ, ๐‘ค๐‘ฆ) โˆถ (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŽ) }. Note that ๏ฟฝ๏ฟฝ is finite since ๐œŽ is finite. Wewill prove that (๏ฟฝ๏ฟฝ โˆช ๐œŒ)# = ker(๐œ“๐œ‘) = ker๐œ‘+.

Make the following definition: for any ๐œ โˆˆ B๐‘‡, let ๐œ๐œ“โˆ’1 = { (๐‘ , ๐‘ก) โˆˆ๐‘† ร— ๐‘† โˆถ (๐‘ ๐œ“, ๐‘ก๐œ“) โˆˆ ๐œ }.

Let (๐‘ข, ๐‘ฃ) โˆˆ (๐œŽC)๐œ“โˆ’1. So (๐‘ข๐œ“, ๐‘ฃ๐œ“) โˆˆ ๐œŽC. So by Proposition 1.27, thereexist ๐‘, ๐‘ž โˆˆ FCommS(๐ด) and (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŽ such that ๐‘ข๐œ“ = ๐‘๐‘ฅ๐‘ž and

124 โ€ขCommutative semigroups

Page 133: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐‘ฃ๐œ“ = ๐‘๐‘ฆ๐‘ž. Let ๐‘โ€ฒ, ๐‘žโ€ฒ โˆˆ ๐‘† be such that ๐‘โ€ฒ๐œ“ = ๐‘ and ๐‘žโ€ฒ๐œ“ = ๐‘ž. Then(๐‘โ€ฒ๐‘ค๐‘ฅ๐‘žโ€ฒ)๐œ“ = ๐‘ข๐œ“ and (๐‘โ€ฒ๐‘ค๐‘ฆ๐‘žโ€ฒ)๐œ“ = ๐‘ฃ๐œ“. Therefore (๐‘ข, ๐‘โ€ฒ๐‘ค๐‘ฅ๐‘žโ€ฒ) โˆˆ ker๐œ“ =๐œŒ# and (๐‘โ€ฒ๐‘ค๐‘ฆ๐‘ž, ๐‘ฃ) โˆˆ ker๐œ“ = ๐œŒ#. Since (๐‘โ€ฒ๐‘ค๐‘ฅ๐‘žโ€ฒ, ๐‘โ€ฒ๐‘ค๐‘ฆ๐‘žโ€ฒ) โˆˆ ๏ฟฝ๏ฟฝ#, we have

๐‘ข ๐œŒ# ๐‘โ€ฒ๐‘ค๐‘ฅ๐‘žโ€ฒ ๏ฟฝ๏ฟฝ# ๐‘โ€ฒ๐‘ค๐‘ฆ๐‘žโ€ฒ ๐œŒ# ๐‘ฃ,

and so (๐‘ข, ๐‘ฃ) โˆˆ (๏ฟฝ๏ฟฝ โˆช ๐œŒ)#. Thus (๐œŽC)๐œ“โˆ’1 โŠ† (๏ฟฝ๏ฟฝ โˆช ๐œŒ)#. Since (๏ฟฝ๏ฟฝ โˆช ๐œŒ)# issymmetric, (๐œŽC)๐œ“โˆ’1 โˆช (๐œŽC)โˆ’1๐œ“โˆ’1 โŠ† (๏ฟฝ๏ฟฝ โˆช ๐œŒ)#.

Now let ๐‘ข, ๐‘ฃ โˆˆ ๐ด+. Then

(๐‘ข, ๐‘ฃ) โˆˆ ker(๐œ“๐œ‘)โ‡’ (๐‘ข๐œ“, ๐‘ฃ๐œ“) โˆˆ ๐œŽ#

โ‡’ (๐‘ข๐œ“ = ๐‘ฃ๐œ“) โˆจ (๐‘ข๐œ“, ๐‘ฃ๐œ“) โˆˆ โ‹ƒโˆž๐‘›=1(๐œŽC โˆช (๐œŽC)โˆ’1)๐‘›

[by Proposition 1.26(f)]โ‡’ (โˆƒ๐‘› โˆˆ โ„• โˆช {0})(โˆƒ๐‘ค0,โ€ฆ ,๐‘ค๐‘› โˆˆ FCommS(๐ด))

[(๐‘ข๐œ“ = ๐‘ค0) โˆง (๐‘ค๐‘› = ๐‘ฃ๐œ“)โˆง (โˆ€๐‘–)((๐‘ค๐‘–, ๐‘ค๐‘–+1) โˆˆ ๐œŽC โˆช (๐œŽC)โˆ’1)]

โ‡’ (โˆƒ๐‘› โˆˆ โ„• โˆช {0})(โˆƒ๐‘คโ€ฒ0,โ€ฆ ,๐‘คโ€ฒ๐‘› โˆˆ ๐ด+)[(๐‘ข๐œ“ = ๐‘คโ€ฒ0๐œ“) โˆง (๐‘คโ€ฒ๐‘›๐œ“ = ๐‘ฃ๐œ“)โˆง (โˆ€๐‘–)((๐‘คโ€ฒ๐‘–, ๐‘คโ€ฒ๐‘–+1) โˆˆ ๐œŽC๐œ“โˆ’1 โˆช (๐œŽC)โˆ’1๐œ“โˆ’1)]

[since ๐œ“ is surjective]โ‡’ (โˆƒ๐‘› โˆˆ โ„• โˆช {0})(โˆƒ๐‘คโ€ฒ0,โ€ฆ ,๐‘คโ€ฒ๐‘› โˆˆ ๐ด+)

[(๐‘ข๐œ“ = ๐‘คโ€ฒ0๐œ“) โˆง (๐‘คโ€ฒ๐‘›๐œ“ = ๐‘ฃ๐œ“)โˆง (โˆ€๐‘–)((๐‘คโ€ฒ๐‘–๐œ“,๐‘คโ€ฒ๐‘–+1) โˆˆ (๐œŽโ€ฒ โˆช ๐œŒ)#)]

[since (๐œŽC)๐œ“โˆ’1 โˆช (๐œŽC)โˆ’1๐œ“โˆ’1 โŠ† (๏ฟฝ๏ฟฝ โˆช ๐œŒ)#]โ‡’ (๐‘ข, ๐‘ฃ) โˆˆ (๐œŽโ€ฒ โˆช ๐œŒ)#)].

Therefore ker(๐œ“๐œ‘) โŠ† (๐œŽโ€ฒ โˆช ๐œŒ)#.On the other hand, if (๐‘ข, ๐‘ฃ) โˆˆ ๐œŽโ€ฒ, then (๐‘ข๐œ“, ๐‘ฃ๐œ“) โˆˆ ๐œŽ โŠ† ker๐œ‘, so๐‘ข๐œ“๐œ‘ = ๐‘ฃ๐œ“๐œ‘ and so (๐‘ข, ๐‘ฃ) โˆˆ ker(๐œ“๐œ‘). If (๐‘ข, ๐‘ฃ) โˆˆ ๐œŒ โŠ† ker๐œ“, then ๐‘ข๐œ“ = ๐‘ฃ๐œ“,so ๐‘ข๐œ“๐œ‘ = ๐‘ฃ๐œ“๐œ‘ and so (๐‘ข, ๐‘ฃ) โˆˆ ker(๐œ“๐œ‘). Thus ๐œŽโ€ฒ โˆช ๐œŒ โŠ† ker(๐œ“๐œ‘) and hence(๐œŽโ€ฒ โˆช ๐œŒ)# โŠ† ker(๐œ“๐œ‘) since ker(๐œ“๐œ‘) is a congruence.

Therefore (๐œŽโ€ฒ โˆช ๐œŒ)# = ker(๐œ“๐œ‘) = ker๐œ‘+ and so ๐‘† is defined by thefinite presentation SgโŸจ๐ด | ๐œŽโ€ฒ โˆช ๐œŒโŸฉ. 6.5

Rรฉdeiโ€™s theorem

When the alphabet๐ด has ๐‘› elements, we write write ๐น๐‘› =FCommM(๐ด) for brevity and (by Proposition 6.4) we view elements of

Rรฉdeiโ€™s theorem โ€ข 125

Page 134: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

FCommM(๐ด) as ๐‘›-tuples of non-negative integers fromโ„• โˆช {0}. Definea relation โฉฝ on ๐น๐‘› by

(๐‘ฅ1,โ€ฆ , ๐‘ฅ๐‘›) โฉฝ (๐‘ฆ1,โ€ฆ , ๐‘ฆ๐‘›) โ‡” (โˆ€๐‘– โˆˆ {1,โ€ฆ , ๐‘›})(๐‘ฅ๐‘– โฉฝ ๐‘ฆ๐‘–).

It is easy to see that โฉฝ is a partial order on ๐น๐‘›. Notice that there are noinfinite โฉฝ-decreasing sequences in ๐น๐‘›.

T h eorem 6 . 6. Every antichain in ๐น๐‘› is finite.Dicksonโ€™s theorem

Proof of 6.6. The proof is by induction on ๐‘›. For the base of the induction,let ๐‘Œ be an antichain inโ„• โˆช {0} โ‰ƒ ๐น1. Since โฉฝ is a total order onโ„• โˆช {0},every pair of elements is comparable and thus ๐‘Œ contains at most oneelement. Thus the result holds for ๐‘› = 1.

Now suppose the result holds for all ๐‘› < ๐‘˜; we aim to prove it for๐‘› = ๐‘˜. Let ๐‘Œ โŠ† (โ„• โˆช {0})๐‘˜ โ‰ƒ ๐น๐‘˜ be an antichain. For each ๐‘ก โˆˆ โ„• โˆช {0} andfor each ๐‘– โˆˆ {1,โ€ฆ , ๐‘˜}, let

๐‘Œ๐‘–,๐‘ก = { (๐‘ฅ1,โ€ฆ , ๐‘ฅ๐‘˜) โˆˆ ๐‘Œ โˆถ ๐‘ฅ๐‘– = ๐‘ก }.

The set

{ (๐‘ฅ1,โ€ฆ , ๐‘ฅ๐‘–โˆ’1, ๐‘ฅ๐‘–+1,โ€ฆ , ๐‘ฅ๐‘˜) โˆถ (๐‘ฅ1,โ€ฆ , ๐‘ฅ๐‘–โˆ’1, ๐‘ก, ๐‘ฅ๐‘–+1, ๐‘ฅ๐‘˜) โˆˆ ๐‘Œ๐‘–,๐‘ก }.

is an antichain (possibly empty) of ๐น๐‘˜โˆ’1 and therefore finite by the induc-tion hypothesis. Hence each set ๐‘Œ๐‘–,๐‘ก is finite.

Fix some ๐‘ฆ โˆˆ ๐‘Œ, with ๐‘ฆ = (๐‘ฆ1,โ€ฆ , ๐‘ฆ๐‘˜). Let ๐‘ง = (๐‘ง1,โ€ฆ , ๐‘ง๐‘˜) โˆˆ ๐‘Œ โˆ– {๐‘ฆ}.Since ๐‘Œ is an antichain, ๐‘ฆ โ‰ฐ ๐‘ง. Hence ๐‘ฆ๐‘– > ๐‘ง๐‘– for some ๐‘— โˆˆ {๐‘–,โ€ฆ , ๐‘˜}.Hence

๐‘Œ = {๐‘ฆ} โˆช๐‘›

โ‹ƒ๐‘–=1{ (๐‘ง1,โ€ฆ , ๐‘ง๐‘˜) โˆˆ ๐‘Œ โˆถ ๐‘ง๐‘– < ๐‘ฆ๐‘– }

= {๐‘ฆ} โˆช๐‘›

โ‹ƒ๐‘–=1

๐‘ฆ๐‘—โˆ’1

โ‹ƒ๐‘ก=0{ (๐‘ง1,โ€ฆ , ๐‘ง๐‘˜) โˆˆ ๐‘Œ โˆถ ๐‘ง๐‘– = ๐‘ก }

= {๐‘ฆ} โˆช๐‘›

โ‹ƒ๐‘–=1

๐‘ฆ๐‘—โˆ’1

โ‹ƒ๐‘ก=0๐‘Œ๐‘–,๐‘ก.

Each set ๐‘Œ๐‘–,๐‘ก is finite, and so ๐‘Œ itself is finite. Since ๐‘Œ was an arbitraryantichain in ๐น๐‘˜, this establishes the induction step and so proves theresult. 6.6

Pro p o s i t i on 6 . 7. Let ๐œŽ be a congruence on ๐น๐‘›. Then there is a finiteset ๐œŒ โŠ† ๐œŽ such that ๐œŒ# = ๐œŽ.

Proof of 6.7. Define the lexicographic order โŠ‘ on ๐น๐‘› by

(๐‘ฅ1,โ€ฆ , ๐‘ฅ๐‘›) โŠ (๐‘ฆ1,โ€ฆ , ๐‘ฆ๐‘›) โ‡” (โˆƒ๐‘˜ โˆˆ {1,โ€ฆ , ๐‘›})(๐‘ฅ๐‘˜ < ๐‘ฆ๐‘˜ โˆง (โˆ€๐‘— < ๐‘˜)(๐‘ฅ๐‘— = ๐‘ฆ๐‘˜)).

126 โ€ขCommutative semigroups

Page 135: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Then โŠ‘ is a total order on๐น๐‘› and is compatible. (That is, ๐‘ฅ โŠ‘ ๐‘ฆ โ‡’ ๐‘ฅ๐‘ง โŠ‘ ๐‘ฆ๐‘งfor all ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐น๐‘›.) Furthermore, โŠ‘ is a well-order (that is, every non-empty subset of๐น๐‘› has aโŠ‘-minimumelement). In particular, every๐œŽ-class[๐‘ฅ]๐œŽ has a โŠ‘-minimum element ๐‘ž๐‘ฅ. Let

๐‘„ = { ๐‘ž๐‘ฅ โˆถ ๐‘ฅ โˆˆ ๐น๐‘› } = { ๐‘ฆ โˆˆ ๐น๐‘› โˆถ (โˆ€๐‘ฅ โˆˆ ๐น๐‘›)(๐‘ฆ ๐œŽ ๐‘ฅ โ‡’ ๐‘ฆ โŠ‘ ๐‘ฅ) }.

So ๐‘„ consists of the โŠ‘-minimal elements of all the ๐œŽ-classes. Let ๐‘… be thecomplement of ๐‘„ in ๐น๐‘›; that is,

๐‘… = { ๐‘ฅ โˆถ ๐‘ž๐‘ฅ โŠ ๐‘ฅ } = { ๐‘ฅ โˆˆ ๐น๐‘› โˆถ (โˆƒ๐‘ฆ โˆˆ ๐น๐‘›)(๐‘ฆ ๐œŽ ๐‘ฅ โˆง ๐‘ฆ โŠ ๐‘ฅ) }.

Then ๐‘… consists of the non-โŠ‘-minimal elements of all the ๐œŽ-classes. Fur-thermore,

(๐‘ฅ โˆˆ ๐‘…) โˆง (๐‘ง โˆˆ ๐น๐‘›) โ‡’ (๐‘ž๐‘ฅ โŠ ๐‘ฅ) โˆง (๐‘ง โˆˆ ๐‘†) โ‡’ ๐‘ž๐‘ฅ๐‘ง โŠ ๐‘ฅ๐‘ง โ‡’ ๐‘ฅ๐‘ง โˆˆ ๐‘…;

hence ๐‘… is an ideal of ๐น๐‘›. Let๐‘€ be the set of โฉฝ-minimal elements of ๐‘….Then๐‘€ is an antichain and so finite by Theorem 6.6. Let

๐œŒ = { (๐‘ž๐‘š, ๐‘š) โˆถ ๐‘š โˆˆ ๐‘€}.

Notice that ๐œŒ is finite because๐‘€ is finite.The aim is now to show that ๐œŒ# = ๐œŽ. Since ๐‘ž๐‘š ๐œŽ ๐‘š for each๐‘š โˆˆ ๐‘€,

it is immediate that ๐œŒ โŠ† ๐œŽ and so ๐œŒ# โŠ† ๐œŽ.To prove that ๐œŽ โŠ† ๐œŒ#, the first step is to prove that ๐‘ž๐‘ฅ ๐œŒ# ๐‘ฅ for all๐‘ฅ โˆˆ ๐น๐‘›.

Suppose, with the aim of obtaining a contradiction, that (๐‘ž๐‘ฅ, ๐‘ฅ) โˆ‰ ๐œŒ#for some๐‘ฅ โˆˆ ๐น๐‘›.Then, sinceโŠ‘ is awell-order, there is aโŠ‘-minimum ๐‘  โˆˆ ๐น๐‘›such that (๐‘ž๐‘ , ๐‘ ) โˆ‰ ๐œŒ#. This element ๐‘  cannot be in ๐‘„, since otherwise๐‘ž๐‘  = ๐‘  and so (๐‘ž๐‘ , ๐‘ ) โˆˆ ๐œŒ#. Furthermore, ๐‘  cannot be in๐‘€, since otherwise(๐‘ž๐‘ , ๐‘ ) โˆˆ ๐œŒ by definition and hence (๐‘ž๐‘ , ๐‘ ) โˆˆ ๐œŒ#. Thus ๐‘  โˆˆ ๐‘… โˆ– ๐‘€ and so๐‘  > ๐‘š for some๐‘š โˆˆ ๐‘€. Therefore ๐‘  = ๐‘š๐‘ก for some ๐‘ก โˆˆ ๐น๐‘›.

Let ๐‘ข = ๐‘ž๐‘š๐‘ก. Since (๐‘ž๐‘š, ๐‘š) โˆˆ ๐œŒ# and (๐‘ž๐‘š, ๐‘š) โˆˆ ๐œŽ, we have (๐‘ข, ๐‘ ) =(๐‘ž๐‘š๐‘ก, ๐‘š๐‘ก) โˆˆ ๐œŒ# and so (๐‘ข, ๐‘ ) โˆˆ ๐œŽ. Notice that (๐‘ข, ๐‘ ) โˆˆ ๐œŽ implies ๐‘ž๐‘ข =๐‘ž๐‘ . Furthermore, ๐‘ข โŠ ๐‘  since ๐‘ž๐‘š โŠ ๐‘š and โŠ‘ is compatible. Since ๐‘  isโŠ‘-minimum with (๐‘ž๐‘ , ๐‘ ) โˆ‰ ๐œŒ#, it follows that (๐‘ž๐‘ข, ๐‘ข) โˆˆ ๐œŒ#. Therefore๐‘  ๐œŒ# ๐‘ข ๐œŒ# ๐‘ž๐‘ฅ = ๐‘ž๐‘ . Thus (๐‘ž๐‘ , ๐‘ ) โˆˆ ๐œŒ#, which is a contradiction, and hence(๐‘ž๐‘ฅ, ๐‘ฅ) โˆˆ ๐œŒ# for all ๐‘ฅ โˆˆ ๐น๐‘›.

Finally, let (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŽ. Then ๐‘ž๐‘ฅ = ๐‘ž๐‘ฆ. By the previous paragraph,(๐‘ž๐‘ฅ, ๐‘ฅ) and (๐‘ž๐‘ฆ, ๐‘ฆ) are in ๐œŒ#. Thus ๐‘ฅ ๐œŒ# ๐‘ž๐‘ฅ = ๐‘ž๐‘ฆ ๐œŒ# ๐‘ฆ; hence (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ#.That is, ๐œŽ โŠ† ๐œŒ#, and therefore ๐œŽ = ๐œŒ#. 6.7

The following result is immediate from Propositions 6.5 and Proposi-tion 6.7:

R รฉ d e i โ€™ s T h eorem 6 . 8. Every finitely generated commutative mon- Rรฉdeiโ€™s theoremoid is finitely presented. 6.8

Rรฉdeiโ€™s theorem โ€ข 127

Page 136: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Exercises

[See pages 234โ€“237 for the solutions.]โœด6.1 Let ๐‘† be a commutative semigroup. Let ๐บ and ๐บโ€ฒ be abelian groups

such that๐บ = ๐‘†๐‘†โˆ’1 and๐บโ€ฒ = ๐‘†๐‘†โˆ’1. Prove that there is an isomorphism๐œ“ โˆถ ๐บ โ†’ ๐บโ€ฒ such that ๐œ“|๐‘† maps ๐‘† โŠ† ๐บ to ๐‘† โŠ† ๐บโ€ฒ.

โœด6.2 Let ๐‘† be a commutative semigroup. Let ๐ผ be an ideal of ๐‘†, and let ๐บbe an abelian group. Let ๐œ‘ โˆถ ๐ผ โ†’ ๐บ be a homomorphism. Prove thatthere is a unique extension of ๐œ‘ to a homomorphism ๏ฟฝ๏ฟฝ โˆถ ๐‘† โ†’ ๐บ.

6.3 Let ๐‘† be a non-trivial subsemigroup of (โ„• โˆช {0}, +). Prove that thereexists ๐‘‘ โˆˆ โ„• โˆช {0} such that ๐‘† โŠ† ๐‘‘โ„• and ๐‘‘โ„• โˆ– ๐‘† is finite.

6.4 Let ๐‘† be a subsemigroup of (โ„ค, +). Prove that either every elementof ๐‘† is non-negative, or every element of ๐‘† is non-positive, or ๐‘† is asubgroup.

โœด6.5 A semigroup ๐‘† is right-reversible (respectively, left-reversible) if everyRight- and left-reversibilitytwo elements of ๐‘† have a common left (respectively, right) multiple;that is, if for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†, there exist ๐‘ง, ๐‘ก โˆˆ ๐‘†1 such that ๐‘ง๐‘ฅ = ๐‘ก๐‘ฆ(respectively, ๐‘ฅ๐‘ง = ๐‘ฆ๐‘ก).

Let ๐‘† be a cancellative right-reversible semigroup; the aim of thisOreโ€™s theoremexercise is to prove that ๐‘† is group-embeddable; this is Oreโ€™s theorem,and generalizes Theorem 6.1. Let ๐œ‘ โˆถ ๐‘† โ†’ I๐‘† be the homomorphismdefined by ๐‘ฅ โ†ฆ ๐œŒ๐‘ฅ. Let ๐‘‡ be the inverse subsemigroup of I๐‘† gener-ated by im๐œ‘. By Exercise 5.8(b), every element of ๐‘‡ is a partial righttranslation. Define a relation โˆผ on ๐‘‡ by

๐›ผ โˆผ ๐›ฝ โ‡” (โˆƒ๐›ฟ โˆˆ ๐‘‡)((๐›ฟ โŠ† ๐›ผ) โˆง (๐›ฟ โŠ† ๐›ฝ))

for all ๐›ผ, ๐›ฝ โˆˆ ๐‘‡. Notice that

๐›ฟ โŠ† ๐›ผ โ‡” ((dom ๐›ฟ โŠ† dom๐›ผ) โˆง (โˆ€๐‘ฅ โˆˆ dom ๐›ฟ)(๐‘ฅ๐›ฟ = ๐‘ฅ๐›ผ)).

a) Prove that โˆผ is an congruence.b) Let ๐บ = ๐‘‡/โˆผ. Prove that ๐บ is a group.c) Let ๐›ผ, ๐›ฝ โˆˆ ๐‘‡. Prove that ๐›ผ โˆ˜ ๐›ฝ is not the empty relation, and so

deduce that ๐‘‡ does not contain the empty relation.d) Let ๐œ“ = ๐œ‘ โˆ˜ โˆผโ™ฎ (that is, ๐‘ฅ๐œ“ = [๐‘ฅ๐œ‘]โˆผ). Prove that ๐œ“ is a monomor-

phism and so deduce that ๐‘† is group-embeddable.โœด6.6 Let ๐‘† = (โ„• โˆช {0}) ร— (โ„• โˆช {0}) and define a multiplication on ๐‘† by

(๐‘š, ๐‘›)(๐‘, ๐‘ž) = (๐‘š + ๐‘, 2๐‘๐‘› + ๐‘ž)

Check that this multiplication is associative, so that ๐‘† is a semigroup.Prove that ๐‘† is left reversible but not right reversible.

128 โ€ขCommutative semigroups

Page 137: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Notes

The number of commutative semigroups of with 8 elementsis from Grillet, Commutative Semigroups, p. 1. โ—† Rรฉdeiโ€™s theorem (Theorem6.8) was first proved by Rรฉdei, TheTheory of Finitely Generated CommutativeSemigroups; see also Clifford & Preston, The Algebraic Theory of Semigroups,ยง 9.3. The proof given here is from Grillet, โ€˜A short proof of Rรฉdeiโ€™s theoremโ€™. โ—†Oreโ€™s theorem (Exercise 6.5) is contained in a theorem about rings proved, usingdifferent terminology, in Ore, โ€˜Linear equations in non-commutative fieldsโ€™; theproof here is due to Rees, โ€˜On the group of a set of partial transformationsโ€™.โ—† For further reading, Grillet, Commutative Semigroups is a comprehensivemonograph, but with a very terse style, and Rosales & Garcรญa-Sรกnchez, FinitelyGenerated Commutative Monoids is an accessible introduction to structural andcomputational aspects.

โ€ข

Notes โ€ข 129

Page 138: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

130 โ€ข

Page 139: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

7Finite semigroups

โ€˜ The known is finite, the unknown infinite; intellectually we stand onan islet in the midst of an illimitable ocean of inexplicability. โ€™

โ€” T.H. Huxley,On the Reception of the Origin of Species.

โ€ข In this chapter, we begin the detailed study of finitesemigroups. Although Greenโ€™s relations will play a role, other techniquesare used to understand finite semigroups. In particular we will introducethe notion of divisibility, where one semigroup is a homomorphic imageof a subsemigroup of another. The goal of this chapter is to prove theKrohnโ€“Rhodes theorem, which says that every finite semigroup dividesa wreath product of finite groups and finite aperiodic semigroups, which,as we shall see, are finite semigroups where all subgroups are trivial. Thisleads naturally into the classification of finite semigroups by means ofpseudovarieties, which is the topic of next chapter.

Greenโ€™s relations and ideals

As a consequence of Proposition 3.3, we know that theGreenโ€™s relations D and J coincide for finite semigroups.

P ro p o s i t i on 7 . 1. Let๐‘€ be a finite monoid with identity 1. Then๐ป1 = ๐ฟ1 = ๐‘…1 = ๐ท1 = ๐ฝ1. Furthermore,๐ป1 is the group of units of๐‘€, and๐‘€โˆ–๐ป1 is either empty or an ideal of๐‘€.

Proof of 7.1. Let ๐‘ฅ โˆˆ ๐‘…1. Then there exists ๐‘ฆ โˆˆ ๐‘€1 = ๐‘€ such that ๐‘ฅ๐‘ฆ = 1.Since๐‘€ is finite, ๐‘ฅ๐‘š+๐‘˜ = ๐‘ฅ๐‘š for some ๐‘š, ๐‘˜ โˆˆ โ„•. Then ๐‘ฅ๐‘˜ = ๐‘ฅ๐‘š+๐‘˜๐‘ฆ๐‘š =๐‘ฅ๐‘š๐‘ฆ๐‘š = 1, and so ๐‘ฆ๐‘ฅ = 1๐‘ฆ๐‘ฅ = ๐‘ฅ๐‘˜๐‘ฆ๐‘ฅ = ๐‘ฅ๐‘˜โˆ’1๐‘ฅ = ๐‘ฅ๐‘˜ = 1 Hence ๐‘ฅ H 1.Therefore ๐‘…1 โŠ† ๐ป1. The opposite inclusion is obvious, so ๐‘…1 = ๐ป1.Similarly ๐ฟ1 = ๐ป1. So๐ท1 contains only oneL-class and only oneR-classand so๐ท1 = ๐ป1. Finally, ๐ฝ1 = ๐ป1 since D = J.

This reasoning also shows that๐ป1 is contained in the group of units of๐‘€. On the other hand, all elements of group of units of๐‘€ are H-relatedto 1, so the group of units of ๐‘† is๐ป1.

For any ๐‘ฆ โˆˆ ๐‘€โˆ–๐ป1 = ๐‘€โˆ–๐ฝ1, we have ๐ฝ๐‘ฆ < ๐ฝ1 by (3.2). So๐‘€โˆ–๐ป1 =๐ผ(1) = { ๐‘ฆ โˆˆ ๐‘† โˆถ ๐ฝ๐‘ฆ < ๐ฝ1 }, which is either empty or an ideal by Lemma3.9. 7.1

โ€ข 131

Page 140: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Pro p o s i t i on 7 . 2. Let ๐‘† and ๐‘†โ€ฒ be finite semigroups and let๐œ‘ โˆถ ๐‘† โ†’ ๐‘†โ€ฒbe a surjective homomorphism. Let ๐บโ€ฒ be a maximal subgroup of ๐‘†โ€ฒ. Thenthere is a maximal subgroup ๐บ of ๐‘† such that ๐บ๐œ‘ = ๐บโ€ฒ.

Proof of 7.2. Let ๐บโ€ฒ be a maximal subgroup of ๐‘†โ€ฒ. Then ๐‘‡ = ๐บโ€ฒ๐œ‘โˆ’1 is asubsemigroup of ๐‘† and ๐‘‡๐œ‘ = ๐บโ€ฒ. Since ๐‘‡ is finite, it has a kernel; let๐พ = ๐พ(๐‘†), which is a simple ideal of ๐‘‡ by Proposition 3.10. Since ๐œ‘ issurjective, ๐พ๐œ‘ is an ideal of the group ๐บโ€ฒ and so ๐พ๐œ‘ = ๐บโ€ฒ. Since ๐พ isfinite it is also completely simple by Proposition 4.10. So, by Theorem 4.11,๐พ โ‰ƒ M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] for some group ๐บ, index sets ๐ผ and ๐›ฌ, and matrix๐‘ƒ over ๐บ. View ๐œ‘|๐พ as a surjective homomorphism from M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ]to ๐บโ€ฒ. For each ๐‘– โˆˆ ๐ผ and ๐œ† โˆˆ ๐›ฌ, let ๐บ๐‘–๐œ† be the subset {๐‘–} ร— ๐บ ร— {๐œ†} ofM[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ]. Then M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] is the union of the various ๐บ๐‘–๐œ†, and๐บ๐‘–๐œ†๐บ๐‘—๐œ‡ โŠ† ๐บ๐‘–๐œ‡. In particular, every ๐บ๐‘–๐œ† is a subgroup of ๐‘‡.

Let ๐บโ€ฒ๐‘–๐œ† = ๐บ๐‘–๐œ†๐œ‘. Then each ๐บโ€ฒ๐‘–๐œ† is a subgroup of ๐บโ€ฒ, and ๐บโ€ฒ๐‘–๐œ†๐บโ€ฒ๐‘—๐œ‡ โŠ† ๐บโ€ฒ๐‘–๐œ‡.In particular, ๐บโ€ฒ๐‘–๐œ†๐บโ€ฒ๐‘—๐œ† โŠ† ๐บโ€ฒ๐‘–๐œ†, which implies ๐บโ€ฒ๐‘—๐œ† = 1๐บโ€ฒ๐บโ€ฒ๐‘—๐œ† โŠ† ๐บโ€ฒ๐‘–๐œ†. Similarly๐บโ€ฒ๐‘–๐œ† โŠ† ๐บโ€ฒ๐‘–๐œ‡. Thus all the ๐บโ€ฒ๐‘–๐œ† are equal. Since ๐œ‘ is surjective, ๐บโ€ฒ is the unionof the ๐บโ€ฒ๐‘–๐œ† and thus equal to any one of the ๐บโ€ฒ๐‘–๐œ†. Hence ๐บโ€ฒ = ๐บ๐‘–๐œ†๐œ‘ for any๐‘– โˆˆ ๐ผ and ๐œ† โˆˆ ๐›ฌ. 7.2

Prop o s i t i on 7 . 3. Let ๐‘† be a finite semigroup and let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. If๐‘ฅ H ๐‘ฆ, then ๐‘ฆ โˆˆ ๐‘ฅ๐บ for some subgroup ๐บ of ๐‘†.

Proof of 7.3. Let๐ป be anH-class of ๐‘†. Apply Proposition 7.2 to the naturalsurjective homomorphism ๐œŽโ™ฎ๐ป โˆถ Stab(๐ป) โ†’ ๐›ค(๐ป) to see that๐ป = ๐บ๐œŽโ™ฎ๐ปfor some subgroup ๐บ of Stab(๐ป). By Proposition 3.24, we see that ๐‘ฆ โˆˆ๐‘ฅ โ‹… ๐›ค(๐ป) = ๐‘ฅ๐บ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐ป. 7.3

A semigroup ๐‘† is aperiodic if for every ๐‘ฅ โˆˆ ๐‘†, there exists ๐‘› โˆˆ โ„• suchAperiodic semigroupsthat ๐‘ฅ๐‘› = ๐‘ฅ๐‘›+1.

Notice that aperiodic semigroup are actually periodic. For example, anysemigroup of idempotents (such as a semilattice) satisfies ๐‘ฅ = ๐‘ฅ2 and sois aperiodic.

Prop o s i t i on 7 . 4. Let ๐‘† be a finite semigroup. The following areCharacterization ofaperiodic finite semigroups equivalent:

a) ๐‘† is aperiodic.b) all subgroups of ๐‘† are trivial;c) H = id๐‘†;

Proof of 7.4. Part 1 [a)โ‡’ b)]. Suppose ๐‘† is aperiodic. Let ๐บ be a subgroupof ๐‘† and let ๐‘ฅ โˆˆ ๐บ. Then ๐‘ฅ๐‘š = ๐‘ฅ๐‘š+1 for some๐‘š โˆˆ โ„•. Hence ๐‘ฅ = 1๐บ bycancellativity in ๐บ. So ๐บ is trivial. Thus all subgroups of ๐‘† are trivial.

Part 2 [b)โ‡’ c)]. Suppose that all subgroups of ๐‘† are trivial. Let๐ป be anH-class of ๐‘†. Then ๐›ค(๐ป), which is a homomorphic image of a subgroup

132 โ€ขFinite semigroups

Page 141: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

of Stab(๐ป), is trivial. Since |๐ป| = |๐›ค(๐ป)|, it follows that ๐ป is trivial byProposition 7.3. Hence H = id๐‘†.

Part 3 [c) โ‡’ a)]. Suppose that H = id๐‘†. Let ๐‘ฅ โˆˆ ๐‘†. Since ๐‘† is finite,๐‘ฅ๐‘š = ๐‘ฅ๐‘š+๐‘˜ for some๐‘š, ๐‘˜ โˆˆ โ„•.The set of elements {๐‘ฅ๐‘š, ๐‘ฅ๐‘š+1,โ€ฆ , ๐‘ฅ๐‘š+๐‘˜โˆ’1}is a subgroup and so all its elements areH-related. SinceH = id๐‘†, this setthus contains only one element, which implies ๐‘˜ = 1. Hence ๐‘ฅ๐‘š = ๐‘ฅ๐‘š+1.Thus ๐‘† is aperiodic. 7.4

We end this section by proving the following two results, althoughwe will not use them until Chapter 9:

L emma 7 . 5. Let ๐‘† be a finite semigroup and let ๐‘› โฉพ |๐‘†|. Then ๐‘†๐‘› =๐‘†๐ธ(๐‘†)๐‘†.

Proof of 7.5. Let ๐‘’ โˆˆ ๐ธ(๐‘†). Then ๐‘†๐‘’๐‘† = ๐‘†๐‘’๐‘›โˆ’2๐‘† โŠ† ๐‘†๐‘›. Thus ๐‘†๐ธ(๐‘†)๐‘† โŠ† ๐‘†๐‘›.Let ๐‘ฅ โˆˆ ๐‘†๐‘›. Then ๐‘ฅ = ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘›, where ๐‘ฅ๐‘– โˆˆ ๐‘†. Suppose first that all

the products ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜ for ๐‘˜ โฉฝ ๐‘› are distinct. Then every element of ๐‘† isequal to some product ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜. Hence, since ๐‘†, being finite, contains atleast one idempotent, some product ๐‘’ = ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜ is idempotent. Hence๐‘ฅ = ๐‘’๐‘ฅ๐‘˜+1โ‹ฏ๐‘ฅ๐‘› = ๐‘’3๐‘ฅ๐‘˜+1โ‹ฏ๐‘ฅ๐‘› โˆˆ ๐‘†๐‘’๐‘† โŠ† ๐‘†๐ธ(๐‘†)๐‘†. Now suppose that๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜ = ๐‘ฅ1โ‹ฏ๐‘ฅโ„“ for some ๐‘˜ < โ„“. Then ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜ = ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜(๐‘ฅ๐‘˜+1โ‹ฏ๐‘ฅโ„“)๐‘–for all ๐‘– โˆˆ โ„•. Let ๐‘– be such that ๐‘’ = (๐‘ฅ๐‘˜+1โ‹ฏ๐‘ฅโ„“)๐‘– is idempotent. Then๐‘ฅ1โ‹ฏ๐‘ฅ๐‘› = ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜๐‘’๐‘ฅโ„“+1โ‹ฏ๐‘ฅ๐‘› = ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜๐‘’3 โˆˆ ๐‘†๐‘’๐‘† โŠ† ๐‘†๐ธ(๐‘†)๐‘†. Thus ๐‘†๐‘› โŠ†๐‘†๐ธ(๐‘†)๐‘†. 7.5

L emma 7 . 6. Let ๐‘† be a finite semigroup and let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†.a) If ๐‘ฅ D ๐‘ฅ๐‘ฆ, then ๐‘ฅ R ๐‘ฅ๐‘ฆ.b) If ๐‘ฅ D ๐‘ฆ๐‘ฅ, then ๐‘ฅ L ๐‘ฆ๐‘ฅ.

Proof of 7.6. We prove only part a); dual reasoning gives part b).Suppose ๐‘ฅ D ๐‘ฅ๐‘ฆ. SinceD = J by Proposition 3.3, there exist ๐‘, ๐‘ž โˆˆ ๐‘†1

such that ๐‘๐‘ฅ๐‘ฆ๐‘ž = ๐‘ฅ. Thus ๐‘๐‘›๐‘ฅ(๐‘ฆ๐‘ž)๐‘› for all ๐‘› โˆˆ โ„•. Since ๐‘† is finite,there exists ๐‘˜ โˆˆ โ„• such that ๐‘’ = ๐‘๐‘˜ is idempotent. Thus, in particular,๐‘’๐‘ฅ(๐‘ฆ๐‘ž)๐‘˜ = ๐‘ฅ, and also ๐‘’๐‘ฅ = ๐‘’๐‘’๐‘ฅ(๐‘ฆ๐‘ž)๐‘˜ = ๐‘’๐‘ฅ(๐‘ฆ๐‘ž)๐‘˜ = ๐‘ฅ. Combining thesegives ๐‘ฅ(๐‘ฆ๐‘ž)๐‘˜ = ๐‘ฅ. So ๐‘ฅ R ๐‘ฅ๐‘ฆ. 7.6

Semidirect and wreath products

Let ๐‘† and ๐‘‡ be semigroups and let ๐‘‡ act on ๐‘† from the Semidirect productleft by endomorphisms; let ๐œ‘ โˆถ ๐‘‡ โ†’ End(๐‘†) be the anti-homomorphismcorresponding to this left action. To avoid having to write extra brackets,we will write ๐‘ ๐‘ก instead of ๐‘ก โ‹… ๐‘ . The semidirect product of ๐‘† and ๐‘‡ with

Semidirect and wreath products โ€ข 133

Page 142: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

respect to ๐œ‘ is denoted ๐‘† โ‹Š๐œ‘ ๐‘‡ and is the cartesian product ๐‘† ร— ๐‘‡ withmultiplication defined by

(๐‘ 1, ๐‘ก1)(๐‘ 2, ๐‘ก2) = (๐‘ 1 ๐‘ 2๐‘ก1 , ๐‘ก1๐‘ก2). (7.1)

This multiplication is associative (see Exercise 7.6) and so ๐‘† โ‹Š๐œ‘ ๐‘‡ is asemigroup. Notice that ๐‘† โ‹Š๐œ‘ ๐‘‡ has cardinality |๐‘†||๐‘‡|.

Notice that for any semigroups ๐‘† and ๐‘‡, we can take the trivial leftaction, where ๐‘ก โ‹… ๐‘  = ๐‘ ๐‘ก = ๐‘  for ๐‘ก โˆˆ ๐‘‡ and ๐‘  โˆˆ ๐‘†; this corresponds tothe trivial anti-homomorphism ๐œ‘ โˆถ ๐‘‡ โ†’ End(๐‘†), with ๐‘ฆ๐œ‘ = id๐‘† for all๐‘ฆ โˆˆ ๐‘‡. In this case, (๐‘ 1, ๐‘ก1)(๐‘ 2, ๐‘ก2) = (๐‘ 1๐‘ 2, ๐‘ก1๐‘ก2). Thus the direct product isa special case of the semidirect product.

Recall from page 4 that ๐‘†๐‘‡ is the direct product of copies of the set ๐‘†Wreath productindexed by ๐‘‡, or formally the set of maps from ๐‘‡ to ๐‘†. Define a left actionof ๐‘‡ on ๐‘†๐‘‡ by letting ๐‘ฆ โ‹…๐‘“ = ๐‘“๐‘ฆ be such that (๐‘ฅ) ๐‘“๐‘ฆ = (๐‘ฅ๐‘ฆ)๐‘“. This satisfiesthe definition of a left action: for all ๐‘ฆ, ๐‘ง โˆˆ ๐‘‡, we have ๐‘ง โ‹… (๐‘ฆ โ‹… ๐‘“) = ๐‘ง๐‘ฆ โ‹… ๐‘“since, for all ๐‘ฅ โˆˆ ๐‘‡,

(๐‘ฅ)(๐‘งโ‹…(๐‘ฆโ‹…๐‘“)) = (๐‘ฅ) ( ๐‘“๐‘ฆ )๐‘ง = (๐‘ฅ๐‘ง) ๐‘“๐‘ฆ = (๐‘ฅ๐‘ง๐‘ฆ)๐‘“ = (๐‘ฅ) ๐‘“๐‘ง๐‘ฆ = ๐‘ง๐‘ฆโ‹…๐‘“.

Let ๐œ‘ be the anti-homomorphism that corresponds to this action. Thewreath product of ๐‘† and๐‘‡, denoted ๐‘†โ‰€๐‘‡, is the semidirect product ๐‘†๐‘‡โ‹Š๐œ‘๐‘‡.Thus the product in ๐‘† โ‰€ ๐‘‡ is

(๐‘“1, ๐‘ก1)(๐‘“2, ๐‘ก2) = (๐‘“1 ๐‘“2๐‘ก1 , ๐‘ก1๐‘ก2).

Since this multiplication is derived from the multiplication in direct andsemidirect products, we know it is associative. Hence ๐‘† โ‰€ ๐‘‡ is a semigroup.Notice that ๐‘† โ‰€ ๐‘‡ has cardinality |๐‘†||๐‘‡||๐‘‡|.

Let ๐‘†, ๐‘‡, ๐‘ˆ be finite semigroups. Then

|(๐‘† โ‰€ ๐‘‡) โ‰€ ๐‘ˆ| = |๐‘† โ‰€ ๐‘‡||๐‘ˆ||๐‘ˆ| = (|๐‘†||๐‘‡||๐‘‡|)|๐‘ˆ||๐‘ˆ| = |๐‘†||๐‘‡||๐‘ˆ||๐‘‡||๐‘ˆ||๐‘ˆ|

and

|๐‘† โ‰€ (๐‘‡ โ‰€ ๐‘ˆ)| = |๐‘†||๐‘‡โ‰€๐‘ˆ||๐‘‡ โ‰€ ๐‘ˆ| = |๐‘†||๐‘‡||๐‘ˆ||๐‘ˆ||๐‘‡||๐‘ˆ||๐‘ˆ|.

Therefore the wreath product, as an operation on semigroups, is notassociative.

P ro p o s i t i on 7 . 7. If๐‘€ and๐‘ are monoids, then๐‘€โ‰€๐‘ is a monoidwith identity (๐‘’, 1๐‘), where ๐‘’ โˆถ ๐‘ โ†’ ๐‘€ is the constantmapwith (๐‘ฅ)๐‘’ = 1๐‘€for all ๐‘ฅ โˆˆ ๐‘.

Proof of 7.7. Suppose๐‘€ and๐‘ are monoids. Let . Then for any (๐‘“, ๐‘›) โˆˆ๐‘€ โ‰€ ๐‘, we have

(๐‘’, 1๐‘)(๐‘“, ๐‘›)= (๐‘’ ๐‘“1๐‘ , 1๐‘๐‘›)= (๐‘“, ๐‘›) [since (๐‘ฅ)๐‘’ ๐‘“1๐‘ = (๐‘ฅ)๐‘’(๐‘ฅ1๐‘)๐‘“ = 1๐‘€(๐‘ฅ)๐‘“ = (๐‘ฅ)๐‘“]

134 โ€ขFinite semigroups

Page 143: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

and

(๐‘“, ๐‘›)(๐‘’, 1๐‘)= (๐‘“ ๐‘’๐‘› , ๐‘›1๐‘)= (๐‘“, ๐‘›); [since (๐‘ฅ)๐‘“ ๐‘’๐‘› = (๐‘ฅ)๐‘“(๐‘ฅ๐‘›) ๐‘’๐‘› = (๐‘ฅ)๐‘“1๐‘€ = (๐‘ฅ)๐‘“]

hence (๐‘’, 1๐‘) is an identity for the monoid๐‘€ โ‰€๐‘. 7.7

Division

A semigroup ๐‘† divides a semigroup ๐‘‡, denoted ๐‘† โ‰ผ ๐‘‡, Divisionif ๐‘† is a homomorphic image of a subsemigroup of ๐‘‡. Notice that thedivisibility relation โ‰ผ is reflexive.

Although the divisibility relation is reflexive, most texts use the notation๐‘† โ‰บ ๐‘‡ instead of ๐‘† โ‰ผ ๐‘‡.

Pro p o s i t i on 7 . 8. The divisibility relation โ‰ผ is transitive.

Proof of 7.8. Let ๐‘†, ๐‘‡,๐‘ˆ be semigroups with ๐‘† โ‰ผ ๐‘‡ and ๐‘‡ โ‰ผ ๐‘ˆ. Then thereare subsemigroups ๐‘‡โ€ฒ of ๐‘‡ and ๐‘ˆโ€ฒ of ๐‘ˆ and surjective homomorphisms๐œ‘ โˆถ ๐‘‡โ€ฒ โ†’ ๐‘† and๐œ“ โˆถ ๐‘ˆโ€ฒ โ†’ ๐‘‡. Let๐‘ˆโ€ณ = ๐‘‡โ€ฒ๐œ“โˆ’1. Since ๐‘‡โ€ฒ is a subsemigroupof๐‘‡, it follows that๐‘ˆโ€ณ is a subsemigroup of๐‘ˆโ€ฒ and thus of๐‘ˆ. Furthermore,๐œ“|๐‘ˆโ€ฒ โˆ˜ ๐œ‘ โˆถ ๐‘ˆโ€ณ โ†’ ๐‘† is a surjective homomorphism. So ๐‘† โ‰ผ ๐‘ˆ. 7.8

The relation of divisibility seems rather โ€˜artificialโ€™ here, but it is arisesvery naturally through the connection between semigroups and finiteautomata, which we will study in Chapter 9.

P ro p o s i t i on 7 . 9. Let ๐‘† and ๐‘‡ be semigroups.Then ๐‘† and ๐‘‡ and theirdirect product ๐‘† ร— ๐‘‡ divide their wreath product ๐‘† โ‰€ ๐‘‡.

Proof of 7.9. Since ๐‘† and ๐‘‡ are homomorphic images of ๐‘† ร— ๐‘‡ under theprojection maps ๐œ‹๐‘† โˆถ ๐‘† ร— ๐‘‡ โ†’ ๐‘† and ๐œ‹๐‘‡ โˆถ ๐‘† ร— ๐‘‡ โ†’ ๐‘‡, we have ๐‘† โ‰ผ ๐‘† ร— ๐‘‡and ๐‘‡ โ‰ผ ๐‘† ร— ๐‘‡. Since โ‰ผ is transitive (by Proposition 7.8), it suffices toprove that ๐‘† ร— ๐‘‡ โ‰ผ ๐‘† โ‰€ ๐‘‡.

For each ๐‘  โˆˆ ๐‘†, let ๐‘“๐‘  โˆˆ ๐‘†๐‘‡ have all components equal to ๐‘ . Define amap ๐œ“ โˆถ ๐‘† ร— ๐‘‡ โ†’ ๐‘† โ‰€ ๐‘‡ by (๐‘ , ๐‘ก)๐œ“ = (๐‘“๐‘ , ๐‘ก). Then

((๐‘ , ๐‘ก)๐œ“)((๐‘ โ€ฒ, ๐‘กโ€ฒ)๐œ“)๐œ“= (๐‘“๐‘ , ๐‘ก)(๐‘“๐‘ โ€ฒ, ๐‘กโ€ฒ)= (๐‘“๐‘  ๐‘“๐‘ โ€ฒ๐‘ก , ๐‘ก๐‘กโ€ฒ)= (๐‘“๐‘ ๐‘ โ€ฒ, ๐‘ก๐‘กโ€ฒ)

[since (๐‘ฅ)(๐‘“๐‘  ๐‘“๐‘ โ€ฒ๐‘ก ) = (๐‘ฅ)๐‘“๐‘ (๐‘ฅ๐‘ก)๐‘“๐‘ โ€ฒ = ๐‘ ๐‘ โ€ฒ = (๐‘ฅ)๐‘“๐‘ ๐‘ โ€ฒ for all ๐‘ฅ โˆˆ ๐‘‡]= (๐‘ ๐‘ โ€ฒ, ๐‘ก๐‘กโ€ฒ)๐œ“= ((๐‘ , ๐‘ก)(๐‘ โ€ฒ, ๐‘กโ€ฒ))๐œ“.

Division โ€ข 135

Page 144: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

So ๐œ“ is a homomorphism. Furthermore,

(๐‘ , ๐‘ก)๐œ“ = (๐‘ โ€ฒ, ๐‘กโ€ฒ)๐œ“ โ‡’ (๐‘“๐‘ , ๐‘ก) = (๐‘“๐‘ โ€ฒ, ๐‘กโ€ฒ)โ‡’ ๐‘  = ๐‘ โ€ฒ โˆง ๐‘ก = ๐‘กโ€ฒโ‡’ (๐‘ , ๐‘ก) = (๐‘ โ€ฒ, ๐‘กโ€ฒ);

thus ๐œ“ is injective. Thus ๐œ“ โˆถ ๐‘† ร— ๐‘‡ โ†’ im๐œ“ โŠ† ๐‘† โ‰€ ๐‘‡ is an isomorphism,and so ๐œ“โˆ’1 is an surjective homomorphism from the subsemigroup im๐œ“of ๐‘† โ‰€ ๐‘‡ to the semigroup ๐‘† ร— ๐‘‡. So ๐‘† ร— ๐‘‡ โ‰ผ ๐‘† โ‰€ ๐‘‡. 7.9

Pro p o s i t i on 7 . 1 0. Let๐‘€ be a monoid and let ๐ธ be an ideal exten-sion of๐‘€ by ๐‘‡. Then ๐ธ โ‰ผ ๐‘‡ โ‰€ ๐‘€.

Proof of 7.10. By Proposition 1.34, ๐ธ is a subdirect product of ๐‘‡ and๐‘€.That is, ๐ธ is a subsemigroup of ๐‘‡ ร—๐‘€ and hence ๐ธ divides ๐‘‡ ร—๐‘€. Theresult follows from Propositions 7.8 and 7.9. 7.10

Pro p o s i t i on 7 . 1 1. If ๐‘†โ€ฒ โ‰ผ ๐‘† and ๐‘‡โ€ฒ โ‰ผ ๐‘‡, then ๐‘†โ€ฒ โ‰€ ๐‘‡โ€ฒ โ‰ผ ๐‘† โ‰€ ๐‘‡.

Proof of 7.11. The strategy is to prove this in two cases: when ๐‘†โ€ฒ and ๐‘‡โ€ฒ aresubsemigroups of ๐‘† and ๐‘‡, and when ๐‘†โ€ฒ and ๐‘‡โ€ฒ are homomorphic imagesof ๐‘† and ๐‘‡. The general result follows immediately.a) Suppose ๐‘†โ€ฒ and ๐‘‡โ€ฒ are subsemigroups of ๐‘† and ๐‘‡. Let

๐‘ˆ = { (๐‘“, ๐‘ก) โˆˆ ๐‘† โ‰€ ๐‘‡ โˆถ ๐‘‡โ€ฒ๐‘“ โŠ† ๐‘†โ€ฒ โˆง ๐‘ก โˆˆ ๐‘‡โ€ฒ }.

The immediate aim is to prove that ๐‘ˆ is a subsemigroup of ๐‘† โ‰€ ๐‘‡. Let(๐‘“1, ๐‘ก1), (๐‘“2, ๐‘ก2) โˆˆ ๐‘ˆ. So (๐‘“1, ๐‘ก1)(๐‘“2, ๐‘ก2) = (๐‘“1 ๐‘“2๐‘ก1 , ๐‘ก1๐‘ก2). First, ๐‘ก1๐‘ก2 โˆˆ ๐‘‡โ€ฒsince ๐‘‡โ€ฒ is a subsemigroup of ๐‘‡. Furthermore, for all ๐‘ฅ โˆˆ ๐‘‡โ€ฒ,

(๐‘ฅ)(๐‘“1 ๐‘“2๐‘ก1 ) = ((๐‘ฅ)๐‘“1)((๐‘ฅ๐‘ก1)๐‘“2) โˆˆ (๐‘‡โ€ฒ๐‘“)(๐‘‡โ€ฒ๐‘“) โŠ† ๐‘†โ€ฒ

since ๐‘†โ€ฒ is a subsemigroup of ๐‘†. Hence (๐‘“1 ๐‘“2๐‘ก1 , ๐‘ก1๐‘ก2) โˆˆ ๐‘ˆ. Thus ๐‘ˆ is asubsemigroup of ๐‘† โ‰€ ๐‘‡.

Define ๐œ‘ โˆถ ๐‘ˆ โ†’ ๐‘†โ€ฒ โ‰€ ๐‘‡โ€ฒ by (๐‘“, ๐‘ก)๐œ‘ = (๐‘“|๐‘‡โ€ฒ, ๐‘ก). It is clear that ๐œ‘ is asurjective homomorphism and so ๐‘†โ€ฒ โ‰€ ๐‘‡โ€ฒ โ‰ผ ๐‘† โ‰€ ๐‘‡.

b) Suppose ๐œ‘ โˆถ ๐‘† โ†’ ๐‘†โ€ฒ and ๐œ“ โˆถ ๐‘‡ โ†’ ๐‘‡โ€ฒ are surjective homomorphisms.Let

๐‘ˆ = { (๐‘“, ๐‘ก) โˆˆ ๐‘† โ‰€ ๐‘‡ โˆถ ker๐œ“ โŠ† ker(๐‘“๐œ‘) }. (7.2)

As in part a), the first task is to prove that ๐‘ˆ is a subsemigroup of๐‘† โ‰€ ๐‘‡. First, note that ๐‘ˆ is non-empty, because any map ๐‘“ โˆˆ ๐‘†๐‘‡ withker๐œ“ โŠ† ker๐‘“ satisfies the condition in (7.2). Now let (๐‘“1, ๐‘ก1), (๐‘“2, ๐‘ก2) โˆˆ๐‘ˆ. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‡ with ๐‘ฅ๐œ“ = ๐‘ฆ๐œ“. Then (๐‘ฅ)๐‘“2๐œ‘ = (๐‘ฆ)๐‘“2๐œ‘ since ker๐œ“ โŠ†ker(๐‘“2๐œ‘). Furthermore, (๐‘ฅ๐‘ก1)๐œ“ = (๐‘ฅ๐œ“)(๐‘ก1๐œ“) = (๐‘ฆ๐œ“)(๐‘ก1๐œ“) = (๐‘ฆ๐‘ก1)๐œ“and so (๐‘ฅ๐‘ก1)๐‘“2๐œ‘ = (๐‘ฆ๐‘ก2)๐‘“2๐œ‘ since ker๐œ“ โŠ† ker(๐‘“2๐œ‘). Hence

(๐‘ฅ)๐‘“1 ๐‘“2๐‘ก1 ๐œ‘ = (๐‘ฅ)๐‘“1๐œ‘(๐‘ฅ๐‘ก1)๐‘“2๐œ‘ = (๐‘ฆ)๐‘“1๐œ‘(๐‘ฆ๐‘ก1)๐‘“2๐œ‘ = (๐‘ฆ)๐‘“1 ๐‘“2๐‘ก1 ๐œ‘.

136 โ€ขFinite semigroups

Page 145: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Thus ker๐œ“ โŠ† ker๐‘“1 ๐‘“2๐‘ก1 ๐œ‘, and so (๐‘“1, ๐‘ก1)(๐‘“2, ๐‘ก2) = (๐‘“1 ๐‘“2๐‘ก1 , ๐‘ก1๐‘ก2) โˆˆ ๐‘ˆ.So ๐‘ˆ is a subsemigroup of ๐‘† โ‰€ ๐‘‡.

For any map ๐‘“ โˆถ ๐‘‡ โ†’ ๐‘† such that ker๐œ“ โŠ† ker(๐‘“๐œ‘), there is aunique map ๐‘“โ€ฒ โˆถ ๐‘‡โ€ฒ โ†’ ๐‘†โ€ฒ such that ๐œ“๐‘“โ€ฒ = ๐‘“๐œ‘. Define ๐œ— โˆถ ๐‘ˆ โ†’ ๐‘†โ€ฒ โ‰€๐‘‡โ€ฒby (๐‘“, ๐‘ก)๐œ— = (๐‘“โ€ฒ, ๐‘ก๐œ“). Notice that since ๐œ“ is surjective, for any map๐‘“โ€ฒ โˆˆ ๐‘†โ€ฒ๐‘‡โ€ฒ there is a map ๐‘“ โˆˆ ๐‘†๐‘‡ with ๐œ“๐‘“โ€ฒ = ๐‘“๐œ‘; hence ๐œ— is surjective.Let (๐‘“1, ๐‘ก1), (๐‘“2, ๐‘ก2) โˆˆ ๐‘ˆ, then (๐‘“1, ๐‘ก1)(๐‘“2, ๐‘ก2) = (๐‘“1 ๐‘“2๐‘ก1 , ๐‘ก1๐‘ก2). Further,(๐‘“1, ๐‘ก1)๐œ—(๐‘“2, ๐‘ก2)๐œ— = (๐‘“1โ€ฒ, ๐‘ก1๐œ“)(๐‘“2โ€ฒ, ๐‘ก2๐œ“) = (๐‘“1โ€ฒ ๐‘“2โ€ฒ

๐‘ก1๐œ“ , (๐‘ก1๐‘ก2)๐œ“). Now

(๐‘ฆ๐œ“)๐‘“1โ€ฒ ๐‘“2โ€ฒ๐‘ก1๐œ“

= (๐‘ฆ๐œ“)๐‘“1โ€ฒ((๐‘ฆ๐œ“)(๐‘ก1๐œ“))๐‘“2โ€ฒ [by def. of the product and action]= (๐‘ฆ๐œ“)๐‘“1โ€ฒ(๐‘ฆ๐‘ก1)๐œ“๐‘“2โ€ฒ [since ๐œ“ is a homomorphism]= (๐‘ฆ)๐‘“1๐œ‘(๐‘ฆ๐‘ก1)๐‘“2๐œ‘ [by definition of ๐‘“1โ€ฒ and ๐‘“2โ€ฒ]= ((๐‘ฆ)๐‘“1(๐‘ฆ๐‘ก1)๐‘“2)๐œ‘ [since ๐œ‘ is a homomorphism]= ((๐‘ฆ)๐‘“1 ๐‘“2๐‘ก1 )๐œ‘, [by def. of the product and action]

and so

(๐‘“1 ๐‘“2๐‘ก1 , ๐‘ก1๐‘ก2)๐œ— = (๐‘“1โ€ฒ ๐‘“2โ€ฒ๐‘ก1๐œ“ , (๐‘ก1๐‘ก2)๐œ“). (7.3)

Hence

((๐‘“1, ๐‘ก1)(๐‘“2, ๐‘ก2))๐œ—= (๐‘“1 ๐‘“2๐‘ก1 , ๐‘ก1๐‘ก2)๐œ— [multiplication in ๐‘† โ‰€ ๐‘‡]

= (๐‘“1โ€ฒ ๐‘“2โ€ฒ๐‘ก1๐œ“ , (๐‘ก1๐‘ก2)๐œ“) [by (7.3)]

= (๐‘“โ€ฒ1, ๐‘ก1๐œ“)(๐‘“โ€ฒ2, ๐‘ก2๐œ“) [factoring in ๐‘†โ€ฒ โ‰€ ๐‘‡โ€ฒ]= (๐‘“1, ๐‘ก1)๐œ—(๐‘“2, ๐‘ก2)๐œ—,

and thus ๐œ— is a homomorphism. Therefore ๐‘†โ€ฒ โ‰€ ๐‘‡โ€ฒ โ‰ผ ๐‘† โ‰€ ๐‘‡. 7.11

Let ๐‘† be a semigroup. Let ๐‘†โ€ฒ be a set in bijection with ๐‘† under ๐‘ฅ โ†ฆ ๐‘ฅโ€ฒ. Constant extensionDefine a multiplication on ๐‘†โˆช๐‘†โ€ฒ as follows: multiplication in ๐‘† is as before(so that ๐‘† is a subsemigroup of ๐‘† โˆช ๐‘†โ€ฒ), and for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†,

๐‘ฅ๐‘ฆโ€ฒ = ๐‘ฅโ€ฒ๐‘ฆโ€ฒ = ๐‘ฆโ€ฒ, ๐‘ฅโ€ฒ๐‘ฆ = (๐‘ฅ๐‘ฆ)โ€ฒ. (7.4)

It is easy but tedious to prove that this multiplication is associative (see Ex-ercise 7.9). The set ๐‘† โˆช ๐‘†โ€ฒ is thus a semigroup, called the constant extensionof ๐‘† and denoted ๐ถ(๐‘†).

P ro p o s i t i on 7 . 1 2. If ๐‘† โ‰ผ ๐‘‡, then ๐ถ(๐‘†) โ‰ผ ๐ถ(๐‘‡).

Proof of 7.12. If ๐‘† is a subsemigroup of ๐‘‡, then ๐ถ(๐‘†) is a subsemigroup of๐ถ(๐‘‡).

Suppose ๐‘† is a homomorphic image of ๐‘‡. Then there exists somesurjective homomorphism ๐œ‘ โˆถ ๐‘‡ โ†’ ๐‘†. Define ๏ฟฝ๏ฟฝ โˆถ ๐ถ(๐‘‡) โ†’ ๐ถ(๐‘†) by

Division โ€ข 137

Page 146: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐‘ฅ๏ฟฝ๏ฟฝ = ๐‘ฅ๐œ‘ and ๐‘ฅโ€ฒ๏ฟฝ๏ฟฝ = (๐‘ฅ๐œ‘)โ€ฒ. Checking the various cases in (7.4) shows that๏ฟฝ๏ฟฝ is a homomorphism. It is clearly surjective. So ๐ถ(๐‘†) is a homomorphicimage of ๐ถ(๐‘‡).

Hence ๐‘† โ‰ผ ๐‘‡ implies ๐ถ(๐‘†) โ‰ผ ๐ถ(๐‘‡). 7.12

Prop o s i t i on 7 . 1 3. Let๐‘€ be a monoid and ๐‘† a semigroup. Then๐ถ(๐‘† โ‰€ ๐‘€) โ‰ผ ๐ถ(๐‘†)๐‘€ โ‰€ ๐ถ(๐‘€).

In place of this result, several textbooks claim incorrectly that๐ถ(๐‘†โ‰€๐‘€) โ‰ผ๐ถ(๐‘†) โ‰€ ๐ถ(๐‘€).

Proof of 7.13. Define a map ๐œ“ โˆถ ๐ถ(๐‘† โ‰€ ๐‘€) โ†’ ๐ถ(๐‘†)๐‘€ โ‰€ ๐ถ(๐‘€) by

(๐‘“,๐‘š)๐œ“ = (๐‘“ext, ๐‘š),{{{{{

where (๐‘ฆ)๐‘“ext โˆˆ ๐ถ(๐‘†)๐‘€ is defined by(๐‘ฅ)[(๐‘ฆ)๐‘“ext] = (๐‘ฅ๐‘ฆ)๐‘“

for all ๐‘ฅ โˆˆ ๐‘€ and ๐‘ฆ โˆˆ ๐ถ(๐‘€);

(๐‘“,๐‘š)โ€ฒ๐œ“ = (๐‘“con, ๐‘šโ€ฒ),{{{{{

where (๐‘ฆ)๐‘“con โˆˆ ๐ถ(๐‘†)๐‘€ is defined by(๐‘ฅ)[(๐‘ฆ)๐‘“con] = ((๐‘ฅ)๐‘“)โ€ฒ

for all ๐‘ฅ โˆˆ ๐‘€ and ๐‘ฆ โˆˆ ๐ถ(๐‘€).

Notice that (๐‘ฅ)[(๐‘ฆ)๐‘“con] does not depend on ๐‘ฆ. That is, ๐‘“con is a constantmap from ๐ถ(๐‘€) to ๐ถ(๐‘†)๐‘€.

The maps ๐‘“ext and ๐‘“con are maps from ๐ถ(๐‘€) to ๐ถ(๐‘†)๐‘€. That is, (๐‘ฆ)๐‘“extand (๐‘ฆ)๐‘“con are maps from ๐‘€ to ๐ถ(๐‘†) for all ๐‘ฆ โˆˆ ๐ถ(๐‘€). Notice inparticular that ๐‘“con is a constant map from ๐ถ(๐‘€) to ๐ถ(๐‘†)๐‘€, but for๐‘ฆ โˆˆ ๐ถ(๐‘€), the map (๐‘ฆ)๐‘“con is in general not constant.We are going to prove that ๐œ“ is a monomorphism. Let us first prove

that ๐œ“ is injective. To begin, observe that (๐‘“,๐‘š)๐œ“ = (๐‘”, ๐‘›)โ€ฒ๐œ“ implies(๐‘“ext, ๐‘š) = (โ„Žcon, ๐‘›โ€ฒ), which can never happen since๐‘š โˆˆ ๐‘€ and ๐‘›โ€ฒ โˆˆ ๐‘€โ€ฒ.Thus to prove that๐œ“ is injective, we only have to check that no two distinctelements of ๐‘†โ‰€๐‘€ aremapped to the same element and that no two distinctelements (๐‘† โ‰€ ๐‘€)โ€ฒ are mapped to the same element:a) Suppose (๐‘“,๐‘š)๐œ“ = (๐‘”,๐‘š)๐œ“. Then ๐‘“ext = ๐‘”ext and๐‘š = ๐‘›, and hence(๐‘ฆ)๐‘“ext = (๐‘ฆ)๐‘“ext for all ๐‘ฆ โˆˆ ๐‘€, or, equivalently, (๐‘ฅ๐‘ฆ)๐‘“ = (๐‘ฅ๐‘ฆ)๐‘” forall ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘€. In particular, putting ๐‘ฅ = 1 shows that (๐‘ฆ)๐‘“ = (๐‘ฆ)๐‘” forall ๐‘ฆ โˆˆ ๐‘€ and so ๐‘“ = ๐‘”; hence (๐‘“,๐‘š) = (๐‘”,๐‘š).

b) Suppose (๐‘“,๐‘š)โ€ฒ๐œ“ = (๐‘”, ๐‘›)โ€ฒ๐œ“. Then (๐‘“con, ๐‘šโ€ฒ) = (๐‘”con, ๐‘›โ€ฒ) and so๐‘“con = ๐‘”con and๐‘šโ€ฒ = ๐‘›โ€ฒ. So ((๐‘ฅ)๐‘“)โ€ฒ = (๐‘ฅ)[(๐‘ฆ)๐‘“con] = (๐‘ฅ)[(๐‘ฆ)๐‘”con] =((๐‘ฅ)๐‘”)โ€ฒ, and thus (๐‘ฅ)๐‘“ = (๐‘ฅ)๐‘” for all ๐‘ฅ โˆˆ ๐‘€. Hence ๐‘“ = ๐‘” and so(๐‘“,๐‘š)โ€ฒ = (๐‘”, ๐‘›)โ€ฒ.

Therefore ๐œ“ is injective.Next, we have to prove that ๐œ“ is a homomorphism. There are four

cases to consider, depending on whether each multiplicand lies in ๐‘† โ‰€ ๐‘€or (๐‘† โ‰€ ๐‘€)โ€ฒ. We explain one case in full here and outline the others; thedetails are left to Exercise 7.11.

138 โ€ขFinite semigroups

Page 147: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

a) Let (๐‘“,๐‘š), (๐‘”, ๐‘›) โˆˆ ๐‘† โ‰€ ๐‘€. We first have to prove:

(๐‘“ ๐‘”๐‘š )ext = ๐‘“ext ๐‘”ext๐‘š . (7.5)

Since both sides of (7.5) are maps from ๐ถ(๐‘€) to ๐ถ(๐‘†)๐‘€, we mustprove that (๐‘ฆ)(๐‘“ ๐‘”๐‘š )ext = (๐‘ฆ)๐‘“ext ๐‘”ext๐‘š for all ๐‘ฆ โˆˆ ๐ถ(๐‘€); since bothsides of this equality are maps from๐‘€ to ๐ถ(๐‘†), we must prove that(๐‘ฅ)[(๐‘ฆ)(๐‘“ ๐‘”๐‘š )ext] = (๐‘ฅ)[(๐‘ฆ)๐‘“ext ๐‘”ext๐‘š ] for all ๐‘ฅ โˆˆ ๐‘€ and ๐‘ฆ โˆˆ ๐ถ(๐‘€).We proceed as follows:

(๐‘ฅ)[(๐‘ฆ)(๐‘“ ๐‘”๐‘š )ext]= (๐‘ฅ๐‘ฆ)๐‘“ ๐‘”๐‘š [by definition of ext]= (๐‘ฅ๐‘ฆ)๐‘“(๐‘ฅ๐‘ฆ๐‘š)๐‘” [by def. of the product and action]= (๐‘ฅ)[(๐‘ฆ)๐‘“ext](๐‘ฅ)[(๐‘ฆ) ๐‘”ext๐‘š ] [by definition of ext]= (๐‘ฅ)[(๐‘ฆ)๐‘“ext(๐‘ฆ) ๐‘”ext๐‘š ], [by multiplication in ๐ถ(๐‘†)๐‘€]= (๐‘ฅ)[(๐‘ฆ)๐‘“ext ๐‘”ext๐‘š ]; [by multiplication in (๐ถ(๐‘†)๐‘€)๐ถ(๐‘€)]

this proves (7.5). Now we have:

((๐‘“,๐‘š)(๐‘”, ๐‘›))๐œ“ = (๐‘“ ๐‘”๐‘š , ๐‘š๐‘›)๐œ“= ((๐‘“ ๐‘”๐‘š )ext, ๐‘š๐‘›)= (๐‘“ext ๐‘”ext๐‘š , ๐‘š๐‘›) [by (7.5)]= (๐‘“ext, ๐‘š)(๐‘”ext, ๐‘›)= (๐‘“,๐‘š)๐œ“(๐‘”, ๐‘›)๐œ“.

b) Let (๐‘“,๐‘š)โ€ฒ โˆˆ (๐‘† โ‰€ ๐‘€)โ€ฒ and (๐‘”, ๐‘›) โˆˆ ๐‘† โ‰€ ๐‘€. By Exercise 7.11,

(๐‘“ ๐‘”๐‘š )con = ๐‘“con ๐‘”ext๐‘šโ€ฒ . (7.6)

Now we have:

((๐‘“,๐‘š)โ€ฒ(๐‘”, ๐‘›))๐œ“ = (๐‘“ ๐‘”๐‘š , ๐‘š๐‘›)โ€ฒ๐œ“= ((๐‘“ ๐‘”๐‘š )con, (๐‘š๐‘›)โ€ฒ)= (๐‘“con ๐‘”ext๐‘šโ€ฒ , ๐‘šโ€ฒ๐‘›) [by (7.6)]= (๐‘“con, ๐‘šโ€ฒ)(๐‘”โ€ฒ, ๐‘›)= (๐‘“,๐‘š)โ€ฒ๐œ“(๐‘”, ๐‘›)๐œ“.

c) Let (๐‘“,๐‘š) โˆˆ ๐‘† โ‰€ ๐‘€ and (๐‘”, ๐‘›)โ€ฒ โˆˆ (๐‘† โ‰€ ๐‘€)โ€ฒ. By Exercise 7.11,

๐‘”con = ๐‘“ext ๐‘”con๐‘š . (7.7)

Now we have:

((๐‘“,๐‘š)(๐‘”, ๐‘›)โ€ฒ)๐œ“ = (๐‘”, ๐‘›)โ€ฒ๐œ“= (๐‘”con, ๐‘›โ€ฒ)= (๐‘“ext ๐‘”con๐‘š , ๐‘š๐‘›โ€ฒ) [by (7.7)]= (๐‘“ext, ๐‘š)(๐‘”con, ๐‘›โ€ฒ)= (๐‘“,๐‘š)๐œ“(๐‘”, ๐‘›)โ€ฒ๐œ“.

Division โ€ข 139

Page 148: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

d) Let (๐‘“,๐‘š)โ€ฒ, (๐‘”, ๐‘›)โ€ฒ โˆˆ (๐‘† โ‰€ ๐‘€)โ€ฒ. By Exercise 7.11,

๐‘”con = ๐‘“con ๐‘”con๐‘š . (7.8)

Now we have:

((๐‘“,๐‘š)โ€ฒ(๐‘”, ๐‘›)โ€ฒ)๐œ“ = (๐‘”, ๐‘›)โ€ฒ๐œ“= (๐‘”con, ๐‘›โ€ฒ)= (๐‘“con ๐‘”con๐‘š , ๐‘šโ€ฒ๐‘›โ€ฒ) [by (7.8)]= (๐‘“con, ๐‘šโ€ฒ)(๐‘”con, ๐‘›โ€ฒ)= (๐‘“,๐‘š)โ€ฒ๐œ“(๐‘”, ๐‘›)โ€ฒ๐œ“.

Hence๐œ“ is a homomorphism and thus amonomorphism.Therefore๐œ“โˆ’1 isa surjective homomorphism from the subsemigroup im๐œ“ of๐ถ(๐‘†)๐‘€โ‰€๐ถ(๐‘€)to ๐ถ(๐‘† โ‰€ ๐‘€), and so ๐ถ(๐‘† โ‰€ ๐‘€) โ‰ผ ๐ถ(๐‘†)๐‘€ โ‰€ ๐ถ(๐‘€). 7.13

Coro l l a ry 7 . 1 4. Let๐‘€ be a finite monoid and ๐‘† a semigroup. Then๐ถ(๐‘† โ‰€ ๐‘€) divides a wreath product of copies of ๐ถ(๐‘†) and ๐ถ(๐‘€).

Proof of 7.14. By Proposition 7.13, let๐‘€ be a monoid and ๐‘† a semigroup.Then ๐ถ(๐‘† โ‰€ ๐‘€) โ‰ผ ๐ถ(๐‘†)๐‘€ โ‰€ ๐ถ(๐‘€). But ๐ถ(๐‘†)๐‘€ is a direct product of |๐‘€|copies of ๐ถ(๐‘†) and so ๐ถ(๐‘†)๐‘€ โ‰€ ๐ถ(๐‘€) divides a wreath product of copiesof ๐ถ(๐‘†) and ๐ถ(๐‘€) by Propositions 7.9 and 7.11. The result follows by thetransitivity of โ‰ผ. 7.14

Krohnโ€“Rhodesdecomposition theorem

Let ๐‘ˆ3 be the monoid obtained by adjoining an identityto a two-element right zero semigroup {๐‘Ž, ๐‘}. So ๐‘ˆ3 has elements {1, ๐‘Ž, ๐‘}and is multiplication table is as shown in Table 7.1. Notice that ๐‘ฅ2 = ๐‘ฅ forall ๐‘ฅ โˆˆ ๐‘ˆ3, and so ๐‘ˆ3 is aperiodic.

1 ๐‘Ž ๐‘1 1 ๐‘Ž ๐‘๐‘Ž ๐‘Ž ๐‘Ž ๐‘๐‘ ๐‘ ๐‘Ž ๐‘

TABLE 7.1Multiplication table of๐‘ˆ3 .

The Krohnโ€“Rhodes theorem is often stated in the form โ€˜every finitesemigroup divides a wreath product of finite groups and finite aperiodicsemigroupsโ€™. We will prove a stronger form by showing that every finitesemigroup divides a wreath product of its own subgroups and copies of๐‘ˆ3. We first of all note that it suffices to prove the theorem for monoidssince ๐‘† โ‰ผ ๐‘†1. The proof is by induction on the number of elements inthe monoid. The core of the induction is Lemma 7.16, which shows thata monoid ๐‘† is either a group, a left simple semigroup with an identityadjoined, monogenic, or can be decomposed as ๐‘† = ๐ฟ โˆช ๐‘‡, where ๐ฟ is aleft ideal and ๐‘‡ is a submonoid and ๐ฟ1 and ๐‘‡ have fewer elements than๐‘†. The theorem is trivial for groups, and we will prove it for left simplesemigroups with identities adjoined (Lemma 7.18) and for monogenic

140 โ€ขFinite semigroups

Page 149: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

semigroups (Lemma 7.19); these cases form the base of the induction. Thefourth possibility, of decomposition as ๐‘† = ๐ฟ โˆช ๐‘‡, supplies the inductionstep. The reader may wish to look ahead to Figure 7.1 on page 147 to keeptrack of the roles of the various lemmata.

We need the following auxiliary result before we prove Lemma 7.16:

L emma 7 . 1 5. Let ๐‘† be a finite semigroup. Then at least one of the fol-lowing is true:a) ๐‘† is trivial;b) ๐‘† is left simple;c) ๐‘† is monogenic;d) ๐‘† = ๐ฟ โˆช ๐‘‡, where ๐ฟ is a proper left ideal of ๐‘† and ๐‘‡ is a proper subsemi-

group of ๐‘†.

Proof of 7.15. Suppose that none of the properties a), b), or c) is true; weaim to prove d). Since ๐‘† is not left simple, it contains proper left ideals.Since it is finite, it has a maximal proper left ideal ๐พ.

Let ๐‘ฅ โˆˆ ๐‘† โˆ– ๐พ. Then ๐พ โˆช ๐‘†1๐‘ฅ is a left ideal that strictly contains ๐พ.Since ๐พ is maximal, ๐พ โˆช ๐‘†1๐‘ฅ = ๐‘†. If ๐‘†1๐‘ฅ โ‰  ๐‘†, then let ๐ฟ = ๐พ and ๐‘‡ = ๐‘†1๐‘ฅand the proof is complete.

So assume ๐‘†1๐‘ฅ = ๐‘†. Then ๐‘† == ๐‘†๐‘ฅ โˆช {๐‘ฅ} โŠ† ๐‘†๐‘ฅ โˆช โŸจ๐‘ฅโŸฉ. If ๐‘† โ‰  ๐‘†๐‘ฅ, thenlet ๐ฟ = ๐‘†๐‘ฅ and ๐‘‡ = โŸจ๐‘ฅโŸฉ and the proof is complete since ๐‘‡ โ‰  ๐‘† because ๐‘†is not monogenic.

So assume ๐‘† = ๐‘†๐‘ฅ. Let๐‘€ = {๐‘ฆ โˆˆ ๐‘† โˆถ ๐‘ฆ๐‘ฅ โˆˆ ๐พ }. Then๐‘€ non-empty(since๐‘€๐‘ฅ = ๐พ) and is a left ideal of ๐‘†. Furthermore, it is a proper left idealbecause๐พ is a proper left ideal and ๐‘†๐‘ฅ = ๐‘†. If๐‘€ โŠˆ ๐พ, then๐‘€โˆช๐พ is a leftideal of ๐‘† strictly containing the maximal left ideal ๐พ and so๐‘€โˆช๐พ = ๐‘†;set ๐ฟ = ๐‘€ and ๐‘‡ = ๐พ and the proof is complete.

So assume๐‘€ โŠ† ๐พ; that is,

๐‘ฆ๐‘ฅ โˆˆ ๐พ โ‡’ ๐‘ฆ โˆˆ ๐พ. (7.9)

Repeat the reasoning above for all ๐‘ฅ โˆˆ ๐‘† โˆ– ๐พ. Either some such ๐‘ฅ allowsus to complete the proof, or (7.9) holds for all ๐‘ฅ โˆˆ ๐‘† โˆ– ๐พ. In the formercase, the proof is finished. In the latter case, take the contrapositive tosee that ๐‘ฆ โˆˆ ๐‘† โˆ– ๐พ โ‡’ ๐‘ฆ๐‘ฅ โˆˆ ๐‘† โˆ– ๐พ for all ๐‘ฅ โˆˆ ๐‘† โˆ– ๐พ. Therefore ๐‘† โˆ– ๐พ is asubsemigroup. So let ๐ฟ = ๐พ and ๐‘‡ = ๐‘† โˆ– ๐พ; the proof is complete. 7.15

L emma 7 . 1 6. Let ๐‘† be a finite monoid.Then at least one of the followingis true:a) ๐‘† is a group;b) ๐‘† is a left simple with an identity adjoined;c) ๐‘† is monogenic;d) ๐‘† = ๐ฟ โˆช ๐‘‡, where ๐ฟ is a left ideal of ๐‘† and ๐‘‡ is a submonoid of ๐‘†, and๐ฟ1 and ๐‘‡ both have fewer elements than ๐‘†.

Krohnโ€“Rhodes decomposition theorem โ€ข 141

Page 150: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 7.16. Suppose that none of the properties a), b), and c) is true;we aim to prove d). Let ๐บ be the group of units of ๐‘†. Consider two cases:a) ๐บ is trivial. Then ๐‘† โˆ– ๐บ = ๐‘† โˆ– {1} is an ideal by Proposition 7.1 and

thus a subsemigroup of ๐‘†. Since ๐‘† is not left simple with an identityadjoined, we know that ๐‘† โˆ– {1} is not left simple. Apply Lemma 7.15to ๐‘† โˆ– {1} to see that ๐‘† โˆ– {1} = ๐ฟ โˆช ๐‘„, where ๐ฟ is a proper left ideal of๐‘†โˆ–{1} and๐‘„ is a proper subsemigroup of ๐‘†โˆ–{1}. Since ๐ฟ โ‰  ๐‘†โˆ–{1}, weknow that ๐ฟ โˆช {1} โ‰  ๐‘†. Let ๐‘‡ = ๐‘„โˆช {1}; then ๐‘‡ is a proper submonoidof ๐‘† and ๐‘† = ๐ฟ โˆช ๐‘‡.

b) ๐บ is non-trivial. Then let ๐ฟ = ๐‘† โˆ– ๐บ and let ๐‘‡ = ๐บ. Then ๐‘† = ๐ฟ โˆช ๐‘‡.Since ๐บ is non-trivial, ๐ฟ โˆช {1} โ‰  ๐‘†, and since ๐‘† is not a group, ๐‘‡ โ‰  ๐‘†.

In both cases, ๐‘† = ๐ฟ โˆช ๐‘‡, where ๐ฟ is a left ideal of ๐‘† and ๐‘‡ is a submonoidof ๐‘†. Furthermore, in both cases ๐ฟ1 and ๐‘‡ both have fewer elements thanthe original monoid ๐‘†. 7.16

Now we turn to proving the cases forming the base of the induction;that is, monoids consisting of a left simple semigroup with an identityadjoined, and monogenic monoids. To prove the former case in Lemma7.18, we will need the following lemma, which essentially shows that thetheorem holds for left zero semigroups:

L emma 7 . 1 7. Every finite left zero semigroup divides a wreath productof copies of ๐‘ˆ3.

Proof of 7.17. Let ๐ฟ๐‘› be a left zero semigroup with ๐‘› elements. The strategyis to proceed by induction and show that ๐ฟ1๐‘› โ‰ผ ๐ฟ1๐‘›โˆ’1 โ‰€ ๐ฟ11. The base ofthe induction is proved by observing that the semigroup ๐ฟ11 = {0, 1} is ahomomorphic image of ๐‘ˆ3.

For each ๐‘ฅ โˆˆ ๐ฟ1๐‘›โˆ’1, define ๐‘“๐‘ฅ โˆถ ๐ฟ11 โ†’ ๐ฟ1๐‘›โˆ’1 by (1)๐‘“๐‘ฅ = ๐‘ฅ and (0)๐‘“๐‘ฅ = 1.Let

๐พ = { (๐‘“๐‘ฅ, 0) โˆถ ๐‘ฅ โˆˆ ๐ฟ1๐‘›โˆ’1 }.

Furthermore, (๐‘“๐‘ฅ, 0)(๐‘“๐‘ฆ, 0) = (๐‘“๐‘ฅ ๐‘“๐‘ฆ0 , 0) = (๐‘“๐‘ฅ, 0), since for all ๐‘ง โˆˆ ๐ฟ11,

(๐‘ง)๐‘“๐‘ฅ ๐‘“๐‘ฆ0 = (๐‘ง)๐‘“๐‘ฅ(๐‘ง0)๐‘“๐‘ฆ = (๐‘ง)๐‘“๐‘ฅ(0)๐‘“๐‘ฆ = (๐‘ง)๐‘“๐‘ฅ1 = (๐‘ง)๐‘“๐‘ฅ.

Hence๐พ is a left zero subsemigroup of ๐ฟ1๐‘›โˆ’1 โ‰€ ๐ฟ11. Notice that ๐‘› = |๐ฟ1๐‘›โˆ’1| =|๐พ|. Furthermore, the wreath product ๐ฟ1๐‘›โˆ’1 โ‰€๐ฟ11 is a monoid by Proposition7.7. Therefore ๐พ โˆช {1} is a subsemigroup of ๐ฟ1๐‘›โˆ’1 โ‰€ ๐ฟ11 isomorphic to ๐ฟ1๐‘›.Hence ๐ฟ1๐‘› โ‰ผ ๐ฟ1๐‘›โˆ’1 โ‰€ ๐ฟ11.

By Proposition 7.11, ๐ฟ1๐‘› divides a wreath product of ๐‘› copies of ๐‘ˆ3;thus ๐ฟ๐‘› also divides a wreath product of ๐‘› copies of ๐‘ˆ3 by the transitivityof divisibility. 7.17

L emma 7 . 1 8. Let ๐‘† be a finite left simple semigroup. Then ๐‘†1 divides thewreath product of a subgroup of ๐‘† and copies of ๐‘ˆ3.

142 โ€ขFinite semigroups

Page 151: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 7.18. Since ๐‘† is finite, it contains an idempotent. Thus by Theorem4.19, we see that ๐‘† is isomorphic to๐‘ร—๐บ, where๐‘ is a left zero semigroupand ๐บ is a subgroup of ๐‘†. By Lemma 7.17, ๐‘ divides a wreath productof copies of ๐‘ˆ3. So by Propositions 7.9 and 7.11, ๐‘ ร— ๐บ divides a wreathproduct of ๐บ and copies of ๐‘ˆ3. 7.18

We now turn to proving the remaining case in the base of the induc-tion, namely monogenic monoids:

L emma 7 . 1 9. Let ๐‘† be a finite monogenic monoid. Then ๐‘† divides thewreath product of a subgroup of ๐‘† and copies of ๐‘ˆ3.

Proof of 7.19. The monogenic monoid ๐‘† = {1, ๐‘ฅ,โ€ฆ , ๐‘ฅ๐‘˜,โ€ฆ , ๐‘ฅ๐‘˜+๐‘šโˆ’1} (with๐‘ฅ๐‘˜+๐‘š = ๐‘ฅ๐‘˜) is an ideal extension of the subgroup ๐บ = {๐‘ฅ๐‘˜,โ€ฆ , ๐‘ฅ๐‘˜+๐‘šโˆ’1}by the monogenic monoid ๐ถ๐‘˜ = {1, ๐‘ฅ,โ€ฆ , ๐‘ฅ๐‘˜} (with ๐‘ฅ๐‘˜ = ๐‘ฅ๐‘˜ + 1).

We proceed by induction on ๐‘˜ and show that ๐ถ๐‘˜ divides a subsemi-group of ๐ถ๐‘˜โˆ’1 โ‰€ ๐ถ1. The base case of the induction is proven by observingthat ๐ถ1 = {1, ๐‘ฅ} (with ๐‘ฅ2 = ๐‘ฅ) divides ๐‘ˆ3, since it is isomorphic to thesubsemigroup {1, ๐‘Ž} of ๐‘ˆ3.

For ๐‘– โˆˆ โ„•, define ๐‘“๐‘– โˆถ ๐ถ1 โ†’ ๐ถ๐‘˜โˆ’1 by (1)๐‘“๐‘– = ๐‘ฅ๐‘–โˆ’1 and (0)๐‘“๐‘– = ๐‘ฅ๐‘–. Let

๐‘ˆ = {1} โˆช { (๐‘“๐‘–, 0) โˆถ ๐‘– โˆˆ โ„• } โŠ† ๐ถ๐‘˜โˆ’1 โ‰€ ๐ถ1.

Let (๐‘“๐‘–, 0)(๐‘“๐‘—, 0) โˆˆ ๐‘ˆ. Then (๐‘“๐‘–, 0)(๐‘“๐‘—, 0) = (๐‘“๐‘– ๐‘“๐‘—0 , 0) = (๐‘“๐‘–+๐‘—, 0) since

(0)๐‘“๐‘– ๐‘“๐‘—0 = (0)๐‘“๐‘–(0)๐‘“๐‘— = ๐‘ฅ๐‘–๐‘ฅ๐‘— = ๐‘ฅ๐‘–+๐‘— = (0)๐‘“๐‘–+๐‘—,

(1)๐‘“๐‘– ๐‘“๐‘—0 = (1)๐‘“๐‘–(0)๐‘“๐‘— = ๐‘ฅ๐‘–โˆ’1๐‘ฅ๐‘— = (1)๐‘“๐‘–+๐‘—.

Hence๐‘ˆ is a submonoid of ๐ถ๐‘˜โˆ’1 โ‰€ ๐ถ1. In particular, (๐‘“๐‘–, 0) = (๐‘“1, 0๐‘–) for all๐‘– โˆˆ โ„•, and so ๐‘ˆ is the monogenic submonoid of ๐ถ๐‘˜โˆ’1 โ‰€ ๐ถ1 generated by(๐‘“1, 0). Finally, note that

(๐‘“1, 0)๐‘˜+1 = (๐‘“๐‘˜+1, 0) = (๐‘“๐‘˜, 0) = (๐‘“1, 0)๐‘˜,(๐‘“1, 0)๐‘˜ = (๐‘“๐‘˜, 0) โ‰  (๐‘“๐‘˜โˆ’1, 0) = (๐‘“1, 0)๐‘˜โˆ’1;

and so

๐‘ˆ = {1, (๐‘“1, 0), (๐‘“1, 0)2,โ€ฆ , (๐‘“1, 0)๐‘˜}.

Hence ๐‘ˆ is isomorphic to ๐ถ๐‘˜, and therefore ๐ถ๐‘˜ โ‰ผ ๐ถ๐‘˜โˆ’1 โ‰€ ๐ถ1.Thus every ๐ถ๐‘˜ divides a wreath product of ๐‘ˆ3 by Propositions 7.9 and

7.11. So ๐‘†, being an ideal extension of ๐บ and ๐ถ๐‘˜, divides a wreath productof ๐บ and copies of ๐‘ˆ3 by Proposition 7.10. 7.19

Finally, we are ready to being proving the induction step, in the casewhere the monoid has been decomposed as the union of a left ideal and asubsemigroup. We require the following four lemmata, and then we canquickly prove the theorem.

Krohnโ€“Rhodes decomposition theorem โ€ข 143

Page 152: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

L emma 7 . 2 0. Let ๐‘† be a semigroup and suppose ๐‘† = ๐ฟ โˆช ๐‘‡, where ๐ฟ is aleft ideal of ๐‘† and ๐‘‡ is a subsemigroup of ๐‘†. Then ๐‘† โ‰ผ ๐ฟ1 โ‰€ ๐ถ(๐‘‡1).

Proof of 7.20. Let ๐‘– โˆถ ๐ถ(๐‘‡1) โ†’ ๐ฟ1 be the constant map defined by (๐‘ก)๐‘– =(๐‘กโ€ฒ)๐‘– = 1 for all ๐‘ก โˆˆ ๐‘‡1. For each ๐‘ฅ โˆˆ ๐ฟ, let ๐‘“๐‘ฅ โˆถ ๐ถ(๐‘‡1) โ†’ ๐ฟ1 be the righttranslation defined by (๐‘ก)๐‘“๐‘ฅ = (๐‘กโ€ฒ)๐‘“๐‘ฅ = ๐‘ก๐‘ฅ for all ๐‘ก โˆˆ ๐‘‡1. Notice that๐‘ก๐‘ฅ โˆˆ ๐ฟ since ๐ฟ is a left ideal.

Let

๐‘‰ = { (๐‘–, ๐‘ก) โˆถ ๐‘ก โˆˆ ๐‘‡1 } โˆช { (๐‘“๐‘ฅ, ๐‘กโ€ฒ) โˆถ ๐‘ฅ โˆˆ ๐ฟ, ๐‘ก โˆˆ ๐‘‡1 }.

We aim to show ๐‘‰ is a subsemigroup of ๐ฟ1 โ‰€ ๐ถ(๐‘‡1) and that ๐‘† is a homo-morphic image of ๐‘‰. We have four cases to consider:a) Let (๐‘–, ๐‘ก), (๐‘–, ๐‘ข) โˆˆ ๐‘‰. Then (๐‘–, ๐‘ก)(๐‘–, ๐‘ข) = (๐‘– ๐‘–๐‘ก , ๐‘ก๐‘ข) = (๐‘–, ๐‘ก๐‘ข) since

(๐‘ )๐‘– ๐‘–๐‘ก = (๐‘ )๐‘–(๐‘ ๐‘ก)๐‘– = 1 = (๐‘ )๐‘–,(๐‘ โ€ฒ)๐‘– ๐‘–๐‘ก = (๐‘ โ€ฒ)๐‘–(๐‘ โ€ฒ๐‘ก)๐‘– = 1 = (๐‘ โ€ฒ)๐‘–

for all ๐‘  โˆˆ ๐‘‡1.b) Let (๐‘–, ๐‘ก), (๐‘“๐‘ฆ, ๐‘ขโ€ฒ) โˆˆ ๐‘‰.Then (๐‘–, ๐‘ก)(๐‘“๐‘ฆ, ๐‘ขโ€ฒ) = (๐‘– ๐‘“๐‘ฆ๐‘ก , ๐‘ก๐‘ขโ€ฒ) = (๐‘“๐‘ก๐‘ฆ, ๐‘ขโ€ฒ), since

(๐‘ )๐‘– ๐‘“๐‘ฆ๐‘ก = (๐‘ )๐‘–(๐‘ ๐‘ก)๐‘“๐‘ฆ = 1๐‘ ๐‘ก๐‘ฆ = (๐‘ )๐‘“๐‘ก๐‘ฆ,

(๐‘ โ€ฒ)๐‘– ๐‘“๐‘ฆ๐‘ก = (๐‘ โ€ฒ)๐‘–(๐‘ โ€ฒ๐‘ก)๐‘“๐‘ฆ = 1๐‘ โ€ฒ๐‘ก๐‘ฆ = (๐‘ โ€ฒ)๐‘“๐‘ก๐‘ฆ

for all ๐‘  โˆˆ ๐‘‡1.c) Let (๐‘“๐‘ฅ, ๐‘กโ€ฒ), (๐‘–, ๐‘ข) โˆˆ ๐‘‰. Then (๐‘“๐‘ฅ, ๐‘กโ€ฒ)(๐‘–, ๐‘ข) = (๐‘“๐‘ฅ ๐‘–๐‘กโ€ฒ , ๐‘กโ€ฒ๐‘ข) = (๐‘“๐‘ฅ, (๐‘ก๐‘ข)โ€ฒ)

since

(๐‘ )๐‘“๐‘ฅ ๐‘–๐‘กโ€ฒ = (๐‘ )๐‘“๐‘ฅ(๐‘ ๐‘กโ€ฒ)๐‘– = (๐‘ )๐‘“๐‘ฅ1 = (๐‘ )๐‘“๐‘ฅ,(๐‘ โ€ฒ)๐‘“๐‘ฅ ๐‘–๐‘กโ€ฒ = (๐‘ โ€ฒ)๐‘“๐‘ฅ(๐‘ โ€ฒ๐‘กโ€ฒ)๐‘– = (๐‘ โ€ฒ)๐‘“๐‘ฅ1 = (๐‘ โ€ฒ)๐‘“๐‘ฅ

for all ๐‘  โˆˆ ๐‘‡1.d) Let (๐‘“๐‘ฅ, ๐‘กโ€ฒ), (๐‘“๐‘ฆ, ๐‘ขโ€ฒ) โˆˆ ๐‘‰. Then

(๐‘“๐‘ฅ, ๐‘กโ€ฒ)(๐‘“๐‘ฆ, ๐‘ขโ€ฒ) = (๐‘“๐‘ฅ ๐‘“๐‘ฆ๐‘กโ€ฒ , ๐‘กโ€ฒ๐‘ขโ€ฒ) = (๐‘“๐‘ฅ๐‘ก๐‘ฆ, ๐‘ขโ€ฒ),

since

(๐‘ )๐‘“๐‘ฅ ๐‘“๐‘ฆ๐‘กโ€ฒ = (๐‘ )๐‘“๐‘ฅ(๐‘ ๐‘กโ€ฒ)๐‘“๐‘ฆ = (๐‘ )๐‘“๐‘ฅ(๐‘กโ€ฒ)๐‘“๐‘ฆ = ๐‘ ๐‘ฅ๐‘ก๐‘ฆ = (๐‘ )๐‘“๐‘ฅ๐‘ก๐‘ฆ,

(๐‘ โ€ฒ)๐‘“๐‘ฅ ๐‘“๐‘ฆ๐‘กโ€ฒ = (๐‘ โ€ฒ)๐‘“๐‘ฅ(๐‘ โ€ฒ๐‘กโ€ฒ)๐‘“๐‘ฆ = (๐‘ โ€ฒ)๐‘“๐‘ฅ(๐‘กโ€ฒ)๐‘“๐‘ฆ = ๐‘ ๐‘ฅ๐‘ก๐‘ฆ = (๐‘ โ€ฒ)๐‘“๐‘ฅ๐‘ก๐‘ฆ

for all ๐‘  โˆˆ ๐‘‡1.

144 โ€ขFinite semigroups

Page 153: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Hence ๐‘‰ is a subsemigroup of ๐ฟ1 โ‰€ ๐ถ(๐‘‡1). Define a map ๐œ‘ โˆถ ๐‘‰ โ†’ ๐‘† by(๐‘–, ๐‘ก)๐œ‘ = ๐‘ก and (๐‘“๐‘ฅ, ๐‘กโ€ฒ)๐œ‘ = ๐‘ฅ๐‘ก. Then, using the four cases above,

((๐‘–, ๐‘ก)(๐‘–, ๐‘ข))๐œ‘ = (๐‘–, ๐‘ก๐‘ข)๐œ‘ = ๐‘ก๐‘ข = (๐‘–, ๐‘ก)๐œ‘(๐‘–, ๐‘ข)๐œ‘,((๐‘–, ๐‘ก)(๐‘“๐‘ฆ, ๐‘ขโ€ฒ))๐œ‘ = (๐‘“๐‘ก๐‘ฆ, ๐‘ขโ€ฒ)๐œ‘ = ๐‘ก๐‘ฆ๐‘ข = (๐‘–, ๐‘ก)๐œ‘(๐‘“๐‘ฆ, ๐‘ขโ€ฒ)๐œ‘,((๐‘“๐‘ฅ, ๐‘กโ€ฒ)(๐‘–, ๐‘ข))๐œ‘ = (๐‘“๐‘ฅ, (๐‘ก๐‘ข)โ€ฒ)๐œ‘ = ๐‘ฅ๐‘ก๐‘ข = (๐‘“๐‘ฅ, ๐‘กโ€ฒ)๐œ‘(๐‘–, ๐‘ข)๐œ‘,((๐‘“๐‘ฅ, ๐‘กโ€ฒ)(๐‘“๐‘ฆ, ๐‘ขโ€ฒ))๐œ‘ = (๐‘“๐‘ฅ๐‘ก๐‘ฆ, ๐‘ขโ€ฒ)๐œ‘ = ๐‘ฅ๐‘ก๐‘ฆ๐‘ข = (๐‘“๐‘ฅ, ๐‘กโ€ฒ)๐œ‘(๐‘“๐‘ฆ, ๐‘ขโ€ฒ)๐œ‘;

hence ๐œ‘ is a homomorphism. Finally, note that ๐‘‡ โŠ† im๐œ‘ since (๐‘–, ๐‘ก)๐œ‘ = ๐‘กfor all ๐‘ก โˆˆ ๐‘‡ and ๐ฟ โŠ† im๐œ‘ since (๐‘“๐‘ฅ, 1)๐œ‘ = ๐‘ฅ for all ๐‘ฅ โˆˆ ๐ฟ. Hence๐‘† = ๐ฟ โˆช ๐‘‡ = im๐œ‘ and so ๐œ‘ is a surjective homomorphism. Thus ๐‘† โ‰ผ๐ฟ1 โ‰€ ๐ถ(๐‘‡1). 7.20

Thefollowing result is essentially amore precise version of Lemma 7.20that holds when we decompose a monoid into the union of its group ofunits and the set of remaining elements:

L emma 7 . 2 1. Let ๐‘† be a monoid and let ๐บ be its group of units. Then๐ผ = ๐‘† โˆ– ๐บ is an ideal of ๐‘† and ๐‘† โ‰ผ ๐ผ1 โ‰€ ๐บ.

Proof of 7.21. First, notice that ๐‘†โˆ–๐บ is an ideal by Proposition 7.1. For each๐‘ฅ โˆˆ ๐ผ1, define a map ๐‘“๐‘ฅ โˆถ ๐บ โ†’ ๐ผ1 by (๐‘”)๐‘“๐‘ฅ = ๐‘”๐‘ฅ๐‘”โˆ’1 for all ๐‘” โˆˆ ๐บ. Noticethat (๐‘”)๐‘“1 = ๐‘”๐‘”โˆ’1 = 1 for all ๐‘” โˆˆ ๐บ. Let ๐‘‰ = { (๐‘“๐‘ฅ, ๐‘”) โˆถ ๐‘ฅ โˆˆ ๐ผ1, ๐‘” โˆˆ ๐บ }.

Let (๐‘“๐‘ฅ, ๐‘”), (๐‘“๐‘ฆ, โ„Ž) โˆˆ ๐‘‰. Then for any ๐‘˜ โˆˆ ๐บ,

(๐‘˜)๐‘“๐‘ฅ ๐‘“๐‘ฆ๐‘” = (๐‘˜)๐‘“๐‘ฅ(๐‘˜๐‘”)๐‘“๐‘ฆ= ๐‘˜๐‘ฅ๐‘˜โˆ’1๐‘˜๐‘”๐‘ฆ๐‘”โˆ’1๐‘˜โˆ’1

= ๐‘˜(๐‘ฅ๐‘”๐‘ฆ๐‘”โˆ’1)๐‘˜โˆ’1

= (๐‘˜)๐‘“๐‘ฅ๐‘”๐‘ฆ๐‘”โˆ’1 .

Therefore

(๐‘“๐‘ฅ, ๐‘”)(๐‘“๐‘ฆ, โ„Ž) = (๐‘“๐‘ฅ ๐‘“๐‘ฆ๐‘” , ๐‘”โ„Ž) = (๐‘“๐‘ฅ๐‘”๐‘ฆ๐‘”โˆ’1 , ๐‘”โ„Ž). (7.10)

Notice that ๐‘ฅ๐‘”๐‘ฆ๐‘”โˆ’1 โˆˆ ๐ผ1 since ๐‘ฅ is in ๐ผ1 and ๐ผ is an ideal. Thus ๐‘‰ is asubsemigroup of ๐ผ1 โ‰€ ๐บ.

Define a map ๐œ‘ โˆถ ๐‘‰ โ†’ ๐‘† by (๐‘“๐‘ฅ, ๐‘”)๐œ‘ = ๐‘ฅ๐‘”. This map ๐œ‘ is well-definedsince ๐‘“๐‘ฅ = ๐‘“๐‘ฆ โ‡’ (1)๐‘“๐‘ฅ = (1)๐‘“๐‘ฆ โ‡’ ๐‘ฅ = ๐‘ฆ. Furthermore,

((๐‘“๐‘ฅ, ๐‘”)(๐‘“๐‘ฆ, โ„Ž))๐œ‘ = (๐‘“๐‘ฅ๐‘”๐‘ฆ๐‘”โˆ’1 , ๐‘”โ„Ž)๐œ‘ [by (7.10)]

= ๐‘ฅ๐‘”๐‘ฆ๐‘”โˆ’1๐‘”โ„Ž= ๐‘ฅ๐‘”๐‘ฆโ„Ž= (๐‘“๐‘ฅ, ๐‘”)๐œ‘(๐‘“๐‘ฆ, โ„Ž)๐œ‘.

So ๐œ‘ is a homomorphism. Finally, ๐บ โŠ† im๐œ‘ since (๐‘“1, ๐‘”)๐œ‘ = ๐‘” for all๐‘” โˆˆ ๐บ and ๐ผ1 โŠ† im๐œ‘ since (๐‘“๐‘ฅ, 1)๐œ‘ = ๐‘ฅ for all ๐‘ฅ โˆˆ ๐‘†. So ๐œ‘ is surjectiveand so ๐‘† โ‰ผ ๐ผ1 โ‰€ ๐บ. 7.21

Krohnโ€“Rhodes decomposition theorem โ€ข 145

Page 154: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

The following lemma shows that the result holds for right zero semi-groups, but we only use it to prove the next lemma.

L emma 7 . 2 2. Every finite right zero semigroup, and every finite rightzero semigroup with an identity adjoined, divides a wreath product of copiesof ๐‘ˆ3.

Proof of 7.22. Let ๐‘…๐‘˜ denote the right zero semigroup with ๐‘˜ elements.Notice that ๐‘…๐‘˜ is a subsemigroup of ๐‘…โ„“ and ๐‘…1๐‘˜ is a submonoid of ๐‘…1โ„“for ๐‘˜ โฉฝ โ„“. The direct product of ๐‘› copies of ๐‘ˆ3 contains subsemigroupsisomorphic to ๐‘…2๐‘› and ๐‘…12๐‘› , so for any ๐‘˜ the direct product of sufficientlymany copies of ๐‘ˆ3 contains ๐‘…๐‘˜ and ๐‘…1๐‘˜. So ๐‘…๐‘˜ and ๐‘…1๐‘˜ divide a wreathproduct of copies of ๐‘ˆ3 by Proposition 7.9. 7.22

L emma 7 . 2 3. Let ๐‘† be a finite semigroup. If ๐‘† divides a wreath productof groups and copies of ๐‘ˆ3, then ๐ถ(๐‘†) divides a wreath product of copies ofthose same groups and copies of ๐‘ˆ3.

Proof of 7.23. Supppose that ๐‘† divides a wreath product of groups ๐บ๐‘– andcopies of ๐‘ˆ3. By Propositions 7.11, 7.12, and 7.14, ๐ถ(๐‘†) divides a wreathproduct of the monoids ๐ถ(๐บ๐‘–) and copies of ๐ถ(๐‘ˆ3). Now, the semigroup๐ถ(๐‘ˆ3) is a right zero semigroup with an identity adjoined, which dividesa wreath product of copies of ๐‘ˆ3 by Lemma 7.22. The group of unitsof ๐ถ(๐บ๐‘–) is ๐บ๐‘– and ๐ฟ = ๐ถ(๐บ๐‘–) โˆ– ๐บ๐‘– is an ideal of ๐ถ(๐บ๐‘–) by Proposition7.1. Furthermore, ๐ฟ is a right zero semigroup by (7.4). So ๐ถ(๐บ๐‘–) divides๐ฟ1 โ‰€ ๐บ๐‘– by Lemma 7.21. Since ๐ฟ1 is a right zero semigroup with an identityadjoined, it divides the wreath product of copies of ๐‘ˆ3 by Lemma 7.22. So๐ฟ1 โ‰€ ๐บ๐‘– divides a wreath product of ๐บ๐‘– and copies of๐‘ˆ3 by Proposition 7.11.So ๐‘† divides a wreath product of the groups ๐บ๐‘– and copies of ๐‘ˆ3. 7.23

Finally, using these lemmata, we can proof the Krohnโ€“Rhodes Theo-rem. To keep track of the roles of the various lemmata, see Figure 7.1.

K rohnโ€“Rhode s Th eorem 7 . 2 4. Let ๐‘† be a finite semigroup.Krohnโ€“Rhodes theoremThen ๐‘† divides a wreath product of subgroups of ๐‘† and copies of ๐‘ˆ3.

Proof of 7.24. Let ๐‘† be a semigroup; we will show that ๐‘† divides a wreathproduct of its subgroups and copies of ๐‘ˆ3. Since ๐‘† โ‰ผ ๐‘†1, we can assume ๐‘†is a monoid.

The strategy is induction on the number of elements in ๐‘†. The basecase of the induction is when ๐‘† has one element. In this case, ๐‘† is trivial,and so ๐‘† is a group and the result holds immediately.

So assume the result holds for all monoids with fewer elements than ๐‘†.As already noted, the result clearly holds if ๐‘† is a group and in particularif ๐‘† is trivial. It also holds by Lemma 7.18 if ๐‘† is a left simple semigroupwith an identity adjoined, and if ๐‘† is monogenic by Lemma 7.19.

So assume ๐‘† is not trivial, not a group, not a left simple semigroupwith an identity adjoined, and not monogenic. By Lemma 7.16, ๐‘† = ๐ฟ โˆช ๐‘‡,

146 โ€ขFinite semigroups

Page 155: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐‘†

๐‘†1

๐‘†1 a group๐‘†1 left simplewith identity

adjoined๐‘†1 monogenic

๐‘†1 = ๐ฟ โˆช ๐‘‡๐ฟ a left ideal,๐‘‡ a submonoid,|๐ฟ1|, |๐‘‡| < |๐‘†|

Wreath prod.of ๐‘ˆ3 and

subgroups of ๐‘†1

Wreath prod.of ๐‘ˆ3 and

subgroups of ๐‘†1๐ฟ1 โ‰€ ๐ถ(๐‘‡1)

Wreath prod.of ๐‘ˆ3 and

subgroups of ๐‘†1

Wreath prod.of ๐‘ˆ3 and

subgroups of ๐‘†1

Wreath prod.of ๐‘ˆ3 and

subgroups of ๐‘†1

โŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸ

โ‰ผ

โ‰ผ Lem. 7.18โ‰ผ Lem. 7.19

โ‰ผ Lem. 7.20

โ‰ผInduction โ‰ผ Induction,Lem. 7.23

โ‰ผPr. 7.11

FIGURE 7.1Diagram showing how the vari-ous lemmata are used to provethe Krohnโ€“Rhodes theorem.

where ๐ฟ is a left ideal and ๐‘‡ is a submonoid of ๐‘† and both ๐ฟ1 and ๐‘‡ havefewer elements than ๐‘†. So by the induction hypothesis, ๐ฟ1 divides a wreathproduct of subgroups of ๐ฟ1 (which are also subgroups of ๐‘†) and copies of๐‘ˆ3, and similarly ๐‘‡ divides a wreath product of subgroups of ๐‘‡ (which arealso subgroups of ๐‘†) and copies of ๐‘ˆ3. By Lemma 7.23, ๐ถ(๐‘‡) also dividesa wreath product of subgroups of ๐‘† and copies of ๐‘ˆ3. By Proposition 7.11,๐‘† thus divides a wreath product of subgroups of ๐‘† and copies of ๐‘ˆ3.

Thus, by induction, the result holds for all monoids ๐‘†. 7.24

Exercises

[See pages 237โ€“241 for the solutions.]7.1 Let ๐‘€ be a finite monoid. Prove that ๐‘€ is a group if and only if๐‘€๐‘ฅ๐‘€ = ๐‘€ for all ๐‘ฅ โˆˆ ๐‘€.

7.2 Let ๐‘† be a finite semigroup. Let ๐ฝ๐‘ฅ be a nontrivial J-class of ๐‘†. Provethat there is a regular J-class ๐ฝ๐‘ฆ such that ๐ฝ๐‘ฅ โฉฝ ๐ฝ๐‘ฆ.

โœด7.3 a) Prove that a finite nilsemigroup is nilpotent.b) Give an example of an infinite nilsemigroup that is not nilpotent.

Exercises โ€ข 147

Page 156: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

7.4 Let ๐‘† and ๐‘†โ€ฒ be finite semigroups and let ๐œ‘ โˆถ ๐‘† โ†’ ๐‘†โ€ฒ be a surjectivehomomorphism.a) Let ๐ฝ be a J-class of ๐‘†. Prove that there is a J-class ๐ฝโ€ฒ of ๐‘†โ€ฒ such

that ๐ฝ๐œ‘ โŠ† ๐ฝโ€ฒ.b) Let ๐ฝโ€ฒ be a J-class of ๐‘†โ€ฒ. Prove that there is a J-class ๐ฝ of ๐‘† such

that ๐ฝ๐œ‘ โŠ† ๐ฝโ€ฒ. If ๐ฝ is minimal such that ๐ฝ๐œ‘ โŠ† ๐ฝโ€ฒ, then ๐ฝ๐œ‘ = ๐ฝโ€ฒ.โœด7.5 Prove that if ๐‘† is a finite semigroup in whichH is the equality relation

and ๐‘‡ โ‰ผ ๐‘†, then in ๐‘‡ the relation H is also the equality relation. Givean example to show that this is may not be true when ๐‘† is infinite.

โœด7.6 Prove that the multiplication defined for semidirect products (7.1) isassociative.

7.7 Prove that if๐‘€ and๐‘ are groups,๐‘€ โ‰€๐‘ is a group.7.8 Suppose that ๐‘† and ๐‘‡ are cancellative semigroups. Must ๐‘† โ‰€ ๐‘‡ be

cancellative?โœด7.9 Prove that the product defined by (7.4) for the constant extension is

associative.7.10 Let๐‘€ be a non-trivial monoid. For each ๐‘ฅ โˆˆ ๐‘€, let ๐œŒ๐‘ฅ โˆˆ T๐‘€ and๐œ๐‘ฅ โˆˆ T๐‘€ be defined by ๐‘ฆ๐œŒ๐‘ฅ = ๐‘ฆ๐‘ฅ and ๐‘ฆ๐œ๐‘ฅ = ๐‘ฅ. Prove that ๐ถ(๐‘€) isisomorphic to the subset { ๐œŒ๐‘ฅ, ๐œ๐‘ฅ โˆถ ๐‘ฅ โˆˆ ๐‘€ } of T๐‘€.

โœด7.11 Using a technique similar to the proof of (7.5), prove (7.6), (7.7), (7.8)

Notes

The Krohnโ€“Rhodes theorem was first stated and proved forautomata in Krohn & Rhodes, โ€˜Algebraic theory of machines Iโ€™. โ—† The proof inthis chapter is due to Lallement, Semigroups and Combinatorial Applications, andincorporates the correction published in Lallement, โ€˜Augmentations and wreathproducts of monoidsโ€™. โ—† Rhodes& Steinberg,The ๐”ฎ-theory of Finite Semigroups isthe most comprehensive monograph on finite semigroup theory, but is decidedlynon-elementary.

โ€ข

148 โ€ขFinite semigroups

Page 157: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

8Varieties& pseudovarieties

โ€˜ Variety of opinion is necessary for objective knowledge.And a method that encourages variety is also the onlymethod that is compatible with a humanitarian outlook. โ€™

โ€” Paul Feyeraband, Against Method, ยง 3.

โ€ข The aim of this chapter is to introduce varieties andpseudovarieties of semigroups and monoids. These are classes of that arewell-behaved and can, in particular, be defined using sets of equations.For instance, the class of all commutative semigroups forms a variety, andthe class of all finite commutative semigroups forms a pseudovariety, andboth are defined by the equation๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ.Wewill formalize these notionslater in the chapter, and we will see how varieties and pseudovarieties canbe defined and manipulated in different ways.

Pseudovarieties are important in the study of finite semigroups forthe following reason: there are many finite semigroups of a given size,but most of them are boring. Of the 3 684 030 417 non-isomorphic semi-groups with 8 elements, 3 661 522 792 of them are nilpotent semigroups๐‘† satisfying ๐‘†3 = {0}. (Essentially, the reason there are so many of thesesemigroups is that any multiplication in which all products of length 3are equal to 0 is trivially associative.) Pseudovarieties allow us to isolatethe more interesting classes.

The concepts of varieties and pseudovarieties are actually broaderthan semigroups: varieties make sense for any type of algebraic structure,and pseudovarieties make sense for any type of finite algebraic structure.Therefore we will begin by discussing varieties in terms of universalalgebra.

Varieties

An algebra is a set ๐‘† equipped with some operations { ๐‘“๐‘– โˆถ Algebras and operations๐‘– โˆˆ ๐ผ }. An operation ๐‘“๐‘– on ๐‘† is simply a map ๐‘“๐‘– โˆถ ๐‘†๐‘“๐‘–๐›ผ โ†’ ๐‘† for some๐‘“๐‘–๐›ผ โˆˆ โ„• โˆช {0}. This ๐‘“๐‘–๐›ผ is called the arity of ๐‘“๐‘–. For instance, if ๐‘† is a Arity of an operationsemigroup, the multiplication operation โˆ˜ is a map โˆ˜ โˆถ ๐‘†2 โ†’ ๐‘† and sohas arity 2. If ๐‘† is a inverse semigroup, the inverse operation โˆ’1 is a map

โ€ข 149

Page 158: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

โˆ’1 โˆถ ๐‘† โ†’ ๐‘† and so has arity 1. If ๐‘† is a monoid, we can view the identityelement 1๐‘† as an operation, or as a map 1๐‘† โˆถ ๐‘†0 โ†’ ๐‘† (where ๐‘†0 = โˆ…); theoperation 1๐‘† has arity 0. Operations of arity 1 are called unary; operationsof arity 2 are called binary; operations of arity 0 are called constants. Noticethat we have a map ๐›ผ โˆถ { ๐‘“๐‘– โˆถ ๐‘– โˆˆ ๐ผ } โ†’ โ„• โˆช {0}.

A type T of an algebra is a set of operations symbols { ๐‘“๐‘– โˆถ ๐‘– โˆˆ ๐ผ } and aTypesmap ๐›ผ โˆถ { ๐‘“๐‘– โˆถ ๐‘– โˆˆ ๐ผ } โ†’ โ„• โˆช {0} determining the arity of each operations.We can write the type simply by listing the pairs in the map ๐›ผ (viewedas a set). A semigroup has type {(โˆ˜, 2)}, a monoid has type {(โˆ˜, 2), (1, 0)}(the identity operation 1 is constant), and a lattice has type {(โŠ“, 2), (โŠ”, 2)}.An algebra of type T is called a T-algebra.

Notice that some structures can be viewed as algebras in more thanone way, and thus have more than one type. Let ๐บ be a group. Then๐บ, viewed as a group, is a {(โˆ˜, 2), (1๐บ, 0), (โˆ’1, 1)}-algebra; ๐บ, viewed as amonoid, is a {(โˆ˜, 2), (1๐บ, 0)}-algebra;๐บ, viewed as a semigroup, is a {(โˆ˜, 2)}-algebra.

Strictly speaking, we should distinguish a symbol ๐‘“๐‘– from the oper-ation ๐‘“๐‘–: for instance, we use the same symbol โˆ˜ to refer to the differentmultiplications in different semigroups. We will want to use the samesymbol to discuss operations of the same arity in different structures.

Let T = { (๐‘“๐‘–, ๐‘“๐‘–๐›ผ) โˆถ ๐‘– โˆˆ ๐ผ } be a type. We are now going to givethe definition of subalgebras, homomorphisms, congruences, and directproducts of T-algebras. These definitions are straightforward generaliza-tions of the definitions for semigroups.

Let ๐‘† be a T-algebra. A subset ๐‘†โ€ฒ of ๐‘† is a subalgebra of ๐‘† if ๐‘†โ€ฒ is closedSubalgebrasunder all the operations in T: that is, for each ๐‘– โˆˆ ๐ผ, we have

๐‘ฅ1,โ€ฆ , ๐‘ฅ๐‘“๐‘–๐›ผ โˆˆ ๐‘†โ€ฒ โ‡’ (๐‘ฅ1,โ€ฆ , ๐‘ฅ๐‘“๐‘–๐›ผ)๐‘“๐‘– โˆˆ ๐‘†โ€ฒ. (8.1)

In particular, this means that ๐‘“๐‘– โˆˆ ๐‘†โ€ฒ whenever ๐‘“๐‘–๐›ผ = 0. Let ๐‘‹ โŠ† ๐‘†.The subalgebra generated by ๐‘‹ is defined to be the intersection of allsubalgebras that contain๐‘‹. It is easy to prove (cf. Proposition 1.11) thatthe subalgebra generated by๐‘‹ consists of all elements that can be obtainedby starting from๐‘‹ and applying the operations ๐‘“๐‘–.

Let ๐‘† and ๐‘‡ be T-algebras. Then ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ is a homomorphism if forHomomorphismseach ๐‘– โˆˆ ๐ผ, we have

((๐‘ฅ1,โ€ฆ , ๐‘ฅ๐‘“๐‘–๐›ผ)๐‘“๐‘–)๐œ‘ = (๐‘ฅ1๐œ‘,โ€ฆ , ๐‘ฅ๐‘“๐‘–๐›ผ๐œ‘)๐‘“๐‘–. (8.2)

(Notice that on the left-hand side of (8.2),๐‘“๐‘– is an operation on ๐‘†, while onthe right-hand side, it is an operation on ๐‘‡.) An injective homomorphismis a monomorphism, and a bijective homomorphism is an isomorphism. If๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ is a surjective homomorphism, ๐‘‡ is a homomorphic image of๐‘†.

Let ๐‘† be a T-algebra. A binary relation ๐œŒ on ๐‘† is a congruence if forCongruences

150 โ€ขVarieties & pseudovarieties

Page 159: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

each ๐‘– โˆˆ ๐ผ,

(โˆ€๐‘ฅ1, ๐‘ฆ1,โ€ฆ , ๐‘ฅ๐‘“๐‘–๐›ผ, ๐‘ฆ๐‘“๐‘–๐›ผ)(๐‘ฅ1 ๐œŒ ๐‘ฆ1 โˆงโ€ฆ โˆง ๐‘ฅ๐‘“๐‘–๐›ผ ๐œŒ ๐‘ฅ๐‘“๐‘–๐›ผโ‡’ (๐‘ฅ1,โ€ฆ , ๐‘ฅ๐‘“๐‘–๐›ผ)๐‘“๐‘– ๐œŒ (๐‘ฆ1,โ€ฆ , ๐‘ฆ๐‘“๐‘–๐›ผ)๐‘“๐‘–).

Let S = { ๐‘†๐‘— โˆถ ๐‘— โˆˆ ๐ฝ } be a collection ofT-algebras.The direct product of Direct productsthe T-algebras in S is their cartesian productโˆ๐‘—โˆˆ๐ฝ ๐‘†๐‘— with the operationsperformed componentwise:

(๐‘—)(๐‘ 1,โ€ฆ , ๐‘ ๐‘“๐‘–๐›ผ)๐‘“๐‘– = ((๐‘—)๐‘ 1,โ€ฆ , (๐‘—)๐‘ ๐‘“๐‘–)๐‘“๐‘–.

Let ๐ด be a non-empty set and let ๐นT(๐ด) be the smallest set of all Free T-algebrasformal expressions (that is, words) over ๐ด โˆช {๐‘“๐‘– โˆถ ๐‘– โˆˆ ๐ผ } โˆช {(} โˆช {)} โˆช {, }satisfying the following two conditions:

๐ด โŠ† ๐นT(๐ด);๐‘ข1,โ€ฆ , ๐‘ข๐‘“๐‘–๐›ผ โˆˆ ๐นT(๐ด) โ‡’ (๐‘ข1,โ€ฆ , ๐‘ข๐‘“๐‘–๐›ผ)๐‘“๐‘– โˆˆ ๐นT(๐ด).

For instance, if T is {(๐‘“, 2), ( โ€ฒ , 1)} and ๐ด = {๐‘Ž, ๐‘, ๐‘}, then the words(๐‘Ž, (((๐‘, ๐‘)๐‘“)โ€ฒ, ๐‘)๐‘“)๐‘“ and (((๐‘)โ€ฒ, ((๐‘, ๐‘Ž)๐‘“, (๐‘)โ€ฒ)๐‘“)๐‘“ are elements of ๐นT(๐ด).The set ๐นT(๐ด) is obviously a T-algebra and is called the free T-algebra orabsolutely free T-algebra. Notice that ๐นT(๐ด) is generated by ๐ด.

Let ๐œ„ โˆถ ๐ด โ†’ ๐นT(๐ด) be the inclusion map. For any T-algebra ๐‘† andmap ๐œ‘ โˆถ ๐ด โ†’ ๐‘†, there is a unique extension of ๐œ‘ to a homomorphism๏ฟฝ๏ฟฝ โˆถ ๐นT(๐ด) โ†’ ๐‘†. That is, ๐œ„๏ฟฝ๏ฟฝ = ๐œ‘, or, equivalently, the following diagramcommutes:

๐ด ๐นT(๐ด)

๐‘†

๐œ„

๐œ‘๏ฟฝ๏ฟฝ (8.3)

This property is reminiscent of some definitions we have already seen:free semigroups and monoids (see pages 38 f.), free inverse semigroupsand monoids (see page 107), and free commutative semigroups (see page123), and we shall say more about it later.

Let X be a non-empty class of T-algebras. Letโ„X denote the class โ„, ๐•Š, โ„™of all T-algebras that are homomorphic images of the algebras in X. Let๐•ŠX denote the class of all T-algebras that are subalgebras of algebras in X.Let โ„™X denote the class of all T-algebras that are direct products of theT-algebras in X. That is,

โ„X = { ๐‘† โˆถ (โˆƒ๐‘‡ โˆˆ X)(๐‘† is a homomorphic image of ๐‘‡) };๐•ŠX = { ๐‘† โˆถ (โˆƒ๐‘‡ โˆˆ X)(๐‘† is a subalgebra of ๐‘‡) };โ„™X = { ๐‘† โˆถ (โˆƒ{ ๐‘‡๐‘– โˆถ ๐‘– โˆˆ ๐ผ } โŠ† X)(๐‘† = โˆ๐‘–โˆˆ๐ผ๐‘‡๐‘–) }.

Varieties โ€ข 151

Page 160: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Thusโ„, ๐•Š, and โ„™ are unary operators on classes of algebras. Notice thatX is contained inโ„X, ๐•ŠX, and โ„™X.

A non-empty class ofT-algebras is a variety ofT-algebras if it is closedVarietyunder the operationsโ„, ๐•Š, andโ„™.That is,X is a variety ifโ„Xโˆช๐•ŠXโˆชโ„™X โŠ†X.

E x a m p l e 8 . 1. a) Let 1 be the class containing only the trivial sem-igroup ๐ธ = {๐‘’}. Then 1 is a variety, since the only subsemigroup of ๐ธis ๐ธ itself, the only homomorphic image of ๐ธ is ๐ธ itself, and any directproduct of copies of ๐ธ is isomorphic to ๐ธ.

b) Let S be the class of all semigroups (viewed as {(โˆ˜, 2)}-algebras). Anyhomomorphic image of a semigroup is itself a semigroup, so S isclosed underโ„. Subalgebras are subsemigroups, and so S is closedunder ๐•Š. A direct product of semigroups is a semigroup, so S is closedunder โ„™. Therefore S is a variety.

c) Let M be the class of all monoids (viewed as {(โˆ˜, 2), (1, 0)}-algebras).A homomorphic image of a monoid is again a monoid, so M is closedunderโ„. Subalgebras are submonoids because the subalgebramust beclosed under the โ€˜operationโ€™ 1: that is, they must contain the constant1. So M is closed under ๐•Š. A direct product of monoids is itself amonoid. Therefore M is a variety.

d) Let Com be the class of all commutative semigroups (viewed, likemembers of S, as {(โˆ˜, 2)}-algebras). Since any subalgebra or homo-morphic image of a commutative semigroup is itself a commutativesemigroup, and a direct product of commutative semigroups is com-mutative, Com is a variety.

e) Let G be the class of all groups, viewed as {(โˆ˜, 2), (1๐บ, 0), (โˆ’1, 1)}-al-gebras. Then subalgebras are closed under multiplication and takinginverses; thus subalgebras are subgroups. Since any subalgebra or ho-momorphic image of a group is also a group, and any direct productof groups is also a group, G is a variety.

Notice that the class of all groups G viewed as {(โˆ˜, 2)}-algebras isnot a variety, because in this case subalgebras are subsemigroups andso G is not closed under taking subalgebras; for example, G containsโ„ค but not its subsemigroupโ„•.

f) Let Inv be the class of inverse semigroups, viewed as {(โˆ˜, 2), (โˆ’1, 1)}-algebras. Then Inv is a variety.

Let V be a variety ofT-algebras and let๐ด be a non-empty set. Let ๐‘† โˆˆ V.Let๐œ‘ โˆˆ ๐‘†๐ด.We know there is a unique extension of๐œ‘ to a homomorphism๏ฟฝ๏ฟฝ โˆถ ๐นT(๐ด) โ†’ ๐‘†. Now, im ๏ฟฝ๏ฟฝ is a subalgebra of ๐‘† and so im ๏ฟฝ๏ฟฝ โˆˆ V since V isclosed under forming subalgebras. Let

๐œŒ = โ‹‚{ ker ๏ฟฝ๏ฟฝ โˆถ ๐œ‘ โˆˆ ๐‘†๐ด, ๐‘† โˆˆ V }.

152 โ€ขVarieties & pseudovarieties

Page 161: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Then ๐œŒ, being an intersection of congruences on ๐นT(๐ด), is also a congru-ence. Furthermore, ๐œŒ โŠ† ker ๏ฟฝ๏ฟฝ for any ๐œ‘ โˆˆ ๐‘†๐ด. Hence for each ๐‘† โˆˆ V and๐œ‘ โˆˆ ๐‘†๐ด, there exists a unique homomorphism ๐œ‘ โˆถ ๐นT(๐ด)/๐œŒ โ†’ ๐‘† suchthat ๐œŒโ™ฎ๐œ‘ = ๏ฟฝ๏ฟฝ. Thus ๐œ‘ โˆถ ๐นT(๐ด)/๐œŒ โ†’ ๐‘† is the unique homomorphism suchthat ๐œ‘ = ๐œ„๏ฟฝ๏ฟฝ = ๐œ„๐œŒโ™ฎ๐œ‘, and the following diagram commutes:

๐ด ๐นT(๐ด) ๐นT(๐ด)/๐œŒ

๐‘†

๐œ„

๐œ‘

๐œŒโ™ฎ

๏ฟฝ๏ฟฝ๐œ‘

By a result for T-algebras analogous to Proposition 1.33, ๐นT(๐ด)/๐œŒ is asubdirect product of { ๐นT(๐ด)/ ker ๏ฟฝ๏ฟฝ โˆถ ๐œ‘ โˆˆ ๐‘†๐ด, ๐‘† โˆˆ V }. Now, each algebra๐นT(๐ด)/ ker ๏ฟฝ๏ฟฝ is a subalgebra of an element of V and therefore is itself amember of V (since ๐•ŠV = V). Hence ๐นT(๐ด)/๐œŒ โˆˆ ๐•Šโ„™V = V.

The T-algebra ๐นT(๐ด)/๐œŒ is called the V-free algebra, and is denoted V-free algebras๐นV(๐ด). Notice that there is a map ๐œ— โˆถ ๐ด โ†’ ๐นV(๐ด) given by ๐‘ฅ๐œ— = ๐‘ฅ๐œ„๐œŒโ™ฎ =[๐‘ฅ]๐œŒ such that the universal property holds: for any ๐‘† โˆˆ V and map ๐œ‘ โˆถ๐ด โ†’ ๐‘†, there is a unique homomorphism ๐œ‘ โˆถ ๐นV(๐ด) โ†’ ๐‘† such that๐œ—๐œ‘ = ๐œ‘, or, in diagrammatic terms:

๐ด ๐นV(๐ด)

๐‘†

๐œ—

๐œ‘๐œ‘ (8.4)

Notice that if V is the variety of all T-algebras, ๐นV(๐ด) = ๐นT(๐ด) and werecover diagram (8.3).

Let us apply this definition to some concrete varieties. Let V be thevariety of all semigroups S. Then the definition of a S-free algebra co-incides with the definition of a free semigroup, and the diagram (8.4)becomes identical to the second diagram in (2.1). Since ๐นS(๐ด) โˆˆ S, we seethat ๐นS(๐ด) โ‰ƒ ๐ด+ by Proposition 2.1.

Similarly, if we apply the definition to the variety of inverse semigroupsInv, the diagram (8.4) becomes identical to the second diagram in (5.10)and we see that ๐นInv(๐ด) โ‰ƒ FInvS(๐ด) by Proposition 5.15. With the varietyof commutative semigroups Com, the diagram (8.4) becomes identicalto the second diagram in (6.1) and we see that ๐นCom(๐ด) โ‰ƒ FCommS(๐ด)by Proposition 6.3.

Thus for any variety V of T-algebras we have (for each set ๐ด) a T-algebra ๐นV(๐ด) โˆˆ V and a map ๐œ— โˆถ ๐ด โ†’ ๐นV(๐ด) with the universal property.This indicates that varieties have some of the nice properties of the classesof semigroups, inverse semigroups, and commutative semigroups. Butvarieties also have another very useful property: they are precisely thosecollections of algebras that can be defined using sets of equations calledlaws.

Varieties โ€ข 153

Page 162: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

ForT-algebras, a law over an alphabet๐ด is a pair of elements๐‘ข and ๐‘ฃ ofLaws๐นT(๐ด), normally written as a formal equality ๐‘ข = ๐‘ฃ. AT-algebra ๐‘† satisfiesthe law ๐‘ข = ๐‘ฃ if, for every map ๐œ‘ โˆถ ๐ด โ†’ ๐‘†, we have ๐‘ข๏ฟฝ๏ฟฝ = ๐‘ฃ๏ฟฝ๏ฟฝ (where๏ฟฝ๏ฟฝ is the homomorphism in diagram (8.3)). Informally, ๐‘† satisfies ๐‘ข = ๐‘ฃif we every possible substitution of elements of ๐‘† for letters of ๐ด in thewords ๐‘ข and ๐‘ฃ gives elements that are equal. For instance, commutativesemigroups, viewed as {(โˆ˜, 2)}-algebras, satisfy the law ๐‘ฅ โˆ˜ ๐‘ฆ = ๐‘ฆ โˆ˜ ๐‘ฅ.Semigroups of idempotents satisfy the law ๐‘ฅ โˆ˜ ๐‘ฅ = ๐‘ฅ. All semigroupssatisfy the law ๐‘ฅ โˆ˜ (๐‘ฆ โˆ˜ ๐‘ง) = (๐‘ฅ โˆ˜ ๐‘ฆ) โˆ˜ ๐‘ง, and all monoids satisfy the laws๐‘ฅ โˆ˜ 1 = ๐‘ฅ and 1 โˆ˜ ๐‘ฅ = ๐‘ฅ.

A law over ๐ด is sometimes called an identity or identical relation over ๐ด,but we will avoid this potentially confusing terminology.Let E be a class of T-algebras. Suppose there is a set ๐ฟ of laws over anEquational classes

alphabet ๐ด such that ๐‘† โˆˆ E if and only if ๐‘† satisfies every law in ๐ฟ. Then Eis the equational class defined by ๐ฟ.

B i rkhof f โ€™ s Th eorem 8 . 2. Let T be a type. Then a class of T-Birkhoff โ€™s theoremalgebras is a variety if and only if it is an equational class.

Proof of 8.2. Part 1. Suppose X is an equational class. Then there is a set oflaws ๐ฟ over an alphabet ๐ด such that ๐‘† โˆˆ X if and only if ๐‘† satisfies everylaw in ๐ฟ. To prove that X is a variety, we must show that it is closed underโ„, ๐•Š, and โ„™.

Let ๐‘† โˆˆ X, and let ๐‘‡ be a T-algebra and ๐œ“ โˆถ ๐‘† โ†’ ๐‘‡ a surjectivehomomorphism. Let ๐‘ข = ๐‘ฃ be a law in ๐ฟ. Let ๐œ‘ โˆถ ๐ด โ†’ ๐‘‡ be a map. Definea map ๐œ— โˆถ ๐ด โ†’ ๐‘† by letting ๐‘Ž๐œ— โˆˆ ๐‘† be such that ๐‘Ž๐œ—๐œ“ = ๐‘Ž๐œ‘ (such an ๐‘Ž๐œ—exists because ๐œ“ is surjective). Notice that ๐œ—๐œ“ and ๏ฟฝ๏ฟฝ are homomorphismsfrom ๐นT(๐ด) to ๐‘† extending ๐œ—๐œ“ = ๐œ‘ and so, by the uniqueness of suchhomomorphisms, ๐œ—๐œ“ = ๏ฟฝ๏ฟฝ. Since ๐‘† satisfies ๐ฟ, we have ๐‘ข๐œ— = ๐‘ฃ๐œ—; hence๐‘ข๏ฟฝ๏ฟฝ = ๐‘ข๐œ—๐œ“ = ๐‘ฃ๐œ—๐œ“ = ๐‘ฃ๏ฟฝ๏ฟฝ. So ๐‘‡ satisfies ๐‘ข = ๐‘ฃ. Hence ๐‘‡ satisfies every lawin ๐ฟ and so ๐‘‡ โˆˆ X. Thus X is closed underโ„.

Let ๐‘† โˆˆ X and let ๐‘‡ be a subalgebra of ๐‘†. Let ๐‘ข = ๐‘ฃ be a law in ๐ฟ. Thenif ๐œ‘ โˆถ ๐ด โ†’ ๐‘‡, then ๐œ‘ is also a map from ๐ด to ๐‘† and so ๐‘ข๏ฟฝ๏ฟฝ = ๐‘ฃ๏ฟฝ๏ฟฝ since ๐‘†satisfies ๐‘ข = ๐‘ฃ. Hence ๐‘‡ also satisfies ๐‘ข = ๐‘ฃ. So ๐‘‡ satisfies every law in ๐ฟand so ๐‘‡ โˆˆ X. Thus X is closed under ๐•Š.

Let { ๐‘†๐‘— โˆถ ๐‘— โˆˆ ๐ฝ } โŠ† X and suppose ๐‘‡ is the direct product of { ๐‘†๐‘— โˆถ ๐‘— โˆˆ๐ฝ }. Let ๐‘ข = ๐‘ฃ be a law in ๐ฟ. Let ๐œ‘ โˆถ ๐ด โ†’ ๐‘‡ be a map. For each ๐‘— โˆˆ ๐ฝ, let๐œ‘๐‘— = ๐œ‘๐œ‹๐‘—, where ๐œ‹๐‘— โˆถ ๐‘‡ โ†’ ๐‘†๐‘— is the projection homomorphism. So ๐œ‘๐‘— isa map from ๐ด to ๐‘†๐‘—, and ๐‘†๐‘— satisfies ๐‘ข = ๐‘ฃ, and thus ๐‘ข๏ฟฝ๏ฟฝ๐‘— = ๐‘ฃ๏ฟฝ๏ฟฝ๐‘—. The map๐œ“ โˆถ ๐นT(๐ด) โ†’ ๐‘‡ with (๐‘—)(๐‘ฅ๐œ“) = ๐‘ฅ๏ฟฝ๏ฟฝ๐‘— is a homomorphism extending ๐œ‘, so,by the uniqueness condition, ๐œ“ = ๏ฟฝ๏ฟฝ. Since ๐‘ข๏ฟฝ๏ฟฝ๐‘— = ๐‘ฃ๏ฟฝ๏ฟฝ๐‘— for each ๐‘—, we have๐‘ข๏ฟฝ๏ฟฝ = ๐‘ข๐œ“ = ๐‘ฃ๐œ“ = ๐‘ฃ๏ฟฝ๏ฟฝ; hence ๐‘‡ satisfies ๐‘ข = ๐‘ฃ. So ๐‘‡ satisfies every law in ๐ฟand so ๐‘‡ โˆˆ X. Thus X is closed under โ„™.

So X is closed underโ„, ๐•Š, and โ„™, and so is a variety.

Part 2. Suppose now that V is a variety. Let ๐ด be an infinite alphabet.

154 โ€ขVarieties & pseudovarieties

Page 163: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Recall that ๐นV(๐ด) = ๐นT(๐ด)/๐œŒ, where

๐œŒ = โ‹‚{ ker ๏ฟฝ๏ฟฝ โˆถ ๐œ‘ โˆˆ ๐‘†๐ด, ๐‘† โˆˆ V }.

We aim to show that V is the equational class defined by ๐œŒ, viewing theset of pairs ๐œŒ โŠ† ๐นT(๐ด) ร— ๐นT(๐ด) as a set of laws.

Let ๐‘† โˆˆ V. Let (๐‘ข, ๐‘ฃ) โˆˆ ๐œŒ; notice that ๐‘ข, ๐‘ฃ โˆˆ ๐นT(๐ด). Then (๐‘ข, ๐‘ฃ) โˆˆ ker ๏ฟฝ๏ฟฝand thus ๐‘ข๏ฟฝ๏ฟฝ = ๐‘ฃ๏ฟฝ๏ฟฝ for any ๐œ‘ โˆˆ ๐‘†๐ด. So ๐‘† satisfies the law ๐‘ข = ๐‘ฃ. Thus every๐‘† โˆˆ V satisfies the law ๐‘ข = ๐‘ฃ for any (๐‘ข, ๐‘ฃ) โˆˆ ๐œŒ.

Conversely, suppose that ๐‘† satisfies the law ๐‘ข = ๐‘ฃ for every (๐‘ข, ๐‘ฃ) โˆˆ ๐œŒ.Let ๐ต be an alphabet with cardinality greater than or equal to both ๐‘† and๐ด. Let ๐นV(๐ต) be the V-free algebra generated by ๐ต; then ๐นV(๐ต) = ๐นT(๐ต)/๐œ‹for some congruence ๐œ‹ on ๐นT(๐ต).

Since ๐ต has cardinality greater than or equal to ๐‘†, there is a surjectivehomomorphism ๐œ“ โˆถ ๐นT(๐ต) โ†’ ๐‘†. We are going to prove that ๐œ‹ โŠ† ker๐œ“,which will imply that we have a well-defined surjective homomorphism๐œ— โˆถ ๐นV(๐ต) โ†’ ๐‘† with [๐‘ฅ]๐œ‹๐œ— = ๐‘ฅ๐œ“, which will in turn imply ๐‘† โˆˆ V.

So let (๐‘ข, ๐‘ฃ) โˆˆ ๐œ‹. Let ๐ต0 be the subset of ๐ต containing the letters thatappear in ๐‘ข or ๐‘ฃ; notice that ๐ต0 is finite. Let๐ด0 be a finite subset of๐ด suchthat there is a bijection ๐œ‰0 โˆถ ๐ด0 โ†’ ๐ต0. Since ๐ต has cardinality greaterthan or equal to ๐ด, there is an injection ๐œ‰ โˆถ ๐ด โ†’ ๐ต extending ๐œ‰0. Since๐œ‰ is injective, there is a right inverse ๐œ‚ โˆถ ๐ต โ†’ ๐ด of ๐œ‰ (that is, ๐œ‰๐œ‚ = id๐ด).Then ๐œ‰ extends to a monomorphism ๐œ‰ โˆถ ๐นT(๐ด) โ†’ ๐นT(๐ต), and ๐œ‚ extendsto a homomorphism ๐œ‚ โˆถ ๐นT(๐ต) โ†’ ๐นT(๐ด). Since ๐œ‰ is injective, there areuniquely determined ๐‘ข0, ๐‘ฃ0 โˆˆ ๐นT(๐ด) such that ๐‘ข0 ๐œ‰ = ๐‘ข and ๐‘ฃ0 ๐œ‰ = ๐‘ฃ.Notice that ๐‘ข๐œ‚ = ๐‘ข0 and ๐‘ฃ๐œ‚ = ๐‘ฃ0.

Consider the map ๐œ‚๐œŒโ™ฎ โˆถ ๐นT(๐ต) โ†’ ๐นV(๐ด). Since ๐นV(๐ต) lies in thevariety V, we must have ๐œ‹ โŠ† ๐œ‚๐œŒโ™ฎ. In particular, ๐‘ข๐œ‚๐œŒโ™ฎ = ๐‘ฃ๐œ‚๐œŒโ™ฎ and so(๐‘ข0, ๐‘ฃ0) โˆˆ ๐œŒ. Thus ๐‘† satisfies the law ๐‘ข0 = ๐‘ฃ0. Therefore, since ๐œ‚๐œ“ โˆถ๐นT(๐ต) โ†’ ๐‘† is a homomorphism, ๐‘ข0๐œ‚๐œ“ = ๐‘ฃ0๐œ‚๐œ“ and so ๐‘ข๐œ“ = ๐‘ฃ๐œ“.

Hence ๐œ‹ โŠ† ker๐œ“ and so we have a well-defined homomorphism๐œ— โˆถ ๐นV(๐ต) โ†’ ๐‘† with [๐‘ฅ]๐œ‹๐œ— = ๐‘ฅ๐œ“. Therefore ๐‘† is a homomorphic image of๐นV(๐ต) โˆˆ V and so lies in the variety V.

Thus we have proved that ๐‘† โˆˆ V if and only if ๐‘† satisfies every law๐‘ข = ๐‘ฃ in ๐œŒ. Therefore V is an equational class. 8.2

Theorem 8.2 shows that every variety can be defined by a set of laws. Finitely based varietyHowever, in general an infinite set of laws is required. This is true evenfor varieties of semigroups. However, in some cases, a finite set of lawssuffice. Such varieties are said to be finitely based.

Let T be the type {(โˆ˜, 2)}. The variety consisting of all semigroups S isdefined by the law ๐‘ฅ โˆ˜ (๐‘ฆ โˆ˜ ๐‘ง) = (๐‘ฅ โˆ˜ ๐‘ฆ) โˆ˜ ๐‘ง. We use this type when workingwith varieties of semigroups, and we will always implicitly assume thislaw and write ๐‘ฅ๐‘ฆ for ๐‘ฅ โˆ˜ ๐‘ฆ. Examples are summarized in Table 8.1.

Let T be the type {(โˆ˜, 2), (1, 0)}. The variety consisting of all monoidsM is defined by the laws ๐‘ฅ(๐‘ฆ๐‘ง) = (๐‘ฅ๐‘ฆ)๐‘ง, 1๐‘ฅ = ๐‘ฅ, and ๐‘ฅ1 = ๐‘ฅ. When

Varieties โ€ข 155

Page 164: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

TABLE 8.1Varieties of semigroups. Thelaw๐‘ฅ(๐‘ฆ๐‘ง) = (๐‘ฅ๐‘ฆ)๐‘ง is implicitly

assumed.

Variety Symbol Defining laws

Semigroups S โ€”Null semigroups Z ๐‘ฅ๐‘ฆ = ๐‘ง๐‘กLeft zero semigroups LZ ๐‘ฅ๐‘ฆ = ๐‘ฅRight zero semigroups RZ ๐‘ฅ๐‘ฆ = ๐‘ฆ

TABLE 8.2Varieties of monoids, viewedas {(โˆ˜, 2), (1, 0)}-algebras. Thelaws ๐‘ฅ(๐‘ฆ๐‘ง) = (๐‘ฅ๐‘ฆ)๐‘ง, ๐‘ฅ1 = ๐‘ฅ,and 1๐‘ฅ = ๐‘ฅ are implicitly as-

sumed.

Variety Symbol Defining laws

Monoids M โ€”Trivial monoid 1 ๐‘ฅ = 1Commutative monoids Com ๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ

Semilattices with identities Sl {๐‘ฅ2 = ๐‘ฅ,๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ

working with varieties of monoids we will use this type and implicitlyassume these laws. Examples are summarized in Table 8.2.

Finally let T be the type {(โˆ˜, 2), (โˆ’1, 1)}. We will use this type whenworking with semigroups equipped with an inverse operation โˆ’1, such asregular and inverse semigroup. In this context, we will assume the laws(๐‘ฅ๐‘ฆ)๐‘ง = ๐‘ฅ(๐‘ฆ๐‘ง), ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ and (๐‘ฅโˆ’1)โˆ’1 = ๐‘ฅ. Examples are summarizedin Table 8.3.

Another way to define a variety of T-algebras is to use a specifiedVariety generated by Xset of T-algebras to generate a variety. Let X be a set of T-algebras. Theintersection of all varieties of T-algebras containing X is itself a variety,called the variety of T-algebras generated by X, or simply the varietygenerated by X. It is easy to prove that the variety generated by X consistsof all X-algebras that can be obtained from X by repeatedly formingsubsemigroups, homomorphic images, and direct products. That is, thevariety generated by X is

{๐•†1๐•†2โ‹ฏ๐•†๐‘›X โˆถ ๐‘› โˆˆ โ„•,๐•†๐‘– โˆˆ {โ„, ๐•Š, โ„™} }. (8.5)

L emma 8 . 3. For any non-empty class of T-algebras X, we have

๐•Šโ„X โŠ† โ„๐•ŠX;โ„™โ„X โŠ† โ„โ„™X;โ„™๐•ŠX โŠ† ๐•Šโ„™X.

Proof of 8.3. Let ๐‘† โˆˆ ๐•Šโ„X. Then there isT-algebra ๐‘‡ โˆˆ X and a surjectivehomomorphism ๐œ‘ โˆถ ๐‘‡ โ†’ ๐‘ˆ such that ๐‘† is a subalgebra of ๐‘ˆ. Let ๐‘‡โ€ฒ =๐‘†๐œ‘โˆ’1 = { ๐‘ก โˆˆ ๐‘‡ โˆถ ๐‘ก๐œ‘ โˆˆ ๐‘† }. Then ๐‘‡โ€ฒ is a subalgebra of ๐‘‡ and ๐œ‘|๐‘‡โ€ฒ โˆถ ๐‘‡โ€ฒ โ†’ ๐‘†is a surjective homomorphism. So ๐‘† โˆˆ โ„๐•ŠX.

Let ๐‘† โˆˆ โ„™โ„X.Then there is a collection ofT-algebras { ๐‘‡๐‘– โˆถ ๐‘– โˆˆ ๐ผ } โŠ† Xand a collection of surjective homomorphisms๐›ท = { ๐œ‘๐‘– โˆถ ๐‘‡๐‘– โ†’ ๐‘ˆ๐‘– โˆถ ๐‘– โˆˆ ๐ผ }such that ๐‘† = โˆ๐‘–โˆˆ๐ผ ๐‘ˆ๐‘–. Define a homomorphism ๐œ“ โˆถ โˆ๐‘–โˆˆ๐ผ ๐‘‡๐‘– โ†’ ๐‘† by

156 โ€ขVarieties & pseudovarieties

Page 165: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Variety Symbol Defining laws

Completely regular sgrps CR ๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฅโˆ’1๐‘ฅ

Inverse semigroups Inv {(๐‘ฅ๐‘ฆ)โˆ’1 = ๐‘ฆโˆ’1๐‘ฅโˆ’1,๐‘ฅ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1 = ๐‘ฆ๐‘ฆโˆ’1๐‘ฅ๐‘ฅโˆ’1

Clifford semigroups Cl {๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฅโˆ’1๐‘ฅ,๐‘ฅ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1 = ๐‘ฆ๐‘ฆโˆ’1๐‘ฅ๐‘ฅโˆ’1

Groups G ๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฆ๐‘ฆโˆ’1

TABLE 8.3Varieties of semigroups with aunary operation โˆ’1 . The laws๐‘ฅ(๐‘ฆ๐‘ง) = (๐‘ฅ๐‘ฆ)๐‘ง, ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ,and (๐‘ฅโˆ’1)โˆ’1 = ๐‘ฅ are implicitlyassumed.

(๐‘–)(๐‘ฅ๐œ“) = ((๐‘–)๐‘ฅ)๐œ‘๐‘–. Then ๐œ“ is surjective since each ๐œ‘๐‘– is surjective. So๐‘† โˆˆ โ„โ„™X.

Let ๐‘† โˆˆ โ„™๐•ŠX. Then there is a collection of T-algebras { ๐‘‡๐‘– โˆถ ๐‘– โˆˆ ๐ผ } โŠ† Xand a subalgebras ๐‘ˆ๐‘– of ๐‘‡๐‘– such that ๐‘† = โˆ๐‘–โˆˆ๐ผ ๐‘ˆ๐‘–. Then ๐‘† is a subalgebraofโˆ๐‘–โˆˆ๐ผ ๐‘‡๐‘–. So ๐‘† โˆˆ ๐•Šโ„™X. 8.3

As an immediate consequence of Lemma 8.3 and (8.5), and the factthat the operatorsโ„, ๐•Š, and โ„™ are idempotent, we obtain the followingresult:

P ro p o s i t i on 8 . 4. Let X be a class of T-algebras. The variety gener-ated by X isโ„๐•Šโ„™X. 8.4

Pseudovarieties

Varieties are not useful for studying and classifying finitealgebras, for the simple reason that every non-trivial variety containsinfinite algebras: if a variety contains an algebra ๐‘†with two elements, thenit contains the direct product of infinitely many copies of ๐‘†, which is ofcourse infinite.

Clearly, if we take a class X of finite T-algebras, thenโ„X and ๐•ŠX alsocontain only finite T-algebras. The problem, therefore, is the operatorโ„™. To modify the notion of variety in order to study finite algebras, wetherefore introduce a new operator on classes of T-algebras.

Let โ„™finX denote the class of all T-algebras that are finitary direct โ„™finproducts of the algebras in X. That is,

โ„™finX = { ๐‘† โˆถ (โˆƒ{๐‘‡1,โ€ฆ , ๐‘‡๐‘›} โŠ† X)(๐‘† = ๐‘‡1 ร— ๐‘‡2 ร—โ€ฆ ร— ๐‘‡๐‘›) }.

Anon-empty class of finiteT-algebras is a pseudovariety ofT-algebras if it Pseudovarietyis closed under the operationsโ„, ๐•Š, andโ„™fin. That is,X is a pseudovarietyifโ„X โˆช ๐•ŠX โˆช โ„™finX โŠ† X.

E x a m p l e 8 . 5. a) Let 1 be the class containing only the trivial sem-igroup (or monoid) ๐ธ = {๐‘’}. Then 1 is a pseudovariety both when

Pseudovarieties โ€ข 157

Page 166: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

we view ๐ธ as a {(โˆ˜, 2)}-algebra and when we view ๐ธ as a {(โˆ˜, 2), (1, 0)}-algebra, since the only subalgebra of ๐ธ is ๐ธ itself, the only homomor-phic image of ๐ธ is ๐ธ itself, and any finitary direct product of copies of๐ธ is isomorphic to ๐ธ.

b) Let S be the class of all finite semigroups. Then S is a pseudovariety.

c) LetM be the class of all finite monoids (viewed as {(โˆ˜, 2), (1, 0)}-algeb-ras. Then S is a pseudovariety.

d) Let Com be the class of all finite commutative monoids (viewed as{(โˆ˜, 2), (1, 0)}-algebras). Then Com is a pseudovariety.

e) Let G be the class of all finite groups, which we view as {(โˆ˜, 2), (1๐บ, 0),(โˆ’1, 1)}-algebras; then G is a pseudovariety.

In contrast with varieties, that the class of all finite groups viewedas {(โˆ˜, 2)}-algebras is a pseudovariety, because in this case subalgebrasare subgroups (since for elements ๐‘ฅ of a group with ๐‘› elements, ๐‘ฅ๐‘› = 1and ๐‘ฅโˆ’1 = ๐‘ฅ๐‘›โˆ’1).

f) Let Inv be the class of all finite inverse semigroups, which we view as{(โˆ˜, 2), (โˆ’1, 1)}-algebras. Then Inv is a pseudovariety.

g) Let N be the class of all finite nilpotent semigroups. Then N is a pseu-dovariety. (See Exercise 8.2(a).)

h) Let A be the class of all finite aperiodic monoids, viewed as {(โˆ˜, 2),(1, 0)}-algebras. Then A is a pseudovariety. Notice that N โŠ† A.

Notice that we are using the same symbols for certain varieties andpseudovarieties: for instance, Com is used to denote both the varietyof commutative monoids and the pseudovariety of finite commutativemonoids. This will not cause confusion, because from now on we willonly use them to denote pseudovarieties.

Just as with varieties, we have the idea of generating a pseudovarietyPseudovarietygenerated by X of finite T-algebras. Let X be a set of finite T-algebras. The intersection

of all pseudovarieties of T-algebras containing X is itself a pseudovariety,called the pseudovariety of finite T-algebras generated by X, or simply thepseudovariety generated by X, and is denoted VT(X) It is easy to prove thatVT(X) consists of all (necessarily finite) X-algebras that can be obtainedfrom X by repeatedly forming subalgebras, homomorphic images, andfinitary direct products. That is,

VT(X) = {๐•†1๐•†2โ‹ฏ๐•†๐‘›X โˆถ ๐‘› โˆˆ โ„•,๐•†๐‘– โˆˆ {โ„, ๐•Š, โ„™fin} }. (8.6)

We have the following analogue of Proposition 8.4:

P ro p o s i t i on 8 . 6. Let X be a class of finite T-algebras. Then VT(X) =โ„๐•Šโ„™finX.

158 โ€ขVarieties & pseudovarieties

Page 167: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 8.6. For any non-empty class of finite T-algebras X, we have

๐•Šโ„X โŠ† โ„๐•ŠX;โ„™finโ„X โŠ† โ„โ„™finX;โ„™fin๐•ŠX โŠ† ๐•Šโ„™finX;

to see this, follow the reasoning in the proof of Lemma 8.3, restrictingthe index sets ๐ผ in the direct products to be finite. The result followsimmediately. 8.6

Let V and W be pseudovarieties of T-algebras. The class of pseudova- Join and meet ofpseudovarietiesrieties of T-algebras is ordered by the usual inclusion order โŠ†. Then it is

easy to see that

V โŠ”W = VT(V โˆชW),

and, since V โˆฉW is a variety,

V โŠ“W = V โˆฉW.

So the class of T-algebras is a lattice. Furthermore, if we consider onlysubpseudovarieties of a fixed pseudovariety V (such as S or M), then theclass of such subpseudovarieties forms a sublattice.

Pseudovarieties ofsemigroups and monoids

From this point onwards, we will consider only pseudo-varieties of semigroups and pseudovarieties of monoids. These pseudo-varieties have different types: pseudovarieties of semigroups have typeS = {(โˆ˜, 2)} and pseudovarieties of monoids have type M = {(โˆ˜, 2), (1, 0)}.

In pseudovarieties of semigroups, the homomorphisms are the usualsemigroup homomorphisms and the subalgebras are subsemigroups. Inpseudovarieties of monoids, the homomorphisms are monoid homomor-phisms, and the subalgebras are submonoids that contain the identity ofthe original monoid. In previous chapters, by โ€˜submonoidโ€™ we meant โ€˜anysubsemigroup that forms a monoidโ€™. But such a submonoid may not bea subalgebra: For example, let ๐‘† = {1, 0} be the two-element semilatticewith 1 > 0. Then ๐‘† is a monoid with identity 1, and contains the sub-monoid ๐‘‡ = {0}. However, ๐‘‡ is not an M-subalgebra of ๐‘†, because an M-subalgebra must include the constant 1. For brevity, we call a submonoidthat contains the identity of the original monoid an M-submonoid.

We will use the term S-pseudovarieties for pseudovarieties of semi- S-pseudovarieties,M-pseudovarietiesgroups, and M-pseudovarieties for pseudovarieties of monoids. The reas-

oning for the two types often runs in parallel, but there are importantdifferences.

Pseudovarieties of semigroups and monoids โ€ข 159

Page 168: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Notice that S-pseudovarieties are closed under division: if V is an S-pseudovariety, ๐‘‡ โˆˆ V, and ๐‘† โ‰ผ ๐‘‡, then by definition there is an surjectivehomomorphism ๐œ‘ โˆถ ๐‘‡โ€ฒ โ†’ ๐‘†, where ๐‘‡โ€ฒ is a subsemigroup of ๐‘‡; hence๐‘† โˆˆ โ„๐•ŠV = V. In fact, M-pseudovarieties are also closed under division,as a consequence of the following result:

P ro p o s i t i on 8 . 7. Let ๐‘† be a semigroup and๐‘€ amonoid and supposeDivision in M-pseudovarieties ๐‘† โ‰ผ ๐‘€. Then there is an M-submonoid๐‘€โ€ฒ of๐‘€ and a surjective monoid

homomorphism ๐œ‘ โˆถ ๐‘€โ€ฒ โ†’ ๐‘†1. Consequently, if ๐‘ is a monoid, then๐‘ โ‰ผ ๐‘€ if and only if there is an M-submonoid๐‘€โ€ฒ of๐‘€ and a surjectivemonoid homomorphism ๐œ‘ โˆถ ๐‘€โ€ฒ โ†’ ๐‘.

Proof of 8.7. Suppose ๐‘† โ‰ผ ๐‘€. Then there is a subsemigroup ๐‘‡ of๐‘€ anda surjective homomorphism ๐œ“ โˆถ ๐‘‡ โ†’ ๐‘†. Let๐‘€โ€ฒ = ๐‘‡ โˆช {1๐‘€} and extend๐œ“ to a monoid homomorphism ๐œ‘ โˆถ ๐‘€โ€ฒ โ†’ ๐‘† by defining 1๐‘€๐œ‘ = 1๐‘†1 and๐‘ฅ๐œ‘ = ๐‘ฅ๐œ“ for all ๐‘ฅ โˆˆ ๐‘‡. (Notice that ๐œ‘ is well-defined, since if 1๐‘€ โˆˆ ๐‘‡,then (๐‘ง๐œ“)(1๐‘€๐œ“) = (๐‘ง1๐‘€)๐œ“ = ๐‘ง๐œ“ and (1๐‘€๐œ“)(๐‘ง๐œ“) = (1๐‘€๐‘ง)๐œ“ = ๐‘ง๐œ“ and so๐‘† is a monoid with identity 1๐‘€๐œ“ because ๐œ“ is surjective.) 8.7

We now introduce two operators that allow us to connect S-pseudo-varieties of semigroups and M-pseudovarieties of monoids.

For any M-pseudovariety of monoids V, letVSg

VSg = VS(V).

So to obtain VSg from V we simply treat the monoids in V as semigroups,form all finite direct products, then all subsemigroups, and then all (sem-igroup) homomorphic images. From Proposition 8.7, we see that

๐‘† โˆˆ VSg โ‡” ๐‘†1 โˆˆ V. (8.7)

For any S-pseudovariety of semigroups, letVMon

VMon = { ๐‘† โˆˆ V โˆถ ๐‘† is a monoid }.

That is VMon consists of the monoids that, when viewed as semigroups,belong to V. It is easy to see that VMon is an M-pseudovariety of monoids.

L emma 8 . 8. For anyM-pseudovariety ofmonoidsV, we have (VSg)Mon =V.

Proof of 8.8. Let ๐‘† be a finite monoid. Then

๐‘† โˆˆ (VSg)Mon

โ‡” ๐‘† is a monoid that belongs to VSgโ‡” ๐‘†1 โˆˆ V [by (8.7)]โ‡” ๐‘† โˆˆ V. [since ๐‘† = ๐‘†1] 8.8

160 โ€ขVarieties & pseudovarieties

Page 169: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Prop o s i t i on 8 . 9. The operator Sg is an embedding of the lattice ofM-pseudovarieties of monoids into the lattice of of the S-pseudovarieties ofsemigroups.

Proof of 8.9. It is immediate from (8.7) that Sg is a lattice homomorphism.By Lemma 8.8,

VSg = WSg โ‡’ (VSg)Mon = (WSg)Mon โ‡’ V = W,

so Sg is injective. 8.9

An S-pseudovariety of semigroupsW ismonoidal ifW = VSg for some Monoidal pseudovarietyM-pseudovariety of monoids.

E x a m p l e 8 . 1 0. a) The S-pseudovariety of all finite semigroups Sis monoidal, because S = MSg by (8.7), where M is the M-pseudovari-ety of all finite monoids.

b) The S-pseudovariety of all finite nilpotent semigroups N is not mon-oidal. To see this, suppose, with the aim of obtaining a contradiction,that N = VSg for some M-pseudovariety of all finite monoids V. ThenNMon = V by (8.8). Let ๐‘€ โˆˆ N be a monoid. Then 1๐‘›๐‘€ = 0๐‘€ forsome ๐‘› โˆˆ โ„•, since๐‘€ is nilpotent, which implies that๐‘€ is trivial.Hence NMon = 1, and so N = VSg = (NMon)Sg = 1Sg = 1, which is acontradiction.

Free objects for pseudovarieties

If we want to follow the same path for pseudovarieties asfor varieties, our next step should be to construct a โ€˜free V-semigroupโ€™ foreach S-pseudovariety V and a โ€˜freeW-monoidโ€™ for eachM-pseudovarietyW, and then to devise an analogue of laws and prove an analogue of Birk-hoff โ€™s theorem. However, this is much more difficult for pseudovarietiesthan for varieties. We will outline the problems and describe the solutionin this section and the next two sections. To simplify the explanation,we will only discuss S-pseudovarieties, but every result and constructionin these sections has a parallel for M-pseudovarieties, replacing semi-groups with monoids, homomorphisms with monoid homomorphisms,and subsemigroups with M-submonoids as appropriate.

The basic problem in finding free objects for pseudovarieties is verysimple: free objects are usually infinite, and members of a pseudovarietyare always finite. Consider the S-pseudovariety N of finite nilpotent semi-groups. For any finite alphabet๐ด and ๐‘› โˆˆ โ„•, let ๐ผ๐‘› = {๐‘ค โˆˆ ๐ด+ โˆถ |๐‘ค| โฉพ ๐‘› }.Then ๐ด+/๐ผ๐‘› is a nilpotent semigroup; thus ๐ด+/๐ผ๐‘› โˆˆ N. The semigroup๐ด+/๐ผ๐‘› contains at least ๐‘› elements (and indeed contains |๐ด|๐‘› elements if

Free objects for pseudovarieties โ€ข 161

Page 170: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

|๐ด| โฉพ 2). Thus, by taking ๐‘› to be arbitrarily large, we see that N containsarbitrarily large ๐ด-generated semigroups. Since an ๐ด-generated free ob-ject for N must map surjectively to each of these semigroups, it is clearthat no semigroup in N is free.

If we try to approach the idea of a free object through laws, we en-counter another problem. It is clear that ๐ด+/๐ผ๐‘› satisfies no law in at most|๐ด| variables where the two sides of the law have length less than ๐‘›. So ifwe try to base our free objects on laws, all S-pseudovarieties containingN will have the same free object.

Let us look at free objects from another direction. The idea is that afree ๐ด-generated object for a class X should be just general enough tobe more general than any ๐ด-generated object in X. Suppose we take twosemigroups ๐‘†1 and ๐‘†2 in an S-pseudovariety V. Let ๐œ‘1 โˆถ ๐ด โ†’ ๐‘†1 and ๐œ‘2 โˆถ๐ด โ†’ ๐‘†2 be functions such that im๐œ‘1 generates ๐‘†1 and im๐œ‘2 generates ๐‘†2.Let ๐‘‡ be the subsemigroup of ๐‘†1 ร— ๐‘†2 generated by { (๐‘Ž๐œ‘1, ๐‘Ž๐œ‘2) โˆถ ๐‘Ž โˆˆ ๐ด }.Then ๐‘‡ is ๐ด-generated and lies in V, since V is closed under โ„™fin and ๐•Š.Furthermore, the following diagram commutes:

๐ด

๐‘†1 ๐‘‡ ๐‘†2

๐œ‘1 ๐œ‘2

๐œ‹1 ๐œ‹2

Thus๐‘‡ ismore general than both ๐‘†1 and ๐‘†2 as an๐ด-generatedmemberof V. Furthermore, ๐‘‡ is the smallest such member of V. We could iteratethis process, but, as our discussion of N shows, we will never find anelement of V that is more general than all other members of V. A limitingprocess is needed.

Projective limits

A partially ordered set (๐ผ, โฉฝ) is a directed set if every pairDirected setof elements of ๐ผ have an upper bound. [Notice that a directed set is notnecessarily a join semilattice, because some pairs of elements might nothave least upper bounds.]

A topological semigroup is a semigroup equipped with a topologyTopological semigroupsuch that the multiplication operation is a continuous mapping. Anysemigroup can be equippedwith the discrete topology and thus becomes atopological semigroup. Notice that finite semigroups are compact. For any๐ด-generated

topological semigroup alphabet๐ด, an๐ด-generated topological semigroup is a pair (๐‘†, ๐œ‘), where ๐‘† isa topological semigroup and ๐œ‘ โˆถ ๐ด โ†’ ๐‘† is a map such that im๐œ‘ generatesa dense subsemigroup of ๐‘†. We will often denote such an ๐ด-generatedtopological semigroup by themap๐œ‘ โˆถ ๐ด โ†’ ๐‘†. A homomorphismbetweenHomomorphisms

between ๐ด-generatedtopological semigroups

162 โ€ขVarieties & pseudovarieties

Page 171: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐ด-generated topological semigroups ๐œ‘1 โˆถ ๐ด โ†’ ๐‘†1 and ๐œ‘2 โˆถ ๐ด โ†’ ๐‘†2 is acontinuous homomorphism ๐œ“ โˆถ ๐‘†1 โ†’ ๐‘†2 such that ๐œ‘1๐œ“ = ๐œ‘2.

A projective system is a collection of ๐ด-generated topological sem- Projective systemigroups { ๐œ‘๐‘– โˆถ ๐ด โ†’ ๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ }, where ๐ผ is a directed set, such thatfor all ๐‘–, ๐‘— โˆˆ ๐ผ with ๐‘– โฉพ ๐‘— there is a connecting homomorphism ๐œ†๐‘–,๐‘— from๐œ‘๐‘– โˆถ ๐ด โ†’ ๐‘†๐‘– to ๐œ‘๐‘— โˆถ ๐ด โ†’ ๐‘†๐‘— satisfying the following properties: for each๐‘– โˆˆ ๐ผ, the homomorphism ๐œ†๐‘–,๐‘– is the identity map; for all ๐‘–, ๐‘—, ๐‘˜ โˆˆ ๐ผ with๐‘– โฉพ ๐‘— โฉพ ๐‘˜, we have ๐œ†๐‘–,๐‘—๐œ†๐‘—,๐‘˜ = ๐œ†๐‘–,๐‘˜.

The projective limit of this projective system is an ๐ด-generated topo- Projective limitlogical semigroup ๐›ท โˆถ ๐ด โ†’ ๐‘† equipped with homomorphisms ๐›ท๐‘– from๐›ท โˆถ ๐ด โ†’ ๐‘† to ๐œ‘๐‘– โˆถ ๐ด โ†’ ๐‘†๐‘–. such that the following properties hold:1) For all ๐‘–, ๐‘— โˆˆ ๐ผ with ๐‘– โฉพ ๐‘—, we have ๐›ท๐‘–๐œ†๐‘–,๐‘— = ๐›ท๐‘—.2) If there is another ๐ด-generated topological semigroup ๐›น โˆถ ๐ด โ†’ ๐‘‡

and homomorphisms ๐›น๐‘– from ๐›น โˆถ ๐ด โ†’ ๐‘‡ to ๐œ‘๐‘– โˆถ ๐ด โ†’ ๐‘† suchthat for all ๐‘–, ๐‘— โˆˆ ๐ผ with ๐‘– โฉพ ๐‘—, we have ๐›น๐‘–๐œ†๐‘–,๐‘— = ๐›น๐‘—, then there existsa homomorphism ๐›ฉ from ๐›น โˆถ ๐ด โ†’ ๐‘‡ to ๐›ท โˆถ ๐ด โ†’ ๐‘† such that๐›ฉ๐›ท๐‘– = ๐›น๐‘–. That is, the diagram in Figure 8.1 commutes.

๐ด

๐‘‡

๐‘†

๐‘†๐‘– ๐‘†๐‘—

๐œ‘๐‘– ๐œ‘๐‘—

๐›น

๐›น๐‘– ๐›น๐‘—๐›ฉ

๐›ท๐‘– ๐›ท๐‘—

๐›ท

๐œ†๐‘–,๐‘—FIGURE 8.1Property 2) of the projectivelimit of {๐œ‘๐‘– โˆถ ๐ด โ†’ ๐‘†๐‘– โˆถ ๐‘– โˆˆ๐ผ }with connecting homomor-phisms ๐œ†๐‘–,๐‘— .

Let us first show that the projective limit is unique (up to isomor-

Uniqueness of theprojective limit

phism); wewill then show that it exists. Suppose๐›ท โˆถ ๐ด โ†’ ๐‘† and๐›ทโ€ฒ โˆถ ๐ด โ†’๐‘†โ€ฒ are both projective limits of the projective system { ๐œ‘๐‘– โˆถ ๐ด โ†’ ๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ }.By property 2) above, there are homomorphisms ๐›ฉ from ๐›ท โˆถ ๐ด โ†’ ๐‘† to๐›ทโ€ฒ โˆถ ๐ด โ†’ ๐‘†โ€ฒ and ๐›ฉโ€ฒ from ๐›ทโ€ฒ โˆถ ๐ด โ†’ ๐‘†โ€ฒ to ๐›ท โˆถ ๐ด โ†’ ๐‘†. Thus we have๐›ท๐›ฉ๐›ฉโ€ฒ = ๐›ท and๐›ทโ€ฒ๐›ฉโ€ฒ๐›ฉ = ๐›ทโ€ฒ; hence๐›ฉ๐›ฉโ€ฒ|๐ด๐›ท = id๐ด๐›ท and๐›ฉโ€ฒ๐›ฉ|๐ด๐›ทโ€ฒ = id๐ด๐›ทโ€ฒ.Hence๐›ฉ๐›ฉโ€ฒ restricted to the subsemigroup generated by๐ด๐›ท is the identitymap; since this subsemigroup is dense in ๐‘† and ๐›ฉ and ๐›ฉโ€ฒ are continuous,we have ๐›ฉ๐›ฉโ€ฒ = id๐‘†. Similarly ๐›ฉโ€ฒ๐›ฉ = id๐‘†โ€ฒ. So ๐›ฉ and ๐›ฉโ€ฒ are mutuallyinverse isomorphisms between ๐›ท โˆถ ๐ด โ†’ ๐‘† and ๐›ทโ€ฒ โˆถ ๐ด โ†’ ๐‘†โ€ฒ.

In order to construct the projective limit, we proceed as follows. Let Construction ofthe projective limit

๐‘† = { ๐‘  โˆˆ โˆ๐‘–โˆˆ๐ผ๐‘†๐‘– โˆถ (โˆ€๐‘–, ๐‘— โˆˆ ๐ผ)(๐‘– โฉพ ๐‘— โ‡’ ((๐‘–)๐‘ )๐œ†๐‘–,๐‘— = (๐‘—)๐‘ ) }.

Notice that

๐‘ , ๐‘ก โˆˆ ๐‘†โ‡’ (โˆ€๐‘–, ๐‘— โˆˆ ๐ผ)(๐‘– โฉพ ๐‘— โ‡’ ((๐‘–)๐‘ )๐œ†๐‘–,๐‘— = (๐‘—)๐‘  โˆง ((๐‘–)๐‘ก)๐œ†๐‘–,๐‘— = (๐‘—)๐‘ก)โ‡’ (โˆ€๐‘–, ๐‘— โˆˆ ๐ผ)(๐‘– โฉพ ๐‘— โ‡’ ((๐‘–)๐‘ )๐œ†๐‘–,๐‘—((๐‘–)๐‘ก)๐œ†๐‘–,๐‘— = (๐‘—)๐‘ (๐‘—)๐‘ก)โ‡’ (โˆ€๐‘–, ๐‘— โˆˆ ๐ผ)(๐‘– โฉพ ๐‘— โ‡’ ((๐‘–)(๐‘ ๐‘ก))๐œ†๐‘–,๐‘— = (๐‘—)(๐‘ ๐‘ก))โ‡’ ๐‘ ๐‘ก โˆˆ ๐‘†;

thus ๐‘† is a subsemigroup ofโˆ๐‘–โˆˆ๐ผ ๐‘†๐‘–. Furthermore, ๐‘† is equipped with theinduced topology from the product topology onโˆ๐‘–โˆˆ๐ผ ๐‘†๐‘–. Let ๐›ท โˆถ ๐ด โ†’ ๐‘†be defined by (๐‘–)(๐‘Ž๐›ท) = ๐‘Ž๐œ‘๐‘–. For each ๐‘– โˆˆ ๐ผ, let ๐›ท๐‘– be the projectionhomomorphism from ๐‘† to ๐‘†๐‘–.

Projective limits โ€ข 163

Page 172: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Prop o s i t i on 8 . 1 1. ๐›ท โˆถ ๐ด โ†’ ๐‘† is an ๐ด-generated topological semi-group and satisfies the properties 1) and 2) above. Hence ๐›ท โˆถ ๐ด โ†’ ๐‘† is aprojective limit.

Proof of 8.11. We first have to show that ๐ด๐›ท generates a dense subsemi-group of ๐‘†. Since the topology of ๐‘† is induced by the product topologyonโˆ๐‘–โˆˆ๐ผ ๐‘†๐‘–, we can work with the product topology instead. Let ๐‘  โˆˆ ๐‘†. Let๐พ be a neighbourhood of ๐‘ . Assume without loss that ๐พ is an open set(in the product topology). Thus๐พ = โˆ๐‘–โˆˆ๐ผ ๐พ๐‘–, where each ๐พ๐‘– โŠ† ๐‘†๐‘– is openand ๐พ๐‘– = ๐‘†๐‘– for all but finitely many ๐‘– โˆˆ ๐ผ. Let ๐‘–๐‘— โˆˆ ๐ผ (where ๐‘— = 1,โ€ฆ , ๐‘›)be the indices for which ๐พ๐‘–๐‘— โ‰  ๐‘†๐‘–๐‘— .

Let โ„Ž be an upper bound for { ๐‘–๐‘— โˆถ ๐‘— = 1,โ€ฆ , ๐‘› }; such an โ„Ž existsbecause ๐ผ is a directed set. Let ๐ฟ = โ‹‚๐‘›๐‘—=1 ๐พ๐‘–๐‘—๐œ†

โˆ’1โ„Ž,๐‘–๐‘— โŠ† ๐‘†โ„Ž. Notice that

(โ„Ž)๐‘  โˆˆ ((๐‘–๐‘—)๐‘ )๐œ†โˆ’1โ„Ž,๐‘–๐‘— for all ๐‘— = 1,โ€ฆ , ๐‘›, so ๐ฟ contains (โ„Ž)๐‘  and is thus non-empty. Furthermore, ๐ฟ is an intersection of open sets because each ๐œ†๐‘–,๐‘—is continuous and each ๐พ๐‘–๐‘— is open; hence ๐ฟ is itself open. Since ๐ด๐œ‘โ„Žgenerates a dense subset of ๐‘†โ„Ž, the set there is a word ๐‘ค โˆˆ ๐ด+ such that๐‘ค๐œ‘โ„Ž โˆˆ ๐ฟ. Let ๐‘ก = ๐‘ค๐›ท. Thus (๐‘–)๐‘ก = ๐‘ค๐œ‘๐‘– for all ๐‘– โˆˆ ๐ผ. For ๐‘— = 1,โ€ฆ , ๐‘›, wehave

(๐‘–๐‘—)๐‘ก = ๐‘ค๐œ‘๐‘–๐‘— = ๐‘ค๐œ‘๐‘˜๐œ†๐‘˜,๐‘–๐‘— โˆˆ ๐ฟ๐œ†๐‘˜,๐‘–๐‘— โŠ† ๐พ๐‘–๐‘— .

Hence ๐‘ค๐›ท = ๐‘ก โˆˆ ๐พ. Therefore ๐ด๐›ท generates a dense subset of ๐‘†.Since ๐‘† consists of elements ๐‘  โˆˆ โˆ๐‘–โˆˆ๐ผ ๐‘†๐‘– with ((๐‘–)๐‘ )๐œ†๐‘–,๐‘— = (๐‘—)๐‘ , it is

immediate that ๐›ท๐‘–๐œ†๐‘–,๐‘— = ๐›ท๐‘—; hence ๐›ท โˆถ ๐ด โ†’ ๐‘† satisfies property 1).Now let ๐›น โˆถ ๐ด โ†’ ๐‘‡ be an ๐ด-generated topological semigroup as

described in property 2). Define ๐›ฉ โˆถ ๐‘‡ โ†’ ๐‘† by (๐‘–)(๐‘ก๐›ฉ) = ๐‘ก๐›น๐‘–. (Note that๐‘ก๐›ฉ โˆˆ ๐‘† since ๐›น๐‘–๐œ†๐‘–,๐‘— = ๐›น๐‘—.) Then this map is a continuous homomorphismsince each ๐›น๐‘– is continuous. Finally, ๐›ฉ๐›ท๐‘– = ๐›ฉ๐œ‹๐‘– = ๐›น๐‘–. So ๐›ท โˆถ ๐ด โ†’ ๐‘†satisfies property 2). 8.11

Notice that if all of the ๐‘†๐‘– are compact, so isโˆ๐‘–โˆˆ๐ผ ๐‘†๐‘– by Tychonoff โ€™stheorem. Furthermore, since each ๐œ†๐‘–,๐‘— is continuous and the condition((๐‘–)๐‘ )๐œ†๐‘–,๐‘— = (๐‘—)๐‘  involves only two components of the product, ๐‘† is closedin theโˆ๐‘–โˆˆ๐ผ ๐‘†๐‘–. Hence if all the ๐‘†๐‘– are compact, ๐‘† is also compact.

A profinite semigroup is a projective limit of a projective system ofProfinite semigroupfinite semigroups for some suitable choice of generators. Notice that anyfinite semigroup is [isomorphic to] a profinite semigroup. To see this, let๐‘† be a finite semigroup, and take ๐ผ = {1} and ๐‘†1 = ๐‘†. It is easy to see thatthe projective limit of this projective system is isomorphic to ๐‘†.

Pro-V semigroups

Let V be an S-pseudovariety. A profinite semigroup ๐‘† isPro-V semigroup

164 โ€ขVarieties & pseudovarieties

Page 173: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

pro-V if it is a projective limit of a projective system containing onlysemigroups from V.

Let us return of the problem of finding a free object for V. For agenerating set ๐ด, the idea is to take the projective limit of the projectivesystem containing every ๐ด-generated semigroup in V. Strictly speaking,we take one semigroup from every isomorphism class in V, and let theconnecting homomorphisms be the unique homomorphisms that respectthe generating set ๐ด. The projective limit of this system is denoted ฮฉ๐ดV.If the ๐ด-generated semigroups in V are { ๐œ‘๐‘– โˆถ ๐ด โ†’ ๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ }, then thereis a natural map ๐œ„ โˆถ ๐ด โ†’ ฮฉ๐ดV given by (๐‘–)(๐‘Ž๐œ„) = ๐‘Ž๐œ‘๐‘–. (This is the map๐›ท in the discussion of the projective limit above.) Denote by ฮฉ๐ดV the[dense] subsemigroup of ฮฉ๐ดV generated by ๐ด๐œ„.

The following result essentially says that the profinite semigroup ฮฉ๐ดVis a free object for ๐ด-generated pro-V semigroups:

P ro p o s i t i on 8 . 1 2. For any pro-V semigroup ๐‘† and map ๐œ— โˆถ ๐ด โ†’ ๐‘†, ฮฉ๐ดV is a free object for Vthere is a unique continuous homomorphism ๐œ— โˆถ ฮฉ๐ดV โ†’ ๐‘† such that๐œ„๐œ— = ๐œ—; that is, such that the following diagram commutes:

๐ด ฮฉ๐ดV

๐‘†

๐œ—

๐œ„

๐œ—

Proof of 8.12. Since pro-V semigroups are subdirect products of membersof V, it is sufficient to consider the case when ๐‘† lies in V. Without lossof generality, assume ๐‘† is generated by ๐ด๐œ—. Then ๐‘† is [isomorphic to]an ๐ด-generated semigroup in V; that is, ๐‘† is [isomorphic to] one of the๐ด-generated semigroups ๐œ‘๐‘— โˆถ ๐ด โ†’ ๐‘†๐‘— in the projective system whoseprojective limit is ฮฉ๐ดV.

Let ๐œ— be the projection ๐œ‹๐‘— โˆถ ฮฉ๐ดVโ†’ ๐‘†๐‘— โ‰ƒ ๐‘†. Finally, we have to showthat ๐œ— is the unique continuous homomorphism with this property. Let๐œ“ โˆถ ฮฉ๐ดV โ†’ ๐‘† be some continuous homomorphism with ๐œ„๐œ“ = ๐œ—. Since๐œ„๐œ— = ๐œ—, we see that ๐œ“|๐ด๐œ„ = ๐œ—|๐ด๐œ„ and hence, since ๐ด๐œ„ generates ฮฉ๐ดV, wehave ๐œ“|ฮฉ๐ดV = ๐œ—|ฮฉ๐ดV. Sinceฮฉ๐ดV is dense in ฮฉ๐ดV and ๐œ“ is continuous, wehave ๐œ“ = ๐œ—. 8.12

In light of Proposition 8.12, for any S-pseudovariety V, we call ฮฉ๐ดV Free pro-V semigroupthe free pro-V semigroup on ๐ด.

P ro p o s i t i on 8 . 1 3. Let V be an S-pseudovariety that is not the trivialS-pseudovariety 1. Then the map ๐œ„ โˆถ ๐ด โ†’ ฮฉ๐ดV is injective.

Proof of 8.13. Since V โ‰  1, there are arbitrarily large semigroups in V.Hence for any ๐‘Ž, ๐‘ โˆˆ ๐ด with ๐‘Ž โ‰  ๐‘, there is some ๐œ‘๐‘– โˆถ ๐ด โ†’ ๐‘†๐‘– such that๐‘Ž๐œ‘๐‘– โ‰  ๐‘๐œ‘๐‘–. Therefore, (๐‘–)(๐‘Ž๐œ„) = ๐‘Ž๐œ‘๐‘– โ‰  ๐‘๐œ‘๐‘– = (๐‘–)(๐‘๐œ„), and so ๐‘Ž๐œ„ โ‰  ๐‘๐œ„. Thus ๐œ„is injective. 8.13

Pro-V semigroups โ€ข 165

Page 174: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proposition 8.13 means that, when we consider any non-trivial S-pseudovariety V, we can identify ๐ด with the subset ๐ด๐œ„ of ฮฉ๐ดV. From nowon, assume that V is a non-trivial S-pseudovariety.

L emma 8 . 1 4. Let ๐‘† be a pro-V semigroup and let ๐พ โŠ† ๐‘†. Then thefollowing conditions are equivalent:a) there exists a continuous homomorphism ๐œ‘ โˆถ ๐‘† โ†’ ๐น such that ๐น โˆˆ V

and ๐พ = ๐พ๐œ‘๐œ‘โˆ’1;b) ๐พ is a clopen subset of ๐‘†.

Proof of 8.14. Suppose that condition a) holds. Then since ๐น is finite andhas the discrete topology, ๐พ๐œ‘ is clopen in ๐น. Since ๐œ‘ is a continuoushomomorphism, ๐พ is clopen since it is the pre-image under ๐œ‘ of the๐พ๐œ‘.Thus condition b) holds.

Now suppose that condition b) holds and ๐พ is a clopen subset of ๐‘†.Now, ๐‘† be a subdirect product of semigroups in V. That is, ๐‘† is a subsemi-group ofโˆ๐‘–โˆˆ๐ผ ๐‘‡๐‘– for some ๐‘‡๐‘– โˆˆ V. Then ๐พ = ๐‘† โˆฉ (๐พ1 โˆช โ€ฆ โˆช ๐พ๐‘›), whereeach ๐พโ„“ is a product of the formโˆ๐‘–โˆˆ๐ผ ๐‘‹โ„“,๐‘– with๐‘‹โ„“,๐‘– โŠ† ๐‘†๐‘– and๐‘‹โ„“,๐‘– = ๐‘†๐‘– forall but finitely many indices. Let

๐ฝ = { ๐‘– โˆˆ ๐ผ โˆถ (โˆƒโ„“ โˆˆ {1,โ€ฆ , ๐‘›})(๐‘‡โ„“,๐‘– โ‰  ๐‘†๐‘–) };

notice that ๐ฝ is finite. Let ๐œ‘ โˆถ ๐‘† โ†’ โˆ๐‘–โˆˆ๐ฝ ๐‘†๐‘– be the natural projection.Then ๐œ‘ is continuous,โˆ๐‘–โˆˆ๐ฝ ๐‘†๐‘– is finite, and๐พ = ๐พ๐œ‘๐œ‘โˆ’1. Thus condition a)holds. 8.14

Pro p o s i t i on 8 . 1 5. Let ๐‘† be pro-V and let ๐‘‡ be profinite. Let ๐œ‘ โˆถ ๐‘† โ†’๐‘‡ be a continuous homomorphism. Then im๐œ‘ is pro-V and belongs to V ifit is finite.

Proof of 8.15. Since ๐‘‡ is a subdirect product of finite semigroups, it issufficient to consider the case where ๐‘‡ is finite and ๐œ‘ is surjective andshow that ๐‘‡ โˆˆ V.

For each ๐‘ก โˆˆ ๐‘‡, let ๐พ๐‘ก = ๐‘ก๐œ‘โˆ’1. Then every ๐พ๐‘ก is a pre-image of aclopen set under the continuous homomorphism ๐œ‘ and so is clopen.By Lemma 8.14, there is, for each ๐‘ก โˆˆ ๐‘‡, a continuous homomorphism๐œ“๐‘ก โˆถ ๐‘† โ†’ ๐น๐‘ก with ๐น๐‘ก โˆˆ V such that๐พ๐‘ก๐œ“๐‘ก๐œ“โˆ’1๐‘ก = ๐พ๐‘ก. Let ๐น = โˆ๐‘กโˆˆ๐‘‡ ๐น๐‘ก; noticethat ๐น โˆˆ V since ๐‘‡ is finite. Let ๐œ“ โˆถ ๐‘† โ†’ ๐น be defined by (๐‘ก)(๐‘ฅ๐œ“) = ๐‘ฅ๐œ“๐‘ก.Then ker๐œ“ โŠ† ker๐œ‘. Hence there is a homomorphism ๐œ— โˆถ im๐œ“ โ†’ ๐‘‡ givenby (๐‘ฅ๐œ“)๐œ— = ๐‘ฅ๐œ‘. Since ๐œ‘ is surjective, ๐œ— is a surjective homomorphismfrom the subsemigroup im๐œ“ of ๐น to the semigroup ๐‘‡. Hence ๐‘‡ โ‰ผ ๐น andso ๐‘‡ โˆˆ V. 8.15

Propositions 8.12, 8.13, and 8.15 together show that ฮฉ๐ดV is a verygood analogue for pseudovarieties of free algebras for varieties: mapsfrom ๐ด can be extended to homomorphisms from ฮฉ๐ดV, the โ€˜basisโ€™ ๐ด(usually) embeds in ฮฉ๐ดV, and, finally, the only finite semigroups that arehomomorphic images of ฮฉ๐ดV are the semigroups in V.

166 โ€ขVarieties & pseudovarieties

Page 175: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Pseudoidentities

Earlier in this chapter, we saw how varieties ofT-algebras,and in particular varieties of semigroups, can be defined using laws. Recallthat a law in a variety V of T-algebras is a pair ๐‘ข, ๐‘ฃ โˆˆ ๐นT(๐ด), usuallywritten as a formal equality ๐‘ข = ๐‘ฃ, and that a T-algebra ๐‘† satisfies thislaw if ๐‘ข๏ฟฝ๏ฟฝ = ๐‘ฃ๏ฟฝ๏ฟฝ for all homomorphisms ๏ฟฝ๏ฟฝ โˆถ ๐นT(๐ด) โ†’ ๐‘† extending maps๐œ‘ โˆถ ๐ด โ†’ ๐‘†. Now that we have free objects for S-pseudovarieties available,we can the study the analogue of laws for finite semigroups.

Let V be an S-pseudovariety. A V-pseudoidentity is a pair ๐‘ข, ๐‘ฃ โˆˆ ฮฉ๐ดV, Pseudoidentitiesusually written as a formal equality ๐‘ข = ๐‘ฃ. A pro-V semigroup ๐‘† satisfiesthis pseudoidentity if, for every continuous homomorphism ๐œ— โˆถ ฮฉ๐ดVโ†’ ๐‘†we have ๐‘ข๐œ— = ๐‘ฃ๐œ—.

Now let V be an M-pseudovariety. Then ฮฉ๐ดV also exists, with thecorresponding properties, and is a monoid. So we also have V-pseudo-identities ๐‘ข = ๐‘ฃ in this case, where ๐‘ข, ๐‘ฃ โˆˆ ฮฉ๐ดV, and here ๐‘ข or ๐‘ฃmay be theidentity of ฮฉ๐ดV. In this context, a pro-V monoid๐‘€ satisfies this pseudo-identity if, for every continuous monoid homomorphism ๐œ— โˆถ ฮฉ๐ดVโ†’๐‘€we have ๐‘ข๐œ— = ๐‘ฃ๐œ—.

L emma 8 . 1 6. Let V andW be S-pseudovarieties (respectively, M-pseu-dovarieties) with W โŠ† V and let ๐œ‹ โˆถ ฮฉ๐ดV โ†’ ฮฉ๐ดW be the natural pro-jection homomorphism (respectively, monoid homomorphism). Then forany ๐‘ข, ๐‘ฃ โˆˆ ฮฉ๐ดV, every semigroup in W satisfies ๐‘ข = ๐‘ฃ if and only if๐‘ข๐œ‹ = ๐‘ฃ๐œ‹. 8.16

Let ๐›ด be a set of V-pseudoidentities. Let โŸฆ๐›ดโŸงV denote the class of all๐‘† โˆˆ V that satisfy all the V-pseudoidentities in ๐›ด.

R e i t e rman โ€™ s T h eorem 8 . 1 7. Let W be a subclass of a S-pseudo- Reitermanโ€™s theoremvariety (respectively, M-pseudovariety) V. ThenW is an S-pseudovariety(respectively, M-pseudovariety) if and only if W = โŸฆ๐›ดโŸงV for some set ๐›ด ofV-pseudoidentities.

Proof of 8.17. We prove the result for S-pseudovarieties; the same reason-ing works for M-pseudovarieties with the standard modifications.

Part 1. Suppose W = โŸฆ๐›ดโŸงV. By reasoning parallel to the proof of Theo-rem 8.2, we see that W is closed underโ„, ๐•Š, and โ„™fin and is thus an S-pseudovariety.

Part 2. Suppose W is an S-pseudovariety. Fix a countably infinite alpha-bet ๐ด. Let ๐›ด be the set of all V-pseudoidentities ๐‘ข = ๐‘ฃ satisfied by allsemigroups in W, where ๐‘ข, ๐‘ฃ โˆˆ ฮฉ๐ตV and ๐ต โŠ† ๐ด. Clearly W โŠ† โŸฆ๐›ดโŸงV; weaim to prove equality.

Let X = โŸฆ๐›ดโŸงV and let ๐‘† โˆˆ X. Then since ๐ด is infinite and ๐‘† is finite,there exists some ๐ต โŠ† ๐ด and a surjective continuous homomorphism๐œ‘ โˆถ ฮฉ๐ตXโ†’ ๐‘†. Let ๐œ‹ โˆถ ฮฉ๐ตXโ†’ ฮฉ๐ตW be the natural projection.

Pseudoidentities โ€ข 167

Page 176: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Suppose ๐‘ข, ๐‘ฃ โˆˆ ฮฉ๐ตX are such that ๐‘ข๐œ‹ = ๐‘ฃ๐œ‹. Then by Lemma 8.16,every semigroup in W satisfies ๐‘ข = ๐‘ฃ. Thus ๐‘ข = ๐‘ฃ is a V-pseudoidentityin ๐›ด; and thus ๐‘† satisfies ๐‘ข = ๐‘ฃ. In particular, ๐‘ข๐œ‘ = ๐‘ฃ๐œ‘. This shows thatker๐œ‹ โŠ† ker๐œ‘.

Therefore the map ๐œ“ โˆถ ฮฉ๐ตW โ†’ ๐‘† defined by (๐‘ฅ๐œ‹)๐œ“ = ๐‘ฅ๐œ‘ is a well-defined surjective homomorphism.

For any subset ๐พ of ๐‘†, the subset ๐พ๐œ‘โˆ’1 of ฮฉ๐ตX is closed because ๐œ‘is continuous. The map ๐œ‹maps closed sets to closed sets because it is aprojection of compact spaces. Hence ๐พ๐œ“โˆ’1 = ๐พ๐œ‘โˆ’1๐œ‹ is closed. Thus ๐œ“ iscontinuous.

By Proposition 8.15, ๐‘† โˆˆ W. Therefore โŸฆ๐›ดโŸงV = X โŠ†W. 8.17

If V is an S-pseudovariety (respectively M-pseudovariety) and ๐›ด is aBases of pseudoidentitiesset of S-pseudoidentities (respectively, M-pseudoidentities) such that V =โŸฆ๐›ดโŸงS (respectively, V = โŸฆ๐›ดโŸงM), then ๐›ด is called a basis of pseudoidentitiesfor V. If there is a finite set of pseudoidentities ๐›ด such that V = โŸฆ๐›ดโŸงS(respectively, โŸฆ๐›ดโŸงM), then V is finitely based.

In order to actually write down useful pseudoidentities, we introduceNotation forpseudoidentities some new concepts and notation. Let ๐‘‡ be a finite semigroup, ๐‘ฅ โˆˆ ๐‘‡,

and ๐‘– โˆˆ โ„ค. Consider the sequence (๐‘ฅ๐‘›!+๐‘–)๐‘›. This sequence is eventuallyconstant: for all ๐‘› > max{|๐‘–|, |๐‘‡|}, all terms ๐‘ฅ๐‘›!+๐‘– are equal. More generally,let ๐‘‡ be a profinite semigroup. Then the sequence (๐‘ฅ๐‘›!+๐‘–)๐‘› converges to alimit, which we denote ๐‘ฅ๐œ”+๐‘–. In particular, this holds when ๐‘‡ is ฮฉ๐ดS and๐‘ฅ โˆˆ ๐ด.

Let ๐‘† be finite and let ๐œ— โˆถ ฮฉ๐ดS โ†’ ๐‘† be a continuous homomor-phism, the powers of ๐‘ฅ๐œ— are not all distinct: we have (๐‘ฅ๐œ—)๐‘š+๐‘˜ = (๐‘ฅ๐œ—)๐‘šfor some ๐‘š, ๐‘˜ โˆˆ โ„•. Let (๐‘ฅ๐œ—)๐‘› be the identity of the cyclic group ๐ถ ={(๐‘ฅ๐œ—)๐‘š,โ€ฆ , (๐‘ฅ๐œ—)๐‘š+๐‘˜โˆ’1}. Since (๐‘ฅ๐œ—)๐‘› = (๐‘ฅ๐œ—)๐‘š! = ๐‘ฅ๐‘š!๐œ— for all ๐‘š โฉพ ๐‘›, wehave (๐‘ฅ๐œ”)๐œ— = (๐‘ฅ๐œ—)๐‘›. That is, (๐‘ฅ๐œ”)๐œ— is the unique idempotent power of ๐‘ฅ๐œ—.Furthermore, ๐‘ฅ๐œ”โˆ’1๐œ— is the inverse of ๐‘ฅ๐œ”+1๐œ— in ๐ถ.

We can interpret this notation in ๐‘† by define new operations ๐œ”+๐‘– onfinite semigroups. For any finite semigroup ๐‘†, the operation ๐œ” โˆถ ๐‘† โ†’ ๐‘†takes any element ๐‘ฆ to its unique idempotent power ๐‘ฆ๐œ”. For any ๐‘˜ โˆˆ โ„•,the operation ๐œ”+๐‘˜ โˆถ ๐‘† โ†’ ๐‘† takes any element ๐‘ฆ to ๐‘ฆ๐œ”๐‘ฆ๐‘˜, and ๐œ”โˆ’๐‘˜ โˆถ ๐‘† โ†’ ๐‘†takes ๐‘ฆ to the inverse of ๐‘ฆ๐œ”+๐‘˜ in the [finite] cyclic subgroup {๐‘ฆ๐œ”, ๐‘ฆ๐œ”+1,โ€ฆ}.

We can now give explicit examples of pseudoidentities defining par-ticular pseudovarieties of finite semigroups and monoids. See Tables 8.4and 8.5 for a summary.

E x a m p l e 8 . 1 8. a) The S-pseudovariety of all finite aperiodic sem-igroups A is defined by the pseudoidentity ๐‘ฅ๐œ”+1 = ๐‘ฅ๐œ”.

b) The S-pseudovariety of finite nilpotent semigroupsN is defined by thepseudoidentities ๐‘ฆ๐‘ฅ๐œ” = ๐‘ฅ๐œ” and ๐‘ฅ๐œ”๐‘ฆ = ๐‘ฅ๐œ”. These pseudoidentitiesessentially say that ๐‘ฅ๐œ”๐œ— is a zero, and so we abbreviate them by ๐‘ฅ๐œ” = 0.

c) The S-pseudovariety of finite groups G is defined by the S-pseudo-identities ๐‘ฆ๐‘ฅ๐œ” = ๐‘ฆ and ๐‘ฅ๐œ”๐‘ฆ = ๐‘ฆ. Since these S-pseudoidentities

168 โ€ขVarieties & pseudovarieties

Page 177: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Pseudovariety Symbol Pseudoidentities See also

Semigroups S โ€”Trivial semigroup 1 ๐‘ฅ = ๐‘ฆNull semigroups Z ๐‘ฅ๐‘ฆ = ๐‘ง๐‘กNilpotent semigroups N ๐‘ฅ๐œ” = 0 Exa. 8.18(b)Left zero semigroups LZ ๐‘ฅ๐‘ฆ = ๐‘ฅRight zero semigroups RZ ๐‘ฅ๐‘ฆ = ๐‘ฆRectangular bands RB ๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ฅ Exer. 8.4Comp. simple sgrps CS ๐‘ฅ๐œ”+1 = ๐‘ฅ Exer. 8.8Comp. regular sgrps CR (๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ = ๐‘ฅ Exer. 8.9Left simple sgrps LS ๐‘ฅ๐‘ฆ๐œ” = ๐‘ฅ Exer. 8.10Right simple sgrps RS ๐‘ฆ๐œ”๐‘ฅ = ๐‘ฅ Exer. 8.10Left-trivial sgrps K ๐‘ฅ๐œ”๐‘ฆ = ๐‘ฅ๐œ” pp. 193โ€“194Right-trivial sgrps D ๐‘ฆ๐‘ฅ๐œ” = ๐‘ฅ๐œ” pp. 193โ€“194

TABLE 8.4S-pseudovarieties of semi-groups. The pseudoidentity๐‘ฅ(๐‘ฆ๐‘ง) = (๐‘ฅ๐‘ฆ)๐‘ง is implicitlyassumed in every case.

Pseudovariety Symbol Pseudoidentities See also

Monoids M โ€”Trivial monoid 1 ๐‘ฅ = 1Commutative monoids Com ๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ

Semilattices with ident. Sl {๐‘ฅ2 = ๐‘ฅ,๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ

Aperiodic monoids A ๐‘ฅ๐œ”+1 = ๐‘ฅ๐œ” Exa. 8.18(a)L-trivial monoids L ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ” Pr. 8.20(a)R-trivial monoids R (๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ = (๐‘ฅ๐‘ฆ)๐œ” Pr. 8.20(b)

J-trivial monoids J {(๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ = (๐‘ฅ๐‘ฆ)๐œ”,๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ”

Pr. 8.20(c)

Comp. regular monoids CR (๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ = ๐‘ฅ Exer. 8.9Groups G ๐‘ฅ๐œ” = 1 Exa. 8.18(c)

Abelian groups Ab {๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ,๐‘ฅ๐œ” = 1

TABLE 8.5M-pseudovarieties of mon-oids. The pseudoidentities๐‘ฅ(๐‘ฆ๐‘ง) = (๐‘ฅ๐‘ฆ)๐‘ง, ๐‘ฅ1 = 1, and1๐‘ฅ = ๐‘ฅ are implicitly assumedin every case.

essentially say that ๐‘ฅ๐œ”๐œ— (where ๐œ— โˆถ ฮฉ๐ดS โ†’ ๐‘† is a homomorphism)is an identity, we abbreviate them by ๐‘ฅ๐œ” = 1. If we consider the M-pseudovariety of finite groups instead, then ๐‘ฅ๐œ” = 1 is a genuine M-pseudoidentity.

We now have two different ways to define pseudovarieties: we canspecify a set of ๐‘†- or๐‘€-pseudoidentities and consider the S-or M-pseu-dovarieties of semigroups or monoids they define, or we can specify a setof finite semigroups or monoids and consider the S- or M-pseudovarietythey generate. These ways of defining pseudovarieties interact with thelattices of pseudovarieties in different but complementary ways.

Pseudoidentities โ€ข 169

Page 178: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

If ๐›ด and ๐›ต are sets of ๐‘†-pseudoidentities, then

โŸฆ๐›ดโŸงS โŠ“ โŸฆ๐›ตโŸงS = โŸฆ๐›ด โˆช ๐›ตโŸงS, (8.8)

and similarly for๐‘€-pseudoidentities. For example, the M-pseudovarietyof finite Abelian groups is

Ab = โŸฆ๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅโŸงM โŠ“ โŸฆ๐‘ฅ๐œ” = 1โŸงM = โŸฆ๐‘ฅ๐‘ฆ = ๐‘ฆ๐‘ฅ, ๐‘ฅ

๐œ” = 1โŸงM.

On the other hand, for any classes X and Y of finite semigroups,

VS(X) โŠ” VS(Y) = VS(X โˆช Y), (8.9)

and similarly for finite monoids.Furthermore, the operators Sg and Mon interact with pseudoidentities

in a pleasant way. Let ๐›ด be a set of M-pseudoidentities. Let ๐›ดSg be the setof S-pseudoidentities that can be obtained from ๐›ด as follows:1) by substituting 1 for some of the variables;2) replacing pseudoidentities of the form ๐‘ข = 1, where ๐‘ข is not the

identity, by ๐‘ข๐‘ฅ = ๐‘ฅ and ๐‘ฅ๐‘ข = ๐‘ฅ, where ๐‘ฅ is a new symbol not in ๐‘ข;3) deleting the pseudoidentity 1 = 1 if it is present.

P r o p o s i t i o n 8 . 1 9. a) Let ๐›ด be a set of S-pseudoidentities. Then

โŸฆ๐›ดโŸงM = (โŸฆ๐›ดโŸงS)Mon.

b) Let ๐›ด be a set of M-pseudoidentities. Then

โŸฆ๐›ดSgโŸงS = (โŸฆ๐›ดโŸงM)Sg.

Proof of 8.19. a) Let ๐‘† be a finite monoid. Then

๐‘† โˆˆ โŸฆ๐›ดโŸงMโ‡” ๐‘† is a monoid that satisfies all the

S-pseudoidentities in ๐›ดโ‡” ๐‘† is a monoid that belongs to โŸฆ๐›ดโŸงSโ‡” ๐‘† โˆˆ (โŸฆ๐›ดโŸงS)Mon.

b) For brevity, let V = โŸฆ๐›ดโŸงM. It is clear that V = โŸฆ๐›ดSgโŸงM, and so VSg โŠ†โŸฆ๐›ดโ€ฒโŸงS. Conversely, if ๐‘† satisfies all the S-pseudoidentities in ๐›ดSg, then๐‘†1 satisfies all theM-pseudoidentities in๐›ดSg. Thus ๐‘† โˆˆ โŸฆ๐›ดSgโŸงS implies๐‘†1 โˆˆ V, which implies ๐‘† โˆˆ SSg by (8.7). Hence โŸฆ๐›ดโ€ฒโŸงS โŠ† VSg. 8.19

Proposition 8.19 allows us to switch from M-pseudoidentities for anM-pseudovariety of monoids V to S-pseudoidentities for correspondingmonoidal S-pseudovariety of semigroups VSg.

170 โ€ขVarieties & pseudovarieties

Page 179: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

A semigroup ๐‘† isH-trivial (respectively,L-trivial,R-trivial,D-trivial,J-trivial) ifH (respectively,L,R,D, J) is the identity relation id๐‘†. A finitesemigroup isH-trivial if and only if it is aperiodic by Proposition 7.4, andis D-trivial if and only if it is J-trivial by Proposition 3.3. In particular,therefore, the class of H-trivial finite monoids is the M-pseudovariety A.Let L, R, and J be, respectively, the classes ofL-,R-, and J-trivial monoids.

P r o p o s i t i o n 8 . 2 0. a) The class L is anM-pseudovariety of mon-oids, and

L = โŸฆ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ”โŸงM.

b) The class R is an M-pseudovariety of monoids, and

R = โŸฆ(๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ = (๐‘ฅ๐‘ฆ)๐œ”โŸงM.

c) The class J is an M-pseudovariety of monoids, and

J = L โŠ“ R = โŸฆ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ”, (๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ = (๐‘ฅ๐‘ฆ)๐œ”โŸงM= โŸฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฆ๐‘ฅ)๐œ”, ๐‘ฅ๐œ” = ๐‘ฅ๐œ”+1โŸงM.

Proof of 8.20. a) Let ๐‘† โˆˆ L; that is, ๐‘† is a finite L-trivial monoid. Then ๐‘†is H-trivial and so aperiodic, and therefore ๐‘ง๐œ” = ๐‘ง๐œ”+1 for all ๐‘ง โˆˆ ๐‘†.Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. Then ๐‘ฅ(๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ”) = (๐‘ฅ๐‘ฆ)๐œ” and so ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” L (๐‘ฅ๐‘ฆ)๐œ” andso ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ” since L = id๐‘†. So every finite L-trivial monoidsatisfies the pseudoidentity ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ”.

On the other hand, let ๐‘† be a finite monoid satisfying the pseudo-identity๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ”. Let ๐‘ง, ๐‘ก โˆˆ ๐‘† be such that ๐‘ง L ๐‘ก.Then there ex-ist ๐‘, ๐‘ž โˆˆ ๐‘† such that ๐‘๐‘ง = ๐‘ก and ๐‘ž๐‘ก = ๐‘ง. Then ๐‘ก = (๐‘๐‘ž)๐‘ก = (๐‘๐‘ž)2๐‘ก = โ€ฆand so ๐‘ก = (๐‘๐‘ž)๐œ”๐‘ก. Similarly ๐‘ง = ๐‘ž๐‘ก = ๐‘ž(๐‘๐‘ž)๐‘ก = ๐‘ž(๐‘๐‘ž)2๐‘ก = โ€ฆ and so๐‘ง = ๐‘ž(๐‘๐‘ž)๐œ”๐‘ก. Substitute ๐‘ for ๐‘ฅ and ๐‘ž for ๐‘ฆ in the pseudoidentity tosee that ๐‘ก = (๐‘๐‘ž)๐œ”๐‘ก = ๐‘ž(๐‘๐‘ž)๐œ”๐‘ก = ๐‘ง. So L = id๐‘†. Thus ๐‘† is L-trivialand so ๐‘† โˆˆ L.

Thus the class of finiteL-trivial monoids L is a pseudovariety, andL = โŸฆ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ”โŸงS.

b) The reasoning is dual to part a).c) A monoid is D-trivial if and only if it is both L-trivial and R-trivial,

and a finite monoid is J-trivial if and only if it is D-trivial. ThusJ = L โŠ“ R, and L โŠ“ R = โŸฆ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ”, (๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ = (๐‘ฅ๐‘ฆ)๐œ”โŸงM by (8.8).

Suppose ๐‘† โˆˆ โŸฆ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ”, (๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ = (๐‘ฅ๐‘ฆ)๐œ”โŸงM. Putting๐‘ฅ = ๐‘ฆin the first pseudoidentity shows that ๐‘ฅ(๐‘ฅ2)๐œ” = (๐‘ฅ2)๐œ”. Since ๐‘ฅ๐œ” =(๐‘ฅ2)๐œ”, it follows that ๐‘ฅ๐œ” = ๐‘ฅ๐œ”+1 for all ๐‘ฅ โˆˆ ๐‘†. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† and let ๐‘› belarge enough that (๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐‘› and (๐‘ฆ๐‘ฅ)๐œ” = (๐‘ฆ๐‘ฅ)๐‘›. Then (๐‘ฆ๐‘ฅ)๐œ”๐‘ฆ =(๐‘ฆ๐‘ฅ)๐‘›๐‘ฆ = ๐‘ฆ(๐‘ฅ๐‘ฆ)๐‘› = ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ”. So ๐‘† satisfies the pseudoidentity (๐‘ฅ๐‘ฆ)๐œ” =(๐‘ฆ๐‘ฅ)๐œ”. Hence ๐‘† โˆˆ โŸฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฆ๐‘ฅ)๐œ”, ๐‘ฅ๐œ” = ๐‘ฅ๐œ”+1โŸงM.

Now suppose ๐‘† โˆˆ โŸฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฆ๐‘ฅ)๐œ”, ๐‘ฅ๐œ” = ๐‘ฅ๐œ”+1โŸงM. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. Us-ing both pseudoidentities, we see that (๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ”+1 = (๐‘ฆ๐‘ฅ)๐œ”+1 =

Pseudoidentities โ€ข 171

Page 180: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ. Hence (๐‘ฅ๐‘ฆ)๐œ” = ๐‘ฆ2(๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ2 = ๐‘ฆ3(๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ3 = โ€ฆ and so(๐‘ฅ๐‘ฆ)๐œ” = ๐‘ฆ๐œ”(๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ๐œ” = ๐‘ฆ๐œ”+1(๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ๐œ” = ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ”. Similarly, (๐‘ฅ๐‘ฆ)๐œ” =(๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ. Therefore ๐‘† โˆˆ โŸฆ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ”, (๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ = (๐‘ฅ๐‘ฆ)๐œ”โŸงS. Thus

โŸฆ๐‘ฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฅ๐‘ฆ)๐œ”, (๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ = (๐‘ฅ๐‘ฆ)๐œ”โŸงM= โŸฆ(๐‘ฅ๐‘ฆ)๐œ” = (๐‘ฆ๐‘ฅ)๐œ”, ๐‘ฅ๐œ” = ๐‘ฅ๐œ”+1โŸงM. 8.20

We now define another operator that connects M-pseudovarieties ofmonoids with S-pseudovarieties of semigroups. For anyM-pseudovarietyof monoids V, let

๐•ƒV = { ๐‘† โˆˆ S โˆถ (โˆ€๐‘’ โˆˆ ๐ธ(๐‘†))(๐‘’๐‘†๐‘’ โˆˆ V) }.

For any semigroup ๐‘† and ๐‘’ โˆˆ ๐ธ(๐‘†), the subset ๐‘’๐‘†๐‘’ forms a submonoidLocal submonoid, locally Vwhose identity is ๐‘’, called the local submonoid of ๐‘† at ๐‘’. Thus a semigroupin ๐•ƒV is said to be locally V.

Let ๐›ด be a basis ofM-pseudoidentities for aM-pseudovariety of mon-oids V. Let ๐‘ง be a new symbol that does not appear in ๐›ด. Let ๐›ดโ€ฒ be theset of S-pseudovarieties obtained by substituting ๐‘ง๐œ”๐‘ฅ๐‘ง๐œ” for ๐‘ฅ in every M-pseudoidentity in ๐›ด, for every symbol ๐‘ฅ that appears in ๐›ด, and substitut-ing ๐‘ง๐œ” for 1 in every M-pseudoidentity in ๐›ด. Then ๐•ƒV = โŸฆ๐›ดโ€ฒโŸงS, and so๐•ƒV is an S-pseudovariety of semigroups.

In particular, the variety of locally trivial semigroups is

๐•ƒ1 = โŸฆ๐‘ง๐œ”๐‘ฅ๐‘ง๐œ” = ๐‘ง๐œ”โŸงS;

we will study these further in the next chapter.

Semidirect productof pseudovarieties

The semidirect product of two S-pseudovarieties V andSemidirect productof pseudovarieties W, denoted V โ‹Š W, is the S-pseudovariety generated by all semidirect

products ๐‘† โ‹Š๐œ‘ ๐‘‡, where ๐‘† โˆˆ V, ๐‘‡ โˆˆ W, and ๐œ‘ โˆถ ๐‘‡ โ†’ End(๐‘†) is ananti-homomorphism. We will not explore semidirect products of pseu-dovarieties in detail; we mention only the following result, which allowsus to re-state the Krohnโ€“Rhodes theorem in a more elegant form:

Pro p o s i t i on 8 . 2 1. The semidirect product of S-pseudovarieties isassociative.

Proof of 8.21. [Technical, and omitted.] 8.21

Notice that it is the semidirect product of S-pseudovarieties that is associ-ative. There is no natural definition for the associativity of the semidirect

172 โ€ขVarieties & pseudovarieties

Page 181: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

product of semigroups: by the definition of semidirect products (seepages 133โ€“134), the expression (๐‘† โ‹Š๐œ‘ ๐‘‡) โ‹Š๐œ“ ๐‘ˆ only makes sense if themap ๐œ“ is an anti-homomorphism from ๐‘ˆ to End(๐‘† โ‹Š ๐œ‘๐‘‡), whereas theexpression ๐‘† โ‹Š๐œ‘ (๐‘‡ โ‹Š๐œ“ ๐‘ˆ) only makes sense if the map ๐œ“ is an anti-homomorphism from ๐‘ˆ to End(๐‘‡).

The Krohnโ€“Rhodes theorem shows that every finite semigroup is awreath product of its subgroups and copies of the aperiodic semigroup๐‘ˆ3.Now, if V andW are S-pseudovarieties and ๐‘† โˆˆ V and ๐‘‡ โˆˆ W, then ๐‘†๐‘‡ โˆˆ V(since V is closed under finitary direct products); hence ๐‘† โ‰€ ๐‘‡ โˆˆ V โ‹ŠW.Notice furthermore that V โŠ† Vโ‹ŠW since every pseudovariety contains thetrivial semigroup. Therefore the Krohnโ€“Rhodes theorem can be restatedin terms of S-pseudovarieties as

S = โ‹ƒ๐‘˜โˆˆโ„•โˆช{0}

Gโ€˜โ‹Š A โ‹Š Gโ€™ appears ๐‘˜ timesโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโ‹Š A โ‹Š G โ‹Šโ‹ฏ โ‹Š A โ‹Š G.

Exercises

[See pages 241โ€“248 for the solutions.]8.1 Let ๐‘† be cancellative semigroup that satisfies a law ๐‘ข = ๐‘ฃ where ๐‘ข, ๐‘ฃ โˆˆ๐ด+ and ๐‘ข and ๐‘ฃ are not equal words.Without loss of generality, assume|๐‘ข| โฉฝ |๐‘ฃ|. Let ๐‘ค โˆˆ ๐ดโˆ— be the longest common suffix of ๐‘ข and ๐‘ฃ. (Thatis, ๐‘ข = ๐‘ขโ€ฒ๐‘ค and ๐‘ฃ = ๐‘ฃโ€ฒ๐‘ค, where ๐‘ขโ€ฒ and ๐‘ฃโ€ฒ do not end with the sameletter.) Prove thata) if ๐‘ข = ๐‘ค, then ๐‘† is a group;b) if ๐‘ข โ‰  ๐‘ค then ๐‘† is group-embeddable.

โœด8.2 a) Prove, directly from the definition, that the class of finite nilpotentsemigroups is a pseudovariety.

b) Prove that the class all nilpotent semigroups is not a variety.โœด8.3 Recall that a semigroup is orthodox if it is regular and its idempotents

form a subsemigroup. Prove that the class of orthodox completelyregular semigroups forms a variety and that it is defined by the laws๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฅโˆ’1๐‘ฅ and ๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1๐‘ฅ๐‘ฆ = ๐‘ฅ๐‘ฆ.

8.4 Let RB be the class of rectangular bands.a) Prove, directly from the definition, that RB is a variety.b) Prove that RB is defined by the law ๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ฅ.c) Prove that RB is also defined by the laws ๐‘ฅ2 = ๐‘ฅ and ๐‘ฅ๐‘ฆ๐‘ง = ๐‘ฅ๐‘ง.d) Give an example of a semigroup that satisfies ๐‘ฅ๐‘ฆ๐‘ง = ๐‘ฅ๐‘ง but is not

a rectangular band.

Exercises โ€ข 173

Page 182: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

8.5 Let X be the class of semigroups isomorphic to a direct product of agroup and a rectangular band. Prove that X is a variety and is definedby the laws ๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฅโˆ’1๐‘ฅ and ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1๐‘ฅ = ๐‘ฅโˆ’1๐‘ฅ.

8.6 Let T be a type, and let {V๐‘– โˆถ ๐‘– โˆˆ ๐ผ } be a collection of pseudovarietiesof T-algebras. Prove thatโ‹‚๐‘–โˆˆ๐ผ V๐‘– is a pseudovariety.

8.7 Prove that (VMon)Sg โŠ† V for any S-pseudovariety of semigroups V.Give an example to show that the inclusion may be strict.

โœด8.8 Prove that the pseudovariety of finite completely regular semigroupsCR is โŸฆ๐‘ฅ๐œ”+1 = ๐‘ฅโŸงS.

โœด8.9 Prove that the pseudovariety of finite completely simple semigroupsCS is โŸฆ(๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ = ๐‘ฅโŸงS.

8.10 Prove that โŸฆ๐‘ฅ๐‘ฆ๐œ” = ๐‘ฅโŸงS is the class of finite left simple semigroups.[Dual reasoning shows that โŸฆ๐‘ฆ๐œ”๐‘ฅ = ๐‘ฅโŸงS is the class of finite rightsimple semigroups.]

Notes

The number of non-isomorphic nilpotent semigroups of or-der 8 is from Distler, โ€˜Classification and Enumeration of Finite Semigroupsโ€™,Table A.4. โ—† The section on varieties follows Howie, Fundamentals of SemigroupTheory, ยง 4.3 in outline, but in a universal algebraic context instead of the re-stricted context of {(โˆ˜, 2), (โˆ’1, 1)}-algebras. โ—† The exposition of pseudovarietiescontains elements from Almeida, Finite Semigroups and Universal Algebra, ยงยง 3.1,5.1, & 7.1. โ—† The discussion of free objects for pseudovarieties, profinite semi-groups, pro-V semigroups, and pseudoidentities is based on Almeida, โ€˜Profinitesemigroups and applicationsโ€™ and Almeida, Finite Semigroups and UniversalAlgebra, ch. 3. โ—† For a proof of Proposition 8.21, see Almeida, Finite Semigroupsand Universal Algebra, ยง 10.1. โ—† For further reading, Almeida, Finite Semigroupsand Universal Algebra is the more accessible text, and Rhodes & Steinberg, The๐”ฎ-theory of Finite Semigroups the more recent and comprehensive monograph.Pin, Varieties of Formal Languages, ch. 2 and Eilenberg, Automata, Languages,and Machines (Vol. B), ch. v give rather different treatments.

โ€ข

174 โ€ขVarieties & pseudovarieties

Page 183: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

9Automata& finite semigroups

โ€˜We do not praise automata for accurately producingall the movements they were designed to perform,because the production of these movements occursnecessarily. It is the designer who is praised โ€™

โ€” Renรฉ Descartes,Principles of Philosophy, Part One, ยง 37

(trans. John Cottingham).

โ€ข This chapter explores the connection between finitesemigroups and rational languages. Rational languages are sets of wordsthat are recognized by finite automata, which are mathematical modelsof simple computers. After discussing the necessary background on thetheory of languages and automata, we will explore its connection to thetheory of finite semigroups. The goal is the Eilenberg correspondence,which associates pseudovarieties of finite semigroups to certain classesof rational languages. We will then study some consequences of thiscorrespondence.

Finite automata andrational languages

Let ๐ด be an alphabet. A language over ๐ด is a subset of Language๐ดโˆ—. So a language over ๐ด is a set of words with letters in ๐ด. We will beinterested in a particular class of languages over ๐ด called the rationallanguages. To motivate the definition of this class, we first introduce finiteautomata.

A finite automaton is a mathematical model of a computer with a verysimple form of operation: it reads an input word (a sequence of symbolsover an alphabet) one symbol at a time, and either accepts or rejects thisinput. The automaton can be in one of a finite number of internal statesat any point. As it reads a symbol, it changes its state to a new one that isdependent on its current state and the symbol it reads. If can start in oneof a given set of initial states, read an input word symbol-by-symbol, andend up in one of a given set of accept states, it accepts this input.

โ€ข 175

Page 184: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

FIGURE 9.1An example of a finite auto-

maton.

๐‘ž0 ๐‘ž1๐‘Ž

๐‘๐œ€

๐‘Ž, ๐‘

๐‘

It is easier to start with an example of a finite automaton rather thana formal definition. The directed graph in Figure 9.1 represents a finiteautomaton. The vertices of the graph represent he states of the automaton.The state ๐‘ž0 is marked with an incoming arrow โ€˜from nowhereโ€™: thisindicates that it is an initial state. The state ๐‘ž1 has a double outline: thisindicates that it is an accept state. (In this example, there is only one initialstate and one accept state; generally there may be more than one of each,and it is possible for a state to be both an initial and an accept state.) Theedges and their labels indicate how the automaton behaves: for example,โ—† the edge from ๐‘ž0 to ๐‘ž1 labelled by ๐‘Ž says that if the automaton is in

state ๐‘ž0 and reads the symbol ๐‘Ž, it can change to state ๐‘ž1;โ—† the edge from ๐‘ž1 to ๐‘ž0 labelled by the empty word ๐œ€ says that if the

automaton is in state ๐‘ž1, it can change to state ๐‘ž0 without reading anysymbols (that is, it can โ€˜spontaneouslyโ€™ change from state ๐‘ž1 to state๐‘ž0).

Notice that if the automaton is in state ๐‘ž1 and reads a symbol ๐‘, it caneither change to state ๐‘ž0 or return to state ๐‘ž1. That is, the automatonis non-deterministic: there is an element of choice in how it functions.Thus the automaton is said to accept a word ๐‘ค โˆˆ {๐‘Ž, ๐‘}โˆ— if there is somesequence of choices it can make so that it starts in the initial state ๐‘ž0,reads ๐‘ค, and finishes in the accept state ๐‘ž1. In terms of the graph, this isequivalent to saying that the automaton accepts ๐‘ค if there is a directedpath in the graph starting at ๐‘ž0 and ending at ๐‘ž1, labelled by ๐‘ค. (Thelabel on a path is the concatenation of the labels on its edges.) Hence thisautomaton accepts ๐‘๐‘Ž๐‘Ž, since this word labels the path

๐‘ž0 ๐‘ž0 ๐‘ž1 ๐‘ž0 ๐‘ž1๐‘ ๐‘Ž ๐œ€ ๐‘ŽโŸโŸโŸโŸโŸโŸโŸโŸโŸ โŸโŸโŸโŸโŸโŸโŸโŸโŸโˆˆ ๐ผ โˆˆ ๐น

On the other hand, it does not accept the word ๐‘, because the only pathwith label ๐‘ starting at ๐‘ž0 is the path

๐‘ž0 ๐‘ž0๐‘โŸโŸโŸโŸโŸโŸโŸโŸโŸ โŸโŸโŸโŸโŸโŸโŸโŸโŸโˆˆ ๐ผ โˆ‰ ๐น

which does not end at ๐‘ž1Formally, a finite automaton, or simply an automaton, A is formallyFinite automaton

a quintuple (๐‘„, ๐ด, ๐›ฟ, ๐ผ, ๐น), where ๐‘„ is a finite set of states, ๐ด is a finite

176 โ€ขAutomata & finite semigroups

Page 185: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

alphabet, ๐›ฟ โˆถ ๐‘„ ร— (๐ด โˆช {๐œ€}) โ†’ โ„™๐‘„ is a map called the transition function,๐ผ โŠ† ๐‘„ is a set of distinguished states called the initial states or start states,and ๐น โŠ† ๐‘„ is a distinguished set of states called accept states or final states.

We think of an automaton as a directed graph with labelled edges,with vertices being the states, and, for each ๐‘ž โˆˆ ๐‘„ and ๐‘Ž โˆˆ ๐ด, andfor each ๐‘žโ€ฒ โˆˆ (๐‘ž, ๐‘Ž)๐›ฟ, an edge labelled by ๐‘Ž from ๐‘ž to ๐‘žโ€ฒ. We can thusrepresent an automaton in a diagrammatic form, with the states beingnodes connected by arrows. Initial states are marked with an incomingarrow โ€˜from nowhereโ€™. Accept states have double borders. For each ๐‘ž โˆˆ ๐‘„and ๐‘Ž โˆˆ ๐ด, there is an arrow labelled by ๐‘Ž โˆˆ ๐ด from ๐‘ž to each element of(๐‘ž, ๐‘Ž)๐›ฟ. The label on a path in such a graph is the product of the labels onthe edges in that path.

๐œ€ ๐‘Ž ๐‘๐‘ž0 โˆ… {๐‘ž1} {๐‘ž0}๐‘ž1 {๐‘ž0} {๐‘ž0} ๐‘„

TABLE 9.1Values of (๐‘ž, ๐‘Ž)๐›ฟ

For example, let A be automaton in Figure 9.1. Then A has state set๐‘„ = {๐‘ž0, ๐‘ž1}. The set of initial states is ๐ผ = {๐‘ž0}, the set of final states is๐น = {๐‘ž1}, and the transition function ๐›ฟ โˆถ ๐‘„ ร— (๐ด โˆช {๐œ€}) โ†’ โ„™๐‘„ is as givenin Table 9.1.

We say that an automaton A = (๐‘„,๐ด, ๐›ฟ, ๐ผ, ๐น) accepts a word ๐‘ค โˆˆ ๐ดโˆ— Accepted wordif there is a directed path in the diagram starting at an initial state in ๐ผand ending at an accept state in ๐น, and labelled by ๐‘ค.

The idea is that the automaton is a model of a computer that can startin any state in ๐ผ. While in state ๐‘ž, it can read a letter ๐‘Ž from an input tapeand change to any state in (๐‘ž, ๐‘Ž)๐›ฟ, or it can change to any state in (๐‘ž, ๐œ€)๐›ฟwithout reading any input. The automaton accepts its input if, when ithas finished reading all the input letters, it is in a state in ๐น.

The set of all words accepted by an automatonA is denoted ๐ฟ(A), and Language recognizedby an automatonis called the language recognized by A. If a language ๐ฟ โŠ† ๐ดโˆ— is recognized

by some finite automaton, it is called a recognizable language. Recognizable languageOur description of an automaton reading input involves an element

of choice. The automaton is non-deterministic: First, the automaton canstart in any state in ๐ผ. Second, the action it takes when it is in a particularstate with a particular input letter to read is not fixed: the automatoncan change to one of several other states on reading that letter, and mayindeed change to another state without reading any input.

An automaton where there is no such choice is called deterministic. Deterministic automatonMore formally, an automaton A = (๐‘„,๐ด, ๐›ฟ, ๐ผ, ๐น) is deterministic if ๐ผ con-tains exactly one state, ๐›ฟ(๐‘ž, ๐œ€) = โˆ… for all ๐‘ž โˆˆ ๐‘„, and ๐›ฟ(๐‘ž, ๐‘Ž) contains asingle state for all ๐‘ž โˆˆ ๐‘„ and ๐‘Ž โˆˆ ๐ด. In terms of the diagram, A is determ-inistic if there is only one state with an incoming edge โ€˜from nowhereโ€™, noedge is labelled by ๐œ€, and for every state ๐‘ž โˆˆ ๐‘„ and ๐‘Ž โˆˆ ๐ด, there is at mostone edge starting at ๐‘ž and labelled by ๐‘Ž. So in a deterministic automaton,there is at most one path starting at a given state and labelled by a givenword. (Such a path may not exist, since there might not an edge with therequired label present at some point.)

However, although deterministic automata seem to be much more re-strictive than non-deterministic ones, the class of deterministic automata

Finite automata and rational languages โ€ข 177

Page 186: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

actually has the same โ€˜recognizing powerโ€™ as the class of all automata, ina sense made precise by the following result:

T h eorem 9 . 1. Let ๐ฟ be a recognizable language. Then there is a de-Recognizable languagesare recognized by

deterministic automataterministic automaton that recognizes ๐ฟ.

Proof of 9.1. Let A = (๐‘„,๐ด, ๐›ฟ, ๐ผ, ๐น) be an automaton, possibly non-de-terministic, that recognizes ๐ฟ. For the purposes of this proof, we definethe ๐œ€-closure of a set ๐‘ƒ โŠ† ๐‘„ to be the set

๐ถ๐œ€(๐‘ƒ) = { ๐‘Ÿ โˆˆ ๐‘„ โˆถ (โˆƒ๐‘ โˆˆ ๐‘ƒ)(there is a path in Afrom ๐‘ to ๐‘ž labelled by ๐œ€) }.

We are going to define a new automaton ๐ท(A) = (โ„™๐‘„,๐ด, ๐œ‚, ๐ฝ, ๐บ).Note that the state set of๐ท(A) is the power set of the state set of A. Theidea is that each state of ๐ท(A) is a set that records every possible statethat A could be at a given time. The following definitions formalize thisidea.

The set of initial states ๐ฝ is the singleton set {๐ถ๐œ€(๐ผ)}. (Note that beforereading any symbol, A could be in any state in ๐ถ๐œ€(๐ผ).)

The transition function ๐œ‚ has domain ๐‘„ ร— (๐ด โˆช {๐œ€}) and codomainthe power set of the power set of ๐‘„. The function ๐œ‚ is defined by

(๐‘†, ๐œ€)๐œ‚ = โˆ…,

(๐‘†, ๐‘Ž)๐œ‚ = {๐ถ๐œ€({ ๐‘ โˆˆ ๐‘„ โˆถ (โˆƒ๐‘ž โˆˆ ๐‘†)((๐‘ž, ๐‘Ž)๐›ฟ = ๐‘) })}.

We emphasize that (๐‘†, ๐‘Ž)๐œ‚ contains a single element ๐ถ๐œ€(โ€ฆ). Note that,starting in a state in ๐‘† and reading a symbol ๐‘Ž, the automaton A could bein any state in (๐‘†, ๐‘Ž)๐œ‚.

Finally, the set of accept states is

๐บ = {๐‘ˆ โˆˆ โ„™๐‘„ โˆถ ๐‘ˆ โˆฉ ๐น โ‰  โˆ… }.

Note that ๐ท(A) is deterministic. We now have to prove that ๐ฟ(A) =๐ฟ(๐ท(A)).

Suppose ๐‘ค = ๐‘ค1โ‹ฏ๐‘ค๐‘› โˆˆ ๐ฟ(A). Then there is a path in the graph ofA from a state in ๐ผ to a state in ๐น. We are going to prove that there is apath in ๐ท(A) from the (unique) initial state to an accept state with thesame label. Let ๐‘ž0,โ€ฆ , ๐‘ž๐‘˜ be the states on a path in A labelled by ๐‘ค, with๐‘ž0 โˆˆ ๐ผ and ๐‘ž๐‘˜ โˆˆ ๐น. For ๐‘— = 0,โ€ฆ , ๐‘› โˆ’ 1, let ๐‘–๐‘— the the subscript of the stateimmediately before the edge labelled by the symbol ๐‘ค๐‘—+1 on this path.

So there is a path in A from ๐‘ž0 โˆˆ ๐ผ to ๐‘ž๐‘–0 labelled by ๐œ€, so ๐‘ž๐‘–0 โˆˆ ๐ถ๐œ€(๐ผ).So ๐‘ž๐‘–0 is in the unique initial state of๐ท(A). Let๐‘„๐‘–0 = ๐ถ๐œ€(๐ผ); then we have๐‘ž๐‘–0 โˆˆ ๐‘„๐‘–0 .

Proceed by induction. For any ๐‘—, we have ๐‘ž๐‘–๐‘—+1 โˆˆ (๐‘ž๐‘–๐‘— , ๐‘ค๐‘—)๐›ฟ, and weknow that there is a path in A from ๐‘ž๐‘–๐‘—+1 to ๐‘ž๐‘–๐‘—+1 labelled by ๐œ€. Therefore

178 โ€ขAutomata & finite semigroups

Page 187: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

โˆ…

{๐‘ž0}

{๐‘ž1}

๐‘„

๐‘Ž, ๐‘

๐‘Ž

๐‘

๐‘Ž ๐‘

๐‘Ž, ๐‘ FIGURE 9.2The deterministic automatonequivalent to the one in Figure9.1.

we have ๐‘ž๐‘–๐‘—+1 โˆˆ ๐ถ๐œ€({๐‘ž๐‘–๐‘—+1}) โŠ† (๐‘„๐‘–๐‘— , ๐‘ค๐‘—)๐œ‚. Let ๐‘„๐‘–๐‘—+1 = (๐‘„๐‘–๐‘— , ๐‘ค๐‘—)๐œ‚; then wehave ๐‘ž๐‘–๐‘—+1 โˆˆ ๐‘„๐‘–๐‘—+1 .

Finally, there is a path from ๐‘ž๐‘–๐‘›โˆ’1+1 to ๐‘ž๐‘˜ โˆˆ ๐น labelled by ๐œ€, so (๐‘„๐‘–๐‘› , ๐‘ค๐‘›)๐œ‚must contain ๐‘ž๐‘˜, and hence (๐‘„๐‘–๐‘›โˆ’1 , ๐‘ค๐‘›)๐œ‚ โˆฉ ๐น โ‰  โˆ…. Let ๐‘„๐‘–๐‘› = (๐‘„๐‘–๐‘›โˆ’1 , ๐‘ค๐‘›)๐œ‚.Thus the (unique) path in๐ท(A) labelled by ๐‘ค1โ‹ฏ๐‘ค๐‘› and starting fromthe (unique) initial state ๐‘„๐‘–0 โˆˆ ๐ฝ visits states ๐‘„๐‘–0 , ๐‘„๐‘–0 ,โ€ฆ ,๐‘„๐‘–๐‘›โˆ’1 , ๐‘„๐‘–๐‘› andends at an accept state. So ๐‘ค โˆˆ ๐ฟ(๐ท(A)).

Now suppose that๐‘ค = ๐‘ค1โ€ฆ,๐‘ค๐‘› โˆˆ ๐ฟ(๐ท(A). Then there is a sequenceof states ๐‘„0,โ€ฆ ,๐‘„๐‘›, with ๐‘„0 โˆˆ ๐ฝ and ๐‘„๐‘› โˆˆ ๐บ, and (๐‘„๐‘–โˆ’1, ๐‘ค๐‘–)๐œ‚ = ๐‘„๐‘– for๐‘– = 1,โ€ฆ , ๐‘›. By the definition of ๐บ, there is some ๐‘žโ€ฒ๐‘› โˆˆ ๐‘„๐‘› โˆฉ ๐น. Proceedby induction. For any ๐‘— = 1,โ€ฆ , ๐‘›, by the definition of ๐œ‚, there exist๐‘ž๐‘—โˆ’1 โˆˆ ๐‘„๐‘—โˆ’1 and ๐‘ž๐‘— โˆˆ ๐‘„๐‘— such that ๐‘ž๐‘— โˆˆ (๐‘ž๐‘—โˆ’1, ๐‘ค๐‘—)๐›ฟ and there with a pathfrom ๐‘ž๐‘— to ๐‘žโ€ฒ๐‘— in A labelled by ๐œ€.

Finally, since ๐‘„0 โˆˆ ๐ฝ, we have ๐‘„0 = ๐ถ๐œ€(๐ผ) and so there is a path in Alabelled by ๐œ€ from some ๐‘ž0 โˆˆ ๐ผ to ๐‘žโ€ฒ0.

Hence there is a path in A from ๐‘ž0 โˆˆ ๐ผ to ๐‘žโ€ฒ๐‘› โˆˆ ๐น passing through๐‘žโ€ฒ0, ๐‘ž1, ๐‘žโ€ฒ1โ€ฆ, ๐‘ž๐‘›โˆ’1, ๐‘žโ€ฒ๐‘›โˆ’1, ๐‘ž๐‘› (and other intermediate states) and labelledby ๐‘ค = ๐‘ค1โ‹ฏ๐‘ค๐‘›. So ๐‘ค โˆˆ ๐ฟ(A).

Thus the recognizable language ๐ฟ is recognized by the deterministicautomaton๐ท(A). 9.1

๐œ€ ๐‘Ž ๐‘โˆ… โˆ… {โˆ…} {โˆ…}{๐‘ž0} โˆ… {๐‘„} {{๐‘ž0}}{๐‘ž1} โˆ… {{๐‘ž0}} ๐‘„๐‘„ โˆ… {๐‘„} ๐‘„

TABLE 9.2Values of (๐‘†, ๐‘Ž)๐œ‚

Applying the construction in the proof of Theorem 9.1 to the ex-ample automaton A above, the resulting deterministic automaton๐ท(A)recognizing ๐ฟ(A) has set of initial states ๐ฝ = {{๐‘ž0}}, set of accept states๐บ = {{๐‘ž1}, ๐‘„}, and transition function ๐œ‚ โˆถ โ„™๐‘„ ร— (๐ด โˆช {๐œ€}) โ†’ โ„™(โ„™๐‘„) asshown in Table 9.2. Diagrammatically,๐ท(A) is shown in Figure 9.2.

We will need to make a distinction between two classes of languages. โˆ—-languages, +-languagesA โˆ—-language is a subset of ๐ดโˆ—; that is, it may include the empty word. A+-language is a subset of ๐ด+; that is, it does not contain the empty word.Of course, every +-language can also be viewed as a โˆ—-language. Butthe distinction is important when we perform operations on languages,and when we develop the correspondence of classes of languages andpseudovarieties.

Let ๐ด be an alphabet. We are going to define some operations on the Boolean operations,Boolean algebraclasses of languages over ๐ด. Let ๐ฟ and ๐พ be โˆ—-languages over ๐ด. Then

Finite automata and rational languages โ€ข 179

Page 188: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐พ โˆช ๐ฟ and ๐พ โˆฉ ๐ฟ are, respectively, the union and intersection of ๐พ and๐ฟ. The language ๐ดโˆ— โˆ– ๐ฟ is the complement of ๐ฟ in ๐ดโˆ—. Notice that theclass of โˆ—-languages is closed under union, intersection, and complement.These are the Boolean operations on the class of โˆ—-languages. We will saythat a class of โˆ—-languages that is closed under the Boolean operations isa Boolean algebra. [The notion of a Boolean algebra is more general thanthis, but this definition will suffice for us.]

For +-languages, we have the same union and intersection operations.However, the complement operation is different:๐ด+โˆ–๐ฟ is the complementof ๐ฟ in ๐ด+, and is also a +-language. The class of +-languages is closedunder the operations of union, intersection, and this new complementoperation; these are the Boolean operations on the class of +-languages.Again, we say that a class of +-languages that is closed under the Booleanoperations is a Boolean algebra.

The concatenation๐พ๐ฟ of the โˆ—-languages or +-languages๐พ and ๐ฟ isKleene star โˆ—, Kleene plus +

the set of words of the form ๐‘ข๐‘ฃ, where ๐‘ข โˆˆ ๐พ and ๐‘ฃ โˆˆ ๐ฟ. The submonoidof ๐ดโˆ— generated by ๐พ is ๐พโˆ—; the subsemigroup generated by ๐พ is ๐พ+.Note that when๐พ = ๐ด, this agrees with the notation for the free monoidand free semigroup. However, when ๐พ โ‰  ๐ด, the sets ๐พโˆ— and ๐พ+ are ingeneral not the free monoid and free semigroup on ๐พ. For example, if๐พ = {๐‘Ž2, ๐‘Ž3}, then ๐‘Ž2๐‘Ž3 = ๐‘Ž3๐‘Ž2, so ๐พโˆ— and ๐พ+ are not the free monoidand free semigroup on ๐พ. The operations โˆ— and + are called the Kleenestar and Kleene plus. Notice that the class of โˆ—-languages is closed underthe operations โˆ— and +, and the class of +-languages is closed under theoperation +.

A language over ๐ด = {๐‘Ž1,โ€ฆ , ๐‘Ž๐‘›} is rational or regular if it can beRational/regular languageobtained from the languagesโˆ…, {๐œ€}, {๐‘Ž1}, {๐‘Ž2}, โ€ฆ, {๐‘Ž๐‘›}, by applying (zeroor more times) the operations of union, concatenation, and Kleene star.

K l e en e โ€™ s Th eorem 9 . 2. A language over a finite alphabet is ra-Kleeneโ€™s theoremtional if and only if it is recognizable.

Proof of 9.2. To show that any rational language is recognizable, it sufficesto show that the languagesโˆ…, {๐œ€}, and {๐‘Ž} (for ๐‘Ž โˆˆ ๐ด) are recognizable,and then to prove that the class of recognizable languages is closed underconcatenation, union, and Kleene star. In our various constructions, wewill simply draw automata. First, notice that

๐‘ž0 ๐‘ž1 recognizesโˆ…;

๐‘ž0 recognizes {๐œ€}; and

๐‘ž0 ๐‘ž1๐‘Ž recognizes {๐‘Ž} (for ๐‘Ž โˆˆ ๐ด).

Soโˆ…, {๐œ€}, and {๐‘Ž} (for ๐‘Ž โˆˆ ๐ด) are recognizable.

180 โ€ขAutomata & finite semigroups

Page 189: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Now suppose that๐พ and ๐ฟ are recognizable languages. So there areautomata A = (๐‘„A, ๐ด, ๐›ฟA, ๐ผA, ๐นA) and B = (๐‘„B, ๐ต, ๐›ฟB, ๐ผB, ๐นB) recog-nizing ๐พ and ๐ฟ respectively, which we will sketch as

โ‹ฎ๐ผA โ‹ฎ๐นAA and โ‹ฎ๐ผB โ‹ฎ๐นBB

respectively. Then

โ‹ฎ๐ผA โ‹ฎ๐นAA โ‹ฎ๐ผB โ‹ฎ๐นBB๐œ€๐œ€

๐œ€๐œ€

recognizes ๐พ๐ฟ;

โ‹ฎ๐ผA โ‹ฎ๐นAA

โ‹ฎ๐ผB โ‹ฎ๐นBB

}}}}}}}}}}}}}}}}}}}}}}}}}

recognizes ๐พ โˆช ๐ฟ;

and โ‹ฎ๐ผA โ‹ฎ๐นAA

๐œ€

recognizes ๐พ+.

Thus๐พ๐ฟ,๐พโˆช๐ฟ, and๐พ+ are recognizable languages. Hence๐พโˆ— = ๐พ+ โˆช{๐œ€}is also recognizable. This proves that every rational language is recogniz-able.

So let ๐ฟ be a recognizable language. Then by Theorem 9.1, there is adeterministic automaton A = (๐‘„,๐ด, ๐›ฟ, ๐ผ, ๐น) recognizing ๐ฟ. Suppose that๐‘„ = {๐‘ž1,โ€ฆ , ๐‘ž๐‘›} and ๐ผ = {๐‘ž1}. For each ๐‘–, ๐‘— โˆˆ {1,โ€ฆ , ๐‘›} and ๐‘˜ โˆˆ {0,โ€ฆ , ๐‘›},let ๐‘…[๐‘–, ๐‘—; ๐‘˜] be the set of labels on paths that start at ๐‘ž๐‘–, end at ๐‘ž๐‘—, andvisit only intermediate vertices in {๐‘ž1,โ€ฆ , ๐‘ž๐‘˜}. (So ๐‘…[๐‘–, ๐‘—; 0] is the set oflabels on paths that start at ๐‘ž๐‘–, end at ๐‘ž๐‘—, and do not visit any intermediatevertices.) Note that

๐ฟ = ๐ฟ(A) = โ‹ƒ1โฉฝ๐‘—โฉฝ๐‘›๐‘ž๐‘—โˆˆ๐น

๐‘…[1, ๐‘—; ๐‘›]. (9.1)

Thus we aim to prove that ๐‘…[๐‘–, ๐‘—; ๐‘˜] is rational for all ๐‘–, ๐‘— โˆˆ {1,โ€ฆ , ๐‘›}and ๐‘˜ โˆˆ {0,โ€ฆ , ๐‘›}; this will suffice to prove ๐ฟ is rational. We proceed byinduction on ๐‘˜.

Finite automata and rational languages โ€ข 181

Page 190: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

First, consider ๐‘˜ = 0. The words in ๐‘…[๐‘–, ๐‘—; 0] label paths from ๐‘ž๐‘– to๐‘ž๐‘— that visit no intermediate vertices, and so can have length at most 1(length 0 is possible if ๐‘– = ๐‘—). So ๐‘…[๐‘–, ๐‘—; 0] is eitherโˆ… or a union of sets {๐œ€}and {๐‘Ž} (for ๐‘Ž โˆˆ ๐ด). This is the base of the induction.

Now let ๐‘˜ > 0 and assume that ๐‘…[๐‘–, ๐‘—; ๐‘˜ โˆ’ 1] is rational for all ๐‘–, ๐‘—.Consider a path ๐›ผ from ๐‘ž๐‘– to ๐‘ž๐‘— that only visits intermediate vertices from{๐‘ž1,โ€ฆ , ๐‘ž๐‘˜}. Now, if ๐›ผ does not visit ๐‘ž๐‘˜, then its label is in ๐‘…[๐‘–, ๐‘—; ๐‘˜ โˆ’ 1].Otherwise we can decompose ๐›ผ into subpaths between visits to ๐‘ž๐‘˜: thatis, let ๐›ผ be the concatenation of subpaths ๐›ผ0, ๐›ผ1,โ€ฆ , ๐›ผ๐‘š where ๐›ผ0 is thesubpath from ๐‘ž๐‘– up to the first visit to ๐‘ž๐‘˜, the ๐›ผโ„“ (for โ„“ = 1,โ€ฆ ,๐‘š โˆ’ 1)are the subpaths between visits to ๐‘ž๐‘˜, and ๐›ผ๐‘š is the subpath from the lastvisit to ๐‘ž๐‘˜ to the state ๐‘ž๐‘—. Then the label on ๐›ผ0 is in ๐‘…[๐‘–, ๐‘˜; ๐‘˜ โˆ’ 1], the labelson the ๐›ผโ„“ (for โ„“ = 1,โ€ฆ , ๐‘› โˆ’ 1) are in ๐‘…[๐‘˜, ๐‘˜; ๐‘˜ โˆ’ 1], and the label on ๐›ผ๐‘› isin ๐‘…[๐‘˜, ๐‘—; ๐‘˜ โˆ’ 1]. Since ๐›ผ was arbitrary, this shows that

๐‘…[๐‘–, ๐‘—; ๐‘˜] = ๐‘…[๐‘–, ๐‘—; ๐‘˜โˆ’1]โˆช๐‘…[๐‘–, ๐‘˜; ๐‘˜โˆ’1](๐‘…[๐‘˜, ๐‘˜; ๐‘˜โˆ’1])โˆ—๐‘…[๐‘˜, ๐‘—; ๐‘˜โˆ’1].

By the induction hypothesis, each of the sets๐‘…[๐‘–, ๐‘—; ๐‘˜โˆ’1] are rational.Thus๐‘…[๐‘–, ๐‘—; ๐‘˜] is rational, since it obtained from these sets using concatenation,union, and Kleene star.

Hence, by induction, all the sets ๐‘…[๐‘–, ๐‘—; ๐‘˜] are rational. Therefore ๐ฟ isrational by (9.1). 9.2

As a consequence of Theorem 9.2, the class of rational languages isclosed under complementation. Hence we may view the rational lan-guages over ๐ด as the languages obtainable from {๐‘Ž} (for ๐‘Ž โˆˆ ๐ด) and {๐œ€}by applying the operations of union, concatenation, and Kleene star, andalso intersection, complement, and Kleene plus.

A โˆ—-language ๐ฟ over ๐ด is star-free if it can be obtained from theStar-free/plus-free languageslanguages {๐‘Ž}, where ๐‘Ž โˆˆ ๐ด, and {๐œ€} using only the operations of union,intersection, complementation, and concatenation.

For any โˆ—-language ๐ฟ over an alphabet ๐ด and word ๐‘ข โˆˆ ๐ดโˆ—, defineLeft-/right-quotientsof a language the languages

๐‘ขโˆ’1๐ฟ = {๐‘ค โˆˆ ๐ดโˆ— โˆถ ๐‘ข๐‘ค โˆˆ ๐ฟ }๐ฟ๐‘ขโˆ’1 = {๐‘ค โˆˆ ๐ดโˆ— โˆถ ๐‘ค๐‘ข โˆˆ ๐ฟ };

the languages ๐‘ขโˆ’1๐ฟ and ๐ฟ๐‘ขโˆ’1 are, respectively, the left and right quotientsof ๐ฟ with respect to ๐‘ข. Similarly, for any +-language ๐ฟ over an alphabet ๐ดand word ๐‘ข โˆˆ ๐ดโˆ—, define

๐‘ขโˆ’1๐ฟ = {๐‘ค โˆˆ ๐ด+ โˆถ ๐‘ข๐‘ค โˆˆ ๐ฟ }๐ฟ๐‘ขโˆ’1 = {๐‘ค โˆˆ ๐ด+ โˆถ ๐‘ค๐‘ข โˆˆ ๐ฟ }.

Notice that the class of +-languages is closed under forming left and rightquotients. The following result shows that the classes of rational โˆ—- and+-languages are also closed under forming left and right quotients:

182 โ€ขAutomata & finite semigroups

Page 191: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Pro p o s i t i on 9 . 3. If ๐ฟ is a rational โˆ—-language (respectively, +-lan-guage), then ๐ฟ has only finitely many distinct left and right quotients, all ofwhich are rational โˆ—-languages (respectively, +-language).

Proof of 9.3. We will prove the result for โˆ—-language, the proof for +-languages is identical, with the additional observation the class of +-languages is closed under forming left and right quotients.

Let A = (๐‘„,๐ด, ๐›ฟ, ๐ผ, ๐น) be an automaton with ๐ฟ = ๐ฟ(A). Let ๐‘ข โˆˆ ๐ดโˆ—.Let ๐ฝ โŠ† ๐‘„ consist of all states A can reach starting at a state in ๐ผ

and reading ๐‘ข. Let ๐ฝA = (๐‘„,๐ด, ๐›ฟ, ๐ฝ, ๐น). Then ๐‘ค โˆˆ ๐ฟ(๐ฝA) if and only if๐‘ข๐‘ค โˆˆ ๐ฟ(A). That is, ๐‘ขโˆ’1๐ฟ = ๐‘ขโˆ’1๐ฟ(A) = ๐ฟ(๐ฝA). So ๐‘ขโˆ’1๐ฟ is rational. Sincethere are only finitely many possibilities for ๐ฝ, there are only finitely manydistinct languages ๐‘ขโˆ’1๐ฟ.

Similarly, let๐บ โŠ† ๐‘„ consist of all states in whichA can start and reacha state in ๐น after reading ๐‘ข. Let A๐บ = (๐‘„,๐ด, ๐›ฟ, ๐ผ, ๐บ). Then ๐‘ค โˆˆ ๐ฟ(A๐บ) ifand only if ๐‘ค๐‘ข โˆˆ ๐ฟ(A). That is, ๐ฟ๐‘ขโˆ’1 = ๐ฟ(A)๐‘ขโˆ’1 = ๐ฟ(A๐บ)๐‘ขโˆ’1. So ๐ฟ๐‘ขโˆ’1 isrational. Since there are only finitely many possibilities for ๐บ, there areonly finitely many distinct languages ๐ฟ๐‘ขโˆ’1. 9.3

Let A = (๐‘„,๐ด, ๐›ฟ, {๐‘ž0}, ๐น) be a deterministic automaton. Note that for Complete automatoneach ๐‘ž โˆˆ ๐‘„ and ๐‘Ž โˆˆ ๐ด, the set (๐‘ž, ๐‘Ž)๐›ฟ is either empty or contains a singleelement. If ๐›ฟ is such that (๐‘ž, ๐‘Ž)๐›ฟ is never empty (that is, there is exactlyone element in each (๐‘ž, ๐‘Ž)๐›ฟ), then the automaton A is complete. In termsof the graph, a complete deterministic automaton has exactly one edgestarting at each vertex with each label in ๐ด.

LetA = (๐‘„,๐ด, ๐›ฟ, {๐‘ž0}, ๐น) be a complete deterministic automaton. For Transition monoidof an automatoneach ๐‘Ž โˆˆ ๐ด, there is a map ๐œ๐‘Ž โˆถ ๐‘„ โ†’ ๐‘„ with ๐‘ž๐œ๐‘Ž given by (๐‘ž, ๐‘Ž)๐›ฟ = {๐‘ž๐œ๐‘Ž}.

Notice that ๐œ๐‘Ž โˆˆ T๐‘„ for each ๐‘Ž โˆˆ ๐ด. So we have a homomorphism ๐œ‘ โˆถ๐ดโˆ— โ†’ T๐‘„ extending the map ๐‘Ž โ†ฆ ๐œ๐‘Ž. The set im๐œ‘ is a submonoid of T๐‘„called the transition monoid of A. For any word ๐‘ค โˆˆ ๐ดโˆ—, the element ๐‘ค๐œ‘is a transformation of๐‘„. For any ๐‘ž โˆˆ ๐‘„, the state ๐‘ž(๐‘ค๐œ‘) is the state thatAwill reach if it starts in ๐‘ž and reads๐‘ค. Let๐‘Œ = { ๐œŽ โˆˆ im๐œ‘ โˆถ ๐‘ž0๐œŽ โˆˆ ๐น } โŠ† T๐‘„.Then ๐‘ค๐œ‘ โˆˆ ๐‘Œ if and only if ๐‘ค โˆˆ ๐ฟ(A). That is, we have a monoid T๐‘„ witha subset ๐‘Œ and a homomorphism ๐œ‘ โˆถ ๐ดโˆ— โ†’ T๐‘„ that describes ๐ฟ(A) asthe inverse image of ๐‘Œ under ๐œ‘. This motivates the following definition.

Aโˆ—-language๐ฟ over๐ด is recognized by a homomorphism into amonoid Language recognizedby a homomorphism๐‘€, or more simply recognized by a monoid๐‘€, if there exists a monoid

homomorphism ๐œ‘ โˆถ ๐ดโˆ— โ†’๐‘€, where๐‘€ is a monoid with a subset๐‘€โ€ฒ of๐‘€ such that ๐ฟ = ๐‘€โ€ฒ๐œ‘โˆ’1, or, equivalently, with ๐ฟ = ๐ฟ๐œ‘๐œ‘โˆ’1. Similarly, a +-language ๐ฟ over๐ด is recognized by a homomorphism into a semigroup ๐‘†, ormore simply recognized by a semigroup ๐‘†, if there exists a homomorphism๐œ‘ โˆถ ๐ด+ โ†’ ๐‘†, where ๐‘† is a semigroup, with ๐ฟ = ๐ฟ๐œ‘๐œ‘โˆ’1. Notice that if ๐ฟis a โˆ—-language (respectively, a +-language) recognized by ๐œ‘ โˆถ ๐ดโˆ— โ†’๐‘€(respectively, ๐œ‘ โˆถ ๐ด+ โ†’ ๐‘†), then ๐ฟ = ๐œ‘๐œ‘โˆ’1 and so ๐ฟ = โ‹ƒ๐‘ฅโˆˆ๐ฟ๐œ‘ ๐‘ฅ๐œ‘

โˆ’1. Eachset ๐‘ฅ๐œ‘โˆ’1 consists of words that map to ๐‘ฅ and so are related by ker๐œ‘. Thatis, each ๐‘ฅ๐œ‘โˆ’1 is a ker๐œ‘-class, so ๐ฟ is a union of ker๐œ‘-classes. Notice that

Finite automata and rational languages โ€ข 183

Page 192: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

in the discussion in the previous paragraph, T๐‘„ is a finite monoid. Soany recognizable language is recognized by a finite monoid. Furthermore,any recognizable +-language ๐ฟ is recognized by a finite semigroup, sincein this case the initial state of an automaton recognizing ๐ฟ cannot alsobe an accepting state, and hence ๐‘Œ in the discussion above does notcontain id๐‘„, so that we can use ๐œ‘|๐ด+ โˆถ ๐ด+ โ†’ (T๐‘„ โˆ– {id๐‘„}), noting that๐ฟ = ๐‘Œ๐œ‘|โˆ’1๐ด+ = ๐ฟ๐œ‘|๐ด+๐œ‘|โˆ’1๐ด+ .

On the other hand, suppose ๐ฟ is a โˆ—-language over ๐ด recognized by afinite monoid๐‘€. Let ๐œ‘ โˆถ ๐ดโˆ— โ†’๐‘€ be a homomorphism recognizing ๐ฟ,so that by ๐ฟ = ๐ฟ๐œ‘๐œ‘โˆ’1Then we can construct an automatonA recognizing๐ฟ as follows. The state set is๐‘€. The set of initial states is {1๐‘€}, the set ofaccept states is ๐ฟ๐œ‘, and the transition function ๐›ฟ โˆถ ๐‘€ ร— (๐ด โˆช {๐œ€}) โ†’ ๐‘€is given by (๐‘š, ๐‘Ž)๐›ฟ = {๐‘š(๐‘Ž๐œ‘)}. It is easy to see that ๐ฟ(A) = ๐ฟ๐œ‘๐œ‘โˆ’1 = ๐ฟ,since the unique path starting at 1๐‘€ and labelled by๐‘ค = ๐‘ค1โ‹ฏ๐‘ค๐‘› (where๐‘ค๐‘– โˆˆ ๐ด) is

1๐‘€ ๐‘ค1๐œ‘ (๐‘ค1๐‘ค2)๐œ‘ โ€ฆ (๐‘ค1โ‹ฏ๐‘ค๐‘›)๐œ‘๐‘ค1 ๐‘ค2 ๐‘ค3 ๐‘ค๐‘›

This path ends in ๐ฟ๐œ‘ if and only if ๐‘ค โˆˆ ๐ฟ. Similarly, if a +-language ๐ฟis recognized by a finite semigroup ๐‘†, we can construct an automatonrecognizing ๐‘† with state set ๐‘†1. Thus we have proven the following result:

T h eorem 9 . 4. A โˆ—-language is recognizable if and only if it is recog-nized by a finite monoid. A +-language is recognizable if and only if it isrecognized by a finite semigroup. 9.4

Let V be an M-pseudovariety of monoids (respectively, an S-pseudo-V-recognizabilityvariety of semigroups). A โˆ—-language (respectively, +-language) over ๐ดis V-recognizable if it is recognized by some monoid (respectively, sem-igroup) in V. Thus Theorem 9.4 says that a โˆ—-language (respectively +-language) is recognizable if and only if it is M-recognizable (respectively,S-recognizable).

At this point, our goal is to describe classes of languages that areV-recognizable for a given pseudovariety V.

Syntactic semigroups and monoids

We are now going to study particular semigroups andmonoids associated to languages, known as syntactic monoids and semi-groups. These will be of fundamental importance in establishing a con-nection between pseudovarieties and classes of recognizable languages.

For any โˆ—-language ๐ฟ over ๐ด, define a relation ๐œŽ๐ฟ on ๐ดโˆ— as follows:๐œŽ๐ฟfor ๐‘ข, ๐‘ฃ โˆˆ ๐ดโˆ—,

๐‘ข ๐œŽ๐ฟ ๐‘ฃ โ‡” (โˆ€๐‘, ๐‘ž โˆˆ ๐ดโˆ—)(๐‘๐‘ข๐‘ž โˆˆ ๐ฟ โ‡” ๐‘๐‘ฃ๐‘ž โˆˆ ๐ฟ). (9.2)

184 โ€ขAutomata & finite semigroups

Page 193: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

For any +-language ๐ฟ, define ๐œŽ๐ฟ on ๐ด+ in exactly the same way, using(9.2); note in particular that ๐‘ and ๐‘ž still range over ๐ดโˆ—, not ๐ด+.

P ro p o s i t i on 9 . 5. Let ๐ฟ be a โˆ—-language (respectively, +-language)over ๐ด. Then:a) The relation ๐œŽ๐ฟ is a congruence on ๐ดโˆ— (respectively, ๐ด+).b) The language ๐ฟ is a union of ๐œŽ๐ฟ-classes.c) If ๐œŒ is a congruence on ๐ดโˆ— (respectively, ๐ด+) with the property that ๐ฟ is

a union of ๐œŒ-classes, then ๐œŒ โŠ† ๐œŽ๐ฟ.

Proof of 9.5. We prove the result for โˆ—-languages; the reasoning for +-languages is parallel.a) It is immediate from the definition that ๐œŽ๐ฟ is reflexive, symmetric,

and transitive. So ๐œŽ๐ฟ is an equivalence relation. Let ๐‘ข ๐œŽ๐ฟ ๐‘ฃ and let๐‘  โˆˆ ๐ดโˆ—. Then ๐‘๐‘ข๐‘ž โˆˆ ๐ฟ โ‡” ๐‘๐‘ฃ๐‘ž โˆˆ ๐ฟ for all ๐‘, ๐‘ž โˆˆ ๐ดโˆ—. In particular, thisholds for all ๐‘ of the form ๐‘โ€ฒ๐‘ ; hence ๐‘โ€ฒ๐‘ ๐‘ข๐‘ž โˆˆ ๐ฟ โ‡” ๐‘โ€ฒ๐‘ ๐‘ฃ๐‘ž โˆˆ ๐ฟ for all๐‘โ€ฒ, ๐‘ž โˆˆ ๐ดโˆ—. Hence ๐‘ ๐‘ข ๐œŽ๐ฟ ๐‘ ๐‘ฃ. So ๐œŽ๐ฟ is left-compatible; similarly it isright-compatible and is thus a congruence.

b) Let ๐‘ข โˆˆ ๐ฟ and let ๐‘ฃ ๐œŽ๐ฟ ๐‘ข. Put ๐‘ = ๐‘ž = ๐œ€ in the definition of ๐œŽ๐ฟ tosee that ๐‘ฃ โˆˆ ๐ฟ. Thus if any ๐œŽ๐ฟ-class intersects ๐ฟ, it is contained in ๐ฟ.Therefore ๐ฟ is a union of ๐œŽ๐ฟ-classes.

c) Let ๐œŒ be a congruence on ๐ดโˆ— such that ๐ฟ is a union of ๐œŒ-classes. Then

(๐‘ข, ๐‘ฃ) โˆˆ ๐œŒโ‡’ (โˆ€๐‘, ๐‘ž โˆˆ ๐ดโˆ—)((๐‘๐‘ข๐‘ž, ๐‘๐‘ฃ๐‘ž) โˆˆ ๐œŒ) [since ๐œŒ is a congruence]โ‡’ (โˆ€๐‘, ๐‘ž โˆˆ ๐ดโˆ—)((๐‘๐‘ข๐‘ž, ๐‘๐‘ฃ๐‘ž) โˆˆ ๐ฟ โˆจ (๐‘๐‘ข๐‘ž, ๐‘๐‘ฃ๐‘ž) โˆ‰ ๐ฟ)

[since ๐ฟ is a union of ๐œŒ-classes]โ‡’ (โˆ€๐‘, ๐‘ž โˆˆ ๐ดโˆ—)(๐‘๐‘ข๐‘ž โˆˆ ๐ฟ โ‡” ๐‘๐‘ฃ๐‘ž โˆˆ ๐ฟ)โ‡’ (๐‘ข, ๐‘ฃ) โˆˆ ๐œŽ๐ฟ;

thus ๐œŒ โŠ† ๐œŽ๐ฟ. 9.5

For any language ๐ฟ over an alphabet ๐ด, the congruence ๐œŽ๐ฟ is called Syntactic congruencethe syntactic congruence of ๐ฟ.

For any โˆ—-language ๐ฟ, the factor monoid ๐ดโˆ—/๐œŽ๐ฟ is called the syntactic Syntactic monoidmonoid of ๐ฟ and is denoted SynM ๐ฟ, and the natural monoid homomor-phism ๐œŽโ™ฎ๐ฟ โˆถ ๐ดโˆ— โ†’ ๐ดโˆ—/๐œŽ๐ฟ = SynM ๐ฟ is the syntactic monoid homomor-phism of ๐ฟ.

For any +-language ๐ฟ, the factor semigroup ๐ด+/๐œŽ๐ฟ is called the syn- Syntactic semigrouptactic semigroup of ๐ฟ and is denoted SynS ๐ฟ, and the natural homomor-phism ๐œŽโ™ฎ๐ฟ โˆถ ๐ด+ โ†’ ๐ด+/๐œŽ๐ฟ = SynS ๐ฟ is the syntactic homomorphism of๐ฟ.

The importance of syntactic monoids and semigroups is the followingresult. Essentially, it says that the syntactic monoid of a โˆ—-language isthe smallest monoid that recognizes that language, and similarly for +-languages and semigroups:

Syntactic semigroups and monoids โ€ข 185

Page 194: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

P r o p o s i t i o n 9 . 6. a) Let ๐ฟ be a โˆ—-language.Then ๐ฟ is recognizedby a monoid๐‘€ if and only if SynM ๐ฟ โ‰ผ ๐‘€.

b) Let ๐ฟ be a +-language. Then ๐ฟ is recognized by a semigroup ๐‘† if andonly if SynS ๐ฟ โ‰ผ ๐‘†.

Proof of 9.6. We prove only part a); the proof for part b) follows by repla-cing โ€˜๐ดโˆ—โ€™ by โ€˜๐ด+โ€™, โ€˜submonoidโ€™ by โ€˜subsemigroupโ€™, โ€˜SynMโ€™ by โ€˜SynSโ€™, andโ€˜monoid homomorphismโ€™ by โ€˜homomorphismโ€™ throughout.

Let ๐œ‘ โˆถ ๐ดโˆ— โ†’๐‘€ recognize ๐ฟ. So ๐ฟ = ๐ฟ๐œ‘๐œ‘โˆ’1. Then ker๐œ‘ is a congru-ence on ๐ดโˆ— and ๐ฟ is a union of ker๐œ‘-classes. Hence ker๐œ‘ โŠ† ๐œŽ๐ฟ. Definea map ๐œ“ โˆถ im๐œ‘ โ†’ SynM ๐ฟ by (๐‘ข๐œ‘)๐œ“ = [๐‘ข]๐œŽ๐ฟ ; this map is a well-definedmonoid homomorphism since ker๐œ‘ โŠ† ๐œŽ๐ฟ. It is clearly surjective. Sinceim๐œ‘ is an M-submonoid of๐‘€ and ๐œ“ โˆถ im๐œ‘ โ†’ SynM ๐ฟ is a surjectivehomomorphism, SynM ๐ฟ โ‰ผ ๐‘€.

For the other direction, we first prove that SynM ๐ฟ recognizes ๐ฟ. Since๐ฟ is a union of ๐œŽ๐ฟ-classes, it follows that ๐ฟ = โ‹ƒ๐‘ขโˆˆ๐ฟ[๐‘ข]๐œŽ๐ฟ = โ‹ƒ๐‘ฅโˆˆ๐ฟ ๐‘ฅ(๐œŽ

โ™ฎ๐ฟ)โˆ’1 =

๐ฟ๐œŽโ™ฎ๐ฟ(๐œŽโ™ฎ๐ฟ)โˆ’1. Thus ๐œŽโ™ฎ๐ฟ โˆถ ๐ดโˆ— โ†’ SynM ๐ฟ recognizes ๐ฟ.

Let SynM ๐ฟ โ‰ผ ๐‘€. So there is anM-submonoid๐‘ of๐‘€ and a surject-ive M-homomorphism ๐œ“ โˆถ ๐‘ โ†’ SynM ๐ฟ. For each ๐‘Ž โˆˆ ๐ด, define a map๐œ‘ โˆถ ๐ด โ†’ ๐‘ by choosing ๐‘Ž๐œ‘ such that (๐‘Ž๐œ‘)๐œ“ = ๐‘Ž๐œŽโ™ฎ๐ฟ . Since ๐ดโˆ— is free on๐ด, there is a unique extension of ๐œ‘ to a homomorphism ๏ฟฝ๏ฟฝ โˆถ ๐ดโˆ— โ†’ ๐‘;notice that (๐‘ข๏ฟฝ๏ฟฝ)๐œ“ = ๐‘ข๐œŽโ™ฎ๐ฟ for all ๐‘ข โˆˆ ๐ดโˆ— since ๐œ“ and ๐œŽโ™ฎ๐ฟ are monoid ho-momorphisms. Let๐‘โ€ฒ = ๐ฟ๐œŽโ™ฎ๐ฟ๐œ“โˆ’1. Then, viewing ๏ฟฝ๏ฟฝ as a homomorphismfrom ๐ดโˆ— to๐‘€, we have

๐ฟ = ๐ฟ๐œŽโ™ฎ๐ฟ(๐œŽโ™ฎ๐ฟ)โˆ’1 = ๐ฟ๐œŽ

โ™ฎ๐ฟ๐œ“โˆ’1๏ฟฝ๏ฟฝโˆ’1 = ๐‘โ€ฒ๏ฟฝ๏ฟฝโˆ’1,

and so๐‘€ recognizes ๐ฟ. 9.6

Proposition 9.6 is actually the original motivation behind the conceptof division.

P ro p o s i t i on 9 . 7. Let ๐ด and ๐ต be alphabets. For all โˆ—-languages ๐ฟProperties ofsyntactic monoids and๐พ over๐ด, for all ๐‘Ž โˆˆ ๐ด, and for all monoid homomorphisms ๐œ‘ โˆถ ๐ตโˆ— โ†’

๐ดโˆ—:a) SynM ๐ฟ = SynM(๐ดโˆ— โˆ– ๐ฟ);b) SynM(๐ฟ โˆฉ ๐พ) โ‰ผ (SynM ๐ฟ) ร— (SynM๐พ);c) SynM(๐ฟ โˆช ๐พ) โ‰ผ (SynM ๐ฟ) ร— (SynM๐พ);d) SynM(๐‘Žโˆ’1๐ฟ) โ‰ผ SynM ๐ฟ;e) SynM(๐ฟ๐‘Žโˆ’1) โ‰ผ SynM ๐ฟ;f) SynM(๐ฟ๐œ‘โˆ’1) โ‰ผ SynM ๐ฟ.

Proof of 9.7. a) For any ๐‘ข, ๐‘ฃ โˆˆ ๐ดโˆ—, we have

๐‘ข ๐œŽ๐ฟ ๐‘ฃ โ‡” (โˆ€๐‘, ๐‘ž โˆˆ ๐ดโˆ—)(๐‘๐‘ข๐‘ž โˆˆ ๐ฟ โ‡” ๐‘๐‘ฃ๐‘ž โˆˆ ๐ฟ)โ‡” (โˆ€๐‘, ๐‘ž โˆˆ ๐ดโˆ—)(๐‘๐‘ข๐‘ž โˆˆ ๐ดโˆ— โˆ– ๐ฟ โ‡” ๐‘๐‘ฃ๐‘ž โˆˆ ๐ดโˆ— โˆ– ๐ฟ)โ‡” ๐‘ข ๐œŽ๐ดโˆ—โˆ–๐ฟ ๐‘ฃ;

186 โ€ขAutomata & finite semigroups

Page 195: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Hence ๐œŽ๐ฟ = ๐œŽ๐ดโˆ—โˆ–๐ฟ and so SynM ๐ฟ = SynM(๐ดโˆ— โˆ– ๐ฟ).

b) Define a monoid homomorphism ๐œ‘ โˆถ ๐ดโˆ— โ†’ (SynM ๐ฟ) ร— (SynM๐พ)by ๐‘ข๐œ‘ = (๐‘ข๐œŽโ™ฎ๐ฟ , ๐‘ข๐œŽ

โ™ฎ๐พ). Let ๐‘† = ๐ฟ๐œŽ

โ™ฎ๐ฟ ร— ๐พ๐œŽ

โ™ฎ๐พ โŠ† (SynM ๐ฟ) ร— (SynM๐พ).

Then

๐‘ข โˆˆ ๐‘†๐œ‘โˆ’1

โ‡’ ๐‘ข๐œ‘ โˆˆ ๐ฟ๐œŽโ™ฎ๐ฟ ร— ๐พ๐œŽโ™ฎ๐พ

โ‡’ (โˆƒ๐‘ฃ โˆˆ ๐ฟ, ๐‘ค โˆˆ ๐พ)((๐‘ฃ๐œŽโ™ฎ๐ฟ , ๐‘ค๐œŽโ™ฎ๐พ) = (๐‘ข๐œŽ

โ™ฎ๐ฟ , ๐‘ข๐œŽโ™ฎ๐พ))

โ‡’ (โˆƒ๐‘ฃ โˆˆ ๐ฟ, ๐‘ค โˆˆ ๐พ)((๐‘ฃ๐œŽโ™ฎ๐ฟ = ๐‘ข๐œŽโ™ฎ๐ฟ) โˆง (๐‘ค๐œŽ

โ™ฎ๐พ = ๐‘ข๐œŽ

โ™ฎ๐พ))

โ‡’ (๐‘ข โˆˆ ๐ฟ๐œŽโ™ฎ๐ฟ(๐œŽโ™ฎ๐ฟ)โˆ’1) โˆง (๐‘ข โˆˆ ๐พ๐œŽ

โ™ฎ๐พ(๐œŽโ™ฎ๐พ)โˆ’1)

โ‡’ (๐‘ข โˆˆ ๐ฟ) โˆง (๐‘ข โˆˆ ๐พ)โ‡’ ๐‘ข โˆˆ ๐ฟ โˆฉ ๐พ.

Hence ๐‘†๐œ‘โˆ’1 โŠ† ๐ฟ โˆฉ ๐พ. On the other hand,

๐‘ข โˆˆ ๐ฟ โˆฉ ๐พโ‡’ ๐‘ข โˆˆ ๐ฟ โˆง ๐‘ข โˆˆ ๐พ

โ‡’ ๐‘ข๐œ‘ = (๐‘ข๐œŽโ™ฎ๐ฟ , ๐‘ข๐œŽโ™ฎ๐พ) โˆˆ ๐ฟ๐œŽ

โ™ฎ๐ฟ ร— ๐พ๐œŽ

โ™ฎ๐พ = ๐‘†

โ‡’ ๐‘ข โˆˆ ๐‘†๐œ‘โˆ’1,

so ๐‘†๐œ‘โˆ’1 โŠ† ๐ฟ โˆฉ ๐พ. Hence ๐‘†๐œ‘โˆ’1 = ๐ฟ โˆฉ ๐พ. Thus ๐œ‘ โˆถ ๐ดโˆ— โ†’ (SynM ๐ฟ) ร—(SynM๐พ) recognizes ๐ฟ โˆฉ ๐พ, and so SynM(๐ฟ โˆฉ ๐พ) โ‰ผ (SynM ๐ฟ) ร—(SynM๐พ) by Proposition 9.6(a).

c) Define a monoid homomorphism ๐œ‘ โˆถ ๐ดโˆ— โ†’ (SynM ๐ฟ) ร— (SynM๐พ)by ๐‘ข๐œ‘ = (๐‘ข๐œŽโ™ฎ๐ฟ , ๐‘ข๐œŽ

โ™ฎ๐พ). Let ๐‘† = (๐ฟ๐œŽ

โ™ฎ๐ฟ ร— SynM๐พ) โˆช (SynM ๐ฟ ร— ๐พ๐œŽ

โ™ฎ๐พ) โŠ†

(SynM ๐ฟ) ร— (SynM๐พ). Then

๐‘ข โˆˆ ๐‘†๐œ‘โˆ’1

โ‡’ ๐‘ข๐œ‘ โˆˆ (๐ฟ๐œŽโ™ฎ๐ฟ ร— SynM๐พ) โˆช (SynM ๐ฟ ร— ๐พ๐œŽโ™ฎ๐พ)

โ‡’ (โˆƒ๐‘ฃ โˆˆ ๐ฟ, ๐‘ค โˆˆ ๐ด+)((๐‘ฃ๐œŽโ™ฎ๐ฟ , ๐‘ค๐œŽโ™ฎ๐พ) = (๐‘ข๐œŽ

โ™ฎ๐ฟ , ๐‘ข๐œŽโ™ฎ๐พ))

โˆจ (โˆƒ๐‘ฃ โˆˆ ๐ด+, ๐‘ค โˆˆ ๐พ)((๐‘ฃ๐œŽโ™ฎ๐ฟ , ๐‘ค๐œŽโ™ฎ๐พ) = (๐‘ข๐œŽ

โ™ฎ๐ฟ , ๐‘ข๐œŽโ™ฎ๐พ))

โ‡’ (โˆƒ๐‘ฃ โˆˆ ๐ฟ)(๐‘ฃ๐œŽโ™ฎ๐ฟ = ๐‘ข๐œŽโ™ฎ๐ฟ) โˆจ (โˆƒ๐‘ค โˆˆ ๐พ)(๐‘ค๐œŽ

โ™ฎ๐พ = ๐‘ข๐œŽ

โ™ฎ๐พ)

โ‡’ (๐‘ข โˆˆ ๐ฟ๐œŽโ™ฎ๐ฟ(๐œŽโ™ฎ๐ฟ)โˆ’1) โˆจ (๐‘ข โˆˆ ๐พ๐œŽ

โ™ฎ๐พ(๐œŽโ™ฎ๐พ)โˆ’1)

โ‡’ (๐‘ข โˆˆ ๐ฟ) โˆจ (๐‘ข โˆˆ ๐พ)โ‡’ ๐‘ข โˆˆ ๐ฟ โˆช ๐พ.

Syntactic semigroups and monoids โ€ข 187

Page 196: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Hence ๐‘†๐œ‘โˆ’1 โŠ† ๐ฟ โˆช ๐พ. On the other hand,

๐‘ข โˆˆ ๐ฟ โˆช ๐พโ‡’ ๐‘ข โˆˆ ๐ฟ โˆจ ๐‘ข โˆˆ ๐พ

โ‡’ ๐‘ข๐œ‘ = (๐‘ข๐œŽโ™ฎ๐ฟ , ๐‘ข๐œŽโ™ฎ๐พ) โˆˆ

(๐ฟ๐œŽโ™ฎ๐ฟ ร— SynM๐พ) โˆช (SynM ๐ฟ ร— ๐พ๐œŽโ™ฎ๐พ) = ๐‘†

โ‡’ ๐‘ข โˆˆ ๐‘†๐œ‘โˆ’1,

so ๐‘†๐œ‘โˆ’1 โŠ† ๐ฟ โˆฉ ๐พ. Hence ๐‘†๐œ‘โˆ’1 = ๐ฟ โˆช ๐พ. Thus ๐œ‘ โˆถ ๐ด+ โ†’ (SynM ๐ฟ) ร—(SynM๐พ) recognizes ๐ฟ โˆช ๐พ, and so SynM(๐ฟ โˆช ๐พ) โ‰ผ (SynM ๐ฟ) ร—(SynM๐พ) by Proposition 9.6(a).

d) Let ๐‘† = ๐ฟ๐œŽโ™ฎ๐ฟ โŠ† SynM ๐ฟ. Let ๐‘  = ๐‘Ž๐œŽโ™ฎ๐ฟ . Define

๐‘ โˆ’1๐‘† = { ๐‘ฅ โˆˆ SynM ๐ฟ โˆถ ๐‘ ๐‘ฅ โˆˆ ๐‘† }.

Then ๐‘Žโˆ’1๐ฟ = (๐‘ โˆ’1๐‘†)๐œ‘โˆ’1 and so ๐œ‘ โˆถ ๐ด+ โ†’ SynM ๐ฟ recognizes ๐‘Žโˆ’1๐ฟ.Hence SynM(๐‘Žโˆ’1๐ฟ) โ‰ผ SynM ๐ฟ by Proposition 9.6(a).

e) This is similar to part d).f) The homomorphism ๐œ‘๐œŽโ™ฎ๐ฟ โˆถ ๐ต+ โ†’ SynM ๐ฟ recognizes ๐ฟ๐œ‘โˆ’1 since

๐ฟ๐œ‘โˆ’1๐œ‘๐œŽโ™ฎ๐ฟ(๐œ‘๐œŽโ™ฎ๐ฟ)โˆ’1 = ๐ฟ๐œ‘โˆ’1๐œ‘๐œŽ

โ™ฎ๐ฟ(๐œŽโ™ฎ๐ฟ)โˆ’1๐œ‘โˆ’1 = ๐ฟ๐œŽ

โ™ฎ๐ฟ(๐œŽโ™ฎ๐ฟ)โˆ’1๐œ‘โˆ’1 = ๐ฟ๐œ‘โˆ’1.

Hence SynM(๐ฟ๐œ‘โˆ’1) โ‰ผ SynM ๐ฟ by Proposition 9.6(a). 9.7

Essentially the same proofs yield the corresponding results for syn-tactic semigroups:

P ro p o s i t i on 9 . 8. Let ๐ด and ๐ต be alphabets. For all +-languages ๐พProperties ofsyntactic semigroups and ๐ฟ over ๐ด, for all ๐‘Ž โˆˆ ๐ด, and for all homomorphisms ๐œ‘ โˆถ ๐ต+ โ†’ ๐ด+:

a) SynS ๐ฟ = SynS(๐ด+ โˆ– ๐ฟ);b) SynS(๐ฟ โˆฉ ๐พ) โ‰ผ (SynS ๐ฟ) ร— (SynS๐พ);c) SynS(๐ฟ โˆช ๐พ) โ‰ผ (SynS ๐ฟ) ร— (SynS๐พ);d) SynS(๐‘Žโˆ’1๐ฟ) โ‰ผ SynS ๐ฟ;e) SynS(๐ฟ๐‘Žโˆ’1) โ‰ผ SynS ๐ฟ;f) SynS(๐ฟ๐œ‘โˆ’1) โ‰ผ SynS ๐ฟ. 9.8

Eilenberg correspondence

The classes of languages that correspond to pseudova-rieties are called โ€˜varieties of rational languagesโ€™. However, the class oflanguages that are V-recognizable for some pseudovariety V is also de-pendent on the finite alphabet ๐ด as well. Thus we do not formally define

188 โ€ขAutomata & finite semigroups

Page 197: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

a โ€˜variety of rational languagesโ€™ as a class, but rather as a correspondencethat associates finite alphabets to classes of languages. We also need todistinguish between โˆ—-languages and +-languages. To be precise, a variety Variety of rational

โˆ—-languagesof rational โˆ—-languages is formally defined to be a correspondence V thatassociates to each finite alphabet ๐ด a class of rational โˆ—-languages V(๐ดโˆ—)with the following properties:1) The classV(๐ดโˆ—) is a Boolean algebra. (That is, it is closed under union,

intersection, and complement in ๐ดโˆ—.)2) For all ๐ฟ โˆˆ V(๐ดโˆ—) and ๐‘Ž โˆˆ ๐ด, the right and left quotient languages

๐‘Žโˆ’1๐ฟ = {๐‘ค โˆˆ ๐ดโˆ— โˆถ ๐‘Ž๐‘ค โˆˆ ๐ฟ } and ๐ฟ๐‘Žโˆ’1 = {๐‘ค โˆˆ ๐ดโˆ— โˆถ ๐‘ค๐‘Ž โˆˆ ๐ฟ }

are also in V(๐ดโˆ—)3) For all finite alphabets ๐ต, for all โˆ—-languages ๐ฟ โˆˆ V(๐ตโˆ—), and for all

monoid homomorphisms ๐œ‘ โˆถ ๐ดโˆ— โ†’ ๐ตโˆ—, we have ๐ฟ๐œ‘โˆ’1 โˆˆ V(๐ดโˆ—).Similarly, a variety of rational +-languages is a correspondence V that Variety of rational

+-languagesassociates to each finite alphabet ๐ด a class of rational languages V(๐ด+)with the following properties:1) The classV(๐ด+) is a Boolean algebra. (That is, it is closed under union,

intersection, and complement in ๐ด+.)2) For all ๐ฟ โˆˆ V(๐ด+) and ๐‘Ž โˆˆ ๐ด, the right and left quotient languages

๐‘Žโˆ’1๐ฟ = {๐‘ค โˆˆ ๐ด+ โˆถ ๐‘Ž๐‘ค โˆˆ ๐ฟ } and ๐ฟ๐‘Žโˆ’1 = {๐‘ค โˆˆ ๐ด+ โˆถ ๐‘ค๐‘Ž โˆˆ ๐ฟ }

are also in V(๐ด+).3) For all finite alphabets ๐ต, for all +-languages ๐ฟ โˆˆ V(๐ต+), and for all

homomorphisms ๐œ‘ โˆถ ๐ด+ โ†’ ๐ต+, we have ๐ฟ๐œ‘โˆ’1 โˆˆ V(๐ด+).

E x a m p l e 9 . 9. a) The correspondence E such that E(๐ด+) = {โˆ…,๐ด+}is a variety of rational +-languages. To see this, first note that eachE(๐ด+) is clearly closed under union, intersection, and complement.Next, for any ๐‘Ž โˆˆ ๐ด, we have ๐‘Žโˆ’1โˆ… = โˆ…๐‘Žโˆ’1 = โˆ… โˆˆ E(๐ด+) and ๐‘Žโˆ’1๐ด+ =๐ด+๐‘Žโˆ’1 = ๐ด+ โˆˆ E(๐ด+), so E(๐ด+). Finally, for any homomorphism๐œ‘ โˆถ ๐ต+ โ†’ ๐ด+, we haveโˆ…๐œ‘โˆ’1 = โˆ… โˆˆ E(๐ต+) and ๐ด+๐œ‘โˆ’1 = ๐ต+ โˆˆ E(๐ต+).

b) LetM be the correspondence that associates to each finite alphabet ๐ดthe class of all โˆ—-languages over ๐ด. It is easy to see that M is a varietyof rational โˆ—-languages.

c) A +-language ๐ฟ over an alphabet ๐ด is said to be cofinite if ๐ด+ โˆ– ๐ฟis finite. Let N be the correspondence that associates to each finitealphabet ๐ด the class of all finite or cofinite languages over ๐ด. Then Nis a variety of rational +-languages (see Exercise 9.4).

There is a natural correspondence, known as the Eilenberg correspond- Eilenberg correspondenceence, between varieties of rational โˆ—-languages and M-pseudovarietiesof monoids, and between varieties of rational +-languages and S-pseu-dovarieties of semigroups. For varieties of rational โˆ—-languages and M-pseudovarieties of monoids, the correspondence is defined as follows:

Eilenberg correspondence โ€ข 189

Page 198: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

โ—† Let V be a variety of rational โˆ—-languages. The corresponding M-pseudovariety of monoids V is generated by all monoids SynM ๐ฟ suchthat ๐ฟ โˆˆ V(๐ดโˆ—) for some finite alphabet ๐ด. That is, we have a map

Vโ†ฆ VM({ SynM ๐ฟ โˆถ ๐ฟ โˆˆ V(๐ดโˆ—)

for some finite alphabet ๐ด } ). } (9.3)

โ—† Let V be an M-pseudovariety of monoids. The corresponding varietyof rational โˆ—-languagesV associates to each finite alphabet๐ด the classof languages ๐ฟ such that SynM ๐ฟ โˆˆ V, or, equivalently, the class oflanguages ๐ฟ such that ๐ฟ is recognized by some monoid in V. That is,we have a map

Vโ†ฆ V, where V(๐ดโˆ—) = { ๐ฟ โŠ† ๐ดโˆ— โˆถ SynM ๐ฟ โˆˆ V }for each finite alphabet ๐ด.

} (9.4)

The correspondence for +-varieties of rational languages and S-pseudo-varieties of semigroups is defined similarly:โ—† Let V be a variety of rational +-languages. The corresponding S-

pseudovariety of semigroups V is generated by all semigroups SynS ๐ฟsuch that ๐ฟ โˆˆ V(๐ด+) for some finite alphabet ๐ด. That is, we have amap

Vโ†ฆ VS({ SynS ๐ฟ โˆถ ๐ฟ โˆˆ V(๐ดโˆ—)

for some finite alphabet ๐ด } ). } (9.5)

โ—† Let V be an S-pseudovariety of semigroups.The corresponding varietyof rational +-languagesV associates to each finite alphabet๐ด the classof languages ๐ฟ such that SynS ๐ฟ โˆˆ V, or, equivalently, the class oflanguages ๐ฟ such that ๐ฟ is recognized by some semigroup in V. Thatis, we have a map

Vโ†ฆ V, where V(๐ด+) = { ๐ฟ โŠ† ๐ด+ โˆถ SynS ๐ฟ โˆˆ V }for each finite alphabet ๐ด.

} (9.6)

E i l e n b e rg โ€™ s Th eorem 9 . 1 0. The maps (9.3) and (9.4) are mu-Eilenbergโ€™s theoremtually inverse, and the maps (9.5) and (9.6) are mutually inverse.

Proof of 9.10. We will prove that (9.3) and (9.4) are mutually inverse; theother case is similar.

LetV be a variety of rational โˆ—-languages. Let V be theM-pseudovari-ety of monoids associated to it by (9.3). LetW be the variety of rational โˆ—-languages associated to V by (9.4). We aim to show thatV(๐ดโˆ—) =W(๐ดโˆ—).for each finite alphabet ๐ด.

First, we prove thatV(๐ดโˆ—) โŠ†W(๐ดโˆ—). Let ๐ฟ โˆˆ V(๐ดโˆ—). Then SynM ๐ฟ โˆˆV by the definition of (9.3), and so ๐ฟ โˆˆW(๐ดโˆ—) by the definition of (9.4).Hence V(๐ดโˆ—) โŠ†W(๐ดโˆ—).

190 โ€ขAutomata & finite semigroups

Page 199: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Next we prove that W(๐ดโˆ—) โŠ† V(๐ดโˆ—). This part of the proof is morecomplicated. Let ๐ฟ โˆˆW(๐ดโˆ—). Then SynM ๐ฟ โˆˆ V by the definition of (9.4).Now, V is generated by

X = { SynM๐พ โˆถ ๐พ โˆˆ V(๐ดโˆ—) for some finite alphabet ๐ด };

that is, V = โ„๐•Šโ„™finX. Hence there exist alphabets ๐ด๐‘– and โˆ—-languages๐พ๐‘– โˆˆ V(๐ดโˆ—๐‘– ) for ๐‘– = 1,โ€ฆ , ๐‘› such that

SynM ๐ฟ โ‰ผ๐‘›

โˆ๐‘–=1

SynM๐พ๐‘–.

Let ๐‘ˆ = โˆ๐‘›๐‘–=1 ๐ดโˆ—๐‘– and ๐‘‡ = โˆ

๐‘›๐‘–=1 SynM๐พ๐‘–. Define a map

๐›พ โˆถ ๐‘ˆ โ†’ ๐‘‡, (๐‘ค1,โ€ฆ ,๐‘ค๐‘›)๐›พ = (๐‘ค1๐œŽโ™ฎ๐พ1 ,โ€ฆ ,๐‘ค๐‘›๐œŽ

โ™ฎ๐พ๐‘› );

then ๐›พ is a surjective homomorphism because all of the maps ๐œŽโ™ฎ๐พ๐‘– โˆถ ๐ดโˆ—๐‘– โ†’

SynM๐พ๐‘– are surjective homomorphisms. Since SynM ๐ฟ โ‰ผ ๐‘‡, the monoid๐‘‡ recognizes ๐ฟ; that is, there is a homomorphism ๐œ‘ โˆถ ๐ดโˆ— โ†’ ๐‘‡ and asubset๐‘€ of ๐‘‡ such that ๐ฟ = ๐‘€๐œ‘โˆ’1.

Define ๐œ“ โˆถ ๐ด โ†’ ๐‘ˆ by letting ๐‘Ž๐œ“ be such that ๐‘Ž๐œ“๐›พ = ๐‘Ž๐œ‘; since๐ดโˆ— is free on ๐ด, this map extends to a unique monoid homomorphism๏ฟฝ๏ฟฝ โˆถ ๐ดโˆ— โ†’ ๐‘ˆ. Notice that ๐‘ข๏ฟฝ๏ฟฝ๐›พ = ๐‘ข๐œ‘ for ๐‘ข โˆˆ ๐ดโˆ— since ๐œ‘ and ๐›พ are monoidhomomorphisms. For each ๐‘– = 1,โ€ฆ , ๐‘›, let ๐œ“๐‘– โˆถ ๐ดโˆ— โ†’ ๐ดโˆ—๐‘– be such that

๐‘ข๏ฟฝ๏ฟฝ = (๐‘ข๐œ“1,โ€ฆ , ๐‘ข๐œ“๐‘›)

and ๐œ‘๐‘– โˆถ ๐ดโˆ— โ†’ SynM๐พ๐‘– be such that

๐‘ข๐œ‘ = (๐‘ข๐œ‘1,โ€ฆ , ๐‘ข๐œ‘๐‘›).

Then ๐œ‘๐‘– = ๐œ“๐‘–๐œŽโ™ฎ๐พ๐‘– .

We have

๐ฟ = ๐‘€๐œ‘โˆ’1 = โ‹ƒ๐‘šโˆˆ๐‘€๐‘š๐œ‘โˆ’1.

Since V(๐ดโˆ—) is a Boolean algebra, it is sufficient to show that ๐‘š๐œ‘โˆ’1 โˆˆV(๐ดโˆ—) for all ๐‘š โˆˆ ๐‘€. If๐‘š = (๐‘ 1,โ€ฆ , ๐‘ ๐‘›) โˆˆ ๐‘€ โŠ† ๐‘‡, where ๐‘ ๐‘– โˆˆ SynM๐พ๐‘–,then

๐‘š๐œ‘โˆ’1 =๐‘›

โ‹‚๐‘–=1๐‘ ๐‘–๐œ‘โˆ’1๐‘– .

Again, since V(๐ดโˆ—) is a Boolean algebra, it is sufficient to show that๐‘ ๐‘–๐œ‘โˆ’1๐‘– โˆˆ V(๐ดโˆ—) for all ๐‘ ๐‘– โˆˆ SynM๐พ๐‘– and ๐‘– = 1,โ€ฆ , ๐‘›.

Since ๐‘ ๐‘–๐œ‘โˆ’1๐‘– = ๐‘ ๐‘–(๐œŽโ™ฎ๐พ๐‘– )โˆ’1๐œ“โˆ’1๐‘– , the closure of V under homomorphism

pre-images shows that it is sufficient to prove that ๐‘ ๐‘–(๐œŽโ™ฎ๐พ๐‘– )โˆ’1 โˆˆ V(๐ดโˆ—๐‘– ).

Eilenberg correspondence โ€ข 191

Page 200: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

For ๐‘ค โˆˆ ๐ดโˆ—๐‘– , define

๐‘…๐‘ค = { (๐‘, ๐‘ž) โˆถ ๐‘, ๐‘ž โˆˆ ๐ดโˆ—๐‘– , ๐‘๐‘ค๐‘ž โˆˆ ๐พ๐‘– }= { (๐‘, ๐‘ž) โˆถ ๐‘, ๐‘ž โˆˆ ๐ดโˆ—๐‘– , ๐‘ค โˆˆ ๐‘โˆ’1๐พ๐‘–๐‘žโˆ’1 };

then for any ๐‘ข, ๐‘ฃ โˆˆ ๐ดโˆ— we have ๐‘ข ๐œŽ๐พ๐‘– ๐‘ฃ if and only if ๐‘…๐‘ข = ๐‘…๐‘ฃ. Hence๐‘ข๐œŽโ™ฎ๐พ๐‘– (๐œŽ

โ™ฎ๐พ๐‘– )โˆ’1, which is the ๐œŽ๐พ๐‘– -class of ๐‘ข โˆˆ ๐ดโˆ—๐‘– , is given by

๐‘ข๐œŽโ™ฎ๐พ๐‘– (๐œŽโ™ฎ๐พ๐‘– )โˆ’1 = โ‹‚(๐‘,๐‘ž)โˆˆ๐‘…๐‘ข

๐‘โˆ’1๐พ๐‘–๐‘žโˆ’1 โˆ– โ‹ƒ(๐‘,๐‘ž)โˆ‰๐‘…๐‘ข

๐‘โˆ’1๐พ๐‘–๐‘žโˆ’1. (9.7)

By Proposition 9.3, there are only finitely many distinct sets ๐‘โˆ’1๐พ๐‘–๐‘žโˆ’1.Therefore the intersections and unions in (9.7) are finite. By repeatedapplication of the closure of V(๐ดโˆ—๐‘– ) under left and right quotients, eachof the sets ๐‘โˆ’1๐พ๐‘–๐‘žโˆ’1 lies in V(๐ดโˆ—๐‘– ). Since V(๐ดโˆ—) is closed under unions,intersections, and complements, ๐‘ข๐œŽโ™ฎ๐พ๐‘– (๐œŽ

โ™ฎ๐พ๐‘– )โˆ’1 lies in V(๐ดโˆ—๐‘– ).

Finally, let ๐‘ข be such that ๐‘ ๐‘– = ๐‘ข๐œŽโ™ฎ๐พ๐‘– . Then ๐‘ ๐‘–(๐œŽ

โ™ฎ๐พ๐‘– )โˆ’1 โˆˆ V(๐ดโˆ—๐‘– ). This

completes the proof. 9.10

It is important to notice that although Eilenbergโ€™s theorem showsthat there is a one-to-one correspondence between M-pseudovarieties ofsemigroups and varieties of rational โˆ—-languages, and between S-pseu-dovarieties of monoids and varieties of rational +-languages, it does notactually give a concrete method for describing a variety of rational lan-guages if we know a pseudovariety, or vice versa.

The following result is therefore an instance of the Eilenberg corres-pondence, but it is not a consequence of Theorem 9.10. In general, findingand proving instances of Eilenbergโ€™s correspondence can be difficult,although this particular result is straightforward.

Th eorem 9 . 1 1. The Eilenberg correspondence associates the S-pseu-dovariety of nilpotent semigroups N with the variety of finite or cofiniterational +-languages N.

Proof of 9.11. Let ๐‘† โˆˆ N, with ๐‘†๐‘› = 0 for all ๐‘ฅ โˆˆ ๐‘†. Let๐ด be a finite alphabetand suppose ๐œ‘ โˆถ ๐ด+ โ†’ ๐‘† recognizes a +-language ๐ฟ.

Suppose that ๐ฟ๐œ‘ contains 0๐‘†. Then if ๐‘ค โˆˆ ๐ดโˆ— with |๐‘ค| โฉพ ๐‘›, then๐‘ค๐œ‘ = 0๐‘† and so ๐‘ค โˆˆ ๐ฟ๐œ‘๐œ‘โˆ’1 = ๐ฟ. Hence ๐ฟ contains all words with at least๐‘› letters and so is cofinite. Thus ๐ฟ โˆˆ N(๐ด+)

Suppose that ๐ฟ๐œ‘ does not contain 0๐‘†. Then if ๐‘ค โˆˆ ๐ดโˆ— with |๐‘ค| โฉพ ๐‘›,then ๐‘ค โˆ‰ ๐ฟ, since otherwise ๐ฟ๐œ‘ โˆ‹ ๐‘ค๐œ‘ โˆˆ ๐‘†๐‘› = {0}. Hence ๐ฟ contains onlywords with fewer than ๐‘› symbols and so ๐ฟ is finite. Thus ๐ฟ โˆˆ N(๐ด+).

Thus if ๐ฟ is a +-language over๐ด recognized by a semigroup in N, then๐ฟ โˆˆ N(๐ด+).

On the other hand, let ๐ฟ be a +-language inN(๐ด+). So ๐ฟ is either finiteor cofinite. Then there exists some ๐‘› โˆˆ โ„• such that either ๐ฟ โˆฉ ๐ผ๐‘› = โˆ… or

192 โ€ขAutomata & finite semigroups

Page 201: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Variety of rational โˆ—-languages M-pseudo-(class associated to๐ดโˆ—) Symbol variety See also

{โˆ…,๐ดโˆ—} E 1Rational โˆ—-languages over ๐ด M MStar-free โˆ—-languages over ๐ด SF A Th. 9.19

TABLE 9.3Varieties of rational โˆ—-languages andM-pseudovari-eties related by the Eilenbergcorrespondence.

Variety of rational +-languages S-pseudo-(class associated to๐ด+) Symbol variety See also

{โˆ…,๐ด+} E 1Rational +-languages over ๐ด S SFinite/cofinite +-langs over ๐ด N N Th. 9.11๐‘‹๐ดโˆ— โˆช ๐‘Œ, where K K Th. 9.12(a)๐‘‹, ๐‘Œ are finite +-languages๐ดโˆ—๐‘‹ โˆช ๐‘Œ, where D D Th. 9.12(b)๐‘‹, ๐‘Œ are finite +-languages๐‘ โˆช โ‹ƒ๐‘˜๐‘–=1 ๐‘ฅ๐‘–๐ด

โˆ—๐‘ฆ๐‘–, L1 ๐•ƒ1 Th. 9.13where

{๐‘ is a finite +-language,๐‘˜ โˆˆ โ„• โˆช 0, and ๐‘ฅ๐‘–, ๐‘ฆ๐‘– โˆˆ ๐ด+

๐‘ โˆช โ‹ƒ๐‘Žโˆˆ๐ด ๐‘Ž๐ดโˆ—๐‘Ž โˆช โ‹ƒ๐‘˜๐‘–=1 ๐‘Ž๐‘–๐ด

โˆ—๐‘Žโ€ฒ๐‘–, RB RB Exer. 9.5where

{๐‘ โŠ† ๐ด, ๐‘˜ โˆˆ โ„• โˆช 0 and๐‘Ž๐‘–, ๐‘Žโ€ฒ๐‘– โˆˆ ๐ด with ๐‘Ž๐‘– โ‰  ๐‘Žโ€ฒ๐‘–

TABLE 9.4Varieties of rational +-lan-guages and S-pseudovarietiesrelated by the Eilenbergcorrespondence.

๐ฟ โŠ‡ ๐ผ๐‘›, where ๐ผ๐‘› = {๐‘ค โˆˆ ๐ดโˆ— โˆถ |๐‘ค| โฉพ ๐‘› }. Notice that ๐ผ๐‘› is an ideal of ๐ด+,and that ๐‘† = ๐ด+/๐ผ๐‘› is a nilpotent semigroup with ๐‘†๐‘› = 0๐‘†; thus ๐‘† โˆˆ N.Then the natural homomorphism ๐œŒโ™ฎ๐ผ๐‘› โˆถ ๐ด

+ โ†’ ๐‘† recognizes ๐ฟ. 9.11

The remainder of this chapter is devoted to more involved results that,like Theorem 9.11, are instances of the Eilenberg correspondence. All suchfrom this chapter are summarized in Tables 9.3 and 9.4.

A semigroup ๐‘† is left-trivial if ๐‘’๐‘  = ๐‘’ for all ๐‘’ โˆˆ ๐ธ(๐‘†) and ๐‘  โˆˆ ๐‘†, andright-trivial if ๐‘ ๐‘’ = ๐‘’ for all ๐‘’ โˆˆ ๐ธ(๐‘†) and ๐‘  โˆˆ ๐‘†. The finite left-trivialsemigroups form the S-pseudovariety K = โŸฆ๐‘ฅ๐œ”๐‘ฆ = ๐‘ฅ๐œ”โŸงS, and the finiteright-trivial semigroups form the S-pseudovariety D = โŸฆ๐‘ฆ๐‘ฅ๐œ” = ๐‘ฅ๐œ”โŸงS

Let K be the correspondence where K(๐ด+) is the class of all +-lan-guages of the form๐‘‹๐ดโˆ—โˆช๐‘Œ, where๐‘‹ and๐‘Œ are finite +-languages over๐ด;and let D be correspondence where D(๐ด+) is the class of all +-languagesof the form ๐ดโˆ—๐‘‹ โˆช ๐‘Œ, where๐‘‹ and ๐‘Œ are finite +-languages over ๐ด.

T h e o r e m 9 . 1 2. a) K is a variety of +-languages and is associatedby the Eilenberg correspondence to the S-pseudovariety K;

b) D is a variety of +-languages and is associated by the Eilenberg corres-pondence to the S-pseudovariety D.

Eilenberg correspondence โ€ข 193

Page 202: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Proof of 9.12. We will prove part a); dual reasoning gives part b).Let ๐ฟ = ๐‘‹๐ดโˆ— โˆช ๐‘Œ, where๐‘‹ and ๐‘Œ are finite +-languages over ๐ด. Now,๐‘Œ is finite and so lies in N(๐ด+). Hence SynS๐‘Œ lies in N by Theorem 9.11.Hence SynS๐‘Œ satisfies the S-pseudoidentity ๐‘ฅ๐œ”๐‘ฆ = ๐‘ฅ๐œ” and so SynS๐‘Œ โˆˆK. Let ๐‘› be the length of the longest word in ๐‘‹. Let ๐‘ค โˆˆ ๐ด+ be suchthat |๐‘ค| = ๐‘› and let ๐‘ก โˆˆ ๐ดโˆ—. Then ๐‘ข๐‘ค๐‘ฃ โˆˆ ๐‘‹๐ดโˆ— โ‡” ๐‘ข๐‘ค๐‘ก๐‘ฃ โˆˆ ๐‘‹๐ดโˆ—, so๐‘ค ๐œŽ๐‘‹๐ดโˆ— ๐‘ค๐‘ก. So ๐‘ ๐‘ก = ๐‘  for all ๐‘  โˆˆ (SynS๐‘‹๐ดโˆ—)๐‘› and ๐‘ก โˆˆ SynS๐‘‹๐ดโˆ—. Inparticular ๐‘’๐‘ก = ๐‘’ for all idempotents ๐‘’, since ๐‘’๐‘› = ๐‘’. Thus SynS๐‘‹๐ดโˆ—satisfies the S-pseudoidentity ๐‘ฅ๐œ”๐‘ฆ = ๐‘ฅ๐œ” and so SynS๐‘‹๐ดโˆ— โˆˆ K. Finally,note that SynS ๐ฟ โ‰ผ (SynS๐‘‹๐ดโˆ—) ร— (SynS๐‘Œ) by by Proposition 9.6(b).Hence SynS ๐ฟ โˆˆ โ„๐•Šโ„™K = K.

Now suppose that ๐ฟ is recognized by a semigroup ๐‘† โˆˆ K. Then thereis a homomorphism ๐œ‘ โˆถ ๐ด+ โ†’ ๐‘† such that ๐ฟ = ๐ฟ๐œ‘๐œ‘โˆ’1. Let ๐‘› = |๐‘†|. Then,by Lemma 7.5, ๐‘†๐‘› = ๐‘†๐ธ(๐‘†)๐‘† = ๐‘†๐ธ(๐‘†) since ๐‘’๐‘ฅ = ๐‘’ for all ๐‘’ โˆˆ ๐ธ(๐‘†) and๐‘ฅ โˆˆ ๐‘†. Suppose that ๐‘ค๐‘ก โˆˆ ๐ฟ with |๐‘ค| = ๐‘›. Then ๐‘ค๐œ‘ โˆˆ ๐‘†๐‘› = ๐‘†๐ธ(๐‘†) and so๐‘ค๐œ‘ = ๐‘ ๐‘’ for some ๐‘  โˆˆ ๐‘† and ๐‘’ โˆˆ ๐ธ(๐‘†). It follows that (๐‘ค๐‘ก)๐œ‘ = ๐‘ ๐‘’(๐‘ก๐œ‘) =๐‘ ๐‘’ = ๐‘ค๐œ‘ since ๐‘’๐‘ฅ = ๐‘’ for all ๐‘ฅ โˆˆ ๐‘†. Hence ๐‘ค โˆˆ ๐ฟ and ๐‘ค๐ดโˆ— โŠ† (๐‘ ๐‘’๐‘†)๐œ‘โˆ’1 =(๐‘ ๐‘’)๐œ‘โˆ’1 = ๐‘ค๐œ‘๐œ‘โˆ’1. Thus if ๐‘ค๐‘ก โˆˆ ๐ฟ, where |๐‘ค| = ๐‘›, then ๐‘ค๐ดโˆ— โŠ† ๐ฟ. Hence๐ฟ = ๐‘‹๐ดโˆ— โˆช ๐‘Œ, where๐‘‹ โŠ† ๐ด๐‘› and ๐‘Œ is a set of words of length less than ๐‘›,so ๐ฟ โˆˆ K(๐ด+). 9.12

Notice that a left- or right-trivial semigroup is also locally trivial: if ๐‘†is left-trivial, then ๐‘’๐‘  = ๐‘’ for all ๐‘  โˆˆ ๐‘† and ๐‘’ โˆˆ ๐ธ(๐‘†), and hence ๐‘’๐‘ ๐‘’ = ๐‘’2 = ๐‘’,which shows that ๐‘† is locally trivial. Hence K โˆช D โŠ† ๐•ƒ1.

Let L1 be the correspondence where L1(๐ด+) is the class of languagesof the form

๐‘ โˆช๐‘˜

โ‹ƒ๐‘–=1๐‘ฅ๐‘–๐ดโˆ—๐‘ฆ๐‘–, (9.8)

where ๐‘ฅ๐‘– and ๐‘ฆ๐‘– are words ๐ด+ and ๐‘ is a finite +-language.Some texts define L1(๐ด+) to be the class of languages of the form ๐‘ โˆช๐‘‹๐ดโˆ—๐‘Œ, where๐‘‹, ๐‘Œ, and ๐‘ are finite +-languages, and claim that this isequivalent to (9.8). This is incorrect, because (for example) the language๐‘Ž{๐‘Ž, ๐‘}โˆ—๐‘Ž โˆช ๐‘{๐‘Ž, ๐‘}โˆ—๐‘ cannot be expressed in the form ๐‘ โˆช ๐‘‹{๐‘Ž, ๐‘}โˆ—๐‘Œ.

Th eorem 9 . 1 3. The Eilenberg correspondence associates the S-pseudo-variety ๐•ƒ1 with the variety of +-languages L1.

Proof of 9.13. We will first of all show that the syntactic semigroups of๐‘ค๐ดโˆ— and๐ดโˆ—๐‘ค are in ๐•ƒ1 for all๐‘ค โˆˆ ๐ด+. Since๐‘ค๐ดโˆ— โˆˆ K(๐ด+), it follows byTheorem 9.12(a) that SynS(๐‘ค๐ดโˆ—) โˆˆ K. Hence SynS(๐‘ค๐ดโˆ—) is left-trivial andso locally trivial, and so SynS(๐‘ค๐ดโˆ—) โˆˆ ๐•ƒ1. Similarly SynS(๐ดโˆ—๐‘ค) โˆˆ ๐•ƒ1.

Let ๐‘ be a finite +-languages over ๐ด. Then

๐‘ = โ‹ƒ๐‘คโˆˆ๐‘{๐‘ค} = โ‹ƒ

๐‘คโˆˆ๐พ(๐‘ค๐ดโˆ— โˆ– โ‹ƒ

๐‘Žโˆˆ๐ด๐‘ค๐‘Ž๐ดโˆ—).

194 โ€ขAutomata & finite semigroups

Page 203: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

So SynS๐‘ โˆˆ ๐•ƒ1 by Proposition 9.8 and since ๐•ƒ1 is closed under finitarydirect products and division.

Furthermore, for any ๐‘ฅ, ๐‘ฆ โˆˆ ๐ด+, we have

๐‘ฅ๐ดโˆ—๐‘ฆ = (๐‘ฅ๐ดโˆ— โˆฉ ๐ดโˆ—๐‘ฆ) โˆ–|๐‘ฅ|+|๐‘ฆ|

โ‹ƒ๐‘–=1๐ด๐‘–.

So SynS(๐‘ฅ๐ดโˆ—๐‘ฆ) โˆˆ ๐•ƒ1 by Proposition 9.8 again.Therefore by Proposition 9.8,

SynS(๐‘ โˆช๐‘˜

โ‹ƒ๐‘–=1๐‘ฅ๐‘–๐ดโˆ—๐‘ฆ๐‘–) โˆˆ ๐•ƒ1.

On the other hand, let ๐ฟ be recognized by some semigroup ๐‘† in ๐•ƒ1.Then ๐‘† is locally trivial and there is a homomorphism ๐œ‘ โˆถ ๐ด+ โ†’ ๐‘† suchthat ๐ฟ๐œ‘๐œ‘โˆ’1 = ๐ฟ. Let ๐‘› = |๐‘†|.

Let ๐‘’ โˆˆ ๐ธ(๐‘†) and ๐‘  โˆˆ ๐‘†. Then (๐‘’๐‘ )2 = ๐‘’๐‘ ๐‘’๐‘  = ๐‘’๐‘  since ๐‘’๐‘ ๐‘’ = ๐‘’ because๐‘† is locally trivial. Hence ๐‘’๐‘  โˆˆ ๐ธ(๐‘†). Similarly ๐‘ ๐‘’ โˆˆ ๐ธ(๐‘†). Thus ๐ธ(๐‘†) is anideal, and so, by Lemma 7.5, ๐‘†๐‘› = ๐‘†๐ธ(๐‘†)๐‘† = ๐ธ(๐‘†).

Let ๐‘ค โˆˆ ๐ฟ be such that |๐‘ค| โฉพ 2๐‘›. Then ๐‘ค = ๐‘ฅ๐‘ฃ๐‘ฆ with |๐‘ฅ| = |๐‘ฆ| = ๐‘›.Now, ๐‘†๐‘› = ๐ธ(๐‘†) by the previous paragraph, so ๐‘ฅ๐œ‘, ๐‘ฆ๐œ‘ โˆˆ ๐‘†๐‘› = ๐ธ(๐‘†). Hence๐‘ค๐œ‘ = (๐‘ฅ๐œ‘)(๐‘ฃ๐œ‘)(๐‘ฆ๐œ‘) โˆˆ (๐‘ฅ๐œ‘)๐‘†(๐‘ฆ๐œ‘). Hence ๐‘ฅ๐ดโˆ—๐‘ฆ โŠ† ๐‘ค๐œ‘๐œ‘โˆ’1 โŠ† ๐ฟ. Thus ๐ฟ isa finite union of languages of the form ๐‘ฅ๐ดโˆ—๐‘ฆ (where |๐‘ฅ| = |๐‘ฆ| = ๐‘›) and afinite set of words of length at most 2๐‘›. Thus ๐ฟ โˆˆ L1(๐ด+). 9.13

Coro l l a ry 9 . 1 4. ๐•ƒ1 = K โŠ” D.

Proof of 9.14. Since K โˆช D โŠ† ๐•ƒ1, it remains to show that ๐•ƒ1 โŠ† K โŠ” D.Let V be the +-variety of rational languages associated to K โŠ” D by

the Eilenberg correspondence. Then V(๐ด+) contains the languages ๐‘ค๐ดโˆ—and ๐ดโˆ—๐‘ค and hence the Boolean algebra generated by these languages,namely L1(๐ด+). Therefore ๐•ƒ1 โŠ† K โŠ” D. 9.14

Notice that the proof of Corollary 9.14 essentially involves using theEilenberg correspondence to convert a question about S-pseudovarietiesof semigroups into one about varieties of +-rational languages and backagain. Although it would be possible to give a pure pseudovariety-the-oretic proof of this result, the proof via the Eilenberg correspondence ismuch more straightforward.

Schรผtzenbergerโ€™s theorem

The aim of this final section, and the capstone of theentire course, is Schรผtzenbergerโ€™s theorem, which shows that the star-free

Schรผtzenbergerโ€™s theorem โ€ข 195

Page 204: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

rational languages are precisely those languages recognized by aperiodicmonoids. Before embarking on the proof, we need to introduce a newconcept.

A relational morphism between two semigroups ๐‘† and ๐‘‡ is a relationRelational morphism๐œ‘ โŠ† ๐‘† ร— ๐‘‡ such that1) ๐‘ฅ๐œ‘ โ‰  โˆ… for all ๐‘ฅ โˆˆ ๐‘†;2) (๐‘ฅ๐œ‘)(๐‘ฆ๐œ‘) โŠ† (๐‘ฅ๐‘ฆ)๐œ‘ for all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†.Notice that any homomorphism is also a relational morphism. We needto establish some basic properties of relational morphisms that we willuse to prove Schรผtzenbergerโ€™s theorem. The first three lemmata followimmediately from this definition:

L emma 9 . 1 5. A relational morphism ๐œ‘ โŠ† ๐‘† ร— ๐‘‡ between semigroups๐‘† and ๐‘‡ is a subsemigroup of ๐‘† ร— ๐‘‡. The projection homomorphisms from๐‘† ร— ๐‘‡ to ๐‘† and ๐‘‡ restricts to homomorphisms ๐›ผ โˆถ ๐œ‘ โ†’ ๐‘† and ๐›ฝ โˆถ ๐œ‘ โ†’ ๐‘‡such that ๐›ผ is surjective and ๐œ = ๐›ผโˆ’1๐›ฝ. 9.15

L emma 9 . 1 6. If ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ is a surjective homomorphism from asemigroup ๐‘† to a semigroup ๐‘‡, then ๐œ‘โˆ’1 โŠ† ๐‘‡ ร— ๐‘† is a relational morphismbetween ๐‘‡ and ๐‘†. 9.16

L emma 9 . 1 7. If ๐œ‘ โŠ† ๐‘† ร— ๐‘‡ and ๐œ“ โŠ† ๐‘‡ ร— ๐‘ˆ are relational morphismsbetween semigroups ๐‘† and๐‘‡, and between semigroups๐‘‡ and๐‘ˆ, respectively,then ๐œ‘๐œ“ โŠ† ๐‘† ร— ๐‘ˆ is a relational morphism between ๐‘‡ and ๐‘†. 9.17

L emma 9 . 1 8. Let ๐œ‘ โŠ† ๐‘† ร— ๐‘‡ be a relational morphism between finitesemigroups ๐‘† and ๐‘‡. Suppose that ๐‘‡ is aperiodic and that for all ๐‘’ โˆˆ ๐ธ(๐‘‡),the subsemigroup ๐‘’๐œ‘โˆ’1 is aperiodic. Then ๐‘† is aperiodic.

Proof of 9.18. Let ๐‘ฅ โˆˆ ๐‘†. Since ๐‘† is finite, ๐‘ฅ๐‘˜+๐‘š = ๐‘ฅ๐‘˜ for some ๐‘˜,๐‘š โˆˆ โ„•,and ๐ป = {๐‘ฅ๐‘˜, ๐‘ฅ๐‘˜+1,โ€ฆ , ๐‘ฅ๐‘˜+๐‘šโˆ’1} is a subgroup of ๐‘†. Let ๐›ผ โˆถ ๐œ‘ โ†’ ๐‘† and๐›ฝ โˆถ ๐œ‘ โ†’ ๐‘‡ be as in Lemma 9.15, so that ๐œ‘ = ๐›ผโˆ’1๐›ฝ. Then ๐ป๐›ผโˆ’1 isa subgroup of ๐œ‘, and so ๐ป๐›ผโˆ’1๐›ฝ = ๐ป๐œ‘ is a subgroup of ๐‘‡. Since ๐‘‡ isaperiodic๐ป๐œ‘ is trivial by Proposition 7.4,๐ป๐œ‘ = ๐‘’ for some idempotent๐‘’ of ๐‘‡. By the hypothesis, ๐‘’๐œ‘โˆ’1 โŠ‡ ๐ป is aperiodic, and so ๐‘š = 1 and๐‘ฅ๐‘˜+1 = ๐‘ฅ๐‘˜. Since ๐‘ฅ โˆˆ ๐‘† was arbitrary, this proves that ๐‘† is aperiodic. 9.18

S chรผ t z e n b e rg e r โ€™ s T h eorem 9 . 1 9. The Eilenberg correspond-Schรผtzenbergerโ€™s theoremence associates the variety of star-free rational โˆ—-languages SF and thepseudovariety A of aperiodic monoids.

Proof of 9.19. Let A be the โˆ—-variety of rational languages associated to A.We have to prove that SF(๐ดโˆ—) = A(๐ดโˆ—) for all finite alphabets ๐ด. So fix afinite alphabet ๐ด.

Part 1 [SF(๐ดโˆ—) โŠ† A(๐ดโˆ—)]. The class of โˆ—-languages SF(๐ดโˆ—) consists of thelanguages that can be obtained from the languages {๐‘Ž} (for ๐‘Ž โˆˆ ๐ด) and {๐œ€}using the Boolean operations and concatenation.

196 โ€ขAutomata & finite semigroups

Page 205: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Let us therefore begin by showing that A(๐ดโˆ—) contains the languages{๐‘Ž} (for ๐‘Ž โˆˆ ๐ด) and {๐œ€}. Let ๐‘Ž โˆˆ ๐ด. Let ๐‘† = {๐‘ฅ, 0} be a two-element nullsemigroup with all products equal to 0. Let ๐œ“ โˆถ ๐ด โ†’ ๐‘†1 be the mapwith ๐‘Ž๐œ“ = ๐‘ฅ and ๐‘๐œ“ = 0 for all ๐‘ โˆˆ ๐ด โˆ– {๐‘Ž}, and let ๐œ“โˆ— โˆถ ๐ดโˆ— โ†’ ๐‘†1 bethe unique extension of ๐œ“ to a monoid homomorphism. It is easy to seethat {๐‘Ž} = {๐‘ฅ}๐œ“โˆ’1 = {๐‘Ž}๐œ“๐œ“โˆ’1, thus {๐‘Ž} is recognized by the monoid ๐‘†1.Clearly ๐‘†1 is an aperiodic monoid; thus ๐‘†1 โˆˆ A. Hence {๐‘Ž} โˆˆ A(๐ดโˆ—) by(9.3). Finally, {๐œ€} = ๐‘Žโˆ’1{๐‘Ž} โˆˆ A(๐ดโˆ—) by the definition of a โˆ—-variety ofrational languages.

Further, by the definition of a โˆ—-variety of rational languages, A(๐ดโˆ—)is a Boolean algebra and thus closed under the Boolean operations.

It therefore remains to show thatA(๐ดโˆ—) is closed under concatenation.So let ๐พ, ๐ฟ โˆˆ A(๐ดโˆ—); we aim to prove that ๐พ๐ฟ โˆˆ A(๐ดโˆ—). Then bothSynM๐พ and SynM ๐ฟ belong to A by (9.4). That is, SynM๐พ and SynM ๐ฟare aperiodic.

Consider the three syntactic monoid homomorphisms ๐œŽโ™ฎ๐พ โˆถ ๐ดโˆ— โ†’SynM๐พ, ๐œŽโ™ฎ๐ฟ โˆถ ๐ดโˆ— โ†’ SynM ๐ฟ, and ๐œŽโ™ฎ๐พ๐ฟ โˆถ ๐ดโˆ— โ†’ SynM(๐พ๐ฟ). Let ๐œ‚ =(๐œŽโ™ฎ๐พ๐ฟ)โˆ’1. Since ๐œŽ

โ™ฎ๐พ๐ฟ is surjective, ๐œ‚ โŠ† SynM(๐พ๐ฟ)ร—๐ดโˆ— is a relationalmorph-

ism by Lemma 9.16. Let ๐œ โˆถ ๐ดโˆ— โ†’ SynM๐พ ร— SynM ๐ฟ be defined by ๐‘ข๐œ =(๐‘ข๐œŽโ™ฎ๐พ, ๐‘ข๐œŽ

โ™ฎ๐ฟ); clearly ๐œ is a homomorphism and thus a relational morphism.

Let ๐œ‘ = ๐œ‚๐œ; then ๐œ‘ is a relational morphism between SynM(๐พ๐ฟ) and(SynM๐พ) ร— (SynM ๐ฟ) by Lemma 9.17.

We want to use Lemma 9.18 and the relational morphism ๐œ‘ to showthat SynM(๐พ๐ฟ) is aperiodic. Let (๐‘’1, ๐‘’2) โˆˆ ๐ธ((SynM๐พ) ร— (SynM ๐ฟ)). Let๐‘š โˆˆ (๐‘’1, ๐‘’2)๐œ‘โˆ’1. Then ๐‘š = ๐‘”๐œ‚ for some ๐‘” โˆˆ (๐‘’1, ๐‘’2)๐œโˆ’1. Then ๐‘”2๐œ =(๐‘’21 , ๐‘’22 ) = (๐‘’1, ๐‘’2) = ๐‘”๐œ. Thus (๐‘”2, ๐‘”) โˆˆ ker ๐œ โŠ† ker๐œŽโ™ฎ๐พ = ๐œŽ๐พ. Similarly(๐‘”2, ๐‘”) โˆˆ ๐œŽ๐ฟ.

Suppose ๐‘ข๐‘”2๐‘ฃ โˆˆ ๐พ๐ฟ for some ๐‘ข, ๐‘ฃ โˆˆ ๐ดโˆ—. Then ๐‘ข๐‘”2๐‘ฃ = ๐‘ฅ๐‘ฆ, for ๐‘ฅ โˆˆ ๐พand ๐‘ฆ โˆˆ ๐ฟ. Then, by equidivisibility, either there exists ๐‘ โˆˆ ๐ดโˆ— such that๐‘ฅ = ๐‘ข๐‘”๐‘ and ๐‘๐‘ฆ = ๐‘”๐‘ฃ, or there exists ๐‘ž โˆˆ ๐ดโˆ— such that ๐‘ฅ๐‘ž = ๐‘ข๐‘” and๐‘ฆ = ๐‘ž๐‘”๐‘ฃ. Assume the former case; the latter is similar. Since (๐‘”2, ๐‘”) โˆˆ ๐œŽ๐พ,we have ๐‘ข๐‘”2๐‘ โˆˆ ๐พ, and so ๐‘ข๐‘”2๐‘๐‘ฆ = ๐‘ข๐‘”3๐‘ฃ โˆˆ ๐พ๐ฟ. This shows that ๐‘ข๐‘”2๐‘ฃ โˆˆ๐พ๐ฟ implies ๐‘ข๐‘”3๐‘ฃ โˆˆ ๐พ๐ฟ.

Now suppose ๐‘ข๐‘”3๐‘ฃ โˆˆ ๐พ๐ฟ for some ๐‘ข, ๐‘ฃ โˆˆ ๐ดโˆ—. Then ๐‘ข๐‘”3๐‘ฃ = ๐‘ฅ๐‘ฆ, for๐‘ฅ โˆˆ ๐พ and ๐‘ฆ โˆˆ ๐ฟ. Then, by equidivisibility, either there exists ๐‘ โˆˆ ๐ดโˆ—such that ๐‘ฅ = ๐‘ข๐‘”2๐‘ and ๐‘๐‘ฆ = ๐‘”๐‘ฃ, or there exists ๐‘ž โˆˆ ๐ดโˆ— such that๐‘ฅ๐‘ž = ๐‘ข๐‘”2 and ๐‘ฆ = ๐‘ž๐‘”๐‘ฃ. Assume the former case; the latter is similar.Since (๐‘”2, ๐‘”) โˆˆ ๐œŽ๐พ, we have ๐‘ข๐‘”๐‘ โˆˆ ๐พ, and so ๐‘ข๐‘”๐‘๐‘ฆ = ๐‘ข๐‘”2๐‘ฃ โˆˆ ๐พ๐ฟ. Thisshows that ๐‘ข๐‘”3๐‘ฃ โˆˆ ๐พ๐ฟ implies ๐‘ข๐‘”2๐‘ฃ โˆˆ ๐พ๐ฟ.

Combining the last two paragraphs shows that (๐‘”3, ๐‘”2) โˆˆ ๐œŽ๐พ๐ฟ, and so๐‘š3 = ๐‘”3๐œŽโ™ฎ๐พ๐ฟ = ๐‘”2๐œŽ

โ™ฎ๐พ๐ฟ = ๐‘š2. Since ๐‘š was an arbitrary element of ๐‘’๐œ‘โˆ’1,

it follows that the subsemigroup ๐‘’๐œ‘โˆ’1 is aperiodic. Since both SynM๐พand SynM ๐ฟ are aperiodic, (SynM๐พ) ร— (SynM ๐ฟ) is aperiodic. Hence,by Lemma 9.18, SynM(๐พ๐ฟ) is aperiodic. Thus SynM(๐พ๐ฟ) โˆˆ A, and so

Schรผtzenbergerโ€™s theorem โ€ข 197

Page 206: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐พ๐ฟ โˆˆ A(๐ดโˆ—) by (9.3). So A(๐ดโˆ—) is closed under concatenation.Thus A(๐ดโˆ—) contains every language in SF(๐ดโˆ—).

Part 2 [A(๐ดโˆ—) โŠ† SF(๐ดโˆ—)]. The aim is to prove that any โˆ—-language re-cognized by an aperiodic monoid๐‘€ (and thus belonging to A(๐ดโˆ—)) liesin SF(๐ดโˆ—). The strategy is to proceed by induction on |๐‘€|. For brevity,let ๐›ฅ๐‘€ = {๐‘ โˆถ ๐‘ โ‰ผ ๐‘€ โˆง ๐‘ โ‰  ๐‘€}. That is, ๐›ฅ๐‘€ is the class of mon-oids that strictly divide๐‘€. Let ๐ดโˆ—๐›ฅ๐‘€ be the class of โˆ—-languages over ๐ดrecognized by some monoid in ๐›ฅ๐‘€.

The base of the induction consists of the cases |๐‘€| = 1 and |๐‘€| = 2.First, suppose |๐‘€| = 1. Let ๐ฟ be a โˆ—-language over ๐ด recognized by๐œ‘ โˆถ ๐ดโˆ— โ†’ ๐‘€. Then either ๐ฟ = โˆ…๐œ‘โˆ’1 = โˆ… or ๐ฟ = ๐‘€๐œ‘โˆ’1 = ๐ดโˆ—, andboth these languages are in SF(๐ดโˆ—) by definition of a โˆ—-variety of rationallanguages.

Now suppose |๐‘€| = 2. Then๐‘€ is the two-element semilattice {1, 0}with 1 > 0. [To see this, let {1, ๐‘ง} be an aperiodic monoid. Then 11 = 1,1๐‘ง = ๐‘ง1 = ๐‘ง, and either ๐‘ง๐‘ง = 1 or ๐‘ง๐‘ง = ๐‘ง. But in the former case,we have a cyclic group, which is not aperiodic. Hence ๐‘ง๐‘ง = ๐‘ง and wehave a commutative semigroup of idempotents.] Let ๐ฟ be a โˆ—-languagerecognized by ๐œ‘ โˆถ ๐ดโˆ— โ†’๐‘€. Let ๐ต = { ๐‘Ž โˆˆ ๐ด โˆถ ๐‘Ž๐œ‘ = 0 }. Then

0๐œ‘โˆ’1 = โ‹ƒ๐‘โˆˆ๐ต๐ดโˆ—๐‘๐ดโˆ—,

1๐œ‘โˆ’1 = ๐ดโˆ— โˆ– โ‹ƒ๐‘โˆˆ๐ต๐ดโˆ—๐‘๐ดโˆ—.

Then 0๐œ‘โˆ’1 โˆˆ SF(๐ดโˆ—), since SF(๐ดโˆ—) contains the languages ๐ดโˆ— and {๐‘} forany ๐‘ โˆˆ ๐ต and is by definition closed under concatenation and union,and 1๐œ‘โˆ’1 โˆˆ SF(๐ดโˆ—), since SF(๐ดโˆ—) is by definition closed under comple-mentation. Since one of the four cases ๐ฟ = โˆ…, ๐ฟ = 0๐œ‘โˆ’1, ๐ฟ = 1๐œ‘โˆ’1, and๐ฟ = ๐‘€๐œ‘โˆ’1 = 0๐œ‘โˆ’1 โˆช 1๐œ‘โˆ’1 holds, and since SF(๐ดโˆ—) is closed under union,it follows that ๐ฟ โˆˆ SF(๐ดโˆ—).

We have completed the base of the induction; we turn now to theinduction step. Let |๐‘€| โฉพ 3 and suppose that every language in๐ดโˆ—๐›ฅ๐‘€ liesin SF(๐ดโˆ—); that is, ๐ดโˆ—๐›ฅ๐‘€ โŠ† SF(๐ดโˆ—). We must prove that every languagerecognized by๐‘€ lies in SF(๐ดโˆ—).

Let ๐ฟ be a โˆ—-language over ๐ด recognized by๐‘€. Then there exists ahomomorphism ๐œ‘ โˆถ ๐ดโˆ— โ†’ ๐‘€ and a subset ๐‘ƒ of๐‘€ such that ๐ฟ = ๐‘ƒ๐œ‘โˆ’1.If ๐œ‘ is not surjective, then ๐ฟ is recognized by the proper submonoid im๐œ‘of๐‘€ and so, since im๐œ‘ โˆˆ ๐›ฅ๐‘€, by induction ๐ฟ โˆˆ ๐ดโˆ—๐›ฅ๐‘€ โŠ† SF(๐ดโˆ—). Soassume that ๐œ‘ is surjective. Furthermore, since

๐ฟ = ๐‘ƒ๐œ‘โˆ’1 = โ‹ƒ๐‘šโˆˆ๐‘ƒ๐‘š๐œ‘โˆ’1

and SF(๐ดโˆ—) is by definition closed under union, it suffices to prove thecase where ๐ฟ = ๐‘š๐œ‘โˆ’1.

198 โ€ขAutomata & finite semigroups

Page 207: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Let

๐พ = โ‹‚{ ๐ผ โˆถ ๐ผ is an ideal of๐‘€ and |๐ผ| โฉพ 2 }. (9.9)

Then๐พ is an ideal of๐‘€. For use later in the proof, we now establish someproperties of ๐พ, considering separately the cases where๐‘€ has a zero andwhere๐‘€ does not have a zero:โ—† ๐‘€ has a zero. Let ๐ท = ๐พ โˆ– {0}. Suppose ๐ท is non-empty. Then for

any ๐‘ฅ โˆˆ ๐ท, we have {0, ๐‘ฅ} โ‰  ๐‘€๐‘ฅ๐‘€ โŠ† ๐พ (since ๐พ is an ideal and๐‘ฅ โ‰  0), and thus๐‘€๐‘ฅ๐‘€ = ๐พ (since๐‘€๐‘ฅ๐‘€ is one of the ideals ๐ผ in theintersection (9.9) and so ๐พ โŠ† ๐‘€๐‘ฅ๐‘€). So ๐ท is a single J-class of๐‘€and so a single D-class of๐‘€ by Proposition 3.3. Furthermore, ๐พ is a0-minimal ideal and so either 0-simple or null by Proposition 3.8(a).So either๐ท is empty, or else๐ท is a single D-class and๐พ is 0-simpleor null.

โ—† ๐‘€ does not have a zero. Then๐พ is the kernel of๐‘€ and so simple byProposition 3.8(b). (Since if there were an ideal with only one element๐‘ง, then ๐‘†๐‘ง = {๐‘ง} and ๐‘ง๐‘† = {๐‘ง} and so ๐‘งwould be a zero.) Furthermore,๐พ2 = ๐พ. (Since if ๐พ2 โŠŠ ๐พ, then ๐พ2 would be an ideal of ๐‘† strictlycontained in ๐พ.)We now consider separately the three cases where๐‘š โˆ‰ ๐พ, where๐‘š is

the zero of๐‘€, and where๐‘š is not a zero of๐‘€ (but๐‘€may or may notcontain a zero):a) ๐‘š โˆ‰ ๐พ. Then there exists an ideal ๐ผ of ๐‘€ with |๐ผ| โฉพ 2 such that๐‘š โˆ‰ ๐ผ. Let ๐œŒ๐ผ = (๐ผ ร— ๐ผ) โˆช id๐‘€ be the Rees congruence. Then ๐‘š =๐œŒโ™ฎ๐ผ(๐œŒโ™ฎ๐ผ)โˆ’1 and hence ๐‘š๐œ‘โˆ’1 = ๐‘š๐œŒโ™ฎ๐ผ(๐œŒ

โ™ฎ๐ผ)โˆ’1๐œ‘โˆ’1 = (๐‘š๐œŒ

โ™ฎ๐ผ)(๐œ‘๐œŒโ™ฎ๐ผ)โˆ’1. Thus

๐‘š๐œ‘โˆ’1 is recognized by the homomorphism ๐œ‘๐œŒโ™ฎ๐ผ โˆถ ๐ดโˆ— โ†’ ๐‘€/๐ผ andso is recognized by๐‘€/๐ผ. Since |๐‘€/๐ผ| = |๐‘€| โˆ’ |๐ผ| + 1 < |๐‘€| (since|๐ผ| โฉพ 2|), we have๐‘€/๐ผ โˆˆ ๐›ฅ๐‘€ and so by induction๐‘š๐œ‘โˆ’1 โˆˆ SF(๐ดโˆ—).

b) ๐‘€ has a zero and๐‘š = 0๐‘€. Let ๐ถ = { ๐‘Ž โˆˆ ๐ด โˆถ ๐‘Ž๐œ‘ = 0 }. The first step isto prove that

0๐œ‘โˆ’1 = ๐ดโˆ—๐ถ๐ดโˆ— โˆชโ‹ƒ(๐‘Ž,๐‘›,๐‘Žโ€ฒ)โˆˆ๐ธ๐ดโˆ—๐‘Ž(๐‘›๐œ‘โˆ’1)๐‘Žโ€ฒ๐ดโˆ—, (9.10)

where

๐ธ = { (๐‘Ž, ๐‘›, ๐‘Žโ€ฒ) โˆˆ (๐ด โˆ– ๐ถ) ร— (๐‘€ โˆ– ๐พ) ร— (๐ด โˆ– ๐ถ)โˆถ (๐‘Ž๐œ‘)๐‘›(๐‘Žโ€ฒ๐œ‘) = 0 โˆง (๐‘Ž๐œ‘)๐‘› โ‰  0 โˆง ๐‘›(๐‘Žโ€ฒ๐œ‘) โ‰  0 }.

First, notice that (๐ดโˆ—๐ถ๐ดโˆ—)๐œ‘ = ๐‘€(๐ถ๐œ‘)๐‘€ โŠ† {0}. If (๐‘Ž, ๐‘›, ๐‘Žโ€ฒ) โˆˆ ๐ธ,then (๐ดโˆ—๐‘Ž(๐‘›๐œ‘โˆ’1)๐‘Žโ€ฒ๐ดโˆ—)๐œ‘ = ๐‘€(๐‘Ž๐œ‘)๐‘›(๐‘Žโ€ฒ๐œ‘)๐‘€ = ๐‘€0๐‘€ = {0}. Thisshows that the right-hand side of (9.10) is contained in the left-handside.

Let ๐‘“ โˆˆ 0๐œ‘โˆ’1 โˆ– ๐ดโˆ—๐ถ๐ดโˆ— = 0๐œ‘โˆ’1 โˆฉ (๐ด โˆ– ๐ถ)โˆ—. Since๐‘€ has at leasttwo elements, 1 โ‰  0 and so ๐‘“ โ‰  ๐œ€. Let ๐‘” be the longest left factor

Schรผtzenbergerโ€™s theorem โ€ข 199

Page 208: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

of ๐‘“ such that ๐‘”๐œ‘ โ‰  0. (Such a left factor exists since ๐œ€๐œ‘ = 1 and๐‘“๐œ‘ = 0.) Then ๐‘“ = ๐‘”๐‘Žโ€ฒ๐‘”โ€ฒ, where ๐‘”๐œ‘ โ‰  0 and (๐‘”๐‘Žโ€ฒ)๐œ‘ = 0. Note thatsince ๐‘“ โˆˆ (๐ด โˆ– ๐ถ)โˆ—, we have ๐‘” โˆˆ (๐ด โˆ– ๐ถ)โˆ— and ๐‘Žโ€ฒ โˆˆ ๐ด โˆ– ๐ถ. Let โ„Ž bethe longest right factor of ๐‘” such that (โ„Ž๐‘Žโ€ฒ)๐œ‘ โ‰  0. (Such a right factorof ๐‘” exists because ๐‘Žโ€ฒ๐œ‘ โ‰  0 and (๐‘”๐‘Žโ€ฒ)๐œ‘ = 0.) Then ๐‘” = โ„Žโ€ฒ๐‘Žโ„Ž, where(โ„Ž๐‘Žโ€ฒ)๐œ‘ โ‰  0 and (๐‘Žโ„Ž๐‘Žโ€ฒ)๐œ‘ = 0. Note that since ๐‘” โˆˆ (๐ด โˆ– ๐ถ)โˆ—, we haveโ„Ž โˆˆ (๐ด โˆ– ๐ถ)โˆ— and ๐‘Ž โˆˆ ๐ด โˆ– ๐ถ. Furthermore, since ๐‘”๐œ‘ โ‰  0, we have(๐‘Žโ„Ž)๐œ‘ โ‰  0.

Let ๐‘› = โ„Ž๐œ‘. Suppose, with the aim of obtaining a contradiction,that ๐‘› โˆˆ ๐พ. Since๐พ is an ideal, ๐‘›(๐‘Žโ€ฒ๐œ‘) โˆˆ ๐พ. Since ๐‘›(๐‘Žโ€ฒ๐œ‘) = (โ„Ž๐‘Žโ€ฒ)๐œ‘ โ‰  0,we have ๐‘›(๐‘Žโ€ฒ๐œ‘) โˆˆ ๐ท. Thus ๐‘› D ๐‘›(๐‘Žโ€ฒ๐œ‘), and so, by Lemma 7.6(a),๐‘› R ๐‘›(๐‘Žโ€ฒ๐œ‘). Similarly, since (๐‘Ž๐œ‘)๐‘› = (๐‘Žโ„Ž)๐œ‘ โ‰  0, we have (๐‘Ž๐œ‘)๐‘› L๐‘›. Hence, by Lemma 3.12, (๐‘Ž๐œ‘)๐‘›(๐‘Žโ€ฒ๐œ‘) L ๐‘›(๐‘Žโ€ฒ๐œ‘) and therefore wehave (๐‘Ž๐œ‘)๐‘›(๐‘Žโ€ฒ๐œ‘) D ๐‘›. Thus (๐‘Ž๐œ‘)๐‘›(๐‘Žโ€ฒ๐œ‘) lies in the D-class ๐ท, whichcontradicts the fact that (๐‘Žโ„Ž๐‘Žโ€ฒ)๐œ‘ = 0. Hence ๐‘› โˆ‰ ๐พ, and thus ๐‘“ =โ„Žโ€ฒ๐‘Žโ„Ž๐‘Žโ€ฒ๐‘”โ€ฒ โˆˆ ๐ดโˆ—๐‘Ž(๐‘›๐œ‘โˆ’1)๐‘Žโ€ฒ๐ดโˆ— with (๐‘Ž, ๐‘›, ๐‘Žโ€ฒ) โˆˆ ๐ธ.

This shows that the left-hand side of (9.10) is contained in theright-hand side.

Since ๐‘› โˆ‰ ๐พ, the reasoning in case a) shows that ๐‘›๐œ‘โˆ’1 โˆˆ ๐ดโˆ—๐›ฅ๐‘€and thus ๐‘›๐œ‘โˆ’1 โˆˆ SF(๐ดโˆ—). Since SF(๐ดโˆ—) is closed under Boolean oper-ations and concatenation, it follows from (9.10) that๐‘š๐œ‘โˆ’1 = 0๐œ‘โˆ’1 โˆˆSF(๐ดโˆ—).

c) ๐‘š โˆˆ ๐พ โˆ– {0} (where ๐พ โˆ– {0} = ๐พ if๐‘€ does not contain a zero). Now,๐‘š๐‘€ โŠ† ๐พ since ๐พ is an ideal. Hence all elements of๐‘š๐‘€โˆ– {0} are D-related and hence R-related by Lemma 7.6. Thus ๐‘…๐‘š = ๐‘š๐‘€ โˆ– {0}.Similarly, ๐ฟ๐‘š = ๐‘š๐‘€ โˆ– {0}.

{๐‘š} = ๐ป๐‘š [by Proposition 7.4]= ๐‘…๐‘š โˆฉ ๐ฟ๐‘š= (๐‘š๐‘€ โˆ– {0}) โˆฉ (๐‘€๐‘š โˆ– {0})= (๐‘š๐‘€ โˆฉ๐‘€๐‘š) โˆ– {0}.

(When๐‘€ does not contain a zero, this becomes {๐‘š} = ๐‘š๐‘€ โˆฉ๐‘€๐‘š.)Thus, since by case b) we already know that 0๐œ‘โˆ’1 is in SF(๐ดโˆ—), it issufficient to prove that (๐‘š๐‘€)๐œ‘โˆ’1 and (๐‘€๐‘š)๐œ‘โˆ’1 are in SF(๐ดโˆ—). Wewill prove (๐‘š๐‘€)๐œ‘โˆ’1 โˆˆ SF(๐ดโˆ—); the other case is similar.

The first step is to prove that

(๐‘š๐‘€)๐œ‘โˆ’1 = 0๐œ‘โˆ’1 โˆชโ‹ƒ(๐‘›,๐‘Ž)โˆˆ๐น(๐‘›๐œ‘โˆ’1)๐‘Ž๐ดโˆ—. (9.11)

where

๐น = { (๐‘›, ๐‘Ž) โˆˆ (๐‘€ โˆ’ ๐พ) ร— ๐ด โˆถ ๐‘›(๐‘Ž๐œ‘) โˆˆ ๐‘…๐‘š }.

(We formally let 0๐œ‘โˆ’1 = โˆ… if๐‘€ does not contain a zero.)

200 โ€ขAutomata & finite semigroups

Page 209: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

If (๐‘›, ๐‘Ž) โˆˆ ๐น, then (๐‘›๐œ‘โˆ’1)๐‘Ž๐ดโˆ— = ๐‘…๐‘š๐œ‘โˆ’1 โŠ† (๐‘š๐‘€)๐œ‘โˆ’1. Trivially,0๐œ‘โˆ’1 โŠ† (๐‘š๐‘€)๐œ‘โˆ’1. Thus the right-hand side of (9.10) is contained inthe left-hand side.

Let ๐‘“ โˆˆ (๐‘š๐‘€)๐œ‘โˆ’1. If ๐‘“๐œ‘ = 0, then ๐‘“ โˆˆ 0๐œ‘โˆ’1. So assume ๐‘“๐œ‘ โ‰  0.Then ๐‘“๐œ‘ โˆˆ ๐‘š๐‘€ โˆ– {0} = ๐‘…๐‘š. Since 1 โˆ‰ ๐พ (since๐‘€ has at least twoelements), ๐œ€๐œ‘ = 1 โˆ‰ ๐‘…๐‘š. Let ๐‘” be the longest left factor of ๐‘“ suchthat ๐‘”๐œ‘ โˆ‰ ๐‘…๐‘š. (Such a longest left factor exists since ๐œ€๐œ‘ โˆ‰ ๐‘…๐‘š and๐‘“๐œ‘ โˆˆ ๐‘…๐‘š.) Hence ๐‘“ = ๐‘”๐‘Ž๐‘”โ€ฒ where ๐‘”๐œ‘ โˆ‰ ๐‘…๐‘š and (๐‘”๐‘Ž)๐œ‘ โˆˆ ๐‘…๐‘š, where๐‘”, ๐‘”โ€ฒ โˆˆ ๐ดโˆ— and ๐‘Ž โˆˆ ๐ด.

Let ๐‘› = ๐‘”๐œ‘. Suppose, with the aim of obtaining a contradiction,that ๐‘› โˆˆ ๐พ. Then ๐‘…๐‘› = ๐‘›๐‘€ โˆ– {0} and so ๐‘›(๐‘Ž๐œ‘) โˆˆ ๐‘…๐‘›. But ๐‘›(๐‘Ž๐œ‘) โˆˆ ๐‘…๐‘š,so ๐‘…๐‘› = ๐‘…๐‘š and so ๐‘› โˆˆ ๐‘…๐‘š, which contradicts ๐‘› = ๐‘”๐œ‘ โˆ‰ ๐‘…๐‘š. Thus๐‘› โˆ‰ ๐พ, and so (๐‘›, ๐‘Ž) โˆˆ ๐น. Therefore ๐‘“ โˆˆ (๐‘›๐œ‘โˆ’1)๐‘Ž๐ดโˆ—

This shows that the left-hand side of (9.11) is contained in theright-hand side.

Thus, for any (๐‘›, ๐‘Ž) โˆˆ ๐น, we have ๐‘› โˆ‰ ๐พ and so ๐‘›๐œ‘โˆ’1 โˆˆ ๐ดโˆ—๐›ฅ๐‘€by case a), and thus ๐‘›๐œ‘โˆ’1 โˆˆ SF(๐ดโˆ—). Hence (๐‘€๐‘š)๐œ‘โˆ’1 is in SF(๐ดโˆ—) by(9.11).

This completes the induction step and thus the proof. 9.19 Finis.

Exercises

[See pages 248โ€“250 for the solutions.]โœด9.1 Prove that a language ๐ฟ โŠ† ๐ดโˆ— is rational if and only if SynM ๐ฟ is finite.

[Hint: this is an easy consequence of results in this chapter.]9.2 Let ๐ด = {๐‘Ž, ๐‘}. Let ๐ฟ be the language of words over ๐ด that contain

at least one symbol ๐‘Ž and at least one symbol ๐‘. (That is, ๐ฟ = ๐ด+ โˆ–({๐‘Ž}+ โˆช {๐‘}+).) Find a homomorphism ๐œ‘ โˆถ ๐ด+ โ†’ ๐‘† that recognizes ๐ฟ.[Hint: ๐‘† can be taken to have 3 elements.]

โœด9.3 A Dyck word is a string of balanced parentheses: that is, a word in Dyck word{ ( , ) }โˆ— where every opening parenthesis ( matches a correspondingclosing parentheses ) to its right, and vice versa. For instance,

( ) ( ( ( ) ( ) ) ( ) ) ( ( ) ) is a Dyck word, but

( ) ) ( ( ) ( ) ) ( ) ( ( ( ) ( is not a Dyck word.

An equivalent characterization of Dyck words is the following: definea map ๐ถ โˆถ { ( , ) }โˆ— ร— โ„• โˆช {0} โ†’ โ„ค as follows: let ๐ถ(๐‘ค1โ‹ฏ๐‘ค๐‘›, ๐‘–) bethe number of symbols ( minus the number of symbols ) in the prefix๐‘ค1โ‹ฏ๐‘ค๐‘–. A word ๐‘ค is a Dyck word if and only if ๐ถ(๐‘ค, |๐‘ค|) = 0 and

Exercises โ€ข 201

Page 210: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐ถ(๐‘ค, ๐‘–) โฉพ 0 for all ๐‘– = 1,โ€ฆ , |๐‘ค|. Consider the two example wordsabove, with ๐ถ(๐‘ค, ๐‘–) plotted graphically:

If ๐‘ค = ( ) ( ( ( ) ( ) ) ( ) ) ( ( ) ) , then ๐ถ(๐‘ค, |๐‘ค|) = 0 and๐ถ(๐‘ค, ๐‘–) โฉพ 0 for all ๐‘–.

If ๐‘ค = ( ) ) ( ( ) ( ) ) ( ) ( ( ( ) ( , then ๐ถ(๐‘ค, |๐‘ค|) โ‰  0 and๐ถ(๐‘ค, ๐‘–) < 0 for some ๐‘–.

Let๐ท be the language of Dyck words. Prove that SynM๐ท is isomor-phic to the bicyclic monoid.

โœด9.4 Without using the Eilenberg correspondence, prove that the corres-pondence N in Example 9.9(c) (with N(๐ด+) being the class of finiteor cofinite languages over ๐ด) is a variety of rational languages.

โœด9.5 Let RB be the S-pseudovariety of rectangular bands. Let RB be thevariety of rational +-languages associated to RB by the Eilenberg cor-respondence. Prove that RB(๐ด+) is the class of all +-languages of theform

๐‘ โˆช โ‹ƒ๐‘Žโˆˆ๐‘๐‘Ž๐ดโˆ—๐‘Ž โˆช

๐‘›

โ‹ƒ๐‘–=1๐‘Ž๐‘–๐ดโˆ—๐‘Žโ€ฒ๐‘–, (9.12)

where ๐‘ โŠ† ๐ด and ๐‘Ž๐‘–, ๐‘Žโ€ฒ๐‘– โˆˆ ๐ด with ๐‘Ž๐‘– โ‰  ๐‘Žโ€ฒ๐‘– for each ๐‘–.

Notes

For further reading on automata and rational languages, seeHopcroft & Ullman, Introduction to Automata Theory, Languages, and Compu-tation, ch. 2, Lawson, Finite Automata, or Howie, Automata and Languages. โ—†Theorem 9.1 is due to Rabin & Scott, โ€˜Finite automata and their decision prob-lemsโ€™. โ—† Theorem 9.2 was first stated, in rather different terminology, in Kleene,โ€˜Representation of events in nerve nets and finite automataโ€™. โ—† The discussion ofsyntactic monoids and semigroups and Eilenbergโ€™s correspondence is based onEilenberg, Automata, Languages, and Machines (Vol. B), ch. vii and Pin, โ€˜Syn-tactic semigroupsโ€™, ยงยง 2.2โ€“3. โ—† The proof of Schรผtzenbergerโ€™s theorem is a blendof the original proof by Schรผtzenberger, โ€˜On finite monoids having only trivialsubgroupsโ€™ and its exposition in Pin, Varieties of Formal Languages, ยง 4.2 โ—† Forfurther reading on the connection between semigroups and languages, see Pin,Varieties of Formal Languages or Pin, โ€˜Mathematical Foundations of AutomataTheoryโ€™.

โ€ข

202 โ€ขAutomata & finite semigroups

Page 211: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Solutions to exercises

โ€˜ A solution which does not prepare for the next roundwith some increased insight is hardly a solution at all. โ€™

โ€” R.W. Hamming,The Art of Doing Science and Engineering, p. 200.

Exercises for chapter 1

[See pages 32โ€“34 for the exercises.]1.1 Let ๐‘ฅ โˆˆ ๐‘†. Then ๐‘ฅ = ๐‘ฅ๐‘’ since ๐‘’ is a right identity, and ๐‘’ = ๐‘ฅ๐‘’ since ๐‘’ is

a right zero. Hence ๐‘ฅ = ๐‘ฅ๐‘’ = ๐‘’. Thus ๐‘’ is the only element of ๐‘†.1.2 a) If ๐‘† contains a zero, then ๐‘†0 = ๐‘† and there is nothing to prove.

Otherwise ๐‘†0 = ๐‘† โˆช {0}. Then ๐‘ฅ1 = ๐‘ฅ1 = ๐‘ฅ for all ๐‘ฅ โˆˆ ๐‘† since 1 isan identity for ๐‘†, and 01 = 10 = 0 by the definition of ๐‘†0. Hence 1is an identity for ๐‘†0.

b) The reasoning is similar to part a).1.3 Let ๐‘† be left-cancellative and let ๐‘’ โˆˆ ๐‘† be an idempotent. Let ๐‘ฅ โˆˆ ๐‘†.

Since ๐‘’ is idempotent, ๐‘’๐‘’๐‘ฅ = ๐‘’๐‘ฅ. Since ๐‘† is left-cancellative, ๐‘’๐‘ฅ = ๐‘ฅ.Since ๐‘ฅ โˆˆ ๐‘† was arbitrary, this proves that ๐‘’ is a left identity for ๐‘ฅ.

Suppose now that ๐‘† is cancellative and that ๐‘’, ๐‘“ โˆˆ ๐‘† are idem-potents. By the preceding paragraph and the symmetric result forright-cancellativity, ๐‘’ and ๐‘“ are left and right identities for ๐‘†. By Pro-position 1.3, ๐‘’ = ๐‘“.

1.4 Let ๐‘† be a right zero semigroup. Suppose ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘† are such that๐‘ง๐‘ฅ = ๐‘ง๐‘ฆ. Since ๐‘† is a right zero semigroup, ๐‘ง๐‘ฅ = ๐‘ฅ and ๐‘ง๐‘ฆ = ๐‘ฆ. Hence๐‘ฅ = ๐‘ง๐‘ฅ = ๐‘ง๐‘ฆ = ๐‘ฆ. That is, ๐‘ฅ = ๐‘ฆ. So ๐‘ง๐‘ฅ = ๐‘ง๐‘ฆ โ‡’ ๐‘ฅ = ๐‘ฆ for all๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘† and thus ๐‘† is left-cancellative.

1.5 Let ๐‘† be a finite cancellative semigroup. Let ๐‘ฅ โˆˆ ๐‘†. Then ๐‘ฅ is periodicand so some power of ๐‘ฅ is an idempotent. By Exercise 1.3, this idem-potent is an identity 1๐‘† for ๐‘†. Now let ๐‘ฆ โˆˆ ๐‘† be arbitrary. Then ๐‘ฆ๐‘› isidempotent for some ๐‘› โˆˆ โ„•. Again by Exercise 1.3, ๐‘ฆ๐‘› = 1๐‘† and so๐‘ฆ๐‘›โˆ’1 is a left and right inverse for ๐‘ฆ. Since ๐‘ฆ โˆˆ ๐‘† was arbitrary, ๐‘† is agroup.

1.6 Let ๐œŒ โˆˆ B๐‘‹. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹. Then

(๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ โˆ˜ id๐‘‹โ‡” (โˆƒ๐‘ง โˆˆ ๐‘‹)((๐‘ฅ, ๐‘ง) โˆˆ ๐œŒ โˆง (๐‘ง, ๐‘ฆ) โˆˆ id๐‘‹) [by definition of โˆ˜]

โ€ข 203

Page 212: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

โ‡” (โˆƒ๐‘ง โˆˆ ๐‘‹)((๐‘ฅ, ๐‘ง) โˆˆ ๐œŒ โˆง (๐‘ง = ๐‘ฆ)) [by definition of id๐‘‹]โ‡” (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ.

So ๐œŒ โˆ˜ id๐‘‹ = ๐œŒ and similarly id๐‘‹ โˆ˜ ๐œŒ = ๐œŒ. So id๐‘‹ is the identity of B๐‘‹.The zero ofB๐‘‹ is the empty relationโˆ…. So see this, we must prove

that ๐œŒ โˆ˜ โˆ… = โˆ… โˆ˜ ๐œŒ = โˆ…. So suppose, with the aim of obtaining acontradiction, that ๐œŒ โˆ˜ โˆ… โ‰  โˆ…. Then (๐‘ฅ, ๐‘ฆ) โˆˆ ๐œŒ โˆ˜ โˆ… for some ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‹.Then there exists ๐‘ง โˆˆ ๐‘‹ such that (๐‘ฅ, ๐‘ง) โˆˆ ๐œŒ and (๐‘ง, ๐‘ฆ) โˆˆ โˆ…. But(๐‘ง, ๐‘ฆ) โˆˆ โˆ… is a contradiction. So ๐œŒ โˆ˜ โˆ… = โˆ… and similarlyโˆ… โˆ˜ ๐œŒ = โˆ….

1.7 No. Let ๐‘† be a non-trivial semigroup. Choose some element ๐‘ฅ โˆˆ ๐‘†and let ๐‘‡ = { ๐‘ฅ๐‘› โˆถ ๐‘› โˆˆ โ„• } be the subsemigroup generated by ๐‘ฅ.If ๐‘‡ is finite (that is, if ๐‘ฅ is periodic), then some ๐‘ฅ๐‘› is idempotentand so {๐‘ฅ๐‘›} is a subsemigroup of ๐‘†; furthermore, it must be a propersubsemigroup since ๐‘† is non-trivial. If, on the other hand, ๐‘‡ is infinite,then { ๐‘ฅ2๐‘› โˆถ ๐‘› โˆˆ โ„• } is a proper subsemigroup of ๐‘‡ and hence of ๐‘†.

1.8 The easiest examples are infinite right or left zero semigroups, andthe semigroups (โ„•,โ–ณ) and (โ„ค,โ–ณ) from Example 1.7(a)โ€“(b).

1.9 The empty relationโˆ… is a partial transformation. It is a zero for B๐‘‹,so it is certainly a zero for P๐‘‹. By Proposition 1.4, this is the uniqueleft and right zero in P๐‘‹.

Let us prove that the semigroup of transformations T๐‘‹ containsexactly |๐‘‹| right zeros, namely the constantmaps ๐œ๐‘ฅ โˆถ ๐‘‹ โ†’ ๐‘‹ definedby ๐‘ฆ๐œ๐‘ฅ = ๐‘ฅ for all ๐‘ฆ โˆˆ ๐‘‹. Each map ๐œ๐‘ฅ is a right zero because for any๐œŽ โˆˆ T๐‘‹, we have ๐‘ฆ๐œŽ๐œ๐‘ฅ = ๐‘ฅ for all ๐‘ฆ โˆˆ ๐‘‹, and so ๐œŽ๐œ๐‘ฅ = ๐œ๐‘ฅ. Suppose๐œ โˆˆ T๐‘‹ is a right zero. Then ๐œŽ๐œ = ๐œ for all ๐œŽ โˆˆ T๐‘‹. In particular, thisis true for all ๐œŽ โˆˆ S๐‘‹. Choose some ๐‘ฆ โˆˆ ๐‘‹ and let ๐‘ฅ = ๐‘ฆ๐œ. Now let๐‘ง โˆˆ ๐‘‹. Choose ๐œŽ โˆˆ S๐‘‹ with ๐‘ง๐œŽ = ๐‘ฆ. Then ๐‘ง๐œ = ๐‘ง๐œŽ๐œ = ๐‘ฆ๐œ = ๐‘ฅ. Since๐‘ง โˆˆ ๐‘‹ was arbitrary, we have ๐œ = ๐œ๐‘ฅ. Thus the right zeros in T๐‘‹ areprecisely the constant maps ๐œ๐‘ฅ.

Suppose ๐œŒ โˆˆ T๐‘‹ is a left zero. Then for all ๐‘ฅ โˆˆ ๐‘‹, we have ๐œŒ =๐œŒ๐œ๐‘ฅ = ๐œ๐‘ฅ since ๐œŒ is a left zero and ๐œ๐‘ฅ is a right zero. Hence |๐‘‹| = 1and so T๐‘‹ is trivial (and so contains a zero). Hence if |๐‘‹| โฉพ 2, thenT๐‘‹ cannot contain a left zero.

1.10 a) Define ๐œ‘ โˆถ ๐‘† โ†’ โ„™๐‘† by ๐‘ง๐œ‘ = {๐‘ง}. Then

(๐‘ง๐œ‘)(๐‘ก๐œ‘) = {๐‘ง}{๐‘ก} = {๐‘ง๐‘ก} = (๐‘ง๐‘ก)๐œ‘.

and

๐‘ง๐œ‘ = ๐‘ก๐œ‘ โ‡’ {๐‘ง} = {๐‘ก} โ‡’ ๐‘ง = ๐‘ก.

So ๐œ‘ is a monomorphism and so ๐œ‘ โˆถ ๐‘† โ†’ im ๐‘† โŠ† โ„™๐‘† is anisomorphism.

b) For any๐‘‹ โˆˆ โ„™๐‘†, we have

๐‘‹โˆ… = { ๐‘ฅ๐‘ฆ โˆถ ๐‘ฅ โˆˆ ๐‘‹ โˆง ๐‘ฆ โˆˆ โˆ… } = โˆ…

204 โ€ขSolutions to exercises

Page 213: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

12

๐‘–

๐‘—

12

๐‘–

๐‘—

(1 ๐‘–)|1 2|(1 ๐‘–)

โ‹ฎ

โ‹ฎ

โ‹ฎ

โ‹ฎ

=

12

๐‘–

๐‘—

12

๐‘–

๐‘—

|๐‘– 2|

โ‹ฎ

โ‹ฎ

โ‹ฎ

โ‹ฎ

12

๐‘–

๐‘—

12

๐‘–

๐‘—

(1 ๐‘–)(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–)

โ‹ฎ

โ‹ฎ

โ‹ฎ

โ‹ฎ

=

12

๐‘–

๐‘—

12

๐‘–

๐‘—

|๐‘– ๐‘—|

โ‹ฎ

โ‹ฎ

โ‹ฎ

โ‹ฎ

(a) (b)

FIGURE S.3Generating (a) |2 ๐‘—| and (b) |๐‘– ๐‘—|using transpositions and |1 2|.

and similarlyโˆ…๐‘‹ = โˆ…. Soโˆ… is a zero forโ„™๐‘†. If๐‘‹,๐‘Œ โˆˆ (โ„™๐‘†) โˆ– {โˆ…}then there exist ๐‘ฅ โˆˆ ๐‘‹ and ๐‘ฆ โˆˆ ๐‘Œ and so ๐‘ฅ๐‘ฆ โˆˆ ๐‘‹๐‘Œ and hence๐‘‹๐‘Œ โ‰  โˆ…. So (โ„™๐‘†) โˆ– {โˆ…} is a subsemigroup of โ„™๐‘†.

c) Suppose๐‘€ is non-trivial. Let ๐‘ฅ โˆˆ ๐‘€ โˆ– {1๐‘€}. Let ๐‘ = ๐‘€ โˆ– {๐‘ฅ}.Then๐‘€ โ‰  ๐‘ โ‰  โˆ… but๐‘€๐‘€ = ๐‘€ and๐‘€๐‘ = ๐‘€ since both๐‘€and๐‘ contain 1๐‘€. Hence (โ„™๐‘€) โˆ– {โˆ…} is not cancellative.

On the other hand, suppose๐‘€ is trivial. Then โ„™๐‘€ = {โˆ…,๐‘€}.Hence (โ„™๐‘€) โˆ– {โˆ…} is trivial and thus cancellative.

d) Let ๐‘† be a right zero semigroup. Let๐‘‹,๐‘Œ โˆˆ (โ„™๐‘†) โˆ– {โˆ…}. Then

๐‘‹๐‘Œ = { ๐‘ฅ๐‘ฆ โˆถ ๐‘ฅ โˆˆ ๐‘‹ โˆง ๐‘ฆ โˆˆ ๐‘Œ }= { ๐‘ฆ โˆถ ๐‘ฅ โˆˆ ๐‘‹ โˆง ๐‘ฆ โˆˆ ๐‘Œ } [since ๐‘ฆ is a right zero]= { ๐‘ฆ โˆถ ๐‘ฆ โˆˆ ๐‘Œ }= ๐‘Œ.

So (โ„™๐‘†) โˆ– {โˆ…} is a right zero semigroup.On the other hand, if โ„™๐‘† is a right zero semigroup, so is its

subsemigroup im๐œ‘ โ‰ƒ ๐‘†, where ๐œ‘ is the monomorphism frompart a). So ๐‘† is a right zero semigroup.

1.11 a) To prove the four identities, we have to show that the transforma-tions on each side act the same way on every element of ๐‘‹. Forthe first identity, let ๐‘– โฉพ 3. Then:

1(1 ๐‘–)|1 2|(1 ๐‘–) = ๐‘–|1 2|(1 ๐‘–) = ๐‘–(1 ๐‘–) = 1 = 1|๐‘– 2|;2(1 ๐‘–)|1 2|(1 ๐‘–) = 2|1 2|(1 ๐‘–) = 2(1 ๐‘–) = 2 = 2|๐‘– 2|;๐‘–(1 ๐‘–)|1 2|(1 ๐‘–) = 1|1 2|(1 ๐‘–) = 2(1 ๐‘–) = 2 = 2|๐‘– 2|;๐‘ฅ(1 ๐‘–)|1 2|(1 ๐‘–) = ๐‘ฅ|1 2|(1 ๐‘–) = ๐‘ฅ(1 ๐‘–) = ๐‘ฅ = ๐‘ฅ|๐‘– 2|

for ๐‘ฅ โˆˆ ๐‘‹ โˆ– {1, 2, ๐‘–}.

(Figure S.3(a) illustrates the first identity diagrammatically.) Thesecond identity is proved similarly.

For the third identity, let ๐‘–, ๐‘— โฉพ 3 with ๐‘– โ‰  ๐‘—. Then:

1(1 ๐‘–)(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–) = ๐‘–(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–)= ๐‘–|1 2|(2 ๐‘—)(1 ๐‘–) = ๐‘–(2 ๐‘—)(1 ๐‘–) = ๐‘–(1 ๐‘–) = 1 = 1|๐‘– ๐‘—|;

Solutions to exercises โ€ข 205

Page 214: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

2(1 ๐‘–)(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–) = 2(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–)= ๐‘—|1 2|(2 ๐‘—)(1 ๐‘–) = ๐‘—(2 ๐‘—)(1 ๐‘–) = 2(1 ๐‘–) = 2 = 2|๐‘– ๐‘—|;

๐‘–(1 ๐‘–)(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–) = 1(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–)= 1|1 2|(2 ๐‘—)(1 ๐‘–) = 2(2 ๐‘—)(1 ๐‘–) = ๐‘—(1 ๐‘–) = ๐‘— = ๐‘–|๐‘– ๐‘—|;

๐‘—(1 ๐‘–)(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–) = ๐‘—(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–)= 2|1 2|(2 ๐‘—)(1 ๐‘–) = 2(2 ๐‘—)(1 ๐‘–) = ๐‘—(1 ๐‘–) = ๐‘— = ๐‘—|๐‘– ๐‘—|;

๐‘ฅ(1 ๐‘–)(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–) = ๐‘ฅ(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–)= ๐‘ฅ|1 2|(2 ๐‘—)(1 ๐‘–) = ๐‘ฅ(2 ๐‘—)(1 ๐‘–) = ๐‘ฅ(1 ๐‘–) = ๐‘ฅ = ๐‘ฅ|๐‘– ๐‘—|

for ๐‘ฅ โˆˆ ๐‘‹ โˆ– {1, 2, ๐‘–, ๐‘—}.

(Figure S.3(b) illustrates the third identity diagrammatically.)For the fourth identity, let ๐‘– โ‰  ๐‘—. Then:

๐‘–(๐‘– ๐‘—)|๐‘– ๐‘—|(๐‘– ๐‘—) = ๐‘—|๐‘– ๐‘—|(๐‘– ๐‘—) = ๐‘—(๐‘– ๐‘—) = ๐‘– = ๐‘–|๐‘— ๐‘–|;๐‘—(๐‘– ๐‘—)|๐‘– ๐‘—|(๐‘– ๐‘—) = ๐‘–|๐‘– ๐‘—|(๐‘– ๐‘—) = ๐‘—(๐‘– ๐‘—) = ๐‘– = ๐‘—|๐‘— ๐‘–|;๐‘ฅ(๐‘– ๐‘—)|๐‘– ๐‘—|(๐‘– ๐‘—) = ๐‘ฅ|๐‘– ๐‘—|(๐‘– ๐‘—) = ๐‘ฅ(๐‘– ๐‘—) = ๐‘– = ๐‘ฅ|๐‘— ๐‘–|

for ๐‘ฅ โˆˆ ๐‘‹ โˆ– {๐‘–, ๐‘—}.

b) To prove that |๐‘– ๐‘—|๐œ‘โ€ฒ = ๐œ‘, we must show that both sides act thesame way on every element of๐‘‹. By the definition of ๐œ‘โ€ฒ,

๐‘–|๐‘– ๐‘—|๐œ‘โ€ฒ = ๐‘—๐œ‘โ€ฒ = ๐‘—๐œ‘,๐‘ฅ|๐‘– ๐‘—|๐œ‘โ€ฒ = ๐‘ฅ๐œ‘โ€ฒ = ๐‘ฅ๐œ‘ for ๐‘ฅ โ‰  ๐‘–.

c) Since โŸจ๐œ, ๐œโŸฉ = S๐‘‹, we have (๐‘– ๐‘—) โˆˆ โŸจ๐œ, ๐œ, |1 2|โŸฉ for all ๐‘–, ๐‘— โˆˆ ๐‘‹.From part a), the first two identities show that |๐‘– 2| and |1 ๐‘—| are inโŸจ๐œ, ๐œ, |1 2|โŸฉ for all ๐‘–, ๐‘— โˆˆ ๐‘‹โˆ– {1, 2}. Combining this with the fourthidentity shows that |2 ๐‘—| and |๐‘– 1| are in โŸจ๐œ, ๐œ, |1 2|โŸฉ. Together withthe third identity, this shows that |๐‘– ๐‘—| โˆˆ โŸจ๐œ, ๐œ, |1 2|โŸฉ for all ๐‘–, ๐‘— โˆˆ ๐‘‹.

Now proceed by induction on |๐‘‹ โˆ– im๐œ‘|. If |๐‘‹ โˆ– im๐œ‘| = 0,then im๐œ‘ = ๐‘‹ and so ๐œ‘ is surjective and so (since ๐‘‹ is finite)injective. Hence ๐œ‘ โˆˆ S๐‘‹ = โŸจ๐œ, ๐œโŸฉ โŠ† โŸจ๐œ, ๐œ, |1 2|โŸฉ. So assume that๐œ“ โˆˆ โŸจ๐œ, ๐œ, |1 2|โŸฉ is true for all ๐œ“ โˆˆ T๐‘‹ with |๐‘‹ โˆ– im๐œ“| = ๐‘˜ โˆ’ 1 < ๐‘›.Let ๐œ‘ be such that |๐‘‹ โˆ– im๐œ‘| = ๐‘˜. Then by parts a) and b), wehave ๐œ‘ = |๐‘– ๐‘—|๐œ‘โ€ฒ = (1 ๐‘–)(2 ๐‘—)|1 2|(2 ๐‘—)(1 ๐‘–)๐œ‘โ€ฒ, where im๐œ‘โ€ฒ โŠŠ im๐œ‘.Hence |๐‘‹ โˆ– im๐œ‘โ€ฒ| = ๐‘˜ โˆ’ 1 and so ๐œ‘โ€ฒ โˆˆ โŸจ๐œ, ๐œ, |1 2|โŸฉ. Hence ๐œ‘ โˆˆโŸจ๐œ, ๐œ, |1 2|โŸฉ. By induction, T๐‘‹ = โŸจ๐œ, ๐œ, |1 2|โŸฉ.

1.12 Suppose ๐‘ฅ is right invertible. Then there exists ๐‘ฆ โˆˆ ๐‘† such that ๐‘ฅ๐‘ฆ = 1.Since ๐‘† is finite, ๐‘ฅ๐‘˜ = ๐‘ฅ๐‘˜+๐‘š for some ๐‘˜,๐‘š โˆˆ โ„•. So 1 = ๐‘ฅ๐‘˜๐‘ฆ๐‘˜ =๐‘ฅ๐‘˜+๐‘š๐‘ฆ๐‘˜ = ๐‘ฅ๐‘š = ๐‘ฅ๐‘šโˆ’1๐‘ฅ and so ๐‘ฅ๐‘šโˆ’1 is a left inverse for ๐‘ฅ. Similarly,if ๐‘ฅ is left invertible, it is right invertible.

1.13 a) Let ๐œŒ โˆˆ T๐‘‹ be left-invertible. Then there exists ๐œŽ โˆˆ T๐‘‹ such that๐œŽ โˆ˜ ๐œŒ = id๐‘‹. Let ๐‘ฅ โˆˆ ๐‘‹. Then ๐‘ฅ(๐œŽ โˆ˜ ๐œŒ) = ๐‘ฅ. So (๐‘ฅ๐œŽ)๐œŒ = ๐‘ฅ. So ๐œŒ issurjective.

206 โ€ขSolutions to exercises

Page 215: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Now let ๐œŒ โˆˆ T๐‘‹ be surjective. Define ๐œŽ โˆˆ T๐‘‹ as follows. Foreach ๐‘ฅ โˆˆ ๐‘‹, choose ๐‘ฆ โˆˆ ๐‘‹ such that ๐‘ฆ๐œŒ = ๐‘ฅ. (Such a ๐‘ฆ existsbecause ๐œŒ is surjective.) Define ๐‘ฅ๐œŽ = ๐‘ฆ. Clearly ๐œŽ โˆ˜ ๐œŒ = id๐‘‹ andso ๐œŒ is left-invertible.

b) Let ๐œŒ โˆˆ T๐‘‹ be right-invertible. Then there exists ๐œŽ โˆˆ T๐‘‹ such that๐œŒ โˆ˜ ๐œŽ = id๐‘‹. Then ๐‘ฅ๐œŒ = ๐‘ฆ๐œŒ โ‡’ (๐‘ฅ๐œŒ)๐œŽ = (๐‘ฆ๐œŒ)๐œŽ โ‡’ ๐‘ฅ = ๐‘ฆ and so ๐œŒis injective.

Now let ๐œŒ โˆˆ T๐‘‹ be injective. Define ๐œŽ โˆˆ T๐‘‹ as follows. For๐‘ฅ โˆˆ im ๐œŒ, let ๐‘ฆ โˆˆ ๐‘‹ be the unique element such that ๐‘ฆ๐œŒ = ๐‘ฅ.Define ๐‘ฅ๐œŽ = ๐‘ฆ. For ๐‘ฅ โˆˆ ๐‘‹ โˆ– im ๐œŒ, define ๐‘ฅ๐œŽ arbitrarily. Clearly๐œŒ โˆ˜ ๐œŽ = id๐‘‹ and so ๐œŒ is right-invertible.

1.14 a) By definition, ๐‘ฅ โŠ“ ๐‘ฆ โฉฝ ๐‘ฅ. So the least upper bound of ๐‘ฅ โŠ“ ๐‘ฆ and๐‘ฅ (which is the definition of (๐‘ฅ โŠ“ ๐‘ฆ) โŠ” ๐‘ฅ) must be ๐‘ฅ itself. Dualreasoning gives (๐‘ฅ โŠ” ๐‘ฆ) โŠ“ ๐‘ฅ = ๐‘ฅ.

b) Assume that for all๐‘, ๐‘ž, ๐‘Ÿ โˆˆ ๐‘†, we have๐‘โŠ“(๐‘žโŠ”๐‘Ÿ) = (๐‘โŠ“๐‘ž)โŠ”(๐‘โŠ“๐‘Ÿ).(We have re-labelled variables to avoid confusion.) Then

(๐‘ฅ โŠ” ๐‘ฆ) โŠ“ (๐‘ฅ โŠ” ๐‘ง)= ((๐‘ฅ โŠ” ๐‘ฆ) โŠ“ ๐‘ฅ) โŠ” ((๐‘ฅ โŠ” ๐‘ฆ) โŠ“ ๐‘ง)

[by assumption, with ๐‘ = (๐‘ฅ โŠ” ๐‘ฆ), ๐‘ž = ๐‘ฅ, ๐‘Ÿ = ๐‘ง]= ๐‘ฅ โŠ” ((๐‘ฅ โŠ” ๐‘ฆ) โŠ“ ๐‘ง) [by part a)]= ๐‘ฅ โŠ” ((๐‘ฅ โŠ“ ๐‘ง) โŠ” (๐‘ฆ โŠ“ ๐‘ง))

[by assumption, with ๐‘ = ๐‘ง, ๐‘ž = ๐‘ฅ, ๐‘Ÿ = ๐‘ฆ]= (๐‘ฅ โŠ” (๐‘ฅ โŠ“ ๐‘ง)) โŠ” (๐‘ฆ โŠ“ ๐‘ง) [by associativity of โŠ”]= ๐‘ฅ โŠ” (๐‘ฆ โŠ“ ๐‘ง). [by part a)]

The other direction is similar.1.15 There are many examples. For instance, let ๐‘† be any non-trivial mon-

oid, let ๐‘‡ = ๐‘†0, and define ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ by ๐‘ฅ๐œ‘ = 0 for all ๐‘ฅ โˆˆ ๐‘†. It is easyto see that ๐œ‘ is a homomorphism, but 1๐‘†๐œ‘ = 0 โ‰  1๐‘†0 .

1.16 a) Let ๐œ‘ be a monomorphism (that is, an injective homomorphism),and let ๐œ“1, ๐œ“2 โˆถ ๐‘ˆ โ†’ ๐‘† be such that ๐œ“1 โˆ˜ ๐œ‘ = ๐œ“2 โˆ˜ ๐œ‘. Let ๐‘ฅ โˆˆ ๐‘ˆ.Then ๐‘ฅ๐œ“1๐œ‘ = ๐‘ฅ๐œ“2๐œ‘ and so ๐‘ฅ๐œ“1 = ๐‘ฅ๐œ“2 since ๐œ‘ is injective. Sincethis is true for all ๐‘ฅ โˆˆ ๐‘ˆ, it follows that ๐œ“1 = ๐œ“2. This proves that๐œ‘ is a categorical monomorphism.

Now let ๐œ‘ be a categorical monomorphism. Suppose, withthe aim of obtaining a contradiction, that ๐œ‘ is not injective. Thenthere exist ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† with ๐‘ฅ โ‰  ๐‘ฆ such that ๐‘ฅ๐œ‘ = ๐‘ฆ๐œ‘. Define maps๐œ“1, ๐œ“2 โˆถ โ„• โ†’ ๐‘† by ๐‘›๐œ“1 = ๐‘ฅ๐‘› and ๐‘›๐œ“2 = ๐‘ฆ๐‘›. It is easy to see that๐œ“1 and ๐œ“2 are homomorphisms. Then for any ๐‘› โˆˆ โ„•,

๐‘›๐œ“1๐œ‘ = ๐‘ฅ๐‘›๐œ‘ = (๐‘ฅ๐œ‘)๐‘› = (๐‘ฆ๐œ‘)๐‘› = ๐‘ฆ๐‘›๐œ‘ = ๐‘›๐œ“2๐œ‘,

and so ๐œ“1 โˆ˜ ๐œ‘ = ๐œ“2 โˆ˜ ๐œ‘. Hence ๐œ“1 = ๐œ“2 by (1.16), which contradicts1๐œ“1 = ๐‘ฅ โ‰  ๐‘ฆ = 1๐œ“2 and so proves that ๐œ‘ is a monomorphism.

Solutions to exercises โ€ข 207

Page 216: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

b) i) Let ๐œ‘ be a surjective homomorphism. Suppose ๐œ“1, ๐œ“2 โˆถ ๐‘‡ โ†’๐‘ˆ are such that ๐œ‘ โˆ˜ ๐œ“1 = ๐œ‘ โˆ˜ ๐œ“2. Let ๐‘ฅ โˆˆ ๐‘‡. Then since ๐œ‘ issurjective, there exists ๐‘ฆ โˆˆ ๐‘† with ๐‘ฆ๐œ‘ = ๐‘ฅ. Thus

๐‘ฅ๐œ“1 = ๐‘ฆ๐œ‘๐œ“1 = ๐‘ฆ๐œ‘๐œ“2 = ๐‘ฅ๐œ“2.

Since this holds for all ๐‘ฅ โˆˆ ๐‘‡, it follows that ๐œ“1 = ๐œ“2. Thisproves that ๐œ‘ is a categorical epimorphism.

ii) Let ๐œ“1, ๐œ“2 โˆถ โ„ค โ†’ ๐‘ˆ be such that ๐œ“1 โ‰  ๐œ“2 (which is thenegation of the right-hand side of (1.17)). Then there exists๐‘› โˆˆ โ„ค such that ๐‘›๐œ“1 โ‰  ๐‘›๐œ“2. Either ๐‘› or โˆ’๐‘› lies in im ๐œ„, and soeither ๐‘›๐œ„๐œ“1 โ‰  ๐‘›๐œ„๐œ“2 or (โˆ’๐‘›)๐œ„๐œ“1 โ‰  (โˆ’๐‘›)๐œ„๐œ“2, and thus ๐œ„โˆ˜๐œ“1 โ‰  ๐œ„โˆ˜๐œ“2(which is the negation of the left-hand side of (1.17) with ๐œ‘ = ๐œ„).Thus ๐œ„ is a categorical epimorphism.

1.17 Suppose ๐‘† is a right zero semigroup. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. Then ๐œŒ๐‘ฅ = ๐œŒ๐‘ฆ โ‡’๐‘ง๐œŒ๐‘ฅ = ๐‘ง๐œŒ๐‘ฆ โ‡’ ๐‘ง๐‘ฅ = ๐‘ง๐‘ฆ โ‡’ ๐‘ฅ = ๐‘ฆ and so the map ๐‘ฅ โ†ฆ ๐œŒ๐‘ฅ is injective.

Suppose now that ๐‘† is a left zero semigroup. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† with๐‘ฅ โ‰  ๐‘ฆ. Then ๐‘ง๐‘ฅ = ๐‘ง๐‘ฆ for all ๐‘ง โˆˆ ๐‘†. Hence ๐‘ง๐œŒ๐‘ฅ = ๐‘ง๐œŒ๐‘ฆ for all ๐‘ง โˆˆ ๐‘†, andso ๐œŒ๐‘ฅ = ๐œŒ๐‘ฆ. Thus ๐‘ฅ โ†ฆ ๐œŒ๐‘ฅ is not injective.

1.18 For each ๐‘ฆ โˆˆ ๐‘Œ, let ๐‘‡๐‘ฆ be a copy of ๐‘‡, and define a map ๐œ‘๐‘ฆ โˆถ ๐‘Œ โ†’ ๐‘‡๐‘ฆ

๐‘ฅ๐œ‘๐‘ฆ = {๐‘’ if ๐‘ฅ โฉพ ๐‘ฆ,๐‘ง otherwise.

Let ๐‘ฅ, ๐‘ฅโ€ฒ, ๐‘ฆ โˆˆ ๐‘Œ. Then

(๐‘ฅ๐œ‘๐‘ฆ) โŠ“ (๐‘ฅโ€ฒ๐œ‘๐‘ฆ) = ๐‘’ โŠ“ ๐‘’ = ๐‘’ = (๐‘ฅ โŠ“ ๐‘ฅโ€ฒ)๐œ‘๐‘ฆ if ๐‘ฅ, ๐‘ฅโ€ฒ โฉพ ๐‘ฆ;(๐‘ฅ๐œ‘๐‘ฆ) โŠ“ (๐‘ฅโ€ฒ๐œ‘๐‘ฆ) = ๐‘’ โŠ“ ๐‘ง = ๐‘ง = (๐‘ฅ โŠ“ ๐‘ฅโ€ฒ)๐œ‘๐‘ฆ if ๐‘ฅ โฉพ ๐‘ฆ, ๐‘ฅโ€ฒ โ‰ฑ ๐‘ฆ;(๐‘ฅ๐œ‘๐‘ฆ) โŠ“ (๐‘ฅโ€ฒ๐œ‘๐‘ฆ) = ๐‘ง โŠ“ ๐‘’ = ๐‘ง = (๐‘ฅ โŠ“ ๐‘ฅโ€ฒ)๐œ‘๐‘ฆ if ๐‘ฅ โ‰ฑ ๐‘ฆ, ๐‘ฅโ€ฒ โฉพ ๐‘ฆ;(๐‘ฅ๐œ‘๐‘ฆ) โŠ“ (๐‘ฅโ€ฒ๐œ‘๐‘ฆ) = ๐‘ง โŠ“ ๐‘ง = ๐‘ง = (๐‘ฅ โŠ“ ๐‘ฅโ€ฒ)๐œ‘๐‘ฆ if ๐‘ฅ, ๐‘ฅโ€ฒ โ‰ฑ ๐‘ฆ.

So ๐œ‘๐‘ฆ is a homomorphism. It is clearly surjective. Now,

(โˆ€๐‘ฆ โˆˆ ๐‘Œ)(๐‘ฅ๐œ‘๐‘ฆ = ๐‘ฅโ€ฒ๐œ‘๐‘ฆ)โ‡’ (๐‘ฅ๐œ‘๐‘ฅ = ๐‘ฅโ€ฒ๐œ‘๐‘ฅ) โˆง (๐‘ฅ๐œ‘๐‘ฅโ€ฒ = ๐‘ฅโ€ฒ๐œ‘๐‘ฅโ€ฒ)โ‡’ (๐‘’ = ๐‘ฅโ€ฒ๐œ‘๐‘ฅ) โˆง (๐‘ฅ๐œ‘๐‘ฅโ€ฒ = ๐‘’)โ‡’ (๐‘ฅโ€ฒ โฉพ ๐‘ฅ) โˆง (๐‘ฅ โฉพ ๐‘ฅโ€ฒ)โ‡’ ๐‘ฅ = ๐‘ฅโ€ฒ.

So the collection of surjective homomorphisms { ๐œ‘๐‘ฆ โˆถ ๐‘Œ โ†’ ๐‘‡๐‘ฆ โˆถ๐‘ฆ โˆˆ ๐‘Œ } separates elements of ๐‘Œ, and so ๐‘Œ is a subdirect product of{ ๐‘‡๐‘ฆ โˆถ ๐‘ฆ โˆˆ ๐‘Œ }.

1.19 Define a homomorphism ๐œ‘ โˆถ ๐‘†/๐ผ โ†’ ๐‘†/๐ฝ by [๐‘ฅ]๐ผ๐œ‘ = [๐‘ฅ]๐ฝ. Since ๐ผ โŠ† ๐ฝ,the homomorphism ๐œ‘ is well defined. Its image is clearly ๐‘†/๐ฝ. Now,([๐‘ฅ]๐ผ, [๐‘ฆ]๐ผ) โˆˆ ker๐œ‘ โ‡” [๐‘ฅ]๐ฝ = [๐‘ฆ]๐ฝ โ‡” ๐‘ฅ, ๐‘ฆ โˆˆ ๐ฝ โ‡” [๐‘ฅ]๐ผ, [๐‘ฆ]๐ผ โˆˆ ๐ฝ/๐ผ.Hence, by Theorem 1.24, ๐‘†/๐ฝ โ‰ƒ (๐‘†/๐ผ)/ker๐œ‘ โ‰ƒ (๐‘†/๐ผ)/(๐ฝ/๐ผ).

208 โ€ขSolutions to exercises

Page 217: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

1.20 Notice that ๐ผ๐ฝ โŠ† ๐ผ๐‘†โˆฉ๐‘†๐ฝ โŠ† ๐ผโˆฉ๐ฝ, so ๐ผโˆฉ๐ฝ โ‰  โˆ…. Furthermore, ๐‘†(๐ผโˆฉ๐ฝ)๐‘† โŠ†๐‘†๐ผ๐‘†โˆฉ๐‘†๐ฝ๐‘† โŠ† ๐ผโˆฉ๐ฝ, since ๐ผ and ๐ฝ are ideals; thus ๐ผโˆฉ๐ฝ is an ideal. Similarly,๐‘†(๐ผ โˆช ๐ฝ)๐‘† โŠ† ๐‘†๐ผ๐‘† โˆช ๐‘†๐ฝ๐‘† โŠ† ๐ผ โˆช ๐ฝ and so ๐ผ โˆช ๐ฝ is an ideal.

Define a homomorphism ๐œ‘ โˆถ ๐ผ โ†’ (๐ผ โˆช ๐ฝ)/๐ฝ by ๐‘ฅ๐œ‘ = [๐‘ฅ]๐ฝ. Let[๐‘ฆ]๐ฝ โˆˆ (๐ผ โˆช ๐ฝ)/๐ฝ. If ๐‘ฆ โˆˆ ๐ฝ then let ๐‘ง โˆˆ ๐ผโˆฉ๐ฝ and notice that ๐‘ง๐œ‘ = [๐‘ง]๐ฝ =[๐‘ฆ]๐ฝ; if ๐‘ฆ โˆ‰ ๐ฝ then ๐‘ฆ โˆˆ ๐ผ and ๐‘ฆ๐œ‘ = [๐‘ฆ]๐ฝ. Hence im๐œ‘ is (๐ผ โˆช ๐ฝ)/๐ฝ. Nowfor any ๐‘ฅ, ๐‘ฆ โˆˆ ๐ผ, we have (๐‘ฅ, ๐‘ฆ) โˆˆ ker๐œ‘ โ‡” [๐‘ฅ]๐ฝ = [๐‘ฆ]๐ฝ โ‡” ๐‘ฅ, ๐‘ฆ โˆˆ ๐ฝ.Hence (๐ผ โˆช ๐ฝ)/๐ฝ โ‰ƒ ๐ผ/(๐ผ โˆฉ ๐ฝ) by Theorem 1.24.

1.21 Suppose first that ๐‘‡ = ๐บ โˆช {0๐‘†} and let ๐‘ก โˆˆ ๐‘‡ โˆ– {0๐‘†} = ๐บ. Then๐‘ก๐บ = ๐บ๐‘ก = ๐บ by Lemma 1.9 and ๐‘ก0๐‘† = 0๐‘†๐‘ก = 0๐‘†, so ๐‘ก๐‘‡ = ๐‘‡๐‘ก = ๐‘‡.

Conversely, suppose that ๐‘ก๐‘‡ = ๐‘‡๐‘ก = ๐‘‡ for all ๐‘ก โˆˆ ๐‘‡ โˆ– {0๐‘†}. Let๐บ = ๐‘‡ โˆ– {0๐‘†}. By assumption, ๐‘‡ contains at least one element otherthan 0๐‘†, so ๐บ โ‰  โˆ…. For any ๐‘ , ๐‘ก โˆˆ ๐‘‡, we have ๐‘ , ๐‘ก โˆˆ ๐‘ ๐‘‡ = ๐‘‡, so ๐‘‡ is asubsemigroup.

Suppose, with the aim of obtaining a contradiction, that thereexist ๐‘”, โ„Ž โˆˆ ๐บ with ๐‘”โ„Ž = 0๐‘†. Then

๐‘‡ = ๐‘”๐‘‡ โŠ† ๐‘‡๐‘‡ = (๐‘‡๐‘”)(โ„Ž๐‘‡) = ๐‘‡(๐‘”โ„Ž)๐‘‡ = ๐‘‡0๐‘†๐‘‡ = {0๐‘†},

contradicting ๐บ โ‰  โˆ…. So for all ๐‘”, โ„Ž โˆˆ ๐บ, we have ๐‘”โ„Ž โˆˆ ๐บ. Since๐‘”0๐‘† = 0๐‘†๐‘” = 0๐‘†, it follows that ๐‘”๐บ = ๐บ๐‘” = ๐บ for all ๐‘” โˆˆ ๐บ. Hence, byLemma 1.9, ๐บ is a subgroup of ๐‘†.

Exercises for chapter 2

[See pages 51โ€“53 for the exercises.]2.1 a) Let ๐บ be a group and suppose that ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก โˆˆ ๐บ are such that๐‘ฅ๐‘ฆ = ๐‘ง๐‘ก. Then we can take ๐‘ = ๐‘งโˆ’1๐‘ฅ = ๐‘ก๐‘ฆโˆ’1, and it follows that๐‘ฅ = ๐‘ง๐‘ and ๐‘ก = ๐‘๐‘ฆ.

b) Suppose ๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก โˆˆ ๐ดโˆ— are such that ๐‘ฅ๐‘ฆ = ๐‘ง๐‘ก. Let ๐‘ฅ๐‘ฆ = ๐‘ง๐‘ก =๐‘Ž1โ‹ฏ๐‘Ž๐‘›, where ๐‘Ž๐‘– โˆˆ ๐ด. Then, by the definition of multiplicationin ๐ดโˆ—, we have

๐‘ฅ = ๐‘Ž1โ‹ฏ๐‘Ž๐‘˜, ๐‘ฆ = ๐‘Ž๐‘˜+1โ‹ฏ๐‘Ž๐‘›, ๐‘ง = ๐‘Ž1โ‹ฏ๐‘Žโ„“, ๐‘ก = ๐‘Žโ„“+1โ‹ฏ๐‘Ž๐‘›,

for some 0 โฉฝ ๐‘˜, โ„“ โฉฝ ๐‘› + 1. (We allow ๐‘˜ and โ„“ to take the values 0and ๐‘›+1 and formally take subwords ๐‘Ž๐‘–โ‹ฏ๐‘Ž๐‘— where ๐‘— < ๐‘– to meanthe empty word ๐œ€.) If ๐‘˜ โฉฝ โ„“, then the situation is as follows:

๐‘ฅ๐‘ฆ = ๐‘ง๐‘ก =๐‘ฅโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž๐‘Ž1โ‹ฏ๐‘Ž๐‘˜

๐‘ฆโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž๐‘Ž๐‘˜+1โ‹ฏ๐‘Žโ„“โŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸ๐‘ง

๐‘Žโ„“+1โ‹ฏ๐‘Ž๐‘›โŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸ๐‘ก

and thus we let ๐‘ž = ๐‘Ž๐‘˜+1โ‹ฏ๐‘Žโ„“; then ๐‘ง = ๐‘ฅ๐‘ž and ๐‘ฆ = ๐‘ž๐‘ก. On theother hand, if ๐‘˜ โฉพ โ„“, let ๐‘ = ๐‘Žโ„“+1โ‹ฏ๐‘Ž๐‘˜; then ๐‘ฅ = ๐‘ง๐‘ and ๐‘ก = ๐‘๐‘ฆ.

Solutions to exercises โ€ข 209

Page 218: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

2.2 If ๐‘ข = ๐‘ค๐‘– and ๐‘ฃ = ๐‘ค๐‘—, then ๐‘ข๐‘ฃ = ๐‘ค๐‘–+๐‘— = ๐‘ฃ๐‘ข.In the other direction, suppose that ๐‘ข๐‘ฃ = ๐‘ฃ๐‘ข. First note that if๐‘ข = ๐œ€, then we can take ๐‘ค = ๐‘ฃ, so that ๐‘ข = ๐‘ค0 and ๐‘ฃ = ๐‘ค1; similarreasoning holds when ๐‘ฃ = ๐œ€. So assume henceforth that neither ๐‘ข nor๐‘ฃ is the empty word. Now proceed by induction on |๐‘ข๐‘ฃ|. If |๐‘ข๐‘ฃ| โฉฝ 2and ๐‘ข๐‘ฃ = ๐‘ฃ๐‘ข, then since neither ๐‘ข nor ๐‘ฃ is ๐œ€, it follows that ๐‘ข and ๐‘ฃboth have length 1, so ๐‘ข = ๐‘ฃ. So assume the result holds for |๐‘ข๐‘ฃ| < ๐‘˜and suppose ๐‘ข๐‘ฃ = ๐‘ฃ๐‘ข. By Exercise 2.1, there exists ๐‘ โˆˆ ๐ดโˆ— such that๐‘ข = ๐‘ฃ๐‘ and ๐‘ข = ๐‘๐‘ฃ (or there exists ๐‘ž โˆˆ ๐ดโˆ— such that ๐‘ฃ = ๐‘ข๐‘ž and๐‘ฃ = ๐‘ž๐‘ข, which says the same thing). If ๐‘ = ๐œ€ then ๐‘ข = ๐‘ฃ. Otherwise,since ๐‘ฃ๐‘ = ๐‘๐‘ฃ, the induction hypothesis shows that ๐‘ฃ = ๐‘ค๐‘— and๐‘ = ๐‘ค๐‘– for some ๐‘ค โˆˆ ๐ดโˆ— and ๐‘–, ๐‘— โˆˆ โ„•. Thus ๐‘ข = ๐‘ค๐‘–+๐‘—. Hence, byinduction, the result holds for all ๐‘ข, ๐‘ฃ โˆˆ ๐ดโˆ—.

2.3 a) Suppose ๐‘ข๐‘ฃ = ๐‘ฃ๐‘ค. If |๐‘ฃ| = 0, then let ๐‘  = ๐œ€, ๐‘ก = ๐‘ข, ๐‘˜ = 0. Since๐‘ฃ = ๐œ€ and ๐‘ข = ๐‘ค, we have ๐‘ข = ๐‘ ๐‘ก, ๐‘ฃ = (๐‘ ๐‘ก)๐‘˜๐‘ , ๐‘ค = ๐‘ก๐‘ . So supposethe result holds for |๐‘ฃ| < ๐‘˜. Then if |๐‘ฃ| = ๐‘˜, by equidivisibility wehave either ๐‘ข = ๐‘ฃ๐‘ and ๐‘๐‘ฃ = ๐‘ค for some ๐‘ โˆˆ ๐ดโˆ— or ๐‘ข๐‘ž = ๐‘ฃ and๐‘ฃ = ๐‘ž๐‘ค for some ๐‘ž โˆˆ ๐ดโˆ—. In the former case, let ๐‘  = ๐‘ฃ, ๐‘ก = ๐‘,and ๐‘˜ = 0; then ๐‘ข = ๐‘ ๐‘ก, ๐‘ฃ = (๐‘ ๐‘ก)๐‘˜๐‘ , and ๐‘ค = ๐‘ก๐‘ . In the latter case,first note that if |๐‘ž| = 0 we have ๐‘ข๐‘ž = ๐‘ž๐‘ค, with |๐‘ž| < |๐‘ฃ|. By theinduction hypothesis, ๐‘ข = ๐‘ ๐‘ก, ๐‘ก = (๐‘ ๐‘ก)๐‘˜๐‘ , and ๐‘ค = ๐‘ก๐‘  for some๐‘ , ๐‘ก โˆˆ ๐ดโˆ— and ๐‘˜ โˆˆ โ„•โˆช {0}. Then ๐‘ฃ = ๐‘ข๐‘ž = (๐‘ ๐‘ก)๐‘˜+1๐‘ . This proves theinduction step.

b) Let ๐‘˜ be maximal such that ๐‘ฃ = ๐‘ข๐‘˜๐‘  for some ๐‘  โˆˆ ๐ดโˆ—. Then๐‘ข๐‘˜+1๐‘  = ๐‘ข๐‘ฃ = ๐‘ฃ๐‘ค = ๐‘ข๐‘˜๐‘ ๐‘ค and so by cancellativity ๐‘ข๐‘  = ๐‘ ๐‘ค. So byequidivisibility, either ๐‘  is a left factor of ๐‘ข or ๐‘ข is left factor of ๐‘ . Butthe latter contradicts the maximality of ๐‘˜. Hence ๐‘ข = ๐‘ ๐‘ก for some๐‘ก โˆˆ ๐ดโˆ—. Hence ๐‘ฃ = (๐‘ ๐‘ก)๐‘˜๐‘  and so (๐‘ ๐‘ก)๐‘˜+1๐‘  = ๐‘ข๐‘ฃ = ๐‘ฃ๐‘ค = (๐‘ ๐‘ก)๐‘˜๐‘ ๐‘คand so by cancellativity ๐‘ค = ๐‘ก๐‘ .

2.4 First, notice that if โŸจ๐‘ข, ๐‘ฃโŸฉ is free, then every element of โŸจ๐‘ข, ๐‘ฃโŸฉ hasa unique representation as a a product of elements of {๐‘ข, ๐‘ฃ}; hence๐‘ข๐‘ฃ โ‰  ๐‘ฃ๐‘ข.

So suppose โŸจ๐‘ข, ๐‘ฃโŸฉ is not free. Without loss of generality, assume|๐‘ข| โฉพ |๐‘ฃ| and let ๐‘ข = ๐‘ฃ๐‘˜๐‘ง, where ๐‘˜ โˆˆ โ„• โˆช {0} is maximal and ๐‘ง โˆˆ ๐ดโˆ—.Then there are two distinct products ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘š and ๐‘ฆ1โ‹ฏ๐‘ฆ๐‘› (where๐‘ฅ๐‘–, ๐‘ฆ๐‘– โˆˆ {๐‘ข, ๐‘ฃ}) such that๐‘ฅ1โ‹ฏ๐‘ฅ๐‘š = ๐‘ฆ1โ‹ฏ๐‘ฆ๐‘›. By cancellativity, assume๐‘ฅ1 โ‰  ๐‘ฆ1. Interchanging the two products if necessary, assume ๐‘ฅ1 = ๐‘ขand ๐‘ฆ1 = ๐‘ฃ. Let โ„“ โˆˆ โ„• be maximal such that ๐‘ฆ1 = ๐‘ฆ2 = โ€ฆ = ๐‘ฆโ„“ =๐‘ฃ. Then ๐‘ฃ๐‘˜๐‘ง๐‘ฅ2โ‹ฏ๐‘ฅ๐‘š = ๐‘ฃโ„“๐‘ฆโ„“+1โ‹ฏ๐‘ฆ๐‘›. By cancellativity, ๐‘ง๐‘ฅ2โ‹ฏ๐‘ฅ๐‘š =๐‘ฃโ„“โˆ’๐‘˜๐‘ฆโ„“+1โ‹ฏ๐‘ฆ๐‘›. By equidivisibility, either ๐‘ง = ๐‘ฃ๐‘ and ๐‘๐‘ฅ2โ‹ฏ๐‘ฅ๐‘š =๐‘ฃโ„“โˆ’๐‘˜๐‘ฆโ„“+1โ‹ฏ๐‘ฆ๐‘› for some ๐‘ โˆˆ ๐ดโˆ—, or ๐‘ฃ = ๐‘ง๐‘ž and ๐‘ž๐‘ฃโ„“โˆ’๐‘˜๐‘ฆโ„“+1โ‹ฏ๐‘ฆ๐‘›. Theformer case is impossible since ๐‘˜ is maximal; thus the latter case holds.So ๐‘ข = (๐‘ง๐‘ž)๐‘˜๐‘ง. Repeat this reasoning but focusing on ๐‘ข๐‘š and ๐‘ฃ๐‘›shows that ๐‘ฃ is a right factor of ๐‘ข. But since ๐‘ข = (๐‘ง๐‘ž)๐‘˜๐‘ง and |๐‘ฃ| =

210 โ€ขSolutions to exercises

Page 219: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

|๐‘ง| + |๐‘ž| = |๐‘ž๐‘ง|, we conclude that ๐‘ฃ = ๐‘ž๐‘ง. Hence ๐‘ง๐‘ž = ๐‘ฃ = ๐‘ž๐‘ง, and so๐‘ข๐‘ฃ = (๐‘ž๐‘ง)๐‘˜๐‘ง๐‘ž๐‘ง = (๐‘ง๐‘ž)๐‘˜๐‘ง๐‘ž๐‘ง = ๐‘ง๐‘ž(๐‘ง๐‘ž)๐‘˜๐‘ง = ๐‘ง๐‘ž(๐‘ž๐‘ง)๐‘˜๐‘ง = ๐‘ฃ๐‘ข.

2.5 Suppose that ๐‘1โ€ฆ๐‘๐‘˜ = ๐‘ž1โ€ฆ๐‘žโ„“, where ๐‘๐‘–, ๐‘ž๐‘– โˆˆ ๐‘‹. Suppose, with theaim of obtaining a contradiction, that ๐‘˜ โ‰  โ„“. Without loss of generality,assume ๐‘˜ < โ„“. Let ๐‘Ÿ โˆˆ ๐‘‹ โˆ– {๐‘ž๐‘˜+1}; such an element ๐‘Ÿ exists since|๐‘‹| โฉพ 2. Now, ๐‘1โ‹ฏ๐‘๐‘˜๐‘Ÿ๐‘ž1โ‹ฏ๐‘žโ„“ = ๐‘ž1โ‹ฏ๐‘žโ„“๐‘Ÿ๐‘1โ‹ฏ๐‘๐‘˜. Both productshave length ๐‘˜ + โ„“ + 1 and so their corresponding terms are equal bythe supposition. In particular, ๐‘Ÿ = ๐‘ž๐‘˜+1, which contradicts the choiceof ๐‘Ÿ. Hence ๐‘˜ = โ„“, and so by the supposition ๐‘๐‘– = ๐‘ž๐‘– for all ๐‘–. Since ๐‘†is generated by๐‘‹, this proves that ๐‘† is free with basis๐‘‹.

2.6 a) Define ๐œ‘ โˆถ ๐ด โ†’ ๐‘€ by ๐‘Ž๐‘– โ†ฆ {๐‘ฅ๐‘–}. Since (๐‘Ž๐‘–๐‘Ž๐‘—)๐œ‘ = {๐‘ฅ๐‘–} โˆช {๐‘ฅ๐‘—} ={๐‘ฅ๐‘–, ๐‘ฅ๐‘—} = {๐‘ฅ๐‘—}โˆช{๐‘ฅ๐‘–} = (๐‘Ž๐‘—๐‘Ž๐‘–)๐œ‘ and (๐‘Ž2๐‘– )๐œ‘ = {๐‘ฅ๐‘–}โˆช{๐‘ฅ๐‘–} = {๐‘ฅ๐‘–} = ๐‘Ž๐‘–๐œ‘,the monoid๐‘€ satisfies the defining relations in ๐œŒ with respect to๐œ‘.

b) Let๐‘ค โˆˆ ๐ดโˆ—. We can find a sequence of elementary transition from๐‘ค to a word ๐‘Ž๐‘’11 ๐‘Ž

๐‘’22 โ‹ฏ๐‘Ž๐‘’๐‘›๐‘› โˆˆ ๐‘, where each ๐‘’๐‘– โฉฝ 1 as follows. First

we use the defining relations (๐‘Ž๐‘–๐‘Ž๐‘—, ๐‘Ž๐‘—๐‘Ž๐‘–) to find a sequence from๐‘ค to a word ๐‘Ž๐‘’11 ๐‘Ž

๐‘’22 โ‹ฏ๐‘Ž๐‘’๐‘›๐‘› , where each ๐‘’๐‘– โˆˆ โ„• โˆช {0}. Then we use

the defining relations (๐‘Ž2๐‘– , ๐‘Ž๐‘–) to find a sequence from this wordto one where each ๐‘’๐‘– โฉฝ 1.

c) Let ๐‘Ž๐‘’11 ๐‘Ž๐‘’22 โ‹ฏ๐‘Ž๐‘’๐‘›๐‘› , ๐‘Ž

๐‘11 ๐‘Ž๐‘22 โ‹ฏ๐‘Ž๐‘๐‘›๐‘› โˆˆ ๐‘ so that ๐‘’๐‘–, ๐‘๐‘– โฉฝ 1. Then:

(๐‘Ž๐‘’11 ๐‘Ž๐‘’22 โ‹ฏ๐‘Ž๐‘’๐‘›๐‘› )๐œ‘โˆ— = (๐‘Ž

๐‘11 ๐‘Ž๐‘22 โ‹ฏ๐‘Ž๐‘๐‘›๐‘› )๐œ‘โˆ—

โ‡’ {๐‘ฅ๐‘– โˆถ ๐‘’๐‘– = 1 } = { ๐‘ฅ๐‘– โˆถ ๐‘๐‘– = 1 }โ‡’ (โˆ€๐‘–)(๐‘’๐‘– = ๐‘๐‘–)โ‡’ ๐‘Ž๐‘’11 ๐‘Ž

๐‘’22 โ‹ฏ๐‘Ž๐‘’๐‘›๐‘› = ๐‘Ž

๐‘11 ๐‘Ž๐‘22 โ‹ฏ๐‘Ž๐‘๐‘›๐‘› .

Hence ๐œ‘โˆ—|๐‘ is injective.2.7 We apply Method 2.9. For brevity, let ๐ด = {๐‘Ž, ๐‘} and ๐œŒ = {(๐‘Ž๐‘๐‘Ž, ๐œ€)}.

Let ๐œ‘ โˆถ ๐ด โ†’ โ„ค be defined by ๐‘Ž๐œ‘ = 1 and ๐‘๐œ‘ = โˆ’2. Then โ„ค satisfiesthe defining relation in ๐œŒ since (๐‘Ž๐‘๐‘Ž)๐œ‘โˆ— = 1โˆ’2+1 = 0 = ๐œ€๐œ‘โˆ—. [Recallthat 0 is the identity of โ„ค under addition.] Let

๐‘ = { ๐‘Ž๐‘– โˆถ ๐‘– โˆˆ โ„• โˆช {0} } โˆช { ๐‘๐‘– โˆถ ๐‘– โˆˆ โ„• } โˆช { ๐‘Ž๐‘๐‘– โˆถ ๐‘– โˆˆ โ„• }.

Now, there are sequences of elementary transitions

๐‘Ž๐‘ โ†”๐œŒ ๐‘Ž๐‘๐‘Ž๐‘๐‘Ž โ†”๐œŒ ๐‘๐‘Ž

and

๐‘Ž๐‘Ž๐‘ โ†”๐œŒ ๐‘Ž๐‘Ž๐‘๐‘Ž๐‘๐‘Ž โ†”๐œŒ ๐‘Ž๐‘๐‘Ž โ†”๐œŒ ๐œ€.

Thus we can first of all transform any word in๐ด+ by applying definingrelations to replace subwords ๐‘๐‘Ž by ๐‘Ž๐‘, which ultimately yields a word

Solutions to exercises โ€ข 211

Page 220: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

of the form ๐‘Ž๐‘–๐‘๐‘—. Then we can replace subwords ๐‘Ž๐‘Ž๐‘ by ๐œ€, which mustultimately yield a word consisting either entirely of symbols ๐‘Ž, entirelyof symbols ๐‘, or by a single symbol ๐‘Ž followed by symbols ๐‘; that is, aword in๐‘. Finally note that

๐‘Ž๐‘–๐œ‘โˆ— = ๐‘– for ๐‘– โˆˆ โ„• โˆช {0},๐‘๐‘–๐œ‘โˆ— = โˆ’2๐‘– for ๐‘– โˆˆ โ„•,(๐‘Ž๐‘๐‘–)๐œ‘โˆ— = โˆ’2๐‘– + 1 for ๐‘– โˆˆ โ„•.

It is now easy to see that ๐œ‘โˆ—|๐‘ is injective. Hence MonโŸจ๐ด | ๐œŒโŸฉ defines(โ„ค, +)

2.8 Deleting a subword ๐‘Ž๐‘๐‘ is an elementary ๐œŒ-transition, and so does notalter the element represented. Thus given any word ๐‘ค โˆˆ ๐ดโˆ—, one canobtain a word ๐‘ค โˆˆ ๐‘ with ๐‘ค =๐‘€ ๐‘ค by deleting subwords ๐‘Ž๐‘๐‘. Thusevery element of๐‘€ has at least one representative in๐‘; it remains toprove uniqueness.

So suppose some element of ๐‘€ has two representatives ๐‘ข, ๐‘ฃ โˆˆ๐‘ with ๐‘ข โ‰  ๐‘ฃ. Since ๐‘ข =๐‘€ ๐‘ฃ, there is a sequence of elementary ๐œŒ-transitions

๐‘ข = ๐‘ค0 โ†”๐œŒ ๐‘ค1 โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘ค๐‘› = ๐‘ฃ.

Consider the collection of such sequences with the maximum lengthof an intermediate word ๐‘ค๐‘– being minimal, and choose and fix such asequence where the fewest words๐‘ค๐‘– have this maximum length. Notethat ๐‘› > 0 since ๐‘ข โ‰  ๐‘ฃ. Consider some intermediate word ๐‘ค๐‘– of thismaximum length. Note that ๐‘– โ‰  0 and ๐‘– โ‰  ๐‘›, since the words ๐‘ค0 and๐‘ค๐‘› do not contain subwords ๐‘Ž๐‘๐‘, and so the words ๐‘ค1 and ๐‘ค๐‘› mustbe obtained by inserting subwords ๐‘Ž๐‘๐‘ into ๐‘ค0 and ๐‘ค๐‘› respectively,and so |๐‘ค1| > |๐‘ค0| and |๐‘ค๐‘›โˆ’1| > |๐‘ค๐‘›|. So there are words ๐‘ค๐‘–โˆ’1 and๐‘ค๐‘–+1, and these are obtained from ๐‘ค by applying the defining relation(๐‘Ž๐‘๐‘, ๐œ€). Because ๐‘ค๐‘– has maximum length among the intermediatewords,๐‘ค๐‘–โˆ’1 and๐‘ค๐‘–+1 must both be obtained by deleting subwords ๐‘Ž๐‘๐‘from ๐‘ค๐‘–. Now, they cannot be obtained by deleting the same subword๐‘Ž๐‘๐‘, for then

๐‘ข = ๐‘ค0 โ†”๐œŒ ๐‘ค1 โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘ค๐‘–โˆ’1 = ๐‘ค๐‘–+1 โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘ค๐‘› = ๐‘ฃ.

would be a sequence of elementary ๐œŒ-transitions from ๐‘ข to ๐‘ฃwhere thenumber of intermediate words of maximum length is smaller, or (if noother intermediate word had length |๐‘ค๐‘–|) a smaller maximum lengthof intermediate words; in either case, this is a contradiction. Hence๐‘ค๐‘–โˆ’1 and๐‘ค๐‘–+1 are obtained by deleting different subwords ๐‘Ž๐‘๐‘ from๐‘ค๐‘–.Thus๐‘ค๐‘– = ๐‘๐‘Ž๐‘๐‘๐‘ž๐‘Ž๐‘๐‘๐‘Ÿ for some๐‘, ๐‘ž, ๐‘Ÿ โˆˆ ๐ดโˆ—, and either๐‘ค๐‘–โˆ’1 = ๐‘๐‘ž๐‘Ž๐‘๐‘๐‘Ÿand๐‘ค๐‘–+1 = ๐‘๐‘Ž๐‘๐‘๐‘ž๐‘Ÿ, or๐‘ค๐‘–โˆ’1 = ๐‘๐‘Ž๐‘๐‘๐‘ž๐‘Ÿ and๐‘ค๐‘–+1 = ๐‘๐‘ž๐‘Ž๐‘๐‘๐‘Ÿ. Assume the

212 โ€ขSolutions to exercises

Page 221: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

former case; the latter is similar.Then there is a sequence of elementary๐œŒ-transitions

๐‘ข = ๐‘ค0 โ†”๐œŒ ๐‘ค1 โ†”๐œŒ โ€ฆโ†”๐œŒ ๐‘ค๐‘–โˆ’1 = ๐‘๐‘ž๐‘Ž๐‘๐‘๐‘Ÿโ†”๐œŒ ๐‘๐‘ž๐‘Ÿ โ†” ๐‘๐‘Ž๐‘๐‘๐‘ž๐‘Ÿ = ๐‘ค๐‘–+1 โ†”๐œŒ โ€ฆ โ†”๐œŒ ๐‘ค๐‘› = ๐‘ฃ.

Since |๐‘๐‘ž๐‘Ÿ| < |๐‘ค๐‘–|, this is a sequence where the number of intermedi-ate words of maximum length is smaller, or (if no other intermediateword had length |๐‘ค๐‘–|) a smaller maximum length of intermediatewords; in either case, this is a contradiction. Hence every element of๐‘€ has a unique representative in๐‘.

2.9 To define an assignment of generators ๐œ‘ โˆถ ๐ด โ†’ ๐ต2, proceed as

follows. As noted in the question, ๐‘ง๐œ‘must be the zero matrix [0 00 0].

Furthermore, (๐‘Ž๐œ‘)2 and (๐‘๐œ‘)2 must be the zero matrix. Calculatingthe squares of the available matrices shows that ๐‘Ž๐œ‘ and ๐‘๐œ‘must be

in {[0 10 0] , [0 01 0]}. Since ๐‘Ž and ๐‘ can be swapped in ๐œŽ โˆช ๐œ to give

the same set of defining relations, it does not matter which matrix weassign to each of ๐‘Ž๐œ‘ and ๐‘๐œ‘. So define

๐‘Ž๐œ‘ = [0 10 0] , ๐‘๐œ‘ = [0 01 0] , ๐‘ง๐œ‘ = [

0 00 0] .

Straightforward calculations show that ๐ต2 satisfies all the definingrelations in ๐œŽ โˆช ๐œ with respect to ๐œ‘.

Let๐‘ = {๐‘ง, ๐‘Ž, ๐‘, ๐‘Ž๐‘, ๐‘๐‘Ž}. Let๐‘ค โˆˆ ๐ด+. If๐‘ค contains a symbol ๐‘ง, thenapplying defining relations from ๐œ shows that (๐‘ค, ๐‘ง) is a consequenceof ๐œŽ โˆช ๐œ. If ๐‘ค contains ๐‘Ž2 or ๐‘2, then applying a single relation (๐‘Ž2, ๐‘ง)or (๐‘2, ๐‘ง) introduces a symbol ๐‘ง, and so by the previous sentence(๐‘ค, ๐‘ง) is a consequence of ๐œŽ โˆช ๐œ. Finally, if ๐‘ค contains no ๐‘Ž2 or ๐‘2 or๐‘ง, then it consists of alternating symbols ๐‘Ž and ๐‘, and so applyingrelations (๐‘Ž๐‘๐‘Ž, ๐‘Ž) or (๐‘๐‘Ž๐‘, ๐‘) transforms it to a word ๐‘ข โˆˆ {๐‘Ž, ๐‘, ๐‘Ž๐‘, ๐‘๐‘Ž},and (๐‘ค, ๐‘ข) is a consequence of ๐œŽ โˆช ๐œ.

Lastly, ๐œ‘+|๐‘ is injective since the five words in๐‘ = {๐‘ง, ๐‘Ž, ๐‘, ๐‘Ž๐‘, ๐‘๐‘Ž}correspond to the five matrices in ๐ต2 (in the order listed in the ques-tion).

2.10 a) Suppose ๐‘๐›พ๐‘๐›ฝ is idempotent. If ๐›พ > ๐›ฝ, then

(๐‘๐›พ๐‘๐›ฝ)2 =๐ต ๐‘๐›พ๐‘๐›ฝ๐‘๐›พ๐‘๐›ฝ =๐ต ๐‘๐›พ+๐›พโˆ’๐›ฝ๐‘๐›ฝ โ‰ ๐ต ๐‘๐›พ๐‘๐›ฝ.

If ๐›พ < ๐›ฝ, then

(๐‘๐›พ๐‘๐›ฝ)2 =๐ต ๐‘๐›พ๐‘๐›ฝ๐‘๐›พ๐‘๐›ฝ =๐ต ๐‘๐›พ๐‘๐›ฝ+๐›ฝโˆ’๐›พ โ‰ ๐ต ๐‘๐›พ๐‘๐›ฝ.

Hence ๐›พ = ๐›ฝ. On the other hand, (๐‘๐›พ๐‘๐›พ)2 = ๐‘๐›พ๐‘๐›พ๐‘๐›พ๐‘๐›พ =๐ต ๐‘๐›พ๐‘๐›พ andso ๐‘๐›พ๐‘๐›พ is idempotent.

Solutions to exercises โ€ข 213

Page 222: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

FIGURE S.4Part of the Cayley graph of the

bicyclic monoid.๐œ€

๐‘

๐‘

๐‘๐‘

๐‘2๐‘2

๐‘3๐‘2

๐‘4๐‘2

๐‘2๐‘3

๐‘3๐‘3

๐‘4๐‘3

๐‘2๐‘4

๐‘3๐‘4

๐‘4๐‘4

๐‘2

๐‘3

๐‘4

๐‘2๐‘

๐‘3๐‘

๐‘4๐‘

๐‘2 ๐‘3 ๐‘4

๐‘๐‘2 ๐‘๐‘3 ๐‘๐‘4

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

๐‘

b) Suppose first that ๐‘ is right-invertible. Then there exists ๐‘๐œ๐‘๐œ‚ suchthat ๐‘๐‘๐œ๐‘๐œ‚ =๐ต ๐œ€. But this is impossible, since ๐‘1+๐œ๐‘๐œ‚ โ‰ ๐ต ๐œ€ since1 + ๐œ > 0. Now suppose that ๐‘๐›พ๐‘๐›ฝ, where ๐›พ โฉพ 1, has a right inverse๐‘ฅ. Then ๐‘๐‘๐›พโˆ’1๐‘๐›ฝ๐‘ฅ =๐ต ๐œ€ and so ๐‘ is right-invertible, which is acontradiction. Hence if ๐‘๐›พ๐‘๐›ฝ is right-invertible, then ๐›พ = 0. Onthe other hand, ๐‘๐›ฝ๐‘๐›ฝ =๐ต ๐œ€ and so ๐‘๐›ฝ is a right inverse for ๐‘๐›ฝ.

2.11 The Cayley graph ๐›ค(๐ต, {๐‘, ๐‘}) is shown in Figure S.4.2.12 a) Suppose, with the aim of obtaining a contradiction, that ๐‘ฅ๐‘˜ =

๐‘ฅ๐‘˜+๐‘š for some ๐‘˜,๐‘š โˆˆ โ„•. Then ๐‘’ = ๐‘ฅ๐‘˜๐‘ฆ๐‘˜ = ๐‘ฅ๐‘˜+๐‘š๐‘ฆ๐‘˜ = ๐‘ฅ๐‘š. Then๐‘ฆ = ๐‘’๐‘ฆ = ๐‘ฅ๐‘š๐‘ฆ = ๐‘ฅ๐‘šโˆ’1๐‘’ = ๐‘ฅ๐‘šโˆ’1 and so ๐‘ฆ๐‘ฅ = ๐‘ฅ๐‘š = ๐‘’, which is acontradiction. So ๐‘ฅ is not periodic. Similarly ๐‘ฆ is not periodic.

b) Suppose ๐‘ฅ๐‘˜ = ๐‘ฆโ„“. Then ๐‘ฅ๐‘˜+โ„“+1 = ๐‘ฅโ„“+1๐‘ฆโ„“ = ๐‘ฅ. Since ๐‘ฅ is notperiodic, this forces ๐‘˜ = โ„“ = 0.

c) Suppose ๐‘ฆ๐‘˜๐‘ฅโ„“ = ๐‘’. Suppose, with the aim of obtaining a contradic-tion, that โ„“ > 0. Then ๐‘ฆ๐‘ฅ = ๐‘’๐‘ฆ๐‘ฅ = ๐‘ฆ๐‘˜๐‘ฅโ„“๐‘ฆ๐‘ฅ = ๐‘ฆ๐‘˜๐‘ฅโ„“โˆ’1๐‘ฅ = ๐‘ฆ๐‘˜๐‘ฅโ„“ =๐‘’, which is a contradiction. Thus โ„“ = 0, and so ๐‘ฆ๐‘˜+1 = ๐‘’๐‘ฆ = ๐‘ฆ andso ๐‘˜ = 0 since ๐‘ฆ is not periodic.

d) Suppose, with the aim of obtaining a contradiction, that ๐‘ฆ๐‘˜๐‘ฅโ„“ =๐‘ฆ๐‘š๐‘ฅ๐‘› with either ๐‘˜ โ‰  ๐‘š or โ„“ โ‰  ๐‘›. Assume ๐‘˜ โ‰  ๐‘š; the other caseis similar. Interchanging the two products if necessary, assumethat ๐‘˜ < ๐‘š. Then ๐‘ฅโ„“ = ๐‘’๐‘ฅโ„“ = ๐‘ฅ๐‘˜๐‘ฆ๐‘˜๐‘ฅโ„“ = ๐‘ฅ๐‘˜๐‘ฆ๐‘š๐‘ฅ๐‘› = ๐‘’๐‘ฆ๐‘šโˆ’๐‘˜๐‘ฅ๐‘› =๐‘ฆ๐‘šโˆ’๐‘˜๐‘ฅ๐‘›. If โ„“ โฉพ ๐‘›, then ๐‘ฆ๐‘šโˆ’๐‘˜ = ๐‘ฆ๐‘šโˆ’๐‘˜๐‘ฅ๐‘›๐‘ฆ๐‘› = ๐‘ฅโ„“๐‘ฆ๐‘› = ๐‘ฅโ„“โˆ’๐‘›, whichcontradicts part b). If โ„“ โฉฝ ๐‘›, then ๐‘’ = ๐‘ฅโ„“๐‘ฆโ„“ = ๐‘ฆ๐‘šโˆ’๐‘˜๐‘ฅ๐‘›๐‘ฆโ„“ =๐‘ฆ๐‘šโˆ’๐‘˜๐‘ฅ๐‘›โˆ’โ„“, which contradicts part c).

e) Define ๐œ‘ โˆถ ๐ต โ†’ โŸจ๐‘ฅ, ๐‘ฆโŸฉ by ๐‘๐œ‘ = ๐‘ฅ and ๐‘ฆ๐œ‘. The given propertiesof ๐‘’, ๐‘ฅ, and ๐‘ฆ show that ๐œ‘ is a well-defined homomorphism; it isclearly surjective; part d) shows that it is injective.

214 โ€ขSolutions to exercises

Page 223: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

2.13 Let ๐‘’ = ๐œ€๐œ‘, ๐‘ฅ = ๐‘๐œ‘, and ๐‘ฆ = ๐‘๐œ‘. Since ๐œ‘ is a homomorphism, ๐‘’, ๐‘ฅ, and๐‘ฆ satisfy the conditions ๐‘’๐‘ฅ = ๐‘ฅ๐‘’ = ๐‘ฅ, ๐‘’๐‘ฆ = ๐‘ฆ๐‘’ = ๐‘ฆ, and ๐‘ฅ๐‘ฆ = ๐‘’. Notefurther that ๐‘† = โŸจ๐‘ฅ, ๐‘ฆโŸฉ since ๐œ‘ is surjective. If the condition ๐‘ฆ๐‘ฅ โ‰  ๐‘’is also satisfied, then by Exercise 2.12, ๐‘† is isomorphic to the bicyclicmonoid. On the other hand, if ๐‘ฆ๐‘ฅ = ๐‘’, then every element of ๐‘† is left-and right-invertible and so ๐‘† is a group.

Exercises for chapter 3

[See pages 68โ€“70 for the exercises.]3.1 Let ๐บ be a subgroup of a semigroup. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐บ. Let ๐‘ = ๐‘ฅโˆ’1๐‘ฆ and๐‘ž = ๐‘ฆโˆ’1๐‘ฅ. Then ๐‘ฅ๐‘ = ๐‘ฆ and ๐‘ฆ๐‘ž = ๐‘ฅ. So ๐‘ฅ R ๐‘ฆ. Similarly ๐‘ฅ L ๐‘ฆ.Hence ๐‘ฅ H ๐‘ฆ.

3.2 Suppose ๐‘ข, ๐‘ฃ โˆˆ ๐ดโˆ— are such that ๐‘ข R ๐‘ฃ. Then there exist ๐‘, ๐‘ž โˆˆ ๐ดโˆ—such that ๐‘ข๐‘ = ๐‘ฃ and ๐‘ฃ๐‘ž = ๐‘. Then ๐‘ข๐‘๐‘ž = ๐‘, so |๐‘ข| + |๐‘| + |๐‘ž| = |๐‘ข|,and so |๐‘| = |๐‘ž| = 0. Thus ๐‘ = ๐‘ž = ๐œ€ and so ๐‘ข = ๐‘ฃ. That is, R is theidentity relation id๐ดโˆ— . Similarly, the Greenโ€™s relations L, and J are theidentity relation. Hence H = R โŠ“ L and D = R โŠ” L are the identityrelation.

3.3 a) Suppose ๐œŽ L ๐œ. Then there exist ๐œ‹, ๐œŒ โˆˆ T๐‘‹ such that ๐œ‹๐œŽ = ๐œ and๐œŒ๐œ = ๐œŽ. Therefore

im๐œŽ = ๐‘‹๐œŽ โŠ‡ (๐‘‹๐œ‹)๐œŽ = im(๐œ‹๐œŽ) = im ๐œ,

and similarly im ๐œ โŠ‡ im(๐œŒ๐œ) = im๐œŽ. Hence im๐œŽ = im ๐œ.Now suppose im๐œŽ = im ๐œ. For each ๐‘ฅ โˆˆ ๐‘‹, we have ๐‘ฅ๐œ โˆˆ

im ๐œ = im๐œŽ and so we can define ๐‘ฅ๐œ‹ to be some element of ๐‘‹such that (๐‘ฅ๐œ‹)๐œŽ = ๐‘ฅ๐œ. Then ๐œ‹๐œŽ = ๐œ. Similarly we can define๐œŒ โˆˆ T๐‘‹ so that ๐œŒ๐œ = ๐œŽ. Hence ๐œŽ L ๐œ.

b) Suppose ๐œŽ R ๐œ. Then there exist ๐œ‹, ๐œŒ โˆˆ T๐‘‹ such that ๐œŽ๐œ‹ = ๐œand ๐œ๐œŒ = ๐œŽ. Therefore (๐‘ฅ, ๐‘ฆ) โˆˆ ker๐œŽ โ‡’ ๐‘ฅ๐œŽ = ๐‘ฆ๐œŽ โ‡’ ๐‘ฅ๐œŽ๐œ‹ =๐‘ฆ๐œŽ๐œ‹ โ‡’ ๐‘ฅ๐œ = ๐‘ฆ๐œ โ‡’ (๐‘ฅ, ๐‘ฆ) โˆˆ ker ๐œ. Thus ker๐œŽ โŠ† ker ๐œ. Similarly,ker ๐œ โŠ† ker๐œŽ. Hence ker๐œŽ = ker ๐œ.

Now suppose ker๐œŽ = ker ๐œ. We aim to define ๐œ‹ โˆˆ T๐‘‹ suchthat ๐œŽ๐œ‹ = ๐œ. For each ๐‘ฅ โˆˆ im๐œŽ, choose ๐‘ฆ๐‘ฅ โˆˆ ๐‘‹ such that ๐‘ฆ๐‘ฅ๐œŽ = ๐‘ฅ.Note that each ๐‘ง โˆˆ ๐‘‹ is related by ker๐œŽ to ๐‘ฆ๐‘ง๐œŽ and to no other ๐‘ฆ๐‘ฅ.Since ker๐œŽ = ker ๐œ, we have (๐‘ง, ๐‘ฆ๐‘ง๐œŽ) โˆˆ ker ๐œ and so ๐‘ง๐œ = ๐‘ฆ๐‘ง๐œŽ๐œ. Foreach ๐‘ฅ โˆˆ im๐œŽ, define ๐‘ฅ๐œ‹ = ๐‘ฆ๐‘ฅ๐œ. For ๐‘ฅ โˆ‰ im๐œŽ, let ๐‘ฅ๐œ‹ be arbitrary.Then for all ๐‘ง โˆˆ ๐‘‹, we have ๐‘ง๐œŽ โˆˆ im๐œŽ and so ๐‘ง๐œŽ๐œ‹ = ๐‘ฆ๐‘ง๐œŽ๐œ = ๐‘ง๐œ;hence ๐œŽ๐œ‹ = ๐œ. Similarly, we can define ๐œŒ โˆˆ T๐‘‹ so that ๐œ๐œŒ = ๐œŽ.Hence ๐œŽ R ๐œ.

c) Suppose ๐œŽ D ๐œ. Then there exists ๐œ โˆˆ T๐‘‹ such that ๐œŽ L ๐œ R ๐œ.Since ๐œ R ๐œ, there exist ๐œ‹, ๐œŒ โˆˆ T๐‘‹ such that ๐œ๐œ‹ = ๐œ and ๐œ๐œŒ = ๐œ.

Solutions to exercises โ€ข 215

Page 224: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Hence ๐œ๐œŒ๐œ‹ = ๐œ and ๐œ๐œ‹๐œŒ = ๐œ. Therefore ๐œŒ|im ๐œ โˆถ im ๐œ โ†’ im ๐œand ๐œ‹|im ๐œ โˆถ im ๐œ โ†’ im ๐œ are mutually inverse bijections. So|im ๐œ| = |im ๐œ|. Since ๐œŽ L ๐œ, we have im๐œŽ = im ๐œ and thus|im๐œŽ| = |im ๐œ| = |im ๐œ|.

Now suppose |im๐œŽ| = |im ๐œ|. Then there is a bijection ๐œ‡ โˆถim๐œŽ โ†’ im ๐œ. Extend ๐œ‡ to amap๐œ‹ โˆˆ T๐‘‹ by defining ๐‘ฅ๐œ‹ arbitrarilyfor๐‘ฅ โˆˆ ๐‘‹โˆ–im๐œŽ. Similarly extend๐œ‡โˆ’1 to amap๐œŒ โˆˆ T๐‘‹. Let ๐œ = ๐œŽ๐œ‹.Then ๐œ๐œŒ = ๐œŽ, so ๐œ R ๐œŽ. Furthermore im ๐œ = im(๐œŽ๐œ‹) = im(๐œŽ๐œ‡) =im ๐œ, so ๐œ L ๐œ by part a). Hence ๐œŽ D ๐œ.

Suppose ๐œŽ J ๐œ. Then there exist ๐œ‹, ๐œŒ, ๐œ‹โ€ฒ, ๐œŒโ€ฒ โˆˆ T๐‘‹ such that๐œŽ = ๐œ‹๐œ๐œŒ and ๐œ = ๐œ‹โ€ฒ๐œŽ๐œŒโ€ฒ. Therefore

|im๐œŽ| = |๐‘‹๐œŽ| = |๐‘‹๐œ‹๐œ๐œŒ| โฉฝ |๐‘‹๐œ๐œŒ| โฉฝ |๐‘‹๐œ| = |im ๐œ|;

similarly |im ๐œ| โฉฝ |im๐œŽ|. So |im๐œŽ| = |im ๐œ|. Hence ๐œŽ D ๐œ. There-fore J โŠ† D. Since D โŠ† J in general, it follows that D = J.

3.4 Consider the following elements of T{1,2,3}:

๐œŒ = (1 2 31 2 2) ; ๐œŽ = (1 2 31 3 3) ; ๐œ = (

1 2 31 1 3) .

Notice that

๐œŒ๐œŽ = (1 2 31 3 3) ; ๐œŒ๐œ = (1 2 31 1 1) ; ๐œŽ๐œ = (

1 2 31 3 3) .

Thus im๐œŽ = im ๐œ = {1, 3}, but im ๐œŒ๐œŽ = {1, 3} โ‰  {1} = im ๐œŒ๐œ andso (๐œŽ, ๐œ) โˆˆ L but (๐œŒ๐œŽ, ๐œŒ๐œ) โˆ‰ L by Exercise 3.3(a). So L is not a leftcongruence in T{1,2,3}. Similarly, ker ๐œŒ = ker๐œŽ but ker ๐œŒ๐œ โ‰  ker๐œŽ๐œand so (๐œŒ, ๐œŽ) โˆˆ R but (๐œŒ๐œ, ๐œŽ๐œ) โˆ‰ R by Exercise 3.3(b). So R is not aright congruence in T{1,2,3}.

3.5 Let (โ„“1, ๐‘Ÿ1), (โ„“2, ๐‘Ÿ2) โˆˆ ๐ต. Then

(โ„“1, ๐‘Ÿ1) R (โ„“2, ๐‘Ÿ2) โ‡’ (โˆƒ(๐‘˜, ๐‘ ) โˆˆ ๐ต)((โ„“1, ๐‘Ÿ1)(๐‘˜, ๐‘ ) = (โ„“2, ๐‘Ÿ2))โ‡’ (โˆƒ(๐‘˜, ๐‘ ) โˆˆ ๐ต)((โ„“1, ๐‘ ) = (โ„“2, ๐‘Ÿ2))โ‡’ โ„“1 = โ„“2.

On the other hand, if (โ„“, ๐‘Ÿ1), (โ„“, ๐‘Ÿ2) โˆˆ {โ„“}ร—๐‘…, then (โ„“, ๐‘Ÿ1)(โ„“, ๐‘Ÿ2) = (โ„“, ๐‘Ÿ2)and (โ„“, ๐‘Ÿ2)(โ„“, ๐‘Ÿ1) = (โ„“, ๐‘Ÿ1) and so (โ„“, ๐‘Ÿ1) R (โ„“, ๐‘Ÿ2). So the R-classes of๐ต are the sets {โ„“} ร— ๐‘….

The result for L-classes is proved similarly. Therefore

(โ„“1, ๐‘Ÿ1) H (โ„“2, ๐‘Ÿ2) โ‡” ((โ„“1, ๐‘Ÿ1) L (โ„“2, ๐‘Ÿ2)) โˆง ((โ„“1, ๐‘Ÿ1) L (โ„“2, ๐‘Ÿ2))โ‡” (๐‘Ÿ1 = ๐‘Ÿ2) โˆง (โ„“1 = โ„“2),

and so H is the identity relation.Finally, let (โ„“1, ๐‘Ÿ1), (โ„“2, ๐‘Ÿ2) โˆˆ ๐ต. Then (โ„“1, ๐‘Ÿ1) R (โ„“1, ๐‘Ÿ2) L (โ„“2, ๐‘Ÿ2)

and so (โ„“1, ๐‘Ÿ1) D (โ„“2, ๐‘Ÿ2). Hence ๐ต has consists of a single D-class.

216 โ€ขSolutions to exercises

Page 225: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

3.6 If ๐‘ฅ R ๐‘ฆ, then there exist ๐‘, ๐‘ž โˆˆ ๐‘†1 with ๐‘ฅ๐‘ = ๐‘ฆ and ๐‘ฆ๐‘ž = ๐‘ฅ. So๐‘ฅ๐‘๐‘ž = ๐‘ฅ. Suppose that๐‘๐‘ž โˆˆ ๐‘†.Then for any ๐‘ง โˆˆ ๐‘†, we have ๐‘ฅ๐‘๐‘ž๐‘ง = ๐‘ฅ๐‘งand so ๐‘๐‘ž๐‘ง = ๐‘ง by cancellativity. So ๐‘๐‘ž is a left identity for ๐‘† and inparticular an idempotent. By Exercise 1.3, ๐‘๐‘ž is an identity, which is acontradiction. So ๐‘๐‘ž โˆ‰ ๐‘† and thus ๐‘๐‘ž = 1, the adjoined identity of ๐‘†1.Hence ๐‘ = ๐‘ž = 1 and so ๐‘ฅ = ๐‘ฆ. Thus R = id๐‘†. Similarly L = id๐‘†, andso H = R โŠ“ L = id๐‘† and D = R โŠ” L = id๐‘†.

3.7 Let ๐‘Ž, ๐‘, ๐‘, ๐‘‘, ๐‘’, ๐‘“ โˆˆ โ„ with ๐‘Ž, ๐‘, ๐‘, ๐‘‘, ๐‘’, ๐‘“ > 0. Then

[๐‘Ž ๐‘0 1] [๐‘ ๐‘‘0 1] = [

๐‘Ž๐‘ ๐‘Ž๐‘‘ + ๐‘0 1 ] ;

since ๐‘Ž๐‘ > 0 and ๐‘Ž๐‘‘+๐‘ > 0, we see that ๐‘† is a subsemigroup of๐‘€2(โ„).Furthermore,

det [๐‘Ž ๐‘0 1] = ๐‘Ž > 0;

thus every matrix in ๐‘† is invertible; hence ๐‘† is a subsemigroup of thegeneral linear group GL2(โ„) and so cancellative. Furthermore,

[๐‘’ ๐‘“0 1] [๐‘Ž ๐‘0 1] = [

๐‘Ž ๐‘0 1]

โ‡’ [๐‘’๐‘Ž ๐‘’๐‘ + ๐‘“0 1 ] = [๐‘Ž ๐‘0 1]

โ‡’ ๐‘’๐‘Ž = ๐‘Ž โˆง ๐‘’๐‘ + ๐‘“ = ๐‘โ‡’ ๐‘’ = 1 โˆง ๐‘’๐‘ + ๐‘“ = ๐‘โ‡’ ๐‘’ = 1 โˆง ๐‘“ = 0,

which shows that ๐‘† does not contain a left identity; thus ๐‘† does notcontain an identity. Finally, let ๐‘”, โ„Ž โˆˆ โ„ with ๐‘”, โ„Ž > 0. Choose ๐‘“ = 1,๐‘‘ = 0, ๐‘ = โ„Ž/(๐‘Ž + ๐‘), and ๐‘’ = ๐‘”/๐‘๐‘Ž. Then ๐‘, ๐‘‘, ๐‘’, ๐‘“ > 0 and

[๐‘ ๐‘‘0 1] [๐‘Ž ๐‘0 1] [๐‘’ ๐‘“0 1]

= [๐‘๐‘Ž๐‘’ ๐‘๐‘Ž๐‘“ + ๐‘๐‘ + ๐‘‘0 1 ]

= [๐‘๐‘Ž(๐‘”/๐‘๐‘Ž) (โ„Ž/(๐‘Ž + ๐‘))๐‘Ž + (โ„Ž/(๐‘Ž + ๐‘))๐‘0 1 ]

= [๐‘” โ„Ž0 1] .

Thus for any ๐‘ฅ โˆˆ ๐‘†, we have ๐‘†๐‘ฅ๐‘† = ๐‘† and so ๐‘† is simple. HenceJ = ๐‘† ร— ๐‘†.

Solutions to exercises โ€ข 217

Page 226: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

3.8 Suppose๐ป๐œ is a subgroup. Then ๐œ2 โˆˆ ๐ป๐œ. In particular, ๐œ D ๐œ2 andso |im ๐œ| = |im ๐œ2|.

Now suppose that |im ๐œ| = |im(๐œ2)|. First, notice that im(๐œ2) =๐‘‹๐œ2 โŠ† ๐‘‹๐œ = im ๐œ. Since |im(๐œ2)| = |im ๐œ|, we have im ๐œ2 = im ๐œ sinceim(๐œ2) and im ๐œ are finite (because๐‘‹ is finite). Also, (๐‘ฅ, ๐‘ฆ) โˆˆ ker ๐œ โ‡’๐‘ฅ๐œ = ๐‘ฆ๐œ โ‡’ ๐‘ฅ๐œ2 = ๐‘ฆ๐œ2 โ‡’ (๐‘ฅ, ๐‘ฆ) โˆˆ ker(๐œ2), and so ker ๐œ โŠ† ker(๐œ2).So each ker(๐œ2)-class is a union of ker ๐œ-classes. Suppose, with theaim of obtaining a contradiction, that ker(๐œ2) โˆ’ ker ๐œ โ‰  โˆ…. Thensome ker(๐œ2)-class is a union of at least two distinct ker ๐œ-classes. Soim(๐œ2) โŠŠ im ๐œ. Hence, since im(๐œ2) and im ๐œ are finite, |im(๐œ2)| <|im ๐œ|, which is a contradiction. So ker(๐œ2) = ker ๐œ. Hence ๐œ L ๐œ2and ๐œ R ๐œ2 and so ๐œ H ๐œ2. Therefore๐ป๐œ is a subgroup.

3.9 First, let ๐‘ฅ, ๐‘ฆ โˆˆ { ๐‘๐›พ๐‘๐›ฝ โˆถ ๐›ฝ โˆˆ โ„• โˆช {0} }. Interchanging ๐‘ฅ and ๐‘ฆ ifnecessary, suppose ๐‘ฅ = ๐‘๐›พ๐‘๐›ฝ and ๐‘ฆ = ๐‘๐›พ๐‘๐›ฟ where ๐›ฝ โฉฝ ๐›ฟ.Then ๐‘ฅ๐‘๐›ฟโˆ’๐›ฝ =๐‘ฆ and ๐‘ฆ๐‘๐›ฟโˆ’๐›ฝ = ๐‘ฅ. Hence ๐‘ฅ R ๐‘ฆ.

Now suppose ๐‘๐›พ๐‘๐›ฝ R ๐‘๐›พ+๐œ‚๐‘๐›ฟ for some ๐œ‚ > 0. Then sinceR is a leftcongruence, we have ๐‘๐›ฝ =๐ต ๐‘๐›พ๐‘๐›พ๐‘๐›ฝ R ๐‘๐›พ๐‘๐›พ+๐œ‚๐‘๐›ฟ =๐ต ๐‘๐œ‚๐‘๐›ฟ. Thereforethere exists ๐‘ โˆˆ ๐ต such that ๐‘๐œ‚๐‘๐›ฟ๐‘ =๐ต ๐‘๐›ฝ. Hence ๐‘๐œ‚๐‘๐›ฟ๐‘๐‘๐›ฝ =๐ต ๐œ€ andso ๐‘๐œ‚ is right-invertible, which contradicts Exercise 2.10(b). Hence{ ๐‘๐›พ๐‘๐›ฝ โˆถ ๐›ฝ โˆˆ โ„• โˆช {0} } is an R-class.

Similarly, L-classes are of the form { ๐‘๐›พ๐‘๐›ฝ โˆถ ๐›พ โˆˆ โ„• โˆช {0} }. Finally,note that ๐‘๐›พ๐‘๐›ฝ R ๐‘๐›พ๐‘๐›ฟ L ๐‘๐œ‚๐‘๐›ฟ and so ๐‘๐›พ๐‘๐›ฝ D ๐‘๐œ‚๐‘๐›ฟ. Thus ๐ต consistsof a single D-class.

3.10 Let ๐‘’ โˆˆ ๐ฟ โˆฉ ๐‘… be idempotent. Then ๐‘’ is a right identity for ๐ฟ and aleft identity for ๐‘…. For any ๐‘ฆ โˆˆ ๐‘…, we have ๐‘’๐‘ฆ = ๐‘ฆ and so ๐œŒ๐‘ฆ|๐ฟ is abijection from ๐ฟ to ๐ฟ๐‘ฆ. Let ๐‘ง โˆˆ ๐ท. Choose ๐‘ฆ โˆˆ ๐‘… โˆฉ ๐ฟ๐‘ง. Since ๐œŒ๐‘ฆ|๐ฟ is abijection, there exists ๐‘ฅ โˆˆ ๐ฟ such that ๐‘ง = ๐‘ฅ๐œŒ๐‘ฆ|๐ฟ = ๐‘ฅ๐‘ฆ โˆˆ ๐ฟ๐‘….

Hence ๐ท โŠ† ๐ฟ๐‘…. Let ๐‘ฅ โˆˆ ๐ฟ and ๐‘ฆ โˆˆ ๐‘…. Since ๐ฟ โˆฉ ๐‘… contains theidempotent ๐‘’, we have ๐‘ฅ๐‘ฆ โˆˆ ๐ฟ๐‘ฆ โˆฉ ๐‘…๐‘ฅ โŠ† ๐ท by Proposition 3.18. Hence๐ฟ๐‘… โŠ† ๐ท.

3.11 Let ๐‘ค โˆˆ MonโŸจ๐‘๐‘, ๐‘โŸฉ. Then ๐‘ค = ๐›ฝ1โ‹ฏ๐›ฝ๐‘›, where each ๐›ฝ๐‘– is either ๐‘๐‘ or๐‘. Let

๐›ผ๐‘– = {๐‘Ž if ๐›ฝ๐‘– = ๐‘๐‘,๐‘Ž๐‘ if ๐›ฝ๐‘– = ๐‘.

Then

๐›ผ๐‘›โ‹ฏ๐›ผ1๐‘ค = ๐›ผ๐‘›โ‹ฏ๐›ผ1๐›ฝ1โ‹ฏ๐›ฝ๐‘›= ๐›ผ๐‘›โ‹ฏ๐›ผ2๐‘Ž๐‘๐‘๐›ฝ2โ‹ฏ๐›ฝ๐‘›=๐‘€ ๐›ผ๐‘›โ‹ฏ๐›ผ2๐›ฝ2โ‹ฏ๐›ฝ๐‘›โ‹ฎ

=๐‘€ ๐œ€.

Clearly, ๐‘ค๐œ€ =๐‘€ ๐‘ค, so if ๐‘ค โˆˆ MonโŸจ๐‘๐‘, ๐‘โŸฉ, then ๐‘ค L ๐œ€.

218 โ€ขSolutions to exercises

Page 227: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Now suppose ๐‘ค โˆˆ ๐‘ with ๐‘ค L ๐œ€. Then there is a word ๐‘ข โˆˆ ๐‘such that ๐‘ข๐‘ค =๐‘€ ๐œ€. By Exercise 2.8, ๐œ€ can be obtained from ๐‘ข๐‘ค bydeleting subwords ๐‘Ž๐‘๐‘. Neither ๐‘ข nor ๐‘ฃ contain subwords ๐‘Ž๐‘๐‘, so ๐‘ข๐‘คmust have a subword ๐‘Ž๐‘๐‘ across the โ€˜boundaryโ€™ of ๐‘ข and ๐‘ค. That is,we have either:โ—† ๐‘ค = ๐‘๐‘๐‘คโ€ฒ and ๐‘ข = ๐‘ขโ€ฒ๐‘Ž, with ๐‘ขโ€ฒ๐‘คโ€ฒ =๐‘€ ๐‘ข๐‘ค =๐‘€ ๐œ€; orโ—† ๐‘ค = ๐‘๐‘คโ€ฒ and ๐‘ข = ๐‘ขโ€ฒ๐‘Ž๐‘, with ๐‘ขโ€ฒ๐‘คโ€ฒ =๐‘€ ๐‘ข๐‘ค =๐‘€ ๐œ€.

Again, ๐‘ขโ€ฒ and ๐‘คโ€ฒ, being subwords of ๐‘ข and ๐‘ค, do not contain sub-words ๐‘Ž๐‘๐‘, so the same reasoning applies. Proceeding by induction,we see that ๐‘ค โˆˆ MonโŸจ๐‘๐‘, ๐‘โŸฉ (and ๐‘ข โˆˆ MonโŸจ๐‘Ž, ๐‘Ž๐‘โŸฉ, although that isnot important). Hence if ๐‘ค L ๐œ€, then ๐‘ค โˆˆ MonโŸจ๐‘๐‘, ๐‘โŸฉ.

Symmetrical reasoning shows that ๐‘ค R ๐œ€ if and only if ๐‘ค โˆˆMonโŸจ๐‘Ž, ๐‘Ž๐‘โŸฉ. Since H = L โˆฉ R, it follows that ๐‘ค H ๐œ€ if and only if๐‘ค โˆˆ MonโŸจ๐‘๐‘, ๐‘โŸฉ โˆฉMonโŸจ๐‘Ž, ๐‘Ž๐‘โŸฉ = {๐œ€}.

Since ๐œ€ is an idempotent, Exercise 3.10 shows that theD-class of ๐œ€is MonโŸจ๐‘๐‘, ๐‘โŸฉMonโŸจ๐‘Ž, ๐‘Ž๐‘โŸฉ.

If ๐‘ค โˆˆ MonโŸจ๐‘๐‘, ๐‘โŸฉMonโŸจ๐‘Ž๐‘, ๐‘ŽโŸฉ, then ๐‘ค D ๐œ€ and so ๐‘ค J ๐œ€. If๐‘ค โˆˆ MonโŸจ๐‘๐‘, ๐‘โŸฉ๐‘MonโŸจ๐‘Ž๐‘, ๐‘ŽโŸฉ, then by the results for L and R, thereexist ๐‘, ๐‘ž โˆˆ ๐‘€ such that ๐‘๐‘ค๐‘ž =๐‘€ ๐‘, so ๐‘Ž๐‘๐‘ค๐‘ž๐‘ =๐‘€ ๐‘Ž๐‘๐‘ =๐‘€ ๐œ€.

Now suppose ๐‘ค โˆˆ ๐‘ with ๐‘ค J ๐œ€. Then there exist ๐‘ข, ๐‘ฃ โˆˆ ๐‘ suchthat ๐‘ข๐‘ค๐‘ฃ =๐‘€ ๐œ€. So ๐œ€ can be obtained from ๐‘ข๐‘ค๐‘ฃ by deleting subwords๐‘Ž๐‘๐‘. Any subwords ๐‘Ž๐‘๐‘ in ๐‘ข๐‘ค๐‘ฃ must be across the boundaries of ๐‘ขand ๐‘ค and of ๐‘ฃ and ๐‘ค. Proceeding by induction as in the L case, wesee that ๐‘ค = MonโŸจ๐‘๐‘, ๐‘โŸฉ๐‘ฅMonโŸจ๐‘Ž, ๐‘Ž๐‘โŸฉ, where ๐‘ฅ is either ๐œ€ or a singleletter ๐‘.

3.12 Since ๐‘† is regular, L-class and every R-class of ๐‘† contains an idem-potent. Since there is only one idempotent in ๐‘†, there is only oneR-class and only one L-class in ๐‘†. Hence R = L = H = ๐‘† ร— ๐‘†. So ๐‘†consists of a single๐ป-class, which contains an idempotent and is thusa subgroup.

3.13 a) Let ๐‘ฅ โˆˆ ๐‘…1. Then there exists ๐‘ž โˆˆ ๐‘€ such that ๐‘ฅ๐‘ž = 1. Since๐‘€is group-embeddable, ๐‘ž๐‘ฅ = 1. Thus any element of ๐‘…1 is right-and left-invertible. On the other hand, if ๐‘ฅ โˆˆ ๐‘€ is right-invertible,then ๐‘ฅ โˆˆ ๐‘…1. So ๐‘ฅ โˆˆ ๐‘…1 if and only if ๐‘ฅ is right- and left-invertible.

b) Suppose๐‘€ has at least twoR-classes. Then๐‘€โˆ–๐‘…1 is non-empty.Let ๐‘ฅ โˆˆ ๐‘€ โˆ– ๐ป1. Then ๐‘ฅ is not right or left invertible. Supposethat ๐‘ฅ๐‘˜ R ๐‘ฅโ„“ for some ๐‘˜ < โ„“. Then there exists ๐‘ โˆˆ ๐‘€ such that๐‘ฅ๐‘˜ = ๐‘ฅโ„“๐‘. Hence ๐‘ฅโ„“โˆ’๐‘˜๐‘ = 1 and so ๐‘ฅ has a right inverse ๐‘ฅโ„“โˆ’๐‘˜โˆ’1๐‘.This is a contradiction. So all of the powers of ๐‘ฅ lie in differentR-classes.

Solutions to exercises โ€ข 219

Page 228: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Exercises for chapter 4

[See pages 89โ€“91 for the exercises.]4.1 a) Define ๐œ‘ โˆถ ๐บ โ†’M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] by ๐‘ฅ โ†ฆ (1, ๐‘ฅ๐‘โˆ’111 , 1). Then

(๐‘ฅ๐œ‘)(๐‘ฆ๐œ‘) = (1, ๐‘ฅ๐‘โˆ’111 , 1)(1, ๐‘ฆ๐‘โˆ’111 , 1)= (1, ๐‘ฅ๐‘โˆ’111 ๐‘11๐‘ฆ๐‘โˆ’111 , 1)= (1, ๐‘ฅ๐‘ฆ๐‘โˆ’111 , 1)= (๐‘ฅ๐‘ฆ)๐œ‘.

So ๐œ‘ is a homomorphism. Furthermore,

๐‘ฅ๐œ‘ = ๐‘ฆ๐œ‘ โ‡’ (1, ๐‘ฅ๐‘โˆ’111 , 1) = (1, ๐‘ฆ๐‘โˆ’111 , 1)โ‡’ ๐‘ฅ๐‘โˆ’111 = ๐‘ฆ๐‘โˆ’111โ‡’ ๐‘ฅ = ๐‘ฆ.

So ๐œ‘ is injective. Finally, since ๐บ is a group, (1, ๐‘ฅ๐‘โˆ’111 , 1) will rangeover M[๐บ; ๐ผ, ๐›ฌ, ๐‘ƒ] = {1} ร— ๐บ ร— {1} as ๐‘ฅ ranges over ๐บ. So ๐œ‘ issurjective. Hence ๐œ‘ is an isomorphism.

b) Let๐‘€ = {๐‘’, ๐‘ง} be a semilattice with ๐‘’ > ๐‘ง. Let ๐‘๐œ†๐‘– = ๐‘ง. Let (๐‘–, ๐‘ฅ, ๐œ†)and (๐‘–, ๐‘ฆ, ๐œ†) be arbitrary elements of M[๐‘€; ๐ผ, ๐›ฌ; ๐‘ƒ]. Then

(๐‘–, ๐‘ฅ, ๐œ†)(๐‘–, ๐‘ฆ, ๐œ†) = (๐‘–, ๐‘ฅ๐‘๐œ†๐‘–๐‘ฆ, ๐œ†) = (๐‘–, ๐‘ฅ๐‘ง๐‘ฆ, ๐œ†) = (๐‘–, ๐‘ง, ๐œ†).

So M[๐‘€; ๐ผ, ๐›ฌ; ๐‘ƒ] is a null semigroup and so not isomorphic to๐‘€.

4.2 A completely simple semigroup is isomorphic to M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] forsome group ๐บ, index sets ๐ผ and ๐›ฌ, and matrix ๐‘ƒ. Suppose that wehave (๐‘–1, ๐‘”1, ๐œ†1)(๐‘–2, ๐‘”2, ๐œ†2) = (๐‘—1, โ„Ž1, ๐œ‡1)(๐‘—2, โ„Ž2, ๐œ‡2). The, by the defin-ition of the product in M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ], we have (๐‘–1, ๐‘”1๐‘๐œ†1๐‘–2๐‘”2, ๐œ†2) =(๐‘—1, โ„Ž1๐‘๐œ‡1๐‘—2โ„Ž2, ๐œ‡2), and so

๐‘–1 = ๐‘—1, (S.13)๐œ†2 = ๐œ‡2, (S.14)

๐‘”1๐‘๐œ†1๐‘–2๐‘”2 = โ„Ž1๐‘๐œ‡1๐‘—2โ„Ž2. (S.15)

Let ๐‘ž = (๐‘—2, ๐‘โˆ’1๐œ‡1๐‘—2โ„Žโˆ’11 ๐‘”1, ๐œ†1). Then

(๐‘—1, โ„Ž1, ๐œ‡1)๐‘ž= (๐‘—1, โ„Ž1, ๐œ‡1)(๐‘—2, ๐‘โˆ’1๐œ‡1๐‘—2โ„Ž

โˆ’11 ๐‘”1, ๐œ†1) [by definition of ๐‘ž]

= (๐‘—1, โ„Ž1๐‘๐œ‡1๐‘—2๐‘โˆ’1๐œ‡1๐‘—2โ„Žโˆ’11 ๐‘”1, ๐œ†1)

= (๐‘—1, ๐‘”1, ๐œ†1)= (๐‘–1, ๐‘”1, ๐œ†1) [by (S.13)]

220 โ€ขSolutions to exercises

Page 229: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

and

๐‘ž(๐‘–2, ๐‘”2, ๐œ†2)= (๐‘—2, ๐‘โˆ’1๐œ‡1๐‘—2โ„Ž

โˆ’11 ๐‘”1, ๐œ†1)(๐‘–2, ๐‘”2, ๐œ†2) [by definition of ๐‘ž]

= (๐‘—2, ๐‘โˆ’1๐œ‡1๐‘—2โ„Žโˆ’11 ๐‘”1๐‘๐œ†1๐‘–2๐‘”2, ๐œ†2)

= (๐‘—2, ๐‘โˆ’1๐œ‡1๐‘—2โ„Žโˆ’11 โ„Ž1๐‘๐œ‡1๐‘—2โ„Ž2, ๐œ‡2) [by (S.14) and (S.15)]

= (๐‘—2, โ„Ž2, ๐œ‡2).

Hence M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] is equidivisible.4.3 a) Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† โ‰ƒM[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ]with ๐‘ฅ L ๐‘ฆ.Then by Proposition 4.12,๐‘ฅ = (๐‘–, ๐‘”, ๐œ†) and ๐‘ฆ = (๐‘—, โ„Ž, ๐œ†) for some ๐‘–, ๐‘— โˆˆ ๐ผ, ๐‘”, โ„Ž โˆˆ ๐บ, and๐œ† โˆˆ ๐›ฌ. Let ๐‘ง = (๐‘˜, ๐‘“, ๐œ‡) โˆˆ ๐‘†. Then ๐‘ง๐‘ฅ = (๐‘˜, ๐‘“๐‘๐œ‡๐‘–๐‘”, ๐œ†) and ๐‘ง๐‘ฆ =(๐‘˜, ๐‘“๐‘๐œ‡๐‘—โ„Ž, ๐œ†). Since ๐‘ง๐‘ฅ, ๐‘ง๐‘ฆ โˆˆ ๐ผร—๐บร— {๐œ†}, we have ๐‘ง๐‘ฅ L ๐‘ง๐‘ฆ. HenceL is left compatible. We already know L is a right congruenceby Proposition 3.4(a). So L is a congruence. Similarly, R is acongruence and so H = L โˆฉR is a congruence.

b) Let [(๐‘–, ๐‘”, ๐œ†)]L, [(๐‘—, โ„Ž, ๐œ‡)]L โˆˆ ๐‘†/L. Then [(๐‘–, ๐‘”, ๐œ†)]L[(๐‘—, โ„Ž, ๐œ‡)]L =[(๐‘–, ๐‘”๐‘๐œ†๐‘—โ„Ž, ๐œ‡)]L = [(๐‘—, โ„Ž, ๐œ‡)]L (since (๐‘–, ๐‘”๐‘๐œ†๐‘—โ„Ž, ๐œ‡) and (๐‘—, โ„Ž, ๐œ‡) areL-related). Hence ๐‘†/L is a right zero semigroup. Similarly ๐‘†/R isa left zero semigroup.

c) Define a map ๐œ‘ โˆถ ๐‘†/Hโ†’ ๐‘†/R ร— ๐‘†/L by

[(๐‘–, ๐‘”, ๐œ†)]H๐œ‘ = ([(๐‘–, ๐‘”, ๐œ†)]R, [(๐‘–, ๐‘”, ๐œ†)]L).

Using the fact that H = L โˆฉR, it is easy to show that this map iswell-defined and injective. It is clearly surjective, and is a homo-morphism since R and L are congruences. So ๐‘†/H โ‰ƒ ๐‘†/R ร— ๐‘†/L.

4.4 Since ๐‘† is completely simple, ๐‘† โ‰ƒM[๐บ; ๐ผ, ๐›ฌ, ๐‘ƒ]. Hence |๐‘†| = |๐ผ|ร—|๐บ|ร—|๐›ฌ|.a) Since ๐‘ = |๐ผ| ร— |๐บ| ร— |๐›ฌ|, one of the following three cases must

hold:i) |๐ผ| = ๐‘, |๐บ| = 1, and |๐›ฌ| = 1. Since ๐บ is trivial and |๐›ฌ| = 1,

the R-classes of ๐‘† are single elements by Proposition 4.12(c).Thus ๐‘† โ‰ƒ ๐‘†/R is a left zero semigroup by Exercise 4.3(b).

ii) |๐ผ| = 1, |๐บ| = 1, and |๐›ฌ| = ๐‘. This is similar to case i), andshows that ๐‘† is a right zero semigroup.

iii) |๐ผ| = 1, |๐บ| = ๐‘, and |๐›ฌ| = 1. Then ๐‘† is a group by Exercise 4.1.b) Since ๐‘๐‘ž = |๐ผ| ร— |๐บ| ร— |๐›ฌ|, one of the following cases must hold

(interchanging ๐‘ and ๐‘ž if necessary):i) |๐ผ| = ๐‘๐‘ž, |๐บ| = 1, and |๐›ฌ| = 1. As in part a)i), ๐‘† โ‰ƒ ๐‘†/R is a

left zero semigroup and so a left group by Theorem 4.19. [Wecould also use the fact that ๐‘† has only one L-class and applyTheorem 4.19.]

Solutions to exercises โ€ข 221

Page 230: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

ii) |๐ผ| = ๐‘, |๐บ| = ๐‘ž, and |๐›ฌ| = 1. Then ๐‘† = ๐ผ ร— ๐บ ร— {๐œ†}. Thus ๐‘† hasonly one L-class and so is a left group by Theorem 4.19.

iii) |๐ผ| = ๐‘, |๐บ| = 1, and |๐›ฌ| = ๐‘ž.Then theH-classes of ๐‘† are singleelements by Proposition 4.12(d). So ๐‘† โ‰ƒ ๐‘†/H is a rectangularband by Exercise 4.3(c)

iv) |๐ผ| = 1, |๐บ| = ๐‘๐‘ž, and |๐›ฌ| = 1. As in part a)iii), ๐‘† is a group(and thus both a left and a right group).

v) |๐ผ| = 1, |๐บ| = ๐‘, and |๐›ฌ| = ๐‘ž. This is dual to case ii), and showsthat ๐‘† is a right group.

vi) |๐ผ| = 1, |๐บ| = 1, and |๐›ฌ| = ๐‘๐‘ž. This is dual to case i), ๐‘† โ‰ƒ ๐‘†/Lis a right zero semigroup and so a right group.

4.5 a) Let ๐‘ง โˆˆ ๐‘†. Then ๐‘ง๐‘งโˆ’1 R ๐‘ง and ๐‘งโˆ’1๐‘ง L ๐‘ง. So ๐‘ง๐‘งโˆ’1 = ๐‘งโˆ’1๐‘ง H ๐‘ง.Similarly ๐‘ง๐‘งโˆ’1 = ๐‘งโˆ’1๐‘ง H ๐‘งโˆ’1. So ๐‘ง H ๐‘งโˆ’1. Since every H-classof ๐‘† is a subgroup, ๐‘งโˆ’1 is the unique group inverse of ๐‘ง in thissubgroup. The H-class of ๐‘ง๐œ‘ is also a subgroup and (๐‘ง๐œ‘)โˆ’1 is theunique group inverse of ๐‘ง๐œ‘ in this subgroup. Then ๐œ‘|๐ป๐‘ง is a grouphomomorphism into the subgroup๐ป๐‘ง๐œ‘ and so ๐‘งโˆ’1๐œ‘ = (๐‘ง๐œ‘)โˆ’1.

b) There are many possible examples. Let ๐‘† = {๐‘ 1, ๐‘ 2} and ๐‘‡ = {๐‘ก1, ๐‘ก2}be left zero semigroups. Define โˆ’1 on ๐‘† by ๐‘ โˆ’11 = ๐‘ 2 and ๐‘ โˆ’12 = ๐‘ 1.Define โˆ’1 on ๐‘‡ by ๐‘กโˆ’11 = ๐‘ก1 and ๐‘กโˆ’12 = ๐‘ก2. In both cases, โˆ’1 satisfies(๐‘ฅโˆ’1)โˆ’1 = ๐‘ฅ and ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ. Define ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ by ๐‘ 1๐œ‘ = ๐‘ก1 and๐‘ 2๐œ‘ = ๐‘ก2. Then (๐‘ 1๐œ‘)โˆ’1 = ๐‘กโˆ’11 = ๐‘ก1 but ๐‘ โˆ’11 ๐œ‘ = ๐‘ 2๐œ‘ = ๐‘ก2.

4.6 a) i) The isomorphism ๐œ‘ maps non-zero R-classes bijectively tonon-zero R-classes. Since the R-classes of M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] aresets of the form {๐‘–}ร—๐บร—๐›ฌ and theR-classes ofM0[๐ป; ๐ฝ,๐›ญ;๐‘„]are sets of the form {๐‘—} ร— ๐บ ร— ๐›ญ, there must be a bijection๐›ผ โˆถ ๐ผ โ†’ ๐ฝ such that (๐‘–, ๐‘Ž, ๐œ†)๐œ‘ โˆˆ {๐‘–๐›ผ} ร— ๐ป ร—๐›ญ. Similarly thereis a bijection ๐›ฝ โˆถ ๐›ฌ โ†’ ๐›ญ such that (๐‘–, ๐‘Ž, ๐œ†)๐œ‘ โˆˆ ๐ผ ร— ๐ป ร— {๐œ†๐›ฝ}.Combining these statements shows that (๐‘–, ๐‘Ž, ๐œ†)๐œ‘ โˆˆ {๐‘–๐›ผ}ร—๐ปร—{๐œ†๐›ฝ}. Since ๐œ‘must map group H-classes to group H-classes,we have ๐‘๐œ†๐‘– โ‰  0 if and only if ๐‘(๐œ†๐›ฝ)(๐‘–๐›ผ) โ‰  0.

ii) Let ๐›พ โˆถ ๐บ โ†’ {1}ร—๐บร—{1} be defined by ๐‘ฅ๐›พ = (1, ๐‘โˆ’111 ๐‘ฅ, 1).Then(๐‘ฅ๐›พ)(๐‘ฆ๐›พ) = (1, ๐‘โˆ’111 ๐‘ฅ, 1)(1, ๐‘โˆ’111 ๐‘ฆ, 1) = (1, ๐‘โˆ’111 ๐‘ฅ๐‘11๐‘โˆ’111 ๐‘ฆ, 1) =(1, ๐‘โˆ’111 ๐‘ฅ๐‘ฆ, 1) = (๐‘ฅ๐‘ฆ)๐›พ, so ๐›พ is a homomorphism. Furthermore,๐›พ is injective since ๐‘ฅ๐›พ = ๐‘ฆ๐›พ โ‡’ (1, ๐‘โˆ’111 ๐‘ฅ, 1) = (1, ๐‘โˆ’111 ๐‘ฆ, 1) โ‡’๐‘โˆ’111 ๐‘ฅ = ๐‘โˆ’111 ๐‘ฆ โ‡’ ๐‘ฅ = ๐‘ฆ. Finally, ๐›พ is surjective since for any(1, ๐‘ฅ, 1) โˆˆ {1} ร— ๐บ ร— {1}, we have (๐‘11๐‘ฅ)๐›พ = (1, ๐‘ฅ, 1). So ๐›พ is anisomorphism.

Similarly, the map ๐œ‚ โˆถ ๐ป โ†’ {1๐›ผ} ร— ๐ป ร— {1๐›ฝ} defined by๐‘ฅ๐œ‚ = (1๐›ผ, ๐‘žโˆ’1(1๐›ฝ)(1๐›ผ)๐‘ฅ, 1๐›ฝ) is an isomorphism.

By part i), ๐œ‘|{1}ร—๐บร—{1} โˆถ {1} ร— ๐บ ร— {1} โ†’ {1๐›ผ} ร— ๐ป ร—{1๐›ฝ} is an isomorphism, so the composition ๐œ— = ๐›พ๐œ‘๐œ‚โˆ’1 =๐›พ๐œ‘|{1}ร—๐บร—{1}๐œ‚โˆ’1 is an isomorphism from ๐บ to๐ป.

222 โ€ขSolutions to exercises

Page 231: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

iii) First,

(๐‘–, 1๐บ, 1)(1, ๐‘โˆ’111 ๐‘ฅ, 1)(1, ๐‘โˆ’111 , 1) = (๐‘–, 1๐บ๐‘11๐‘โˆ’111 ๐‘ฅ๐‘11๐‘โˆ’111 )= (๐‘–, ๐‘ฅ, ๐œ†).

Now, for all ๐‘ฅ โˆˆ ๐บ,

(1, ๐‘โˆ’111 ๐‘ฅ, 1)๐œ‘ = ๐‘ฅ๐›พ๐œ‘ = ๐‘ฅ๐œ—๐œ‚ = (1๐›ผ, ๐‘žโˆ’1(1๐›ฝ)(1๐›ผ)(๐‘ฅ๐œ—), 1๐›ฝ).

Therefore for any ๐‘ฅ โˆˆ ๐บ,

(๐‘–, ๐‘ฅ, ๐œ†)๐œ‘= ((๐‘–, 1๐บ, 1)(1, ๐‘โˆ’111 ๐‘ฅ, 1)(1, ๐‘โˆ’111 , ๐œ†))๐œ‘= (๐‘–, 1๐บ, 1)๐œ‘(1, ๐‘โˆ’111 ๐‘ฅ, 1)๐œ‘(1, ๐‘โˆ’111 , ๐œ†)๐œ‘= (๐‘–๐›ผ, ๐‘ข๐‘–, 1๐›ฝ)(1๐›ผ, ๐‘žโˆ’1(1๐›ฝ)(1๐›ผ)(๐‘ฅ๐œ—), 1๐›ฝ)(1๐›ผ, ๐‘žโˆ’1(1๐›ฝ)(1๐›ผ)๐‘ฃ๐œ†, ๐œ†๐›ฝ)= (๐‘–๐›ผ, ๐‘ข๐‘–๐‘ž(1๐›ฝ)(1๐›ผ)๐‘žโˆ’1(1๐›ฝ)(1๐›ผ)(๐‘ฅ๐œ—)๐‘ž(1๐›ฝ)(1๐›ผ)๐‘žโˆ’1(1๐›ฝ)(1๐›ผ)๐‘ฃ๐œ†, ๐œ†๐›ฝ)= (๐‘–๐›ผ, ๐‘ข๐‘–(๐‘ฅ๐œ—)๐‘ฃ๐œ†, ๐œ†๐›ฝ)๐œ‘.

Hence

(๐‘–๐›ผ, ๐‘ข๐‘–(๐‘๐œ†๐‘–๐œ—)๐‘ฃ๐œ†, ๐œ†๐›ฝ)= (๐‘–, ๐‘๐œ†๐‘–, ๐œ†)๐œ‘= ((๐‘–, 1๐บ, ๐œ†)(๐‘–, 1๐บ, ๐œ†))๐œ‘= (๐‘–, 1๐บ, ๐œ†)๐œ‘(๐‘–, 1๐บ, ๐œ†)๐œ‘= (๐‘–๐›ผ, ๐‘ข๐‘–๐‘ฃ๐œ†, ๐œ†๐›ฝ)(๐‘–๐›ผ, ๐‘ข๐‘–๐‘ฃ๐œ†, ๐œ†๐›ฝ)= (๐‘–๐›ผ, ๐‘ข๐‘–๐‘ฃ๐œ†๐‘ž(๐œ†๐›ฝ)(๐‘–๐›ผ)๐‘ข๐‘–๐‘ฃ๐œ†, ๐œ†๐›ฝ);

thus ๐‘๐œ†๐‘–๐œ— = ๐‘ฃ๐œ†๐‘ž(๐œ†๐›ฝ)(๐‘–๐›ผ)๐‘ข๐‘– by cancellativity in๐ป.b) Define a map ๐œ‘ โˆถM0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] โ†’M0[๐ป; ๐ฝ,๐›ญ;๐‘„] by

(๐‘–, ๐‘ฅ, ๐œ†)๐œ‘ = (๐‘–๐›ผ, ๐‘ข๐‘–(๐‘ฅ๐œ—)๐‘ฃ๐œ†, ๐œ†๐›ฝ), and 0๐œ‘ = 0.

Then ๐œ‘ is a homomorphism since

(๐‘–, ๐‘ฅ, ๐œ†)๐œ‘(๐‘–โ€ฒ, ๐‘ฆ, ๐œ†โ€ฒ)๐œ‘= (๐‘–๐›ผ, ๐‘ข๐‘–(๐‘ฅ๐œ—)๐‘ฃ๐œ†, ๐œ†๐›ฝ)(๐‘–โ€ฒ๐›ผ, ๐‘ข๐‘–โ€ฒ(๐‘ฆ๐œ—)๐‘ฃ๐œ†โ€ฒ, ๐œ†โ€ฒ)= (๐‘–๐›ผ, ๐‘ข๐‘–(๐‘ฅ๐œ—)๐‘ฃ๐œ†๐‘ž(๐œ†๐›ฝ)(๐‘–โ€ฒ๐›ผ)๐‘ข๐‘–โ€ฒ(๐‘ฆ๐œ—)๐‘ฃ๐œ†โ€ฒ, ๐œ†โ€ฒ)= (๐‘–๐›ผ, ๐‘ข๐‘–(๐‘ฅ๐œ—)(๐‘๐œ†๐‘–โ€ฒ๐œ—)(๐‘ฆ๐œ—)๐‘ฃ๐œ†โ€ฒ, ๐œ†โ€ฒ)= (๐‘–๐›ผ, ๐‘ข๐‘–((๐‘ฅ๐‘๐œ†๐‘–โ€ฒ๐‘ฆ)๐œ—)๐‘ฃ๐œ†โ€ฒ, ๐œ†โ€ฒ)= (๐‘–, ๐‘ฅ๐‘๐œ†๐‘–โ€ฒ๐‘ฆ, ๐œ†โ€ฒ)๐œ‘= ((๐‘–, ๐‘ฅ, ๐œ†)(๐‘–โ€ฒ, ๐‘ฆ, ๐œ†โ€ฒ))๐œ‘.

Furthermore, ๐œ‘ is a bijection since ๐›ผ, ๐›ฝ, and ๐œ— are all bijections.So ๐œ‘ is an isomorphism from M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] to M0[๐ป; ๐ฝ,๐›ญ;๐‘„].

Solutions to exercises โ€ข 223

Page 232: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

4.7 Suppose ๐‘ƒ is regular. Then ๐‘† = M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] is completely simpleand so regular by the Lemma 4.6(b). [Alternatively: Since ๐‘ƒ containssome non-zero element ๐‘๐œ†๐‘–, the element (๐‘–, ๐‘โˆ’1๐œ†๐‘– , ๐œ†) is idempotent andthus regular.Thus theD-class ๐ผร—๐บร—๐›ฌ is regular by Proposition 3.19.]

Suppose ๐‘ƒ is not regular. Then ๐‘ƒ has a row or a column all ofwhose entries are 0. Suppose all the entries in the row indexed by ๐œ†are 0; the reasoning for columns is similar. Let (๐‘–, ๐‘ฅ, ๐œ†) โˆˆ ๐ผ ร— ๐บ ร— {๐œ†}.Then for (๐‘—, ๐‘ฆ, ๐œ‡) โˆˆM0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] โˆ– {0}, we have (๐‘–, ๐‘ฅ, ๐œ†)(๐‘—, ๐‘ฆ, ๐œ‡) = 0since ๐‘๐œ†๐‘— = 0. Hence there is no element ๐‘ง โˆˆ M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] with(๐‘–, ๐‘ฅ, ๐œ†)๐‘ง(๐‘–, ๐‘ฅ, ๐œ†) = (๐‘–, ๐‘ฅ, ๐œ†). Thus ๐‘† is not regular.

4.8 a) Since ๐‘† satisfies minL, the set of L-classes that are not equal to{0} there is a minimal element. Let ๐ฟ๐‘ฅ be such a minimal L-classnot equal to {0}. Then ๐‘†๐‘ฅ is a left ideal not equal to {0}. Suppose๐ฟ is some left ideal contained in ๐‘†๐‘ฅ and not equal to {0}. Pick๐‘ฆ โˆˆ ๐ฟ โˆ– {0}. Then ๐‘†๐‘ฆ โŠ† ๐‘†๐‘ฅ and so ๐ฟ๐‘ฆ โŠ† ๐ฟ๐‘ฅ. Since ๐ฟ๐‘ฅ is minimalamong non-{0} L-classes, ๐ฟ๐‘ฅ = ๐ฟ๐‘ฆ and so ๐‘†๐‘ฅ = ๐‘†๐‘ฆ. So ๐‘†๐‘ฅmustbe a 0-minimal left ideal.

b) i) Let ๐‘ฅ โˆˆ ๐พ โˆ– {0}. Then ๐‘†๐‘ฅ is a left ideal of ๐‘† and is contained in๐พ. Since๐พ is 0-minimal, either ๐‘†๐‘ฅ = ๐พ or ๐‘†๐‘ฅ = {0}. Suppose,with the aim of obtaining a contradiction, that ๐‘†๐‘ฅ = {0}. Then{0, ๐‘ฅ} is a left ideal of ๐‘† contained in ๐พ and not equal to {0}.Since๐พ is 0-minimal,๐พ = {๐‘ฅ, 0}. But then๐พ2 = {0}, which isa contradiction. So ๐พ = ๐‘†๐‘ฅ.

ii) It is immediate that ๐ฟ๐‘ฅ is a left ideal. Suppose ๐พ โ‰  {0} is a leftideal contained in ๐ฟ๐‘ฅ. Let ๐ฝ = { ๐‘ฆ โˆˆ ๐ฟ โˆถ ๐‘ฆ๐‘ฅ โˆˆ ๐พ }. Then ๐ฝ โŠ† ๐ฟand ๐ฝ is a left ideal, since

๐‘ฆ โˆˆ ๐ฝ โˆง ๐‘  โˆˆ ๐‘†โ‡’ ๐‘ฆ โˆˆ ๐ฟ โˆง ๐‘ฆ๐‘ฅ โˆˆ ๐พ โˆง ๐‘  โˆˆ ๐‘† [by definition of ๐ฝ]โ‡’ ๐‘ ๐‘ฆ โˆˆ ๐ฟ โˆง ๐‘ ๐‘ฆ๐‘ฅ โˆˆ ๐พ [since ๐ฟ and ๐พ are left ideals]โ‡’ ๐‘ ๐‘ฆ โˆˆ ๐ฝ. [by definition of ๐ฝ]

Since ๐ฟ is 0-minimal and ๐ฝ โ‰  {0}, we have ๐ฝ = ๐ฟ and so๐ฝ๐‘ฅ = ๐ฟ๐‘ฅ. Furthermore, ๐ฝ๐‘ฅ โŠ† ๐พ by the definition of ๐ฝ and๐พ โŠ† ๐ฟ๐‘ฅ by the definition of ๐พ, and so ๐พ = ๐ฝ๐‘ฅ = ๐ฟ๐‘ฅ. Hence๐ฟ๐‘ฅ is 0-minimal.

iii) Note that ๐ฟ๐‘† is an ideal since ๐‘†๐ฟ๐‘†๐‘† โŠ† (๐‘†๐ฟ)(๐‘†2) โŠ† ๐ฟ๐‘†. So, since ๐‘†is 0-simple, either ๐ฟ๐‘† = {0} or ๐ฟ๐‘† = ๐‘†. Suppose, with the aim ofobtaining a contradiction, that ๐ฟ๐‘† = {0}.Then ๐ฟ๐‘† โŠ† ๐ฟ and so ๐ฟis an ideal. Since ๐ฟ โ‰  {0}, we have ๐ฟ = ๐‘†. Hence ๐‘†2 = ๐ฟ๐‘† = {0}and so ๐‘† is null, which contradicts ๐‘† being 0-simple. Therefore๐ฟ๐‘† = ๐‘†. So there exists ๐‘ฅ โˆˆ ๐‘† with ๐ฟ๐‘ฅ โ‰  {0}.

iv) The set๐‘€ is a union of 0-minimal left ideals and is thus itselfa left ideal. By part iii),๐‘€ โ‰  {0}. Let๐‘š โˆˆ ๐‘€ and ๐‘ก โˆˆ ๐‘†. Then

224 โ€ขSolutions to exercises

Page 233: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

๐‘š โˆˆ ๐ฟ๐‘ฅ for some๐‘ฅ โˆˆ ๐‘† and so๐‘š๐‘ก โˆˆ ๐ฟ๐‘ฅ๐‘ก โŠ† ๐‘€. Hence๐‘€๐‘† โŠ† ๐‘€and so๐‘€ is also a right ideal. So๐‘€ is an ideal and not equalto {0}. Since ๐‘† is 0-simple, we have๐‘€ = ๐‘†.

v) Let ๐ฟ be a 0-minimal left ideal. For any 0-minimal right ideal๐‘…, the set ๐ฟ๐‘… is an ideal and hence, since ๐‘† is 0-simple, either๐ฟ๐‘… = {0} or ๐ฟ๐‘… = ๐‘†. By part iii), there exists some ๐‘ฅ โˆˆ ๐‘† with๐ฟ๐‘ฅ โ‰  {0}. By the dual version of part iv), ๐‘ฅ lies in some 0-minimal right ideal. Fix a 0-minimal right ideal ๐‘… containing๐‘ฅ. Then ๐ฟ๐‘… โ‰  {0} and so ๐ฟ๐‘… = ๐‘†.

Notice that since ๐‘… is a right ideal, ๐‘…๐ฟ โŠ† ๐‘…. Similarly,๐‘…๐ฟ โŠ† ๐ฟ. Let ๐‘ฅ โˆˆ ๐‘…๐ฟ โˆ– {0} โŠ† ๐‘… โˆ– {0}. Then ๐‘… = ๐‘ฅ๐‘† by the dualversion of part i). Since ๐‘† = ๐ฟ๐‘… = ๐ฟ๐‘ฅ๐‘†, we have๐ฟ๐‘ฅ โ‰  {0} and so๐ฟ๐‘ฅ is a 0-minimal left ideal by part ii). However, ๐ฟ๐‘ฅ โŠ† ๐ฟ since๐‘ฅ โˆˆ ๐‘…๐ฟ โŠ† ๐ฟ. Therefore, since ๐ฟ is 0-minimal and ๐ฟ๐‘ฅ โ‰  {0}, wehave ๐ฟ๐‘ฅ = ๐ฟ and so ๐‘…๐ฟ๐‘ฅ = ๐‘…๐ฟ. Similarly ๐‘ฅ๐‘…๐ฟ = ๐‘…๐ฟ. Hence๐‘…๐ฟ is a group with a zero adjoined by Exercise 1.21.

vi) Let ๐‘“ be a non-zero idempotent in ๐‘† with ๐‘“ โ‰ผ ๐‘’. Then ๐‘’๐‘“ =๐‘“๐‘’ = ๐‘“. Since ๐‘’ โˆˆ ๐‘…๐ฟ โŠ† ๐‘… โˆฉ ๐ฟ, it follows from part i) andits dual version that ๐‘… = ๐‘’๐‘† and ๐ฟ = ๐‘†๐‘’. Hence ๐‘“ = ๐‘’๐‘“๐‘’ โˆˆ๐‘’๐‘†๐‘’ = ๐‘’๐‘†2๐‘’ = (๐‘’๐‘†)(๐‘†๐‘’) = ๐‘…๐ฟ, since ๐‘†2 = ๐‘† by Lemma 3.6. Since๐‘…๐ฟ โˆ– {0} is a group, ๐‘’ = ๐‘“. So ๐‘’ is a primitive idempotent.Hence ๐‘† is completely 0-simple.

4.9 Let ๐‘… be a right ideal of ๐‘†. Let ๐‘Ÿ โˆˆ ๐‘… and โ„“ โˆˆ ๐บ. Then ๐‘Ÿโ„“ โˆˆ ๐‘… โˆฉ ๐บ since๐‘… is a right ideal and ๐บ is a left ideal. So ๐‘… โˆฉ ๐บ โ‰  โˆ…. Then ๐‘… โˆฉ ๐บ is aright ideal of ๐บ, since ๐‘… is a right ideal and ๐บ is a subgroup. But ๐บ is agroup, and thus its only right ideal is๐บ itself. Hence ๐‘…โˆฉ๐บ = ๐บ, and so๐บ โŠ† ๐‘…. In particular, 1๐บ โˆˆ ๐‘…. Let ๐‘ฅ โˆˆ ๐‘†. Then 1๐บ๐‘ฅ = 1๐บ1๐บ๐‘ฅ since 1๐บis idempotent, and so ๐‘ฅ = 1๐บ๐‘ฅ since ๐‘† is left-cancellative. Therefore๐‘ฅ = 1๐บ๐‘ฅ โˆˆ 1๐บ๐‘† โŠ† ๐‘…๐‘† โŠ† ๐‘…. Hence ๐‘† โŠ† ๐‘… and so ๐‘† = ๐‘…. Therefore ๐‘†does not contain any proper right ideals and so is right simple. Sinceit is also left-cancellative, ๐‘† is a right group.

Exercises for chapter 5

[See pages 116โ€“119 for the exercises.]

5.1 Let ๐œ = (1 22 โˆ—) and ๐œ = (1 2โˆ— โˆ—). Then ๐œ๐œ = ๐œ๐œ = ๐œ๐œ = ๐œ๐œ = ๐œ. So

๐‘‡ = {๐œ, ๐œ} is a null semigroup and ๐œ does not have an inverse in ๐‘‡.

[Of course, ๐œ does have an inverse in I๐‘‹; indeed ๐œโˆ’1 = (1 2โˆ— 1).]

5.2 Let ๐œŽ1, ๐œŽ2 โˆˆ ๐‘†. Then there exist subgroups ๐ป1, ๐ปโ€ฒ1, ๐ป2, and ๐ปโ€ฒ2 of๐บ such that ๐œŽ1 โˆถ ๐ป1 โ†’ ๐ปโ€ฒ1 and ๐œŽ2 โˆถ ๐ป2 โ†’ ๐ปโ€ฒ2 are isomorphisms.

Solutions to exercises โ€ข 225

Page 234: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Then dom(๐œŽ1๐œŽ2) = (im๐œŽ1 โˆฉ dom๐œŽ2)๐œŽโˆ’11 = (๐ปโ€ฒ1 โˆฉ ๐ป2)๐œŽโˆ’11 . Now,๐ปโ€ฒ1 โˆฉ ๐ป2 is a subgroup of ๐บ. (In particular, it contains 1๐บ and so isnon-empty.) Thus dom(๐œŽ1๐œŽ2) is a subgroup of ๐บ and so im(๐œŽ1๐œŽ2) isalso a subgroup of ๐บ. So ๐œŽ1๐œŽ2 โˆˆ ๐‘†. Thus ๐‘† is a subsemigroup of I๐บ.Furthermore, ๐œŽโˆ’11 โˆถ ๐ปโ€ฒ1 โ†’ ๐ป1 is also an isomorphism; thus ๐œŽโˆ’11 โˆˆ ๐‘†.Thus ๐‘† is an inverse subsemigroup of I๐บ.

5.3 a) Suppose that ๐œŽ L ๐œ. Then there exist ๐œ‹, ๐œŒ โˆˆ I๐‘‹ such that ๐œ‹๐œŽ = ๐œand ๐œŒ๐œ = ๐œŽ. Therefore

im๐œŽ = ๐‘‹๐œŽ โŠ‡ (๐‘‹๐œ‹)๐œŽ = im(๐œ‹๐œŽ) = im ๐œ,

and similarly im ๐œ โŠ‡ im(๐œŒ๐œ) = im๐œŽ. Hence im๐œŽ = im ๐œ.Now suppose that im๐œŽ = im ๐œ. Let ๐œ‹ = ๐œ๐œŽโˆ’1. Then

๐œ‹๐œŽ = ๐œ๐œŽโˆ’1๐œŽ = ๐œidim๐œŽ = ๐œidim ๐œ = ๐œ.

Similarly, let ๐œŒ = ๐œŽ๐œโˆ’1; then ๐œŒ๐œ = ๐œŽ. Hence ๐œŽ L ๐œ.b) Suppose that ๐œŽ R ๐œ. Then there exist ๐œ‹, ๐œŒ โˆˆ I๐‘‹ such that ๐œŽ๐œ‹ = ๐œ

and ๐œ๐œŒ = ๐œŽ. Therefore

dom ๐œ = dom๐œŽ๐œ‹ = (im๐œŽ โˆฉ dom๐œ‹)๐œŽโˆ’1

โŠ† (im๐œŽ)๐œŽโˆ’1 = dom๐œŽ

and similarly dom๐œŽ โŠ† (im ๐œ)๐œโˆ’1 = dom ๐œ. Thus dom๐œŽ = dom ๐œ.Now suppose that dom๐œŽ = dom ๐œ. Let ๐œ‹ = ๐œŽโˆ’1๐œ. Then

๐œŽ๐œ‹ = ๐œŽ๐œŽโˆ’1๐œ = iddom๐œŽ๐œ = iddom ๐œ๐œ = ๐œ.

Similarly, let ๐œŒ = ๐œโˆ’1๐œŽ; then ๐œ๐œŒ = ๐œŽ. Hence ๐œŽ R ๐œ.c) Suppose that๐œŽ D ๐œ.Then there exists ๐œ โˆˆ I๐‘‹ such that๐œŽ L ๐œ R ๐œ,

and so,

|dom๐œŽ| = |im๐œŽ| [since ๐œŽ is a partial bijection]= |im ๐œ| [by part a)]= |dom ๐œ| [since ๐œ is a partial bijection]= |dom ๐œ|. [by part b)]

Now suppose that |dom๐œŽ| = |dom ๐œ|. Then there is a bijection๐œ‹ โˆถ dom๐œŽ โ†’ dom ๐œ. Note that ๐œ‹ โˆˆ I๐‘‹. Let ๐œ = ๐œ‹โˆ’1๐œŽ. Then๐œŽ = ๐œ‹๐œ, and so ๐œŽ L ๐œ. Furthermore,

dom ๐œ = dom(๐œ‹โˆ’1๐œŽ)= (im๐œ‹โˆ’1 โˆฉ dom๐œŽ)๐œ‹= (dom๐œ‹ โˆฉ dom๐œŽ)๐œ‹= (dom๐œŽ)๐œ‹= dom ๐œ,

226 โ€ขSolutions to exercises

Page 235: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

and so ๐œ R ๐œ by part b). Hence ๐œŽ D ๐œ.Suppose ๐œŽ J ๐œ. Then there exist ๐œ‹, ๐œŒ, ๐œ‹โ€ฒ, ๐œŒโ€ฒ โˆˆ I๐‘‹ such that๐œŽ = ๐œ‹๐œ๐œŒ and ๐œ = ๐œ‹โ€ฒ๐œŽ๐œŒโ€ฒ. Therefore

|dom๐œŽ| = |im๐œŽ| = |๐‘‹๐œŽ| = |๐‘‹๐œ‹๐œ๐œŒ|โฉฝ |๐‘‹๐œ๐œŒ| = |๐‘‹๐œ| = |im ๐œ| = |dom ๐œ|;

similarly, |dom ๐œ| โฉฝ |dom๐œŽ|. Thus |dom๐œŽ| = |dom ๐œ|. Hence๐œŽ D ๐œ. Therefore J โŠ† D and so D = J.

5.4 a) Since im๐œ‹ = dom๐›ฝ, it follows that

dom(๐œ‹๐›ฝ) = (im๐œ‹ โˆฉ dom๐›ฝ)๐œ‹โˆ’1

= (im๐œ‹)๐œ‹โˆ’1

= dom๐œ‹= dom ๐›พ.

Hence ๐œ‹๐›ฝ R ๐›พ by Exercise 5.3(b). Thus there exists ๐œŒโ€ฒ โˆˆ I๐‘‹ suchthat ๐œ‹๐›ฝ๐œŒโ€ฒ = ๐›พ. Since |im๐›ฝ| = |dom๐›ฝ| = ๐‘› โˆ’ 1 = |dom ๐›พ| = |im ๐›พ|,it follows that dom ๐œŒโ€ฒ โŠ‡ im๐›ฝ. Extend ๐œŒโ€ฒ to a permutation ๐œŒ โˆˆ S๐‘‹.Then ๐œŒ and ๐œŒโ€ฒ agree on im๐›ฝ. Hence ๐œ‹๐›ฝ๐œŒ = ๐œ‹๐›ฝ๐œŒโ€ฒ = ๐›พ.

Since ๐œ‹, ๐œŒ โˆˆ S๐‘‹ = โŸจ๐œ, ๐œโŸฉ, it follows from the previous para-graph that ๐ฝ๐‘›โˆ’1 โŠ† S๐‘‹๐›ฝS๐‘‹ โŠ† โŸจ๐œ, ๐œ, ๐›ฝโŸฉ.

b) Let๐œŽ โˆˆ ๐ฝ๐‘˜. Pick๐‘ฅ โˆˆ ๐‘‹โˆ–dom๐œŽ and๐‘ฆ โˆˆ ๐‘‹โˆ–im๐œŽ and extend๐œŽ to๐œŽโ€ฒby defining ๐‘ฅ๐œŽโ€ฒ = ๐‘ฆ. Then ๐œŽโ€ฒ โˆˆ ๐ฝ๐‘˜+1, and ๐œŽ = ๐œŽโ€ฒid๐‘‹โˆ’{๐‘ฅ} โˆˆ ๐ฝ๐‘˜+1๐ฝ๐‘›โˆ’1.Hence ๐ฝ๐‘˜ โŠ† ๐ฝ๐‘˜+1๐ฝ๐‘›โˆ’1.

By induction on ๐‘˜, we see that ๐ฝ๐‘˜ โŠ† ๐ฝ๐‘›โˆ’๐‘˜๐‘›โˆ’1 โŠ† โŸจ๐œ, ๐œ, ๐›ฝโŸฉ. Since thisholds for ๐‘˜ = 0,โ€ฆ , ๐‘› โˆ’ 1, and since obviously ๐ฝ๐‘› = S๐‘‹ = โŸจ๐œ, ๐œโŸฉ โŠ†โŸจ๐œ, ๐œ, ๐›ฝโŸฉ, it follows that I๐‘‹ = โ‹ƒ

๐‘›๐‘˜=0 ๐ฝ๐‘˜ โŠ† โŸจ๐œ, ๐œ, ๐›ฝโŸฉ.

5.5 a) Let๐‘€ = โŸจ๐œ, ๐œโˆ’1โŸฉ. Note that ๐œ๐œโˆ’1 = id๐‘‹, so๐‘€ is amonoid.Wewilluse Method 2.9 to prove that๐‘€ is defined by MonโŸจ๐‘, ๐‘ | (๐‘๐‘, ๐œ€)โŸฉ.

Define ๐œ‘ โˆถ {๐‘, ๐‘} โ†’ ๐‘€ by ๐‘๐œ‘ = ๐œ and ๐‘๐œ‘ = ๐œโˆ’1. Then ๐‘€satisfies the defining relation with respect to ๐œ‘ since (๐‘๐‘)๐œ‘โˆ— =๐œ๐œโˆ’1 = id๐‘‹ = ๐œ€๐œ‘โˆ—. Let ๐‘ = { ๐‘๐‘–๐‘๐‘— โˆถ ๐‘– โˆˆ โ„• โˆช {0} }; any word in{๐‘, ๐‘}โˆ— can be transformed to one in๐‘ by applying the definingrelation to delete subwords ๐‘๐‘. Finally, let ๐‘ฅ โˆˆ ๐‘‹ โˆ– ๐‘‹๐œ (note thatsuch an ๐‘ฅ exists since im ๐œ โŠŠ ๐‘‹). Then for ๐‘˜ โˆˆ โ„• โˆช {0}, we have๐‘ฅ๐œ๐‘˜ โˆˆ ๐‘‹๐œ๐‘˜โˆ–๐‘‹๐œ๐‘˜+1. In particular, the๐‘ฅ๐œ๐‘˜ are all distinct. Note that๐‘ฅ โˆ‰ im ๐œ = dom ๐œโˆ’1. Thus (๐‘ฅ๐œ๐‘˜)(๐‘๐‘–๐‘๐‘—)๐œ‘โˆ— = ๐‘ฅ๐œ๐‘˜๐œโˆ’๐‘–๐œ๐‘— is definedif and only if ๐‘˜ โฉพ ๐‘–, in which case it is equal to ๐‘ฅ๐œ๐‘˜โˆ’๐‘–+๐‘—. So theminimum ๐‘˜ for which (๐‘ฅ๐œ๐‘˜)(๐‘๐‘–๐‘๐‘—)๐œ‘โˆ— is defined is ๐‘–, and the imageof ๐‘ฅ๐œ๐‘– under (๐‘๐‘–๐‘๐‘—)๐œ‘โˆ— is ๐‘ฅ๐œ๐‘—. So (๐‘๐‘–๐‘๐‘—)๐œ‘โˆ— determines ๐‘– and ๐‘—, andso ๐œ‘โˆ—|๐‘ is injective. This completes the proof.

[This proof is essentially just Example 2.11(b) rephrased interms of partial bijections.]

Solutions to exercises โ€ข 227

Page 236: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

b) Let๐‘€ = โŸจ{ ๐œ๐‘–, ๐œโˆ’1๐‘– โˆถ ๐‘– โˆˆ ๐ผ }โŸฉ. Note that ๐œ๐‘–๐œโˆ’1๐‘– = id๐‘‹, so๐‘€ is amonoid. For any ๐‘–1,โ€ฆ , ๐‘–๐‘˜ โˆˆ ๐ผ and ๐œ–1,โ€ฆ , ๐œ–๐‘˜ โˆˆ {1, โˆ’1},

๐œ๐œ–1๐‘–1 โ‹ฏ๐œ๐œ–๐‘˜๐‘–๐‘˜ ๐œโˆ’๐œ–๐‘˜๐‘–๐‘˜ โ‹ฏ๐œ

โˆ’๐œ–1๐‘–1 ๐œ๐œ–1๐‘–1 โ‹ฏ๐œ

๐œ–๐‘˜๐‘–๐‘˜

= ๐œ๐œ–1๐‘–1 โ‹ฏ๐œ๐œ–๐‘˜โˆ’1๐‘–๐‘˜โˆ’1 id๐‘‹๐œ

โˆ’๐œ–๐‘˜โˆ’1๐‘–๐‘˜โˆ’1 โ‹ฏ๐œ

โˆ’๐œ–1๐‘–1 ๐œ๐œ–1๐‘–1 โ‹ฏ๐œ

๐œ–๐‘˜๐‘–๐‘˜

= ๐œ๐œ–1๐‘–1 โ‹ฏ๐œ๐œ–๐‘˜โˆ’1๐‘–๐‘˜โˆ’1 ๐œโˆ’๐œ–๐‘˜โˆ’1๐‘–๐‘˜โˆ’1 โ‹ฏ๐œ

โˆ’๐œ–1๐‘–1 ๐œ๐œ–1๐‘–1 โ‹ฏ๐œ

๐œ–๐‘˜๐‘–๐‘˜

โ‹ฎ= id๐‘‹๐œ๐œ–1๐‘–1 โ‹ฏ๐œ

๐œ–๐‘˜๐‘–๐‘˜

= ๐œ๐œ–1๐‘–1 โ‹ฏ๐œ๐œ–๐‘˜๐‘–๐‘˜ .

So (๐œ๐œ–1๐‘–1 โ‹ฏ๐œ๐œ–๐‘˜๐‘–๐‘˜ )โˆ’1 = ๐œโˆ’๐œ–๐‘˜๐‘–๐‘˜ โ‹ฏ๐œ

โˆ’๐œ–1๐‘–1 โˆˆ ๐‘€. Hence ๐‘€ is an inverse

monoid. Furthermore, for ๐‘–, ๐‘— โˆˆ ๐ผ with ๐‘– โ‰  ๐‘— since im ๐œ๐‘– andim ๐œ๐‘— = dom ๐œโˆ’1๐‘— are disjoint, ๐œ๐‘–๐œโˆ’1๐‘— = โˆ…, andโˆ… is a zero for B๐‘‹and thus for๐‘€. We will use Method 2.9 to prove that๐‘€ is definedby (5.14).

Let ๐œ‘ โˆถ { ๐‘๐‘–, ๐‘๐‘– โˆถ ๐‘– โˆˆ ๐ผ } โˆช {๐‘ง} โ†’ ๐‘€ be given by ๐‘๐‘–๐œ‘ = ๐œ๐‘– and๐‘๐‘–๐œ‘ = ๐œโˆ’1๐‘– for each ๐‘– โˆˆ ๐ผ, and ๐‘ง๐œ‘ = โˆ…. Then for ๐‘–, ๐‘— โˆˆ ๐ผ with ๐‘– โ‰  ๐‘—,

(๐‘๐‘–๐‘๐‘–)๐œ‘โˆ— = ๐œ๐‘–๐œโˆ’1๐‘– = id๐‘‹ = ๐œ€๐œ‘โˆ—; (S.16)(๐‘๐‘–๐‘๐‘—)๐œ‘โˆ— = ๐œ๐‘–๐œโˆ’1๐‘— = โˆ… = ๐‘ง๐œ‘โˆ—; (S.17)(๐‘๐‘–๐‘ง)๐œ‘โˆ— = ๐œ๐‘–โˆ… = โˆ… = ๐‘ง๐œ‘โˆ—; (S.18)(๐‘ง๐‘๐‘–)๐œ‘โˆ— = โˆ…๐œ๐‘– = โˆ… = ๐‘ง๐œ‘โˆ—; (S.19)(๐‘๐‘–๐‘ง)๐œ‘โˆ— = ๐œโˆ’1๐‘– โˆ… = โˆ… = ๐‘ง๐œ‘โˆ—; (S.20)(๐‘ง๐‘๐‘–)๐œ‘โˆ— = โˆ…๐œโˆ’1๐‘– = โˆ… = ๐‘ง๐œ‘โˆ—; (S.21)(๐‘ง๐‘ง)๐œ‘โˆ— = โˆ…โˆ… = โˆ… = ๐‘ง๐œ‘โˆ—. (S.22)

Thus๐‘€ satisfies the defining relations in (5.14) with respect to ๐œ‘.Let

๐‘ = { ๐‘๐‘– โˆถ ๐‘– โˆˆ ๐ผ }โˆ—{ ๐‘๐‘– โˆถ ๐‘– โˆˆ ๐ผ }โˆ— โˆช {๐‘ง}.

Any word in { ๐‘ง, ๐‘๐‘–, ๐‘๐‘– โˆถ ๐‘– โˆˆ ๐ผ }โˆ— can be transformed to one in๐‘ byapplying defining relations to remove any subwords ๐‘๐‘–๐‘๐‘— (for any๐‘–, ๐‘— โˆˆ ๐ผ, replacing them with ๐‘ง if ๐‘– โ‰  ๐‘—), and then to replacing anytwo-symbol subword that contains a ๐‘ง into ๐‘ง alone.

The remaining step is to show that ๐œ‘โˆ—|๐‘ is injective. Now,๐‘ฅ๐œ๐‘–๐œโˆ’1๐‘— is defined if and only if ๐‘– = ๐‘—, and ๐‘ฅ๐œโˆ’1๐‘– is defined if andonly if ๐‘ฅ โˆˆ im ๐œ๐‘–. So

๐‘ฅ๐œ๐‘–โ„“๐œ๐‘–โ„“โˆ’1โ‹ฏ๐œ๐‘–1๐œโˆ’1๐‘—1 ๐œโˆ’1๐‘—2 โ‹ฏ๐œ

โˆ’1๐‘—๐‘š

is defined for all ๐‘ฅ โˆˆ ๐‘‹ if and only if โ„“ โฉพ ๐‘š and ๐‘–โ„Ž = ๐‘—โ„Ž forโ„Ž = 1,โ€ฆ ,๐‘š.

So suppose

(๐‘๐‘—1โ‹ฏ๐‘๐‘—๐‘š๐‘๐‘–1โ‹ฏ๐‘๐‘–๐‘› )๐œ‘โˆ— = (๐‘๐‘—โ€ฒ1โ‹ฏ๐‘๐‘—โ€ฒ๐‘šโ€ฒ๐‘๐‘–โ€ฒ1โ‹ฏ๐‘๐‘–โ€ฒ๐‘›โ€ฒ )๐œ‘

โˆ—.

228 โ€ขSolutions to exercises

Page 237: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Interchanging the two sides if necessary, assume๐‘š โฉฝ ๐‘šโ€ฒ. Now,

๐‘ฅ๐œ๐‘—๐‘š๐œ๐‘—๐‘šโˆ’1โ‹ฏ๐œ๐‘—1 (๐‘๐‘—1โ‹ฏ๐‘๐‘—๐‘š๐‘๐‘–1โ‹ฏ๐‘๐‘–๐‘› )๐œ‘โˆ—

= ๐‘ฅ๐œ๐‘—๐‘š๐œ๐‘—๐‘šโˆ’1โ‹ฏ๐œ๐‘—1๐œโˆ’1๐‘—1 โ‹ฏ๐œ

โˆ’1๐‘—๐‘š ๐œ๐‘–1โ‹ฏ๐œ๐‘–๐‘›

is defined for all ๐‘ฅ โˆˆ ๐‘‹. So

๐‘ฅ๐œ๐‘—๐‘š๐œ๐‘—๐‘šโˆ’1โ‹ฏ๐œ๐‘—1 (๐‘๐‘—โ€ฒ1โ‹ฏ๐‘๐‘—โ€ฒ๐‘š๐‘๐‘–โ€ฒ1โ‹ฏ๐‘๐‘–โ€ฒ๐‘›โ€ฒ )๐œ‘โˆ—

= ๐‘ฅ๐œ๐‘—๐‘š๐œ๐‘—๐‘šโˆ’1โ‹ฏ๐œ๐‘—1๐œโˆ’1๐‘—1 โ‹ฏ๐œ

โˆ’1๐‘—๐‘š ๐œ๐‘–1โ‹ฏ๐œ๐‘–๐‘›

is defined for all ๐‘ฅ โˆˆ ๐‘‹. So ๐‘š โฉพ ๐‘šโ€ฒ, and thus ๐‘š = ๐‘šโ€ฒ, and๐‘—โ„Ž = ๐‘—โ€ฒโ„Ž for โ„Ž = 1,โ€ฆ ,๐‘š. Now, ๐‘ฅ = ๐‘ฅ๐œ๐‘—๐‘š๐œ๐‘—๐‘šโˆ’1โ‹ฏ๐œ๐‘—1 (๐‘๐‘—1โ‹ฏ๐‘๐‘—๐‘š )๐œ‘

โˆ—,so ๐‘ฅ(๐‘๐‘–1โ‹ฏ๐‘๐‘–๐‘› )๐œ‘

โˆ— = ๐‘ฅ(๐‘๐‘–โ€ฒ1โ‹ฏ๐‘๐‘–โ€ฒ๐‘›โ€ฒ )๐œ‘โˆ— for all ๐‘ฅ โˆˆ ๐‘‹. Interchanging

the two sides if necessary, assume ๐‘› โฉพ ๐‘›โ€ฒ. Then

๐‘ฅ(๐‘๐‘–1โ‹ฏ๐‘๐‘–๐‘› )๐œ‘โˆ—๐œโˆ’1๐‘–๐‘› โ‹ฏ๐œ

โˆ’1๐‘–1 = ๐‘ฅ๐œ๐‘–1โ‹ฏ๐œ๐‘–๐‘›๐œ

โˆ’1๐‘–๐‘› โ‹ฏ๐œ

โˆ’1๐‘–1

is defined for all ๐‘ฅ โˆˆ ๐‘‹. So

๐‘ฅ(๐‘๐‘–โ€ฒ1โ‹ฏ๐‘๐‘–โ€ฒ๐‘›โ€ฒ )๐œ‘โˆ—๐œโˆ’1๐‘–๐‘› โ‹ฏ๐œ

โˆ’1๐‘–1 = ๐‘ฅ๐œ๐‘–โ€ฒ1โ‹ฏ๐œ๐‘–โ€ฒ๐‘›โ€ฒ๐œ

โˆ’1๐‘–๐‘› โ‹ฏ๐œ

โˆ’1๐‘–1

is defined for all ๐‘ฅ โˆˆ ๐‘‹. So ๐‘› โฉฝ ๐‘›โ€ฒ, and thus ๐‘› = ๐‘›โ€ฒ, and ๐‘–โ„Ž = ๐‘–โ€ฒโ„Ž forโ„Ž = 1,โ€ฆ , ๐‘›. Hence

๐‘๐‘—1โ‹ฏ๐‘๐‘—๐‘š๐‘๐‘–1โ‹ฏ๐‘๐‘–๐‘› = ๐‘๐‘—โ€ฒ1โ‹ฏ๐‘๐‘—โ€ฒ๐‘šโ€ฒ๐‘๐‘–โ€ฒ1โ‹ฏ๐‘๐‘–โ€ฒ๐‘›โ€ฒ .

Finally, note that we have shown that ๐‘ฅ(๐‘๐‘—1โ‹ฏ๐‘๐‘—๐‘š๐‘๐‘–1โ‹ฏ๐‘๐‘–๐‘› )๐œ‘โˆ— is

always defined for some element ๐‘ฅ โˆˆ ๐‘‹. Hence ๐‘ง๐œ‘โˆ— = โˆ… โ‰ (๐‘๐‘—1โ‹ฏ๐‘๐‘—๐‘š๐‘๐‘–1โ‹ฏ๐‘๐‘–๐‘› )๐œ‘

โˆ—. Thus ๐œ‘โˆ—|๐‘ is injective.5.6 a) Let ๐‘† be a Clifford semigroup. Then ๐‘† โ‰ƒ S[๐‘Œ; ๐บ๐›ผ; ๐œ‘๐›ผ,๐›ฝ], for some

semilattice ๐‘Œ, groups ๐บ๐›ผ, and homomorphisms ๐œ‘๐›ผ,๐›ฝ โˆถ ๐บ๐›ผ โ†’ ๐บ๐›ฝ.Let ๐‘’ and ๐‘“ be idempotents in ๐‘†. Then ๐‘’ โˆˆ ๐บ๐›ผ and ๐‘“ โˆˆ ๐บ๐›ฝ forsome ๐›ผ, ๐›ฝ โˆˆ ๐‘Œ. Thus ๐‘’ = 1๐›ผ and ๐‘“ = 1๐›ฝ, where 1๐›ผ and 1๐›ฝ are theidentities of ๐บ๐›ผ and ๐บ๐›ฝ. So ๐‘’๐‘“ = 1๐›ผ1๐›ฝ = (1๐›ผ๐œ‘๐›ผ,๐›ผโŠ“๐›ฝ)(1๐›ฝ๐œ‘๐›ฝ,๐›ผโŠ“๐›ฝ) =1๐›ผโŠ“๐›ฝ1๐›ผโŠ“๐›ฝ = 1๐›ผโŠ“๐›ฝ. So the idempotents of ๐‘† form a subsemigroup.Since ๐‘† is regular by Theorem 5.13, ๐‘† is orthodox.

b) Let ๐‘† be completely simple and orthodox. By Theorem 4.11, ๐‘† โ‰ƒM[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] for some group ๐บ, index sets ๐ผ and ๐›ฌ and regularmatrix ๐‘ƒ over๐บ. View ๐ผร—๐›ฌ as a rectangular band. Without loss ofgenerality, assume that there is a symbol 1 in ๐ผ โˆฉ ๐›ฌ. The elements(1, ๐‘โˆ’1๐œ†1 , ๐œ†) and (๐‘—, ๐‘โˆ’11๐‘— , 1) are idempotents of ๐‘†, and so, since ๐‘† isorthodox, their product (1, ๐‘โˆ’1๐œ†1๐œ†)(๐‘—, ๐‘โˆ’11๐‘— , 1) = (1, ๐‘โˆ’1๐œ†1๐‘๐œ†๐‘—๐‘โˆ’11๐‘— , 1)is also an idempotent; hence ๐‘โˆ’1๐œ†1๐‘๐œ†๐‘—๐‘โˆ’11๐‘— = ๐‘โˆ’111 . Define a map๐œ‘ โˆถ ๐บ ร— (๐ผ ร— ๐›ฌ) โ†’ ๐‘† by (๐‘”, (๐‘–, ๐œ†))๐œ‘ = (๐‘–, ๐‘โˆ’11๐‘– ๐‘”๐‘11๐‘โˆ’1๐œ†1 , ๐œ†). Then

(๐‘”, (๐‘–, ๐œ†))๐œ‘(โ„Ž, (๐‘—, ๐œ‡))๐œ‘= (๐‘–, ๐‘โˆ’11๐‘– ๐‘”๐‘11๐‘โˆ’1๐œ†1 , ๐œ†)(๐‘—, ๐‘โˆ’11๐‘— โ„Ž๐‘11๐‘โˆ’1๐œ‡1 , ๐œ‡)

Solutions to exercises โ€ข 229

Page 238: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

= (๐‘–, ๐‘โˆ’11๐‘– ๐‘”๐‘11๐‘โˆ’1๐œ†1๐‘๐œ†๐‘—๐‘โˆ’11๐‘— โ„Ž๐‘11๐‘โˆ’1๐œ‡1 , ๐œ‡)= (๐‘–, ๐‘โˆ’11๐‘– ๐‘”๐‘11๐‘โˆ’111 โ„Ž๐‘11๐‘โˆ’1๐œ‡1 , ๐œ‡)= (๐‘–, ๐‘โˆ’11๐‘– ๐‘”โ„Ž๐‘11๐‘โˆ’1๐œ‡1 , ๐œ‡)= (๐‘”โ„Ž, (๐‘–, ๐œ‡))๐œ‘;

thus ๐œ‘ is a homomorphism. It is clearly injective and surjectiveand thus an isomorphism.

For the converse, let๐บ be a group and let ๐ผร—๐›ฌ be a rectangularband. Let ๐‘ƒ be the ๐›ฌ ร— ๐ผmatrix all of whose entries are 1๐บ. It isstraightforward to see that

๐œ‘ โˆถ ๐บ ร— (๐ผ ร— ๐›ฌ) โ†’M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ], (๐‘”, (๐‘–, ๐œ†)) โ†ฆ (๐‘–, ๐‘”, ๐œ†)

is an isomorphism; thus๐บร—(๐ผร—๐›ฌ) is completely simple. The onlyidempotent in ๐บ is 1๐บ and every element of ๐ผ ร— ๐›ฌ is idempotent.Hence the set of idempotents of๐บร—(๐ผร—๐›ฌ) is {1๐บ}ร—(๐ผร—๐›ฌ), whichis clearly a subsemigroup. Since ๐บ ร— (๐ผ ร— ๐›ฌ) is completely simple,it is regular by Proposition 4.13, and hence is orthodox.

5.7 Let ๐‘† be a completely 0-simple inverse semigroup. By Theorem 4.7,๐‘† โ‰ƒM0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] for some group ๐บ, index sets ๐ผ and ๐›ฌ, and regularmatrix ๐‘ƒ over ๐บ0. Since ๐‘† is inverse, every L-class and every R-classcontains exactly one idempotent. Now, the non-zero idempotents ofM0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] are elements of the form (๐‘–, ๐‘โˆ’1๐œ†๐‘– , ๐œ†), where ๐‘– โˆˆ ๐ผ and๐œ† โˆˆ ๐›ฌ are such that ๐‘๐œ†๐‘– โ‰  0. The non-zeroR-classes ofM0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ]are the sets {๐‘–} ร— ๐บ ร— ๐›ฌ; the non-zero L-classes of M0[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] arethe sets ๐ผ ร— ๐บ ร— {๐œ†}. So for each ๐‘–, there is a unique ๐œ† such that ๐‘๐œ†๐‘– isnon-zero, and vice versa. Hence there is a bijection ๐œ“ โˆถ ๐ผ โ†’ ๐›ฌ so that๐‘–๐œ“ is the unique element of ๐›ฌ with ๐‘(๐‘–๐œ“)๐‘– โ‰  0. Hence |๐ผ| = |๐›ฌ| Since ๐›ฌan abstract index set, we can reorder it and the rows of ๐‘ƒ so that ๐‘ƒbecomes diagonal. Now we can simply replace the index set ๐›ฌ with ๐ผ.

Now suppose that ๐‘† โ‰ƒM0[๐บ; ๐ผ, ๐ผ; ๐‘ƒ], where ๐‘ƒ is diagonal. Then๐‘† is completely 0-simple and therefore regular. The idempotents ofM0[๐บ; ๐ผ, ๐ผ; ๐‘ƒ] are the elements (๐‘–, ๐‘โˆ’1๐‘–๐‘– , ๐‘–). If ๐‘– โ‰  ๐‘—, then ๐‘๐‘–๐‘— = 0 (since๐‘ƒ is diagonal) and so (๐‘–, ๐‘โˆ’1๐‘–๐‘– , ๐‘–)(๐‘—, ๐‘โˆ’1๐‘—๐‘— , ๐‘—) = 0. So the idempotents of ๐‘†commute and so ๐‘† is inverse.

5.8 a) Let ๐‘ฅ โˆˆ im ๐œ. Then ๐‘ฅ = ๐‘ง๐œ for some ๐‘ง โˆˆ ๐‘†1. Let ๐‘ฆ โˆˆ ๐‘†1. Since ๐œ isa partial right translation, dom ๐œ is a left ideal and so ๐‘ฆ๐‘ง โˆˆ dom ๐œ;furthermore, (๐‘ฆ๐‘ง)๐œ = ๐‘ฆ(๐‘ง๐œ) = ๐‘ฆ๐‘ฅ and so ๐‘ฆ๐‘ฅ โˆˆ im ๐œ. Thus im ๐œ isa left ideal of ๐‘†1.

b) Let ๐œ, ๐œŽ โˆˆ I๐‘†1 be partial right translations. Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†1. Suppose๐‘ฅ๐œ๐œŽ is defined. Then both ๐‘ฅ โˆˆ dom ๐œ and ๐‘ฅ๐œ โˆˆ dom๐œŽ. Sincedom ๐œ is a left ideal, ๐‘ฆ๐‘ฅ โˆˆ dom ๐œ and (๐‘ฆ๐‘ฅ)๐œ = ๐‘ฆ(๐‘ฅ๐œ). Since dom๐œŽis a left ideal, ๐‘ฆ(๐‘ฅ๐œ) โˆˆ dom๐œŽ and (๐‘ฆ(๐‘ฅ๐œ))๐œŽ = ๐‘ฆ(๐‘ฅ๐œ๐œŽ). Hence๐‘ฆ๐‘ฅ โˆˆ dom(๐œ๐œŽ) and (๐‘ฆ๐‘ฅ)๐œ๐œŽ = ๐‘ฆ(๐‘ฅ๐œ๐œŽ). So ๐œ๐œŽ is a partial righttranslation.

230 โ€ขSolutions to exercises

Page 239: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Suppose ๐‘ฅ๐œโˆ’1 is defined. Let ๐‘ง = ๐‘ฅ๐œโˆ’1. Then ๐‘ง โˆˆ dom ๐œ and๐‘ง๐œ = ๐‘ฅ. Since dom ๐œ is a left ideal, ๐‘ฆ๐‘ง โˆˆ dom ๐œ and (๐‘ฆ๐‘ง)๐œ =๐‘ฆ(๐‘ง๐œ) = ๐‘ฆ๐‘ฅ. So ๐‘ฆ๐‘ฅ โˆˆ dom ๐œโˆ’1 and (๐‘ฆ๐‘ฅ)๐œโˆ’1 = ๐‘ฆ๐‘ง = ๐‘ฆ(๐‘ฅ๐œโˆ’1). So๐œโˆ’1 is a partial right translation.

Hence the set of partial right translations forms an inversesubsemigroup of I๐‘†1 . Since every ๐œŒ๐‘ฅ is a partial right translation,๐‘‡ is a subsemigroup of the set of partial right translation.

5.9 Let ๐‘ฅ = ๐‘๐›พ๐‘๐›ฝ โˆˆ ๐ต be arbitrary. Let ๐‘ฆ = ๐‘๐›ฝ๐‘๐›พ. Then

๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘๐›พ๐‘๐›ฝ๐‘๐›ฝ๐‘๐›พ๐‘๐›พ๐‘๐›ฝ =๐ต ๐‘๐›พ๐‘๐›ฝ = ๐‘๐›พ๐‘๐›ฝ = ๐‘ฅ.

So ๐‘ฅ is regular. The idempotents of ๐ต are elements of the form ๐‘๐›พ๐‘๐›พ byExercise 2.10(a). Thus, given two idempotents ๐‘’ = ๐‘๐›พ๐‘๐›พ and ๐‘“ = ๐‘๐›ฝ๐‘๐›ฝ,we see that if ๐›พ โฉพ ๐›ฝ,

๐‘’๐‘“ = ๐‘๐›พ๐‘๐›พ๐‘๐›ฝ๐‘๐›ฝ =๐ต ๐‘๐›พ๐‘๐›พโˆ’๐›ฝ๐‘๐›ฝ =๐ต ๐‘๐›พ๐‘๐›พ

=๐ต ๐‘๐›ฝ๐‘๐›พโˆ’๐›ฝ๐‘๐›พ =๐ต ๐‘๐›ฝ๐‘๐›ฝ๐‘๐›พ๐‘๐›พ = ๐‘“๐‘’

and similarly ๐‘’๐‘“ = ๐‘“๐‘’ if ๐›พ โฉฝ ๐›ฝ. So ๐ต is a regular semigroup whoseidempotents commute and so is inverse by Theorem 5.1.

5.10 For ๐‘ฅ โˆˆ ๐‘† and ๐‘’ โˆˆ ๐ธ(๐‘†),

๐‘ฅ โ‰ผ ๐‘’ โ‡’ ๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘’ [by definition of โ‰ผ]โ‡’ ๐‘ฅ2 = ๐‘ฅ๐‘ฅโˆ’1๐‘’๐‘ฅ๐‘ฅโˆ’1๐‘’โ‡’ ๐‘ฅ2 = ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’1๐‘’๐‘’ [since idempotents commute in ๐‘†]โ‡’ ๐‘ฅ2 = ๐‘ฅ๐‘ฅโˆ’1๐‘’ [since ๐‘ฅ๐‘ฅโˆ’1 and ๐‘’ are idempotents]โ‡’ ๐‘ฅ2 = ๐‘ฅ [since ๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘’]โ‡’ ๐‘ฅ โˆˆ ๐ธ(๐‘†).

5.11 Consider an element ๐‘ข of FInvM({๐›ผ}). Let ๐‘‡1 be the (unique) Munntree corresponding to ๐‘ข. Let ๐‘, ๐‘ž, and ๐‘Ÿ be, respectively, the โ€˜๐‘ฅ-co-ordinatesโ€™ of the leftmost endpoint, the vertex ๐œ”๐‘‡, and the rightmostendpoint. Notice that๐‘ โฉฝ 0, ๐‘Ÿ โฉพ 0, and๐‘ โฉฝ ๐‘ž โฉฝ ๐‘Ÿ, so that (๐‘, ๐‘ž, ๐‘Ÿ) โˆˆ ๐พ.In this way, we determine a map ๐œ‘ โˆถ FInvM({๐‘Ž}) โ†’ ๐พ. Clearly, aunique Munn tree of the given form can be reconstructed from anytriple (๐‘, ๐‘ž, ๐‘Ÿ) โˆˆ ๐พ, so ๐œ‘ is injective and surjective.

Let ๐‘ฃ be another element of FInvM({๐‘Ž}) and let ๐‘‡2 be the corres-ponding Munn tree. Let the triple (๐‘โ€ฒ, ๐‘žโ€ฒ, ๐‘Ÿโ€ฒ) โˆˆ ๐พ correspond to ๐‘‡2.Consider multiplying ๐‘ข and ๐‘ฃ using the corresponding Munn trees๐‘‡1 and ๐‘‡2 to get a Munn tree ๐‘‡ corresponding ๐‘ข๐‘ฃ. The process isillustrated in Figure S.5. First we merge the vertices ๐œ”๐‘‡1 and ๐›ผ๐‘‡2 toform a vertex that we callโˆž, and let ๐›ผ๐‘‡ = ๐›ผ๐‘‡1 and ๐œ”๐‘‡ = ๐œ”๐‘‡2 . Thenwe fold edges together until we get the Munn tree ๐‘‡. It is easy to seefrom the diagram that the coordinate of ๐œ”๐‘‡ relative to ๐›ผ๐‘‡ is ๐‘ž + ๐‘žโ€ฒ,that the coordinate of the leftmost endpoint of ๐‘‡ relative to ๐›ผ๐‘‡ is the

Solutions to exercises โ€ข 231

Page 240: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

FIGURE S.5Multiplication of elements ofFInvM({๐‘Ž}) using Munn trees.The numbers ๐‘, ๐‘ž, ๐‘Ÿ are, re-spectively, the โ€˜๐‘ฅ-coordinatesโ€™relative to ๐›ผ๐‘‡1 of the left end-point of๐‘‡1 , the vertex๐œ”๐‘‡1 , andthe right endpoint of ๐‘‡1 ; thenumbers๐‘โ€ฒ, ๐‘žโ€ฒ, ๐‘Ÿโ€ฒplay a similar

role for๐‘‡2 .

๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž๐›ผ๐‘‡1 ๐œ”๐‘‡1๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž

๐›ผ๐‘‡2 ๐œ”๐‘‡2

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž๐‘

โžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž๐‘žโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโžโž๐‘Ÿ

โŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸ๐‘โ€ฒ

โŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸ๐‘žโ€ฒ

โŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸ๐‘Ÿโ€ฒ

merge ๐œ”๐‘‡1 & ๐›ผ๐‘‡2 ,let ๐›ผ๐‘‡ = ๐›ผ๐‘‡1 and ๐œ”๐‘‡ = ๐œ”๐‘‡2

๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž๐›ผ๐‘‡๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž

๐œ”๐‘‡

๐‘Ž ๐‘Ž

๐‘Ž ๐‘Žโˆž

folding arrows and merging vertices

๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž๐›ผ๐‘‡ ๐œ”๐‘‡โŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸ

min{๐‘, ๐‘โ€ฒ + ๐‘ž}โŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸ

๐‘ž + ๐‘žโ€ฒโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸโŸmax{๐‘Ÿ, ๐‘ž + ๐‘Ÿโ€ฒ}

smaller of ๐‘ and ๐‘ž + ๐‘โ€ฒ, and the coordinate of the rightmost endpointof ๐‘‡ relative to ๐›ผ๐‘‡ is the greater of ๐‘Ÿ and ๐‘ž + ๐‘Ÿโ€ฒ. That is, the triple(min{๐‘, ๐‘ž+๐‘โ€ฒ}, ๐‘ž+๐‘žโ€ฒ,max{๐‘Ÿ, ๐‘ž+ ๐‘Ÿโ€ฒ}) corresponds to ๐‘‡. Thus the map๐œ‘ is a homomorphism and thus an isomorphism.

5.12 By Exercise 5.11, the monoid ๐พ is isomorphic to FInvM({๐‘Ž}). Thus itis sufficient to prove that ๐พ is a subdirect product of ๐ต ร— ๐ต. The map๐œ‘ is a homomorphism since

(๐‘, ๐‘ž, ๐‘Ÿ)๐œ‘(๐‘โ€ฒ, ๐‘žโ€ฒ, ๐‘Ÿโ€ฒ)๐œ‘= (๐‘โˆ’๐‘๐‘โˆ’๐‘+๐‘ž, ๐‘๐‘Ÿ๐‘โˆ’๐‘ž+๐‘Ÿ)(๐‘โˆ’๐‘โ€ฒ๐‘โˆ’๐‘โ€ฒ+๐‘žโ€ฒ, ๐‘๐‘Ÿโ€ฒ๐‘โˆ’๐‘žโ€ฒ+๐‘Ÿโ€ฒ)= (๐‘โˆ’๐‘+๐‘โˆ’๐‘ž+max{โˆ’๐‘+๐‘ž,โˆ’๐‘โ€ฒ}๐‘โˆ’๐‘โ€ฒ+๐‘žโ€ฒ+๐‘โ€ฒ+max{โˆ’๐‘+๐‘ž,โˆ’๐‘โ€ฒ},

๐‘๐‘Ÿ+๐‘žโˆ’๐‘Ÿ+max{โˆ’๐‘ž+๐‘Ÿ,๐‘Ÿโ€ฒ}๐‘๐‘Ÿโ€ฒโˆ’๐‘žโ€ฒโˆ’๐‘Ÿโ€ฒ+max{โˆ’๐‘ž+๐‘Ÿ,๐‘Ÿโ€ฒ})= (๐‘max{โˆ’๐‘,โˆ’๐‘โ€ฒโˆ’๐‘ž}๐‘max{โˆ’๐‘+๐‘ž+๐‘žโ€ฒ,โˆ’๐‘โ€ฒ+๐‘žโ€ฒ}, ๐‘max{๐‘Ÿ,๐‘ž+๐‘Ÿโ€ฒ}๐‘max{๐‘Ÿโˆ’๐‘žโˆ’๐‘žโ€ฒ,โˆ’๐‘žโ€ฒ+๐‘Ÿโ€ฒ})= (๐‘max{โˆ’๐‘,โˆ’๐‘โ€ฒโˆ’๐‘ž}๐‘๐‘ž+๐‘žโ€ฒ+max{โˆ’๐‘,โˆ’๐‘โ€ฒโˆ’๐‘ž}, ๐‘max{๐‘Ÿ,๐‘ž+๐‘Ÿโ€ฒ}๐‘max{๐‘Ÿ,๐‘ž+๐‘Ÿโ€ฒ}โˆ’๐‘žโˆ’๐‘žโ€ฒ)= (โˆ’max{โˆ’๐‘, โˆ’๐‘โ€ฒ โˆ’ ๐‘ž}, ๐‘ž + ๐‘žโ€ฒ,max{๐‘Ÿ, ๐‘ž + ๐‘Ÿโ€ฒ})๐œ‘= (min{๐‘, ๐‘โ€ฒ + ๐‘ž}, ๐‘ž + ๐‘žโ€ฒ,max{๐‘Ÿ, ๐‘ž + ๐‘Ÿโ€ฒ})๐œ‘= ((๐‘, ๐‘ž, ๐‘Ÿ)(๐‘โ€ฒ, ๐‘žโ€ฒ, ๐‘Ÿโ€ฒ))๐œ‘.

Furthermore, ๐œ‘ is injective since

(๐‘, ๐‘ž, ๐‘Ÿ)๐œ‘ = (๐‘โ€ฒ, ๐‘žโ€ฒ, ๐‘Ÿโ€ฒ)๐œ‘โ‡’ (๐‘โˆ’๐‘๐‘โˆ’๐‘+๐‘ž, ๐‘๐‘Ÿ๐‘โˆ’๐‘ž+๐‘Ÿ) = (๐‘โˆ’๐‘โ€ฒ๐‘โˆ’๐‘โ€ฒ+๐‘žโ€ฒ, ๐‘๐‘Ÿโ€ฒ๐‘โˆ’๐‘žโ€ฒ+๐‘Ÿโ€ฒ)

232 โ€ขSolutions to exercises

Page 241: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

โ‡’ (โˆ’๐‘ = โˆ’๐‘โ€ฒ) โˆง (โˆ’๐‘ + ๐‘ž = โˆ’๐‘โ€ฒ + ๐‘žโ€ฒ) โˆง (๐‘Ÿ = ๐‘Ÿโ€ฒ)โ‡’ (๐‘, ๐‘ž, ๐‘Ÿ) = (๐‘โ€ฒ, ๐‘žโ€ฒ, ๐‘Ÿโ€ฒ).

So๐œ‘ embeds๐พ into๐ตร—๐ต. Finally, as๐‘ and ๐‘ž range overโ„•โˆช{0}, clearly(๐‘, ๐‘ž, ๐‘ž)๐œ‘๐œ‹1 = ๐‘โˆ’๐‘๐‘โˆ’๐‘+๐‘ž ranges over ๐ต, and as ๐‘ž and ๐‘Ÿ range overโ„•โˆช {0}, clearly (๐‘ž, ๐‘ž, ๐‘Ÿ)๐œ‘๐œ‹2 = ๐‘๐‘Ÿ๐‘โˆ’๐‘ž+๐‘Ÿ ranges over ๐ต. So im๐œ‘ projectssurjectively to both copies of ๐ต, and so ๐พ is a subdirect product oftwo copies of ๐ต.

5.13 a) Since BR(๐‘€, ๐œ‘) is generated by ๐ดโˆช {๐‘, ๐‘}, every element is repres-ented by some word ๐‘ข โˆˆ (๐ดโˆช {๐‘, ๐‘})โˆ—. Using the defining relations(๐‘๐‘, ๐œ€), we can delete any subword ๐‘๐‘. Then, using defining re-lations of the form (๐‘๐‘Ž, (๐‘Ž๐œ‘)๐‘), we can replace any subword ๐‘๐‘Žby (๐‘Ž๐œ‘)๐‘ and any subword ๐‘Ž๐‘ by ๐‘(๐‘Ž๐œ‘). Iterating this process, weeventually find a word ๐‘ฃ containing no subwords ๐‘๐‘, ๐‘๐‘Ž or ๐‘Ž๐‘: thatis, ๐‘ฃ = ๐‘๐›พ๐‘ค๐‘๐›ฝ for some ๐›พ, ๐›ฝ โˆˆ โ„• โˆช {0} and ๐‘ค โˆˆ ๐ดโˆ—.

b) i) Suppose that ๐›พ = ๐›พโ€ฒ, ๐›ฝ = ๐›ฝโ€ฒ, and ๐‘ค =๐‘€ ๐‘คโ€ฒ. Then there is asequence of elementary ๐œŒ-transitions from ๐‘ค to ๐‘คโ€ฒ. Since ๐œŒis a subset of the defining relations in (5.15), ๐‘ค and ๐‘คโ€ฒ repres-ent the same element of BR(๐‘€, ๐œ‘). Hence ๐‘๐›พ๐‘ค๐‘๐›ฝ and ๐‘๐›พ๐‘คโ€ฒ๐‘๐›ฝrepresent the same element of BR(๐‘€, ๐œ‘).

ii) It is easy to prove that for all defining relations (๐‘ข, ๐‘ฃ) in (5.15),we have ๐‘ข๐œ“ = ๐‘ฃ๐œ“ and so ๐œ“ is well-defined.

Suppose now that ๐‘๐›พ๐‘ค๐‘๐›ฝ and ๐‘๐›พโ€ฒ๐‘คโ€ฒ๐‘๐›ฝโ€ฒ represent the sameelement of BR(๐‘€, ๐œ‘). Then (๐‘๐›พ๐‘ค๐‘๐›ฝ)๐œ“ = (๐‘๐›พโ€ฒ๐‘คโ€ฒ๐‘๐›ฝโ€ฒ)๐œ“. Thus

(๐›พ, ๐‘ค, ๐›ฝ) = (0, 1๐‘€, 0)((๐‘๐›พ๐‘ค๐‘๐›ฝ)๐œ“)= (0, 1๐‘€, 0)((๐‘๐›พโ€ฒ๐‘คโ€ฒ๐‘๐›ฝโ€ฒ)๐œ“) = (๐›พ, ๐‘คโ€ฒ, ๐›ฝ),

and so ๐›พ = ๐›พโ€ฒ and ๐›ฝ = ๐›ฝโ€ฒ.c) Define a map ๐œ— โˆถ ๐‘€ โ†’ BR(๐‘€, ๐œ‘) by ๐‘ค๐œ— = ๐‘ค. This is clearly a

homomorphism, and

๐‘ค๐œ‘ =BR(๐‘€,๐œ‘) ๐‘คโ€ฒ๐œ‘ โ‡’ ๐‘0๐‘ค๐‘0 =BR(๐‘€,๐œ‘) ๐‘0๐‘คโ€ฒ๐‘0 โ‡’ ๐‘ค =๐‘€ ๐‘คโ€ฒ

by parts a) and b). Hence ๐œ— is injective and so๐‘€ embeds intoBR(๐‘€, ๐œ‘).

5.14 Let ๐‘† = BR(๐‘€, ๐œ‘). We aim to show that ๐‘†๐‘ฅ๐‘† = ๐‘† for all ๐‘ฅ โˆˆ ๐‘†. Suppose๐‘ฅ = ๐‘๐›พ๐‘ค๐‘๐›ฝ, where ๐‘ค โˆˆ ๐‘€. Let ๐‘๐›ฟ๐‘ข๐‘๐œ be an arbitrary element of ๐‘†. Let๐‘ = ๐‘๐›ฟ๐‘ข๐‘๐›พ+1 and ๐‘ž = ๐‘๐›ฝ+1๐‘๐œ. Then

๐‘๐‘ฅ๐‘ž = ๐‘๐›ฟ๐‘ข๐‘๐›พ+1๐‘๐›พ๐‘ค๐‘๐›ฝ๐‘๐›ฝ+1๐‘๐œ

=๐‘† ๐‘๐›ฟ๐‘ข๐‘๐‘ค๐‘๐‘๐œ

=๐‘† ๐‘๐›ฟ๐‘ข๐‘๐‘(๐‘ค๐œ‘)๐‘๐œ

=๐‘† ๐‘๐›ฟ๐‘ข๐‘๐‘๐‘๐œ

=๐‘† ๐‘๐›ฟ๐‘ข๐‘๐œ.

Solutions to exercises โ€ข 233

Page 242: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

So ๐‘๐›ฟ๐‘ข๐‘๐œ = ๐‘๐‘ฅ๐‘ž โˆˆ ๐‘†๐‘ฅ๐‘†. Since ๐‘๐›ฟ๐‘ข๐‘๐œ โˆˆ ๐‘†was arbitrary, ๐‘† = ๐‘†๐‘ฅ๐‘†. Henceany ideal of ๐‘†must be ๐‘† itself. So ๐‘† is simple.

Exercises for chapter 6

[See page 128 for the exercises.]6.1 For clarity, let ๐œ„ โˆถ ๐‘† โ†’ ๐บ and ๐œ„โ€ฒ โˆถ ๐‘† โ†’ ๐บโ€ฒ be the embedding maps.

Define ๐œ“ โˆถ ๐บ โ†’ ๐ป by (๐‘ฅ๐œ„)(๐‘ฆ๐œ„)โˆ’1๐œ‘ = (๐‘ฅ๐œ„โ€ฒ)(๐‘ฆ๐œ„โ€ฒ)โˆ’1 for ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. Let๐‘ฅ1, ๐‘ฅ2, ๐‘ฆ1, ๐‘ฆ2 โˆˆ ๐‘†. Then

(๐‘ฅ1๐œ„)(๐‘ฆ1๐œ„)โˆ’1 = (๐‘ฅ2๐œ„)(๐‘ฆ2๐œ„)โˆ’1

โ‡” (๐‘ฅ1๐œ„)(๐‘ฆ2๐œ„) = (๐‘ฅ2๐œ„)(๐‘ฆ1๐œ„)โ‡” ๐‘ฅ1๐‘ฆ2 = ๐‘ฅ2๐‘ฆ1 [since ๐œ„ is an injective homomorphism]โ‡” (๐‘ฅ1๐œ„โ€ฒ)(๐‘ฆ2๐œ„โ€ฒ) = (๐‘ฅ2๐œ„โ€ฒ)(๐‘ฆ1๐œ„โ€ฒ)

[since ๐œ„โ€ฒ is an injective homomorphism]โ‡” (๐‘ฅ1๐œ„โ€ฒ)(๐‘ฆ1๐œ„โ€ฒ)โˆ’1 = (๐‘ฅ2๐œ„โ€ฒ)(๐‘ฆ2๐œ„โ€ฒ)โˆ’1

โ‡” ((๐‘ฅ1๐œ„)(๐‘ฆ1๐œ„)โˆ’1)๐œ“ = ((๐‘ฅ2๐œ„)(๐‘ฆ2๐œ„)โˆ’1)๐œ“.

The forward implication shows ๐œ“ is well-defined; the reverse implica-tion shows it is injective. Furthermore

((๐‘ฅ1๐œ„)(๐‘ฆ1๐œ„)โˆ’1)๐œ“((๐‘ฅ2๐œ„)(๐‘ฆ2๐œ„)โˆ’1)๐œ“= (๐‘ฅ1๐œ„โ€ฒ)(๐‘ฆ1๐œ„โ€ฒ)โˆ’1(๐‘ฅ2๐œ„โ€ฒ)(๐‘ฆ2๐œ„โ€ฒ)โˆ’1 [by definition of ๐œ“]= (๐‘ฅ1๐œ„โ€ฒ)(๐‘ฅ2๐œ„โ€ฒ)(๐‘ฆ1๐œ„โ€ฒ)โˆ’1(๐‘ฆ2๐œ„โ€ฒ)โˆ’1 [by commutativity]= (๐‘ฅ1๐‘ฅ2)๐œ„โ€ฒ((๐‘ฆ2๐‘ฆ1)๐œ„โ€ฒ)โˆ’1 [by inverses in๐ป]= (((๐‘ฅ1๐‘ฅ2)๐œ„)(๐‘ฆ2๐‘ฆ1๐œ„)โˆ’1)๐œ“ [by definition of ๐œ“]= ((๐‘ฅ1๐œ„)(๐‘ฅ2๐œ„)(๐‘ฆ1๐œ„)โˆ’1(๐‘ฆ2๐œ„)โˆ’1)๐œ“ [by inverses in ๐บ]= (((๐‘ฅ1๐œ„)(๐‘ฆ1๐œ„)โˆ’1)((๐‘ฅ2๐œ„)(๐‘ฆ2๐œ„)โˆ’1))๐œ“, [by commutativity]

so ๐œ“ is a homomorphism.Finally, let ๐‘ ๐œ„ โˆˆ ๐‘†๐œ„. Then for arbitrary ๐‘ง โˆˆ ๐‘†,

(๐‘ ๐œ„)๐œ“ = ((๐‘ ๐‘ง๐œ„)(๐‘ง๐œ„)โˆ’1)๐œ“ = ((๐‘ ๐‘ง๐œ„โ€ฒ)(๐‘ง๐œ„โ€ฒ)โˆ’1) = ๐‘ ๐œ„โ€ฒ,

so ๐œ“ is clearly maps ๐‘†๐œ„ surjectively to ๐‘†๐œ„โ€ฒ.6.2 Fix ๐‘ฅ โˆˆ ๐ผ. For ๐‘  โˆˆ ๐‘† โˆ– ๐ผ. Define ๐‘ ๏ฟฝ๏ฟฝ to be (๐‘ฅ๐œ‘)โˆ’1((๐‘ฅ๐‘ )๐œ‘); notice that๐‘ฅ๐‘  โˆˆ ๐ผ since ๐ผ is an ideal. Now, for ๐‘ โ€ฒ โˆˆ ๐‘† and ๐‘ฆ โˆˆ ๐ผ,

(๐‘ ๏ฟฝ๏ฟฝ)(๐‘ฆ๏ฟฝ๏ฟฝ)= (๐‘ฅ๐œ‘)โˆ’1((๐‘ฅ๐‘ )๐œ‘)(๐‘ฆ๐œ‘) [by definition of ๏ฟฝ๏ฟฝ]= (๐‘ฅ๐œ‘)โˆ’1((๐‘ฅ๐‘ ๐‘ฆ)๐œ‘) [since ๐œ‘ is a homomorphism]= (๐‘ ๐‘ฆ)๏ฟฝ๏ฟฝ; [by definition of ๏ฟฝ๏ฟฝ]

234 โ€ขSolutions to exercises

Page 243: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

furthermore, (๐‘ ๏ฟฝ๏ฟฝ)(๐‘ฆ๏ฟฝ๏ฟฝ) = (๐‘ ๐‘ฆ)๏ฟฝ๏ฟฝ by commutativity of ๐‘† and ๐บ. For๐‘ , ๐‘ โ€ฒ โˆˆ ๐‘†,

(๐‘ ๏ฟฝ๏ฟฝ)(๐‘ โ€ฒ๏ฟฝ๏ฟฝ)= (๐‘ฅ๐œ‘)โˆ’1((๐‘ฅ๐‘ )๐œ‘)(๐‘ฅ๐œ‘)โˆ’1((๐‘ฅ๐‘ โ€ฒ)๐œ‘) [by definition of ๏ฟฝ๏ฟฝ]= (๐‘ฅ๐œ‘)โˆ’1(๐‘ฅ๐œ‘)โˆ’1((๐‘ฅ๐‘ )๐œ‘)((๐‘ฅ๐‘ โ€ฒ)๐œ‘) [since ๐บ is abelian]= (๐‘ฅ๐œ‘)โˆ’1(๐‘ฅ๐œ‘)โˆ’1((๐‘ฅ๐‘ ๐‘ฅ๐‘ โ€ฒ)๐œ‘) [since ๐œ‘ is a homomorphism]= (๐‘ฅ๐œ‘)โˆ’1(๐‘ฅ๐œ‘)โˆ’1((๐‘ฅ๐‘ฅ๐‘ ๐‘ โ€ฒ)๐œ‘) [since ๐‘† is commutative]= (๐‘ฅ๐œ‘)โˆ’1(๐‘ฅ๐œ‘)โˆ’1(๐‘ฅ๐œ‘)((๐‘ฅ๐‘ ๐‘ โ€ฒ)๐œ‘)

[since ๐œ‘ is a homomorphism and ๐‘ฅ, ๐‘ฅ๐‘ ๐‘ โ€ฒ โˆˆ ๐ผ]= (๐‘ฅ๐œ‘)โˆ’1((๐‘ฅ๐‘ ๐‘ โ€ฒ)๐œ‘) [since (๐‘ฅ๐œ‘)โˆ’1(๐‘ฅ๐œ‘) = 1๐บ]= (๐‘ ๐‘ โ€ฒ)๏ฟฝ๏ฟฝ. [by definition of ๏ฟฝ๏ฟฝ]

Together with the fact that ๐œ‘ is a homomorphism, this shows that ๏ฟฝ๏ฟฝis a homomorphism.

Finally, suppose ๐œ“ โˆถ ๐‘† โ†’ ๐บ is a homomorphism extending ๐œ‘.Then (๐‘ฅ๐‘ )๐œ“ = (๐‘ฅ๐œ“)(๐‘ ๐œ“) for any ๐‘  โˆˆ ๐‘† โˆ– ๐ผ. Hence (๐‘ฅ๐‘ )๐œ‘ = (๐‘ฅ๐œ‘)(๐‘ ๐œ“)since ๐‘ฅ, ๐‘ฅ๐‘  โˆˆ ๐ผ, and so ๐‘ ๐œ“ = (๐‘ฅ๐œ‘)โˆ’1((๐‘ฅ๐‘ )๐œ‘) = ๐‘ ๏ฟฝ๏ฟฝ. Hence ๐œ“ = ๏ฟฝ๏ฟฝ and so๏ฟฝ๏ฟฝ is the unique extension of ๐œ‘ to ๐‘†.

6.3 Let ๐‘‘ = gcd(๐‘†); this is well-defined since ๐‘† โ‰  {0}. Then if ๐‘ฅ โˆˆ ๐‘†, then๐‘ฅ = ๐‘‘๐‘˜ โˆˆ ๐‘‘โ„•, so ๐‘† โŠ† ๐‘‘โ„•. Furthermore, there exist ๐‘ง1,โ€ฆ , ๐‘ง๐‘› โˆˆ ๐‘† and๐‘˜1,โ€ฆ , ๐‘˜๐‘› โˆˆ โ„ค such that ๐‘˜1๐‘ง1 + ๐‘˜2๐‘ง2 +โ‹ฏ + ๐‘˜๐‘›๐‘ง๐‘› = ๐‘‘, hence movingall the terms where ๐‘˜๐‘– is negative to the right of the equality, we get๐‘  + ๐‘‘ = ๐‘ โ€ฒ for two elements ๐‘  and ๐‘ โ€ฒ of ๐‘†. Suppose ๐‘  = ๐‘‘๐‘ก and ๐‘ โ€ฒ = ๐‘‘๐‘กโ€ฒ.Now let ๐‘› โˆˆ โ„• with ๐‘› โฉพ (๐‘ก โˆ’ 1)๐‘ก + (๐‘ก โˆ’ 1); we aim to prove that ๐‘‘๐‘› โˆˆ ๐‘†.Let ๐‘› = ๐‘ž๐‘ก + ๐‘Ÿ, where ๐‘ž โˆˆ โ„• and 0 โฉฝ ๐‘Ÿ < ๐‘ก. Then ๐‘ž โฉพ (๐‘ก โˆ’ 1) โฉพ ๐‘Ÿ andso ๐‘ž โˆ’ ๐‘Ÿ โฉพ 0. Now, ๐‘› = (๐‘Ÿ๐‘ก + ๐‘Ÿ) + (๐‘ž โˆ’ ๐‘Ÿ)๐‘ก = ๐‘Ÿ(๐‘ก + 1) + (๐‘ž โˆ’ ๐‘Ÿ)๐‘ก, and so๐‘‘๐‘› = ๐‘Ÿ(๐‘‘๐‘ก + ๐‘‘) + (๐‘ž โˆ’ ๐‘Ÿ)๐‘ก๐‘‘ = ๐‘Ÿ(๐‘  + ๐‘‘) + (๐‘ž โˆ’ ๐‘Ÿ)๐‘  = ๐‘Ÿ๐‘ โ€ฒ + (๐‘ž โˆ’ ๐‘Ÿ)๐‘  โˆˆ ๐‘†.Thus, if ๐‘ฅ โˆˆ ๐‘‘โ„•โˆ–๐‘†, then ๐‘ฅ = ๐‘‘๐‘› for ๐‘› < (๐‘กโˆ’1)๐‘ก+ (๐‘กโˆ’1). Thus ๐‘‘โ„•โˆ–๐‘†is finite.

6.4 If ๐‘† = {0}; then all three conditions hold. So assume ๐‘† โ‰  {0} andsuppose ๐‘† contains both a positive integer ๐‘ and a negative integer๐‘›. Let ๐‘†+ = { ๐‘  โˆˆ ๐‘† โˆถ ๐‘  > 0 } and ๐‘†โˆ’ = { ๐‘  โˆˆ ๐‘† โˆถ ๐‘  < 0 }; clearly ๐‘†+and ๐‘†โˆ’ are subsemigroups of ๐‘†. Let ๐‘‘ = gcd(๐‘†), ๐‘‘+ = gcd(๐‘†+), and๐‘‘โˆ’ = gcd(๐‘†โˆ’). Clearly, ๐‘‘ โฉฝ ๐‘‘+ and ๐‘‘ โฉฝ ๐‘‘โˆ’. Since ๐‘‘ = ๐‘  โˆ’ ๐‘ โ€ฒ for some๐‘ , ๐‘ โ€ฒ โˆˆ ๐‘†, we have ๐‘‘ = (๐‘  + ๐‘˜๐‘) โˆ’ (๐‘ โ€ฒ + ๐‘˜๐‘) = (๐‘  + ๐‘˜๐‘›) โˆ’ (๐‘ โ€ฒ + ๐‘˜๐‘›) forall ๐‘˜ โˆˆ โ„•. Thus ๐‘‘ is both the difference between two elements of ๐‘†+and the difference between two elements of ๐‘†โˆ’. Hence ๐‘‘ โฉพ ๐‘‘+ and๐‘‘ โฉพ ๐‘‘โˆ’ and hence ๐‘‘ = ๐‘‘+ = ๐‘‘โˆ’. Thus ๐‘†+ โŠ† ๐‘‘โ„• and ๐‘†โˆ’ โŠ† โˆ’๐‘‘โ„•, and๐‘‘โ„• โˆ– ๐‘†+ and โˆ’๐‘‘โ„• โˆ– ๐‘†โˆ’ are finite. Hence ๐‘‘๐‘˜, ๐‘‘(๐‘˜ + 2) โˆˆ ๐‘†+ โŠ† ๐‘† andโˆ’๐‘‘(๐‘˜ + 1) โˆˆ ๐‘†โˆ’ โŠ† ๐‘† for large ๐‘˜. Hence ๐‘‘ = ๐‘‘(๐‘˜ + 2) โˆ’ ๐‘‘(๐‘˜ + 1) โˆˆ ๐‘† andโˆ’๐‘‘ = ๐‘‘๐‘˜โˆ’๐‘‘(๐‘˜+1) โˆˆ ๐‘†. So ๐‘‘โ„ค โŠ† ๐‘† โŠ† ๐‘†โˆ’โˆช{0}โˆช๐‘†+ โŠ† โˆ’๐‘‘โ„•โˆช{0}โˆช๐‘‘โ„• =๐‘‘โ„ค. Hence ๐‘† = ๐‘‘โ„ค is a subgroup of โ„ค.

Solutions to exercises โ€ข 235

Page 244: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

6.5 a) From the definition, โˆผ is clearly reflexive and symmetric. Suppose๐›ผ โˆผ ๐›ฝ and ๐›ฝ โˆผ ๐›พ. Then there exist ๐›ฟ and ๐œ with ๐›ฟ โŠ† ๐›ผ, ๐›ฟ โŠ† ๐›ฝ,๐œ โŠ† ๐›ผ, and ๐œ โŠ† ๐›ฝ. Let ๐œ‚ = ๐œ๐œโˆ’1๐›ฟ. Then dom ๐œ‚ โŠ† dom ๐œ and forany ๐‘ฅ โˆˆ dom ๐œ‚, we have

๐‘ฅ๐œ‚ = ๐‘ฅ๐œ๐œโˆ’1๐›ฟ = ๐‘ฅ๐›ฟ = ๐‘ฅ๐›ฝ = ๐‘ฅ๐œ

and so ๐œ‚ โŠ† ๐›ฟ โŠ† ๐›ผ and ๐œ‚ โŠ† ๐œ โŠ† ๐›พ. Hence ๐›ผ โˆผ ๐›พ. Therefore โˆผ istransitive.

Suppose ๐›ผ1 โˆผ ๐›ฝ1 and ๐›ผ2 โˆผ ๐›ฝ2. Then there exist ๐›ฟ1 and ๐›ฟ2 with๐›ฟ1 โŠ† ๐›ผ1, ๐›ฟ1 โŠ† ๐›ฝ1, ๐›ฟ2 โŠ† ๐›ผ2 and ๐›ฟ2 โŠ† ๐›ฝ2. Hence ๐›ฟ1๐›ฟ2 โŠ† ๐›ผ1๐›ผ2 and๐›ฟ1๐›ฟ2 โŠ† ๐›ฝ1๐›ฝ2. Hence ๐›ผ1๐›ผ2 โˆผ ๐›ฝ1๐›ฝ2. Therefore โˆผ is a congruence.

b) Let ๐›ผ, ๐›ฝ โˆˆ ๐‘‡. Let ๐œ = ๐›ผโˆ’1๐›ฝ and ๐œ‚ = ๐›ฝ๐›ผโˆ’1. Then ๐›ผ๐œ = ๐›ผ๐›ผโˆ’1๐›ฝ โŠ† ๐›ฝand so ๐›ผ๐œ โˆผ ๐›ฝ; similarly ๐œ‚๐›ผ = ๐›ฝ๐›ผโˆ’1๐›ผ โŠ† ๐›ฝ and so ๐œ‚๐›ผ โˆผ ๐›ฝ. Thusfor any [๐›ผ]โˆผ, [๐›ฝ]โˆผ โˆˆ ๐บ, there exist [๐œ]โˆผ, [๐œ‚]โˆผ โˆˆ ๐บ with [๐›ผ]โˆผ[๐œ]โˆผ =[๐œ‚]โˆผ[๐›ผ]โˆผ = [๐›ฝ]โˆผ; hence [๐›ผ]โˆผ๐บ = ๐บ[๐›ผ]โˆผ = ๐บ for any [๐›ผ]โˆผ โˆˆ ๐บ.Thus ๐บ is a group.

c) Let ๐›ผ, ๐›ฝ โˆˆ ๐‘‡. Then im๐›ผ is a left ideal of ๐‘† by Exercise 5.8(a) anddom๐›ฝ is a left ideal of ๐‘† since ๐›ฝ is a partial right transformation.Since ๐‘† is right-reversible, im๐›ผ โˆฉ dom๐›ฝ โ‰  โˆ…. Hence ๐›ผ๐›ฝ โ‰  โˆ….

Since ๐‘‡ is generated by the non-empty elements ๐œŒ๐‘ฅ and ๐œŒโˆ’1๐‘ฅ ,we see that ๐‘‡ does not contain the empty relation.

d) Suppose ๐‘ฅ๐œ“ = ๐‘ฆ๐œ“; then [๐œŒ๐‘ฅ]โˆผ = [๐œŒ๐‘ฆ]โˆผ and so ๐œŒ๐‘ฅ โˆผ ๐œŒ๐‘ฆ. Thenthere exists ๐›ฟ โˆˆ ๐‘‡ such that ๐›ฟ โŠ† ๐œŒ๐‘ฅ and ๐›ฟ โŠ† ๐œŒ๐‘ฆ. By the previousparagraph, ๐›ฟ is not the empty relation. So let ๐‘ง โˆˆ dom ๐›ฟ. Then๐‘ง๐œŒ๐‘ฅ = ๐‘ง๐œŒ๐‘ฆ. Thus ๐‘ง๐‘ฅ = ๐‘ง๐‘ฆ and so ๐‘ฅ = ๐‘ฆ by cancellativity. Hence๐œ“ โˆถ ๐‘† โ†’ ๐บ is a monomorphism and so ๐‘† is group-embeddable.

6.6 Let (๐‘š, ๐‘›), (๐‘, ๐‘ž), (๐‘Ÿ, ๐‘ ) โˆˆ ๐‘†. Then

(๐‘š, ๐‘›)((๐‘, ๐‘ž)(๐‘Ÿ, ๐‘ )) = (๐‘š, ๐‘›)(๐‘ + ๐‘Ÿ, 2๐‘Ÿ๐‘ž + ๐‘ )= (๐‘š + ๐‘ + ๐‘Ÿ, 2๐‘+๐‘Ÿ๐‘› + 2๐‘Ÿ๐‘ž + ๐‘ )= (๐‘š + ๐‘ + ๐‘Ÿ, 2๐‘Ÿ(2๐‘๐‘› + ๐‘ž) + ๐‘ )= (๐‘š + ๐‘, 2๐‘๐‘› + ๐‘ž)(๐‘Ÿ, ๐‘ )= ((๐‘š, ๐‘›)(๐‘, ๐‘ž))(๐‘Ÿ, ๐‘ );

thus the multiplication is associative.Let (๐‘š1, ๐‘›1), (๐‘š2, ๐‘›2) โˆˆ ๐‘†. Let ๐‘1 = ๐‘š2, ๐‘ž1 = 2๐‘š1๐‘›2, ๐‘2 = ๐‘š1, and๐‘ž2 = 2๐‘š2๐‘›2. Then

(๐‘š1, ๐‘›1)(๐‘1, ๐‘ž1) = (๐‘š1 + ๐‘1, 2๐‘1๐‘›1 + ๐‘ž1)= (๐‘š1 + ๐‘š2, 2๐‘š2๐‘›2 + 2๐‘š1๐‘›2)

and

(๐‘š2, ๐‘›2)(๐‘2, ๐‘ž2) = (๐‘š2 + ๐‘2, 2๐‘2๐‘›2 + ๐‘ž2)= (๐‘š2 + ๐‘š1, 2๐‘š1๐‘›2 + 2๐‘š2๐‘›2);

236 โ€ขSolutions to exercises

Page 245: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

so (๐‘š1, ๐‘›1)(๐‘1, ๐‘ž1) = (๐‘š2, ๐‘›2)(๐‘2, ๐‘ž2). Since (๐‘š1, ๐‘›1) and (๐‘š2, ๐‘›2)were arbitrary, ๐‘† is left-reversible.

Suppose ๐‘† is right-reversible.Then (1, 0) and (1, 1) have a commonleftmultiple. Hence there exist elements (๐‘1, ๐‘ž1) and (๐‘2, ๐‘ž2) such that(๐‘1, ๐‘ž1)(1, 0) = (๐‘2, ๐‘ž2)(1, 1). Thus (๐‘1 + 1, 2๐‘ž1) = (๐‘2 + 1, 2๐‘ž2 + 1),which is a contradiction, since 2๐‘ž1 is even and 2๐‘ž2+1 is odd.Therefore๐‘† is not right-reversible.

Exercises for chapter 7

[See pages 147โ€“148 for the exercises.]7.1 Let๐‘€ be a group. Then๐‘€ is simple and so๐‘€๐‘ฅ๐‘€ = ๐‘€ for all ๐‘ฅ โˆˆ ๐‘€.

Now suppose๐‘€๐‘ฅ๐‘€ = ๐‘€ for all ๐‘ฅ โˆˆ ๐‘€. Then for each ๐‘ฅ โˆˆ ๐‘€,there exists ๐‘, ๐‘ž โˆˆ ๐‘€ such that ๐‘๐‘ฅ๐‘ž = 1๐‘€. Hence ๐‘ฅ J 1๐‘€ and so๐‘ฅ H 1๐‘€ by Proposition 7.1. Thus ๐‘ฅ lies in the group of units of๐‘€. Soall elements of๐‘€ are invertible and so๐‘€ is a group.

7.2 In finite semigroups, J = D, so ๐ฝ๐‘ฅ = ๐ท๐‘ฅ. Since ๐ท๐‘ฅ is non-trivial, itcontains some element ๐‘ง โ‰  ๐‘ฅ such that ๐‘ง R ๐‘ฅ. That is, there exist๐‘, ๐‘ž โˆˆ ๐‘†1 such that ๐‘ฅ๐‘ = ๐‘ง and ๐‘ง๐‘ž = ๐‘ฅ; notice that๐‘, ๐‘ž โˆˆ ๐‘† since ๐‘ฅ โ‰  ๐‘ง.Hence ๐‘ฅ๐‘๐‘ž = ๐‘ฅ, and so ๐‘ฅ(๐‘๐‘ž)๐‘˜ = ๐‘ฅ for all ๐‘˜ โˆˆ โ„•. Since ๐‘† is finite,there is some โ„“ โˆˆ โ„• such that (๐‘๐‘ž)โ„“ is idempotent. Let ๐‘ฆ = (๐‘๐‘ž)โ„“;then ๐‘ฆ2 = ๐‘ฆ and ๐‘ฅ๐‘ฆ = ๐‘ฅ. By the ordering of J-classes, ๐ฝ๐‘ฅ = ๐ฝ๐‘ฅ๐‘ฆ โฉฝ ๐ฝ๐‘ฆ.Since ๐‘ฆ is idempotent and thus regular, every element of๐ท๐‘ฆ = ๐ฝ๐‘ฆ isregular by Proposition 3.19.

7.3 a) Let ๐‘† be a finite nilsemigroup. Let ๐‘› = |๐‘†|. Let ๐‘ฅ1,โ€ฆ , ๐‘ฅ๐‘›+1 โˆˆ ๐‘†.Consider the ๐‘› + 1 products

๐‘ฅ1, ๐‘ฅ1๐‘ฅ2, โ€ฆ , ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘›, ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘›+1.

Since |๐‘†| = ๐‘›, at least two of these ๐‘› + 1 products must be equal:that is, ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜ = ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜+โ„“ for some ๐‘˜ โˆˆ {1,โ€ฆ , ๐‘›} and โ„“ โˆˆ{1,โ€ฆ , ๐‘› + 1 โˆ’ ๐‘˜}. Hence

๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜ = ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜๐‘ฅ๐‘˜+1โ‹ฏ๐‘ฅ๐‘˜+โ„“ = ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜(๐‘ฅ๐‘˜+1โ‹ฏ๐‘ฅ๐‘˜+โ„“)๐‘š

for all๐‘š โˆˆ โ„•. Since ๐‘† is a nilsemigroup, there is some๐‘š โˆˆ โ„•with(๐‘ฅ๐‘˜+1โ‹ฏ๐‘ฅ๐‘˜+โ„“)๐‘š = 0. Thus ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜ = ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘˜(๐‘ฅ๐‘˜+1โ‹ฏ๐‘ฅ๐‘˜+โ„“)๐‘š = 0and so ๐‘ฅ1โ‹ฏ๐‘ฅ๐‘› = 0 (since ๐‘˜ โฉฝ ๐‘›). Therefore ๐‘†๐‘› = {0} and so ๐‘† isnilpotent.

b) Let ๐‘† = {0}โˆช{ ๐‘ฅ๐‘–,๐‘— โˆถ ๐‘– โˆˆ โ„•, ๐‘— โฉฝ ๐‘– }. Define a product on ๐‘† as follows:

๐‘ฅ๐‘–,๐‘—๐‘ฅ๐‘˜,โ„“ = {๐‘ฅ๐‘–,๐‘—+โ„“ if ๐‘– = ๐‘˜ and ๐‘— + โ„“ โฉฝ ๐‘–,0 otherwise,

๐‘ฅ๐‘–,๐‘—0 = 0๐‘ฅ๐‘–,๐‘— = 00 = 0.

Solutions to exercises โ€ข 237

Page 246: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

It is easy to check that this operation is associative. For any ๐‘ฅ๐‘–,๐‘— โˆˆ ๐‘†,we have ๐‘ฅ๐‘–+1๐‘–,๐‘— = 0 since ๐‘—(๐‘– + 1) > ๐‘–. Thus ๐‘† is a nilsemigroup.However, for any ๐‘› โˆˆ โ„•, we have ๐‘ฅ๐‘›๐‘›,1 = ๐‘ฅ๐‘›,๐‘› โ‰  0, so ๐‘†๐‘› โ‰  {0}.Thus ๐‘† is not nilpotent.

7.4 a) Let ๐‘ฅโ€ฒ, ๐‘ฆโ€ฒ โˆˆ ๐ฝ๐œ‘. Then ๐‘ฅโ€ฒ = ๐‘ฅ๐œ‘ and ๐‘ฆโ€ฒ = ๐‘ฆ๐œ‘ for some ๐‘ฅ, ๐‘ฆ โˆˆ ๐ฝ.Thus there exist ๐‘, ๐‘ž, ๐‘Ÿ, ๐‘  โˆˆ ๐‘†1 such that ๐‘๐‘ฅ๐‘ž = ๐‘ฆ and ๐‘Ÿ๐‘ฆ๐‘  = ๐‘ฅ.Then (๐‘๐œ‘)๐‘ฅโ€ฒ(๐‘ž๐œ‘) = ๐‘ฆโ€ฒ and (๐‘Ÿ๐œ‘)๐‘ฆโ€ฒ(๐‘ ๐œ‘) = ๐‘ฅโ€ฒ (where we view 1๐œ‘as the identity of (๐‘†โ€ฒ)1) and so ๐‘ฅโ€ฒ J ๐‘ฆโ€ฒ. So all elements of ๐ฝ๐œ‘ arecontained within a single J-class ๐ฝโ€ฒ of ๐‘†โ€ฒ.

b) Let ๐‘ฅโ€ฒ โˆˆ ๐ฝโ€ฒ. Then ๐‘ฅโ€ฒ = ๐‘ฅ๐œ‘ for some ๐‘ฅ โˆˆ ๐‘†. Let ๐ฝ = ๐ฝ๐‘ฅ. Since allelements of ๐ฝ๐œ‘ are J-related by part a), we see that ๐ฝ๐œ‘ โŠ† ๐ฝโ€ฒ.

Let ๐ฝ be minimal such that ๐ฝ๐œ‘ โŠ† ๐ฝโ€ฒ. Let ๐ผ = ๐‘†1๐ฝ๐‘†1. Then๐ผ = ๐‘†1๐‘ฅ๐‘†1 for any ๐‘ฅ โˆˆ ๐ฝ, by the definition of J. Let ๐‘ฆโ€ฒ โˆˆ ๐ฝโ€ฒ.Then ๐‘ฆโ€ฒ J ๐‘ฅ๐œ‘ and so there exist ๐‘โ€ฒ, ๐‘žโ€ฒ โˆˆ (๐‘†โ€ฒ)1 such that ๐‘ฆโ€ฒ =๐‘โ€ฒ(๐‘ฅ๐œ‘)๐‘žโ€ฒ. Therefore ๐‘ฆโ€ฒ โˆˆ (๐‘†โ€ฒ)1(๐‘ฅ๐œ‘)(๐‘†โ€ฒ)1 = (๐‘†1๐‘ฅ๐‘†1)๐œ‘ = ๐ผ๐œ‘ since ๐œ‘is surjective. So ๐ฝโ€ฒ โŠ† ๐ผ๐œ‘.

Let ๐‘ฆ โˆˆ ๐ผ and let ๐พ = ๐ฝ๐‘ฆ. By part a), there exists some J-class ๐พโ€ฒ of ๐‘†โ€ฒ such that ๐พ๐œ‘ โŠ† ๐พโ€ฒ. We now want to prove that๐‘ฆ โˆ‰ ๐ฝ implies ๐‘ฆ๐œ‘ โˆ‰ ๐ฝโ€ฒ. So suppose that ๐‘ฆ โˆ‰ ๐ฝ. Then ๐พ = ๐ฝ๐‘ฆ < ๐ฝ.Therefore ๐พ๐œ‘ โŠˆ ๐ฝโ€ฒ since ๐ฝ was chosen to be minimal such that๐ฝ๐œ‘ โŠ† ๐ฝโ€ฒ. Hence ๐พโ€ฒ โ‰  ๐ฝโ€ฒ. Suppose, with the aim of obtaining acontradiction, that ๐‘ฆ๐œ‘ โˆˆ ๐ฝโ€ฒ. Then there exists ๐‘โ€ฒ, ๐‘žโ€ฒ, ๐‘Ÿโ€ฒ, ๐‘ โ€ฒ โˆˆ (๐‘†โ€ฒ)1with ๐‘โ€ฒ(๐‘ฆ๐œ‘)๐‘žโ€ฒ = ๐‘ฅ๐œ‘ and ๐‘Ÿโ€ฒ(๐‘ฅ๐œ‘)๐‘ โ€ฒ = ๐‘ฆ๐œ‘ for some ๐‘ฅ โˆˆ ๐ฝ. Since๐œ‘ is surjective, this shows that ๐‘ฆ J ๐‘ฅ and so ๐‘ฆ โˆˆ ๐ฝ, which is acontradiction. Therefore ๐‘ฆ๐œ‘ โˆ‰ ๐ฝโ€ฒ.

Thus for any ๐‘ฆ โˆˆ ๐ผ, we have ๐‘ฆ โˆ‰ ๐ฝ implies ๐‘ฆ๐œ‘ โˆ‰ ๐ฝโ€ฒ. Hence๐‘ฆ๐œ‘ โˆˆ ๐ฝโ€ฒ implies ๐‘ฆ โˆˆ ๐ฝ, which implies ๐‘ฆ๐œ‘ โˆˆ ๐ฝ๐œ‘. Since ๐ฝโ€ฒ โŠ† ๐ผ๐œ‘, thisshows that ๐ฝโ€ฒ โŠ† ๐ฝ๐œ‘. Thus ๐ฝ๐œ‘ = ๐ฝโ€ฒ.

7.5 It suffices to prove this when ๐‘‡ is a subsemigroup of ๐‘† and when ๐‘‡is a homomorphic image of ๐‘†. In both cases, ๐‘‡ is finite because ๐‘† is,and thus for both ๐‘† and ๐‘‡ the property of havingH being the equalityrelation is equivalent to aperiodic.

Let ๐‘‡ be a subsemigroup of ๐‘†. Let ๐‘ฅ โˆˆ ๐‘‡. Since ๐‘ฅ โˆˆ ๐‘† and ๐‘† isaperiodic, there exists ๐‘˜ โˆˆ โ„• such that ๐‘ฅ๐‘˜ = ๐‘ฅ๐‘˜+1. Since this is truefor all ๐‘ฅ โˆˆ ๐‘‡, the subsemigroup ๐‘‡ is aperiodic. Now let ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ bea surjective homomorphism. Let ๐‘ฆ โˆˆ ๐‘‡. Then there exists ๐‘ฅ โˆˆ ๐‘† suchthat ๐‘ฅ๐œ‘ = ๐‘ฆ. Since ๐‘† is aperiodic, ๐‘ฅ๐‘˜ = ๐‘ฅ๐‘˜+1 for some ๐‘˜ โˆˆ โ„•. Hence๐‘ฆ๐‘˜ = (๐‘ฅ๐œ‘)๐‘˜ = ๐‘ฅ๐‘˜๐œ‘ = ๐‘ฅ๐‘˜+1๐œ‘ = (๐‘ฅ๐œ‘)๐‘˜+1 = ๐‘ฆ๐‘˜+1. Since this is true forall ๐‘ฆ โˆˆ ๐‘‡, the semigroup ๐‘‡ is aperiodic. This completes the proof.

In the free semigroup {๐‘Ž}+, the relation H is the equality relation,but any finite non-trivial cyclic group is a homomorphic image of{๐‘Ž}+, and in groups all elements are H-related.

238 โ€ขSolutions to exercises

Page 247: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

7.6 Let (๐‘ 1, ๐‘ก1), (๐‘ 2, ๐‘ก2), (๐‘ 3, ๐‘ก3) โˆˆ ๐‘† โ‹Š๐œ‘ ๐‘‡. Then

((๐‘ 1, ๐‘ก1)(๐‘ 2, ๐‘ก2))(๐‘ 3, ๐‘ก3)= (๐‘ 1 ๐‘ 2๐‘ก1 , ๐‘ก1๐‘ก2)(๐‘ 3, ๐‘ก3) [by (7.1)]= (๐‘ 1 ๐‘ 2๐‘ก1 ๐‘ 3๐‘ก1๐‘ก2 , ๐‘ก1๐‘ก2๐‘ก3) [by (7.1)]

= (๐‘ 1 ๐‘ 2๐‘ก1 ( ๐‘ 3๐‘ก2 )๐‘ก1 , ๐‘ก1๐‘ก2๐‘ก3) [by the definition of a left action]

= (๐‘ 1 (๐‘ 2 ๐‘ 3๐‘ก2 )๐‘ก1 , ๐‘ก1๐‘ก2๐‘ก3) [since the action is by endomorphisms]

= (๐‘ 1, ๐‘ก1)(๐‘ 2 ๐‘ 3๐‘ก2 , ๐‘ก2๐‘ก3) [by (7.1)]= (๐‘ 1, ๐‘ก1)((๐‘ 2, ๐‘ก2)(๐‘ 3, ๐‘ก3)); [by (7.1)]

thus the multiplication (7.1) is associative.7.7 Suppose๐‘€ and๐‘ are groups. Then๐‘€ โ‰€ ๐‘ is a monoid with identity(๐‘’, 1๐‘) by Proposition 7.7. Let (๐‘“, ๐‘›) โˆˆ ๐‘€ โ‰€ ๐‘. Define ๐‘“โ€ฒ โˆˆ ๐‘ โ†’ ๐‘€by (๐‘ฅ)๐‘“โ€ฒ = ((๐‘ฅ๐‘›โˆ’1)๐‘“)โˆ’1. Then

(๐‘“, ๐‘›)(๐‘“โ€ฒ, ๐‘›โˆ’1)= (๐‘“ ๐‘“โ€ฒ๐‘› , ๐‘›๐‘›โˆ’1)= (๐‘’, 1๐‘),

since

(๐‘ฅ)๐‘“ ๐‘“โ€ฒ๐‘› = (๐‘ฅ)๐‘“(๐‘ฅ๐‘›)๐‘“โ€ฒ = (๐‘ฅ)๐‘“((๐‘ฅ๐‘›๐‘›โˆ’1)๐‘“)โˆ’1

= (๐‘ฅ)๐‘“((๐‘ฅ)๐‘“)โˆ’1 = 1๐‘€,

and

(๐‘“โ€ฒ, ๐‘›โˆ’1)(๐‘“, ๐‘›)

= (๐‘“โ€ฒ ๐‘“๐‘›โˆ’1, ๐‘›โˆ’1๐‘›)

= (๐‘’, 1๐‘),

since

(๐‘ฅ)๐‘“โ€ฒ ๐‘“๐‘›โˆ’1= (๐‘ฅ)๐‘“โ€ฒ(๐‘ฅ๐‘›โˆ’1)๐‘“ = (๐‘ฅ)๐‘“โ€ฒ((๐‘ฅ)๐‘“โ€ฒ)โˆ’1 = 1๐‘€;

thus (๐‘“โ€ฒ, ๐‘›โˆ’1) is a right and left inverse for (๐‘“, ๐‘›). Hence๐‘€ โ‰€ ๐‘ is agroup.

7.8 The wreath product ๐‘† โ‰€ ๐‘‡must be right-cancellative but is not neces-sarily left-cancellative. For (๐‘“, ๐‘ ), (๐‘”, ๐‘ก), (โ„Ž, ๐‘ข) โˆˆ ๐‘† โ‰€ ๐‘‡,

(๐‘“, ๐‘ )(โ„Ž, ๐‘ข) = (๐‘”, ๐‘ก)(โ„Ž, ๐‘ข)โ‡’ (๐‘“ โ„Ž๐‘  , ๐‘ ๐‘ข) = (๐‘” โ„Ž๐‘ก , ๐‘ก๐‘ข)โ‡’ ๐‘“ โ„Ž๐‘  = ๐‘” โ„Ž๐‘ก โˆง ๐‘ ๐‘ข = ๐‘ก๐‘ขโ‡’ (โˆ€๐‘ฅ โˆˆ ๐‘‡)((๐‘ฅ)๐‘“(๐‘ฅ๐‘ )โ„Ž = (๐‘ฅ)๐‘”(๐‘ฅ๐‘ก)โ„Ž) โˆง ๐‘  = ๐‘ก

[since ๐‘‡ is cancellative]

Solutions to exercises โ€ข 239

Page 248: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

โ‡’ (โˆ€๐‘ฅ โˆˆ ๐‘‡)((๐‘ฅ)๐‘“(๐‘ฅ๐‘ )โ„Ž = (๐‘ฅ)๐‘”(๐‘ฅ๐‘ )โ„Ž) โˆง ๐‘  = ๐‘ก[substituting ๐‘  = ๐‘ก]

โ‡’ (โˆ€๐‘ฅ โˆˆ ๐‘‡)((๐‘ฅ)๐‘“ = (๐‘ฅ)๐‘”) โˆง ๐‘  = ๐‘ก [since ๐‘† is cancellative]โ‡’ ๐‘“ = ๐‘” โˆง ๐‘  = ๐‘ก.

Now let ๐‘† = ๐‘‡ = โ„• โˆช {0} (under +) and define a map ๐‘“ โˆถ ๐‘† โ†’ ๐‘‡by (0)๐‘“ = 1 and (๐‘ฅ)๐‘“ = 0 for all ๐‘ฅ โˆˆ ๐‘‡ โˆ– {0} and a map ๐‘” โˆถ ๐‘† โ†’ ๐‘‡ by(๐‘ฅ)๐‘” = 0 for all ๐‘ฅ โˆˆ ๐‘‡. Then

(๐‘”, 1)(๐‘“, 1) = (๐‘” ๐‘“1 , 2) = (๐‘” ๐‘”1 , 2) = (๐‘”, 1)(๐‘”, 1)

since (๐‘ฅ)๐‘” ๐‘“1 = (๐‘ฅ)๐‘” + (๐‘ฅ + 1)๐‘“ = 0 + 0 = (๐‘ฅ)๐‘” + (๐‘ฅ + 1)๐‘” = (๐‘ฅ)๐‘” ๐‘”1for all ๐‘ฅ โˆˆ ๐‘‡. Hence ๐‘† โ‰€ ๐‘‡ is not left-cancellative.

7.9 This is a tedious analysis of products of three elements in ๐ถ(๐‘†). Eachelement is either in ๐‘† or ๐‘†โ€ฒ; there are thus eight cases. Let ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘†.Then:โ—† (๐‘ฅ๐‘ฆ)๐‘ง = ๐‘ฅ(๐‘ฆ๐‘ง), since ๐‘† is a subsemigroup of ๐‘† โˆช ๐‘†โ€ฒ;โ—† (๐‘ฅ๐‘ฆ)๐‘งโ€ฒ = ๐‘งโ€ฒ = ๐‘ฅ๐‘งโ€ฒ = ๐‘ฅ(๐‘ฆ๐‘งโ€ฒ);โ—† (๐‘ฅ๐‘ฆโ€ฒ)๐‘ง = ๐‘ฆโ€ฒ๐‘ง = (๐‘ฆ๐‘ง)โ€ฒ = ๐‘ฅ(๐‘ฆ๐‘ง)โ€ฒ = ๐‘ฅ(๐‘ฆโ€ฒ๐‘ง);โ—† (๐‘ฅ๐‘ฆโ€ฒ)๐‘งโ€ฒ = ๐‘งโ€ฒ = ๐‘ฅ๐‘งโ€ฒ = ๐‘ฅ(๐‘ฆโ€ฒ๐‘งโ€ฒ);โ—† (๐‘ฅโ€ฒ๐‘ฆ)๐‘ง = (๐‘ฅ๐‘ฆ)โ€ฒ๐‘ง = ((๐‘ฅ๐‘ฆ)๐‘ง)โ€ฒ = (๐‘ฅ(๐‘ฆ๐‘ง))โ€ฒ = ๐‘ฅโ€ฒ(๐‘ฆ๐‘ง), using associ-

ativity in ๐‘† for the third equality;โ—† (๐‘ฅโ€ฒ๐‘ฆ)๐‘งโ€ฒ = ๐‘งโ€ฒ = ๐‘ฅโ€ฒ๐‘งโ€ฒ = ๐‘ฅโ€ฒ(๐‘ฆ๐‘งโ€ฒ);โ—† (๐‘ฅโ€ฒ๐‘ฆโ€ฒ)๐‘ง = ๐‘ฆโ€ฒ๐‘ง = (๐‘ฆ๐‘ง)โ€ฒ = ๐‘ฅโ€ฒ(๐‘ฆ๐‘ง)โ€ฒ = ๐‘ฅโ€ฒ(๐‘ฆโ€ฒ๐‘ง);โ—† (๐‘ฅโ€ฒ๐‘ฆโ€ฒ)๐‘งโ€ฒ = ๐‘งโ€ฒ = ๐‘ฅโ€ฒ๐‘งโ€ฒ = ๐‘ฅโ€ฒ(๐‘ฆโ€ฒ๐‘งโ€ฒ).

Therefore the product defined by (7.4) is associative.7.10 Define a map ๐œ“ โˆถ ๐ถ(๐‘€) โ†’ T๐‘€ by ๐‘ฅ๐œ“ = ๐œŒ๐‘ฅ and ๐‘ฅโ€ฒ๐œ“ = ๐œ๐‘ฅ for ๐‘ฅ โˆˆ ๐‘€.

Clearly im๐œ‘ = { ๐œŒ๐‘ฅ, ๐œ๐‘ฅ โˆถ ๐‘ฅ โˆˆ ๐‘€ }. We cannot have ๐‘ฅ๐œ“ = ๐‘ฆโ€ฒ๐œ“, for๐‘ฅ๐œ“ is a non-constant map and ๐‘ฆโ€ฒ๐œ“ is a constant map. So to checkinjectivity, we simply check that ๐œ“|๐‘€ and ๐œ“๐‘€โ€ฒ are injective:

๐‘ฅ๐œ“ = ๐‘ฆ๐œ“ โ‡’ ๐œŒ๐‘ฅ = ๐œŒ๐‘ฆ โ‡’ 1๐œŒ๐‘ฅ = 1๐œŒ๐‘ฆ โ‡’ ๐‘ฅ = ๐‘ฆ,๐‘ฅโ€ฒ๐œ“ = ๐‘ฆโ€ฒ๐œ“ โ‡’ ๐œ๐‘ฅ = ๐œ๐‘ฆ โ‡’ 1๐œ๐‘ฅ = 1๐œ๐‘ฆ โ‡’ ๐‘ฅ = ๐‘ฆ.

Finally, to check that๐œ“ is a homomorphism,wemust check the variouscases of multiplication in the definition of ๐ถ(๐‘€):

(๐‘ฅ๐œ‘)(๐‘ฆโ€ฒ๐œ‘) = ๐œŒ๐‘ฅ๐œ๐‘ฆ = ๐œ๐‘ฆ = ๐‘ฆโ€ฒ๐œ‘ = (๐‘ฅ๐‘ฆโ€ฒ)๐œ‘(๐‘ฅโ€ฒ๐œ‘)(๐‘ฆโ€ฒ๐œ‘) = ๐œ๐‘ฅ๐œ๐‘ฆ = ๐œ๐‘ฆ = ๐‘ฆโ€ฒ๐œ‘ = (๐‘ฅโ€ฒ๐‘ฆโ€ฒ)๐œ‘(๐‘ฅโ€ฒ๐œ‘)(๐‘ฆ๐œ‘) = ๐œ๐‘ฅ๐œŒ๐‘ฆ = ๐œ๐‘ฅ๐‘ฆ = (๐‘ฅ๐‘ฆ)โ€ฒ๐œ‘.

So ๐œ“ is an isomorphism.

240 โ€ขSolutions to exercises

Page 249: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

7.11 Let ๐‘ฅ โˆˆ ๐‘€ and ๐‘ฆ โˆˆ ๐ถ(๐‘€). Then

(๐‘ฅ)[(๐‘ฆ)(๐‘“ ๐‘”๐‘š )con]= ((๐‘ฅ)๐‘“ ๐‘”๐‘š )โ€ฒ [by definition of con]= ((๐‘ฅ)๐‘“)โ€ฒ(๐‘ฅ๐‘š)๐‘” [by def. of the product and action]= (๐‘ฅ)[(๐‘ฆ)๐‘“con](๐‘ฅ)[(๐‘šโ€ฒ)๐‘”ext] [by definition of ext and con]= (๐‘ฅ)[(๐‘ฆ)๐‘“con](๐‘ฅ)[(๐‘ฆ๐‘šโ€ฒ)๐‘”ext] [by def. of the product in ๐ถ(๐‘€)]

= (๐‘ฅ)[(๐‘ฆ)๐‘“con(๐‘ฆ) ๐‘”ext๐‘šโ€ฒ ] [by multiplication in ๐ถ(๐‘†)๐‘€]

= (๐‘ฅ)[(๐‘ฆ)๐‘“con ๐‘”ext๐‘šโ€ฒ ]; [by multiplication in (๐ถ(๐‘†)๐‘€)๐ถ(๐‘€)]

this proves (7.6). Next,

(๐‘ฅ)[(๐‘ฆ)๐‘”con]= ((๐‘ฅ)๐‘”)โ€ฒ [by definition of con]= (๐‘ฅ๐‘ฆ)๐‘“((๐‘ฅ)๐‘”)โ€ฒ [by def. of the product in ๐ถ(๐‘†)]= (๐‘ฅ)[(๐‘ฆ)๐‘“ext](๐‘ฅ)[(๐‘ฆ๐‘š)๐‘”con] [by definition of ext and con]= (๐‘ฅ)[(๐‘ฆ)๐‘“ext(๐‘ฆ) ๐‘”con๐‘š ] [by multiplication in ๐ถ(๐‘†)๐‘€]= (๐‘ฅ)[(๐‘ฆ)๐‘“ext ๐‘”con๐‘š ]; [by multiplication in (๐ถ(๐‘†)๐‘€)๐ถ(๐‘€)]

this proves (7.7). Finally,

(๐‘ฅ)[(๐‘ฆ)๐‘”con]= ((๐‘ฅ)๐‘”)โ€ฒ [by definition of con]= ((๐‘ฅ)๐‘“)โ€ฒ((๐‘ฅ)๐‘”)โ€ฒ [by def. of the product in ๐ถ(๐‘†)]= (๐‘ฅ)[(๐‘ฆ)๐‘“con](๐‘ฅ)[(๐‘ฆ๐‘š)๐‘”con] [by definition of con]= (๐‘ฅ)[(๐‘ฆ)๐‘“con(๐‘ฆ) ๐‘”con๐‘š ] [by multiplication in ๐ถ(๐‘†)๐‘€]= (๐‘ฅ)[(๐‘ฆ)๐‘“con ๐‘”con๐‘š ]; [by multiplication in (๐ถ(๐‘†)๐‘€)๐ถ(๐‘€)]

this proves (7.8).

Exercises for chapter 8

[See pages 173โ€“174 for the exercises.]8.1 a) Suppose ๐‘ค = ๐‘ข. Then for any homomorphism ๐œ— โˆถ ๐ด+ โ†’ ๐‘† we

have ๐‘ค๐œ— = ๐‘ข๐œ— = ๐‘ฃ๐œ— = (๐‘ฃโ€ฒ๐œ—)(๐‘ค๐œ—). Then for any ๐‘ž โˆˆ ๐‘†, we have๐‘ž(๐‘ค๐œ—) = ๐‘ž(๐‘ฃโ€ฒ๐œ—)(๐‘ค๐œ—) and so by cancellativity ๐‘ž = ๐‘ž(๐‘ฃโ€ฒ๐œ—). So ๐‘ฃโ€ฒ๐œ— isa right identity for ๐‘† and thus (by cancellativity) an identity. Let ๐‘Žand ๐‘ be the first and last letters of ๐‘ฃโ€ฒ (which may or may not bedistinct). For ๐‘  โˆˆ ๐‘†, put ๐‘Ž๐œ— = ๐‘๐œ— = ๐‘  to see that ๐‘  is right and leftinvertible. Thus ๐‘† is a group.

Solutions to exercises โ€ข 241

Page 250: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

b) Suppose ๐‘ค โ‰  ๐‘ข. Since ๐‘ค is the longest common suffix of ๐‘ข and ๐‘ฃ,we know that ๐‘ขโ€ฒ and ๐‘ฃโ€ฒ end with different letters ๐‘Ž and ๐‘ of๐ด. Thatis, ๐‘ขโ€ฒ = ๐‘ขโ€ณ๐‘Ž and ๐‘ฃโ€ฒ = ๐‘ฃโ€ณ๐‘Ž. Let ๐‘ , ๐‘ก โˆˆ ๐‘†. Let ๐œ— โˆถ ๐ด โ†’ ๐‘† be such that๐‘Ž๐œ— = ๐‘  and ๐‘๐œ— = ๐‘ก.Then (๐‘ขโ€ณ๐œ—)๐‘ (๐‘ค๐œ—) = ๐‘ข๐œ— = ๐‘ฃ๐œ— = (๐‘ฃโ€ณ๐œ—)๐‘ก(๐‘ค๐œ—) andso (๐‘ขโ€ณ๐œ—)๐‘  = (๐‘ฃโ€ณ๐œ—)๐‘ก by cancellativity. Hence ๐‘  and ๐‘ก have a commonleft multiple. Since this holds for all ๐‘ , ๐‘ก โˆˆ ๐‘†, the semigroup ๐‘† isgroup-embeddable by Exercise 6.5.

8.2 a) Let N be the class of finite nilpotent semigroups. Let ๐‘† โˆˆ N. So๐‘†๐‘› = {0} for some ๐‘› โˆˆ โ„•. First, let ๐‘‡ be a subsemigroup of ๐‘†.Then ๐‘‡๐‘› โŠ† ๐‘†๐‘› = {0}; hence ๐‘‡ โˆˆ N. So N is closed under ๐•Š.Second, let ๐œ‘ โˆถ ๐‘† โ†’ ๐‘ˆ be a surjective homomorphism. Then๐‘ˆ๐‘› = (๐‘†๐œ‘)๐‘› = ๐‘†๐‘›๐œ‘ โŠ† {0๐‘†}๐œ‘ = {0๐‘ˆ}. So ๐‘ˆ โˆˆ N. Thus N is closedunder โ„. Third, let ๐‘†1,โ€ฆ , ๐‘†๐‘˜ be nilpotent; then ๐‘†๐‘›๐‘–๐‘– = {0๐‘†๐‘– } forsome ๐‘›๐‘– โˆˆ โ„• for each ๐‘– = 1,โ€ฆ , ๐‘˜. Let ๐‘› be the maximum of thevarious ๐‘›๐‘–. Then

(๐‘†1ร—โ€ฆร—๐‘†๐‘˜)๐‘› โŠ† ๐‘†๐‘›1 ร—โ€ฆ๐‘†๐‘›๐‘˜ = {0๐‘†1 }ร—โ€ฆ {0๐‘†๐‘˜ } = {(0๐‘†1 ,โ€ฆ , 0๐‘†๐‘˜ )};

hence ๐‘†1 ร—โ€ฆ ร— ๐‘†๐‘˜ โˆˆ N. Thus N is closed under โ„™fin. ThereforeN is a pseudovariety.

b) Let ๐ด = {๐‘Ž}. For each ๐‘˜ โˆˆ โ„•, let ๐ผ๐‘˜ = {๐‘ค โˆˆ ๐ด+ โˆถ |๐‘ค| โฉพ ๐‘˜ }. Then๐ผ๐‘˜ is an ideal of ๐ด+. Let ๐‘†๐‘˜ = ๐ด+/๐ผ๐‘˜; then ๐‘†๐‘˜๐‘˜ = {0๐‘†๐‘˜ }. So each ๐‘†๐‘˜is nilpotent. Let ๐‘† = โˆโˆž๐‘–=1 ๐‘†๐‘˜. Let ๐‘  โˆˆ ๐‘† be such that (๐‘˜)๐‘  = ๐‘Ž โˆˆ ๐‘†๐‘˜for all ๐‘˜ โˆˆ โ„•. Then for any ๐‘› โˆˆ โ„•, we have (๐‘› + 1)๐‘ ๐‘› = ๐‘Ž๐‘› โˆˆ ๐‘†๐‘›+1;hence (๐‘› + 1)๐‘ ๐‘› โ‰  0๐‘†๐‘›+1 , and so ๐‘ ๐‘› โ‰  0๐‘† for any ๐‘› โˆˆ โ„•. Thus๐‘†๐‘› โ‰  {0๐‘†} for any ๐‘› โˆˆ โ„•. Hence ๐‘† is not nilpotent. Therefore theclass of nilpotent semigroups is not closed under โ„™ and so is nota variety.

8.3 Note first that we are working with algebras of type {(โˆ˜, 2), (โˆ’1, 1)}. Let๐‘† be an orthodox completely regular semigroup. Let ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ bea surjective homomorphism. Then ๐‘‡ is regular by Proposition 4.20,and furthermore (๐‘ฅ๐œ‘)โˆ’1 = (๐‘ฅโˆ’1๐œ‘) since homomorphisms for algebrasof this type must also preserve โˆ’1. Therefore since ๐‘† is completelyregular and thus satisfies the laws (4.2), ๐‘‡ also satisfies these laws,so ๐‘‡ is completely regular. Finally, if ๐‘’, ๐‘“ โˆˆ ๐‘‡ are idempotents, then๐‘’ = ๐‘ฅ๐‘ฅโˆ’1 and ๐‘“ = ๐‘ฆ๐‘ฆโˆ’1 for some ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘‡ by Theorem 4.15. Let๐‘, ๐‘ž โˆˆ ๐‘† be such that ๐‘๐œ‘ = ๐‘ฅ and ๐‘ž๐œ‘ = ๐‘ฆ. Then ๐‘๐‘โˆ’1 and ๐‘ž๐‘žโˆ’1 areidempotent. So ๐‘๐‘โˆ’1๐‘ž๐‘žโˆ’1 is idempotent (since ๐‘† is orthodox) and so(๐‘๐‘โˆ’1๐‘ž๐‘žโˆ’1)๐œ‘ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1 = ๐‘’๐‘“ is idempotent. So the idempotentsof ๐‘‡ form a subsemigroup and so ๐‘‡ is orthodox.

Now let ๐‘‡ be a subalgebra of ๐‘†. Then ๐‘‡ also satisfies the laws(4.2) and is thus completely regular. Finally, the set of idempotentsof ๐‘‡ is the intersection of the set of idempotents of ๐‘†, which is asubsemigroup, and ๐‘‡, which is also a subsemigroup. Hence the set ofidempotents of ๐‘‡ is a subsemigroup.

242 โ€ขSolutions to exercises

Page 251: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Finally, let { ๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ } be a collection of orthodox completelyregular semigroups. Then each ๐‘†๐‘– satisfies the laws (4.2) and so theirproduct โˆ๐‘–โˆˆ๐ผ ๐‘†๐‘– does also. The set of idempotents in โˆ๐‘–โˆˆ๐ผ ๐‘†๐‘– is theproduct of the sets of idempotents in each ๐‘†๐‘– and hence forms asubsemigroup.

Now let ๐‘† be an orthodox completely regular semigroup. Then๐‘† satisfies the laws (4.2). Let ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. Note that ๐‘ฅโˆ’1๐‘ฅ and ๐‘ฆ๐‘ฆโˆ’1 areidempotents, and so their product ๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1 is idempotent since ๐‘† isorthodox. Thus

๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1๐‘ฅ๐‘ฆ= ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฆ= ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฆ [since ๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1 is idempotent]= ๐‘ฅ๐‘ฆ.

Therefore ๐‘† satisfies the law ๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1๐‘ฅ๐‘ฆ = ๐‘ฅ๐‘ฆ.Now suppose ๐‘† satisfies the laws (4.2) and ๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1๐‘ฅ๐‘ฆ = ๐‘ฅ๐‘ฆ.

Then ๐‘† is completely regular. Let ๐‘’, ๐‘“ โˆˆ ๐‘† be idempotents; then ๐‘’ =๐‘ฅโˆ’1๐‘ฅ and ๐‘“ = ๐‘ฆ๐‘ฆโˆ’1 for some ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘† by Theorem 4.15. Then

(๐‘’๐‘“)2

= (๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1)2

= ๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1

= ๐‘ฅโˆ’1๐‘ฅ๐‘ฆ๐‘ฆโˆ’1; [since ๐‘ฅ๐‘ฆ๐‘ฆโˆ’1๐‘ฅโˆ’1๐‘ฅ๐‘ฆ = ๐‘ฅ๐‘ฆ]= ๐‘’๐‘“.

Hence the idempotents of ๐‘† form a subsemigroup and so ๐‘† is orthodox.8.4 a) Let ๐‘† = ๐ฟ ร— ๐‘… be a rectangular band, where ๐ฟ is a left zero semi-

group and ๐‘… is a right zero semigroup.Let ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ be a surjective homomorphism. Fix (โ„“, ๐‘Ÿ) โˆˆ ๐‘†.

Let ๐ฟ๐‘‡ = (๐ฟ ร— {๐‘Ÿ})๐œ‘ and ๐‘…๐‘‡ = ({โ„“} ร— ๐‘…)๐œ‘. Notice that ๐ฟ๐‘‡ is a leftzero semigroup and ๐‘…๐‘‡ is a right zero semigroup; hence ๐ฟ๐‘‡ ร—๐‘…๐‘‡ isa rectangular band. Define๐œ“ โˆถ ๐ฟ๐‘‡ร—๐‘…๐‘‡ โ†’ ๐‘‡ by (โ„“๐‘ก, ๐‘Ÿ๐‘ก)๐œ“ = โ„“๐‘ก๐‘Ÿ๐‘ก. Let(โ„“(1)๐‘ก , ๐‘Ÿ

(1)๐‘ก ), (โ„“

(2)๐‘ก , ๐‘Ÿ(2)๐‘ก ) โˆˆ ๐ฟ๐‘‡ ร— ๐‘…๐‘‡. Let โ„“(1), โ„“(2) โˆˆ ๐ฟ and ๐‘Ÿ(1), ๐‘Ÿ(2) โˆˆ ๐‘…

be such that (โ„“(๐‘–), ๐‘Ÿ)๐œ‘ = โ„“(๐‘–)๐‘ก and (โ„“, ๐‘Ÿ(๐‘–))๐œ‘ = ๐‘Ÿ(๐‘–)๐‘ก for ๐‘– = 1, 2. Then

(โ„“(1)๐‘ก , ๐‘Ÿ(1)๐‘ก )๐œ“(โ„“

(2)๐‘ก , ๐‘Ÿ(2)๐‘ก )๐œ“

= โ„“(1)๐‘ก ๐‘Ÿ(1)๐‘ก โ„“(2)๐‘ก ๐‘Ÿ(2)๐‘ก

= (โ„“(1), ๐‘Ÿ)๐œ‘(โ„“, ๐‘Ÿ(1))๐œ‘(โ„“(2), ๐‘Ÿ)๐œ‘(โ„“, ๐‘Ÿ(2))๐œ‘= ((โ„“(1), ๐‘Ÿ)(โ„“, ๐‘Ÿ(1))(โ„“(2), ๐‘Ÿ)(โ„“, ๐‘Ÿ(2)))๐œ‘= (โ„“(1), ๐‘Ÿ(2))๐œ‘= ((โ„“(1), ๐‘Ÿ)(โ„“, ๐‘Ÿ(2)))๐œ‘= (โ„“(1), ๐‘Ÿ)๐œ‘(โ„“, ๐‘Ÿ(2))๐œ‘

Solutions to exercises โ€ข 243

Page 252: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

= โ„“(1)๐‘ก ๐‘Ÿ(2)๐‘ก

= (โ„“(1)๐‘ก , ๐‘Ÿ(2)๐‘ก )๐œ“

= ((โ„“(1)๐‘ก , ๐‘Ÿ(1)๐‘ก )(โ„“(2)๐‘ก , ๐‘Ÿ(2)๐‘ก ))๐œ“;

thus ๐œ“ is a homomorphism. Furthermore,

(โ„“(1)๐‘ก , ๐‘Ÿ(1)๐‘ก )๐œ“ = (โ„“

(2)๐‘ก , ๐‘Ÿ(2)๐‘ก )๐œ“

โ‡’ โ„“(1)๐‘ก ๐‘Ÿ(1)๐‘ก = โ„“

(2)๐‘ก ๐‘Ÿ(2)๐‘ก

โ‡’ (โ„“(1), ๐‘Ÿ)๐œ‘(โ„“, ๐‘Ÿ(1))๐œ‘ = (โ„“(2), ๐‘Ÿ)๐œ‘(โ„“, ๐‘Ÿ(2))๐œ‘โ‡’ ((โ„“(1), ๐‘Ÿ)(โ„“, ๐‘Ÿ(1)))๐œ‘ = ((โ„“(2), ๐‘Ÿ)(โ„“, ๐‘Ÿ(2)))๐œ‘โ‡’ (โ„“(1), ๐‘Ÿ(1))๐œ‘ = (โ„“(2), ๐‘Ÿ(2))๐œ‘โ‡’ (โ„“(1), ๐‘Ÿ(1))๐œ‘(โ„“, ๐‘Ÿ)๐œ‘ = (โ„“(2), ๐‘Ÿ(2))๐œ‘(โ„“, ๐‘Ÿ)๐œ‘

โˆง (โ„“, ๐‘Ÿ)๐œ‘(โ„“(1), ๐‘Ÿ(1))๐œ‘ = (โ„“, ๐‘Ÿ)๐œ‘(โ„“(2), ๐‘Ÿ(2))๐œ‘โ‡’ ((โ„“(1), ๐‘Ÿ(1))(โ„“, ๐‘Ÿ))๐œ‘ = ((โ„“(2), ๐‘Ÿ(2))(โ„“, ๐‘Ÿ))๐œ‘

โˆง ((โ„“, ๐‘Ÿ)(โ„“(1), ๐‘Ÿ(1)))๐œ‘ = ((โ„“, ๐‘Ÿ)(โ„“(2), ๐‘Ÿ(2)))๐œ‘โ‡’ (โ„“(1), ๐‘Ÿ)๐œ‘ = (โ„“(2), ๐‘Ÿ)๐œ‘ โˆง (โ„“, ๐‘Ÿ(1))๐œ‘ = (โ„“, ๐‘Ÿ(2))๐œ‘

โ‡’ โ„“(1)๐‘ก = โ„“(2)๐‘ก โˆง ๐‘Ÿ

(1)๐‘ก = ๐‘Ÿ

(2)๐‘ก

โ‡’ (โ„“(1)๐‘ก , ๐‘Ÿ(1)๐‘ก ) = (โ„“

(2)๐‘ก , ๐‘Ÿ(2)๐‘ก ),

so ๐œ“ is injective. Finally, ๐œ“ is surjective since

im๐œ“ = ๐ฟ๐‘‡๐‘…๐‘‡= (๐ฟ ร— {๐‘Ÿ})๐œ‘({โ„“} ร— ๐‘…)๐œ‘= ((๐ฟ ร— {๐‘Ÿ})({โ„“} ร— ๐‘…))๐œ‘= (๐ฟ ร— ๐‘…)๐œ‘ = ๐‘‡.

Hence ๐‘‡ is isomorphic to the rectangular band ๐ฟ๐‘‡ ร— ๐‘…๐‘‡; thus๐‘‡ โˆˆ RB. So RB is closed under forming homomorphic images.

Now let ๐‘‡ be a subsemigroup of ๐‘†. Let ๐ฟ๐‘‡ = { โ„“ โˆˆ ๐ฟ โˆถ (โˆƒ๐‘Ÿ โˆˆ๐‘…)((โ„“, ๐‘Ÿ) โˆˆ ๐‘‡) } and ๐‘…๐‘‡ = { ๐‘Ÿ โˆˆ ๐‘… โˆถ (โˆƒโ„“ โˆˆ ๐ฟ)((โ„“, ๐‘Ÿ) โˆˆ ๐‘‡) }. Noticethat ๐ฟ๐‘‡ is also a left zero semigroup and ๐‘…๐‘‡ is also a right zerosemigroup. Clearly ๐‘‡ โŠ† ๐ฟ๐‘‡ ร— ๐‘…๐‘‡; we now establish the oppositeinclusion. Let (โ„“๐‘ก, ๐‘Ÿ๐‘ก) โˆˆ ๐ฟ๐‘‡ ร— ๐‘…๐‘‡. Then there exist ๐‘Ÿ โˆˆ ๐‘… and โ„“ โˆˆ ๐ฟsuch that (โ„“๐‘ก, ๐‘Ÿ) โˆˆ ๐‘‡ and (โ„“, ๐‘Ÿ๐‘ก) โˆˆ ๐‘‡.Thus (โ„“๐‘ก, ๐‘Ÿ๐‘ก) โˆˆ (โ„“๐‘ก, ๐‘Ÿ)(โ„“, ๐‘Ÿ๐‘ก) โˆˆ ๐‘‡.So๐‘‡ = ๐ฟ๐‘‡ร—๐‘…๐‘‡ is a rectangular band. So RB is closed under takingsubsemigroups.

Finally, let { ๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ } be a collection of rectangular bands.Then ๐‘†๐‘– โ‰ƒ ๐ฟ๐‘– ร— ๐‘…๐‘– for some left zero semigroup ๐ฟ๐‘– and right zerosemigroup ๐‘…๐‘–, for each ๐‘– โˆˆ ๐ผ. Then

โˆ๐‘–โˆˆ๐ผ๐‘†๐‘– = โˆ๐‘–โˆˆ๐ผ(๐ฟ๐‘– ร— ๐‘…๐‘–) โ‰ƒ (โˆ

๐‘–โˆˆ๐ผ๐ฟ๐‘–) ร— (โˆ

๐‘–โˆˆ๐ผ๐‘…๐‘–).

244 โ€ขSolutions to exercises

Page 253: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Sinceโˆ๐‘–โˆˆ๐ผ ๐ฟ๐‘– is a left zero semigroup andโˆ๐‘–โˆˆ๐ผ ๐‘…๐‘– is a right zerosemigroup,โˆ๐‘–โˆˆ๐ผ ๐‘†๐‘– โˆˆ RB. Hence RB is closed under forming directproducts.

Thus RB is a variety.b) Let ๐‘† = ๐ฟร—๐‘… be a rectangular band. Let ๐‘ฅ = (๐‘™1, ๐‘Ÿ1) and๐‘ฆ = (๐‘™2, ๐‘Ÿ2).

Then ๐‘ฅ๐‘ฆ๐‘ฅ = (๐‘™1, ๐‘Ÿ1)(๐‘™2, ๐‘Ÿ2)(๐‘™1, ๐‘Ÿ1) = (๐‘™1, ๐‘Ÿ1) = ๐‘ฅ. So ๐‘† satisfies thislaw.

Suppose ๐‘† satisfies the law ๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ฅ. Fix some ๐‘ก โˆˆ ๐‘†. Let ๐ฟ = ๐‘†๐‘กand ๐‘… = ๐‘ก๐‘†. Then for any ๐‘๐‘ก, ๐‘โ€ฒ๐‘ก โˆˆ ๐ฟ, we have ๐‘๐‘ก๐‘โ€ฒ๐‘ก = ๐‘๐‘ก bythe law (with ๐‘ฅ = ๐‘ก and ๐‘ฆ = ๐‘โ€ฒ). So ๐ฟ is a left zero semigroupand similarly ๐‘… is a right zero semigroup. Furthermore, for any๐‘, ๐‘ž.๐‘Ÿ โˆˆ ๐‘†,

๐‘๐‘Ÿ = ๐‘๐‘ž๐‘๐‘Ÿ [by the law with ๐‘ฅ = ๐‘ and ๐‘ฆ = ๐‘ž]= ๐‘๐‘ž๐‘Ÿ๐‘ž๐‘๐‘Ÿ [by the law with ๐‘ฅ = ๐‘ž and ๐‘ฆ = ๐‘Ÿ]= ๐‘๐‘ž๐‘Ÿ. [by the law with ๐‘ฅ = ๐‘Ÿ and ๐‘ฆ = ๐‘ž๐‘]

}}}}}

(S.23)

Define ๐œ“ โˆถ ๐‘† โ†’ ๐ฟ ร— ๐‘… by ๐‘๐œ“ = (๐‘๐‘ก, ๐‘ก๐‘). Then

(๐‘๐œ“)(๐‘ž๐œ“) = (๐‘๐‘ก, ๐‘ก๐‘)(๐‘ž๐‘ก, ๐‘ก๐‘ž)= (๐‘๐‘ก, ๐‘ก๐‘ž)= (๐‘๐‘ž๐‘ก, ๐‘ก๐‘๐‘ž) [using (S.23) in both components]= (๐‘๐‘ž)๐œ“,

so ๐œ“ is a homomorphism. Notice that this also shows that for any๐‘๐‘ก โˆˆ ๐ฟ, ๐‘ก๐‘ž โˆˆ ๐‘…, we have (๐‘๐‘ž)๐œ“ = (๐‘๐‘ก, ๐‘ก๐‘ž); thus ๐œ“ is surjective.Finally, for any ๐‘, ๐‘ž โˆˆ ๐‘†,

๐‘๐œ“ = ๐‘ž๐œ“โ‡’ (๐‘๐‘ก, ๐‘ก๐‘) = (๐‘ž๐‘ก, ๐‘ก๐‘ž)โ‡’ ๐‘๐‘ก = ๐‘ž๐‘ก โˆง ๐‘ก๐‘ = ๐‘ก๐‘žโ‡’ ๐‘๐‘ก๐‘ = ๐‘ž๐‘ก๐‘ โˆง ๐‘ž๐‘ก๐‘ = ๐‘ž๐‘ก๐‘žโ‡’ ๐‘๐‘ก๐‘ = ๐‘ž๐‘ก๐‘žโ‡’ ๐‘ = ๐‘ž, [applying the law on both sides]

so ๐œ“ is injective. So ๐‘† is [isomorphic to] a rectangular band andso ๐‘† โˆˆ RB.

c) Any rectangular band satisfies the law ๐‘ฅ๐‘ฆ๐‘ง = ๐‘ฅ๐‘ง by (S.23). Everyelement of a rectangular band is idempotent, so ๐‘ฅ2 = ๐‘ฅ is alsosatisfied.

Let ๐‘† satisfy the laws ๐‘ฅ2 = ๐‘ฅ and ๐‘ฅ๐‘ฆ๐‘ง = ๐‘ฅ๐‘ง. To prove that๐‘† is a rectangular band, follow the reasoning in part b) with thefollowing minor differences: First, ๐ฟ is a left zero semigroup since๐‘๐‘ก๐‘โ€ฒ๐‘ก = ๐‘๐‘ก๐‘ก = ๐‘๐‘ง by applying first ๐‘ฅ๐‘ฆ๐‘ง = ๐‘ฅ๐‘ง and then ๐‘ฅ2 = ๐‘ฅ;

Solutions to exercises โ€ข 245

Page 254: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

similarly ๐‘… is a right zero semigroup. Second, to prove ๐œ“ is ahomomorphism, apply ๐‘ฅ๐‘ฆ๐‘ง = ๐‘ฅ๐‘ง to both components. Finally,the last step in proving ๐œ“ is injective becomes ๐‘๐‘ก๐‘ = ๐‘ž๐‘ก๐‘ž โ‡’ ๐‘2 =๐‘ž2 โ‡’ ๐‘ = ๐‘ž, by applying first ๐‘ฅ๐‘ฆ๐‘ง = ๐‘ฅ๐‘ง and then ๐‘ฅ2 = ๐‘ฅ.

d) Let ๐‘† be a non-trivial null semigroup. Then for any ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘†, wehave ๐‘ฅ๐‘ฆ๐‘ง = 0๐‘† and ๐‘ฅ๐‘ง = 0๐‘†. However, ๐‘† is not a rectangular bandbecause ๐‘ฅ2 โ‰  ๐‘ฅ for any ๐‘ฅ โ‰  0๐‘†.

8.5 Let ๐‘† = ๐บ ร— ๐ฟ ร— ๐‘…, where ๐บ is a group, ๐ฟ is a left zero semigroup, and๐‘… is a right zero semigroup. Let ๐œ‘ โˆถ ๐‘† โ†’ ๐‘‡ be a homomorphism. Fix(1๐บ, โ„“, ๐‘Ÿ) โˆˆ ๐‘†. Let ๐ป = (๐บ ร— {โ„“} ร— {๐‘Ÿ})๐œ‘, ๐ฟ๐‘‡ = ({1๐บ} ร— ๐ฟ ร— {๐‘Ÿ})๐œ‘ and๐‘…๐‘‡ = ({1๐บ} ร— {โ„“} ร— ๐‘…)๐œ‘. Reasoning parallel to Example 8.4 shows that๐‘‡ โ‰ƒ ๐ป ร— ๐ฟ๐‘‡ ร— ๐‘…๐‘‡.

Notice that (๐‘”, โ„“, ๐‘Ÿ)โˆ’1 = (๐‘”โˆ’1, โ„“, ๐‘Ÿ). Let ๐‘‡ be a subalgebra of ๐‘†. Let๐ป = { ๐‘” โˆˆ ๐บ โˆถ (โˆƒ(โ„“, ๐‘Ÿ) โˆˆ ๐ฟ ร— ๐‘…)((๐‘”, โ„“, ๐‘Ÿ) โˆˆ ๐‘‡ }. We first prove that if(๐‘”, โ„“, ๐‘Ÿ) โˆˆ ๐‘‡, then๐ป ร— {(โ„“, ๐‘Ÿ)} โŠ† ๐‘‡. Let โ„Ž โˆˆ ๐ป; then (โ„Ž, โ„“โ€ฒ, ๐‘Ÿโ€ฒ) โˆˆ ๐‘‡ forsome โ„“โ€ฒ โˆˆ ๐ฟ, ๐‘Ÿโ€ฒ โˆˆ ๐‘…. Hence ๐‘‡ contains

(๐‘”, โ„“, ๐‘Ÿ)(๐‘”, โ„“, ๐‘Ÿ)โˆ’1(โ„Ž, โ„“โ€ฒ, ๐‘Ÿโ€ฒ)(๐‘”, โ„“, ๐‘Ÿ)(๐‘”, โ„“, ๐‘Ÿ)โˆ’1

= (๐‘”๐‘”โˆ’1โ„Ž๐‘”๐‘”โˆ’1, โ„“, ๐‘Ÿ)= (โ„Ž, โ„“, ๐‘Ÿ),

and thus๐ป ร— {(โ„“, ๐‘Ÿ)} โŠ† ๐‘‡. Now reason as in Example 8.4 to see that๐‘‡ = ๐ป ร— ๐ฟ๐‘‡ ร— ๐‘…๐‘‡ and thus ๐‘‡ โˆˆ X.

Let { ๐‘†๐‘– โˆถ ๐‘– โˆˆ ๐ผ } be a collection of semigroups in X. Then for all๐‘– โˆˆ ๐ผ, we have ๐‘†๐‘– โ‰ƒ ๐บ๐‘– ร—๐ฟ๐‘– ร—๐‘…๐‘– for some group๐บ๐‘–, left zero semigroup๐ฟ๐‘– and right zero semigroup ๐‘…๐‘–. Hence

โˆ๐‘–โˆˆ๐ผ๐‘†๐‘– โ‰ƒ โˆ๐‘–โˆˆ๐ผ(๐บ๐‘– ร— ๐ฟ๐‘– ร— ๐‘…๐‘–) โ‰ƒ (โˆ

๐‘–โˆˆ๐ผ๐บ๐‘–) ร— (โˆ

๐‘–โˆˆ๐ผ๐ฟ๐‘–) ร— (โˆ

๐‘–โˆˆ๐ผ๐‘…๐‘–);

sinceโˆ๐‘–โˆˆ๐ผ ๐บ๐‘– is a group,โˆ๐‘–โˆˆ๐ผ ๐ฟ๐‘– is a left zero semigroup, andโˆ๐‘–โˆˆ๐ผ ๐‘…๐‘–is a right zero semigroup, we see thatโˆ๐‘–โˆˆ๐ผ ๐‘†๐‘– is [isomorphic to] thedirect product of a group and a rectangular band. Soโˆ๐‘–โˆˆ๐ผ ๐‘†๐‘– โˆˆ X.

Let ๐‘† = ๐บ ร— ๐ฟ ร— ๐‘…, where ๐บ is a group, ๐ฟ is a left zero semigroup,and ๐‘… is a right zero semigroup. Let ๐‘ฅ = (๐‘”, โ„“, ๐‘Ÿ) and ๐‘ฆ = (๐‘”โ€ฒ, โ„“โ€ฒ, ๐‘Ÿโ€ฒ).Then

๐‘ฅ๐‘ฅโˆ’1 = (๐‘”, โ„“, ๐‘Ÿ)(๐‘”โˆ’1, โ„“, ๐‘Ÿ)= (1๐บ, โ„“, ๐‘Ÿ)= (๐‘”โˆ’1, โ„“, ๐‘Ÿ)(๐‘”, โ„“, ๐‘Ÿ)= ๐‘ฅโˆ’1๐‘ฅ

and

๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1๐‘ฅ = (๐‘”โˆ’1, โ„“, ๐‘Ÿ)(โ„Ž, โ„“โ€ฒ, ๐‘Ÿโ€ฒ)(โ„Žโˆ’1, โ„“โ€ฒ, ๐‘Ÿโ€ฒ)(๐‘”, โ„“, ๐‘Ÿ)= (๐‘”โˆ’1โ„Žโ„Žโˆ’1๐‘”, โ„“, ๐‘Ÿ)

246 โ€ขSolutions to exercises

Page 255: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

= (1๐บ, โ„“, ๐‘Ÿ)= (๐‘”โˆ’1, โ„“, ๐‘Ÿ)(๐‘”, โ„“, ๐‘Ÿ)= ๐‘ฅโˆ’1๐‘ฅ.

So ๐‘† satisfies these laws.Now suppose that ๐‘† satisfies the given laws. For any ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†,

we have ๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1๐‘ฅ โˆˆ ๐‘†๐‘ฆ๐‘†. So ๐‘† is simple by theanalogue of Lemma 3.7 for simple semigroups. Let ๐‘’, ๐‘“ โˆˆ ๐‘† be idem-potents; then ๐‘’ = ๐‘ฅ๐‘ฅโˆ’1 and ๐‘“ = ๐‘ฆ๐‘ฆโˆ’1 for some ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘†. Then๐‘’๐‘“๐‘’ = ๐‘ฅ๐‘ฅโˆ’1๐‘ฆ๐‘ฆโˆ’1๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฅ๐‘ฅโˆ’1๐‘ฅ๐‘ฅโˆ’1 = ๐‘ฅ๐‘ฅโˆ’1 = ๐‘’. So the idempotentsof ๐‘† form a rectangular band by Example 8.4. Since rectangular bandsare completely simple, they contain primitive idempotents. Hence ๐‘†contains a primitive idempotent. So ๐‘† is completely simple. Since theidempotents of ๐‘† form a subsemigroup, ๐‘† is orthodox. Hence ๐‘† is adirect product of a rectangular band and a group by Exercise 5.6(b).

8.6 Let ๐‘† โˆˆ โ‹‚๐‘–โˆˆ๐ผ V๐‘–. Then ๐‘† โˆˆ V๐‘– for all ๐‘– โˆˆ ๐ผ. Let ๐‘‡ be a homomorphicimage (respectively, subalgebra) of ๐‘†. Since each V๐‘– is a pseudovariety,๐‘‡ โˆˆ V๐‘– for all ๐‘– โˆˆ ๐ผ. Hence ๐‘‡ โˆˆ โ‹‚๐‘–โˆˆ๐ผ V๐‘–. So โ‹‚๐‘–โˆˆ๐ผ V๐‘– is closed underforming homomorphic images and subalgebras. Now let ๐‘†1,โ€ฆ , ๐‘†๐‘› โˆˆโ‹‚๐‘–โˆˆ๐ผ V๐‘–.Then ๐‘†๐‘— โˆˆ V๐‘– for each ๐‘– โˆˆ ๐ผ and ๐‘— = 1,โ€ฆ , ๐‘›. So ๐‘†1ร—โ€ฆร—๐‘†๐‘› โˆˆ V๐‘–for each ๐‘– โˆˆ ๐ผ and so ๐‘†1 ร—โ€ฆร— ๐‘†๐‘› โˆˆ โ‹‚๐‘–โˆˆ๐ผ V๐‘–. Soโ‹‚๐‘–โˆˆ๐ผ V๐‘– is closed underforming finitary direct products. Thereforeโ‹‚๐‘–โˆˆ๐ผ V๐‘– is a pseudovariety.

8.7 Let V be an S-pseudovariety of semigroups. Then

๐‘† โˆˆ (VMon)Sgโ‡’ ๐‘†1 โˆˆ VMon [by (8.7)]โ‡’ ๐‘†1 is a monoid in Vโ‡’ ๐‘† โˆˆ V. [since ๐‘† is closed under taking subsemigroups]

Let V be the S-pseudovariety of rectangular bands. Then VMon = 1,since the only monoid that is a rectangular band is the trivial monoid,and so (VMon)Sg = VS(1) = 1 โ‰  V.

8.8 Let ๐‘† be a completely regular semigroup. Let ๐‘  โˆˆ ๐‘†. By Theorem 4.15,๐‘  lies in a subgroup ๐บ of ๐‘†. If ๐œ— โˆถ ฮฉ{๐‘ฅ}Sโ†’ ๐‘† is such that ๐‘ฅ๐œ— = ๐‘ , then๐‘ฅ๐œ”๐œ— is the idempotent power of ๐‘†, whichmuch be the identity of๐บ. So๐‘ฅ๐œ”+1๐œ— = (๐‘ฅ๐œ”๐œ—)(๐‘ฅ๐œ—) = 1๐‘  = ๐‘  = ๐‘ฅ๐œ—, so ๐‘† satisfies the pseudoidentity๐‘ฅ๐œ”+1 = ๐‘ฅ.

Now suppose that ๐‘† satisfies ๐‘ฅ๐œ”+1 = ๐‘ฅ. Let ๐‘  โˆˆ ๐‘† and choose๐œ— โˆถ ฮฉ{๐‘ฅ}S โ†’ ๐‘† with ๐‘ฅ๐œ— = ๐‘ . Then ๐‘ฅ๐œ”๐œ— = ๐‘ ๐‘˜ for some ๐‘˜ โˆˆ โ„•. So๐‘ ๐‘˜ = ๐‘ฅ๐œ”๐œ— = ๐‘ฅ๐œ— = ๐‘ . Thus ๐‘  lies in the cyclic group {๐‘ , ๐‘ 2,โ€ฆ , ๐‘ ๐‘˜โˆ’1}.Hence every element of ๐‘† lies in a subgroup and so ๐‘† is completelyregular by Theorem 4.15.

8.9 Let ๐‘† be a completely simple semigroup; thus ๐‘† = M[๐บ; ๐ผ, ๐›ฌ; ๐‘ƒ] forsome group ๐บ, index sets ๐ผ and ๐›ฌ, and matrix ๐‘ƒ over ๐บ. Let (๐‘–, ๐‘”, ๐œ†)

Solutions to exercises โ€ข 247

Page 256: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

and (๐‘—, โ„Ž, ๐œ‡) be elements of ๐‘†. If ๐œ— โˆถ ฮฉ{๐‘ฅ}S โ†’ ๐‘† is such that ๐‘ฅ๐œ— =(๐‘–, ๐‘”, ๐œ†) and ๐‘ฆ๐œ— = (๐‘—, โ„Ž, ๐œ‡), then we have (๐‘ฅ๐‘ฆ)๐œ— = (๐‘–, ๐‘”, ๐œ†)(๐‘—, โ„Ž, ๐œ‡) =(๐‘–, ๐‘”๐‘๐œ†๐‘—โ„Ž, ๐œ‡). Now, (๐‘–, ๐‘”๐‘๐œ†๐‘—โ„Ž, ๐œ‡)๐‘˜ = (๐‘–, (๐‘”๐‘๐œ†๐‘—โ„Ž๐‘๐œ‡๐‘–)๐‘˜โˆ’1๐‘”๐‘๐œ†๐‘—โ„Ž, ๐œ‡) for all๐‘˜ โˆˆ โ„•. Thus (๐‘ฅ๐‘ฆ)๐œ”๐œ— is (๐‘–, (๐‘”๐‘๐œ†๐‘—โ„Ž๐‘๐œ‡๐‘–)๐‘˜โˆ’1๐‘”๐‘๐œ†๐‘—โ„Ž, ๐œ‡) for some ๐‘˜. Since(๐‘ฅ๐‘ฆ)๐œ”๐œ— is always an idempotent, we have (๐‘ฅ๐‘ฆ)๐œ”๐œ— = (๐‘–, ๐‘โˆ’1๐œ‡๐‘– , ๐œ‡). There-fore we have ((๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ)๐œ— = (๐‘–, ๐‘โˆ’1๐œ‡๐‘– , ๐œ‡)(๐‘–, ๐‘”, โ„Ž) = (๐‘–, ๐‘โˆ’1๐œ‡๐‘– , ๐œ‡)(๐‘–, ๐‘”, ๐œ†) =(๐‘–, ๐‘โˆ’1๐œ‡๐‘– ๐‘๐œ‡๐‘–๐‘”, ๐œ†) = (๐‘–, ๐‘”, ๐œ†) = ๐‘ฅ๐œ—. Thus ๐‘† satisfies the pseudoidentity(๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ = ๐‘ฅ.

Now suppose that ๐‘† satisfies (๐‘ฅ๐‘ฆ)๐œ”+1 = ๐‘ฅ. Let ๐‘ , ๐‘ก โˆˆ ๐‘† and choose๐œ— โˆถ ฮฉ{๐‘ฅ}S โ†’ ๐‘† with ๐‘ฅ๐œ— = ๐‘  and ๐‘ฆ๐œ— = ๐‘ก. Then (๐‘ฅ๐‘ฆ)๐œ”๐‘ฅ๐œ— = (๐‘ ๐‘ก)๐‘˜๐‘  forsome ๐‘˜ โˆˆ โ„•. Hence ๐‘  = (๐‘ ๐‘ก)๐‘˜๐‘  โˆˆ ๐‘†๐‘ก๐‘† and so ๐‘† is simple by the analogueof Lemma 3.7 for simple semigroups. Arguing as in Exercise 8.8 butwith ๐‘ฅ๐œ— = ๐‘ฆ๐œ— = ๐‘ , we see that ๐‘  lies in the {๐‘ , ๐‘ 2,โ€ฆ , ๐‘ 2๐‘˜}. Henceevery element of ๐‘† lies in a subgroup and so ๐‘† is completely regular byTheorem 4.15. Since ๐‘† is completely regular and simple, it is completelysimple by Theorem 4.16.

8.10 Let ๐‘† be left simple. Let ๐‘’ be an idempotent of ๐‘†. Then ๐‘†๐‘’ = ๐‘† since ๐‘†is left simple. Let ๐‘  โˆˆ ๐‘†; then ๐‘  = ๐‘ โ€ฒ๐‘’ for some ๐‘ โ€ฒ โˆˆ ๐‘†. Therefore ๐‘ ๐‘’ =๐‘ โ€ฒ๐‘’๐‘’ = ๐‘ โ€ฒ๐‘’ = ๐‘ , and so ๐‘’ is a right identity for ๐‘†. For any homomorphism๐œ— โˆถ ฮฉ{๐‘ฅ,๐‘ฆ}(๐‘†), the element ๐‘ฆ๐œ”๐œ— is an idempotent of ๐‘†. Hence (๐‘ฅ๐‘ฆ๐œ”)๐œ— =(๐‘ฅ๐œ—)(๐‘ฆ๐œ”๐œ—) = ๐‘ฅ๐œ—. Thus ๐‘† satisfies the pseudoidentity ๐‘ฅ๐‘ฆ๐œ” = ๐‘ฅ.

Now suppose ๐‘† satisfies ๐‘ฅ๐‘ฆ๐œ” = ๐‘ฅ. Let ๐‘ , ๐‘ก โˆˆ ๐‘†. Let ๐œ— โˆถ ฮฉ{๐‘ฅ,๐‘ฆ}S besuch that ๐‘ฅ๐œ— = ๐‘  and ๐‘ฆ๐œ— = ๐‘ก. Then (๐‘ฆ๐œ”)๐œ— will be some idempotentpower of ๐‘ก, say ๐‘ก๐‘˜ for some ๐‘˜ โˆˆ โ„•. Then ๐‘ ๐‘ก๐‘˜ = (๐‘ฅ๐‘ฆ๐œ”)๐œ— = ๐‘ฅ๐œ— = ๐‘ .Hence ๐‘  โˆˆ ๐‘†๐‘ก. Thus ๐‘† = ๐‘†๐‘ก for all ๐‘ก โˆˆ ๐‘† and so ๐‘† is left simple.

Exercises for chapter 9

[See pages 201โ€“202 for the exercises.]

9.1 Suppose ๐ฟ is rational. Then it is recognized by a finite semigroup ๐‘† byTheorem 9.4. By Proposition 9.6, SynM ๐ฟ divides ๐‘†. Hence SynM ๐ฟ isfinite.

Suppose SynM ๐ฟ is finite. The monoid SynM ๐ฟ recognizes ๐ฟ byProposition 9.6. Since ๐ฟ is recognized by a finite monoid, it is rationalby Theorem 9.4.

9.2 Let ๐‘† be the three element semilattice {0, ๐‘ฅ, ๐‘ฆ} with ๐‘ฅ > 0 and ๐‘ฆ > 0.Let ๐‘Ž๐œ‘ = ๐‘ฅ and ๐‘๐œ‘ = ๐‘ฆ.Then {๐‘ฅ}๐œ‘โˆ’1 = {๐‘Ž}+ and {๐‘ฆ}๐œ‘โˆ’1 = {๐‘}+; hence{0}๐œ“โˆ’1 = ๐ฟ.

9.3 By definition, SynM๐ท = { ( , ) }โˆ—/๐œŽ๐ท. Let ๐‘ค1โ‹ฏ๐‘ค๐‘› โˆˆ { ( , ) }โˆ—. Then

248 โ€ขSolutions to exercises

Page 257: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

for any ๐‘–, ๐‘—,

๐ถ(๐‘ค1โ‹ฏ๐‘ค๐‘— ( )๐‘ค๐‘—+1โ‹ฏ๐‘ค๐‘›, ๐‘–) =

{{{{{{{{{{{

๐ถ(๐‘ค1โ‹ฏ๐‘ค๐‘›, ๐‘–) if ๐‘– โฉฝ ๐‘—,๐ถ(๐‘ค1โ‹ฏ๐‘ค๐‘›, ๐‘—) + 1 if ๐‘– = ๐‘— + 1,๐ถ(๐‘ค1โ‹ฏ๐‘ค๐‘›, ๐‘—) if ๐‘– = ๐‘— + 2,๐ถ(๐‘ค1โ‹ฏ๐‘ค๐‘›, ๐‘–) if ๐‘– โฉพ ๐‘— + 2.

In particular,

๐ถ(๐‘ค1โ‹ฏ๐‘ค๐‘— ( )๐‘ค๐‘—+1โ‹ฏ๐‘ค๐‘›, ๐‘› + 2) = 0 โ‡” ๐ถ(๐‘ค1โ‹ฏ๐‘ค๐‘›, ๐‘›) = 0,๐ถ(๐‘ค1โ‹ฏ๐‘ค๐‘— ( )๐‘ค๐‘—+1โ‹ฏ๐‘ค๐‘›, ๐‘–) โฉพ 0 for all ๐‘–โ‡” ๐ถ(๐‘ค1โ‹ฏ๐‘ค๐‘›, ๐‘–) โฉพ 0 for all ๐‘–.

Hence for any words ๐‘, ๐‘ž โˆˆ { ( , ) }โˆ—, we have ๐‘ ( ) ๐‘ž โˆˆ ๐ท if and only if๐‘๐‘ž โˆˆ ๐ท. Hence ( ) ๐œŽ๐ท ๐œ€.That is, [ ( ]๐œŽ๐ท [ ) ]๐œŽ๐ท = [๐œ€]๐œŽ๐ท . Furthermore, ) (is not a Dyck word, so ) ( is not ๐œŽ๐ท-related to ๐œ€. That is [ ) ]๐œŽ๐ท [ ( ]๐œŽ๐ท โ‰ [๐œ€]๐œŽ๐ท . Hence, by Exercise 2.12 with ๐‘ฅ = [ ( ]๐œŽ๐ท , ๐‘ฆ = [ ) ]๐œŽ๐ท , and ๐‘’ =[๐œ€]๐œŽ๐ท , and noting that [ ( ]๐œŽ๐ท and ๐‘ฆ = [ ) ]๐œŽ๐ท generate SynM๐ท, we seethat SynM๐ท is isomorphic to the bicyclic monoid.

9.4 Let ๐พ, ๐ฟ โˆˆ N(๐ด+). If both ๐พ and ๐ฟ are finite, then ๐พ โˆช ๐ฟ and ๐พ โˆฉ ๐ฟare finite and so ๐พ โˆช ๐ฟ,๐พ โˆฉ ๐ฟ โˆˆ N(๐ด+). If one of ๐พ or ๐ฟ is finiteand the other cofinite, then๐พ โˆช ๐ฟ is cofinite and ๐พ โˆฉ ๐ฟ is finite andso ๐พ โˆช ๐ฟ,๐พ โˆฉ ๐ฟ โˆˆ N(๐ด+). If both ๐พ and ๐ฟ are cofinite, then ๐พ โˆช ๐ฟand ๐พ โˆฉ ๐ฟ are cofinite and so ๐พ โˆช ๐ฟ,๐พ โˆฉ ๐ฟ โˆˆ N(๐ด+). So N(๐ด+) isclosed under union and intersection. If ๐พ is finite, ๐ด+ โˆ– ๐พ is cofiniteand so ๐ด+ โˆ– ๐พ โˆˆ N(๐ด+); if ๐พ is cofinite, ๐ด+ โˆ– ๐พ is finite and so๐ด+ โˆ– ๐พ โˆˆ N(๐ด+). So N(๐ด+) is closed under complementation.

Let ๐ฟ โˆˆ N(๐ด+) and ๐‘Ž โˆˆ ๐ด. If ๐ฟ is finite, it contains only word oflength less than ๐‘› for some fixed ๐‘› โˆˆ โ„•. So ๐‘Žโˆ’1๐ฟ and ๐ฟ๐‘Žโˆ’1 containonly words of length less than ๐‘› โˆ’ 1. So ๐‘Žโˆ’1๐ฟ and ๐ฟ๐‘Žโˆ’1 are finite andso ๐‘Žโˆ’1๐ฟ, ๐ฟ๐‘Žโˆ’1 โˆˆ N(๐ด+). On the other hand, if ๐ฟ is cofinite, it containsall words in๐ด+ of length greater than ๐‘› for some fixed ๐‘› โˆˆ โ„•. So ๐‘Žโˆ’1๐ฟand ๐ฟ๐‘Žโˆ’1 contain all words in๐ด+ of length greater than ๐‘›โˆ’1. So ๐‘Žโˆ’1๐ฟand ๐ฟ๐‘Žโˆ’1 are cofinite and so ๐‘Žโˆ’1๐ฟ, ๐ฟ๐‘Žโˆ’1 โˆˆ N(๐ด+).

Let ๐ฟ โˆˆ N(๐ต+) and let ๐œ‘ โˆถ ๐ด+ โ†’ ๐ต+ be a homomorphism. If ๐ฟ isfinite, it contains only word of length less than ๐‘› for some fixed ๐‘› โˆˆ โ„•.Let ๐‘ค โˆˆ ๐ด+ have length greater than ๐‘›. Then ๐‘ค๐œ‘ has length greaterthan ๐‘› and so๐‘ค๐œ‘ โˆ‰ ๐ฟ. So ๐ฟ๐œ‘โˆ’1 contains only words of length less than๐‘›; thus ๐ฟ๐œ‘โˆ’1 is finite and so ๐ฟ๐œ‘โˆ’1 โˆˆ N(๐ด+). On the other hand, if ๐ฟ iscofinite, it contains all words in ๐ด+ of length greater than ๐‘› for somefixed ๐‘› โˆˆ โ„•. Let ๐‘ค โˆˆ ๐ด+ have length greater than ๐‘›. Then ๐‘ค๐œ‘ haslength greater than ๐‘› and so๐‘ค๐œ‘ โˆˆ ๐ฟ. So ๐ฟ๐œ‘โˆ’1 contains all words in๐ด+of length greater than ๐‘›; thus ๐ฟ๐œ‘โˆ’1 is cofinite and so ๐ฟ๐œ‘โˆ’1 โˆˆ N(๐ด+).

9.5 Suppose that ๐พ is a +-language over ๐ด recognized by some finiterectangular band ๐‘†. Then there is a homomorphism ๐œ‘ โˆถ ๐ด+ โ†’ ๐‘†

Solutions to exercises โ€ข 249

Page 258: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

such that ๐พ = ๐พ๐œ‘๐œ‘โˆ’1. Recall from Exercise 8.4(c) that ๐‘† satisfiesthe pseudoidentities ๐‘ฅ2 = ๐‘ฅ and ๐‘ฅ๐‘ฆ๐‘ง = ๐‘ฅ๐‘ง. Thus, for ๐‘Ž, ๐‘Žโ€ฒ โˆˆ ๐ดand ๐‘ค โˆˆ ๐ดโˆ—, we have (๐‘Ž๐‘ค๐‘Žโ€ฒ)๐œ‘ โˆˆ ๐พ๐œ‘ if and only if (๐‘Ž๐‘Žโ€ฒ)๐œ‘ โˆˆ ๐พ๐œ‘, orequivalently ๐‘Ž๐‘ค๐‘Žโ€ฒ โˆˆ ๐พ if and only if ๐‘Ž๐‘Žโ€ฒ โˆˆ ๐พ. Therefore

๐‘Ž๐ดโˆ—๐‘Žโ€ฒ โˆฉ ๐พ โ‰  โˆ…โ‡’ (โˆƒ๐‘ข โˆˆ ๐ดโˆ—)(๐‘Ž๐‘ข๐‘Žโ€ฒ โˆˆ ๐พ)โ‡’ ๐‘Ž๐‘Žโ€ฒ โˆˆ ๐พโ‡’ (โˆ€๐‘ค โˆˆ ๐ดโˆ—)(๐‘Ž๐‘ค๐‘Žโ€ฒ โˆˆ ๐พ)โ‡’ ๐‘Ž๐ดโˆ—๐‘Žโ€ฒ โŠ† ๐พ.

On the other hand, if ๐‘Ž๐ดโˆ—๐‘Žโ€ฒ โŠ† ๐พ, then obviously ๐‘Ž๐ดโˆ—๐‘Žโ€ฒ โˆฉ ๐พ โ‰  โˆ….Therefore:

๐‘Ž๐ดโˆ—๐‘Žโ€ฒ โŠ† ๐พ โ‡” ๐‘Ž๐ดโˆ—๐‘Žโ€ฒ โˆฉ ๐พ โ‰  โˆ…. (S.24)

Reasoning similar to the above and also using (๐‘Ž๐‘Ž)๐œ‘ = ๐‘Ž๐œ‘ proves that

๐‘Ž๐ดโˆ—๐‘Ž โŠ† ๐พ โ‡” ๐‘Ž โˆˆ ๐พ. (S.25)

Let ๐‘ be the subset of ๐ด that lies in ๐พ and let ๐พ1 = ๐‘ โˆช โ‹ƒ๐‘Žโˆˆ๐‘ ๐‘Ž๐ดโˆ—๐‘Ž.

Then by (S.25), ๐พ1 โŠ† ๐พ. Again by (S.25), ๐พ1 must be precisely thewords in๐พ that start and end with the same letter. Let๐พ2 be the set ofwords in๐พ that start and end with different letters. By (S.24), if there aword in๐พ2 that starts with ๐‘Ž and ends with ๐‘Žโ€ฒ, then all words in ๐‘Ž๐ดโˆ—๐‘Žโ€ฒlie in ๐พ2. There are only finitely many possible choices for ๐‘Ž and ๐‘Žโ€ฒ,so ๐พ2 = โ‹ƒ

๐‘›๐‘–=1 ๐‘Ž๐‘–๐ด

โˆ—๐‘Žโ€ฒ๐‘– for suitable ๐‘Ž๐‘– and ๐‘Žโ€ฒ๐‘–. Hence ๐พ = ๐พ1 โˆช ๐พ2 is alanguage of the form (9.12).

Now suppose that ๐พ has the form (9.12). Then whether a wordin ๐ด+ lies in ๐พ depends only on its first and last letters. Let ๐‘ , ๐‘ก โˆˆ ๐ด+.Then for any ๐‘, ๐‘ž โˆˆ ๐ดโˆ—, the first letters of ๐‘๐‘ ๐‘ก๐‘ ๐‘ž and ๐‘๐‘ ๐‘ž are eitherboth the first letter of ๐‘, and thus equal, or (when ๐‘ = ๐œ€) both thefirst letter of ๐‘ , and thus equal. Similarly, the last letters of ๐‘๐‘ ๐‘ก๐‘ ๐‘ž and๐‘๐‘ ๐‘ž are equal. So ๐‘๐‘ ๐‘ก๐‘ ๐‘ž โˆˆ ๐พ if and only if ๐‘๐‘ ๐‘ž โˆˆ ๐พ. Hence ๐‘ ๐‘ก๐‘  ๐œŽ๐พ ๐‘ ,or [๐‘ ]๐œŽ๐พ [๐‘ก]๐œŽ๐พ [๐‘ ]๐œŽ๐พ = [๐‘ ]๐œŽ๐พ . Since ๐‘ , ๐‘ก โˆˆ ๐ด

+ were arbitrary, this provesthat SynS๐พ satisfies the pseudoidentity ๐‘ฅ๐‘ฆ๐‘ฅ = ๐‘ฅ. Hence SynS๐พ is arectangular band and SynS๐พ โˆˆ RB.

โ€ข

250 โ€ขSolutions to exercises

Page 259: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Bibliography

โ€˜ The bibliographical references at the end of this book do notmake up a bibliography, they are only a legal deviceaimed at avoiding accusations of having omitted thenames of persons from whom I took direct quotations. โ€™

โ€” Umberto Eco,Kant and the Platypus, Introduction

(trans. William Weaver).

Almeida, J. Finite Semigroups and Universal Algebra. Series in Algebra 3.World Scientific, 1994. isbn: 9789810218959.

โ€”โ€”โ€” โ€˜Profinite semigroups and applicationsโ€™. In: Structural Theory of Automata,Semigroups, and Universal Algebra. NATO Science Series II: Mathemat-ics, Physics and Chemistry 207. Dordrecht: Springer, 2005, pp. 1โ€“45. isbn:9781402038150. doi: 10.1007/1-4020-3817-8_1.

Andersen, O. โ€˜Ein bericht รผber die Struktur abstrakter Halbgruppenโ€™. Staat-sexamensarbeit. Hamburg, 1952.

Baader, F. & Nipkow, T. Term Rewriting and All That. Cambridge Univer-sity Press, 1999. isbn: 9780521455206.

Book, R. V. & Otto, F. String Rewriting Systems. Texts and Monographs inComputer Science. Springer, 1993. isbn: 9780387979656.

Cain, A. J. , Robertson, E. F. & Ruลกkuc, N. โ€˜Cancellative and Malcevpresentations for finite Rees index subsemigroups and extensionsโ€™. In: Journalof the Australian Mathematical Society 84, no. 1 (2008), pp. 39โ€“61. doi: 10.1017/s1446788708000086.

Clifford, A. H. & Preston, G. B. The Algebraic Theory of Semigroups.Vol. 1. Mathematical Surveys 7. Providence, RI: American MathematicalSociety, 1961.

โ€”โ€”โ€” The Algebraic Theory of Semigroups. Vol. 2. Mathematical Surveys andMonographs 7. Providence, RI: American Mathematical Society, 1967.

Clifford, A. H. โ€˜Semigroups admitting relative inversesโ€™. In: Annals of Math-ematics. 2nd ser. 42 (1941), pp. 1037โ€“1049. doi: 10.2307/1968781.

Distler, A. โ€˜Classification and Enumeration of Finite Semigroupsโ€™. Ph.D.thesis. University of St. Andrews, 2010. url: http://hdl.handle.net/10023/945.

โ€ข 251

Page 260: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Eilenberg, S. Automata, Languages, and Machines. Vol. B. Pure and AppliedMathematics 59. New York: Academic Press, 1976.

Gallagher, P. โ€˜On the Finite Generation and Presentability of DiagonalActs, Finitary Power Semigroups and Schรผtzenberger Productsโ€™. Ph.D. thesis.University of St Andrews, 2005.

Green, J. A. โ€˜On the structure of semigroupsโ€™. In: Annals of Mathematics.2nd ser. 54 (1951), pp. 163โ€“172. doi: 10.2307/1969317.

Grillet, P. A. Semigroups: An Introduction to the Structure Theory. Mono-graphs and Textbooks in Pure and Applied Mathematics 193. New York:Marcel Dekker, 1995. isbn: 9780824796624.

โ€”โ€”โ€” Commutative Semigroups. Advances in Mathematics 2. Springer, 2011.isbn: 9781441948571.

Grillet, P. A. โ€˜A short proof of Rรฉdeiโ€™s theoremโ€™. In: Semigroup Forum 46, no.1 (Dec. 1993), pp. 126โ€“127. doi: 10.1007/BF02573555.

Harju, T. โ€˜Lecture Notes on Semigroupsโ€™. Unpublished lecture notes, Univer-sity of Turku. 1996. url: http://users.utu.fi/harju/semigroups/semigroups96.pdf.

Higgins, P. M. Techniques of SemigroupTheory. With a forew. by G. B. Pre-ston. Oxford Science Publications. Oxford: Clarendon Press, 1992. isbn:9780198535775.

Hopcroft, J. E. & Ullman, J. D. Introduction to AutomataTheory, Lan-guages, and Computation. 1st ed. Reading, MA: Addisonโ€“Wesley, 1979. isbn:9780201029888.

Howie, J. M. Automata and Languages. Oxford Science Publications. Oxford:Clarendon Press, 1991. isbn: 9780198534242.

โ€”โ€”โ€” Fundamentals of Semigroup Theory. London Mathematical Society Mono-graphs: New Series 12. Oxford: Clarendon Press, 1995. isbn: 9780198511946.

Kleene, S. C. โ€˜Representation of events in nerve nets and finite automataโ€™. In:Automata Studies. Ed. by C. E. Shannon & J. McCarthy. Annals of Mathem-atics Studies 34. Princeton, NJ: Princeton University Press, 1956, pp. 3โ€“41.isbn: 978-0-691-07916-5.

Krohn, K. & Rhodes, J . โ€˜Algebraic theory of machines I: Prime decompos-ition theorem for finite semigroups and machinesโ€™. In: Transactions of theAmericanMathematical Society 116 (1965), pp. 450โ€“464. doi: 10.2307/1994127.

Lallement, G. Semigroups and Combinatorial Applications. New York: JohnWiley & Sons, 1979. isbn: 9780471043799.

โ€”โ€”โ€” โ€˜Augmentations and wreath products of monoidsโ€™. In: Semigroup Forum21, no. 1 (Dec. 1980), pp. 89โ€“90. doi: 10.1007/BF02572539.

Lawson, M. V. Inverse Semigroups: TheTheory of Partial Symmetries. RiverEdge, NJ: World Scientific, 1998. isbn: 9789810233167. doi: 10.1142/9789812816689.

252 โ€ขBibliography

Page 261: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

โ€”โ€”โ€” Finite Automata. Boca Raton, FL: Chapman & Hall/CRC, 2004. isbn:9781584882558.

Linderholm, C. E. โ€˜A group epimorphism is surjectiveโ€™. In: The AmericanMathematical Monthly 77, no. 2 (Feb. 1970), p. 176. url: https://www.jstor.org/stable/2317336.

Ljapin, E. S. Semigroups. Trans. by A. A. Brown, J. M. Danskin, D. Foley,S. H. Gould, E. Hewitt, S. A. Walker & J. A. Zilber. 3rd ed. Translationsof Mathematical Monographs 3. Providence, RI: American MathematicalSociety, 1974.

Lothaire, M. Combinatorics on Words. With a forew. by R. Lyndon. Correc-ted edition. Encyclopedia of Mathematics and its Applications 17. CambridgeUniversity Press, 1997. isbn: 9780521599245.

Mac Lane, S. Categories for the Working Mathematician. 2nd ed. GraduateTexts in Mathematics 5. Springer, 1998. isbn: 9780387984032.

Malcev, A. I. โ€˜On the immersion of an algebraic ring into a fieldโ€™. In: Math-ematische Annalen 113 (1937), pp. 686โ€“691. doi: 10.1007/BF01571659.

Miller, D. D. & Clifford, A. H. โ€˜Regular D-classes in semigroupsโ€™. In:Transactions of the American Mathematical Society 82 (1956), pp. 270โ€“280.doi: 10.2307/1992989.

Munn, W. D. โ€˜Free Inverse Semigroupsโ€™. In: Proceedings of the London Math-ematical Society 29, no. 3 (1st Nov. 1974), pp. 385โ€“404. doi: 10.1112/plms/s3-29.3.385.

Ore, ร˜. โ€˜Linear equations in non-commutative fieldsโ€™. In: Annals of Mathemat-ics. 2nd ser. 32, no. 3 (July 1931), pp. 463โ€“477. doi: 10.2307/1968245.

Petrich, M. Inverse Semigroups. New York: John Wiley & Sons, 1984. isbn:9780471875451.

โ€”โ€”โ€” Completely Regular Semigroups. Canadian Mathematical Society Series ofMonographs and Advanced Texts 23. New York: John Wiley & Sons, 1999.isbn: 9780471195719.

Pin, J . E. Varieties of Formal Languages. Trans. by A. Howie. With a forew. byM. P. Schรผtzenberger. Foundations of Computer Science. New York: PlenumPublishing, 1986. isbn: 9781461293002. doi: 10.1007/978-1-4613-2215-3.

Pin, J. โ€˜Mathematical Foundations of Automata Theoryโ€™. Unpublished draft.13th Mar. 2019.

Pin, J . โ€˜Syntactic semigroupsโ€™. In: Handbook of Formal Languages. Vol. 1: Word,Language, Grammar. Ed. by G. Rozenberg & A. Salomaa. Berlin: Springer,1997, pp. 679โ€“746. isbn: 9783642638633. doi: 10.1007/978-3-642-59136-5_10.

Preston, G. B. โ€˜Inverse semi-groups with minimal right idealsโ€™. In: Journalof the London Mathematical Society. 1st ser. 29 (1954), pp. 404โ€“411. doi:10.1112/jlms/s1-29.4.404.

โ€”โ€”โ€” โ€˜Representations of inverse semi-groupsโ€™. In: Journal of the London Math-ematical Society. 1st ser. 29 (1954), pp. 411โ€“419. doi: 10.1112/jlms/s1-29.4.411.

Bibliography โ€ข 253

Page 262: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Rabin, M. O. & Scott, D. โ€˜Finite automata and their decision problemsโ€™.In: International Business Machines Journal of Research and Development 3(1959), pp. 114โ€“125. doi: 10.1147/rd.32.0114.

Rรฉdei, L. TheTheory of Finitely Generated Commutative Semigroups. Ed. by N.Reilly. International Series of Monographs in Pure and Applied Mathematics.Oxford: Pergamon Press, 1965.

Rees, D. & Hall, P. โ€˜On semi-groupsโ€™. In: Mathematical Proceedings of theCambridge Philosophical Society 36, no. 04 (Oct. 1940), p. 387. doi: 10.1017/S0305004100017436.

Rees, D. โ€˜On the group of a set of partial transformationsโ€™. In: Journal of theLondon Mathematical Society. 1st ser. 22, no. 4 (1947), pp. 281โ€“284. doi:10.1112/jlms/s1-22.4.281.

Rhodes, J. & Steinberg, B. The ๐”ฎ-theory of Finite Semigroups.Springer Monographs in Mathematics. New York: Springer, 2009. isbn:9780387097800. doi: 10.1007/b104443.

Robinson, D. J. S. A Course in the Theory of Groups. Graduate Texts inMathematics 80. Springer, 1995. isbn: 9780387944616. doi: 10.1007/978-1-4419-8594-1.

Rosales, J. C. & Garcรญa-Sรกnchez, P. A. Finitely Generated Com-mutative Monoids. Commack, NY: Nova Science Publishers, 1999. isbn:9781560726708.

Ruลกkuc, N. โ€˜Semigroup Presentationsโ€™. Ph.D. thesis. University of St Andrews,1995. url: https://hdl.handle.net/10023/2821.

Schรผtzenberger, M. P. โ€˜On finite monoids having only trivial subgroupsโ€™.In: Information and Control 8, no. 2 (Apr. 1965), pp. 190โ€“194. doi: 10.1016/S0019-9958(65)90108-7.

Schรผtzenberger, M.-P. โ€˜D reprรฉsentation des demi-groupesโ€™. In: Comptesrendus hebdomadaires des sรฉances de lโ€™Acadรฉmie des Sciences 244, no. 2 (Apr.โ€“June 1957), pp. 1994โ€“1996. url: https://gallica.bnf.fr/ark:/12148/bpt6k7215/f154.image.

โ€”โ€”โ€” โ€˜Sur la reprรฉsentation monomiale des demi-groupesโ€™. In: Comptes rendushebdomadaires des sรฉances de lโ€™Acadรฉmie des Sciences 246, no. 1 (Jan.โ€“Mar.1958), pp. 865โ€“867. url: https://gallica.bnf.fr/ark:/12148/bpt6k3198s/f871.image.

Suschkewitsch, A. โ€˜รœber die endlichen Gruppen ohne das Gesetz dereindeutigen Umkehrbarkeitโ€™. In:Mathematische Annalen 99 (1928), pp. 30โ€“51.doi: 10.1007/BF01459084.

Vagner, V. V. โ€˜Generalized groupsโ€™. In:DokladyAkademii Nauk SSSR 84 (1952),pp. 1119โ€“1122.

โ€ข

254 โ€ขBibliography

Page 263: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Index

โ€˜ Never index your own book. โ€™โ€” Kurt Vonnegut, Catโ€™s Cradle, ch. 55.

โ€ข In this index, the ordering of entries is strictly lexico-graphic, ignoring punctuation and spacing. Symbols outside the Latinalphabet are collected at the start of the index, even if โ€˜auxiliaryโ€™ Latinsymbols are used: thus ๐‘†1 is included in this set, since it is the notationโ€˜ 1โ€™ that is being defined. Brief definitions are given for notation.

This index currently covers only Chapter 1 and part of Chapter 3, plusnames and โ€˜named resultsโ€™. It will gradually be expanded to a full index.

โˆง: logical conjunction; โ€˜andโ€™0-simple, 58โ€“60โˆจ: logical disjunction; โ€˜orโ€™1, 1๐‘†: identity of a semigroup ๐‘†0, 0๐‘†: zero of a semigroup ๐‘†๐‘†1: monoid obtained by adjoining an

identity to ๐‘† if necessary; 4๐‘†0: semigroup obtained by adjoining a

zero to ๐‘† if necessary; 4โŸจ๐‘‹โŸฉ: subsemigroup generated by๐‘‹; 10โจ…๐‘Œ, ๐‘ฅ โŠ“ ๐‘ฆ: meet; 17โจ†๐‘Œ, ๐‘ฅ โŠ” ๐‘ฆ: join; 17๐œŒR: reflexive closure of ๐œŒ; 22๐œŒS: symmetric closure of ๐œŒ; 22๐œŒT: transitive closure of ๐œŒ; 22๐œŒE: equivalence relation generated by ๐œŒ;

22๐œŒC: smallest left and right compatible

relation containing ๐œŒ; 24๐œŒ#: congruence generated by ๐œŒ; 24๐œŒ๐‘ฅ: transformation that right-multiplies

by ๐‘ฅ; 19

action: see โ€˜semigroup actionโ€™Almeida, Jorge, v, 174, 251Andersen, Olaf, 71, 251antichain, 15anti-homomorphism, 20, 30anti-symmetric binary relation, 15associativity: see โ€˜binary operation,

associativeโ€™

automaton: see โ€˜finite state automatonโ€™;viโ€“vii

Baader, Franz, 53, 251biber, 261BibLaTEX, 261bijection, 13binary operation, 1

associative, 1โ€“2binary relation, 11โ€“15, 20, 22Birkhoff โ€™s theorem, 154Book, Ronald V., 53, 251Bourbaki, Nicolas, vbracket, 2Brown, Arthur A., 253B๐‘‹: set of binary relations on๐‘‹; 12

Cain, Alan James, iโ€“ii, viโ€“vii, 92, 251cancellative semigroup, 6, 7, 20, 32

finite implies group, 32cartesian product, 4

finitary, 4category theory, 1, 33, 35Cayley graph, 30โ€“31

of a group, 31right/left, 30โ€“31

Cayleyโ€™s theorem, 19chain, 15, 58Chesterton, Gilbert Keith, 73Clifford, A. H., 34, 70โ€“71, 91โ€“92, 119, 129,

251

โ€ข 255

Page 264: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Clifford, Alfred Hoblitzelle, 71, 92, 119,251, 253

commutative semigroup, vโ€“vi, 6, 7โ€“8of idempotents, 18

comparable elements, 15compatible binary relation, 20, 24โ€“26complete lattice: see โ€˜lattice, completeโ€™complete lower semilattice: see

โ€˜semilattice, completeโ€™complete upper semilattice: see

โ€˜semilattice, completeโ€™composition of binary relations, 11congruence, 20โ€“21, 28

lattice of congruences, 26congruence generated by a binary

relation, 24โ€“26characterization of, 25

converse of a relation, 11correction, vicoset, viiCosta, Alfredo Manuel Gouveia da, 251Cottingham, John, 175Couto, Miguel ร‚ngelo Marques Lourenรงo

do, viiCreative Commons, iicyclic group, 1

D: see also โ€˜Greenโ€™s relationโ€™; 55โ€“57๐ท๐‘Ž: D-class of ๐‘Ž; 57Danskin, John Moffatt, 253Descartes, Renรฉ, 175determinant: see โ€˜matrix, determinant of

aโ€™dihedral group, 1direct product, 1, 4, 8, 28, 30Dโ€™Israeli, Isaac, vDistler, Andreas, 34, 174, 251distributivity, 33dom ๐œŒ: domain of ๐œŒ; 12Dyck, Walther Franz Anton von: see

โ€˜Dyck wordโ€™Dyck word, 201โ€“202

๐ธ(๐‘†): set of idempotents of ๐‘†; 5Eco, Umberto, 251Egri-Nagy, Attila, viiEilenberg correspondence, 189โ€“201Eilenberg, Samuel: see also โ€˜Eilenberg

correspondenceโ€™, โ€˜Eilenbergโ€™stheoremโ€™; 174, 202, 252

Eilenbergโ€™s theorem, 190โ€˜empty semigroupโ€™, 1, 35End(๐‘†): endomorphisms of ๐‘†; 19endomorphism, 19

epimorphism, 34categorical, 33โ€“34of groups, 35

equivalence class, 15, 20equivalence relation, 15, 22โ€“27, 55

characterization of join, 27commuting

characterization of join, 27generated by a binary relation

characterization of, 22lattice of equivalence relations, 26โ€“27

exponent, 5laws, 5

factor group, viifactor semigroup, 20โ€“22, 59โ€“60Feyeraband, Paul Karl, 149finitely generated, 10finite semigroup, vโ€“vi, 5, 33

cancellative implies group, 32finite state automaton, vFoley, D., 253โ€˜folkloreโ€™, 34free semigroup, vifull map: see โ€˜mapโ€™full transformation: see โ€˜transformationโ€™

Gallagher, Peter Timothy, 53, 252Garcรญa Martinez, Xabier, viiGarcรญa-Sรกnchez, Pedro A., 129, 254Gell-Mann, Murray, 121generating set, 10Gould, Sydney Henry, 253graph, viigreatest lower bound: see โ€˜meetโ€™Green, James Alexander: see also โ€˜Greenโ€™s

lemmaโ€™, โ€˜Greenโ€™s relationsโ€™; 71, 252Greenโ€™s lemma, 60Greenโ€™s relation: see also โ€˜H, L, R, D, Jโ€™;

55โ€“57inclusion of, 56โ€“57partial order from L, R, J, 57

Grillet, Pierre Antoine, 34โ€“35, 71, 129, 252Grinberg, Darij, viigroup, vii, 1โ€“2, 6, 10, 32, 55โ€“56, 58, 60

composition series, 60group-embeddable semigroup, 19group of units, 9groupoid, 1

H: see also โ€˜Greenโ€™s relationโ€™; 55, 56๐ป๐‘Ž: H-class of ๐‘Ž; 57Hall, P., 92, 254Hamming, Richard Wesley, 203

256 โ€ขIndex

Page 265: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Ham, Nick, viiHardy, Godfrey Harold, 1Harju, Tero Juhani, 53, 252Hasse diagram, 15โ€“16, 18, 56Herman, Samuel, viiHewitt, Edwin, 253Higgins, Peter Michael, 34, 53, 252homomorphic image, 19homomorphism, 19โ€“20, 21, 28โ€“30, 33โ€“34

kernel of a, 19, 21monoid, 19, 33

Hopcroft, John Edward, 202, 252Howie, A., 253Howie, John Mackintosh, v, 34, 53, 70, 91,

119, 174, 202, 252Huxley, Thomas Henry, 131

๐ผ(๐‘ฅ): the set ๐ฝ(๐‘ฅ) โˆ– ๐ฝ๐‘ฅ; 59id๐‘‹: identity relation on๐‘‹; 11ideal, 9โ€“10, 34, 55โ€“60

left: see โ€˜left idealโ€™minimal

uniqueness of, 58principal, 9right: see โ€˜right idealโ€™two-sided: see โ€˜idealโ€™

ideal extension, 22, 28โ€“29idempotent, 5, 7โ€“8, 32

partial order of, 17idempotents

semigroup of: see โ€˜semigroup ofidempotentsโ€™

identity: see also โ€˜monoidโ€™; 1, 3, 7, 9, 12, 32adjoining, 4, 32left: see โ€˜left identityโ€™right: see โ€˜right identityโ€™two-sided: see โ€˜identityโ€™uniqueness of, 3

identity relation, 11, 12, 19, 32im ๐œŒ: image of ๐œŒ; 12index of an element, 5infimum: see โ€˜meetโ€™integers

as a partially ordered set, 15as a semigroup, 3

inverse, 1, 6โ€“7, 8inverse semigroup, vโ€“viinvertible element, 6, 8โ€“9, 33isomorphism, 19, 21

J: see also โ€˜Greenโ€™s relationโ€™; 55, 56โ€“57๐ฝ๐‘Ž: J-class of ๐‘Ž; 57๐ฝ(๐‘ฅ): principal ideal generated by ๐‘ฅ; 9join, 17, 56

join semilattice: see โ€˜semilatticeโ€™โ€˜Jordanโ€“Hรถlder theoremโ€™ for semigroups,

60

๐พ(๐‘†): kernel of a semigroup; 58ker๐œ‘: kernel of the homomorphism ๐œ‘; 19kernel, 58, 59

of a homomorphism: seeโ€˜homomorphism, kernel of aโ€™

Kleene, Stephen Cole: see also โ€˜Kleeneโ€™stheoremโ€™; 202, 252

Kleeneโ€™s theorem, 180Knuth, Donald Ervin, vKoga, Akihiko (ๅค่ณ€ๆ˜Žๅฝฆ), viiKorzybski, Alfred Habdank Skarbek, 55Krohn, Kenneth Bruce: see also

โ€˜Krohnโ€“Rhodes theoremโ€™; 148, 252Krohnโ€“Rhodes theorem, 146

L: see also โ€˜Greenโ€™s relationโ€™; 55, 57commutes with R, 56๐ฟ๐‘Ž: L-class of ๐‘Ž; 57๐ฟ(๐‘ฅ): principal left ideal generated by ๐‘ฅ; 9Lallement, Gรฉrard, 148, 252language, vii

regular: see โ€˜regular languageโ€™lattice, 17, 33

complete, 17of congruences: see โ€˜congruence,

lattice of congruencesโ€™of equivalence relation: see also

โ€˜equivalence relation, lattice ofequivalence relationsโ€™

Lawson, Mark Verus, 119, 202, 252โ€“253least upper bound: see โ€˜joinโ€™left-cancellative semigroup, 6, 32left-compatible binary relation, 20left congruence, 20, 57left ideal, 9โ€“100-minimal, 58minimal, 58principal, 9

left identity, 3, 32left inverse, 6left-invertible element, 6, 33left zero, 3, 32left zero semigroup, 3, 6, 8, 34Linderholm, C. E., 35, 253linear algebra, viiLisbon, iLjapin, Evgeniฤญ Sergeevich (ะ›ัะฟะธะฝ,

ะ•ะฒะณะตะฝะธะน ะกะตั€ะณะตะตะฒะธั‡), 34, 253Lothaire, M., 53, 253lower bound, 17

Index โ€ข 257

Page 266: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

lower semilattice: see โ€˜semilatticeโ€™LuaLaTEX, vi, 261Lyndon, Roger Conant, 253

Mac Lane, Saunders, 35, 253magma, 1Malcev, Anatoly Ivanovich (ะœะฐะปัŒั†ะตะฒ,

ะะฝะฐั‚ะพะปะธะน ะ˜ะฒะฐะฝะพะฒะธั‡), 53, 253Maltcev, Victor, viimap, 12

domain of, 12image of, 12notation for, 4, 30preimage under, 12

matrixdeterminant of a, 7

matrix semigroup, 7maximal element, 16maximum element, 16McCarthy, John, 252meet, 17, 56meet semilattice: see โ€˜semilatticeโ€™Miller, Don Dalzell, 71, 253minimal element, 16minimum element, 16MonโŸจ๐‘‹โŸฉ: submonoid generated by๐‘‹; 11monogenic semigroup, 10monoid: see also โ€˜identityโ€™; 3, 7, 11โ€“12,

28โ€“29, 32โ€“33presentation of: see โ€˜monoid

presentationโ€™trivial: see โ€˜trivial semigroupโ€™

monomorphism, 19, 34categorical, 33โ€“34

multiplication, 2Munn, William Douglas, 119, 253

natural homomorphism: see โ€˜natural mapโ€™natural map, 21, 29natural numbers

as a semigroup, 2, 10, 30, 60nilpotent group, 6nilpotent semigroup, 5nilsemigroup, 5Nine Chapters on the Mathematical Art

(ไน็ซ ็ฎ—่ก“; Jiuzhฤng Suร nshรน), viiNipkow, Tobias, 53, 251null semigroup, 3, 58โ€“59

opposite semigroup, 8order, 15Ore, ร˜ystein: see also โ€˜Oreโ€™s theoremโ€™; 129,

253Oreโ€™s theorem, 128

Otto, Friedrich, 53, 251

โ„™๐‘‹: power set; set of all subsets of๐‘‹P๐‘‹: set of partial transformations on๐‘‹;

12partially ordered set, 15, 16

subset of, 15partial map, 12partial order, 15โ€“18, 17partial transformation, 12โ€“13Pascal, Blaise, 93periodic element, 5periodic semigroup, 5, 33, 56โ€“57

infinite, 32period of an element, 5Petrich, Mario, 92, 119, 253PGF/TikZ, 261Pin, Jean-ร‰ric, v, 174, 202, 253Porto, iPorto, University of, viposet: see โ€˜partially ordered setโ€™power, 5

positive, 5power semigroup, 32power set, 15, 17presentation, vโ€“vi

monoid: see โ€˜monoid presentationโ€™semigroup: see โ€˜semigroup

presentationโ€™Preston, Gordon Bamford: see also

โ€˜Vagnerโ€“Preston theoremโ€™; 34, 70โ€“71,91โ€“92, 119, 129, 251โ€“253

principal factor, 59โ€“60principal series, 60product of elements, 2product of subsets, 5pseudovariety, vโ€“vi

quaternion group, 1quotient semigroup: see โ€˜factor

semigroupโ€™

R: see also โ€˜Greenโ€™s relationโ€™; 55, 57commutes with L, 56๐‘…๐‘Ž: R-class of ๐‘Ž; 57๐‘…(๐‘ฅ): principal right ideal generated by ๐‘ฅ;

9Rabin, Michael Oser ( ืŸื™ื‘ืจืจื–ื•ืขืœืื›ื™ืž ), 202,

254rectangular band, 8Rรฉdei, Lรกszlรณ: see also โ€˜Rรฉdeiโ€™s theoremโ€™;

129, 254Rรฉdeiโ€™s theorem, 127Rees congruence, 21

258 โ€ขIndex

Page 267: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Rees, David: see also โ€˜Reesโ€“Suschkewitschtheoremโ€™; 92, 129, 254

Rees factor semigroup, 21โ€“22Reesโ€“Suschkewitsch theorem, 80, 83reflexive binary relation, 15, 20, 22reflexive closure of a binary relation,

22โ€“24characterization of, 22

regular element, 6โ€“7regular language, vregular semigroup, vโ€“vi, 6Reilly, Norman R., 254Reitermanโ€™s theorem, 167relation: see โ€˜binary relationโ€™Rhodes, John Lewis: see also

โ€˜Krohnโ€“Rhodes theoremโ€™; 148, 174,252, 254

right-cancellative semigroup, 6right-compatible binary relation, 20right congruence, 20, 57right ideal, 9โ€“100-minimal, 58minimal, 58principal, 9

right identity, 3, 32right inverse, 6right-invertible element, 6, 33right regular representation, 19, 34right zero, 3, 32right zero semigroup, 3, 5, 8, 10, 31โ€“32, 34ring, 3Rito, Guilherme Miguel Teixeira, viiRobertson, Edmund Frederick, 92, 251Robinson, Derek J. S., 71, 254Rosales, Josรฉ Carlos, 129, 254Rozenberg, Grzegorz, 253Ruลกkuc, Nikola, 53, 92, 251, 254

S๐‘‹: set of bijections on๐‘‹; 12Salomaa, A., 253Santiago de Compostella, University of, viSantos, Josรฉ Manuel dos Santos dos, viiSchelling, Friedrich Wilhelm Joseph von,

37Schรผtzenberger group, 65โ€“68

right and left, 67Schรผtzenberger, Marcel-Paul: see also

โ€˜Schรผtzenberger groupโ€™,โ€˜Schรผtzenbergerโ€™s theoremโ€™; 71, 202,253โ€“254

Schรผtzenbergerโ€™s theorem, 196Scott, Dana, 202, 254semigroup, vโ€“vi, 1โ€“15, 19โ€“22, 24โ€“350-simple: see โ€˜0-simple semigroupโ€™

cancellative: see โ€˜cancellativesemigroupโ€™

commutative: see โ€˜commutativesemigroupโ€™

finite: see โ€˜finite semigroupโ€™free: see โ€˜free semigroupโ€™inverse: see โ€˜inverse semigroupโ€™left zero: see โ€˜left zero semigroupโ€™matrix: see โ€˜matrix semigroupโ€™null: see โ€˜null semigroupโ€™periodic: see โ€˜periodic semigroupโ€™presentation of: see โ€˜semigroup

presentationโ€™regular: see โ€˜regular semigroupโ€™right zero: see โ€˜right zero semigroupโ€™simple: see โ€˜simple semigroupโ€™trivial: see โ€˜trivial semigroupโ€™zero-simple: see โ€˜0-simple semigroupโ€™

semigroup action, 29โ€“30by endomorphisms, 30free, 30left, 30regular, 30right, 30transitive, 30

semigroup of binary relations, 12, 13, 32semigroup of idempotents, 5semigroup of partial transformations, 13,

30, 32computation(, 14computation), 14

semigroup of transformations, 13, 19,29โ€“30, 32โ€“33

computation(, 14computation), 14

semilattice, 17โ€“18, 34as a commutative semigroup of

idempotents, 18complete, 17

Shannon, Claude Elwood, 252simple group, 58simple semigroup, 58โ€“60Soares, Jorge Fernando Valentim, viiSteinberg, Benjamin, 148, 174, 254structure of a semigroup, vโ€“visubdirect product, 28โ€“29, 34subgroup, 8โ€“9, 12, 19submonoid: see also โ€˜subsemigroupโ€™; 8, 12

generating, 11subsemigroup: see also โ€˜submonoidโ€™; 8โ€“10,

19, 29, 32generating, 10proper, 8, 32

supremum: see โ€˜joinโ€™

Index โ€ข 259

Page 268: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Suschkewitsch, Anton Kazimirovich: seealso โ€˜Reesโ€“Suschkewitsch theoremโ€™

Suschkewitsch, Anton Kazimirovich(ะกัƒัˆะบะตะฒะธั‡, ะะฝั‚ะพะฝ ะšะฐะทะธะผะธั€ะพะฒะธั‡),92, 254

symmetric binary relation, 14โ€“15, 22symmetric closure of a binary relation,

22โ€“24characterization of, 22

symmetric group, 12, 13, 19, 30, 32

T๐‘‹: set of transformations on๐‘‹; 12Tilson, Bret Ransom, 252topology, viitotal order: see โ€˜orderโ€™transformation, 12โ€“13

two-line notation, 13transitive binary relation, 15, 20, 22transitive closure of a binary relation,

22โ€“24characterization of, 22

trivial monoid: see also โ€˜trivialsemigroupโ€™; 3

trivial semigroup, 3, 32Trocado, Alexandre, viituple, 4

Ullman, Jeffrey David, 202, 252universal algebra, viiupper bound, 17upper semilattice: see โ€˜semilatticeโ€™

๐‘‰(๐‘ฅ): set of inverses of ๐‘ฅ; 7Vagnerโ€“Preston theorem, 99Vagner, Viktor Vladimirovich: see also

โ€˜Vagnerโ€“Preston theoremโ€™; 119, 254variety: see also โ€˜pseudovarietyโ€™; viVonnegut, Kurt, 255

Walker, Sue Ann, 253Weaver, William Fense, 251

xindy, 261

zero, 3, 6โ€“7, 32, 58adjoining, 4, 32left: see โ€˜left zeroโ€™right: see โ€˜right zeroโ€™two-sided: see โ€˜zeroโ€™uniqueness of, 3

zero-simple semigroup: see โ€˜0-zerosemigroupโ€™

Zilber, Joseph Abraham, 253

โ€ข

260 โ€ขIndex

Page 269: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write

Colophon

This document was typeset by the author using LuaLaTEX,with a custom style utilizing the packages fontspec, unicode-math, microtype, titlesec, titletoc, booktabs, amsthm, amsmath,and mathtools.

Themain text is set inMinion Pro; captions and epigraphsare set inMyriad Pro. Mathematics is mainly set in MinionMath, with script letters from Minion Pro and sans-serifletters fromMyriad Pro. Fixed-width text is set in Noto Sans

Mono. Cyrillic text is set in Minion Pro. Chinese, Hebrew,and Japanese text is set in Noto.

Figures and commutative diagrams were created usingPGF/TikZ.

The bibliography and citations were compiled using theBibLaTEX package and biber backend.

The index was compiled using xindy with a custom style.

Page 270: Nine Chapters on the Semigroup Artalanc/pub/c_semi...ย ยท For example, a right zero semigroup is a semigroupofidempotents. Foranysubsets๐‘‹and๐‘Œof๐‘†,define๐‘‹๐‘Œ={๐‘ฅ๐‘ฆโˆถ๐‘ฅโˆˆ๐‘‹,๐‘ฆโˆˆ๐‘Œ}.Write