new$xc$free$energyapproximations from$tddft -...

22
New XC free energy approximations from TDDFT Aurora PribramJones Lawrence Livermore National Laboratory UC Berkeley Department of Chemistry Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC5207NA27344. IPAM DFT Workshop August 23, 2016 LLNLPRES683261

Upload: lamdang

Post on 13-May-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

New  XC  free  energy  approximations  from  TDDFTAurora  Pribram-­Jones

Lawrence  Livermore  National  LaboratoryUC  Berkeley  Department  of  Chemistry

Part  of  this  work  was  performed  under  the  auspices  of  the  U.S.  Department  of  Energy  by  Lawrence  Livermore  National  Laboratory  under  Contract  DE-­AC52-­07NA27344.  

IPAM  DFT  WorkshopAugust  23,  2016

LLNL-­PRES-­683261

http://newscenter.lbl.gov/2011/10/19/part-­i-­energy-­stars-­earth/

August  23,  2016 1

Inertial  Confinement  Fusion

IPAM  DFT

Promotional Materials, SLAC, Stanford University (2015)

August  23,  2016 2

“Warm”  Dense  Planetary  Cores

IPAM  DFT

LLNL,  SNL,  LBL  websitesAugust  23,  2016 3

Flagship  Facilities

IPAM  DFT

• Magnetic  pressure  of  half  a  billion  refrigerator  magnets

• 1  million  times  atmospheric  pressure

• Power  >2000  lightning  bolts

• 2.5  sticks  of  dynamite  § in  1  cc  § over  a  few  ns

Real  world  equivalents

August  23,  2016 IPAM  DFT 4

Basic Research Needs for HEDLP: Report of the Workshop on HEDLP Research, DOE (2009)August  23,  2016 5

The  Malfunction  Junction

IPAM  DFT

R.F.  Smith  et  al.,  Nature  511 (2014)  330-­333August  23,  2016 6

Probing  Planetary  Conditions

IPAM  DFT

R.F.  Smith  et  al.,  Nature  511 (2014)  330-­333August  23,  2016 7

Probing  Planetary  Conditions

IPAM  DFT

Simulations are difficult!

• Quantum effects, strong correlation, partial ionization…

• Approximations affect calculated material properties

Simulations are important!

• Data used in core structure modeling, experimental design

• Experiments hard, expensive, limited

August  23,  2016 8

Quantum  and  Classical

IPAM  DFT

Popular, but...

•no explicit temperature dependence in electrons

•computationally expensive

•need TD electrons for response

•no energy transfer between electrons and ions

IPAM, UCLA

August  23,  2016 9

Quantum  Molecular  Dynamics

IPAM  DFT

…some progress:

•building “math toolbox” for approximations

•novel orbital-free method

•derived new linear response proof for thermal ensembles

•no energy transfer between electrons and ions IPAM, UCLA

August  23,  2016 10

Quantum  Molecular  Dynamics

IPAM  DFT

August  23,  2016 IPAM  DFT 11

Heating  Things  Up

a highly accurate density approximation in one dimension to illustrate our general result,

and (iv) perform (orbital-free) PFT calculations in the WDM regime. Our method gen-

erates highly accurate density and kentropy approximations, skirts the need for separate

kentropy approximations, provides a roadmap for systematically improved approximations,

and converges more quickly as temperatures increase while maintaining accuracy at low

temperatures. At the same time, it bridges low and high temperature methods, and so is

uniquely suited to WDM.

7.2 Theory

At non-zero temperature, the energy is replaced by the grand canonical potential as the

quantity of interest[56, 169]. The grand canonical Hamiltonian is written

⌦ = H � ⌧ S � µN, (7.1)

where H, S, and N are the Hamiltonian, entropy, and particle-number operators. In elec-

tronic structure theory, we typically deal with non-relativistic electrons, most commonly

within the Born-Oppenheimer approximation. The electronic Hamiltonian (in atomic units

here and thereafter) reads

H = T + Vee + V , (7.2)

where T denotes the kinetic energy operator, Vee the interelectronic repulsion, and v(r) the

static external potential in which the electrons move. (We suppress spin for simplicity of

notation.) The grand canonical potential can be written in terms of potential functionals

165

a highly accurate density approximation in one dimension to illustrate our general result,

and (iv) perform (orbital-free) PFT calculations in the WDM regime. Our method gen-

erates highly accurate density and kentropy approximations, skirts the need for separate

kentropy approximations, provides a roadmap for systematically improved approximations,

and converges more quickly as temperatures increase while maintaining accuracy at low

temperatures. At the same time, it bridges low and high temperature methods, and so is

uniquely suited to WDM.

7.2 Theory

At non-zero temperature, the energy is replaced by the grand canonical potential as the

quantity of interest[56, 169]. The grand canonical Hamiltonian is written

⌦ = H � ⌧ S � µN, (7.1)

where H, S, and N are the Hamiltonian, entropy, and particle-number operators. In elec-

tronic structure theory, we typically deal with non-relativistic electrons, most commonly

within the Born-Oppenheimer approximation. The electronic Hamiltonian (in atomic units

here and thereafter) reads

H = T + Vee + V , (7.2)

where T denotes the kinetic energy operator, Vee the interelectronic repulsion, and v(r) the

static external potential in which the electrons move. (We suppress spin for simplicity of

notation.) The grand canonical potential can be written in terms of potential functionals

165

Mermin,  N.D.  Phys.  Rev.  A, 137:  1441  (1965).Pittalis,  S.  et  al.  Phys.  Rev.  Lett.,  107:  163001  (2011).

Grand  canonical  potential  operator

Electronic  Hamiltonian

August  23,  2016 IPAM  DFT 12

Entropy  and  Statistics

ground-state problem. The former is written

⌦ = H � ⌧ S � µN, (3.83)

where H, S, and N are the Hamiltonian, entropy, and particle-number operators. The crucial

quantity by which the Hamiltonian di↵ers from its grand-canonical version is the entropy

operator:5

S = � kBln� , (3.84)

where

� =X

N,i

wN,i| N,iih N,i| . (3.85)

| N,ii are orthonormal N -particle states (that are not necessarily eigenstates in general) and

wN,i are normalized statistical weights satisfyingP

N,i wN,i = 1. � allows us to describe the

thermal ensembles of interest.

Observables are obtained from the statistical average of Hermitian operators

O[�] = Tr {�O} =X

N

X

i

wN,ih N,i|O| N,ii . (3.86)

These expressions are similar to Eq. (3.53), but here the trace is not restricted to the ground-

state manifold.

In particular, consider the average of the ⌦, ⌦[�], and search for its minimum at a given

temperature, ⌧ , and chemical potential, µ. The quantum version of the Gibbs Principle en-

sures that the minimum exists and is unique (we shall not discuss the possible complications

5Note that, we eventually choose to work in a system of units such that the Boltzmann constant is kB = 1,that is, temperature is measured in energy units.

72

ground-state problem. The former is written

⌦ = H � ⌧ S � µN, (3.83)

where H, S, and N are the Hamiltonian, entropy, and particle-number operators. The crucial

quantity by which the Hamiltonian di↵ers from its grand-canonical version is the entropy

operator:5

S = � kBln� , (3.84)

where

� =X

N,i

wN,i| N,iih N,i| . (3.85)

| N,ii are orthonormal N -particle states (that are not necessarily eigenstates in general) and

wN,i are normalized statistical weights satisfyingP

N,i wN,i = 1. � allows us to describe the

thermal ensembles of interest.

Observables are obtained from the statistical average of Hermitian operators

O[�] = Tr {�O} =X

N

X

i

wN,ih N,i|O| N,ii . (3.86)

These expressions are similar to Eq. (3.53), but here the trace is not restricted to the ground-

state manifold.

In particular, consider the average of the ⌦, ⌦[�], and search for its minimum at a given

temperature, ⌧ , and chemical potential, µ. The quantum version of the Gibbs Principle en-

sures that the minimum exists and is unique (we shall not discuss the possible complications

5Note that, we eventually choose to work in a system of units such that the Boltzmann constant is kB = 1,that is, temperature is measured in energy units.

72

ground-state problem. The former is written

⌦ = H � ⌧ S � µN, (3.83)

where H, S, and N are the Hamiltonian, entropy, and particle-number operators. The crucial

quantity by which the Hamiltonian di↵ers from its grand-canonical version is the entropy

operator:5

S = � kBln� , (3.84)

where

� =X

N,i

wN,i| N,iih N,i| . (3.85)

| N,ii are orthonormal N -particle states (that are not necessarily eigenstates in general) and

wN,i are normalized statistical weights satisfyingP

N,i wN,i = 1. � allows us to describe the

thermal ensembles of interest.

Observables are obtained from the statistical average of Hermitian operators

O[�] = Tr {�O} =X

N

X

i

wN,ih N,i|O| N,ii . (3.86)

These expressions are similar to Eq. (3.53), but here the trace is not restricted to the ground-

state manifold.

In particular, consider the average of the ⌦, ⌦[�], and search for its minimum at a given

temperature, ⌧ , and chemical potential, µ. The quantum version of the Gibbs Principle en-

sures that the minimum exists and is unique (we shall not discuss the possible complications

5Note that, we eventually choose to work in a system of units such that the Boltzmann constant is kB = 1,that is, temperature is measured in energy units.

72

Pittalis,  S.  et  al.  Phys.  Rev.  Lett.,  107:  163001  (2011).  Pribram-­‐Jones  et  al.,  “Thermal  DFT  in  Context,”  Frontiers  and  Challenges  in  Warm  Dense  Matter,  Springer  Publishing  (2014),  p  25-­‐60.

Entropy  operator:

Statistical  operator:

Observables:

August  23,  2016 13

Finite-­‐temperature  Kohn-­‐ShamMap  interacting  system  to  non-­interacting  system  with  same  density.

Kohn  and  Sham,  1965.

IPAM  DFT

Free  energies:  Helmholtz  and  XC

Pittalis,  S.  et  al.  Phys.  Rev.  Lett.,  107:  163001  (2011).  Pribram-­‐Jones  et  al.,  “Thermal  DFT  in  Context,”  Frontiers  and  Challenges  in  Warm  Dense  Matter,  Springer  Publishing  (2014),  p  25-­‐60.

Temperature-­dependent  free  energy:

August  23,  2016 IPAM  DFT 14

Kinetic,  potential,  entropic  exchange-­correlation:

Correlation  RelationsCorrelation  free  energy:  kentropic,  potential,  kinetic,  entropic

August  23,  2016 IPAM  DFT 15

APJ  and  K.  Burke,  Phys.  Rev.  B  93,  205140  (2016)

Correlation  free  energy:  kentropic,  potential,  kinetic,  entropic

Combine  with  ACF  to  get  a  set  of  relations,  such  as:

ACF  via  scaled  density/temperature

August  23,  2016 IPAM  DFT 16

Change  of  variables  yields  thermal  connection  formula:

Combine  finite-­temperature  ACF  (Pittalis,  et  al.,  2011)

with  coupling  constant-­coordinate-­temperature  scaling  (Pittalis,  et  al.,  2011)

APJ  and  K.  Burke,  Phys.  Rev.  B  93,  205140  (2016)

Thermal  Connection  Formula

August  23,  2016

• Relates  exact  XC  free  energy  to  high  temperature,  high  density  limit• Need  knowledge  of  XC  potential  energy  at  scaled  densities,  not at  scaled  interaction  strengths

• Reduces  to  plasma  physics  coupling-­constant  relation  for  uniform  systems

• Generalization  of  plasma  physics  formula  to  density  functionals  and  inhomogeneous  systems

IPAM  DFT 17

APJ  and  K.  Burke,  Phys.  Rev.  B  93,  205140  (2016)

An  Application

Useful  for  computation  and  theory:

•Generates  new XC  approximations  for  FT  DFT•Provides  link  between  finite-­temperature  and  infinite-­temperature  limit

August  23,  2016 IPAM  DFT 18

Using  finite-­temperature  fluctuation-­dissipation  theorem  for  the  correlation  free  energy  in  terms  of  the  thermal  density-­density  response  function:

APJ,  P.E.  Grabowski,  and  K.  Burke,  Phys.  Rev.  Lett.  116,  233001  (2016)

Approximations  to  thermal  XC  kernel:

• =  0   à thermal  RPA

à Approximate    

XC  ApproximationsExact  expression,  as  long  as  exact  thermal  kernel  is  used:

August  23,  2016 IPAM  DFT 19

APJ,  P.E.  Grabowski,  and  K.  Burke,  Phys.  Rev.  Lett.  116,  233001  (2016)

AcknowledgmentsMentors  and  Collaborators

• F.  Graziani  (LLNL),  E.  Schwegler (LLNL),  M.  Head-­Gordon  (UCB),  K.  Burke  (UCI), A.  Cangi (MPI),  Z.-­Y.  Yang  (Temple),  C.A.  Ullrich (UMC),  J.C.  Smith  (UCI),  D.  Feinblum (UCI),  S.  Pittalis (CNR-­NANO),  E.K.U.  Gross  (MPI),  P.E.  Grabowski  (UCI/LLNL),  R.J.  Needs  (Cambridge),  J.R.  Trail  (Cambridge),  D.A.  Gross  (UCI),  M.P.  Desjarlais (SNL),  K.R.  Cochrane  (SNL),  M.D.  Knudson  (SNL)

Funding  Sources• Lawrence  Fellowship,  Lawrence  Livermore  National  Laboratory•UC  President’s  Postdoctoral  Fellowship,  UC  Berkeley  Chemistry•Quantum  Simulation  Group  and  WCI,  LLNL•Krell Institute  and  the  DOE  CSGF  (DE-­FG02-­97ER25308)

August  23,  2016 IPAM  DFT 20

Summary

August  23,  2016

For  further  information• Linear  response  of  thermal  ensembles:  A.  Pribram-­‐Jones,  P.E.  

Grabowski,  and  K.  Burke,  Phys.  Rev.  Lett.  116,  233001  (2016).• Thermal  connection  formula  and  exact  conditions:  A.  Pribram-­‐Jones  

and  K.  Burke,  Phys.  Rev.  B  93,  205140  (2016).• Thermal  DFT:  A. Pribram-­‐Jones,  S.  Pittalis,  E.K.U.  Gross,  K.  Burke,  

Frontiers  and  Challenges  in  Warm  Dense  Matter,  Springer  Publishing  (2014),  p  25-­‐60.

• Quirky  overview  of  DFT:  A.  Pribram-­‐Jones,  D.A.  Gross,  K.  Burke, Ann.  Rev.  Phys.  Chem 66  (2015).

IPAM  DFT 21

• Exact conditions relating components of correlation free energy• Thermal connection formula: adiabatic connection via

temperature integral• Can generate XC free energy approximations from thermal kernel