newtons(–more(than(just(agreat( 18,2014 snack ......2 6 #5 #1 8 6 point #5 submergence, point #1...

76
November 18, 2014 BOB WIMMER AND ED KOBYLINSKI NEWTONS – MORE THAN JUST A GREAT SNACK – THE KEY TO COMPARING MIXER TECHNOLOGIES

Upload: others

Post on 13-Mar-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

Novem

ber  1

8,  2014  

BOB  WIMMER  AND  ED  KOBYLINSKI  

NEWTONS  –  MORE  THAN  JUST  A  GREAT  SNACK  –  THE  KEY  TO  COMPARING  MIXER  TECHNOLOGIES  

Page 2: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

Page 3: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXING  GENERAL:  BASIC  ISSUES  

l   Want  rapid  blending  of  MLSS  of  two  or  more  streams  to  intermix  suspended  solids  

l   Want  dissipaSon  of  incoming  kineSc  energy  

l   Want  rapid  mixing  of  soluble  rbCOD  and  nitrate    l   Want  shear  to  expose  inner  floc  and  acSve  microbes  to  

rbCOD  and  nitrate  l   High  denitrificaSon  rates  only  possible  with  high  rbCOD  

concentraSons    

Page 4: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXING  THEORY:TRADITIONAL  

l   Pumping  rate  is  a  funcSon  of  impeller  speed  and  diameter  

l Q  =  Nq  *  RPM  *  Dia3  

l   Nq  =  characterisSc  pumping  value  unique  to  type  of  impeller  l RPM  =  impeller  rotaSng  speed  (revs/  minute)  

l Dia  =  impeller  diameter  in  feet  

Page 5: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXING  THEORY:  TRADITIONAL  

l   Pumping  power  is  a  funcSon  of  impeller  speed  cubed  and  diameter  to  the  5th  power  

l P  =  Np  *  spgr  *  RPM3  *  Dia5  *  1.523*1013  

l   Np  =  characterisSc  pumping  value  unique  to  type  of  impeller  

l RPM  =  impeller  rotaSng  speed  (revs/  minute)  

l Dia  =  impeller  diameter  in  inches  

Page 6: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

OBJECTIVE    

l   Input  energy  into  tank  and  get  liquid  in  moSon  with  the  least  amount  of  electrical  energy  

l   Meet  process  objecSves  without  transferring  excessive  amounts  of  oxygen  

l Turnover  of  liquid  will  sSmulate  oxygen  transfer  –  Do  Not  Want  Surface  Turbulence  

Page 7: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

SUMMARY  OF  FIELD  TESTING  AT  ROGERS  ARKANSAS  

Page 8: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

FACILITIES  • Tested  new  4.7  mgd  rated  treatment  train  

• Anaerobic  zone  divided  into  3  cells  in  series  

• Anoxic  zone  divided  into  3  cells  in  series  

• 5  Hp  top  entering  mixers  -­‐  axial  flow  down-­‐pumping  impellers  

Page 9: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

ANAEROBIC  AND  ANOXIC  ZONE  SCHEMATIC  

Cell  1  

Anaerobic/  FermentaSon  

Cell  2   Cell  3  

Cell  1   Cell  2   Cell  3  

Anoxic   MLSS  recycle  from  aerobic  zone  

Influent  plus  RAS  

Flow  back  to  aerobic  zone  

Page 10: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

ANAEROBIC  ZONE  

Baffle  Wall  Surface  Port  

Baffle  Wall  Submerged  Port  

Baffle  wall  submerged  at  above  average  flows  

Page 11: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

ANOXIC  ZONE  Baffle  Wall  Gap  from  Surface  to  Floor  

Page 12: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

MIXING  TESTS  

• Mixers  designed  at  34  rpm  

• Mixers  were  run  at  three  different  speeds  •  28  rpm  80%  speed  

•  16  rpm  50%  speed  

•  8  rpm  30%  speed  

• 69  inch  diameter  impeller-­‐  down  pumping  

Page 13: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

TOP  ENTERING  MIXERS  

• At  28  rpm  there  is  liple  surface  turbulence  

• Liple  surface  vortexing  

• Vortexing  transfers  oxygen  

• Surface  DO  less  than  0.4  mg/L  

Page 14: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

ANOXIC  ZONE  CELL  #2  –  SAMPLE  LOCATIONS  point #6 Submergence, sample ft below surface First Anoxic Zone

1 3 Cell #2 Cell #3 Point #2 Submergence, 2 6 2 ft sample # ft below surface3 9 1 34 12 #6 #2 2 6

point #4 ft below surface 2 ft 3 91 3 4 122 6 #4

point #3 ft below surface #31 32 6 #5 #1

8 6

Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface

1 3 1 32 6 2 63 9 3 94 12 4 12

Page 15: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

ANOXIC  ZONE  CELL  #2  –  MLSS  PROFILE  

3 6 9 121

3

5

3,4403,4603,4803,500

3,5203,540

3,560

3,580

3,600

3,620

3,640

MLSS, mg/L

Depth, ft

Location

123456

Anoxic Cell #2 - 28 rpm

Largest Variation - 120 mg/L3.35% variation

Page 16: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

ANOXIC  ZONE  CELL  #2  –  MLSS  PROFILE  

3 6 9 121

3

5

3,300

3,350

3,400

3,450

3,500

3,550

3,600

MLSS, mg/L

Depth, ft

Location

123456

Anoxic Cell #2 - 16 rpm

Largest Variation - 160 mg/L4.6% variation

Page 17: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

ANOXIC  ZONE  CELL  #2  –  MLSS  PROFILE  

3 6 9 121

3

5

3,250

3,300

3,350

3,400

3,450

3,500

3,550

MLSS, mg/L

Depth, ft

Location

123456

Anoxic Cell #2 - 8 rpm

Largest Variation - 190 mg/L5.52% variation

Page 18: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

MIXING  POWER  TURNDOWN  

• At  100%  speed  (34  rpm)  mixers  draw  5  Hp  

• At  80%  speed  (28  rpm)  mixers  draw  2.8  Hp  

• At  50%  speed  (16  rpm)  mixers  draw  0.5  Hp  

• At  30%  speed  (8  rpm)  mixers  draw  0.1  Hp  

• Mixer  liquid  pumping  is  proporSonal  to  rpm  –  80%  speed  =  80%  pumping  capacity  

Page 19: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXING  PERFORMANCE  

RPM gpm Hp Draw

Hp/Kft3

Turnovers/ minute

28 31,260 2.77 0.22 0.32

16 17,860 0.52 0.04 0.19

8 8,930 0.06 0.005 0.09

Page 20: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

TEST  DESIGN  PROCEDURE  

l   Set  desired  turnovers  in  mixing  zone  to  get  direct  pumping  rate  –  0.2  turnovers/  minute  

l   Size  top  entering  mixer  for  direct  pumping  

l   Set  RPM  maximum  at  15  

l   Want  impeller  diameter  to  fall  within  range  of  minimum  of  25%  of  narrowest  tank  width  and  not  more  than  40%  of  

tank  narrowest  width  

l   Basin  Volume  19,490  r3  

Page 21: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

TEST  DESIGN  CONTINUED  

l   Direct  Pumping  Rate  =  3,899  r3/  min  =  29,170  gpm  l   Top  entering  Mixer  Design    

l   RPM  =  12  l   Impeller  Dia  =  7.5  r  l   Pumping  Rate  =  29,730  gpm  l   Power  Draw  =  0.82  Hp  or  0.04  Hp/  Kr3  

l   Submersible  Mixer  SelecSon  l   Pumping  Rate  =  13,160  gpm  each  use  2  units  l   Power  Draw  =  12.8  Hp  each  (25.6  Hp  Total)  or  1.3  Hp/  Kr3  

Page 22: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

TEST  DESIGN  CONTINUED  

l Conclusion  –  Submersible  Mixer  Claims  for  Induced  Pumping  must  be  correct!  

l   We  know  we  have  installaSons  at  less  than  1.3  Hp/  Kr3  

l   Submersible  mixer  manufacturers  have  been  claiming  that  our  power  inputs  values  are  too  high  at  0.6-­‐0.75  Hp/  

Kr3  

Page 23: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

l FricSon  occurs  and  a  fast  moving  liquid  will  drag  along  the  slower  moving  liquid.  Net  result  is  bulk  liquid  

movement    l Need  to  view  mixer  as  a  pump  imparSng  energy  into  the  

tank  l   Top  entering  mixers  pump  water  at  a  low  velocity  

relaSve  to  the  bulk  flow  in  the  tank  l   Submersible  mixers  generate  a  high  velocity  jet  relaSve  

to  the  bulk  flow  in  the  tank  l   We  have  been  trying  to  measure  mixing  by  power  input  

not  power  transferred  to  the  liquid  phase  

DIRECT  PUMPING  VERSUS  INDUCED  PUMPING  

Page 24: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

l   The  energy  imparted  to  liquid  can  be  expressed  as  kineSc  energy.      

l   Liquid  energy  can  be  described  through  Momentum  

DIRECT  PUMPING  VERSUS  INDUCED  PUMPING  

Page 25: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MOMENTUM  

l   Momentum  is  defined  as  a  measure  of  the  moSon  of  a  body  equal  to  the  product  of  its  mass  and  velocity  

l   Momentum  is  a  measure  of  the  energy  contained  by  mass  that  is  in  moSon  and  through  fricSon  that  energy  

can  be  imparted  to  other  fluid  mass  l   So  for  the  purposes  of  mixing,  momentum  imparted  into  the  system  will  gradually  induce  other  liquid  into  

moSon  and  liquid  in  moSon  will  keep  solids  in  suspension    

Page 26: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MOMENTUM  CALCULATION  

 l   Top  entering  Mixer  Design    

l RPM  =  12  l   Impeller  Dia  =  7.5  r  =  44.18  r2  area  l   Pumping  Rate;  Expressed  as  volume  flow  per  second  and  mass  flow  per  second  =  29,730  gpm  =  3,974  r3/  min  =  66.23  r3/  sec  =  247,948  lb/  min  =  4,132.5  lb/  sec  l   Velocity  =  66.23  r3/  sec/  44.18  r2  =  1.5  r/  sec  

 

Page 27: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MOMENTUM  CALCULATION  

l   Momentum  =  4,132.5  lb/  sec  *  1.5  r/  sec  =  6,199  r  lb/  sec2  

l   Momentum  is  energy  input  into  system  and  becomes  the  reference  point  for  comparison  

between  mixer  types.    

Page 28: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MOMENTUM  CALCULATION  

l Using  data  from  Flygt  calculate  momentum  from  each  mixer.  Mixer  impellers  have  different  pitch  resulSng  different  power  draw  and  volume  

of  liquid  pumped.    

Page 29: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

FLYGT  MIXER  DATA  

Model 4660 4660 4660 4640 Hp 6.5 7.6 8.2 3.2 Nq 0.3113 0.3516 0.3717 0.432 Np 0.08212 0.096 0.1036 0.1222 RPM 580 580 580 860 Dia, ft 1.9 1.9 1.9 1.2 ft3/min 1,240 1,401 1,481 647 lb/ sec 1,290 1,457 1,540 673 Area, ft2 2.838 2.838 2.838 1.137 ft/ sec 7.284 8.227 8.697 9.484 Ft lb/ sec2 9,395 11,984 13,394 6,379

Page 30: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

FLYGT  MIXERS  

Model 4640

RPM 860

Impeller Dia 1.2 ft

Power draw 3.2 Hp

Pumping rate 4,840 gpm

Impeller angle 9

Momentum 6,379 ft lb/ sec2

Power  per  unit  volume  =  0.16  Hp/  Kr3  

Page 31: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

FLYGT  MIXERS  

l   The  0.16  Hp/Kr3  power  input  is  a  liple  low  based  upon  our  current  experience  but  is  in  a  

range  that  Flygt  claims  is  more  correct  for  mixing  

Page 32: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXING  COMPARISON:  CASE  2  

l   Let’s  look  at  a  equivalent  mixer  sizing  for  to  80%  speed  condiSons  at  Rogers  

l   80%  speed  equaled  a  turnover  rate  of  0.32  turnovers/  min  

l Oren  fall  in  between  mixer  sizes  for  Flygt  

Page 33: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

TOP  ENTERING  MIXER  CALCULATION  

Basin Volume 19,493 ft3

Turnover/ min 0.28 Pumping rate 5,458 ft3/ min RPM 12 Impeller Dia 100 inches Pumping Rate 40,781 gpm Power draw 1.4 Hp Impeller area 54.54 ft2

Velocity 1.67 ft/ sec Momentum 9,443 ft lb/ sec2

Power  per  Unit  volume  =    0.07  Hp/  Kr3  

Page 34: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

FLYGT  MIXERS  

Model 4660

RPM 580

Impeller Dia 1.9 ft

Power draw 6.5 Hp

Pumping rate 9,280 gpm

Impeller angle 3

Momentum 9,395 ft lb/ sec2

Power  per  unit  volume  =  0.33  Hp/  Kr3  

Page 35: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

MOMENTUM  CONVERSION  TO  THRUST    

• Divide  momentum  by  the  gravitaSonal  constant  32.174  lbm  r/  sec2  

• This  converts  momentum  to  lb  force  or  lbf  

• 1  Newton  =  0.2248089  lbf  • Divide  lbf  value  by  0.2248089  to  get  Newtons  

Page 36: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

TARGET  THRUST  VALUES  

• Target  Momentum  for  lower  intensity  =  6,199  r  lb/  sec2  =  875  Newtons  

• Target  Momentum  for  higher  intensity  =  9,443  r  lb/  sec2  =  1,306  Newtons  

• SI  momentum  units  =  Thrust  

• Kg  meter/  sec2  =  Newtons  

Page 37: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXING  COMPARISON  –  LOWER  INTENSITY  

Units Top Entering

Flygt

Aqua DDM Wilo/ EMU

Impeller, ft 7.5 1.2 0.958 4.917

RPM 12 860 1,200 31

Hp 0.82 3.2 2.7 1.34

gpm 29,730 4,840 3,557 19,989

ft lb/ sec2 6,199 6,379 5,434 6,517

Thrust, Newtons

857 882 751 900

Page 38: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXING  COMPARISON  –  HIGHER  INTENSITY  

Units Top Entering

Flygt

Aqua DDM Wilo/ EMU

Impeller, ft 8.3 1.9 0.958 1.967

RPM 12 580 1,200 366

Hp 1.4 6.5 4.5 5.23

gpm 40,780 9,280 4,520 9,360

ft lb/ sec2 9,440 9,395 8,760 8,931

Thrust, Newtons

1,306 1,299 1,211 1,250

Page 39: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

www.bv.com  

©  Black  &  Veatch  Holding  Company  2012.  All  Rights  Reserved.  The  Black  &  Veatch  name  and  logo  are  registered  trademarks  of  Black  &  Veatch  Holding  Company.  

Page 40: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

CONCLUSIONS  

• Thrust/  Momentum  is  proper  way  to  compare  mixers  on  equal  fooSng  except  for  INVENT  

• For  INVENT  compare  direct  flow  with  axial  down  pumping  mixers    

Page 41: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXING  COMPARISON  

• Aqua  DDM  appears  out  of  line  but  based  upon  basin  volume  the  right  momentum/  Thrust  value  falls  in  between  the  3  and  5  hp  units  and  between  the  5  and  7.5  Hp  units  

• This  will  be  true  of  all  units.  Proper  size  can  fall  in  between  two  standard  sizes.    

Page 42: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

COLLECTION  SYSTEM  ISSUES  

RAS  

Influent  

Overflow  Underflow  

Overflow  

Deniter  gate  MLSS  Recycle  

Slot  in  Wall  Top  to  Floor  

3  Anaerobic  Cells  in  series  

MLSS  Return  Flow  

Page 43: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

AQUA  AEROBICS  

Model 3 Hp 5 Hp 20 Hp 75 Hp Hp 2.7 4.5 18 67.5 Nq 0.4506 0.5721 0.673 0.5794 Np 0.118313 0.1972 0.3075 0.19676 RPM 1,200 1,200 900 900 Dia, ft 0.958 0.958 1.375 1.958 ft3/min 475 604 1,575 3,914 lb/ sec 494 628 1,637 4,070 Area, ft2 0.7208 0.7208 1.485 3.011 ft/ sec 10.99 13.96 17.67 21.67 ft lb/ sec2 5,434 8,760 28,937 88,191

Page 44: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

AQUA  AEROBICS:  CASE  1  CONDITIONS  

• We  want  to  match  a  6,200  r  lb/  sec2  momentum  value  • Momentum  falls  between  the  3  Hp  and  5  Hp  Aqua  DDM  units  

• Assume  we  use  the  3  Hp  DDM  unit  • Hp/  Kr3  =  0.1385  or  18.5  Hp/  MG  –  lower  power  per  volume  than  Aqua  Recommends  –  They  recommend  30  Hp/  MG  for  MLSS  applicaSons  

Page 45: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXER  DESIGN  COMPARISON  

l   Next  comparison  is  using  the  same  example  based  upon  Rogers  but  using  the  Aqua  Aerobics  

DDM  floaSng  mixer  

l   It  is  a  down  pumping  mixer  

l   Fixed  speed  unit  with  Hp  sizes  varying  from  Nominal  3  Hp  (2.7  Hp  draw)  to  75  Hp  (67.5  Hp  

draw)  

Page 46: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

WILO/  EMU  MIXER  DATA  

Mixer Impeller Dia,

inches

RPM Flow, gpm

Power, Hp

Thrust, Newtons

TR50 19.7 476 7,614 7.24 1,180

TR60 23.6 366 9,360 5.23 1,250

TR90 35.4 168 13,484 3.08 1,140

TR215 59 31 19,989 1.34 900

Page 47: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

WILO/  EMU  MIXERS  

• Target  Momentum  for  lower  intensity  =  6,199  r  lb/  sec2  

• Target  Momentum  for  higher  intensity  =  9,443  r  lb/  sec2  

•  I  did  not  give  WILO  the  target  momentum  values.  Was  looking  for  their  recommendaSons.    

Page 48: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

WILO/  EMU  MIXERS  LOWER  INTENSITY  –  TARGET  =  6,199  FT  LB/  SEC2  

Model TR215

RPM 31

Impeller Dia 4.917 ft

Power draw 1.34 Hp (0.07 Hp/ Kft3)

Pumping rate 19,989 gpm

Momentum 6,517 ft lb/ sec2

Thrust 900 Newtons

Page 49: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

WILO/  EMU  MIXERS  HIGHER  INTENSITY–  TARGET  =  9,443  FT  LB/  SEC2  

Model TR60

RPM 366

Impeller Dia 1.967 ft

Power draw 5.23 Hp (0.27 Hp/ Kft3)

Pumping rate 9,360 gpm

Momentum 8,931 ft lb/ sec2

Thrust 1,250 Newtons

Page 50: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

AQUA  AEROBICS:  CASE  2  CONDITIONS  

• We  want  to  match  a  9,440  r  lb/  sec2  momentum  value  • Momentum  falls  between  the  5  Hp  and  7.5  Hp  Aqua  DDM  units  

• Assume  we  use  the  5  Hp  DDM  unit  =  8,760  r  lb/  sec2  momentum  value  

• Hp/  Kr3  =  0.2308  or  30.8  Hp/  MG  –  Aqua  recommends  30  Hp/  MG  for  MLSS  applicaSons  

Page 51: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

AQUA  AEROBICS  

• Aqua  bases  their  claims  for  mixing  based  upon  operaSon  of  about  1,000  SBR  systems  using  an  anoxic  fill  cycle  

• While  we  do  not  have  direct  confirmaSon  of  their  SBR  performance,  they  are  similar  mixing  demands  

Page 52: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

NITRATE  AND  SOLUBLE  COD  PROFILE  

Nitrate and Soluble COD Profile 2/16/2009

0.4

10.97.8 8.0 7.7 6.4

36.8

11.6 10.0 8.5 10.06.2

0.05.0

10.015.020.025.030.035.040.0

AN Eff MLR AX1 Eff AX2 Eff AX3 Eff Final Eff

Location

Con

cent

ratio

n, m

g/L

NO3-N

COD

Page 53: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

NITRATE  AND  BIODEGRADABLE  SOLUBLE  COD  PROFILE  

Nitrate and Biodegradable Soluble COD Profile 2/16/2009

0.4

10.98.72 7.8 8.0 7.7 6.4

30.6

5.4

10.4

3.8 2.3 3.80.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

AN Eff MLR AN Eff+MLR AX1 Eff AX2 Eff AX3 Eff Final Eff

Location

Con

cent

ratio

n, m

g/L

NO3-N

COD

Page 54: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

NITRATE  REMOVAL  

• Soluble  COD  consumed  in  first  Anoxic  Cell  

• DenitrificaSon  in  Cells  #2  and  #3  is  driven  by  endogenous  oxygen  demand  

•  It  rained  the  night  before  tesSng  began  •  Incoming  carbon  affected  by  fermentaSon  in  the  sewer  –  high  sewer  flow  strips  off  slime  

• Mixing  versus  denitrificaSon  rate  was  inconclusive  because  of  insufficient  carbon    

Page 55: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

WILO/  EMU  MIXERS  

• Wilo  was  in  for  a  presentaSon  and  I  gave  them  the  same  tank  volume  used  in  the  previous  examples  and  asked  for  their  mixing  recommendaSons  

• Basin  Volume  19,490  r3  

• They  responded  with  4  different  mixer  sizings  but  provided  impeller  diameter,  RPM,  direct  pumping  and  power  data  on  each  mixer  selecSon  

Page 56: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

INVENT  MIXERS  

•  Just  received  sizing  informaSon  for  St  Cloud  

• Data  include  pumping  rate,  dia  impeller,  RPM  and  power  draw  

• Calculated  Np  and  Nq  values  for  two  different  INVENT  impeller  sizes    

Page 57: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

THRUST  

• Per  meeSng  with  Flygt  Momentum  =  Thrust  

• The  momentum  generated  by  the  mixer  pumping  the  fluid  can  be  measured  by  the  thrust  (force)  generated  by  the  mixer  on  the  mixer  mounSng  

Page 58: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

INVENT  MIXERS  

Impeller Dia, ft

RPM Hp gpm Np Nq Thrust, Newtons

6.558 22 1.4 44,205 0.952 0.663 2,031

7.55 18 1.5 54,985 0.949 0.642 2,729

Page 59: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

COMPARISON  TO  AXIAL  FLOW  MIXER  –  MATCHED  FLOWRATES  –  LOW  INTENSITY  

Imp Dia, ft

RPM Hp gpm Thrust, Newtons

Invent 7.03 12 0.32 29,702 849

Axial 7.5 12 0.82 29,730 857

Page 60: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

COMPARISON  TO  AXIAL  FLOW  MIXER  –  MATCHED  FLOWRATES  –  HIGHER  INTENSITY  

Imp Dia, ft

RPM Hp gpm Thrust, Newtons

Invent 7.25 15 0.73 40,723 1,302

Axial 8.33 12 1.4 40,781 1,306

Page 61: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

ANOXIC  ZONE  CELL  #1  SAMPLE  LOCATIONS  

Anaerobic Cell #3 First Anoxic ZoneFlow to Anoxic Cell #1 Cell #1

6 7 1

43

2

5

MLSS Recycle FlowFrom Ditch thru

deniter gate

Page 62: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

ANOXIC  ZONE  CELL  #1  MLSS  PROFILE  

3 6 9 121

3

5

7

3,200

3,250

3,300

3,350

3,400

3,450

3,500

MLSS, mg/L

Depth, ft

Location

1234567

Largest  VariaSon  -­‐  125  mg/L  3.65%  variaSon  

Anoxic  Cell  #1    Mixer  Speed  28  rpm  

Page 63: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

ANOXIC  ZONE  CELL  #1  MLSS  PROFILE  

3 6 9 121

3

57

3,100

3,150

3,200

3,250

3,300

3,350

3,400

3,450

3,500

3,550

MLSS, mg/L

Depth, ft

Location

1234567

Largest  VariaSon  -­‐  290  mg/L  8.63%  variaSon  

Anoxic  Cell  #1  -­‐  16  rpm  

Page 64: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

M  

l     

Anoxic  Cell  #2  Mixer  at  8  rpm.  NoSce  MLSS  floc  size  and  some  clear  liquid  zones  

Anoxic  Cell  #3  Mixer  at  16  rpm.  More  uniform  floc  at  surface    

Page 65: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

Anoxic  Cell  #2  Mixer  at  8  rpm.  NoSce  MLSS  floc  size  and  some  clear  liquid  zones  

Page 66: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

Anoxic  Cell  #1  Mixer  at  28  rpm.  NoSce  MLSS  floc  size  and  some  clear  liquid  zones  

Page 67: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

Anoxic  Cell  #2  Mixer  at  8  rpm.  NoSce  MLSS  floc  size  and  some  clear  liquid  zones  

Page 68: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

COMPARISON  TO  AXIAL  FLOW  MIXER  

• Thrust  calculaSon  very  much  influenced  by  assumpSon  of  radial  flow  area    

• Area  of  flow  is  not  as  straight  forward  as  for  Axial  downpumpers  

•  I  first  assumed  a  1  r  width  of  flow  off  of  the  radial  end  of  the  impeller.  Velocity  was  higher  than  axial  flow  so  thrust  was  higher.    

•  Increased  width  of  flow  Sll  thrust  matched  and  got  a  2.5  to  3  r  band  between  the  two  units  

Page 69: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

COMPARISON  TO  AXIAL  FLOW  MIXER  -­‐  CONCLUSIONS  

• Match  direct  flow  pumping  rate  

• Hp  sizing  is  in  the  same  range  and  much  lower  than  other  mixers  

• Must  seple  flow  area  issue  to  be  able  to  compare  on  a  thrust  basis  

Page 70: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXER  DESIGN  COMPARISON  

l   At  80%  mixer  speed  based  on  the  Rogers  data,  the  comparison  between  the  top  entering  mixer,  Flygt  mixer,  Aqua  DDM  mixer  and  Wilo  mixer  

looks  reasonable.  l   The  key  is  to  set  the  right  reference  point  for  

level  of  mixing  for  the  calculaSon  of  the  pumping  rate  from  the  top  entering  mixer.      

Page 71: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXER  DESIGN  COMPARISON  

l   Top  entering  mixer  design  should  always  use  a  large  impeller  turning  at  not  more  than  15  RPM.    

l   This  approach  produces  a  low  power  consumpSon  design  

l   Opportunity  for  mixing  energy  to  impact  denitrificaSon  rate  requires  a  facility  with  plenty  

of  excess  carbon.      

Page 72: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXER  DESIGN  COMPARISON  

l   This  approach  will  level  the  playing  field  for  the  various  mixer  types.  

l   Invent  is  radial  pumping  versus  axial  pumping  and  unSl  we  get  field  data  on  the  area  of  flow  off  the  edge  of  the  impeller  we  should  compare  it  to  

the  axial  pumpers  based  upon  direct  flow.        

Page 73: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXER  DESIGN  UNKNOWNS  

l   The  issue  of  shear  and  floc  size  reducSon  is  sSll  up  in  the  air.    

l     For  floc  shearing  rather  than  mix  the  whole  zone  at  a  higher  energy  input  should  we  focus  agitaSon  in  a  small  

area  and  rip  the  floc  apart?    l   Is  VFA/  BOD  uptake/  absorpSon  fast  enough  to  allow  a  

shear  zone  to  be  effecSve?  

Page 74: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

MIXER  DESIGN  RESEARCH  

l   SSll  need  to  look  for  opportunity  or  do  this  in  lab,  to  explore  mixing  energy  versus  denitrificaSon  rate.  

l   Keep  rbCOD  constant  and  nitrate  constant  and  vary  mixing  energy  

l   Use  same  mixing  energies  and  vary  starSng  rbCOD  to  see  which  has  bigger  impact  –  Carbon  or  energy    

Page 75: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

ANOXIC  ZONE  CELL  #1  –  TOUGHEST  MIXING  APPLICATION  

• Surface  entry  from  Anaerobic  Zone  Cell  #3  

• MLSS  recycle  up  to  4  Smes  influent  –  full  depth  

• Both  flows  are  opposing  

Anaerobic  Influent  

MLSS  Recycle  

Page 76: NEWTONS(–MORE(THAN(JUST(AGREAT( 18,2014 SNACK ......2 6 #5 #1 8 6 Point #5 Submergence, Point #1 Submergence, sample # ft below surface sample # ft below surface 1 3 1 3 2 6 2 6

November  18,  2014  

DENITER  GATE  

• Gate  controls  MLSS  recycle  

• 3  r  wide  channel,  18  r  deep  

MLSS  Recycle  

Ditch  flow  to  aerator