new tcad sempt07

4
Ion [μA/μm] 500 1000 1500 Ioff [nA/μm] 10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 0 2000 PMOS simulation NMOS simulation PMOS Wang et al. [6] PMOS Morimoto et al. [7] NMOS Morimoto et al. [7] PMOS Luo et al. [5] NMOS Luo et al. [5]

Upload: giordanobi859641

Post on 16-Dec-2015

214 views

Category:

Documents


2 download

DESCRIPTION

Newsletter TCAD 45nm CMOS Process

TRANSCRIPT

  • 4#!$.EWS2DOSDLADQ

    ,ATEST%DITION

    #ONTENTS

    -ULTILEVEL-ODELINGOF,AYOUT)MPACTON-OBILITY%NHANCEMENTWITH$UAL3TRESS,INERS

    3IMULATIONOFANM#-/34ECHNOLOGYIN4#!$3ENTAURUS

    )T IS MY PLEASURE TO ANNOUNCE THE LATESTEDITIONOF4#!$.EWS!SWELOOKFORWARDTO THE UPCOMING ! RELEASE OF3ENTAURUS IN THIS EDITION WE PRESENT TWOARTICLES PERTAINING TO THE SIMULATION OFADVANCED#-/3TECHNOLOGIES4HE FIRSTARTICLEPRESENTSACOMPLETE4#!$FLOW FOR TYPICAL HIGHPERFORMANCE NM#-/3TECHNOLOGIESSUCHASTHEONESBEINGREADIED FOR PRODUCTION AT MAJOR FOUNDRIESAND INTEGRATED DEVICE MANUFACTURERSAROUND THE WORLD 4HIS WORK INCORPORATESAPPROACHES TO SIMULATE INNOVATIVE PROCESSSTEPS SUCH AS LASER ANNEALING AND HIGHKGATEDIELECTRICSANECESSITYINTHECONTINUALCHALLENGE TO CONTAIN SHORTCHANNEL EFFECTSAND MAKES FULL USE OF THE CAPABILITIES IN3ENTAURUS FOR TREATING STRESSINDUCEDMOBILITY ENHANCEMENT 4HE AVAILABILITY OFTHEFLOWASA3ENTAURUS7ORKBENCHPROJECTMAKES ITAN IDEALSTARTINGPOINT FORPROCESSANDDEVICEENGINEERS TAKING THE FIRST STEPSIN USING 3ENTAURUS FOR ADVANCED #-/3SIMULATION ASWELL AS A REFERENCEWORK FORVETERAN4#!$ENGINEERS4HESECONDARTICLEADDRESSESTHEIMPORTANTTOPICOFGLOBAL STRESS IN#-/3PROCESSESWITHDUALSTRESSLINERSUSING&AMMOS48!SSUCHTHEARTICLEBREAKSNEWGROUNDINTHATITCONSIDERSAMUCH LARGERSIMULATIONDOMAINTHAN IS TYPICAL IN 4#!$ SIMULATIONS 4HESECAPABILITIES ENABLE THE SYSTEMATIC STUDY OFTHEIMPACTOFLAYOUTPARAMETERSONTRANSISTORSTRESSANAREAOFCONSIDERABLETECHNOLOGICALSIGNIFICANCE)TRUSTYOUWILLFINDTHELATESTEDITIONOF4#!$.EWS INFORMATIVE AND WE LOOK FORWARD TOYOURCOMMENTSANDSUGGESTIONS7ITHBESTREGARDS

    4ERRY-A'ROUP$IRECTOR4#!$"USINESS5NIT

    #ONTACT4#!$&OR FURTHER INFORMATION AND INQUIRIESTCAD?TEAM SYNOPSYSCOM

    )NTRODUCTION4HE NM #-/3 TECHNOLOGY NODEINCORPORATESSEVERALADVANCEDPROCESSSTEPSTO ACHIEVE THE ONCURRENT AND OFFCURRENTTARGETSWHILECONTROLLINGSHORTCHANNELEFFECTS-ILLISECOND ANNEALING IS A KEY TECHNIQUE INULTRASHALLOW JUNCTION FORMATION WHILE STRESSENGINEERINGISBEINGAPPLIEDMOREEXTENSIVELYTHAN IN THE PREVIOUS NM NODE )N SOMEVARIANTS HIGHK DIELECTRICS AND METAL GATESHAVE BEEN INTEGRATED INTO THE PROCESS ASWELL4HISARTICLEDESCRIBESANMMODELINGREFERENCE FLOW THAT INCLUDES THESEADVANCEDPROCESS STEPS AND THAT RESULTS IN DEVICEPERFORMANCE INLINE WITH PUBLISHED DATASEE&IGURE4HISWORKISBASEDON4#!$3ENTAURUS6ERSION:

    p 3TRESSMEMORIZATIONTECHNIQUE3-4p (ALOIMPLANTATIONp 3OURCEDRAIN3$IMPLANTATIONp NMSIDEWALLSPACERp ($$IMPLANTATIONp 3PIKEANNEALINGAT#p ,ASERANNEALINGAT#ANDMSp NMNICKELSILICIDEFORCONTACTSp $UALSTRESSLINER$3,4HE)MPORTANCEOF(IGHK'ATE$IELECTRICS4HE CURRENT TECHNOLOGY ROADMAP FOR ULTRASCALED -/3&%4S INDICATES THAT CONTINUEDDEEPSUBMICRON DEVICE SCALING REQUIRESGATE DIELECTRICS TO BE THINNED TO LESS THANkNMEQUIVALENTOXIDETHICKNESS%/45SING 3I/ AND 3I/. GATE DIELECTRICS FROMTHEPREVIOUSNODETOACHIEVETHISREQUIREMENTRESULTSINUNACCEPTABLYHIGHLEAKAGECURRENTSDUETOCARRIERTUNNELING)NTRODUCINGDIELECTRICMATERIALSWITHAHIGHERKKVALUEALLOWSTHE%/4TARGETTOBEACHIEVEDWITHINCREASEDPHYSICALTHICKNESSOFTHELAYERSANDTHEREFOREEXHIBITS LOWER LEAKAGECURRENTS THAN3I/OR3I/. GATE DIELECTRICS 4HE COMPOUNDS OFHAFNIUM (F ZIRCONIUM :R AND ALUMINUM!LHAVEBEENPROPOSEDASHIGHKDIELECTRICMATERIALSINADVANCEDFABRICATIONTECHNOLOGY(OWEVERHAFNIUMOXIDE (F/ANDHAFNIUMSILICATE (F3I/X HAVE EMERGED AS THEMOSTPROMISING HIGHKMATERIALS DUE TO THEIR HIGHDIELECTRICCONSTANTWIDEBANDGAPACCEPTABLEBAND OFFSET WITH RESPECT TO SILICON ANDPROCESS CONDITIONS COMPATIBLE WITH SILICONPROCESSFLOWINTEGRATION$ESPITE SOME REMAINING CHALLENGES WITHTHEETCHINGANDDEPOSITIONOFULTRATHINHIGHQUALITYSTOICHIOMETRICHIGHKDIELECTRICLAYERSWITHACCEPTABLE INTERFACEPROPERTIESANDLOWPROCESS INTERFERENCE THESE MATERIALS AREBEINGINCORPORATEDINTONM#-/3FLOWS,ASER!NNEALINGFOR5LTRASHALLOW*UNCTION&ORMATION4HE CONVENTIONAL METHOD FOR CREATING THEHIGHLYDOPEDREGIONSOFATRANSISTORCONSISTSOF ION IMPLANTATION FOLLOWEDBYRAPID THERMAL

    ANNEALING 24! 4HIS TECHNIQUE HOWEVERCANNOT MEET THE SCALING REQUIREMENTSBEYOND SUBkNM#-/3 TECHNOLOGYWITHSIMULTANEOUSLYDECREASINGJUNCTIONDEPTHANDSHEET RESISTANCE !S AN ALTERNATIVE TO 24!LASERANNEALING,!ISBEINGUSEDFORDOPINGACTIVATION4HEMAINPROCESSCHALLENGESWITHJUNCTION SCALING ARE THE FORMATION OF ABRUPTAND LOW SHEETRESISTANCE JUNCTIONS WHILECOMPLETELYREMOVINGTHEIMPLANTDAMAGE5LTRASHORTTIMEACTIVATIONANNEALINGHASBEENINVESTIGATEDRECENTLYTOREDUCESHORTCHANNELEFFECTS FOR SUBMICRON DEVICES ;= SINCE ITCAN PRODUCE ABRUPT SHALLOW JUNCTIONS WITHLOW RESISTIVITY 4HE NEW ACTIVATION ANNEALTECHNOLOGYUSINGALASERORFLASHLAMPPROVIDESAN ULTRASHORT ANNEAL TIME ^MILLISECONDTO MINIMIZE DOPANT DIFFUSION AND HIGHTEMPERATURES APPROXIMATELY # TOMAXIMIZE DOPING ACTIVATION ;= (ERE THESIMULATION AND ANALYSIS OF THE TRANSIENTENHANCED DIFFUSION 4%$ OF BORON ANDARSENICFORSHALLOWCHANNELEXTENSIONJUNCTIONFORMATION THROUGH 24! AND SUBSEQUENT ,!PROCESSSTEPSAREUNDERTAKENUSING3ENTAURUS0ROCESS6ERSION:3TRESS%NGINEERING"EYOND THENMNODESTRESSENGINEERINGPLAYSANIMPORTANTROLEINENHANCINGTHEDEVICEPERFORMANCE#URRENTLY STRAIN ENGINEERING ISPERFORMED TYPICALLY THROUGH THE APPLICATIONOF LOCAL STRESSSOURCESSUCHAS$3,S3-4ANDEMBEDDED3I'EPOCKETS INSOURCEANDDRAIN REGIONSOF0-/3&%4S3INCESTRESS ISA TENSORAND LOCALSTRESSSOURCESCONTRIBUTETO NONUNIFORM STRESS FIELDS THE RESULTINGENHANCEMENT OF CARRIER MOBILITY BECOMESDIRECTION DEPENDENT !LONG THE CHANNELDIRECTIONUNIAXIALTENSILESTRESSIN.-/3ANDCOMPRESSIVESTRESSIN0-/3HAVESHOWNTOYIELDTHEHIGHESTCURRENTENHANCEMENTFORTHECHANNELDIRECTION7ITHTHEADVENTOFSTRAINEDSILICONNEWMODELSHAVE BEEN INCORPORATED INTO 3ENTAURUS TOACCOUNT FOR THE IMPACTOFSTRESSONPROCESSANDDEVICESIMULATION)NPARTICULAR3ENTAURUS$EVICE IMPLEMENTS SEVERAL STRESSINDUCEDBANDGAPANDMOBILITYMODELSINCLUDINGAHOLE

    Ion [A/m]500 1000 1500

    Ioff

    [nA

    /m

    ]

    10-2

    10-1

    100

    101

    102

    103

    104

    105

    0 2000

    PMOS simulationNMOS simulationPMOS Wang et al. [6]PMOS Morimoto et al. [7]NMOS Morimoto et al. [7]PMOS Luo et al. [5]NMOS Luo et al. [5]

    &IGURE3IMULATED)ON)OFFCOMPAREDTORECENTLYPUBLISHEDDATAFORTHESAMETECHNOLOGYNODE

    0ARAMETER 3PECIFICATION

    3OURCE$RAIN3$*UNCTION$EPTH8J NM

    -INIMALPHYSICALGATELENGTH NM

    )ON M!M

    )OFF N!M

    7AFER#HANNELORIENTATION

    3TRESSMEMORIZATIONTECHNIQUE3-4.-/3ONLY '0ACOMPRESSIVE

    #HANNELSTRESS.-/30-/3 k'0ATENSILEk'0ACOMPRESSIVE

    6TLINSHORTLONG 66

    6TSATSHORTLONG 66

    6SUPPLY 6

    4ABLE3TRUCTURALANDELECTRICALSPECIFICATIONSOFNMHIGHPERFORMANCE#-/3DEVICE

    4HE PRESENTED SIMULATION SETUP SERVES AS ACOMMONSTARTINGPOINTFORENGINEERSWHOWANTTOEXPLOREANALYZEANDIMPROVEANMFLOWAND INCLUDES RELEVANT FABRICATION ASPECTS-ODELSCANBESELECTEDORDESELECTEDEASILYWITHOUT DELVING INTO THE SIMULATION SETUP!LONG WITH THE STANDARD TWODIMENSIONAL$ SIMULATION RESULTS SUCH AS THRESHOLDVOLTAGEROLLOFFCURVESMOREADVANCEDTOPICSSUCH AS CARRIER MOBILITY ENHANCEMENT UNDERMECHANICALSTRESSINCLUDINGTHREEDIMENSIONAL$MECHANICALMODELINGARETREATED4HISNMREFERENCE FLOWSETUP ISAVAILABLEFORDOWNLOADFROM3OLV.ETHTTPSSOLVNETSYNOPSYSCOMRETRIEVEHTMLNM#-/34ECHNOLOGY4HE NM PROCESS USED IN THIS PROJECT ISBASEDONPUBLICLYAVAILABLEDATAANDREFLECTSTHE BASIC MANUFACTURING TRENDS THAT HAVEBECOME STANDARD FOR THIS TECHNOLOGY NODE4HEDEVICEANDMANUFACTURINGCHARACTERISTICSARE BASED ON THE )NTERNATIONAL 4ECHNOLOGY2OADMAP FOR 3EMICONDUCTORS )423 FOR HIGHPERFORMANCE NTYPE AND PTYPEMETALkOXIDEkSEMICONDUCTOR FIELD EFFECTTRANSISTORS -/3&%4S WITH A NUMBER OFUPDATESANDCORRECTIONS4HE FOLLOWING KEY FEATURES FOR THE PROCESSFLOWWERECHOSENp 3HALLOWTRENCHISOLATION34)p 2ETROGRADEWELLp (IGHK GATE DIELECTRIC MATERIAL WITH 4I.METALGATE

  • 4#!$.EWS3EPTEMBER

    4#!$.EWSMOBILITYMODEL THATACCOUNTS FOR THEVALENCEBANDSPLITTINGANDINTERVALLEYREDISTRIBUTIONOFHOLES )N6ERSION:OF3ENTAURUSASECONDORDER PIEZORESISTANCE MODEL WASIMPLEMENTEDTOTREATNONLINEAREFFECTSATHIGHSTRESSLEVELS0ROCESS3IMULATIONAND4#!$3ETUP0ROCESS3IMULATION4#!$TOOLSTHATACCURATELYPREDICTINTEGRATEDCIRCUIT FABRICATION AND DEVICE CHARACTERISTICSARE INDISPENSABLE FOR EFFICIENT AND TIMELYTECHNOLOGY DEVELOPMENT AND IN OPTIMIZINGMANUFACTURING PROCESS WINDOWS 4HEULTRASHALLOW 3$ EXTENSION IS FORMED USINGLOWENERGY IMPLANTS AND THE LASERFLASHANNEALINGMODEL IN 3ENTAURUS 0ROCESS 4HESPIKEANNEALCONVENTIONAL24!ISPERFORMEDAT#FOLLOWEDBY,!AT#FORMSTOOPTIMIZEJUNCTIONDEPTHSANDBOOSTDOPANTACTIVATION 4ABLE LISTS THE KEY TECHNOLOGYPARAMETERSFORTHENMREFERENCEFLOWUSEDINTHISSTUDY4OSIMULATETHEPHENOMENONOFLASERINDUCEDDIFFUSIONLESSDOPINGACTIVATIONTHEADVANCEDFEATURES OF 3ENTAURUS 0ROCESS ARE USED$URING MILLISECOND ANNEALING A TRANSIENTSOLUTIONOFTHEHEATEQUATIONPROVIDESTHETIMEEVOLUTIONOFTHETEMPERATUREINSILICON"EFORESOLVING THE HEAT EQUATION FOR A GIVEN LASERPULSEWIDTHTIMETHETHERMALPROPERTIESOFTHENEWMATERIALSSUCHASHAFNIUMOXIDEANDTITANIUM NITRIDE ALONG WITH OTHER IMPORTANTPARAMETERS ARE INCLUDED 4HE BASIC MODELSELECTIONFORTHEPROCESSANALYSISCONSISTSOFp 0AIRDIFFUSIONMODELp 4RANSIENTDOPANTCLUSTERINGMODELp 4HREEPHASESEGREGATIONMODELp 'ERMANIUMCHEMICALANDSTRESSEFFECTSONDOPANTDIFFUSIONANDACTIVATION

    &ORMECHANICAL STRESS BOTH THE LONGITUDINALAND VERTICAL DEVICE TOPOGRAPHY AND THEDEVICE WIDTH AFFECT STRESS #ONSEQUENTLYA $ SETUP IS INCLUDED WHICH PERMITS THECALCULATION OF ALL COMPONENTS OF THE STRESSTENSOR 4HE @PAINTBYNUMBERS TECHNIQUEIS USED TO OBTAIN THE DEVICE STRUCTURE WITHSTRESSWHERETHEAIMISTOACQUIRETHESTRESSVALUESONLY4HESTRESSTENSORELEMENTSINTHECHANNEL CENTER ARE EXTRACTED FOR FURTHER USEIN THEDEVICESIMULATION&OR THEPURESTRESSCALCULATION IN $ IMPLANTATION AND DIFFUSIONSTEPSARENOTMODELED$IFFUSIONIMPLANTATIONAND OXIDATION ARE SIMULATED IN $ ONLY BUTMAYBEEXTENDEDTO$WHENEVERNECESSARY!SINGLESIMPLIFIEDLAYOUTFILEISUSEDFORBOTHTHE$AND$SIMULATIONS4HELAYOUTINCLUDES34)CORNERROUNDINGANDVARIABLEGATELENGTH

    AND GATEk34) DISTANCE &OR MORE PHYSICALREPRESENTATIONTHESETUPCANBEEXTENDEDTOAERIALIMAGEREPRESENTATIONOFTHEMASKS$EVICE3IMULATION4HE3ENTAURUS$EVICESIMULATIONUSESVARIOUSPHYSICAL MODELS )N THE BASIC APPROACHCARRIER MOBILITY IS SIMULATED USING THE DRIFTDIFFUSIONMODEL4HELOWDRAINANDHIGHDRAIN)Dk6G SIMULATIONS INCLUDE BANDTOBANDTUNNELINGANDTHESECONDORDERPIEZOMODELFORMOBILITYENHANCEMENTDUE TOMECHANICALSTRESS "AND STRUCTURE DEFORMATION DUE TOMECHANICAL STRESS IS ACTIVATED BY DEFAULTTHEREFORE STRESSRELATED 6TH SHIFTS ARE TAKENINTOACCOUNT3ENTAURUS7ORKBENCH3ETUP4HE3ENTAURUS7ORKBENCHSETUPCONSISTSOFTHEPROCESS SIMULATION GRID GENERATION ANDDEVICE SIMULATION 4HE PROCESS SIMULATIONPARTISDEFINEDINTHE,IGAMENT&LOW%DITOR4OMINIMIZESETUPERRORSAUSERFRIENDLYAPPROACHWAS USED 4HE MAIN PROCESS PARAMETERSARE COLLECTED IN A SINGLE PARAMETERWINDOWWHICHALLOWSUSERS TOCHECKANDMODIFY THEPARAMETERSEASILYSEE&IGURE7ITHIN,IGAMENTTHESETUPHASBEENDESIGNEDTO ALLOW A MORE EFFECTIVE WAY OF CHOOSINGBETWEENBASICSIMULATIONOPTIONS4HEDEVICELAYOUTISDEFINEDINANEXTERNALLAYOUTFILE2ESULTS$0ROCESS-ODELING2ESULTS4HE TRANSIENTENHANCED DIFFUSION 4%$ ISTHEULTIMATECHALLENGEFORSUBkNM#-/3PROCESS TECHNOLOGY TO ACHIEVE ULTRASHALLOWJUNCTIONS53*S4HE4%$OCCURSMAINLYDUETOTHEINCORPORATIONOFEXCESSINTERSTITIALSDURINGION IMPLANTATION (OWEVER PREAMORPHIZATIONOF THE SILICON LATTICE WITH A 'Ek# COCKTAILIMPLANT AND RECRYSTALLIZATION DURING HIGHTEMPERATURE SPIKE ANNEAL MAY RESOLVE 53*SCALING ISSUES 4O CREATE A REFERENCE FLOWFOR A NM#-/3PROCESS TWO IMPORTANTPROCESSASPECTSARESTUDIEDp 'Ek#k"COIMPLANTFOR0-/3p ,ASER ANNEALING FOR BOTH .-/3 AND0-/3

    4HE PREAMORPHIZATION OF SILICON WITH 'ESUPPRESSES BORON CHANNELING AND DIFFUSIONAND REDUCES 4%$ &OR THIS FLOW PROCESSRECIPES ARE CALIBRATED TO PUBLISHED DATASTARTING WITH !DVANCED #ALIBRATION MODELS4HE3)-3PROFILE OF BORON UNDER THE'Ek#COCKTAIL IMPLANTATION CONDITION IS SIMULATEDTAKINGASIMILARAPPROACHTO;=AND;=4HEONEDIMENSIONAL$SIMULATIONOFBORONREDISTRIBUTIONASAFUNCTIONOFDEPTHFROMTHE

    0ARAMETER .-/3 0-/3

    #HANNELIMPLANTS

    7ELL

    6THADJUSTMENT

    KE6"KE6"KE6"

    KE6"

    KE60KE60KE60

    KE6!S1UADHALOIMPLANTS

    $EEPHALO1UADTILTEDKE6"&1UADTILTEDKE6"

    1UADTILTEDKE6!S

    3OURCEDRAIN3$EXTENSIONS KE6!S KE6'EKE6#KE6"

    $EEPSOURCEDRAIN($$ KE6!S KE6"

    !CTIVATION24! #SPIKE #SPIKE

    !CTIVATION,! #MS #MS

    4ABLE&RONTENDPROCESSPARAMETERS

    &IGURE,IGAMENTDISPLAYINGVARIABLEWINDOW

    OXIDEINTERFACEISSHOWNIN&IGUREALONGWITHTHE 'E PROFILE 4HE $ PROCESS SIMULATIONWASPERFORMEDWITHANATIVEOXIDELAYER4HEEXCELLENTAGREEMENTOFEXPERIMENTALANDSIMULATEDRESULTSCONFIRMSTHEVALIDITYOF THISCALIBRATIONAPPROACH4HE $ SIMULATION RESULTS FOR !S SEE&IGURE CLEARLY SHOW HOW THE APPLICATIONOF LASER ANNEALING IMPACTS THE FINAL DOPINGREDISTRIBUTIONDUETOTHEREDUCED24!THERMALBUDGET &IGURE SHOWS A REDUCTION IN THEJUNCTIONDEPTHOFAPPROXIMATELYNMWITHAHIGHERACTIVATIONLEVELIFTHELASERANNEALINGISSWITCHEDONAFTER THE24!SIMULATION )TWASPOSSIBLE TO LOWER THE 24! TEMPERATURE ANDTO SHORTEN THE24! TIMEWHILE REDUCING THESHEETRESISTANCE$AND$2ESULTS)NSUBkNM#-/3TECHNOLOGIESPROCESSVARIABILITY RESULTING FROM PROCESS EQUIPMENTHAS EMERGED AS A KEY CHALLENGE ! SMALLVARIATION OF A PROCESS STEP MAY CAUSE ALARGECHANGEINTHEELECTRICALRESPONSEOFTHEDIGITALORANALOGCIRCUIT/WINGTOITSABILITYTOSIMULATE BOTH THE FABRICATION SEQUENCE ANDTHEDEVICECHARACTERISTICS4#!$ISBEINGUSEDINCREASINGLYASAWAYTOUNDERSTANDTHEEFFECTOFPROCESSVARIABILITYONDEVICEPERFORMANCEAND MANUFACTURABILITY &IGURESA AND BSHOWTHE$SIMULATIONRESULTSOBTAINEDWITH3ENTAURUS0ROCESS

    Depth [nm]

    Con

    cent

    ratio

    n [c

    m3

    ]

    0 20 40 60 80 100

    1016

    1017

    1018

    1019

    1020

    1021Germanium SIMS

    Boron SIMSGermanium Simulation

    Boron Simulation

    &IGURE3IMULATED$CALIBRATIONRESULTSFOR'Ek#k"COCKTAILIMPLANTINSILICON3OLIDLINEINDICATESTHE3)-3PROFILEOBTAINEDFROM;=4HEIMPLANTATIONCONDITIONSWERE'EKE6E#KE6EAND"KE6E

    0Depth [nm]

    Con

    cent

    ratio

    n [c

    m3

    ]

    20 4010

    16

    1017

    1018

    1019

    1020

    1021

    1022

    RTA onlyRTA+LA

    &IGURE3IMULATED!SPROFILEAFTERTHESPIKEANNEAL24!4HEPROCESSCONDITIONSWERE!SKE6EAND#FORS3IMULATED!SPROFILEAFTERTHESPIKEANNEAL24!FOLLOWEDBYLASERANNEALISSHOWNBYGREENSYMBOLS4HE24!TEMPERATUREISREDUCEDTO#ANDISFOLLOWEDBYALASERPULSE

    )NADDITION TO THE$ RESULTS FORDOPINGANDMECHANICAL STRESS A $ MECHANICAL STRESSSIMULATION IS PERFORMED SEE &IGURE !FEATURE OF 3ENTAURUS7ORKBENCH ALLOWS THEUSEOFTHESAMELAYOUTFILEFORTHE$AND$SIMULATIONS THEREBY PERMITTING THE IDENTICALSTRUCTUREDIMENSIONFORTHE$AND$SETUP1UANTITATIVE!NALYSIS4HESIMULATED6TROLLOFFCURVEIN&IGUREWASOBTAINEDFROM,GATENMTOM&OR0-/3 IT IS POSSIBLE TO REDUCE THE REVERSESHORT CHANNEL EFFECT 23#% BY CONTROLLINGTHEOVERLAPOF THEHALO IMPLANTATIONDOSEBYFURTHERADJUSTMENTSOFTHEHALODOSEENERGYANDTILTANGLE4HESUBTHRESHOLDANDOUTPUTCHARACTERISTICSOFANMGATELENGTHDRAWN.-/3&%4ARESHOWNIN&IGURESAANDBRESPECTIVELY4HESUBTHRESHOLD SLOPE IS APPROXIMATELY ANDM6DECADEFORTHEDEVICESIMULATEDWITHAND WITHOUT STRESS RESPECTIVELY &IGUREBSHOWSTHE)Dk6GCHARACTERISTICSFORTHISNMDEVICESIMULATEDAT6GSk64HE CONVENTIONAL DRIFTDIFFUSION AND DENSITYGRADIENT MODELS HAVE BEEN USED TO SOLVETHE TRANSPORT EQUATIONS 4HE 0HILIPS UNIFIEDMOBILITY MODEL COMBINED WITH THE SECONDORDER PIEZOELECTRIC STRESS MODEL HAVE BEENUSED TO IMPLEMENT THE STRESS EFFECTS ONMOBILITYENHANCEMENT4HEDRIVECURRENTFORTHE

  • 4#!$.EWS3EPTEMBER

    4#!$.EWS

    STRAINED STRESSENHANCEMENT FROMPROCESS.-/3&%4ISAPPROXIMATELYHIGHERTHANTHE CONVENTIONAL SILICON DEVICE SIMULATEDWITHOUT ANY PROCESSINDUCED STRESS )N THECASEOFA0-/3&%4ANAPPROXIMATELYIMPROVEMENTOF)ONWASOBTAINED)NCOMPARISONWITHRECENTLYPUBLISHEDRESULTSFOR THE SAME TECHNOLOGY NODE ;=;=;=THE SIMULATED )ON)OFF CHARACTERISTIC FOLLOWSTHE SAME TREND AS THE COMPARABLE NMTECHNOLOGIESSEE&IGURE#ONCLUSION! SIMULATION SETUP FOR A MODERN NM#-/3 FLOW HAS BEEN DEMONSTRATED 4HESETUP CAPTURES ADVANCED PROCESS STEPSAND ALLOWS FOR EASY EVALUATION OF DIFFERENTMODELINGOPTIONS4HIS SETUP HAS BEEN DEVISED TO BE USEDNOT ONLY BY EXPERT 4#!$USERS BUT ALSO BYENGINEERSWHOARENEWTO4#!$ANDNOTYETFAMILIARWITHALLAVAILABLEMODELINGOPTIONS

    2EFERENCES;=!0OUYDEBASQUEETAL g(IGH$ENSITYAND(IGH3PEED32!-BITCELLS AND2ING/SCILLATORS DUE TO LASER!NNEALING FOR NM"ULK#-/3sIN)%$-4ECHNICAL$IGEST7ASHINGTON$#53!PPk$ECEMBER

    ;=34ALWAR$-ARKLEAND-4HOMPSONg*UNCTIONSCALINGUSINGLASERS FOR THERMAL ANNEALINGs3OLID 3TATE 4ECHNOLOGY VOL NOPPk*ULY

    Doping Concentration [cm3]8.6e+20

    2.0e+17

    4.7e+13

    -2.3e+13

    -9.7e+16

    -4.1e+20

    &IGUREA4WODIMENSIONALDOPINGDISTRIBUTIONIN.-/3&%4SHOWINGSILICIDE4I.ANDHIGHKGATESTACK

    StressXX [Pa]3.5e+09

    3.9e+05

    4.3e+01

    -5.2e+01

    -4.7e+05

    -4.2e+09

    &IGUREB4WODIMENSIONALSTRESSDISTRIBUTIONINTHE.-/3 &IGURE.-/3$STRUCTUREANDSTRESSDISTRIBUTION

    VtlinVtsat

    Lgate [ m]10 10 10 10

    Vt [V

    ]

    -0.4

    -0.2

    0

    0.2

    0.4

    -2 -1 0 1

    &IGURE6TROLLOFFCURVEFOR,GATENMTOM

    ')'(+-%..')'(+%..')'(+-%..')'(+%..

    "!#%&

    $!#%&

    '-,*'

    &IGUREA%FFECTOFPROCESSINDUCEDINTRINSICSTRESSONSUBTHRESHOLDCHARACTERISTICS

    %"" !!$%"#"" !!

    !

    "

    - "./& &

    -

    ,#

    "

    .+'0

    /

    (

    )

    *

    - ,# ".+'0/

    &IGUREB3IMULATEDOUTPUTCHARACTERISTICSOFANMGATE-/3&%44HEDRAINCURRENTISSIMULATEDWITHFOURDIFFERENTGATEBIASCONDITIONSKEEPINGTHESUBSTRATEGROUNDED

    ;=6-OROZETALg/PTIMIZINGBORONJUNCTIONSTHROUGHPOINTDEFECTANDSTRESSENGINEERINGUSINGCARBONANDGERMANIUMCOIMPLANTSs!PPLIED0HYSICS,ETTERSVOLP!UGUST

    ;=#:ECHNERETALg-ODELING5LTRA3HALLOW*UNCTIONS&ORMEDBY0HOSPHORUS#ARBONAND"ORON#ARBONCOIMPLANTATIONsIN-230ROCEEDINGS 3EMICONDUCTOR $EFECT %NGINEERINGk-ATERIALS3YNTHETIC3TRUCTURESAND$EVICES))VOLPP&

    ;=: ,UO ET AL g(IGH 0ERFORMANCE 4RANSISTORS &EATURED INAN !GGRESSIVELY 3CALED NM "ULK #-/3 4ECHNOLOGYs IN3YMPOSIUMON6,3)4ECHNOLOGY+YOTO*APANPPk*UNE

    ;=( #( 7ANG ET AL g(IGH0ERFORMANCE 0-/3 $EVICES ON 3UBSTRATE#HANNEL WITH -ULTIPLE 3TRESSORSs IN)%$- 4ECHNICAL $IGEST 3AN &RANCISCO #! 53! $ECEMBER

    ;=2-ORIMOTOET AL g,AYOUT$ESIGN-ETHODOLOGY OF M%MBEDDED432!-FORNM(IGH0ERFORMANCE3YSTEM,3)SsIN 3YMPOSIUM ON 6,3) 4ECHNOLOGY +YOTO *APAN PPk*UNE

    -ULTILEVEL-ODELINGOF,AYOUT)MPACTON-OBILITY%NHANCEMENTWITH$UAL3TRESS,INERS

    )NTRODUCTION$UALSTRESSLINERS$3,SAREUSEDTOINTRODUCEUNIAXIAL TENSILE AND COMPRESSIVE CHANNELSTRESSES TO ENHANCE BOTH .&%4 AND 0&%4DEVICES SIMULTANEOUSLY ;=k;= #OMPAREDTO LOCALSTRESSENGINEERING TECHNIQUESSUCHAS EMBEDDED 3I'E IN SOURCE AND DRAINREGIONS THE $3, TECHNIQUE YIELDS SIMILARMOBILITY ENHANCEMENT WITH SIMPLER PROCESSINTEGRATION (OWEVER THE STRESS ORIGINATINGFROM A $3, HAS GLOBAL CHARACTERISTICS ANDDEPENDSONLAYOUT,AYOUTPARAMETERSSUCHASTHEGATEPOLYPITCHANDTHESPACINGBETWEENEDGESOFTHESTRESSLINERANDTHEACTIVEREGIONCANGREATLYIMPACTSTRESS DISTRIBUTIONS 4ECHNOLOGY OPTIMIZATIONOF MOBILITY ENHANCEMENT REQUIRES ACCURATEPREDICTIONOFBOTHCHANNELSTRESSFROMGLOBALSOURCESANDLOCALDOPANTPROFILESFROMDEVICEFABRICATIONPROCESSES4RADITIONAL4#!$SIMULATORSAREMOSTEFFICIENTFORACCURATEPROCESSANDDEVICESIMULATIONONTHETRANSISTORORLOCALLEVEL4OCONSIDERGLOBALSTRESSEFFECTSONTHELAYOUTLEVEL3YNOPSYSHASINTRODUCEDANEWGLOBALSTRESSSIMULATOR&AMMOS48;=FORANALYZINGTHEIMPACTOFBACKENDPROCESSANDSTRESSON

    INTERCONNECT RELIABILITY &AMMOS 48 HAS TWOMAINAPPLICATIONSp 4O PERFORM BACKEND PROCESS AND STRESSSIMULATIONS FOR INTERCONNECT RELIABILITYANALYSIS SUCH AS IDENTIFYING STRESS HOTSPOTS THAT ARE SUSCEPTIBLE TO DEBONDINGVOIDINGANDCRACKING

    p 4OCOMPLEMENTTRADITIONAL4#!$SIMULATORSBYPROVIDINGROBUSTGLOBALSTRESSANALYSIS

    &AMMOS48CANGENERATE THREEDIMENSIONAL$STRUCTURESDIRECTLYFROMPROCESSRECIPESAND LARGE '$3)) LAYOUTS )TS STRESS MODELSACCOUNT FOR VARIOUS STRESS SOURCES AND ITSGEOMETRIC MODELS INCLUDE PROXIMITY EFFECTSFROM LAYOUT 7ITH SPECIALIZED ALGORITHMSFOR FAST $ STRUCTURE CONSTRUCTION MESHGENERATIONANDEQUATIONSOLVING&AMMOS48PREDICTSINTERCONNECTSTRESSDISTRIBUTIONSFROMMULTIPLESTRESSSOURCESANDACCOUNTSFORLAYOUTPROXIMITY EFFECTS ON INTERCONNECT RELIABILITY&AMMOS48ALSOINCLUDESAMATERIALPROPERTYDATABASE WITH EXTENSIVE SEMICONDUCTOR ANDPACKAGINGMATERIALS FOR EASILY ASSESSING THEIMPACT OF MATERIALS ON STRESS )N ADDITION&AMMOS 48 INTERFACES TO OTHER 4#!$ AND$ESIGN FOR -ANUFACTURING $&- TOOLS TOFACILITATE TECHNOLOGY EXPLORATION AT MULTIPLELEVELS

    4HIS ARTICLE DEMONSTRATES HOW GLOBAL STRESSANALYSIS AND LOCALLEVEL PROCESS SIMULATIONCANBECOMBINEDTOSTUDYTHELAYOUTIMPACTONMOBILITYENHANCEMENTWITHTHE$3,TECHNIQUE)NTHEEXAMPLETHEEFFECTOFLAYOUTPARAMETERSSUCHASPOLYPITCHANDINTERFACESPACINGONCHANNELSTRESSDISTRIBUTIONISANALYZED4HENTHESIMULATEDGLOBALSTRESSFIELDSAREUSEDTOESTIMATETHEMOBILITYCHANGES!T THE END OF THE EXAMPLE THE MULTILEVELAPPROACHISAPPLIEDTOILLUSTRATETHEINTEGRATIONOFGLOBALSTRESSFIELDSANDLOCALDOPANTPROFILESFOREFFICIENTPROCESSSIMULATIONANDACCURATEDEVICEMODELING

    Tensile Etch Stop Layer (ESL)Compressive ESL

    Active Si

    ENy

    SA

    ENx

    &IGURE4ESTSTRUCTURELAYOUT3!ISTHEDISTANCEFROMTHECENTEROFTHEPOLYTOTHEEDGEOFTHEACTIVEAREA%.XAND%.YARETHEDISTANCESBETWEENTHEACTIVEAREAANDTHEINTERFACEOFNITRIDELINERSINTHEXDIRECTIONANDYDIRECTIONRESPECTIVELY

    -ODELINGOF,AYOUT)MPACTON#HANNEL3TRESSFROM'LOBAL3OURCESUSING&AMMOS48)TISWELLKNOWNTHAT-/3&%4CHANNELSTRESSISDEPENDENTONGEOMETRYSUCHASPOLYPITCHAND THEPROXIMITY TO STRESS LINER BOUNDARIES4HEFOLLOWINGSECTIONPRESENTSANANALYSISOFTHESEEFFECTSUSING&AMMOS48&IGURESHOWSTHELAYOUTOFATESTSTRUCTURE5SING THE 3YNOPSYS MASKEDITING TOOL)# 7ORK"ENCH LAYOUT PARAMETERS AREPARAMETERIZEDEASILYANDSIMULATIONSPLITSAREGENERATED TO INVESTIGATE GEOMETRY EFFECTS

    'ATE

    34) 34)

    Pressure [Pa]4.0e+093.7e+053.5e+01

    -7.8e+01-8.4e+05-9.0e+09

  • 4#!$.EWS

    %AST-IDDLEFIELD2OAD-OUNTAIN6IEW#!53!WWWSYNOPSYSCOM

    3YNOPSYSANDTHE3YNOPSYSLOGOAREREGISTEREDTRADEMARKSOF3YNOPSYS)NC!LLOTHERPRODUCTSORSERVICENAMESMENTIONEDHEREINARETRADEMARKSOFTHEIRRESPECTIVEHOLDERSANDSHOULDBETREATEDASSUCH

    3YNOPSYS)NC!LLRIGHTSRESERVED$'3

    4HESETOOLSCANBEINTEGRATEDINTO3ENTAURUS7ORKBENCH 3ENTAURUS 7ORKBENCH6ISUALIZATIONISUSEDTOANALYZEINTEGRATEANDAVERAGETHESTRESS(ERE3!AND%.YAREINITIALLYFIXEDAND%.XIS VARIED TOSTUDY THE LATERALBOUNDARYEFFECT,"%3UBSEQUENTLY3!AND%.X ARE FIXEDAND %.Y IS VARIED TO STUDY THE TRANSVERSEBOUNDARYEFFECT4"%&IGURESANDSHOWANEXAMPLEOFA$MESHANDTHELATERALSTRESSDISTRIBUTION FOR ONE &AMMOS 48 SIMULATIONSPLITRESPECTIVELY4HE ,"% AND 4"% TRENDS ARE SHOWN IN&IGURESANDWHERETHESTRESSESHAVEBEENAVERAGEDUNDERTHECHANNEL )NTHISEXAMPLE3YYISMAINLYDEPENDENTON%.YWHILE3XXISDEPENDENTONBOTH%.XAND%.Y&IGURE SHOWS THAT &AMMOS 48 GIVES THESAMETRENDOFMOBILITYCHANGESFORTHIS0-/3TRANSISTORASIN;=WHERETHEPIEZORESISTANCEMODEL PROPOSED BY $ORDA ;= WAS USEDTO COMPUTE THE HOLE MOBILITY CHANGES )NADDITION THE EFFECT OF POLY PITCH ON LATERALCOMPRESSION UNDER THE-/3&%4 CHANNEL ISSIMULATED &IGURE SHOWS THAT AS THE POLYPITCHINCREASES3XXSATURATES3IMULATIONSWITHRECTANGULARSHAPEDSPACERSAREPERFORMEDSEE&IGURETOEVALUATETHEEFFECTOFGEOMETRYROUNDINGONCHANNELSTRESS4HE LATERAL STRESS DISTRIBUTIONS ARE SHOWN IN&IGURE &OR THE SAME PROCESS CONDITIONSTHE DIFFERENCE OF THE AVERAGE STRESS UNDERTHE CHANNEL BETWEEN &IGURE AND &IGUREIS LESS THAN BUT THE SIMULATION TIME ISREDUCED SHARPLY &OR MANY APPLICATIONS ASIMPLIFIED STRUCTURE CAN BE USED TO SPEED

    -400-350-300-250-200-150-100-50

    0

    0 200 400 600 800ENx [nm]

    Sxx

    [MP

    a]

    ENy = 0 nmENy = 70 nmENy = 170 nm

    &IGURE3XXISSTRONGLYDEPENDENTON%.XANDSLIGHTLYDEPENDENTON%.Y

    UP SIMULATIONS AND TO AVOID THE DIFFICULTY OFBUILDINGCOMPLICATED$STRUCTURESANDMESHWITHOUTSACRIFICINGACCURACY4HEABOVEANALYSIS ILLUSTRATESTHEAPPLICATIONOF &AMMOS 48 IN FRONTEND STRESS SIMULATIONWHERE THE STRESS IS FROM GLOBAL SOURCES !MAJORADVANTAGEOFUSING&AMMOS48ISTHATITCANWORKWITH4#!$PROCESSSIMULATIONSTOCAPTUREALLOFTHENECESSARYSTRESSINFORMATIONFROMBACKENDSCALEFRONTENDLAYOUTSCALETOLOCALDEVICESCALE3UCHINFORMATIONFACILITATESACOMPLETEUNDERSTANDINGANDIMPLEMENTATIONOF$3,PROCESSINTEGRATION)NTEGRATING3TRESS$ISTRIBUTIONSFROM'LOBAL-ODELAND$OPANT0ROFILESFROM,OCAL-ODEL4HE TRADITIONAL 4#!$ PROCESS SIMULATOR3ENTAURUS 0ROCESS IS USED TO PERFORMDETAILED PROCESS SIMULATION TO FABRICATE ASINGLE TRANSISTOR 4HE PROCESS STEPS INCLUDEIMPLANTATION AND DIFFUSION THAT ARE ABSENTIN THE &AMMOS 48 SIMULATION$3, STRESSESSOLVEDFORIN&AMMOS48CANBEMERGEDWITHTHE DOPING PROFILES OF 3ENTAURUS 0ROCESSUSING THE MESHING ENGINE 3ENTAURUS -ESHAS SHOWN IN &IGURE 3TRESSES IN THESURROUNDING AREAS OUTSIDE THE DEVICE ACTIVEREGIONAREDISCARDEDINTHEFINALSINGLEDEVICESTRUCTURE 4HIS SUBSET STRUCTURE COMBINESTHEIMPURITYDISTRIBUTIONSINTHEACTIVEDEVICEAREAASSIMULATED IN3ENTAURUS0ROCESSANDTHE LAYOUTINFLUENCED $3, CHANNEL STRESSESPROVIDEDBY&AMMOS487HEN USING A 3ENTAURUS 0ROCESS STRUCTUREASASUBSETOFALARGER&AMMOS48STRUCTURESEVERAL FACTORS MUST BE CONSIDERED )F THE

    SUBSET REGION ISCHOSENSO THATVARIATIONS INTHE LAYOUT DO NOT ALTER THE ACTIVE REGION ORINFLUENCETHEBOUNDARYONLYONE$3ENTAURUS0ROCESS SIMULATION IS REQUIRED (OWEVERDECREASINGTHEPOLYPITCHMAYCREATEIMPLANTSHADOWING AS THE FIRST DUMMY POLY LINEAPPROACHESTHEEDGEOFTHESIMULATIONREGIONFOR 3ENTAURUS 0ROCESS THEREBY REQUIRINGMULTIPLESIMULATIONS!NOTHER IMPORTANT CONSIDERATION IS THAT ONLYGEOMETRICETCHINGANDDEPOSITIONOPERATIONSCAN BE USED TO CREATE THE STRUCTURE 4HE3ENTAURUS0ROCESSSTEPSTHATINVOLVEMOVINGBOUNDARIESSUCHASOXIDATIONANDSILICIDATIONWOULD PRODUCE A DIFFERENT STRUCTURE THAN&AMMOS 48 IN THE ACTIVE REGION 4HEREFORESTRESSFROMTHELINEROXIDATIONANDSILICIDATIONIS EXCLUDED 4HE APPROACH ILLUSTRATED INTHIS ARTICLE IS APPLICABLE TO CASES WHEN THE$3, STRESSES ARE SIGNIFICANTLY STRONGER THANSTRESSES GENERATED BY PROCESS STEPS EARLIERINTHEFLOW!FTER THEDATA FROMTHESTRUCTURES ISMERGEDAND CONTACTS HAVE BEEN PLACED 3ENTAURUS$EVICECANBEUSEDTOSIMULATETHEIMPACTOFTHESTRESSONDEVICEPERFORMANCE3ENTAURUS$EVICE HAS A COMPREHENSIVE SET OF STRESSRELATED MODELS INCLUDING STRESSDEPENDENTMOBILITYANDBANDGAPNARROWING3UMMARY4HISARTICLEHASDEMONSTRATEDACOMPUTATIONALLYEFFICIENT MULTILEVEL MODELING APPROACH TOANALYZELAYOUTIMPACTONMOBILITYENHANCEMENTWITH$3,S4HEAPPROACHSEPARATESTHESTRESSANALYSISATTHEGLOBALLEVELFORTHE$3,PROCESSSTEPS FROM THE DOPANT PROFILE SIMULATION AT

    &IGURE3NAPSHOTOFTHEMESHUSEDINTHISEXAMPLE

    &IGURE4HELATERALSTRESS3XXDISTRIBUTIONUNDERTHECHANNEL4HECOMPRESSIVELATERALSTRESSINTHECHANNELISINDUCEDBYTHECOMPRESSIVENITRIDELAYER

    Sxx_Element [MPa]2.0e+03

    7.2e+01

    2.5e+00

    -2.5e+00

    -7.2e+01

    -2.0e+03

    0100200300400500600700800

    0 200 400 600 800ENy [nm]

    Syy

    [MPa

    ]

    Syy (independent of ENx)

    &IGURE3YYISINDEPENDENTOF%.XANDSOLELYDEPENDENTON%.Y

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0 200 400 600 800EN[x,y] [nm]

    Cha

    nge

    of M

    obilit

    y [%

    ] TBE, ENyLBE, ENx

    &IGURE0-/3MOBILITYCHANGECOMPUTEDBYAPPLYINGTHEPIEZORESISTANCEMODELUSINGTHEAVERAGECHANNELSTRESS

    405060708090

    100110120130

    0 500 1000 1500Poly Pitch [nm]

    Sxx

    [a.u

    .]

    ENx = ENy = 70 nm, 2.5 GPa2.0 GPa1.7 GPa

    &IGURE4HEDEPENDENCEOF3XXONPOLYPITCH,ESSDEPENDENCEISOBSERVEDWHENTHEPOLYPITCHISLARGE

    Sxx_Element [1]2.0e+03

    7.2e+01

    2.5e+00

    -2.5e+00

    -7.2e+01

    -2.0e+03

    &IGURE,ATERALSTRESS3XXDISTRIBUTIONOFAREPEATEDSIMULATIONOF&IGUREWITHRECTANGULARSPACERS

    StressXX [Pa]0.0e+00

    -6.0e+07

    -1.2e+08

    -1.8e+08

    -2.4e+08

    -3.0e+08

    &IGURE&AMMOS48AND3ENTAURUS0ROCESSRESULTSOVERLAIDONTOTHESAMEGRIDINPREPARATIONFORDEVICESIMULATION

    THE LOCAL DEVICE LEVEL USED IN EARLY DEVICEFABRICATIONSTEPS4HESTRESSANALYSISREQUIRESCONSIDERATION OF PROXIMATE EFFECTS THAT AREUBIQUITOUS IN THE LAYOUT AT THE GLOBAL LEVELWHILETHEDOPANTPROFILESIMULATIONISCONFINEDTO THE LOCAL GEOMETRY IN A SUBSTRUCTURE#OMBININGSTRESSFIELDSFROMAGLOBAL&AMMOS48SIMULATIONANDDOPANTPROFILESFROMALOCAL3ENTAURUS 0ROCESS SIMULATION ALLOWS THEEFFICIENT ACQUISITION OF STRESS INFORMATION FORACCURATEDEVICEMODELING

    2EFERENCES;=0'RUDOWSKIETALg$AND$'EOMETRY%FFECTSIN5NIAXIALLY3TRAINED $UAL %TCH 3TOP ,AYER 3TRESSOR )NTEGRATIONSs IN3YMPOSIUMON6,3)4ECHNOLOGY(ONOLULU()53!PPk*UNE

    ;=%,EOBANDUNGETALg(IGH0ERFORMANCENM3/)4ECHNOLOGYWITH $UAL 3TRESS ,INER AND LOW CAPACITANCE 32!- CELLs IN3YMPOSIUM ON 6,3) 4ECHNOLOGY +YOTO *APAN PP k*UNE

    ;=( 3 9ANG ET AL g$UAL 3TRESS ,INER FOR (IGH 0ERFORMANCESUBNM 'ATE ,ENGTH 3/) #-/3 -ANUFACTURINGs IN )%$-4ECHNICAL $IGEST 3AN &RANCISCO #! 53! PP k$ECEMBER

    ;=3 0IDIN ET AL g! .OVEL 3TRAIN %NHANCED #-/3 !RCHITECTURE5SING3ELECTIVELY$EPOSITED(IGH4ENSILE!ND(IGH#OMPRESSIVE3ILICON.ITRIDE&ILMSsIN)%$-4ECHNICAL$IGEST3AN&RANCISCO#!53!PPk$ECEMBER

    ;=#$3HERAWETAL g$UAL3TRESS,INER%NHANCEMENT IN(YBRID/RIENTATION 4ECHNOLOGYs IN 3YMPOSIUM ON 6,3) 4ECHNOLOGY+YOTO*APANPPk*UNE

    ;=' %NEMAN ET AL g3CALABILITY OF 3TRAINED .ITRIDE #APPING,AYERSFOR&UTURE#-/3'ENERATIONSsIN%UROPEAN3OLID3TATE$EVICE 2ESEARCH #ONFERENCE %33$%2# 'RENOBLE &RANCEPPk3EPTEMBER

    ;=7( ,EE ET AL g(IGH 0ERFORMANCE NM 3/) 4ECHNOLOGYWITH %NHANCED 4RANSISTOR 3TRAIN AND !DVANCED,OW+ "%/,sIN )%$- 4ECHNICAL $IGEST 7ASHINGTON $# 53! $ECEMBER

    ;=&AMMOS48MANUALS-OUNTAIN6IEW#ALIFORNIA3YNOPSYS)NC

    ;=' $ORDA g0IEZORESISTANCE IN1UANTIZED#ONDUCTION "ANDS IN3ILICON )NVERSION ,AYERSs *OURNAL OF !PPLIED 0HYSICS VOL NOPPk