new combustion analysis of nanoenergetic materials review meeting/psu_yetter_neem_muri... · 2010....

21
NEEM MURI ARO Final Review of "A Unified Multiscale Approach for Nano Engineered Energetic Materials,” Heat Center, Aberdeen, Maryland, 15 March 2010 Combustion Analysis of Nanoenergetic Materials Richard Yetter, Jongguen Lee, Mike Weismiller, Justin Sabourin, Steven Dean, and Bruce Yang The Pennsylvania State University The Pennsylvania State University Tim Foley, Blaine Asay (L Al N ti lLb t ) (Los Alamos National Laboratory) Steven F. Son (Purdue University) Tim Eden, Orlando Cabarcos, Dave Allara (Penn State)

Upload: others

Post on 23-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • NEEM MURI ARO Final Review of "A Unified Multiscale Approach for Nano Engineered Energetic Materials,” Heat Center, Aberdeen, Maryland,

    15 March 2010

    Combustion Analysis of Nanoenergetic Materials

    Richard Yetter, Jongguen Lee, Mike Weismiller, Justin Sabourin, Steven Dean, and Bruce Yang The Pennsylvania State UniversityThe Pennsylvania State University

    Tim Foley, Blaine Asay(L Al N ti l L b t )(Los Alamos National Laboratory)Steven F. Son (Purdue University)Tim Eden, Orlando Cabarcos, Dave Allara (Penn State)

  • NEEM MURI Research Areas

    • Flame spread across thin fuel films of nano metallic particles. • Combustion of nAl with O2/Ar mixtures – unified theory developed.• Combustion of nAl with CO CO N O and N• Combustion of nAl with CO2, CO, N2O, and N2.

    • Combustion of nano metallic particles and flame propagation through quasi-homogeneous mixtures of nano metallic particles and liquid and gaseous oxidizers.gaseous oxidizers.

    • Combustion of nAl/liquid H2O• Combustion of nAl/H2O/H2O2• Combustion of nAl/CH3NO23 2• Combustion of nB/CH3NO2

    • Combustion of nano metallic particles and flame propagation through quasi-homogeneous mixtures of nano metallic particles and solid oxidizers.

    • Combustion of nano Al/MoO3 thermites – stoichiometry and channel size.

    • Combustion of nano Al/CuO thermites –fuel particle size, density, and dil tion effectsdilution effects.

    • Combustion of nB in Al/CuO thermites.• Self-assembly of ordered microspheres of a nanoscale thermite.

  • NEEM MURI Research Areas

    • Liquid propellants with nanostructured additives and nano aluminum gelled propellantsand nano aluminum gelled propellants.

    • Temperature, pressure, and oxidizer particle effects on nanothermiteson nanothermites.

    • Nano intermetallic powder systems.

  • NEEM MURI Self-Assembled Nanoscale Thermite Microspheres

    Opal gem: organized nanoparticle self assemblySanders, J. V., Murray, M. J., Nature v275, 1978.

    Structure of the Abalone Shell (A reactive material structure?)A. Lin and A. Meyers, Mat. Sci. Eng. A 390, 27-41, 2005.

    inorganic layers: (inter-metallic fuel layers?)Laboratory assembled nAu & nAg composites o ga c aye s ( te eta c ue aye s )

    organic layers: (energetic binder layers?)

    Laboratory assembled nAu & nAg compositesKalsin et al., Science, v312, 2006

    •Create Self‐Assembled Monolayer (SAM) on surface of particles•Monolayers contain a functionalized group at tail end (either + or 

    nAl‐TMA(trimethyl(11‐mercaptoundecyl)

    – charged)•When mixed in a diluted and elevated temperature they form energetic macroscale structures with nanoscale constituents

    Malchi, J., Foley,T., Yetter, R.A., Reactive Composite

    nAl (38nm)

    ammonium chloride) ACS APPLIED MATERIALS & INTERFACES, 2009

    p

    ~4 μm

    nCuO(33nm)

    nCuO‐MUA(11‐mercaptoundecanoic acid )

  • NEEM MURI Nanostructured Additives for Enhanced Propellant Combustion

    GrapheneAluminum monohydroxide Silica

    3

    3.5

    /s

    Pchamber

    =

    5.24 +/- 0.05 MPa

    Neat NM; 5.23 MPa, rb = 1.2 mm/s

    2.5

    FGSAl

    2O

    3 Plus

    Porous SiO2

    ning

    Rat

    e, m

    m/NM + 0.5% (mass)

    AlOOH; 5.16 MPa, rb = 1.6 mm/s

    NM + 0 39% (mass)

    1.5

    2Li

    near

    Bur

    t NM 1 20 /

    NM + 0.39% (mass) SiO2 gel; 5.25 MPa, rb = 1.9 mm/s

    10 0.1 0.2 0.3 0.4 0.5 0.6

    Concentration, volume %

    rb, neat NM ~ 1.20 mm/s

    2 s steps, under Argon

    NM + 0.3% (mass) FGS22; 5.16 MPa, rb = 2.2 mm/s

  • NEEM MURI Combustion of Nano Aluminum Gelled Propellants

  • NEEM MURI Propagation Mechanisms of Nanothermite Reactions

    P Pressure Gradient drives gases forwardP Pressure Gradient drives gases forwardConvection wave

    When ignited in a burn-tube, ‘fast’ nanothermites (Al/C O Al/M O

    Pressure gradient drives reaction forward

    (Al/CuO, Al/MoO3, Al/Bi2O3) react through a convective mechanism

    Convective burning is

    Heat Conduction

    Convective burning is driven by the creation of a large pressure gradient in the porous mixture, and not by a temperature

    Hot gases penetrate the granular mixtureFlame Zone

    Temp= Tf

    Porous Reactants

    and not by a temperature gradient

    Pressure Transducers

    Fiber Optic Cables

    Conduction waveTemperature gradient drives reaction forward

    Conduction wave Temperature gradient drives reaction forward

    ThT0Powder –FilledTube

  • NEEM MURI Effect of Pressure on the Propagation Rate in a Al/CuO Nanothermite

    /s)

    nt V

    eloc

    ity

    atin

    g

    ting

    nt V

    eloc

    ity

    m/s

    m/s /s

    Nano-aluminum from Novacentrix (avg. dp=38nm)Nano CuO from Sigma-Aldrich (avg. dp=33nm)Studies conducted in an optical strand burner (V=23 liters)

    ff ( )

    Vf (

    m/

    As pressure is increased, several different modes of propagation are observed P t hi h ti d h d d

    Fast

    Con

    stan

    Acc

    eler

    a

    Osc

    illa

    Slo

    w C

    onst

    an

    100’

    s

    ~1 k

    m

    ~1 mPressurized with 3 different gases (Ar, He, or N2)

    Pressure (MPa)Pressure at which propagation mode changes depends on pressurizing gas; He has a high thermal conductivity

    1000 1000 10002 32 3 3+ → +Al CuO Al O Cu

    100

    1000

    ] 100

    1000

    ] 100

    1000

    s]

    Ar He N2

    10

    Vf [m

    /s]

    atin

    g

    erat

    ing 10

    V f[m

    /s]

    llatin

    g 10Vf[m

    /s

    llatin

    gel

    erat

    ing

    10 5 10 15

    Pa

    [MPa]

    Osc

    ill

    Acc

    ele

    10 5 10 15

    Pa[MPa]

    Osc

    il

    10 5 10 15P

    a[MPa]

    Osc

    iA

    cce

  • NEEM MURI Temperature Measurements forunderstanding Gas Generation

    Previous work: gas fraction at equilibriumDrawbacks:• No intermediate gases (not present at equilibrium)

    nAl/MoO3 30

    • Many of the equilibrium gases will not be realized until very high temperatures (ex. Cu: BP of 2835K)

    nAl/CuO in burn tube at

    10

    20

    essu

    re [M

    Pa] 1atm in air

    nAl/MoO3 0

    10

    0 0.0005 0.001

    Pre

    Time [s]

    The measured over-pressures (in excess of 10 [MPa]) can only be explained by gas generation

    1 PTRPN

    P gen ⎟⎟⎞

    ⎜⎜⎛

    +=Δ

    Time [s]

    121int

    PTRTRV

    P −⎟⎟⎠

    ⎜⎜⎝

    +=Δ

    Heating of interstitial gasGeneration of

    gaseous species

  • NEEM MURI Optical Temperature Measurements

    Time integrated temperature measurement set-up

    Temporally resolved temperature measurements via streak camera

    Pile of energetic themite to be sampled

    Optical fiber

    Spark igniter

    Image Processor

    High Speed Camera

    CL+

    -

    Spark igniter

    SignalGenerator

    CCD Camera

    Spark Igniter

    Thermite-FilledBurn TubeGenerator

    External Trigger

    StreakCamera

    (C7700-01)

    Output Optics

    SignalGenerator

    Ocean Optics HR2000 Spectrometer

    Data Acquisition Computer

    Spectrograph

    Input Optics

    Optical fiber Coupling lens

    pp

  • NEEM MURI Optical Pyrometry requires consideration of Material Spectral Emissivity

    Simplest Solution:

    In general: ( )T,λεε =

    .const=ε Two-color pyrometryMore Accurate Solution:

    Assume emissivity has a known relationship with λ ( ε ~ λn )

    Planck’s Law

    ( ) ( )⎥⎦⎤

    ⎢⎣⎡ −

    ⋅=1

    ,,25

    1

    TC

    e

    CTTEλλ

    λελ

    ( )λε 3C=18

    667 5001000λ [nm]

    λ 2 d t l id d( ) λλε =

    Curve Fitting Equation [used by Ng et al Review of Scientific Instruments (2001)] 14

    16

    Z

    y = 6.06961E-06x + 5.0513T = 2370 K

    ε~λ-2 and ε =const, also considered

    ( ) ( )3261 , CLnTCTECLnZ −⋅

    =⎟⎠⎞

    ⎜⎝⎛ ⋅=

    λλ

    λ 121E+6 1.5E+6 2E+61/λ [m-1]

  • NEEM MURI Temperature Measurements Suggest that the Final Products are not Gasified

    2500

    3000

    3500

    [K]

    erature

    re t oint 

    2 32 3 3+ → +Al CuO Al O CuBurn Tube Propagation Rate ~ 1 km/s um BPure

    (K)

    Al/CuO

    0

    500

    1000

    1500

    2000

    Al/CuO

    Tem

    pera

    ture

    Equilib

    rum Tem

    pe

    Measured Tempe

    ratur

    Cu boilin

    g Po

    in

    Al 2O3 bo

    iling

     p

    Al b

    oilin

    g po

    intp g

    Combustion Temperature ~ 2350±150 K

    Equ

    ilibr

    i

    Mea

    sure

    d

    Cu

    BP

    Al2O

    3B

    Al B

    P

    Tem

    pera

    tu

    2500

    3000

    3500

    4000

    4500

    5000

    erat

    ure

    [K]

    ure

    oilin

    g Po

    int

    int 

    nt 

    3 2 32 + → +Al MoO Al O MoAl/CuO

    Burn Tube Propagation Rate ~ 1 km/sCombustion Temperature ~ 2150±150 K ium o B

    P

    BPerat

    ure

    (K)

    Al/MoO3

    0

    500

    1000

    1500

    2000

    Al/MoO3

    Tem

    pe

    Equilib

    rum

    Tempe

    ratu

    Mea

    sured 

    Tempe

    rature

    Mo bo

    Al 2O

    boiling

     poi

    Al

     boilin

    g po

    i n

    35002 3 2 32 2+ → +Al Fe O Al O Fe

    p

    Equi

    libri

    Mea

    s. Mo

    Al2O

    3B

    Al B

    P

    Tem

    pe

    Al/F O

    1500

    2000

    2500

    3000

    3500

    pera

    ture

    [K]

    rum 

    ature

    ling Po

    int

    boiling

     point 

    ing po

    int 

    2 3 2 32 2+ → +Al Fe O Al O FeBurn Tube Propagation Rate ~ 0.1 m/sCombustion Temperature ~ 1700±150 K

    rium

    e B

    P

    O3

    BP

    BPpera

    ture

    (K)

    Al/Fe2O3

    0

    500

    1000

    1500

    Al/Fe2O3

    Tem

    p

    Equilib

    rTempe

    ra

    Measured 

    Tempe

    rature

    Fe boil

    Al 2O3 

    Al boil

    Equ

    ilibr

    Mea

    s. Fe

    Al2

    Al B

    Tem

    p

  • NEEM MURI Metal Oxides Vaporize or Decompose at Low Temperatures

    2 212 → +CuO Cu O O

    Compound Tmp(K)

    Tbp(K)

    Tvol(K)

    Al 1687 3013 n/a 2 22 2→ +CuO Cu O O

    2 3 3 4 213 22

    → +Fe O Fe O O

    Al 1687 3013 n/aAl2O3 2345 3253 n/aCuO 1500 decomposes 1400

    14 8000 14 1 104

    2Fe2O3 1855 decomposes 1750MoO3 1075 1428 n/a

    8

    10

    12

    5000

    6000

    7000

    n [m

    ol/k

    g]

    V

    Volume

    Cu

    O

    Cu2O (l)

    8

    10

    12

    6000

    8000

    n [m

    ol/k

    g]

    V [Fe2O

    3 (s)

    FeO (l)

    4

    6

    8

    2000

    3000

    4000

    Con

    cent

    ratio

    n [cm3/g]

    OCu2O (s)

    O2 4

    6

    8

    2000

    4000

    Con

    cent

    ratio

    n

    [cm3/g]

    2 3

    O

    Fe3O

    4 (s) O

    2

    Volume

    0

    2

    0

    1000

    0 1000 2000 3000 4000 5000

    C

    Temperature [K]

    Cu2 CuO

    0

    2

    00 1000 2000 3000

    C

    Temperature [K]

    O2

  • NEEM MURI Temperature continues to Rise after Luminous Front Passes

    Wave speed ~ 800 m/s

    800m/s x 50μs = 40 mm

    T still increasing,

    Energy being released

    1.2 4000const.1/lambda1/lambda^2

    800m/s x 50μs 40 mm

    ~80

    mm

    Energy being released

    Al/CuO

    0.8

    1 3500

    1/lambda^2

    nits

    ] Tem

    t0 +14μs +28μs +42μs +56μs

    Al/CuO

    0.6

    2500

    3000

    nsity

    [arb

    . un mperature [K

    50μs

    time

    pix

    Un-reactedtime

    0.2

    0.4

    2000

    Inte

    n K]xels

    0 1500600 650 700 750 800 850 900

    Time from Trigger [micro sec]wavelength

    pixels

    wavelength

  • NEEM MURI Effects of Oxidizer vs Fuel Particle Size

    Energetic Mass

    Aluminum: nanoparticles (38nm) from Technanogy, micron-particles (2μm) from ValimetCopper-Oxide: nanoparticles (33nm) and micron particles (3μm) from Sigma Aldrich

    Linear Burning Rate [m/s]

    Mass Burning Rate [kg/s]

    Burning Rate [kg/s]

    Avg. mass per run [g] % mass Al2O3

    Nano Al/ Nano CuO 977 3.79 3.14 0.31 17.1Micron Al/Nano CuO 658 4.77 4.72 0.58 1.0

    micron Al - micron CuO

    nm Al micron CuO

    Nano Al/Micron CuO 197 1.31 1.08 0.53 17.1Micron Al/Micron CuO 182 2.02 2.00 0.89 1.0

    micron Al / micron CuO nm Al - micron CuO

    micron Al - nm CuO

    nm Al-nm CuO

    Linear propagation rate was more

    dependant on the CuO particles size

    micron Al / micron CuO

    nm Al / micron CuO

    micron Al / nm CuOnm Al nm CuO

    22 212 OOCuCuO +→

    micron Al / nm CuO

    nm Al / nm CuO

    0 200 400 600 800 1000Linear Burn Rate [m/s]

    Evidence that the oxide decomposition drives convective burning Linear Burning rate [m/s]

  • NEEM MURI Al/MoO3 System has Similar Trend

    Linear Burning Rate [m/s]

    Mass Burning Rate [kg/s]

    Energetic Mass Burning Rate

    [kg/s]Avg. mass per

    run [g] % mass Al2O3

    Oxide Shell Thickness

    (nm)Nano Al/ Nano MoO3 678 1.95 1.43 0.23 26.4 6.213Micron Al/Nano MoO3 362 1.54 1.51 0.34 1.7 22.26Nano Al/Micron MoO3 151 0.45 0.33 0.24 26.4 6.21

    Micron Al/Micron MoO3 47 0.52 0.51 0.89 1.7 22.26

    micron Al - micron MoO3

    nm Al - micron MoO3

    micron Al - nm MoO3

    MoO3 vaporizes at relatively low temperatures

    micron Al / micron MoO3

    nm Al / micron MoO3 micron Al nm MoO3

    nm Al - nm MoO3

    temperatures. Reducing the size of

    these particles promotes convective

    burning

    micron Al / nm MoO3

    nm Al / nm MoO3

    0 200 400 600 800 1000Li B R t [ / ]

    burning nm Al / nm MoO3

    Linear Burn Rate [m/s]Linear Burning rate [m/s]

    reducing the oxidizer particle size has greater impact on increasing propagation rate

  • NEEM MURI Pressure Profiles for Mixtures of Al/CuO and Al/MoO3 with different Powder Sizes

    20

    30

    MPa

    ]

    20

    30M

    Pa]

    1.82 [MPa/μs] 0.50 [MPa/μs] nano-Al / micro-CuOmicro-Al / nano-CuO

    10

    20

    ress

    ure

    [M

    10

    20

    ress

    ure

    [M

    [ μ ]

    00 0.0005 0.001

    Pr

    Time [s]

    00 0.0005 0.001

    Pr

    Time [s] 1515[ ][ ]

    10

    15

    MPa

    ]10

    15

    MPa

    ] micro-Al /nano-MoO3 nano-Al / micro-MoO30.44 [MPa/μs] 0.20 [MPa/μs]

    5

    ress

    ure

    [M

    5

    ress

    ure

    [M

    00 0.00075 0.0015

    Pr

    Time [s]

    00 0.00075 0.0015

    Pr

    Time [s]

  • NEEM MURI nNi-nAl Burning Rates

    • Al + Ni → AlNi -1.38 kJ/g• Taf = 1912 K• Vertical glass tubes 2” in length

    Material Manufact. Size (nm)

    Morphology Purity (%)

    Vertical glass tubes 2 in length • Ignited with Nichrome wire• Flame propagation measured with

    Phantom 7.3

    AlNi

    Novacentrix 80 Spherical 80

    Alfa Aesar 5-20 Spherical 99.9

    Heat treatment performed on nm Ni powder in oven

    at 250 °C

    StoichiometryCombination

    Molar RatioAl : Ni

    Mass Percentage (%)Al : Ni

    1 1 : 1 29.2 : 90.82 1 : 0.56 36 : 643 1 : 1.38 20 : 80

    1.8

    2

    3

    3.5nNi-nAl Burning Rates

    Burning Rates after Heat Treatment

    29% Al

    1.2

    1.4

    1.6

    2

    2.5

    3

    0.8

    1

    15 20 25 30 35 40% Al

    1.5

    2

    0 5 10 15 20Heat Treatment Duration (min)

  • NEEM MURI Our work has led to the following conclusions…

    • Further evidence showing that the fast propagation rates in nanothermites are induced by the convective burning mechanism

    • Increasing ambient pressure leads to decreased gas generation and a change in the propagation mechanismg g p p g

    • Gas generation is due to decomposition of oxide particles

    • Temperature rise takes place over a thick region• Temperature rise takes place over a thick region– Reaction relies on pressure, not temperature,

    gradient to drive propagation– Need only heat mixture to point of gas generation to

    propagate• Reducing the size of oxidizer particles seems toReducing the size of oxidizer particles seems to

    increase rate of gas generation and promote convective burning

  • NEEM MURI Summary - continued

    • Electrostatic self-assembly of nanoscale thermites into microspheres show improved mixing overinto microspheres show improved mixing over sonication.

    • Nano functionalized colloids of metal oxides and• Nano functionalized colloids of metal oxides and graphene demonstrated to affect pressure exponent and burning rate. Nano aluminum affects p gburning rate.

  • NEEM MURI 2008-2009 Publications“Combustion and conversion efficiency of nanoaluminum-water mixtures,” Risha, GA; Sabourin, JL; Yang, V; Son, SF;

    Tappan, BC, COMBUSTION SCIENCE AND TECHNOLOGY, 12, 2127-2142, 2008. “Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures,” Sabourin, JL; Risha, GA; Yetter,

    RA; Son, SF; Tappan, BC,COMBUSTION AND FLAME, 154, 3, 587-600, 2008. “The effect of added Al2O3 on the propagation behavior of an Al/CuO nanoscale thermite ” Malchi JY; Yetter RA; Foley TJ;The effect of added Al2O3 on the propagation behavior of an Al/CuO nanoscale thermite, Malchi, JY; Yetter, RA; Foley, TJ;

    Son, SF, COMBUSTION SCIENCE AND TECHNOLOGY, 180, 7, 1278-1294, 2008. “Functionalized Graphene Sheet Colloids for Enhanced Fuel/Propellant Combustion,” Sabourin, JL; Dabbs, DM; Yetter, RA;

    Dryer, FL; Aksay, IA, ACS NANO, 3, 13, 3945-3954, 2009.“Electrostatically Self-Assembled Nanocomposite Reactive Microspheres,” Malchi, JY; Foley, TJ; Yetter, RA, ACS APPLIED

    MATERIALS & INTERFACES 1 11 2420-2423 2009MATERIALS & INTERFACES, 1, 11, 2420-2423, 2009. “Effect of Nano-Aluminum and Fumed Silica Particles on Deflagration and Detonation of Nitromethane,” Sabourin, JL; Yetter,

    RA; Asay, BW; Loyd, JM; Sanders, VE; Risha, GA; Son, SF,” PROPELLANTS EXPLOSIVES PYROTECHNICS, 34, 5, 385-393, 2009.

    “Metal particle combustion and nanotechnology,” Yetter, RA; Risha, GA; Son, SF, PROCEEDINGS OF THE COMBUSTION INSTITUTE, 32, 1819-1838, 2009.INSTITUTE, 32, 1819 1838, 2009.

    “Dependence of flame propagation on pressure and pressurizing gas for an Al/CuO nanoscale thermite,” Weismiller, MR; Malchi, JY; Yetter, RA; Foley, TJ, PROCEEDINGS OF THE COMBUSTION INSTITUTE, 32, 1895-1903, 2009.

    “The effect of stoichiometry on the combustion behavior of a nanoscale Al/MoO3 thermite,” Dutro, GM; Yetter, RA; Risha, GA; Son, SF, PROCEEDINGS OF THE COMBUSTION INSTITUTE, 32, 1921-1928, 2009.

    “Realizing microgravity flame spread characteristics at 1 g over a bed of nano-aluminum powder,” Malchi, JY; Prosser, J;Realizing microgravity flame spread characteristics at 1 g over a bed of nano aluminum powder, Malchi, JY; Prosser, J; Yetter, RA; Son, SF, PROCEEDINGS OF THE COMBUSTION INSTITUTE, 32, 2437-2444, 2009.

    “Effect of particle size on combustion of aluminum particle dust in air,” Huang, Y; Risha, GA; Yang, V; Yetter, RA, COMBUSTION AND FLAME, 156, 1, 5-13, 2009.

    “Exploring the Effects of High Surface Area Metal Oxide Particles on Liquid Nitromethane Combustion,” Sabourin, JL; Yetter, RA; Parimi, S, JOURNAL OF PROPULSION AND POWER, submitted DECEMBER 2009.

    “Oxidizer and Fuel Particle Size Dependence on Propagation Rates of Thermite Reactions,” Weismiller, MR; Lee, JG; Yetter, RA, PROCEEDINGS OF THE COMBUSTION INSTITUTE, 33, submitted DECEMBER 2009.

    “Multiwavelength Spectroscopic Temperature Measurements of Thermite Reactions,” Weismiller, MR; Lee, JG; Yetter, RA, PROCEEDINGS OF THE COMBUSTION INSTITUTE, 33, submitted DECEMBER 2009.