new aspects for technical textiles: immobilization of

35
New aspects for technical textiles: Immobilization of organometallic catalysts on textile carriers for heterogeneous catalysis Deutsches Textilforschungszentrum Nord-West e.V. Institut an der Universität Duisburg-Essen Eckhard Schollmeyer, Thomas Mayer-Gall, Klaus Opwis Adlerstr. 1, D-47798 Krefeld, Germany 22nd IFATCC INTERNATIONAL CONGRESS Stresa, May 5-7, 2010

Upload: others

Post on 08-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

New aspects for technical textiles: Immobilization of organometallic catalysts

on textile carriers for heterogeneous catalysis

Deutsches Textilforschungszentrum Nord-West e.V.

Institut an der Universität Duisburg-Essen Eckhard Schollmeyer, Thomas Mayer-Gall, Klaus Opwis

Adlerstr. 1, D-47798 Krefeld, Germany

22nd IFATCC INTERNATIONAL CONGRESS

Stresa, May 5-7, 2010

Catalysts -  catalysts decrease the activation energy of chemical reactions -  therefore, they increase the reaction rate extremely -  they are used in most large-scale industrial processes (more than 80% of all chemical products are synthesized by catalytic reactions)

no consumption of the catalyst itself !!!

-  bio-catalysts (enzymes) -  organo-catalysts -  organometallic catalysts -  inorganic catalysts

Catalysts

Process Control

-  homogeneous -  heterogeneous (immobilized catalysts)

Homogeneous vs. heterogeneous process control

homogeneous: -  1 phase (mostly liquid) -  rapid formation of the educt-catalyst complex -  rapid product formation à rapid

heterogeneous: - 2 phase (mostly liquid/gaseous - solid) -  controlled by transport processes

à  mass transport: educt(s) à carrier à  pore diffusion: educt(s) à catalyst à  adsorption on the catalyst´s surface à  reaction à  desorption of product(s) à  pore diffusion: catalyst à product(s) à  mass transport: carrier à product(s)

à less rapid

Why Immobilization ?

Advantages of heterogeneous process control:

-  catalysts are reusable -  use in continuous processes possible (flow-through-reactor) -  products free from catalysts

Typical large-scale heterogeneous catalyzed reactions

3 H2 + N2 2 NH3 Haber-Bosch-ProcessT = 550°C, 250-350 bar

CH4 + H2O CO + 3 H2 T = 700-1000 °C, 100 bar Steam Reforming

nalkanes, alkenes, cycloalkanes ...

T = 300 °C, 3 bar

Catalytic Cracking

n CO + x H2

CnH2n+2 + x H2O T = 160-200 °C Fischer-Tropsch-Process

CH3OH T = 250-300 °C, 200 bar Methanol-Synthesis

Ni

Cu/Cr

Advantages/Properties

-  textile materials are inexpensive (cotton, polyamide, polyester) -  high chemical resistance -  active surface area can be easily adjusted/optimized by the fiber diameter -  excellent flow through -  flexible construction, easy to drape -  simple and rapid removal from the reactor without any residues

Why Textile Carrier Materials ?

BUT: Limitation to low-temperature processes (T < 100 °C)

3 H2 + N2 2 NH3 Haber-Bosch-ProcessT = 550°C, 250-350 bar

CH4 + H2O CO + 3 H2 T = 700-1000 °C, 100 bar Steam Reforming

nalkanes, alkenes, cycloalkanes ...

T = 300 °C, 3 bar

Catalytic Cracking

n CO + x H2

CnH2n+2 + x H2O T = 160-200 °C Fischer-Tropsch-Process

CH3OH T = 250-300 °C, 200 bar Methanol-Synthesis

Ni

Cu/Cr

Typical low-temperature catalysts -  bio-catalysts (enzymes)

à former investigations à see, e.g.:

NEW FIELD:

-  organometallic catalysts

K. Opwis, D. Knittel, E. Schollmeyer, Immobilization of Catalase on Textile Carrier Materials, AATCC Review 4 (2004) 11, 25-28.

K. Opwis, D. Knittel, E. Schollmeyer, Quantitative Analysis of Immobilized Metalloenzymes by Atomic Absorption Spectroscopy, Analytical and Bioanalytical Chemistry 380 (2004) 937-941.

K. Opwis, D. Knittel, T. Bahners, E. Schollmeyer, Photochemical Enzyme Immobilization on Textile Carrier Materials, Engineering in Life Sciences 5 (2005) 1, 63-67.

K. Opwis, D. Knittel, T. Bahners, E. Schollmeyer, Verfahren zur photochemischen Immobilisierung von Proteinen an polymeren Trägermaterialien, German Patent DE 10 2005 011 926 A1 2005.10.06.

K. Opwis, D. Knittel, T. Bahners, E. Schollmeyer, Thin film coating of textile materials. Part II: Enzyme immobilization on textile carrier materials, in: Contact Angle, Wettability and Adhesion, Vol. 4, K.L. Mittal (Ed.), 447-460, VSP, Leiden (2006), ISBN 9-6764-436-6.

K. Opwis, D. Knittel, E. Schollmeyer, Functionalization of Catalase for a Photochemical Immobilization on Poly(ethylene terephthalate), Biotechnology Journal 2 (2007) 347-352.

K. Opwis, D. Knittel, E. Schollmeyer, Immobilization of (Bio-) Catalysts on Textile Carrier Materials, 3rd International Textile, Clothing & Design Conference, Dubrovnik, October 2006.

K. Opwis, E. Schollmeyer, Technical Textiles with Catalytic Properties, Avantex, Frankfurt, June 2007.

K. Opwis, T. Mayer-Gall, E. Schollmeyer, Immobilization of Organometallic Catalysts on Textile Carrier Materials, Autex 2007, Tampere, Finnland, June2007.

K. Opwis, E. Schollmeyer, T. Mayer-Gall, G. Dyker, Textile Materialien mit daran fixierten metallorganischen Katalysatoren, German Patent DE 10 2007 006 874 A1 2008.08.14.

K. Opwis, T. Mayer-Gall, E. Schollmeyer, Immobilization of organometalllic catalysts on textile carrier materials, 2nd Aachen-Dresden International Textile Conference, Dresden, November 2008.

K. Opwis, T. Mayer-Gall, T. Textor, E. Schollmeyer, Immobilization of Organometallic Catalysts on Textile Carrier Materials, in: Polymer Surface Modification: Relevance to Adhesion, Vol. 5, K.L. Mittal (Ed.), 177-185, Brill, Leiden (2009).

-  organometallic compounds (direct Carbon-Metal-Bond) with catalytic properties -  metal centre is surrounded by so-called organic ligands

-  most important class of catalysts besides the classical heterogeneous, inorganic catalysts

Organometallic Catalysts OL OL

OL

OL

M OL OL

H2

Rh C2H6

2 Ru+

+

N3 + N NNCu

+ HSiR3SiR3Pt

OO

R

O O

R

Au

Olefin-Metathesis

Hydrogenation

"Click"-Reaction

Hydrosilylation

Cyclization

Typical industrial used organometallo-catalyzed reactions

mostly at low temperatures (< 100 °C) à textile materials are applicable as carriers!!!

X

X

X Y

+

+

+

X NH2

+

Heck-Reaction

Sonogashira-Coupling

C-C-Coupling

Y= SnR3 (Stille), B(OMe)2 (Suzuki), ZnR (Negishi), MgR (Kumada), Si(OR)3 (Hiyama)

Buchwald-Hartwig

CH3

+

Nu-CH3 Nu Tsuji-Trost

XCN- o. CO

CN CHO

X = Br, I, F, Cl, OTf, N2BF4, BF3K, OTs

NPh

PhPh

or

Typical industrial used organometallo- catalyzed reactions Palladium Catalysis

mostly at low temperatures (< 100 °C) à textile materials are applicable as carriers!!!

Advantages “heterogenization”

S

P P

1 g 740 €

O

P

P

O

O

1 g 800 €

O

PH

PH

Rh

O

O

+

BF4-

1 g 900 €

P

1 g 200 €

N

N

P

1 g 200 €

N N

RuClCl

Ph

P

1 g 400 €

-  highly specialized ligands, synthesized in multiple reaction steps -  therefore, high prices!!! - noble metals used à high prices!!! - discussion with chemical industry: keen demand on recycling/reuse strategies!!!

Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr Prof. Dr. Klaus-Richard Pörschke Dr. Huiling Cui

Deutsches Textilforschungszentrum Nord-West e.V., Krefeld Prof. Dr. E. Schollmeyer Dr. Klaus Opwis Dipl.-Chem. Thomas Mayer-Gall

German Project IGF No. 15691 N „Immobilization of organometallic

Catalysts on textile carrier materials“

Partners

Model Systems

-  organometallic porphyrin complexes à easy to synthesize à easy to modify (on demand) à rich variety of active species (e.g. Fe, Mn, Ru, Zn) à rich variety of catalyzed reactions

-  organometallic bispidine complexes

à project partner MPI

NM

R

RN

N

NR

R

Porphyrins/modified Porphyrins

NHH2N

NH2

N

N

HNNH2

NH2

NH

N

N

HN

Tetraaminophenylporphyrin Porphyrin

-  in nature porphyrins are widespread pigments -  substituted tetrapyrrol ring system -  organometallic porphyrin complexes with metal centre catalyze many chemical reactions (e.g. epoxidations, synthesis of cyclopropane, peptide syntheses)

NH

OO

O

O

NN

HN

O

OO

O

5,10,15,20-Tetrakis-p-allyloxy- carbonylphenylporphyrin

Synthesis of amino-modified Porphyrins

tetraamino- phenylporphyrin

benzaldehyde

O

NH

pyrrole

NHH2N

NH2

N

N

HNNH2

NH2

NH

N

N

HN

condensation oxidation

propionic acid

oxygen

tetraphenylporphyrin

NH

N

N

HN

tetraphenylporphyrin

nitration CF3COOH/NaNO2

reduction SnCl2/HCl

+

p-carboxy- benzaldehyde

NH

pyrrole

tetracarboxy- phenylporphyrin

esterification allyl alcohol

+

O

O OH

NHHOOC

COOH

N

N

HNCOOH

COOH

NH

OO

O

O N

N

HN O

O O

ONH

HOOC

COOH

N

N

HNCOOH

COOH

OH

tetracarboxy- phenylporphyrin

5,10,15,20-tetrakis- p-allyloxy-carbonyl-

phenylporphyrin

Synthesis of allyl-modified Porphyrins

condensation oxidation

propionic acid

oxygen

Complex Formation

active catalyst

NM

R

RN

N

NR

R

NH

R

RN

N

HNR

R

M(OAc)2 or MCl2

NaOAc/CHCl3/MeOH

free porphyrin

Metallocomplexes of Porphyrins

pure porphyrin

iron porphyrin

(Fe)

manganese porphyrin

(Mn)

zinc porphyrin

(Zn)

Immobilization Strategies (I)

Photochemical Route: -  use of UV-absorbing polymers (e.g. polyester) -  synthesis of adequate functionalized porphyrins for grafting reactions (e.g. allyl-modified) - UV-irradiation à generation of surface radicals (e.g. use of excimer-UV-lamps) -  covalent porphyrin attachment by photo-induced grafting Wet Chemical Route:

-  use of polymers with functional groups (e.g. polyamide: amino groups) -  synthesis of adequate functionalized porphyrins (e.g. amino-modified) -  use of bifunctional anchor molecules for covalent attachment (e.g. glutaraldehyde (GDA), cyanuric chloride, diisocyanates or thioisocyanates) Thermal Route: - independent from textile substrate (e.g. polyamide or polyester) - synthesis of adequate functionalized porphyrins (e.g. amino-modified or carboxy-modified) -  use of polymeric cross-linking agents -  thermal fixation

Immobilization Strategies (II)

Route I: Step 1: immobilization of the free porphyrin Step 2: subsequent complex formation

Advantage: individual choice of the active catalyst possible Disadvantage: cleaning of the carriers from excess metal necessary

Route II: Step 1: complex formation Step 2: subsequent immobilization of the active porphyrin

Advantage: optimized catalyst-ligand system for one reaction Disadvantage: limited application depending on the metal used

Photo-chemical immobilization of allyl-modified porphyrins (UV)

PET

Route I Step 1

Route I Step 2

Route II Step 2

Metal Salt NaOAc/CHCl3/MeOH

Immobilized Porphyrin Immobilized Metallo-Porphyrin

M

PET PET M

UV 222 nm UV

222 nm

Photo-chemical immobilization of allyl-modified porphyrins

Photographs

PET-Porphyrin-Mn

PET-Porphyrin-Fe

PET-Porphyrin

PET-Porphyrin

CO

OFe C

O

O

O Mn O

400 500 600 700 8000

20

40

60

80

100

% R

[nm]

1 mg 5 mg 10 mg 25 mg 50 mg 100 mg PET porphyrin in solution

Vis-Spectra of immobilized allyl-modified porphyrins Zn O

Vis-Spectra of immobilized allyl-modified porphyrins Zn O

Remmision and zinc content of the fabric

05

10152025

0 20 40 60 80 100

c (porphyrin)

mg/

g zi

nc

30405060708090

% R

RemmisionZinc

433 nm

400 500 600 700 8000

20

40

60

80

100

PET PET-free porphyrin PET-porphyrin-Mn PET-porphyrin-Zn PET-porphyrin-Fe

%R

[nm]

O

M O

M = Manganese Zinc Iron

Vis-Spectra of immobilized allyl-modified porphyrins

Wet chemical immobilization of amino-modified porphyrins (via GDA)

PA NH2

O H

O H

H O H

PA N

NH2

NH2 M

H H N PA N

H H N PA N M

Route I Step 1

Route I Step 2

Route II Step 2

Metal Salt NaOAc/CHCl3/MeOH

Immobilized Porphyrin Immobilized Metallo-Porphyrin

Wet chemical immobilization of amino-modified porphyrins

Photographs

PA Porphyrin-Mn

PA Porphyrin-Fe

PA Porphyrin

PA blank

NH2 NH2Fe NH2Mn

Thermal immobilization of modified porphyrins (cross-linker/heat)

Textile

Route I Step 1

Route I Step 2

Route II Step 2

Metal Salt NaOAc/CHCl3/MeOH

Immobilized Porphyrin Immobilized Metallo-Porphyrin

Heat X

Heat

X M

Textile Textile M

M

M

M

Thermal immobilization of modified porphyrins

Photographs

PET-Porphyrin

Porph

NH2

PET-Porphyrin

PA-Porphyrin-Co

PET-Porphyrin-Co

COOH NH2

COOHCo

Activity Test Reaction

Epoxidation of Styrene with immobilized M-Porphyrin

analyzed via GC-MS

0 5 10

styrene oxide

1,3-dichlorobenzene(internal standard)

styrene

acetonitrile

retention time [min]

O

Cat

NaIO4

Fe Mn

Homogeneous 66 % 50 %

Route I 54 % 52 %

Route II 65 % 52 %

Activity/Yield Test Reaction

Epoxidation of Styrene with immobilized M-Porphyrin

-  porphyrins and metallo-porphyrins can be fixed durably on various textile carrier materials - different immobilization strategies are suitable -  immobilized metallo-porphyrins show catalytic activity

Summary

-  other organometallic catalysts (co-operation with MPI für Kohlenforschung, Mülheim) -  organo-catalysts, special textile constructions à development of Technical Textiles with Catalytic Properties

Outlook

Acknowledgement

IGF No. 15691 N

Thank you for your attention!