neutrino physics - uvaneutrino oscillations in the sm neutrinos are massless and leptons do not mix....

123
Neutrino Physics Cyriana, Milad, Onno, Richard, Robert-Jan June 28, 2013 Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 1 / 101

Upload: others

Post on 07-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Neutrino Physics

Cyriana, Milad, Onno, Richard, Robert-Jan

June 28, 2013

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 1 / 101

Page 2: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Outline

1 Historical Background

2 Theoretical BackgroundNeutrino mixingMassive neutrinosWhy neutrinos are always said to be left handed

3 Discussion: theory

4 ExperimentsSolar and atmospheric neutrinosReactor experimentsAccelerator experiments

5 Outlook

6 References

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 2 / 101

Page 3: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

1 Historical Background

2 Theoretical BackgroundNeutrino mixingMassive neutrinosWhy neutrinos are always said to be left handed

3 Discussion: theory

4 ExperimentsSolar and atmospheric neutrinosReactor experimentsAccelerator experiments

5 Outlook

6 References

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 3 / 101

Page 4: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

History

1930 Wolfgang Pauli postulates νe

1934 Enrico Fermi developes β-decay theory: n→ p + e− + νe .

1956 Frederick Reines detects νe (Nobel prize in 1995)

1962 Detection νµ (Nobel prize in 1988)

1968 Ray Davis: solar neutrino problem1 (Nobel prize 2002)

1968 Bruno Pontecorvo suggests neutrino oscillations2

1978 Wolfenstein and Mikheyev & Smirnov describe oscillations inmatter (MSW matrix)

Past decades Experimental verification of neutrino oscillations

Ongoing Open questions about: Sterile neutrinos, Majorana or Dirac,mass hierarchy, CP(T) violation

1[Davis et al., 1968]2[Gribov and Pontecorvo, 1969]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 4 / 101

Page 5: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

History

1930 Wolfgang Pauli postulates νe

1934 Enrico Fermi developes β-decay theory: n→ p + e− + νe .

1956 Frederick Reines detects νe (Nobel prize in 1995)

1962 Detection νµ (Nobel prize in 1988)

1968 Ray Davis: solar neutrino problem1 (Nobel prize 2002)

1968 Bruno Pontecorvo suggests neutrino oscillations2

1978 Wolfenstein and Mikheyev & Smirnov describe oscillations inmatter (MSW matrix)

Past decades Experimental verification of neutrino oscillations

Ongoing Open questions about: Sterile neutrinos, Majorana or Dirac,mass hierarchy, CP(T) violation

1[Davis et al., 1968]2[Gribov and Pontecorvo, 1969]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 4 / 101

Page 6: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

History

1930 Wolfgang Pauli postulates νe

1934 Enrico Fermi developes β-decay theory: n→ p + e− + νe .

1956 Frederick Reines detects νe (Nobel prize in 1995)

1962 Detection νµ (Nobel prize in 1988)

1968 Ray Davis: solar neutrino problem1 (Nobel prize 2002)

1968 Bruno Pontecorvo suggests neutrino oscillations2

1978 Wolfenstein and Mikheyev & Smirnov describe oscillations inmatter (MSW matrix)

Past decades Experimental verification of neutrino oscillations

Ongoing Open questions about: Sterile neutrinos, Majorana or Dirac,mass hierarchy, CP(T) violation

1[Davis et al., 1968]2[Gribov and Pontecorvo, 1969]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 4 / 101

Page 7: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

History

1930 Wolfgang Pauli postulates νe

1934 Enrico Fermi developes β-decay theory: n→ p + e− + νe .

1956 Frederick Reines detects νe (Nobel prize in 1995)

1962 Detection νµ (Nobel prize in 1988)

1968 Ray Davis: solar neutrino problem1 (Nobel prize 2002)

1968 Bruno Pontecorvo suggests neutrino oscillations2

1978 Wolfenstein and Mikheyev & Smirnov describe oscillations inmatter (MSW matrix)

Past decades Experimental verification of neutrino oscillations

Ongoing Open questions about: Sterile neutrinos, Majorana or Dirac,mass hierarchy, CP(T) violation

1[Davis et al., 1968]2[Gribov and Pontecorvo, 1969]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 4 / 101

Page 8: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

History

1930 Wolfgang Pauli postulates νe

1934 Enrico Fermi developes β-decay theory: n→ p + e− + νe .

1956 Frederick Reines detects νe (Nobel prize in 1995)

1962 Detection νµ (Nobel prize in 1988)

1968 Ray Davis: solar neutrino problem1 (Nobel prize 2002)

1968 Bruno Pontecorvo suggests neutrino oscillations2

1978 Wolfenstein and Mikheyev & Smirnov describe oscillations inmatter (MSW matrix)

Past decades Experimental verification of neutrino oscillations

Ongoing Open questions about: Sterile neutrinos, Majorana or Dirac,mass hierarchy, CP(T) violation

1[Davis et al., 1968]2[Gribov and Pontecorvo, 1969]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 4 / 101

Page 9: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

History

1930 Wolfgang Pauli postulates νe

1934 Enrico Fermi developes β-decay theory: n→ p + e− + νe .

1956 Frederick Reines detects νe (Nobel prize in 1995)

1962 Detection νµ (Nobel prize in 1988)

1968 Ray Davis: solar neutrino problem1 (Nobel prize 2002)

1968 Bruno Pontecorvo suggests neutrino oscillations2

1978 Wolfenstein and Mikheyev & Smirnov describe oscillations inmatter (MSW matrix)

Past decades Experimental verification of neutrino oscillations

Ongoing Open questions about: Sterile neutrinos, Majorana or Dirac,mass hierarchy, CP(T) violation

1[Davis et al., 1968]2[Gribov and Pontecorvo, 1969]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 4 / 101

Page 10: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

History

1930 Wolfgang Pauli postulates νe

1934 Enrico Fermi developes β-decay theory: n→ p + e− + νe .

1956 Frederick Reines detects νe (Nobel prize in 1995)

1962 Detection νµ (Nobel prize in 1988)

1968 Ray Davis: solar neutrino problem1 (Nobel prize 2002)

1968 Bruno Pontecorvo suggests neutrino oscillations2

1978 Wolfenstein and Mikheyev & Smirnov describe oscillations inmatter (MSW matrix)

Past decades Experimental verification of neutrino oscillations

Ongoing Open questions about: Sterile neutrinos, Majorana or Dirac,mass hierarchy, CP(T) violation

1[Davis et al., 1968]2[Gribov and Pontecorvo, 1969]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 4 / 101

Page 11: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

History

1930 Wolfgang Pauli postulates νe

1934 Enrico Fermi developes β-decay theory: n→ p + e− + νe .

1956 Frederick Reines detects νe (Nobel prize in 1995)

1962 Detection νµ (Nobel prize in 1988)

1968 Ray Davis: solar neutrino problem1 (Nobel prize 2002)

1968 Bruno Pontecorvo suggests neutrino oscillations2

1978 Wolfenstein and Mikheyev & Smirnov describe oscillations inmatter (MSW matrix)

Past decades Experimental verification of neutrino oscillations

Ongoing Open questions about: Sterile neutrinos, Majorana or Dirac,mass hierarchy, CP(T) violation

1[Davis et al., 1968]2[Gribov and Pontecorvo, 1969]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 4 / 101

Page 12: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

History

1930 Wolfgang Pauli postulates νe

1934 Enrico Fermi developes β-decay theory: n→ p + e− + νe .

1956 Frederick Reines detects νe (Nobel prize in 1995)

1962 Detection νµ (Nobel prize in 1988)

1968 Ray Davis: solar neutrino problem1 (Nobel prize 2002)

1968 Bruno Pontecorvo suggests neutrino oscillations2

1978 Wolfenstein and Mikheyev & Smirnov describe oscillations inmatter (MSW matrix)

Past decades Experimental verification of neutrino oscillations

Ongoing Open questions about: Sterile neutrinos, Majorana or Dirac,mass hierarchy, CP(T) violation

1[Davis et al., 1968]2[Gribov and Pontecorvo, 1969]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 4 / 101

Page 13: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

1 Historical Background

2 Theoretical BackgroundNeutrino mixingMassive neutrinosWhy neutrinos are always said to be left handed

3 Discussion: theory

4 ExperimentsSolar and atmospheric neutrinosReactor experimentsAccelerator experiments

5 Outlook

6 References

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 5 / 101

Page 14: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Neutrino oscillations

In the SM neutrinos are massless and leptons do not mix.

Pontecorvo proposed that ν � ν transition may occur in analogy withK 0 � K 0 (1957). A quantitative theory of neutrino oscillations wasfirst developed by Maki, Nakagawa and Sakata (1962).

Predictions of the Standard Solar Model for the amount of νe weretested, of the expected flux of νe only 1/3 found by the Homestakeexperiment in 1970s (SNP).

Neutrino oscillations (να → νβ) were first measured bySuper-Kamiokande in 1998 and later by SNO in 2001.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 6 / 101

Page 15: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Neutrino flavors

3 neutrino flavors, νe , νµ and ντ are known, mixingof the 3 generations have been seen in manyexperiments.

Definition of flavor: να is the particle whichcouples to `α through weak interaction.

flavor eigenstates , but mixed states of masseigenstates (In SM flavor eigenstate = masseigenstate).

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 7 / 101

Page 16: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Mixing matrix

Massive neutrinos imply the existence of right-handed neutrinocomponents (minimally extended SM):

Yukawa couplings are not diagonal anymore, mixing occurs.

Introduce a unitary leptonic mixing matrix U like the CKM matrix forthe quarks.

This matrix relates the flavor eigenstates to the mass eigenstates:

|να〉 =∑

i

U∗αi |νi 〉 (α = e, µ, τ)

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 8 / 101

Page 17: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Parametrization of the mixing matrix

In general, a N × N unitary matrix has N2 real parameters:N(N+1)

2 phasesN(N−1)

2 angles

for 2N neutrino fields we can also eliminate 2N − 1 unphysical phases byredefining the fields (leaving the Lagrangian invariant).

For a 3 × 3 matrix this leads to 3 angles and 1 phase.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 9 / 101

Page 18: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

2-generation mixing

A 2 × 2 unitary matrix can be written as matrix which depends on 3phases ω1, ω2 and η and 1 angle θ

U =

(cos θeiω1 sin θe i(ω2+η)

− sin θe i(ω1−η) cos θe iω2

)∼(ω1 00 ω2

)(e iη 00 1

)(cos θ sin θ− sin θ cos θ

)(e−iη 0

0 1

)Four fields are present, flavor eigenstates νe , νµ and mass eigenstatesν1, ν2, so the 3 phases are not physical can be eliminated.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 10 / 101

Page 19: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

2-generation mixing

We are left with a rotation matrix to relate the flavor and mass eigenstates:(νe

νµ

)=

(cos θ sin θ− sin θ cos θ

)(ν1

ν2

)

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 11 / 101

Page 20: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

PMNS matrix

For 3 generations of leptons we have thePontecorvo-Maki-Nakagawa-Sakata matrix3

U =

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13eiδ c12s23 − c12c23s13e

iδ c23c13

with cab ≡ cos θab and sab ≡ sin θab

θab are mixing anglesδ is called CP-violating phase or Dirac phase.

3A derivation can be found in [Giunti and Kim, 2007a].Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 12 / 101

Page 21: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

PMNS matrix

If neutrinos are Majorana particles:

U = UDdiag(1, e iα1 , e iα2)

There are two extra phases, called Majorana phases, because Majoranamass terms ( 1

2nTL C †MnL) are not invariant under global U(1) gauge

transformations.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 13 / 101

Page 22: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Oscillation probability

Standard derivation of Pνα→νβ (t)

The mass eigenstates |νk〉 are eigenstates of H, with energyEk =

√p2 + m2

Schrodinger equation implies |νk (t)〉 = e−iEk t |νk〉|να〉 =

∑i U∗αi |νi 〉 and |νi 〉 =

∑α Uαi |να〉

So the amplitude Aνα→νβ (t) is:

Aνα→νβ (t) = 〈νβ|να(t)〉 =∑β

(∑k

U∗αke−iEk tUβk

)〈νβ|να〉

=∑

k

U∗αkUβke−iEk t

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 14 / 101

Page 23: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Oscillation probability

Probability of a transition να → νβ

Pνα→νβ (t) = |Aνα→νβ (t)|2 =∑k,j

U∗αkUβkUαjU∗βje−i(Ek−Ej )t

For ultrarelativistic neutrinos we have that Ek ' E +m2

k2E and that t ∼ L:

Pνα→νβ (t) = |Aνα→νβ (t)|2 =∑k,j

U∗αkUβkUαjU∗βj exp

(−i

∆m2kjL

2E

)

where ∆m2kj ≡ ∆m2

k −∆m2j

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 15 / 101

Page 24: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Oscillation probability for antineutrinos

We can write the oscillation probability also in the form

Pνα→νβ (t) = δαβ − 4∑k>j

Re[U∗αkUβkUαjU

∗βj

]sin2

(∆m2

kjL

4E

)

+ 2∑k>j

Im[U∗αkUβkUαjU

∗βj

]sin

(∆m2

kjL

2E

)

Assuming CPT invariance:For antineutrinos we have that Pνα→νβ (t) is the same up to a minus signin third term.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 16 / 101

Page 25: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Oscillations and CP-violation

A CP transformation interchanges neutrinos with negative helicity andantineutrinos with positive helicity, so να → νβ becomes να → νβ.

This CP transformation changes U � U∗.

We saw that this leads to a difference in sign of the terms dependingon the imaginary parts of U∗αkUβkUαjU

∗βj , leading to an asymmetry

ACPαβ (L,E ):

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 17 / 101

Page 26: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Oscillations and CP-violation

ACPαβ (L,E ) = 4

∑k>j

Im[U∗αkUβkUαjU

∗βj

]sin

(∆m2

kjL

2E

)

U∗αkUβkUαjU∗βj does not depend on the Majorana phases, so they do

not influence the oscillations;

it does only depend on δ, which is therefore also called theCP-violating phase.

If U is real neutrino oscillations do not violate CP symmetry.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 18 / 101

Page 27: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Oscillation probability

If neutrinos are massless, ∆m2kj = 0, hence there will be no oscillation.

The phase Φkj = −∆m2kj L

2E of the oscillation depends on experimentalvariables L and E and constants ∆m2

kj .

The amplitude U∗αkUβkUαjU∗βj depends on the elements of U.

Absolute values of the masses cannot be determined measuringoscillations, but the mass difference can be determined.

Pνα→νβ (t) =∑k,j

U∗αkUβkUαjU∗βj exp

(−i

∆m2kjL

2E

)

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 19 / 101

Page 28: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Mass Hierarchy

We can measure ∆m2kj , however not the absolute values of the

masses.

The mass hierarchy of neutrinos is unknown.

Depends on the sign of ∆m213 which has not yet been measured.

Three possible hierarchies: normal, inverted and degenerate:

m21 ' m2

2 < m23

m21 ' m2

2 > m23

m21 ' m2

2 ' m23 (excluded)

Degenerate hierarchy is excluded, since ∆m212 < ∆m2

23.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 20 / 101

Page 29: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Neutrino squared-mass spectrum

∆m212 ≡ ∆m2

� ' 8.0× 10−5 eV2, ∆m223 ≡ ∆m2

atm ' 2.4× 10−3 eV2

Figure : [Kayser, 2005]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 21 / 101

Page 30: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Normal and inverted hierarchy

Figure : citeGouvea2005

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 22 / 101

Page 31: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Neutrino mass

Experiments have shown that neutrinos oscillate and have mass.Some theoretical motivations for neutrino mass are:

No fundamental theoretical reason to not introduce a right-handedneutrino field. This can give a mass term through theHiggs-mechanism. This is called the minimally extended SM.

Unification of forces: a supersymmetrized version of the SM naturallypredicts massive neutrinos (unless lepton number symmetry isimposed).

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 23 / 101

Page 32: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

1 Historical Background

2 Theoretical BackgroundNeutrino mixingMassive neutrinosWhy neutrinos are always said to be left handed

3 Discussion: theory

4 ExperimentsSolar and atmospheric neutrinosReactor experimentsAccelerator experiments

5 Outlook

6 References

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 24 / 101

Page 33: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Higgs-lepton Lagrangian

Representation of Leptons in the SM [Giunti and Kim, 2007a]:

LL,α =

(να,LαL

)where α = e, µ, τ

`R,α = αR

LH,L = −∑α

Y `α

(LL,αφ`R,α + `R,αφ

†LL,α

)where φ =

1√2

(0

v + H(x)

)So no neutrino mass:

LH,L = −∑α

y `αv√2︸︷︷︸

`L,α`R,α −∑α

y `α√2`L,α`R,αH + h.c.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 25 / 101

Page 34: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Massive Dirac Neutrinos

Introduce να,R with α = e, µ, τ (minimally extended Standard Model) 4

Singlet under SU(3)c × SU(2)L and Y=0

Only interacts through gravity ⇒ sterile

This leads to an additional term in the Lagrangian:

LH,L = −(v + H√

2

) ∑α=e,µ,τ

y `α`L,α`R,α +∑

k=1,2,3

ynk νL,kνR,k + h.c

⇒ mk =

ynk v√

2

4In principle, there is no objection to only having 1 right-handed neutrino.Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 26 / 101

Page 35: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Neutrino flavor mixing

The above scenario allows for neutrino flavor mixing:

νL = UnL where νL =

νeL

νµL

ντL

and nL =

ν1L

ν2L

ν3L

However, it does not:

allow for mixing between neutrinos and sterile neutrinos (νR) →necessary?

explain the small mass of neutrinos (i.e. the small value of ynk )

Possible solution: See-saw mechanism

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 27 / 101

Page 36: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Majorana Neutrinos

Majorana condition for a fermion field ψ = ψL + ψR :

ψ = CψTor ψ = ψC

This is satisfied if one replaces ψR/L by ψCL/R (or CψL/R

T)5

The Majorana Lagrangian mass terms then becomes:

LLmass = −1

2mLν

cLνL + h.c

LRmass = −1

2mRν

cRνR + h.c

and the Dirac Lagrangian as defined above:

LDmass = −mDνRνL + h.c

5Require the field equations to be identicalCyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 28 / 101

Page 37: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Dirac-Majorana Lagrangian

The most general Dirac-Majorana Lagrangian for one generation:

LD+Mmass = LD

mass + LLmass + LR

mass

= −1

2mDνRνL −

1

2mLν

cLνL −

1

2mRν

cRνR + h.c

= −1

2

(νc

L νR

)(mL mD

mD mR

)︸ ︷︷ ︸

M

(νL

νcR

)︸ ︷︷ ︸

NL

+h.c.

In the SM:

mL 6= 0 not allowed, but can be generated by physics Beyond theStandard Model (BSM)

mR 6= 0 OK

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 29 / 101

Page 38: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Diagonalization of the mass matrix

We want to find the field of massive neutrinos, introduce unitary matrix U

UTM†MU =

(m1 00 m2

)2

NL = UnL where nL =

(ν1L

ν2L

)Moreover, this unitary matrix is given by,

U =

(cos θe iλ sin θ− sin θe iλ cos θ

)where θ is the mixing angle and λ a CP-violating phase.In general:

tan 2θ =2mD

mR −<[mL]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 30 / 101

Page 39: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Mass eigenstates

Introducing this unitary matrix:

LD+Mmass = −1

2

(νc

L νR

)(mL mD

mD mR

)︸ ︷︷ ︸

M

(νL

νcR

)︸ ︷︷ ︸

NL

+h.c.

= −1

2Nc

LMNL + h.c

= −1

2Nc

LUU†MUU†NL + h.c

= −1

2

∑k=1,2

mkνckLνkL + h.c.

With νk = νkL + νCkL

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 31 / 101

Page 40: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

See-Saw mechanism6

mD � mR and mL = 0 =⇒ M =

(0 mD

mD mR

)Eigenvalues are: m1 ≈

m2D

mR;

m2 ≈ mR

⇒ a very light neutrino and a massive sterile neutrino are createdMoreover, small mixing:

tan 2θ =2mD

mR −<[mL]⇒ θ � 1

6[Mulders, 2012, Giunti and Kim, 2007a]Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 32 / 101

Page 41: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

1 Historical Background

2 Theoretical BackgroundNeutrino mixingMassive neutrinosWhy neutrinos are always said to be left handed

3 Discussion: theory

4 ExperimentsSolar and atmospheric neutrinosReactor experimentsAccelerator experiments

5 Outlook

6 References

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 33 / 101

Page 42: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

The handedness of neutrinos: helicity

Helicity is defined as:

h =~S · ~ps |~p|

=

{+1, right-handed ν

−1, left-handed ν

Not Lorentz invariant!

Figure : Pion back to back scattering: π− has spin zero, µ− experimentally turnsout to always be right-handed (h = +1) [Griffiths, 2008].

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 34 / 101

Page 43: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Chirality: a different definition of handedness

Definition: eigenvalue of γ5

For Weyl spinors (eigenfunctions of γ5):

γ5ψR = +ψR

γ5ψL = −ψL

}⇒ neutrinos: again called right- and left-handed

γ5ψR = −ψR

γ5ψL = +ψL

}⇒ anti neutrinos: left- and right-handed respectively

Chirality is Lorentz invariant!

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 35 / 101

Page 44: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Relation between chirality and helicity for m = 0

Field equations:i /∂ψR/L = mψL/R

For massless fields one can show that:

hψR = +ψR

hψL = −ψL

}⇒ for m = 0 chirality ↔ helicity

As you would expect, for m = 0 helicity is also Lorentz invariant!

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 36 / 101

Page 45: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Only left-chiral neutrinos

W+

νmL

µ−

g

Let us only consider the µ neutrinos, we have in the simplest picture:

νmL = cos θνL + sin θνcR

Recall that NL = UnL!!

From this it is clear that in neutrino interaction we will only see left chiralmassive neutrinos (vice versa for anti-neutrinos).

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 37 / 101

Page 46: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

π− decay

Z

u

d

νmL

µ−

Since we have νL = U11ν1L + U12ν2L

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 38 / 101

Page 47: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

1 Historical Background

2 Theoretical BackgroundNeutrino mixingMassive neutrinosWhy neutrinos are always said to be left handed

3 Discussion: theory

4 ExperimentsSolar and atmospheric neutrinosReactor experimentsAccelerator experiments

5 Outlook

6 References

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 39 / 101

Page 48: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

1 Historical Background

2 Theoretical BackgroundNeutrino mixingMassive neutrinosWhy neutrinos are always said to be left handed

3 Discussion: theory

4 ExperimentsSolar and atmospheric neutrinosReactor experimentsAccelerator experiments

5 Outlook

6 References

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 40 / 101

Page 49: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Introduction to experiments

Essentially two kinds of oscillations experiments

Appearance measurements → measure transition probability

Disappearance measurements → measure survival probability

P ∼ sin2(

1.27∆m2[eV]2 L[km]E[GeV]

).

Not possible to measure flavor transitions if ∆m2LE � 1

An average of Pνα→νβ can be measured when ∆m2LE � 1

The sensivity to ∆m2 is the value ∆m2 for which ∆m2LE ∼ 1.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 41 / 101

Page 50: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Introduction to experiments

Types of experiments are

Solar and atmospheric neutrino experiments

Reactor experiments

Accelerator experiments

These last two can be divided into groups based on source-detectordistance L.

short baseline

long baseline

very long baseline

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 42 / 101

Page 51: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Introduction to experiments

Figure : [Giunti and Kim, 2007a]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 43 / 101

Page 52: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

1 Historical Background

2 Theoretical BackgroundNeutrino mixingMassive neutrinosWhy neutrinos are always said to be left handed

3 Discussion: theory

4 ExperimentsSolar and atmospheric neutrinosReactor experimentsAccelerator experiments

5 Outlook

6 References

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 44 / 101

Page 53: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Solar Neutrinos

Bothfrom [Giunti and Kim, 2007b]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 45 / 101

Page 54: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Solar neutrino spectrum

Figure : [Bahcall and Pinsonneault, 2004]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 46 / 101

Page 55: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Solar Neutrino reactions

Solar neutrinos are captured via the following reactions:

CC: νe + d → p + p + e−

NC: να + d → p + n + να

ES: να + e− → να + e− (σνe ≈ 6σνµ,τ )

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 47 / 101

Page 56: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Homestake

Homestake experiment used 37Cl solved in water for CC-reaction:

νe + 37Cl → 37Ar + e−

37Ar -decay is measured.

Threshold energy ≤ 0.814MeV , thus 8B neutrinos are observed.

Background: µ-decay from cosmic rays (0.08± 0.03 atoms/day)

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 48 / 101

Page 57: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Results

Figure : [Davis, 1994]

1SNU = 10−36ν captures per target atom per second

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 49 / 101

Page 58: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

sno

Figure : From [Boger et al., 2000]

Neutral current, Charged current and electron-scattering are measured

Isotropic γ’s from NC neutron reactions are detected.

Eγ well above background

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 50 / 101

Page 59: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

sno-results

Figure : From [Giunti and Kim, 2007b]

ΦCC = 1.86± 0.06 · 106cm−2s−1

ΦNC = 4.94± 0.21 · 106cm−2s−1

ΦES = 2.35± 0.22 · 106cm−2s−1

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 51 / 101

Page 60: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Implications

The solar mixing parameters are (best fit):

∆m2sol = 7.1+1.0

−0.3 · 10−5eV 2

θsol = 32.5+2.4−2.3

Figure : From [Ahmed et al., 2004]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 52 / 101

Page 61: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Matter oscillations

Our distance to the sun (L) varies:

Figure : http://en.wikipedia.org/wiki/File:Seasons1.svg

No seasonal effects to neutrino oscillations.

flavor oscillations in vacuum no solution.

Neutrino oscillations in matter.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 53 / 101

Page 62: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Oscillations in Matter

In matter, νe can interact with e− via CC.

All ν can interact via NC.

Extra potential energy terms in Hamiltonian:

HM = Hvac + VW

(1 00 0

)+ VZ

(1 00 1

)Where VW =

√2GFne due to CC and Vz = −

√2

2 GFnn due to NC.

⇒ Different mixing probabilities and time effects

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 54 / 101

Page 63: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

MSW-effect

∆m2 and θ replaced by effective ∆m2m and θm

7:

∆m2m ≡ ∆m2

√sin2 2θ + (cos 2θ − x)2

sin2 2θm ≡ sin2 2θ

sin2 2θ + (cos 2θ − x)2

x ≡ 2√

2GFneE

∆m2

⇒ Matter factor proportional to E and ne .

7For a detailed derivation, see [Giunti and Kim, 2007b] or [Kayser, 2005]Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 55 / 101

Page 64: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Large Mixing Angle MSW-effect

For 8Bνe in the centre of the sun, the VC term in the Hamiltoniandominates.

⇒ νe are born as eigenstates of this matrix with eigenvalue√

2GFne :

| νe〉 =

(10

)

Propagating to the edge of the sun, the neutrino remains eigenstateof total HM , and thus emerges as upper eigenstate | ν2〉 of Hvac fromthe sun.

From there, it propagates as a normal | ν2〉 from the sun withoutoscillating.

The probability that it interacts as νe on earth is thus proportional to|Ue2|2 = θsol

∼= 13 , and does not oscillate with L

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 56 / 101

Page 65: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Cosmic rays react in the atmosphere

Figure : [Giunti and Kim, 2007b]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 57 / 101

Page 66: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Main decays responsible for neutrinos:

π+ → µ+ + νµ or π− → µ− + νµ

µ+ → e+ + νe + νµ or µ− → e− + νe + νµ

Expected flux ratio:Φνµ + Φνµ

Φνe + Φνe

≈ 2

However, for Eµ ≥ 1GeV , a portion of µ± reaches the surface of the earthbefore escaping, thus:

Φνµ + Φνµ

Φνe + Φνe

≥ 2

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 58 / 101

Page 67: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Detection of Atmospheric Neutrinos

Main reactions:νl + N → l− + X

νl + N → l+ + X

Measuring the charge of the leptons is not yet possible. However, thetrajectories can be determined by Cherenkov-detectors.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 59 / 101

Page 68: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Super-Kamiokande

Figure : [Fukuda et al., 2003]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 60 / 101

Page 69: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Zenith-Angle

Figure : [Giunti and Kim, 2007b]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 61 / 101

Page 70: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Different zenith angle means different L traveled through atmosphere andearth.

Figure : Zenith angle-dependent flux distribution. Top: sub-GeV , bottom:multi-GeV , left: e-like, right: µ-like. From [Kie lczewska, 2000].

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 62 / 101

Page 71: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Zenith-angle distribution

Figure : [Wendell et al., 2010].

Best fit for θatm:

θatm = 0.820± 0.048

Best fit for ∆m2atm:

∆m2atm = 2.1 · 10−3eV 2

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 63 / 101

Page 72: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

1 Historical Background

2 Theoretical BackgroundNeutrino mixingMassive neutrinosWhy neutrinos are always said to be left handed

3 Discussion: theory

4 ExperimentsSolar and atmospheric neutrinosReactor experimentsAccelerator experiments

5 Outlook

6 References

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 64 / 101

Page 73: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

The reactor experiment

νe disappearance experiment

Detection via inverse neutron-decay: νe + p → n + e+

θ13 determined from observed-to-predicted ratio of events

Setup of the experiment:

Figure : The nearby detectors measure the total flux, whereas the far awaydetectors measure a different relative flux due to oscillations[Mezzetto and Schwetz, 2010].

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 65 / 101

Page 74: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Survival probability8

Pνe→νe = 1− c413 sin2 2θsol sin2

(1.27

∆m2solL

E

)−c2

12 sin2 2θ13 sin2

(1.27

∆m213L

E

)−s2

12 sin2 2θ13 sin2

(1.27

∆m2atmL

E

)≈ 1− sin2 2θ13 sin2

(1.27

∆m2atmL

E

)Here ∆m2

13 ≈ ∆m2atm ≡ ∆m2

23 = 2.4× 10−3 eV2. Since also c212 + s2

12 = 1the second and last line combine. Moreover, the first term can be droppedfor small distances (L < 5 km) [Beringer et al., 2012].

8[Guo et al., 2007, Abe et al., 2012b]Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 66 / 101

Page 75: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Daya-Bay results

Figure : Disappearance of νe at Daya Bay [Dwyer, 2013]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 67 / 101

Page 76: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

A simple calculation9 to determine θ13

Daya bay measured an anti-neutrino rate of:

obs

exp≈ 0.944

We have L = 1.648 km; Eνreactor ∼ 10−3 GeV; ∆m2atm ≈ 2.4× 10−3 eV2

Pνe→νe ≈ 1− sin2 2θ13 sin2

(1.27

∆m2atmL

E

)0.944 ≈ 1− sin2 2θ13

⇒ sin2 2θ13 ∼ 0.1

9After conducting a difficult experiment and doing statistical analysis.Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 68 / 101

Page 77: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Comparison of θ13 measurements

Figure : The dark region are reactor experiments, the light region acceleratorexperiments [Abe et al., 2012c]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 69 / 101

Page 78: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

The relevance of θ13

The non-zero value of θ13 has some important consequences:

There is a small part of νe in ν3

It allows for the possibility of CP violation in the lepton sector!(However, difficult to detect for smaller θ13)

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 70 / 101

Page 79: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

1 Historical Background

2 Theoretical BackgroundNeutrino mixingMassive neutrinosWhy neutrinos are always said to be left handed

3 Discussion: theory

4 ExperimentsSolar and atmospheric neutrinosReactor experimentsAccelerator experiments

5 Outlook

6 References

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 71 / 101

Page 80: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Accelerator experiments

Accelerator experiments create a beam of µ neutrinos.Advantages:

Accurate determination of neutrino flux

The parameters L and E can be set→ Higher oscillation probability

Detectors measure the oscillation P(νµ → νe,τ )

Accelerator experiments:

CNGS (2008-present)

MINOS (2005-2013)

T2K (2010-present)

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 72 / 101

Page 81: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Measuring mixing variables with accelerators

Accelerator experiments can set the value of L/E;

→ L/E approximation of the transition probability for small L/E:

P(νµ → ντ ) = cos2(θ13)sin2(2θ23)sin2(1.27∆m223

LE )

P(νµ → νe) = sin2(2θ13)sin2(θ23)sin2(1.27∆m223

LE )

→ L/E approximation of the transition probability for large L/E:

P(νµ → νe)= cos2(θ13)sin2(2θ12)sin2(1.27∆m212

LE ) + sin2(2θ13)

P(νµ → νe,τ ) is measured and the oscillation parameters are fitted ontothe results.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 73 / 101

Page 82: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

CNGS

Accelerator beam at CERN

SPS proton accelerator is used to collide protons

Collision products (kaons and pions) are directed with magneticlensing

Collision products decay into e.g. muon neutrinos

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 74 / 101

Page 83: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

CNGS detectors

During the propagation the νµ neutrinos oscillate and the appearance ofνe and ντ are measured.

CNGS uses 2 main detectors:

OPERA for the detection of ντντ + N → τ− + Xτ− decay processes are detectedP(νµ → ντ ) = cos2(θ13)sin2(2θ23)sin2(1.27∆m2

23LE )

ICARUS for the detection of νe40Ar + νe →40 K + e−

P(νµ → νe) = sin2(2θ13)sin2(θ23)sin2(1.27∆m223

LE )

[Kose, 2013]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 75 / 101

Page 84: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Mass determination

Since the conventional model of neutrino oscillations require neutrinos tohave mass, the mass of a neutrino will be determined with special relativity.

CNGS experiments measure the time difference between a photon and aneutrino.δt = γt will be measured with OPERA and ICARUSFrom gamma follows effective mass of the neutrino. [Adam et al., 2012]

meff ,α =∑

i

|Uαi |2mi

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 76 / 101

Page 85: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Time dilation

Figure : OPERA: δt = −1.1+7.2−4.8 ns

Figure : ICARUS δt = 0.1± 3.4 ns

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 77 / 101

Page 86: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

MINOS

Detector of the NuMI accelerator of Fermi labSpecial features:

Can compare long base line with short base line→ disappearance experiment for small L/EP(νµ → νµ)= 1− sin2(2θ23)sin2(1.27∆m2

23LE )

Detectors are magnetized so that νµ and νµ can be separatedνµ(νµ) + X → µ−(µ+) + X ′

[Adamson et al., 2011b, Adamson et al., 2013]

If neutrinos and antineutrinos have different parameters, then thisindicates that P(νµ → νµ) 6= P(νµ → νµ).This implies that CP is violated. → δCP 6= 0 [Abe et al., 2011]

Other possibility: CPT violation.→ Lorentz-violating neutrino oscillations [Greenberg, 2002]→ The conventional neutrino oscillation model is wrong

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 78 / 101

Page 87: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

MINOS

Detector of the NuMI accelerator of Fermi labSpecial features:

Can compare long base line with short base line→ disappearance experiment for small L/EP(νµ → νµ)= 1− sin2(2θ23)sin2(1.27∆m2

23LE )

Detectors are magnetized so that νµ and νµ can be separatedνµ(νµ) + X → µ−(µ+) + X ′

[Adamson et al., 2011b, Adamson et al., 2013]

If neutrinos and antineutrinos have different parameters, then thisindicates that P(νµ → νµ) 6= P(νµ → νµ).This implies that CP is violated. → δCP 6= 0 [Abe et al., 2011]

Other possibility: CPT violation.→ Lorentz-violating neutrino oscillations [Greenberg, 2002]→ The conventional neutrino oscillation model is wrong

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 78 / 101

Page 88: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

MINOS

Detector of the NuMI accelerator of Fermi labSpecial features:

Can compare long base line with short base line→ disappearance experiment for small L/EP(νµ → νµ)= 1− sin2(2θ23)sin2(1.27∆m2

23LE )

Detectors are magnetized so that νµ and νµ can be separatedνµ(νµ) + X → µ−(µ+) + X ′

[Adamson et al., 2011b, Adamson et al., 2013]

If neutrinos and antineutrinos have different parameters, then thisindicates that P(νµ → νµ) 6= P(νµ → νµ).This implies that CP is violated. → δCP 6= 0 [Abe et al., 2011]

Other possibility: CPT violation.→ Lorentz-violating neutrino oscillations [Greenberg, 2002]→ The conventional neutrino oscillation model is wrong

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 78 / 101

Page 89: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

MINOS neutrino vs anti- neutrino

neutrinos

Figure : |∆m223| = 2.39+0.09

−0.10 · 10−3 eV2;

sin2(2θ23) = 0.96+0.04−0.04

anti-neutrinos

Figure : |∆m223| = 2.48+0.22

−0.27 · 10−3 eV2;

sin2(2θ23) > 0.83

[Nichol, 2013]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 79 / 101

Page 90: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

MINOS: measuring θ13

MINOS measures θ13 by performing an appearance experiment for νµ → νe

P(νµ → νe) = sin2(2θ13)sin2(θ23)sin2(1.27∆m223

LE )

θ23 = π4 → sin2(θ23 = 0.5)

|∆m32|2 = 2.32 · 10−3eV 2

Figure : Best fit for the MINOS data: sin2(2θ13) = 0.041+0.047−0.031

[Adamson et al., 2011a].

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 80 / 101

Page 91: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

CP-violation in MINOS

The mixing parameters change whenCP-violation is added.

P(να → νβ) = δαβ

−4∑k>j

<[U∗αkUβkUαjU

∗βj

]sin2

(∆m2

kjL

4E

)

+2∑k>j

=[U∗αkUβkUαjU

∗βj

]sin

(∆m2

kjL

2E

)Figure : Allowed ranges for2sin2(2θ13)sin2(θ23)

[Adamson et al., 2011a]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 81 / 101

Page 92: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

T2K

T2K: Tokai to Kamioka

Appearance experiment νµ → νe

P(νµ → νe) = sin2(2θ13)sin2(θ23)sin2(1.27∆m223

LE )

→ sin2(2θ13) = 0.104+0.060−0.045 [Nakaya, 2013]

Disappearance expriments νµ → νµ

P(νµ → νµ)=1− sin2(2θ23)sin2(1.27∆m2

23LE )

∆m232 = 2.65± 0.12 · 10−3eV 2

sin2(2θ23) = 0.98± 0.05

Figure : Parameter plot of T2K.[Abe et al., 2012a]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 82 / 101

Page 93: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Overview of results: Mixing angles

Experiment sin2(θ12) sin2(2θ13) sin2(2θ23)

IceCube > 0.93

Super-Kamiokande 0.31± 0.01 0.104+0.060−0.045 0.98± 0.05

MINOS 0.041+0.047−0.031 > 0.83

Daya Bay 0.089± 0.015

Double CHOOZE 0.109± 0.055

RENO 0.113± 0.042

Current Value (best fit) 0.32 0.096 0.95

Current value (3σ) 0.27-0.37 0.066-0.127 0.92-1[Forero et al., 2012]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 83 / 101

Page 94: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Overview of results: Mass

Experiments ∆m221 |∆m2

32|MINOS 2.41+0.09

−0.10 · 10−3eV 2

IceCube 2.3+0.6−0.5 · 10−3eV 2

Super-Kamiokande 7.54± 0.26 · 10−5eV 2 2.65± 0.12 · 10−3eV 2

Current value (best fit) 7.62 · 10−5eV 2 2.55 · 10−3eV 2

Current value (3σ) 7.12− 8.20 · 10−5eV 2 2.31− 2.64 · 10−3eV 2

[Forero et al., 2012]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 84 / 101

Page 95: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

LSND experiment

A SBL accelerator experiment used to measure νµ → νe appearenceevents.Has produced interesting results [Collaboration, 1996]:

An excess of events in the lower energy spectrum.

Which corresponds to an allowed region ∆M2 of 0.2 - 2.0 eV2

And a possible region around ∆M2 = 7 eV2.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 85 / 101

Page 96: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

LSND Results

Figure : [Abazajian et al., 2012]

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 86 / 101

Page 97: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Implications of the LSND result

The amount of ∆m2 found in the LSND experiment cannot beexplained by the 3 known neutrino masses.

The Large Electron Positron collider has only found three neutrinoswith a mass smaller than one half of the mass of the Z boson

So extra neutrinos do not couple to the weak force.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 87 / 101

Page 98: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

MiniBooNE

The interesting results of the LSND has led the MiniBooNE collaborationto try to further investigate νµ → νe

MiniBooNE had an L/E to match LSND.

However E is an order of magnitude larger and thus the detector isfurther away as to produce independent results.

MiniBoone is also devised to investigate νµ → νe .

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 88 / 101

Page 99: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

MiniBooNE results

νµ → νe results [Collaboration, 2010]:

In the low energy spectrum excesses have been found that could be inaccordance with LSND.

In the higher spectrum no excesses have been detected.

νµ → νe results [Collaboration, 2008]

In the lower region unexplainable excesses have been found.

Higher energy again no excesses have been found.

The MiniBooNE results are however not conclusive.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 89 / 101

Page 100: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Sterile Neutrino

A neutrino that does not couple to known SM forces.How many are there?Popular scenario:

3 + 1 sterile neutrino

3 + 2 sterile neutrinos

Recent global data analysis [Schwetz, 2013] shows that 3+2:

has some favourable qualities concerning to LSND and MiniBooNEresults

(and 3+n in general) ultimately shows no major improvements over3+1

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 90 / 101

Page 101: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Adding sterile neutrinos to the framework

New mass eigenstates ν4,...,νn.The index i runs from 1 to n in the mixing matrix Uαi and thus becomes a3× (3 + n) matrix

The amount of sterile neutrinos has an effect on the amount ofparameters in Uαi .

Mixing angles θkl for k , l > 3 are not considered as they are notobservable.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 91 / 101

Page 102: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

1 Historical Background

2 Theoretical BackgroundNeutrino mixingMassive neutrinosWhy neutrinos are always said to be left handed

3 Discussion: theory

4 ExperimentsSolar and atmospheric neutrinosReactor experimentsAccelerator experiments

5 Outlook

6 References

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 92 / 101

Page 103: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Outlook

Future experiments will tell us:

Mass hierarchy and the absolute mass scale.

Majorana or Dirac particle?

CP-violation through neutrino oscillations?

Are there sterile neutrinos?

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 93 / 101

Page 104: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Future experiments

KATRIN (Karlsruhe tritium neutrino experiment)

will determine the absolute mass scale of neutrinos, by measuring thekinetic energy of electrons from tritium beta decay.

A mass of 0.35 eV can be measured with 5σ significance

NOνA (NuMI off-axis νe appearance)

Neutrinos from NuMI will pass 810 km through the Earth to alaboratory in Ash River, Minnesota

Measures the oscillations νµ → νe and νµ → νe

will determine the mass hierarchy and the CP-violating phase δ andmeasure θ13 more accurately (an order of magnitude better).

Both start in 2014.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 94 / 101

Page 105: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Future experiments

Searches for neutrinoless double-beta decay, which can only happen ifν = ν, thus showing that the neutrino is a Majorana:The Majorana project [et al., a]

Uses germanium crystals enriched in Ge-76, most favourable isotopefor 0νββ, the lifetime of Ge-76 is greater than 2× 1025 years.

SuperNEMO (Neutrino Ettore Majorana Observatory)

Uses different isotopes, same technique

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 95 / 101

Page 106: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Future experiments

MINOS+ [et al., b]

MINOS upgrade, started ∼2 months ago

Will measure ∆m223, θ23, ∆m2

23 and θ23 more accurately

Will search for sterile neutrinos in the 3 + 1 model

LSND reloaded [Sanjib K. Agarwalla, ]

Repeat LSND with Super-Kamiokande detector

Will be able to test the LSND and MiniBooNE claims with 5σsignificance.

Still a proposal

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 96 / 101

Page 107: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

The future

There are many more experiments proposed /planned.

In the next decade the mass hierarchy and absolute mass scale of theneutrinos will be found

Moreover, maybe we will discover CP-violation in the lepton sectorand the first Majorana particle

And more lies ahead in coming decade

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 97 / 101

Page 108: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Thank You!

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 98 / 101

Page 109: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

1 Historical Background

2 Theoretical BackgroundNeutrino mixingMassive neutrinosWhy neutrinos are always said to be left handed

3 Discussion: theory

4 ExperimentsSolar and atmospheric neutrinosReactor experimentsAccelerator experiments

5 Outlook

6 References

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 99 / 101

Page 110: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Abazajian, K. N., Acero, M. A., Agarwalla, S. K., Aguilar-Arevalo,A. A., Albright, C. H., Antusch, S., Arguelles, C. A., Balantekin,A. B., Barenboim, G., Barger, V., Bernardini, P., Bezrukov, F.,Bjaelde, O. E., Bogacz, S. A., Bowden, N. S., Boyarsky, A., Bravar,A., Berguno, D. B., Brice, S. J., Bross, A. D., Caccianiga, B.,Cavanna, F., Chun, E. J., Cleveland, B. T., Collin, A. P., Coloma, P.,Conrad, J. M., Cribier, M., Cucoanes, A. S., D’Olivo, J. C., Das, S.,de Gouvea, A., Derbin, A. V., Dharmapalan, R., Diaz, J. S., Ding,X. J., Djurcic, Z., Donini, A., Duchesneau, D., Ejiri, H., Elliott, S. R.,Ernst, D. J., Esmaili, A., Evans, J. J., Fernandez-Martinez, E.,Figueroa-Feliciano, E., Fleming, B. T., Formaggio, J. A., Franco, D.,Gaffiot, J., Gandhi, R., Gao, Y., Garvey, G. T., Gavrin, V. N., Ghoshal,P., Gibin, D., Giunti, C., Gninenko, S. N., Gorbachev, V. V.,Gorbunov, D. S., Guenette, R., Guglielmi, A., Halzen, F., Hamann, J.,Hannestad, S., Haxton, W., Heeger, K. M., Henning, R., Hernandez,P., Huber, P., Huelsnitz, W., Ianni, A., Ibragimova, T. V., Karadzhov,Y., Karagiorgi, G., Keefer, G., Kim, Y. D., Kopp, J., Kornoukhov,V. N., Kusenko, A., Kyberd, P., Langacker, P., Lasserre, T., Laveder,

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 99 / 101

Page 111: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

M., Letourneau, A., Lhuillier, D., Li, Y. F., Lindner, M., Link, J. M.,Littlejohn, B. L., Lombardi, P., Long, K., Lopez-Pavon, J., Louis,W. C., Ludhova, L., Lykken, J. D., Machado, P. A. N., Maltoni, M.,Mann, W. A., Marfatia, D., Mariani, C., Matveev, V. A., Mavromatos,N. E., Melchiorri, A., Meloni, D., Mena, O., Mention, G., Merle, A.,Meroni, E., Mezzetto, M., Mills, G. B., Minic, D., Miramonti, L.,Mohapatra, D., Mohapatra, R. N., Montanari, C., Mori, Y., Mueller,T. A., Mumm, H. P., Muratova, V., Nelson, A. E., Nico, J. S., Noah,E., Nowak, J., Smirnov, O. Y., Obolensky, M., Pakvasa, S., Palamara,O., Pallavicini, M., Pascoli, S., Patrizii, L., Pavlovic, Z., Peres, O.L. G., Pessard, H., Pietropaolo, F., Pitt, M. L., Popovic, M., Pradler,J., Ranucci, G., Ray, H., Razzaque, S., Rebel, B., Robertson, R. G. H.,Rodejohann, W., Rountree, S. D., Rubbia, C., Ruchayskiy, O., Sala,P. R., Scholberg, K., Schwetz, T., Shaevitz, M. H., Shaposhnikov, M.,Shrock, R., Simone, S., Skorokhvatov, M., Sorel, M., Sousa, A.,Spergel, D. N., Spitz, J., Stanco, L., Stancu, I., Suzuki, A., Takeuchi,T., Tamborra, I., Tang, J., Testera, G., Tian, X. C., Tonazzo, A.,Tunnell, C. D., de Water, R. G. V., Verde, L., Veretenkin, E. P.,Vignoli, C., Vivier, M., Vogelaar, R. B., Wascko, M. O., Wilkerson,

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 99 / 101

Page 112: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

J. F., Winter, W., Wong, Y. Y. Y., Yanagida, T. T., Yasuda, O., Yeh,M., Yermia, F., Yokley, Z. W., Zeller, G. P., Zhan, L., and Zhang, H.(2012).Light sterile neutrinos: A white paper.

Abe, K. et al. (2011).Search for Differences in Oscillation Parameters for AtmosphericNeutrinos and Antineutrinos at Super-Kamiokande.Phys.Rev.Lett., 107:241801.

Abe, K. et al. (2012a).First Muon-Neutrino Disappearance Study with an Off-Axis Beam.Phys.Rev., D85:031103.

Abe, Y. et al. (2012b).Indication for the disappearance of reactor electron antineutrinos inthe Double Chooz experiment.Phys.Rev.Lett., 108:131801.

Abe, Y. et al. (2012c).

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 99 / 101

Page 113: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Reactor electron antineutrino disappearance in the Double Choozexperiment.Phys.Rev., D86:052008.

Adam, T. et al. (2012).Measurement of the neutrino velocity with the OPERA detector in theCNGS beam.JHEP, 1210:093.

Adamson, P. et al. (2011a).Improved search for muon-neutrino to electron-neutrino oscillations inMINOS.Phys.Rev.Lett., 107:181802.

Adamson, P. et al. (2011b).Measurement of the neutrino mass splitting and flavor mixing byMINOS.Phys.Rev.Lett., 106:181801.

Adamson, P. et al. (2013).

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 99 / 101

Page 114: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Measurement of Neutrino and Antineutrino Oscillations Using Beamand Atmospheric Data in MINOS.

Ahmed et al. (2004).Measurement of the total active 8B solar neutrino flux at the sudburyneutrino observatory with enhanced neutral current sensitivity.Phys. Rev. Lett., 92:181301.

Bahcall, J. N. and Pinsonneault, M. H. (2004).What do we (not) know theoretically about solar neutrino fluxes?Phys. Rev. Lett., 92:121301.

Beringer, J., Arguin, J. F., Barnett, R. M., Copic, K., Dahl, O.,Groom, D. E., Lin, C. J., Lys, J., Murayama, H., Wohl, C. G., Yao,W. M., Zyla, P. A., Amsler, C., Antonelli, M., Asner, D. M., Baer, H.,Band, H. R., Basaglia, T., Bauer, C. W., Beatty, J. J., Belousov, V. I.,Bergren, E., Bernardi, G., Bertl, W., Bethke, S., Bichsel, H., Biebel,O., Blucher, E., Blusk, S., Brooijmans, G., Buchmueller, O., Cahn,R. N., Carena, M., Ceccucci, A., Chakraborty, D., Chen, M. C.,Chivukula, R. S., Cowan, G., D’Ambrosio, G., Damour, T., de Florian,D., de Gouvea, A., DeGrand, T., de Jong, P., Dissertori, G., Dobrescu,

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 99 / 101

Page 115: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

B., Doser, M., Drees, M., Edwards, D. A., Eidelman, S., Erler, J.,Ezhela, V. V., Fetscher, W., Fields, B. D., Foster, B., Gaisser, T. K.,Garren, L., Gerber, H. J., Gerbier, G., Gherghetta, T., Golwala, S.,Goodman, M., Grab, C., Gritsan, A. V., Grivaz, J. F., Grunewald, M.,Gurtu, A., Gutsche, T., Haber, H. E., Hagiwara, K., Hagmann, C.,Hanhart, C., Hashimoto, S., Hayes, K. G., Heffner, M., Heltsley, B.,Hernandez-Rey, J. J., Hikasa, K., Hocker, A., Holder, J., Holtkamp,A., Huston, J., Jackson, J. D., Johnson, K. F., Junk, T., Karlen, D.,Kirkby, D., Klein, S. R., Klempt, E., Kowalewski, R. V., Krauss, F.,Kreps, M., Krusche, B., Kuyanov, Y. V., Kwon, Y., Lahav, O., Laiho,J., Langacker, P., Liddle, A., Ligeti, Z., Liss, T. M., Littenberg, L.,Lugovsky, K. S., Lugovsky, S. B., Mannel, T., Manohar, A. V.,Marciano, W. J., Martin, A. D., Masoni, A., Matthews, J., Milstead,D., Miquel, R., Monig, K., Moortgat, F., Nakamura, K., Narain, M.,Nason, P., Navas, S., Neubert, M., Nevski, P., Nir, Y., Olive, K. A.,Pape, L., Parsons, J., Patrignani, C., Peacock, J. A., Petcov, S. T.,Piepke, A., Pomarol, A., Punzi, G., Quadt, A., Raby, S., Raffelt, G.,Ratcliff, B. N., Richardson, P., Roesler, S., Rolli, S., Romaniouk, A.,Rosenberg, L. J., Rosner, J. L., Sachrajda, C. T., Sakai, Y., Salam,

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 99 / 101

Page 116: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

G. P., Sarkar, S., Sauli, F., Schneider, O., Scholberg, K., Scott, D.,Seligman, W. G., Shaevitz, M. H., Sharpe, S. R., Silari, M., Sjostrand,T., Skands, P., Smith, J. G., Smoot, G. F., Spanier, S., Spieler, H.,Stahl, A., Stanev, T., Stone, S. L., Sumiyoshi, T., Syphers, M. J.,Takahashi, F., Tanabashi, M., Terning, J., Titov, M., Tkachenko,N. P., Tornqvist, N. A., Tovey, D., Valencia, G., van Bibber, K.,Venanzoni, G., Vincter, M. G., Vogel, P., Vogt, A., Walkowiak, W.,Walter, C. W., Ward, D. R., Watari, T., Weiglein, G., Weinberg, E. J.,Wiencke, L. R., Wolfenstein, L., Womersley, J., Woody, C. L.,Workman, R. L., Yamamoto, A., Zeller, G. P., Zenin, O. V., Zhang,J., Zhu, R. Y., Harper, G., Lugovsky, V. S., and Schaffner, P. (2012).Review of particle physics.Phys. Rev. D, 86:010001.

Boger, J. et al. (2000).The Sudbury neutrino observatory.Nucl.Instrum.Meth., A449:172–207.

Collaboration, L. (1996).The liquid scintillator neutrino detector and lampf neutrino source.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 99 / 101

Page 117: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Collaboration, M. (2008).Unexplained excess of electron-like events from a 1-gev neutrino beam.

Collaboration, M. (2010).Event excess in the miniboone search for¯→ e oscillations.

Davis, Raymond, J., Harmer, D. S., and Hoffman, K. C. (1968).Search for neutrinos from the sun.Phys.Rev.Lett., 20:1205–1209.

Davis, R. (1994).A review of the homestake solar neutrino experiment.Progress in Particle and Nuclear Physics, 32(0):13 – 32.

Dwyer, D. A. (2013).The Improved Measurement of Electron-antineutrino Disappearance atDaya Bay.Nucl.Phys.Proc.Suppl., 235-236:30–32.

et al., D. G. P. I.

et al., G. T.Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 99 / 101

Page 118: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Forero, D., Tortola, M., and Valle, J. (2012).Global status of neutrino oscillation parameters after Neutrino-2012.Phys.Rev., D86:073012.

Fukuda, S. et al. (2003).The super-kamiokande detector.Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,501(23):418 – 462.

Giunti, C. and Kim, C. (2007a).Fundamentals of Neutrino Physics and Astrophysics.OUP Oxford.

Giunti, C. and Kim, C. W. (2007b).Fundamentals of neutrino physics and astrophysics.OUP Oxford.

Greenberg, O. (2002).CPT violation implies violation of Lorentz invariance.Phys.Rev.Lett., 89:231602.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 99 / 101

Page 119: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Gribov, V. and Pontecorvo, B. (1969).Neutrino astronomy and lepton charge.Phys.Lett., B28:493.

Griffiths, D. (2008).Introduction to Elementary Particles.Physics Textbook. Wiley.

Guo, X. et al. (2007).A Precision measurement of the neutrino mixing angle θ13 usingreactor antineutrinos at Daya-Bay.

Kayser, B. (2005).Neutrino Physics.

Kie lczewska, D. (2000).Neutrino oscillations at Super-Kamiokande.Nuclear Physics Bulletin, proc. suppl., 81:133–142.

Kose, U. (2013).Study of Neutrino Oscillations in the OPERA Experiment.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 99 / 101

Page 120: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Mezzetto, M. and Schwetz, T. (2010).θ13: Phenomenology, present status and prospect.J.Phys., G37:103001.

Mulders, P. (2012).Quantum Field Theory.Lecture Notes (VU).

Nakaya, T. (2013).New results from {T2K}.Nuclear Physics B - Proceedings Supplements, 235236(0):97 – 104.¡ce:title¿The {XXV} International Conference on Neutrino Physicsand Astrophysics¡/ce:title¿.

Nichol, R. (2013).New results from {MINOS}.Nuclear Physics B - Proceedings Supplements, 235236(0):105 – 111.¡ce:title¿The {XXV} International Conference on Neutrino Physicsand Astrophysics¡/ce:title¿.

Sanjib K. Agarwalla, P. H.Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 99 / 101

Page 121: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Schwetz, T. (2013).Status of sterile neutrino oscillations.

Wendell, R. et al. (2010).Atmospheric neutrino oscillation analysis with sub-leading effects inSuper-Kamiokande I, II, and III.Phys.Rev., D81:092004.

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 100 / 101

Page 122: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Neutrinoless 2β − decay

If observed:

Would be a proof that neutrinos are majorana particles

Lepton number violation

W−

ν

W−

n

n

p

e−

e−

p

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 100 / 101

Page 123: Neutrino Physics - UvANeutrino oscillations In the SM neutrinos are massless and leptons do not mix. Pontecorvo proposed that ˝ transition may occur in analogy with K 0˝ K (1957)

Three-neutrino bilarge mixing

In this case the mixing matrix is real, and as a consequence there is no CPor T violation. It occurs when θ13 = 0 .

UD =

c12 s12 0−s12c23 c12c23 s23

s12s23 −c12c23 c23

Cyriana, Milad, Onno, Richard, Robert-Jan Neutrino Physics June 28, 2013 101 / 101