neutrino physics hitoshi murayama (berkeley+ipmu) nnn 2007, hamamatsu oct 3, 2007

44
Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Upload: edmund-hubbard

Post on 29-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Neutrino Physics

Hitoshi Murayama (Berkeley+IPMU)

NNN 2007, Hamamatsu

Oct 3, 2007

Page 2: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 2

Outline

• Past: Why Neutrinos?

• Present: Era of Revolution

• Near Future: Bright Prospect

• Big Questions: Need Synergies

• Astrophysical Probe

• Conclusion

Page 3: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Past

Why Neutrinos?

Page 4: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 4

Probe to High Energies

• Effects of physics beyond the SM as effective operators

• Can be classified systematically (Weinberg)

Page 5: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 5

Unique Role of Neutrino Mass

• Lowest order effect of physics at short distances

• Tiny effect (m/E)2~(0.1eV/GeV)2=10–20!

• Inteferometry (i.e., Michaelson-Morley)– Need coherent source

– Need interference (i.e., large mixing angles)

– Need long baseline

Nature was kind to provide all of them!

• “neutrino interferometry” (a.k.a. neutrino oscillation) a unique tool to study physics at very high scales

• Not entirely surprising (in retrospect) that neutrino mass was the first evidence for physics beyond standard model

Page 6: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 6

Ubiquitous Neutrinos

They must have played some important role in the universe!

Page 7: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 7

Astrophysical Probe

• Neutrinos unhindered by the entire star, dusts, CMB, galactic & intergalactic B, even last rescattering surface

• Possible probe into– Core of stars (Sun, supernovae, GRB)– Near blackholes (AGN)– Dark Matter (Sun, galactic center, subhalo)– Cosmology?

Page 8: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Present

Era of Revolution

Page 9: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 9

The Data

Evidence for oscillation:• “Indisputable”

– Atmospheric– Solar– Reactor

• “strong”– Accelerator (K2K)

And we shouldn’t forget:• “unconfirmed”

– Accelerator (LSND)

excluded?

Page 10: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 10

SuperKamiokande Atmospheric disappear

Downwards ’s don’t disappear

1/2 of upwards ’s do disappear

2/dof=839.7/755 (18%)

m2=2.510-3 eV2

sin22=1

Page 11: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 11

SNOSolar transform in flavor

2/3 of e’s

Page 12: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 12

KamLANDReactor neutrinos do oscillate!

Proper time L0=180 km

TAUP 2007, preliminary

Page 13: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 13

What we learned

• Lepton Flavor is not conserved• Neutrinos have tiny mass, not very hierarchical• Neutrinos mix a lot

the first evidence for

demise of the Minimal Standard Model

Very different from quarks

Page 14: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 14

The Big Questions

• What is the origin of neutrino mass?• Did neutrinos play a role in our existence?• Did neutrinos play a role in forming galaxies?• Did neutrinos play a role in birth of the universe?• Are neutrinos telling us something about

unification of matter and/or forces?• Will neutrinos give us more surprises?

Big questions tough questions to answer

Page 15: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 15

Immediate Questions

• Dirac or Majorana? • Absolute mass scale?

• How small is 13?

• CP Violation?• Mass hierarchy?

• Is 23 maximal?

Page 16: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Future

Bright Prospect

Page 17: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 17

Immediate Questions

• Dirac or Majorana? • Absolute mass scale?

• How small is 13?

• CP Violation?• Mass hierarchy?

• Is 23 maximal?

Page 18: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 18

Extended Standard Model

• Massive Neutrinos Minimal SM incomplete• How exactly do we extend it?• Abandon either

– Minimality: introduce new unobserved light degrees of freedom (right-handed neutrinos)

– Lepton number: abandon distinction between neutrinos and anti-neutrinos and hence matter and anti-matter

• Dirac or Majorana neutrino• Without knowing which, we don’t know how to

extend the Standard Model• KATRIN, 0, Large Scale Structure

Page 19: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 19

Immediate Questions

• Dirac or Majorana? • Absolute mass scale?

• How small is 13?

• CP Violation?• Mass hierarchy?

• Is 23 maximal?

Page 20: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 20

T2K (Tokai to Kamioka)

Page 21: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 21

Immediate Questions

• Dirac or Majorana? • Absolute mass scale?

• How small is 13?

• CP Violation?• Mass hierarchy?

• Is 23 maximal?

• LSND? Sterile neutrino(s)? CPT violation?

Page 22: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 22

LMA confirmed by KamLAND

• Dream case for neutrino oscillation physics!

• m2solar within reach of long-baseline expts

• Even CP violation may be probable

• Possible only if:– m12

2, s12 large enough (LMA)

– 13 large enough€

P(ν μ → ν e ) − P(ν μ → ν e ) = −16s12c12s13c132 s23c23

sinδ sinΔm12

2

4EL

⎝ ⎜

⎠ ⎟sin

Δm132

4EL

⎝ ⎜

⎠ ⎟sin

Δm232

4EL

⎝ ⎜

⎠ ⎟

Page 23: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 23

13 decides the future

• The value of 13 crucial for the future of neutrino oscillation physics

• Determines the required facility/parameters/baseline/energy– sin2213>0.01 conventional neutrino beam– sin2213<0.01 storage ring, beam

• Two paths to determine 13

– Long-baseline accelerator: T2K, NOA– Reactor neutrino experiment: 2CHOOZ, Daya Bay

Page 24: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 24

NOAFermilab to Minnesota

32-planeblock

Admirer

25ktMINOSNOA

L=810km

Page 25: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 25

Daya BayNPP

Ling AoNPP

Ling Ao-ll NPP(under const.)

Empty detectors: moved to underground halls through access tunnel.Filled detectors: swapped between underground halls via horizontal tunnels.

Total tunnel length: ~2700 m

230 m290 m 7

30

m

570 m

910 m

Daya Bay Near360 m from Daya BayOverburden: 97 m

Ling Ao Near500 m from Ling AoOverburden: 98 m

Far site1600 m from Ling Ao2000 m from DayaOverburden: 350 m

Mid site~1000 m from DayaOverburden: 208 m

Entrance portal

Daya Bay

Page 26: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 26

3 sensitivity on sin2 213

Page 27: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 27

T2K vs NOA

• LBL e appearance

• Combination of– sin2213

– Matter effect

– CP phase 95%CL resolutionof mass hierarchy

Page 28: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 28

Accelerator vs Reactor

90% CL

Reactor w 100t (3 yrs) + Nova Nova only (3yr + 3yr) Reactor w 10t (3yrs) + Nova

90% CL

McConnel & Shaevitz, hep-ex/0409028

90% CL

Reactor w 100t (3 yrs) +T2K T2K (5yr,-only) Reactor w 10t (3 yrs)+T2K Reactor experiments can help

in Resolving the 23 degeneracy

(Example: sin2223 = 0.95 ± 0.01)

Page 29: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 29

My prejudice

• Let’s not write a complicated theory

• The only natural measure for mixing angles is the group-theoretical invariant Haar measure

• Kolmogorov–Smirnov test: 64%

• sin2 213>0.04 (2)

• sin2 213>0.01 (99%CL)

231213

Page 30: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 30

T2KKCP-violation may be observed

in neutrino oscillation!

Page 31: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Big Questions

Need Synergies

Page 32: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 32

Immediate Questions

• Dirac or Majorana? • Absolute mass scale?

• How small is 13?

• CP Violation?• Mass hierarchy?

• Is 23 maximal?

Page 33: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 33

What about the Big Questions?

• What is the origin of neutrino mass?• Did neutrinos play a role in our existence?• Did neutrinos play a role in forming galaxies?• Did neutrinos play a role in birth of the universe?• Are neutrinos telling us something about

unification of matter and/or forces?• Will neutrinos give us more surprises?

Big questions tough questions to answer

Page 34: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 34

Seesaw Mechanism

• Why is neutrino mass so small?

• Need right-handed neutrinos to generate neutrino mass

νL νR( )mD

mD

⎝ ⎜

⎠ ⎟ νLνR

⎝ ⎜

⎠ ⎟ νL νR( )

mD

mD M

⎝ ⎜

⎠ ⎟ νLνR

⎝ ⎜

⎠ ⎟ mν =

mD2

M<<mD

To obtain m3~(m2atm)1/2, mD~mt, M3~1014–1015 GeV

, but R SM neutral

Page 35: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

35

Leptogenesis

• You generate Lepton Asymmetry first. (Fukugita, Yanagida)

• Generate L from the direct CP violation in right-handed neutrino decay

• L gets converted to B via EW anomaly More matter than anti-matter We have survived “The Great Annihilation”

• Despite detailed information on neutrino masses, it still works (e.g., Bari, Buchmüller, Plümacher)

Γ(N1→ νiH)−Γ(N1 → νiH)∝ Im(h1jh1khlk*hlj

*)

Page 36: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 36

QuickTime™ and aCinepak decompressor

are needed to see this picture.

QuickTime™ and aCinepak decompressor

are needed to see this picture.

Origin of Universe

• Maybe an even bigger role• Microscopically small Universe at

Big Bang got stretched by an exponential expansion (inflation)

• Need a spinless field that – slowly rolls down the potential– oscillates around it minimum– decays to produce a thermal bath

• The superpartner of right-handed neutrino fits the bill

• When it decays, it produces the lepton asymmetry at the same time (HM, Suzuki, Yanagida, Yokoyama)

Neutrino is mother of the Universe?

V()

t

log

R

Page 37: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 37

LHC/ILC may help

• LHC finds SUSY

• ILC measures masses precisely

• If both gaugino and sfermion masses unify, there can’t be new particles < 1014GeV except for gauge-singlets

Page 38: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 38

Plausible scenario

• 0 found

• LHC discovers SUSY

• ILC shows unification of gaugino and scalar masses

• Dark matter concordance between collider, cosmology, direct detection

• CP in -oscillation found

• Lepton flavor violation limits (e, e conversion, etc) improve or discovered

• Tevatron and EDM (e and n) exclude Electroweak Baryogenesis

• CMB B-mode polarization gives tensor mode r=0.16

If this happens, we will be led to believeseesaw+leptogenesis (Buckley, HM)

Page 39: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Neutrinos as Astrophysical Probe

Page 40: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 40

Page 41: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 41

Dark Matter

• Indirect detection of galactic dark matter

• From the Sun, Galactic Center, Subhalos

Page 42: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 42

s & s

• EGRET down to =210-8cm-2sec-1

• GLAST down to ~10-11cm-2sec-1

• Neutrinos/km3: ~410-10cm-2s ec-1

• The catch: – GLAST>GeV– Icecube>100GeV?

• Cross-correlation between s & s gives us understanding of the source

QuickTime˛ Ç∆TIFFÅià≥èkǻǵÅj êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

Buckley, Freese, HM, Spolyar, Sourav

Page 43: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 43

Dark Energy with Neutrinos?

• Supernova relic neutrinos come from cosmological distances

• Its spectrum redshifted and superimposed

• Depends not only supernova rates and spectra, but also on the geometry of space

• Count Type-II@SNAP

• In principle, sensitive to Dark Energy

• HyperGADZOOKS!

Hall, HM, Papucci, Perez

4 Mt years

CDM SCDM

Page 44: Neutrino Physics Hitoshi Murayama (Berkeley+IPMU) NNN 2007, Hamamatsu Oct 3, 2007

Murayama, NNN 2007 44

Conclusions

• Neutrino oscillation a unique tool to probe (very) high-energy world

• Era of revolution• sin2 213 decides the future of LBL expts• My prejudice: 13 is “large”• Reactor & accelerator LBL expts complementary• To understand “big questions” we need a diverse

set of experiments• Neutrinos are also unique astrophysical probes