network motifs - simple building blocks of complex...

54
Network Motifs Simple Building Blocks of Complex Networks Moritz Bitterling Universit¨ at Freiburg 13.12.2016

Upload: others

Post on 24-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Network MotifsSimple Building Blocks of Complex Networks

    Moritz Bitterling

    Universität Freiburg

    13.12.2016

  • outline

    introduction

    genetics

    motifs

  • introduction

    introductionmotivationmethods

    genetics

    motifs

  • introduction motivation

    fraction of transcription network of E. coli

    1 / 33

  • introduction motivation

    fraction of transcription network of E. coli

    ada_alkB

    aidB

    alkA

    appY

    appCBA

    araCaraBADaraE

    araFG_araH_1H_2araJ

    arcA

    aceBAK

    betIBA

    cydABcyoABCDEdctAfadBA

    focA_pflB

    fumA

    fumC

    glcDEFGB

    glpACBgltA

    icdA

    lctPRDmdh

    nuoABCEFGHIJKLMN

    sodA

    argRargCBHargD

    argEargFargI

    carAB

    atoC

    atoDABatoDAE

    betT

    caiF

    caiTABCDE

    fixABCX

    cpxAR

    cpxPdsbA

    ecfIhtrA

    motABcheAW

    rotA

    skp_lpxDA_fabZ

    tsr

    xprB_dsbC_recJ

    crp

    acs

    aldB

    ansB

    cirA

    cpdBcyaAdadAX

    dcuB_fumB

    deoCABD

    dsdXA

    ebgAC

    epd_pgk

    fadL

    flhDC

    fucAOfucPIKUR

    furgalETKM

    galS

    glgCAPglgS

    glnALG

    glpDglpFK

    glpTQ

    gntKUgntT

    ivbL_ilvBN

    lacZYAmalEFG

    malI

    malK_lamB_malM

    malSmalT

    malXY

    manXYZmelABmelR

    mglBAC

    nagBACDnagE

    nupG

    ompA

    ppiAproP

    ptsHI_crrrhaBADrhaT

    rpoH

    sdhCDAB_b0725_sucABCD

    speCsrlAEBD_gutM_srlR_gutQ

    tdcABCDEFG

    tnaLAB

    tsx

    ubiG

    udp

    uhpT

    yhfA

    yiaKLMNOPQRS

    csgDEFGcsgBA

    cspA

    gyrA

    hns

    cytR

    nupC

    deoR

    dnaA

    nrdAB

    dsdC

    ebgR

    envY_ompTompCompF

    evgAfadR

    fabA

    iclMR

    uspA

    fecIR

    fecABCDE

    fhlA

    fdhF

    hycABCDEFGH

    hypABCDE

    flgAMN

    flgBCDEFGHIJKflhBAE

    fliAZY

    fliEfliFGHIJKfliLMNOPQR

    flgKLflgMN

    fliC

    fliDSTtarTapcheRBYZ

    fnr

    aspA

    dmsABCfdnGHIfrdABCDnarGHJInarK

    ndh

    nirBDC_cysG

    FruR

    adhE

    fruBKAppsApykF

    entCEBAfepA_entDfepBfepDGC

    fhuACDBtonB

    GalR

    gcvAgcvTHP

    gcvR

    glcC

    glnHPQ

    nac

    glpR

    gntRedd_eda

    himA

    dps

    ecpD_htrEhimD

    ompR_envZ

    osmE

    pspABCDE

    nhaA

    osmC

    rcsAB

    stpA

    hycA

    hydHG

    zraP

    lacI

    lrpgltBDF

    ilvIHkbl_tdh

    livJlivKHMGF

    lysUoppABCDF

    sdaA

    serAlysR

    lysA

    malPQmalZ

    marRAB

    fprnfozwf

    metJmetA

    metC

    metF

    metR

    glyAmetH

    mlcptsG

    gdhAputAP

    glmUS

    narLnrfABCDEFG

    torCAD

    nhaR

    nlpD_rpoS

    ftsQAZ

    katG

    narZYWVosmY

    oxyRahpCFgorA

    pdhR

    pspF

    purR

    codBA

    cvpA_purF_ubiXglnB

    guaBA

    prsApurCpurEK

    purHDpurL

    purMNpyrC

    pyrD

    speA

    ycfC_purB

    rcsA

    wza_wzb_b2060_wcaA_wcaB

    rhaSR

    rob

    aslBinaAmdlAybaO

    ybiSyfhD

    rpoE_rseABC

    cutCdapA_nlpB_purAecfABCecfD

    ecfFecfG ecfHecfJ

    ecfKecfLM

    fkpAksgA_epaG_epaH

    lpxDA_fabZmdoGH

    nlpB_purAostA_surA_pdxA

    rfaDFCLrpoD

    uppS_cdsA_ecfE

    clpPdnaKJ grpE

    hflBhtpGhtpYibpABlon

    mopA

    mopB

    rpoN

    hypAnycA

    rtcR

    rtcABsoxR

    soxS

    acnA

    tdcAR

    torR

    uhpA

    yhdG_fis

    alaWXargU

    argW

    argX

    aspV

    leuQPV

    leuX

    lysTmetT

    metYpheUpheV

    proKproL

    serT

    serXthrU

    thrW

    tyrTVvalUXYyiaJ

    yjdHG

    1 / 33

  • introduction motivation

    fraction of transcription network of E. coli

    1 / 33

  • introduction motivation

    transcription network - autoregulation

    2 / 33

  • introduction motivation

    transcription network - outstanding nodes

    3 / 33

  • introduction motivation

    transcription network - loops

    4 / 33

  • introduction motivation

    Is there a statistically significant aggregationof local patterns or ”motifs” in the network?

    Compare to a randomized network→ YES!

    Which are the motifs that evolution prefers?

    What are their functions in the network?

    5 / 33

  • introduction methods

    fraction of transcription network of E. coli

    6 / 33

  • introduction methods

    random network

    7 / 33

  • introduction methods

    histogram of E.coli transcription network

    0 5 10 15 20 25 30 35

    0.5

    1

    5

    10

    50

    100

    neighbours per node

    nodes

    Randomization: Choose two random edges, swap target nodes→ the histogram is preserved

    8 / 33

  • genetics

    introduction

    geneticstranscriptiontranslationdynamics

    motifs

  • genetics transcription

    gene expression - transcription

    9 / 33

  • genetics transcription

    gene expression - transcription

    geneDNA

    transcription start site reading direction

    9 / 33

  • genetics transcription

    gene expression - transcription

    geneDNA

    transcription start site reading direction

    messenger RNA

    RNA polymerase

    - RNAp transcribes DNA to mRNA

    9 / 33

  • genetics transcription

    gene expression - transcription

    gene

    transcription start site reading direction

    DNA

    messenger RNA

    RNA polymeraseactivator/repressor

    promoter region

    - RNAp transcribes DNA to mRNA- Activator/repressor interacts with transcription start site→ Enhances/inhibits attachment of RNAp

    9 / 33

  • genetics translation

    gene expression - translation of mRNA to protein

    en.wikipedia.org/wiki/Translation (biology)

    10 / 33

  • genetics translation

    regulation of gene expression

    DNA RNA A protein Atranscription translation

    11 / 33

  • genetics translation

    regulation of gene expression

    DNA RNA A protein Atranscription translation

    11 / 33

  • genetics translation

    regulation of gene expression

    DNA RNA A protein Atranscription translation

    DNA RNA B protein B

    activator

    11 / 33

  • genetics translation

    regulation of gene expression

    DNA RNA A protein Atranscription translation

    DNA RNA B protein B

    activator

    DNA RNA C protein C

    repressor

    11 / 33

  • genetics translation

    regulation of gene expression

    DNA RNA A protein Atranscription translation

    DNA RNA B protein B

    activator

    DNA RNA C protein C

    repressor

    DNA

    DNA

    nodes: genesedge: transcription

    factorRNA A protein A

    transcription translation

    activator

    11 / 33

  • genetics dynamics

    dynamics of simple gene regulation

    Transcription factor X regulates expression of protein Y: X → YSimple assumptions:- If X is in active form X∗, Y is produced at a constant rate β- Degradation rate of Y is α

    ⇒ dYdt = β −αY

    Stable state: dYdt!= 0 ⇒ Yst =

    βα

    12 / 33

  • genetics dynamics

    dynamics of simple gene regulation

    Transcription factor X regulates expression of protein Y: X → YSimple assumptions:- If X is in active form X∗, Y is produced at a constant rate β- Degradation rate of Y is α

    ⇒ dYdt = β −αY

    Stable state: dYdt!= 0 ⇒ Yst =

    βα

    12 / 33

  • genetics dynamics

    dynamics of simple gene regulation

    Transcription factor X regulates expression of protein Y: X → YSimple assumptions:- If X is in active form X∗, Y is produced at a constant rate β- Degradation rate of Y is α

    ⇒ dYdt = β −αY

    Stable state: dYdt!= 0 ⇒ Yst =

    βα

    12 / 33

  • genetics dynamics

    dynamics of simple gene regulationdYdt = β −αY

    Yst =βα

    0

    Yst

    time t / a.u.

    level

    of

    Y

    Y = Yst (1-ⅇ-t α)

    X*

    active

    Y = Yst ⅇ-t α

    X inactive

    12 / 33

  • genetics dynamics

    Hill-function

    More realistic model: Rate of production of Y is a function of X∗

    f[X∗] has three parameters → each edge carries three numbers- K : Level of X∗ to significantly activate expression- β : Maximal expression level- n: Cooperativity: Number of molecules needed for activation

    Rate of production of Y: f [X ∗] = β X ∗n

    Kn +X ∗n

    13 / 33

  • genetics dynamics

    Hill-function

    More realistic model: Rate of production of Y is a function of X∗

    f[X∗] has three parameters → each edge carries three numbers- K : Level of X∗ to significantly activate expression- β : Maximal expression level- n: Cooperativity: Number of molecules needed for activation

    Rate of production of Y: f [X ∗] = β X ∗n

    Kn +X ∗n

    13 / 33

  • genetics dynamics

    Hill-function

    0 K 2 K 3 K

    0

    β/2

    β

    activator concentration X *

    rate

    of

    pro

    duct

    ion

    of

    Y:

    f[X

    *]

    n = 1

    n = 2

    n = 3

    n = 4

    n → ∞

    f [X ∗] = β X ∗n

    Kn +X ∗n

    14 / 33

  • genetics dynamics

    Hill-function

    Parameters can be tuned during evolution:K : Mutations of binding site in the promoter areaβ : Mutations in the RNAp binding site

    Rate of production of Y: f [X ∗] = β X ∗n

    Kn +X ∗n

    15 / 33

  • motifs

    introduction

    genetics

    motifsautoregulationfeed forward loopsingle-input moduledense overlapping regulonoccurrence of motifs in various networks

  • motifs autoregulation

    autoregulationProbability of a self-edge in random network with N nodes:

    pself =1N

    Probability of k self-edges in a random network with N nodes and E edges:

    P(k) =(

    Ek

    )·pkself · (1−pself)E−k

    The expectation value for the number of self-edges is

    < Nself >= E ·pself =EN

    For the E.coli network this yields EN =519424 = 1.2 self-edges

    The real network has 40 self-edges → high statistical significance16 / 33

  • motifs autoregulation

    negative autoregulation

    X 0.0 0.5 1.0 1.5 2.00.0

    0.2

    0.4

    0.6

    0.8

    1.0

    repressor concentration X / K

    rate

    of

    pro

    duct

    ion

    of

    X/β

    - System with simple regulation: Yst = βα→ unstable, many factors influence β and α- System with negative autoregulation: Yst ≈ K→ stable, K is specified by strength of chemical bonds⇒ Noise suppression

    17 / 33

  • motifs autoregulation

    negative autoregulation

    X

    - High production rate β can cause strong initial rise- High autorepression leads to saturation at stable level K⇒ response acceleration

    18 / 33

  • motifs autoregulation

    positive autoregulation

    X

    ⇒ higher response time⇒ noise amplifyingWhy is noise good for a cell?→ diversity

    19 / 33

  • motifs feed forward loop

    feed forward loops

    20 / 33

  • motifs feed forward loop

    coherent type 1 feed forward loop

    AND connection for Z→ only respond to persistent stimulation, elevator door effectOR connection for Z→ no delay after stimulation, but delay after stimulation stops

    21 / 33

  • motifs feed forward loop

    incoherent type 1 feed forward loop

    - Response acceleration- Pulse generator

    22 / 33

  • motifs single-input module

    single-input module

    → timed expression of different genes

    23 / 33

  • motifs dense overlapping regulon

    dense overlapping regulon

    - Not yet very well understood- Detailed information about connection strength is needed

    24 / 33

  • motifs occurrence of motifs in various networks

    motifs in the transcription network of E. coli

    X

    Y

    Z

    X Y

    Z Wfeed-forward loop bi-fan

    Nreal = 40 Nrand = 7±3 Nreal = 203 Nrand = 47±12

    25 / 33

  • motifs occurrence of motifs in various networks

    motifs in the neural network of C. elegans

    X

    Y

    Z

    X Y

    Z Wfeed-forward loop bi-fan

    X

    Y Z

    Wbi-parallel

    Nreal = 125Nrand = 90±10

    Nreal = 127Nrand = 55±13

    Nreal = 227Nrand = 35±10

    26 / 33

  • motifs occurrence of motifs in various networks

    motifs in the food web of little rock

    X

    Y

    Zthree chain

    X

    Y Z

    Wbi-parallel

    Nreal = 3219 Nrand = 3120±50 Nreal = 7295 Nrand = 2220±210

    27 / 33

  • motifs occurrence of motifs in various networks

    motifs in the world wide web

    X

    Y

    Z

    X

    Y Zfeedback with two

    mutual dyadsfully connected triad

    X

    Y Zuplinked mutual dyad

    Nreal = 110000Nrand = 2000±100

    Nreal = 6800000Nrand = 50000±400

    Nreal = 1200000Nrand = 10000±200

    28 / 33

  • motifs occurrence of motifs in various networks

    motifs developmental networks

    X

    Y Z

    X

    Y Z

    29 / 33

  • motifs occurrence of motifs in various networks

    a careful look at the statistical methods

    What has been done?

    - Real network randomization−→ random network- Posing of null hypothesis:

    “The occurrence of motifs is the same in both networks“- The null hypothesis is rejected by a statistical test

    → Conclusion:Evolution prefers motifs that are overrepresented and disfavours others

    30 / 33

  • motifs occurrence of motifs in various networks

    a careful look at the statistical methods

    - Create a random toy model- Probability of connection between two nodes

    reduces with distance

    - Test model against random network with same # of nodes and edges- There is a significant occurrence of motifs in the toy model!→ It is clearly not evolution which prefers those motifs

    → Spatial clustering can create motifs

    31 / 33

  • motifs occurrence of motifs in various networks

    a careful look at the statistical methods

    - Create a random toy model- Probability of connection between two nodes

    reduces with distance

    - Test model against random network with same # of nodes and edges- There is a significant occurrence of motifs in the toy model!→ It is clearly not evolution which prefers those motifs

    → Spatial clustering can create motifs

    31 / 33

  • motifs occurrence of motifs in various networks

    a careful look at the statistical methods

    - Create a random toy model- Probability of connection between two nodes

    reduces with distance

    - Test model against random network with same # of nodes and edges- There is a significant occurrence of motifs in the toy model!→ It is clearly not evolution which prefers those motifs

    → Spatial clustering can create motifs

    31 / 33

  • references

    references

    • Alon, U. Network motifs: theory and experimental approaches.Nature Rev. Genet. 8, 450-461 (2007).

    • Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs inthe transcriptional regulation network of Escherichia coli.Nature Genet. 31, 64–68 (2002).

    • Milo, R. et al. Network motifs: simple building blocks of complexnetworks. Science 298, 824–827 (2002).

    • Alon, U. Introduction to Systems Biology: Design Principles OfBiological Circuits (CRC, Boca Raton, 2007).

    • Artzy-Randrup, Y. et al. Comment on “Network Motifs: SimpleBuilding Blocks of Complex Networks” and “Superfamilies of Evolvedand Designed Networks”. Science 305, 1107 (2004).

    32 / 33

  • résumé

    résumé

    - We can identify repeated small patterns in real networks

    - Comparison to randomized networks shows a significant accumulation ofmotifs in real networks

    - We have to be careful which random network to use as null hypothesis

    - We can describe the behaviour of the isolated motif

    33 / 33

  • introductionmotivationmethods

    geneticstranscriptiontranslationdynamics

    motifsautoregulationfeed forward loopsingle-input moduledense overlapping regulonoccurrence of motifs in various networks