nationaladvisorycommiti’ee “foraeronautics/67531/metadc56680/m...nationaladvisorycommiti’ee...

57
.- —-- NATIONAL ADVISORY COMMITI’EE “FORAERONAUTICS TECHNICAL NOTE 3926 EXPERIMENTAL COMPARISON OF SPEED - FUEL -FLOW SPEED -AREA CONTROLS ON A TURBOJET FOR SMALL STEP DISTURBANCES By L. M. Wenzel, C. E. Hart, and R. T. Lewis Flight Propulsion Laboratory ‘Cleveland, Ohio Washington ~c)~ REFEWNCE March 1957 ENGINE Craig LIBRjuIY COPY MAR 81957 LANGLEYAEkONAIjTICALABORATORY UBRAfW,HACA LAFJG~EY r!=. u. VIIWINIA ltxcToEE-Hm-

Upload: others

Post on 16-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • .- —--

    NATIONALADVISORYCOMMITI’EE“FORAERONAUTICS

    TECHNICAL NOTE 3926

    EXPERIMENTAL COMPARISON OF SPEED - FUEL -FLOW

    SPEED -AREA CONTROLS ON A TURBOJET

    FOR SMALL STEP DISTURBANCES

    By L. M. Wenzel, C. E. Hart, and R. T.

    Lewis Flight Propulsion Laboratory‘Cleveland, Ohio

    Washington

    ~c)~ REFEWNCE March 1957

    ENGINE

    Craig

    LIBRjuIYCOPYMAR 81957

    LANGLEYAEkONAIjTICALLABORATORYUBRAfW,HACALAFJG~EY r!=. u. VIIWINIA

    ltxcToEE-Hm-

  • — ..

    NATIONALADVISORYCOMMITTEEFORAERONAUTICS

    TECHNICALNOTE3926

    EXPERIMENTALCOMPARISONOF SPEED- FUEL-FLOWAND SPEED-AREA

    CONTROLSON A TURBOJETENGINEFORSMALLSTEPDISTURBANCES

    By L. M. Wenzel,C. E. Hart,andR. T. Craig

    SUMMARY

    Optimumproportional-plus-integralcontrolsettingsforcontrolofenginerotationalspeedwithfuelflowweredeterminedby minimizationofintegralcriteria.Theoptimumsettingsthusdeterminedcorrelatedwellwithanalyticallypredictedoptimumsettings. —...—

    At theoptimumcontrolsettings,thespeedovershootratiowas 1.28;simulatedturbinebladetemperaturedidnotovershoot.Theoptimum-con-

    . trolsettingswerenotappreciablyaltere:by thelimitationof therate.-..[ of changeof fuelflow.

    ,- The frequencyresponseof enginespeedto exhaust-nozzleareacouldbe representedby a linearlag,specifiedby therotortimecon6ta&,plus‘“a deadtime. The linearityof thesystem,however,is Umited to theex-tentof thephysicallyrealizableareachange,andthusholdsonlyfor —

    smalldisturbances.

    Overa limitedrange,speedwas satisfactorilycontrolledby exhaust-nozzlearea. Withinthisrange,thissysta was foundto possesscertainadvantagesoverthespeed- fuel-flowcontrol.

    INTRODUCTION

    Controlof therotationalspeedof a turbojetengine@ a primarymeansof regulatingtkust andmaintainingsafeoperatinglimits.Opti-mizationof speedcontrolis thereforeof considerablepracticalimportanceandhasbeentheobjectof muchendeavor. .—

    Severalcriteriaforuse in optimizingclosed-loopcontrolsystemsaresuggestedin references1 and 2. E general,thesecriterias ecifyoptimumcontrolsettingswhenan errorfunction,suchas

    $3(error)dt,

    where t is time,isminimized.h reference3, a met”=”‘isdeveloped. foranalyticallydeterminingtheoptimumcontrolfora linearclosed-loop

    .

  • 2 NACATN 3926 .

    processbased.onthiscriterion.Thismethodis thenappliedto thespe- ““ .cificcaseof a speed- fi-el-flowcontrolon a tur%ojetingine.Foracontrolledenginewithno constraintson speedor jmnperature,theanalyt-icallydeterminedoptimumcontrolwasa proportio~-plus-integralcontrol -(neglectinga small.derivativeterm). The loopgainwas equalto theen-gine---timeconstantdividedby theenginedead‘cbn&andthe “control . —

    integraltimeconstantwas equaLto theenginetinieconstant.———

    Sincetheproportional-plus-integralcontrol3.sin wideuse,..the.ln-._ .._+dicatedrelationsfortheoptimumcontrolsetting6_wouldhavegreatutility “-Pprovidedtherelativelysimplecriteriausedforo@imizationresultin Fsatisfactoryresponseof enginespeedandtemperature.In thisreport,resultsof an investigationof enginespeedcontro~arepresentedwithemphasison therelationsbetweentheresponsesof enginevariablesandthevalueaof twodifferentoptimizingcriteria.A.comparisonof theex-perimentallyobtainedvaluesforoptimumcontrolsettingswiththosede-terminedinreference3 is alsomade. Thiscomparisongivesan indicationof thevalidityof theanalyticalresultsforuseas a fileof thumbfordeterminationof theoptimumcontrolsettingsfora proporttonal-plus-integralcontrol. —T- .— ,-‘+.-

    In additionto-theconventionalmethodof con%rollfigspeedby fuel —

    flow,speedmay alsobe controlledby exhaust=nozzlearea. It iS, of .

    course,recognizedthatby Itselfa speed-areacon7&olis notfeasible”.However,considerableattentionhasbeendirectedtowardthissystemwiththeideaof usingit as oneloopof a two-loopconirol.

    In orderto buildup a backgroundforspeed-tiescontrol,theresponse- “--of enginespeedto exhaust-nozzleareawaaobtained.The investigationofthespeed-arealoopwasmadeon a single-loopbasig. Twgnonlinearcontrol_.._schemesarepresentedand discussed,andtheirperformancedataaregiven.

    .APPARATUS

    Engine

    An axial-flowturbojetenginewithannularprevaporizingfuelinjec-turswas runin a sea-levelstaticteststand. Theenginewas equippedwitha variable-areaexhaustnozzle,whichis shownschematicallyin fig-ure1. The electricinputsignalis convertedto a hydraulicsignalintheelectrohydraulicservomotor.Thissignalis airplifiedandconvert%dto rotarymotionby thehydraulicpoweramplifier.-.Therotarymotionthusimpartedto theuppervaneis transmittedto thelowervaneby the .interconnectingmechanicallinkage. *

    The frequencyresponseof thissystemwas dependenton theampLitudeof thecalledforchange.Theresponseof theareavalveto a airiusoidal -inputfora peak-to-peakamplitudeof 15-percent~Stedareaispresentedin figure2. — -———-—

  • NACATN 3926 3.

    Thisvariable-areasystemwasdesignedto havea fastresponsewith. littleconcernaboutitseffecton thrust.As a result,itsresponseis

    muchfasterthanthatof a practicalsystem,anditscoefficientofdischargeis probablymuchlower.

    FuelSystem

    A research-facilityfuelvalvewasusedb regulatefuelto theen-ginemanifold.Thevalvehadan aplituderesponseflattobeyond10“-cyclesper secondanda deadtimeof 0.005second.Thedescriptionofthisvalveis givenin reference4.

    Fromtheenginemanifoldthefuelwas distributedto flowdividersmountedcircumferentiallyaroundtheenginefuelinjectors. *

    * Computer;.

    + An electronicanalogcomputerwasused& operationsnecessaryto makeup thedesired. andto obtaintheintegralcriteria.

    INSTRUMENTATION

    Speed

    andfinallyto thevaporizing

    to performthemathematicalcontrol-loopconfigurations

    .-

    A magneticpickupwasmountedh thecompressorcaseoppositea rowof steelcompressorrotorblades. Thepassingof a compressorbladedis-turbeda magneticfieldproducedby thepickupandgeneratedar”electricpulseat theoutputterminals.

    In orderto obtaina transient-speedsignal,thesepulseswerefedto an electroniccircuitwhichproduceda voltageproportionalto thentier of pulsesperunittime. No dynamicscouldbe measuredW thissysta withtithefrequa~ rangeof ccmcern.Thepulseswerealsofedto a digitalpulsecounterto measuresteady-statespeed.

    .—-—_.-

    TailpipeGasTemperature

    Transienttailpipegastemperaturewasobtainedby measuringtheout-putof 16 thermocoupleswhichweredistributedaroundtheperipheryof the. tailpipe.Pairsof thethermocoupleswereconnectedin series,aridthe‘“”—outputsof thepairswereparalleled.The thermocoupleswereconstructedof 22-gagechromel-alumelwireandhada timeconstant”o”fapproximately

    ...--——.

  • 4 — NACATN 3926.

    0.30secondat theoperatingconditions.Theoutputof foursimilarpairs-- ‘-of thermocoupleswas connectedto a self-baIancingpotentiometerto read - —-steady-statetailpipegastemperatures. —

    IWelFlow.-

    A signalindicativeof fuelflowduringa ti%nsient-wasobtained””bymeasuringthepositionof thethrottlevalvein thefuelControlby meansof a lineardifferentialtransfo?.mer.It is“high~yprobablethat”higher- - ‘-l.orderdynamicswereaddedto thesystemby thef&l manifoldandflowdi- 7

    viders.However,becauseof theextremedifficultyinmeasuringactual ufuelflowintotheengine,thepositionof thetbottlevalvewas ch&en _ _as thesignahtobe.used.Tf theadditiond-higher-orderdynamicsb-ythedistributionsystemof theengineis neglected,thenfuelflowis pro- “~portionalto throttle-valveposition,because,theresearch-facilityfuelvalvewas designedtomaintaina constantpressur~edropacrossthethrottlevalve. Steady-stxrtefuelflowwasmeasuredon ayotemeter.

    .Exhaust-NozzleArea -

    .— --A

    A measureof exhaust-nozzleareawas‘obtainddby connectinga posi- - ~tionsensorto oneof therotatingshafts,as indicatedin figure1.Althoughtherotationof thisshaftis not exactl..jproportionalto exhaust- “nozzlearea,onlysmallerrorsresultif linearityisassumed.

    Recorder --.-

    A six-channeldirect-writingrecorderwasusedto recordtransi&ntcontroldata. Therecorderhada“frequency.respo~seeszentkllyflat—io ‘- “--100cyclesper second.A galvancnnetricoscilIogr&phrecorderwas used” to “-–:recordsinusoidalfrequency-responsedata. The&der rtigeof ch&irtY_speedsavailableon thisrecordermadeibmore afilicableforthesepur-poses. Thefrequencyresponseof thisrecorderwi% essentiallyflat‘ibeyond100cyclesper second.

    — ..-—

    DYNAMICS,CONTROLS,ANDOPTIMIZINGCRITERIA

    EhgineDynamics -.

    Shownin figure3 is thefrequencyresponseuf enginerotationalspeedto exhaust-nozzlearea. Thesedatawereobtained-%ysiimsoidallyva~ing “- j-theexhaustnozzleandmeasuringtheresultantspeedfluctuations.Thedataweretakenover.thesamespeed-rangeas was ~bsequentlyusedin the :controlsstudy. The datamaybe representedby a“””first-orderlag:with”a 1-timeconstantofiO.83secondplusa dead”timeof CL021second,as shownby

    —.

    thecurvesin figure3.—

  • NACATN 3926 5.

    Theresponseof engfierotationalspeedto a sinusoidalinputto. thefuelvalveis showninfigure4. Intuitively,thisresponseshould

    havethessmebasictimeconstantas the speed-arearesponse.However,[email protected] tofigure4 showsthatadditionaldynamicsarepresentin thissyst&.””-–Thesedyasmicsareattributedto thefueldistributionandcmbustionprocesses.(Thephase-shiftcurvesdrawnin fig.4 willbe discussedin

    ~ the section“Selectionof optimumcontrolsettings.”)Thedataof fig-* ure4 weretakenoverthe speedrangeusedinthe controlsstudy.

    -— —

    A transient-datatraceshowtigtheresponse.of enginevariablesto aburstin fuelflowis presentedin figure5. Thedeadthe betweentheinputandthebeginningof theresponseof speed,is 0.079second. (Deadtimeismeasuredto thebreakin accelerationbecauseit ismoreevid-&t

    —.—

    thanthespeedbreak.) .-.

    Speed- Fuel-FlowControl,

    . A blockdiagramof thespeed- fuel-flowcobtrolloopispresentedin-— figure6(a). Thecontrolis of proportional-pl~-integralconfiguration

    and itsactionmaybe representedby thetransferfunction. ..(.++).

    (Symbolsare definedin appendixA.) The loopgain KL is definedas theproductof thefrequencyinvariantgains of theloopcomponents.Sincethegainsof allthecomponentsexceptthetherangeof testconditions,KL willcontrolsetting.

    Theoperationof thecontrolloop

    control&e cori6ideredconstantoverhereinafl%rbe referredto as a ‘“———

    is thus: Measuredspeed Nm iscomparedwithsetspeed Nfi,and thedifference,:or speederror Ne, iSappliedto theinputof thecontrol.The error;signalismodifiedaccord-ingto thecontroltransferfunctionandfedtothe fuelv~lve~”’The fuel. _valvethenmanipulatesfuelflowuntil Ne becc@eszero. —_....—

    Speed-AreaControl ,

    In thisinvestigation,theoperatingpointof theexhaust-nozzleareawas closeto itswide-openposition.Thus,a limitedamountof additionalareateal,area

    ,

    tem,.

    was availableforacceleration.Whenoperatedas a closed-loopsys-thespeed-arealoopbecamenonlinearwhen$hecontrolcalled“formoreopeningthanwasphysicallyrealizable. ~

    If a linearproportional-plus-integralcontrolwereusedin thissys-adverseeffectswouldoccurwhenthesysttibecsmenonlinear.At

  • 6 NACATN 3926.

    theseconditions,an excessivechargewouldbuildup on theintegralpor-tionof thecontrol,holdingtheareawideopenaftertheerrorhadbeenreduced.Thisactionwouldcauselargespeedover6100ts.In orderto ob-taingoodclosed-loop”performance,somerneah6wasr%qufredto preventthisexcessivechargefroq,buildingup whiletheareawaLwideopen. Twonon-linearcontrolschemeswereinvestigatedandaredescribedsubsequently.

    A blockdiagramof speed-areacontroltypeI is presentedin figure6(b). Theoperationof thiscontrolduringan acce~erationis as follows:Inputsa, b, andc occurstiultaneously.Inputa tiitiatesa stepchange,m8 ; inputb openstheswitch,breakingthe cc)ntro~loopj and inputcsuppliesa signalta theareavalve,causingit to opento itsmaximumposition.

    The engineaccelerateswhentheexhaust-nozzleareaiswideopen.Duringtheacceleration,theswitchingcircuitcomparesthedecreasingNe to a predeterminedvalue,setto about5 percen%of theinitialerr-or.When Ne reachesthislevel,theswitchingcircuitcausestheswitchtoclose,returningtheengineto normalclosed-loopcontro~

    A blockdiagramof speed-areacontroltypeIIIs presentedin figure6(c). Theoperationof thissystemduringan accelerationis thus: Astepchange ANs is initiated.The switchingcircuitcomparesthecon-troloutput,or thesignalto theareavalve,to a j?reset..levelcorre-...spendingto thellmit.oftheareamovement.Whenthecontroloutputex-ceedsthislimit,theswitchingcircuitopenstheswitch,preventinganyfurtherchargefrombuildingup on theintegrator.Thecontrolthenhasproportionalactiononly. When Ne decreasesto a valuesuchthatthecontroloutpulmnolongerexceedsthislimit;”-thestitchingcircuitclotie-stheswitch,restoringpro~rtional-plus-integralcontrol.

    , .-—

    .

    .-

    ..—

    ?

    .

    ..——

    Ibis emphasizedthatthesecontrolsin set–speed.Forusewithotherinputs,changesin setspeed,itmaybe necessary

    weredesignedforstepincreasessuchas decelerationsor rampto modifythecontrols.

    OptimizingCriteria — — .—

    Desirablepropertiesof a controlledsystemare speedand stabilityof response,characterizedby overshoot,solutiontree,timeto firstzero,and so forth. Unfortunately,speedand stabilityof responseareoftenindirectconflictwitheachother. .— .—.

    In a linearclosed-loopsystem,as loopgainis increasedto improvethespeedof response,overshootincreasesandthesystembecomesmoreOS- .cillatory.The designeris calleduponto makesomecompromisebetweenthesecharacteristics.Thechoiceof an optimumcontrolwouldbe greatly

    .

  • NACATN 3926 7

    simplifiedif thedesignerhadavailablea singlefigureof merit-whichtookall or mostof theseconflicti~characteristicsint”o”-account..—_ Somefunctionof theerror,whichwouldincreaseas theerrorsbecamelargerandof longerduration,wouldbe applicable.Thisfunctionwouldbemintiizedforan optimumcontrol.

    ‘~’j~~=./,eldt ‘becauseSeveral criteriah#e beens gestedf -J2),smongwhichare o e2 dt, ‘h~~2~0~~~fE”~e~;.Chosenforthisinvestigationwere o 0of theirsimplicityandtheeasewithwhichtheycsnbe mechanizedonan analogcomputer.The controlledsystemforwhichthesecriteriaattainedminimumvaluesis definedheretias optimum.A blockdiagrmrepresentativeof the systemusedto obtainthevaluesof the criteriais shownin figure7.

    PROCEDURE

    A steady-statemap of enginespeedagainsttailpipegastemperatureis presentedin figure8. Accelerationstithspeed- fuel--flowand speed-areacontrolsare indicated;theinitialpointforall8c6elerationsis at,94 percentratedspeed,andthefinalpointis at 97 percentratedspeed.

    The testingprocedurewas the ssmeforallthreecontrolloops. Theloops(fig.6) weresetup, smd stepincreasesin setspeedwereinitiated.Carewastakento maintainboththesizeandthe initialpointof allaccelerationsuniform.

    Controlactionwasvariedby changingtheloopgainandthecontrolintegralttieconstant.Therangeof loopgainsinvestigatedwas fromavalueapproachingthepointof instabilityto approximately10 percentofthat vaiue. The controlintegraltimeconstantapproximatelyone-halfto fourtimestheengine

    RESULTSAND DISCUSSION

    wasvariedfrom —t5meconstant.

    Speed - Fuel-FlowControl

    Transientdata.- Transientdatatracesarepresentedin figure9 forvaryingvaluesof loopgainandcontrolintegraltimeconstant.There-sponsefora low gaincontrol(KL= 1.5)and Tc = 1.5secondsis shownin figure9(a). The initialincreasein fuelflowis onlyslightlygreaterthanthefinalvalue,caustigtheerrorto dtiinishslowlytowardzero-.Thisbehavioris similarto an uncontrolledsystem.

    Increasingtheloopgainto 7.4,as shownin figure9(b),improvesthespeedof performancegreatly.The speederrorrisestowarditsfinal

    .—

  • 8 NACATN 3926 .

    valuequickly,reachingit forthefirsttime0.33secondafterthe_ini- .—

    tiationof thestep. It thenovershoots31 percent.Tailpipegastemper-aturehasan overshoofl.ratioof 3.1. (Performsmceparametersof overshoot,overshootratio,and timeto firstzeroaredefinedon thisfigure.)

    A furtherincreasein theloopgatito 10.3givessomewhatfasterperformance,as shownin figure9(c). Reductionof thethneto firstzeroto 0.29secondfrom0.33second(fig.9(b))is doneat theexpenseof alargespeedovershootratio,whichis now1.50. Tailpipe-gas-temperatureovershootratiohasalsoincreasedandis now4.0. +P

    EChanging~c to 0.5second,witha loopgainOf 7.4,makesthesys-

    temmoreoscillatory.In figure9(d),theovershootis 62 percent,twicethatof figure9(b). Thethe to firstzerois 0.31second,andthetemperatureovershoot-~atiois 4.1.

    Increasing%C to 4.0secondsat thisloopgainhasa stabilizing.effecton thesystem,as shownin figure9(e). The speedovershootis re-ducedto 27 percentmd thetimeto firstzerois sllghtlyincreasedto”0.34second;thetemperatureovershootratiois reducedto 3.0.

    Selectionof optimumcontrolsettings.- A plotof timeto firstzeroagainstovershootratioobtainedfromtheseandotherdatais preserited-infigure10. Fromthiscurve,whichtakesintoaccoun%theportiono~thetransientonlyup to thefirstovershoot,it appears.that.itwouldbedesirableto operatewithveryhigh KL and Zc.—

    If,however,figure9(e)is examinedcloselyaftertheinitialoscil-lationshavesubsided,it is seenthat-asmallerror”persistsforarelativelylongtime. Thistypeof erroris verydifficulttQ evaluate.

    Theusefulnessof theintegralcriteriais apptient.Thechoiceof-themostfavorablesystemwouldnotbe an easyone,“ifit“werebasedonthesesmalldifferencesinperformance.Throughtheuseof theintegralcriteria,theproblemis reducedto simplypickinga-minimumvalue.

    Thevaluesof theintegralcriteriaare.plottedagainstspeedover-shootratioin figure11. Thecriteriavaluesarelargeforslowsystaishavingsmallovershoots,reacha minimum,andthenficreaseagainas theYsystembecomesmoreoscillatory.Boththecriteriaattaintheirminimumswitha controlintegraltimeconstantof 1.5secondsandam overshootratioof 1.28. In figure10,thispointon thecurvefor %C = 1.5secfidsOccursat a loopgainof a~roximately7. ‘“ “~ ‘

    Zf.thesecontrolsettings,chosenby theintegralcriteriaas optimum,areto be comparedwiththeoptimumsettingsindicatedin reference3, tl-etwosystemsmustbe similar.

    .

    .

  • NACATN 3926.

    The dynamicsof thetheoreticalsystemconsistedofa deadtime. Xn theresponseof speedto exhaust-nozzle

    9

    a linearlagandarea(fig.3),

    theexperimentaldatafitresponsecurvesof a linearlaganda deadtimeverywell.

    In theresponseof speedto fuelflow(fig.4),thisis not so._~e-causeof theadditionaldynamicspresentin thefueldistributionand com-bustionprocesses,thedatado not fitthefirst-orderresponsec-s.Theamplituderatiois attenuatedmorerapidlythanthelinearlagtrans- ““ferredfromfigure3, andmorephaseshift(curveA) is exhibitedthan

    .—

    wouldbe expectedfromthelinearlagplusthedeadtimemeasuredinfigure5.

    In orderto interprettheexperimentalresults,thisadditionalat-tenuationandphaseshiftshouldbe combinedwiththatdueto thelinear _lagand deadtimeto forman effectivelagandan effectivedeadtime.In evaluatingtheeffectivelag,a curveis fairedthroughthedataof theupperportionof figure4 in theregionaboutan amplituderatioof 0.7.,The fairedcurveintersectsthelineof 0.707amplituderatioat a frequen-cy of 0.15cycleper second.Thisgives 1‘e,eff = 1.06seconds,‘-

    “i as comparedwith Ze = Q.83secondmeasuredfromtheresponseof speedto3 area.

    The effectivedeadtimeis determinedby plottingthephaseshiftthatwouldresultfroma linearlagwitha timeconstantof 1.06seconds(curveB, fig.4). The differencebetweenthiscurveandthedatais due “-”-to theeffectivedeadtime. The effectivedeadtimeis evaluatedby add-ingto curveB thephaseshiftdueto variousamountsof deadtime. Thebestpossiblematchis shownas curveC, whichis obtainedby”the””-additionof a deadtimeof 0.15second.Thisvalueof td,eff= 0.15secondiSconsiderablylargerthanthevaluefordeadtimemeasuredfromfigure5, ___whichis 0.079second.

    —.

    Accordingto reference3, theoptimumcontrolsettingsare~c,Opt /= Ze,and KL = Ze td. Applyingtheserelationsto thissystem

    gives = 1.06seconds,and ‘e eff—

    ‘L,opt= td}eff= 7.1. These=C,opt= ‘e,eff .valuescomparefavorablywiththoseobtainedexperimenl%lly,whichwerezc,opt= 1.5 secondsand KL,opt= 7“

    Temperatureovershoot.- The-ov=shootratioof tailpipegastempera-ture T is plottedagainstspeedovershootratioin figure12. Fortheopthnuncontrolsettings,the T overshootratiois about3.0. This.temperaturewas sensedby a thermocouplehavinga timeconstantof 0.3second.

    ..

  • 10

    Becauseof thelarge T overshootsexcursionsof turbinebladetemperaturelate Tk, the T signalwas compensated

    NACATN 3926.

    obtainedlan investigationof theTb wasmade.”In orderto simu- ‘“-to elimi~tethelagof thesens- —

    ingthei%ocoupleandwas thenpassedthrougha lagof 1.5seconds,which _is conservativelysmallforsimulationof turbine%ladedynamics(ref.5).A datatraceshowingthetransientbehaviord.this variable,f~ra repeatrunof thetransientshownin figure9(b),ispresentedin figure13....

    The turbine-blade-temperatureovershootratios,obtainedwithva51ZtousKL’S at ‘GC= 1.5seconds,areplottedinfigure12. It .isseenthatat :theOptti~ controlsettings(KL= 7.4,~c = 1.5)no Tb OVerShOOtOCCUrS. :

    Thisis importantin thata compromisein optimumspeedcontrol,forthepurposeof limitingtemperatureexcursions,is apparentlynotiequired.

    Limitationof fuel-valveresponse.- In orderto obtaindatamorerepresentativeof a practicalcontrolsystem,a circuitwasaddedbetweenthecontrolandthefuelvalvewhichlimitedtherateof changeof thesignalto thefuelvalve. Thus,therateof changeofifuelflowwaslimitedb approximately150percentof ratedflnw-per10thsecond.

    —.

    Transient-datatracesforthissystemarepresentedin figure14 for .-

    KL’s and TctS comparablewiththosein figure9: Of particularinterest “i-n thesedatais thefuel-valvepositiontrace,whichr~seson a rampinit-ially. (Thisis notclearin fig.14(a)becau~ethechengein fuelflowis small.)Comparisonof thetracesof fuel-talvepositionandcon-troloutput(recordedbeforetherate-of=changeltiitingcircuit)showsthatthefuelvalvecannotfollowtheinitialrisebut followstheslowerreturnexactly.Thisactionis typicalof a motor-drivenfuelvalve.

    Theprimaryeffectthattheadditionof thiscircuithadon theper-fmmanceof thesystemwasthe increaseof timeto firstzero(fig.15).Thisincreasewas,on theaverage,about15 percentfora givensetofcontrolconstants.

    The integralcriteria,plottedin figure16,minimizeat highervaluesthanwereobtainedwithoutthelimitationon thefuel-valveresponse.Theminimumvaluesoccurat Tc = 2.0secondsand.an overshoot-ratioof about1.28. On figure15,thispointcorrespondsh-a loop-gab-of--about6.5.R is importantto notethatthecontrolsettingsnecessaryto obtaintheminimumintegralvaluesremainessentiallyunchangedaltloughtheres&nse —

    of’thefuelvalvehasbeenlimited.

    Thetailpipe-gas-temperatweovershootiatiofor thissyste?hisplot-tedin figure17. For theoptimumcontrolsettings,theovershootratiois about3.2. Althoughsimulatedturbinebladetemperatureswerenot in-

    .

    vestigatedforthissystem,it-maybe assumedthatno overshootoccurr-ed,since the tailpipe-gas-temperatureovershootratio is approximatelythe .same. .-—

  • NACATN 3926 U

    Speed-

    The increasinguse of

    Exhaust-Nozzle-AreaControl

    afterburnerson modernturbojetengineshasemphasizedtheneedfortwo-loopcontrolsin whichboth-speed-andtailpipetemperaturearecontrolled.Oneof thepossibletwo-loopconfigurationsis thatinwhichspeedis controlledby exhaust-nozzleareaandtetiperature,by fuelflow. ,

    It is realizedthatthespeed-areacontrolhasa limitedutilityasa single-loopsystem.However,an investigationwas carriedouton thisbasisto avoidthecomplicationsthatwouldbe causedby a simultaneousmanipulationof fuelflow.

    Transientdata,typeI control.- Transient-datatracesforspeed-areacontroltypeI arepresentedin figure18 forvaryingvaluesof KL “fid‘c“ Eugineresponseforcontrolsettingsof Zc = 0.1 secondand_..KL = 7.5is shownin figure18(a). Speedovershoots24 percent,and itstimetofirstzerois about0.75second.Sincetheareais openedto acceleratetheengine,tailpipegastemperaturedecreases;andthepossibilityofenginedfiagedueto temperatureovershootsis eliminated.

    ticreasingthegainto 17.5,as shownin figure18(b),reducesthespeedovershootto 10 percent.The tme to firstzerois unchanged(0.75see). IncreasingTc to 0.5second(fig.18(c))increasesthespeedovershootto 22 percent.The timeto firstzerois again0.75second.

    Thereasonfortheseminutedifferencesin timeto firstzeroisclear. As seenin figure18,almostalltheaccelerationis accomplishedwiththeareawideopen. Sincecontrolactiondoesnotbeginuntilthe--errorapproachesZt?roj the initialportionof thespeedresponseis,forallpracticalpurposes,independentof controlsettings.

    Selectionof controlsettings,typeI control.- In figure19 axeplottedvaluesof speedovershootratioagainstloopgain. Overshootratiois seen to decreaseas KL becomeslargerand %C becomessmaller.Pasta loopgainof abut 25,howev~, onlysmallimprovanentsarerealizedforfurtherincreasesof loopgain. Also,amplificationof noiseincreases,andtheareatendsto followtheseunwantedsignals.In viewof thesefacts,it is deemedundesirableto operatewitha loopgaingreaterthanabout18.

    In thissystem,theprimaryfunctionof thecontrolis to supplyasignalto closetheareafromwide-openpositionto itsnewoperatingpoint. Thisshouldbe doneas quicklyas possiblein orderto minimize

    . overshoots.As anticipated,thetestdatashowthata low Zc anda highKL wouldbestaccomplishthis.

  • 12 .— NACATN 3926 .

    The integralcriteria,plottedin figure20~followthesametrends .-as doesspeedovershootratio. Thesetrendsindicatethatthebestoperationis obtainedby usinga controlhavinga“iargeKL anda smtiil ““ “–‘c“

    Transientdata,typeII control.- Transient-datatracesforspeed-areacontroltypeII arepresentedin figure21 forvaryingvalueso?? ‘CC.Engineresponse’forcontrolsettingsof ‘cc= 0.1secondand KL = 7.5 isshownin figure21(a). The speedovershootratiois1.20,andthetimeto

    .+

    firstzerois about0.78second.---5w

    IncreasingTc to 0.5second(fig.21(b))reducesthespeedover-shootto a verysmallvalue,about3 percent-.Thetimeto firstzero@as _increasedto 0.92second.Forthissystem,thear=ais notheldopenaslongas it was in figure21(a).

    A furtherincreasein %C to 1.0second(fig.21(c))resultsin anoverdampedresponsehavingno overshoot.Theareahereremainsopenfor .a stillshortertime. It is seenin thesedatathattheperformanceofthesystemismoredependenton Zc thanthesyst~ withtypeI control.

    .—

    As ~c is decreased,thecontributionof theintegraltermbecomesof greatersignificance.If ‘cc is toosmall,as-~nfigure21(a),alargechargeisbuiltup on theintegralbefore-thE.errorreacheszero.Sincethischargeholdstheareaopenaftertheerrurhasreachedzero;theenginecontinuesto accelerate,causinga speedovershoot. —

    If,on theotherhand,‘cc ismadeblarg~; theresponsesuchasshownin figure21(c)results.Therateat whichtheintegralchargesisreduced.Hence,unless KL is increased,a sustat>ederror:snecessary

    to buildup the integralchargerequiredforoperationat thenewconditions.

    Selectionof controlsettings,typeII control.- SpeedovershootratioisplottedagainstKL in figure-22. It is.seenthatovershootmaybe reducedby increasingKL or %C. In figure2~jvaluesof th-integral _=criterionareconstantbeyonda KL of 7.5andPracticaiiyindependentofTc. If-similarperformancecanbe obtainedby operatingat-ahighor lowvalueof KL, it ismoredesirableto operateat thelowervaluebecauseof thenoiseamplificationpreviouslymentioned.

    In viewof thesefacts,therecommendedcontrolsettingsforthis ,controlare ‘CC= 0.5 and KL = 7.5. However,sincetheperformanceof-thesystemis dependenton theresponseof theareaservomotorandthephysicallimitof theareaopening,thisrecommendationcannotbe .generalized.

  • NACATN 3926 --13.

    Comparisonof Speed- Fuel-Flowand,Speed-AreaControls

    rlwl-l*

    Overtemperature.- As pointedoutpreviously,thetrendtowardtur-binebladedamagedueto highenginetemperaturesduringan accelerationis notpresentin thespeed-areacontrol.

    Speedovershoot.- Speedovershootfortheoptimumspeed- fuel-flowcontrolis 28 percent.Thebestoperationof thespeed-areacontroliswithlittleor no overshoot.

    Accelerationcapabilities.- Theadditionalexhaust-nozzleareaavail-ableforaccelerationabovetheoperatingpointwas 13 percentratedarea;theadditionalfuelflowavailableforaccelerationatmvetheoperatingpointwasapproximately100percentratedfuelflow. Therefore,theac-celerationcapabilitiesof thespeed- fuel-flowcontrolaregreaterthanthoseof thespeed-areacontrol.

    Timeto ftistzero.- Becauseof thelargeraccelerationcapabilitiesof thespeed- fuel-flowcontrol,thetimeto firstzerofor thissystemis smaller.

    Solutiontime.- Becauseof the speedovershootobtainedwithspeed- fuel-flowcontrol,thetimerequiredfor Ne to reachsmdwithin10 percentof itsinitislvalueis aboutthesameforbothcontrols. —

    thestay

    Integralcriteria.- Thevaluesof theintegralcriteriaat theirminimumss.reaboutthesameforbothcontrols.

    Dependenceon controlsettings.- The controlintegraltimeconstantandtheloopgainmustbe heldto closetolerancesforoptimumoperationwiththespeed- fuel-flowcontrolbut considerablevariationis-allowableforthespeed-areasystems.

    Simplicityof control.- Thepresenceof thelimitin theareaneces-sitatedtheuseof a nonltiearspeed-areac~tro~~*ich ~volvedaddi- .tionalcircuitry.Sincethespeed- fuel-flowloopwas ltiear,thecontrolwas shple in comparison.

    The comparisonsbetweenthetwo systemsare summarizedin thefol-lowingtable. ~ thistable,+ denotesmorefavorableaction;-, lessfavorableaction;ando, similaractionby bothsystems.

    .

    .

  • 14 -, – NACATN

    Speed- f’uel-Speed-areaflowcontrcll.control

    Overtemperatme +

    Speedovershoot. +

    Accelerationcapabilities +

    Timeto firstzero +

    Solutiontime o 0

    Integralcriteria o 0

    Dependenceon controlsettings -. t

    Simplicityof control +

    CONCLUSIONS

    3926

    Theoptimumspeed- fuel-flowcontrolobtainedin thisinvestigation,basedon minimizationof errorintegralcriteria,canbe satisfactorilypredictedby applicationof lineartheory.Agreementwasgood,although.higher-orderdynamicswerepresentin theenginet~t-werehot considtiedin thelinearanalysis.Thetheoreticaloptimumcontrolis OLproportional-plus-integralconfiguration,anditsa~tion.rn.aybe represented

    ( h).by thetransferfunctionKL 1 + The loopgain KL is eqml to the

    ratioof theenginetimeconstantto-theenginedeadtimelandthecontrolintegraltimeconstant‘ccis equalto theenginetimeconst~tj s istheLaplaceoperator.

    At theoptimumcontrolsettings,thespeedover.shoot.ratiowas 1.28.Simulatedturbinebladetemperaturedidnotoversho6t,indicatinga corn- —

    —.

    promisein optimumspeedcontrol,forthepurposeof limitingtemperatureexcursions,is apparentlynotrequired.Limitationof therateof changeof fuelflowdidnotappreciablyalterthevaluesof theoptimumcontrolsettings.

    The frequencyresponseof enginespeedto exhaust-nozzleareacould

    ———

    —.-

    be representedby a linearlag,specifiedby therotiora deadtime. The linearityof thesystem,however.,istentof thephysicallyrealizableareachangeandthusdisturbances.

    timeconstant,pluslimitedto theex-holdsonlyforsmall , :

  • NACATN 3926 15.

    Whenusedas a controllingvariable,theareais frequentlyopenedto itsmaximumposition.If a proportional-plus-integralcontrolis tobe usedin thespeed-arealoop,someprovisionmustbe madeto preventsaturationof the integralcomponentof thecontrolwhileIiTieareais onitslimit.

    By usinga.nonlinearcontrolwiththischaracteristic,speedwas sat-isfactorilycontrol-ledby exhaust-nozzleareaovera limitedrange. Withinthisrange,thespeed-arealoopwas foundto possessadvantagesoverthespeed- fuel-flowloopwithrespectto speedandtemperatureovershoots.

    LewisFlightPropulsionLaboratory -.NationalAdvisoryCommitteeforAeronautics

    Cleveland,Ohio,Decmber 13,1956

    .

    .

    .

  • 16-..-. -. —.. —---NAGATN 3YZ6

    a,b

    e

    KL

    N

    s

    T

    t

    t~

    Wf

    APPENDIXA

    SYMBOLS :=

    constantsassociatedwithintegralcriteria._

    error

    loopgain

    enginerotational

    Laplaceoyerator

    speed,percentrated

    tailpipegastemperature,percent-rated

    time,sec

    deadtime,sec

    fuelflow,percentrated

    Subscripts:

    b turbineblade

    c control

    e error

    eff effective

    m measured .:,

    opt optimum .-.-

    8 set

    REFERENCES

    —.

    —.-r

    -.

    1. Hall,AlbertC!.:TheAnalysisandSynthesisof-LinearServomechanisms.TheTechnologyPress,M.I.T.,Cambridge(Mass.),1943.

    2. Graham,FrankD.,andLathrop,RichardC.: Synthesisof “Optimum”TransientResponse- CriteriaandStandardFo~s. WADCTech.Rep.No.53-66,WrightAir Dev.Center,AirRes.andDev.Command,Wriglrt-PattersonAirForceBase,Aug.1953. (RDONO.206-11.) ~

  • NACATN 3926 17

    3. Boksenbom,AaronS.,Novik,~vid, andHeppler,Herbert:Opttium. ControllersforLinearClosed-LoopSystems.NACATN 2939,1953.

    4. Otto,EdwardW., Gold,Harold,and Hiller,KirbyW.: ~Si~ andPerformanceof Throttle-TypeFuelControlsforEngineDynamicStudies.NACATN 3445>1955.

    5. Hood,Richard,andPhillips,WillismE.,Jr.: DynamicResponseofTurbine-BladeTemperatureto Exhaust-GasTemperatureforGas-TurbineEngines.NACARM E52~4, 1952.

  • Hydraulic Electro-

    T *E

    1’)1

    PoBition

    Inputsignal

    Figure1. - Schemtic diagramof variable-areaexhaust-nozzleeyd.em.

    .1, Ii:

  • NACATN 3926 19 —.

    dU3l-l-Y

    M4!

    Frequency, CPU

    Figure2. - FrequencyreaponaeOr exhaust-nozzleposltlOntoZimzvldz+l-Put@ ti-pe~=ntratedarea. .-.

    .

  • 20 NACATN 3926

    1 .

    .8

    .6

    .4

    .2

    .1.08

    .06

    .04

    .02

    .01

    3

    6

    9

    12 W.-.6 \

    \ ~Timecon”stant,0.63qeo;deadtime,0.021sec / ‘Q

    1s0 I I I 1 I III I I I [ I I Iltt180-. -- ---- ---.U1

    \

    .v+ .U6.Uu.1 .2 .4 .6 .8 1 2 4 6 a 10Frequency,opa

    .

    .

    .Figure3. - Frequenoyreeponeeorengine rotational speed to elnusoldelvariationorexheust--nozzlepoeition.Operatingrange, 95.5+3percentratedspeed.

  • NACATN

    .

    3926

    .1.08

    .06

    .04

    w >[ I

    I 11111 n111111 1 1’N

    .02

    .01

    0

    so

    m

    90

    120

    H

    lea

    210

    240

    270

    Frequenoy,CPS

    Fi*ve4. - Frequencyrespame of engfrierotationalspeedto mhumidal input ta fueloneratlmranxe.95.5+3Dercentratadspeed.

    21

    --

  • ------ . .

    .-_–_.T -..N

    —-” “-” “-””j N%P,+. —/

    i .’”‘dk%

    +-0.01 aec

    M“”’,e\-”

    P-f’

    Tallplpepressure

    ~“

    ~’-.; “’..”\

    Caupre8.9m-di8_ pressure

    ,, I ,-_J.--.-J:h’-’

    ---- 1

    ,.i”i,.

    k

    i“!.,“1Ii

    I :,,,, , I

    Figure 5. - Responseofuncontrolledeng- toburstinfuelflovillwtrat~deadtimepresen’t. UI :m

    i ‘1’!

  • , 4161 , ,

    (a) Speed - fuel-flow control.

    Figure 6. - Block diagram of control loops.

    t%

  • .

    Speedsensor

    t=

    Switchingcfrcuit

    %iff

    Ha swi.t#ch Control~. Area Enginevalve

    AN*

    t )

    ----- ——. - --—- ____ _

    )a b c

    (b)Speed-areacontrolt~ I.

    Speed asensor

    t

    — --. .

    ‘*

    * Area * Enginevalve

    .

    (c)Speed-areacontroltypeII.

    Figure6. - Concluded.Blockdiagramof controlloops.

    .

  • “i!J-4, ,

    Ne Squaringb Gain

    Inte-- device grater

    4161

    J’a N: ilt

    Inte-gl’’ator ‘Lrb lNeldt

    Figure 7. - Block diagramof systemused for obtainingintegralcriteria.

    N(n

    I I i.i

  • 100

    90

    80

    7C

    60

    ,

    txhaust-nozzleerea,percent rated 50

    90-

    30 40100. \

    113\ \

    ) 60 70 8

    Fuel flow,—Wf.?

    percent rated

    90

    — ‘80i-Accelerationwith speed -fuel-flowcontrol

    — 70.-Rase point for allaccelerations

    60

    speed-area contr 1

    \

    / \

    90 100 rEngine speed,N, percentrated

    Figure 8. - Steady-statemap of engine

    ,

    Vsxiablefi.

    T9-C*

  • I ,:3-4 ;ack 4161

    I

    1 (a) Cmtrollntegmlt imomntmt, 1.60a0cmb; 10cgIgrIin,1.6.

    BiSUIW9. - Trm-mientdatarorO* -fuel-flowocatrcd for smp inomaw in engine mat weed.

    I

  • .-

    N03

    s2!$

    (b) CmtrOl htwml tho oomtant, 1,5 seomds; low @n, 7.4. w

    Fl&lree. - Calthmd. Trmnhnt datafm n~ad - fuel-flowcontrolrti B* Inarmae h englnanet apred. 1%m

  • 1

    ,1 , , i 4161 , t

    (e)ControlIntagraltirceaonstent,1.5seoonde;loopgain,103.

    Figure9.- Continued.Transientdataforspeed.fiel-flowoontrolforstepInoreaseInengineeetspeed.

  • 1

  • I 4161

    (e)Cmtml intigral tlw cumtmt, 4.0 seO@B; loop* 7.4.

    n&?JI’a9. - cmoluded. hwdont data for npee-a- ruel.rlm oontml rOi-w,ep inomam in engine set speed.

    maN9)

  • 32

    .7Controlintegraltimeconstant,-

    ‘cC,sec1

    0.50

    .6

    1.0_l.5\4.0

    .5\

    .4 \

    \

    .3 .— ——

    .21.0 1.2 1.4 1.6 1.8 2.0

    Speedovershootratio

    Figure10.- Variationof timeto firstze?mwithspeedover-shootratioforspeed- fuel-flow control.

    .

  • NACATN 3926 33

    C!ont;ol in+egraltimeconstant,

    14– TCJsec

    .

    0.75

    12 ,.5

    \

    .5

    ,1.0

    10

    4.0

    81.5

    61.0 1.2 1.4 1.6 1.8 2.0

    Speed

    (a)

    FigureU.. - Variationofshootratiofor speed-

    overshootratio

    integral criteria with speedover-fuel-flow control.

  • 34 NACATN 3926

    1.0 1.2 1:4 1.6 1;8 2.0

    Controlintegraltimeconstant,

    ~c)sec

    4.0

    .5

    h

    1.5.75

    i1.0

    \

    \

    -1 KL.”

    1.0

    .

    .

    Speedovershootratio

    fll(b)b = Ne dt.oFigure11.- Concluded.Variationof integralcriteriawithspeedovershootratioforspeed- fuel:f’lowcontrol.

    .

  • . 35

    1+co.-l-+

    6. , i , ,Tailpipegastemperature

    5.

    Controlintegraltimeconstant,

    4.– ~c)sec

    4.0- .1.511.0Y

    3 .75- ..5 >

    2 . /Simulatedbladetemperature;

    / controlintegraltimeconstant,1.5sec

    1.1.0 1.2 1.4 1.6 1.8 2.0

    Figure12. -ratiowithcontrol.

    Speedovershootratio

    Variationof tailpipe-gas-temperatureovershootspeedovershootratiofor speed- fuel-flow

  • (Aal

    >,,. ,, I “Em”: .’ ‘

  • 4161

    (8)Ommal impal tb Ocmtant, 2.0 Immldsl locm Sdn, 1.s.

    F&m 14. - Tz=uimt data for sund - fud-flw amkml with lW.tad,mb of N of M ml. for sw timun in ui@n -S ~.(A-1

  • I

    1

    , ! -c9-rP ,, ,I

  • I , #4161 1

    g

    2W

    1%m

    CNco

  • -.

    l!-0

    1

    !,

    19-E*,,

    !3$JI

    mlm

  • C{-6 ,I

    4161 4

    ,: ,,

  • .7

    .6

    .5

    .4

    3..

    1 IControlintegraltimeconstant,

    TC9cec

    ;.5

    1.0

    2.04.0

    .

    \

    %\ .

    \

    F- -——

    1.0 1.2 1.4 1.6 1.8 2.0

    .

    ,-

    Speedovershootratio —

    Figure X5. - Variation of speedovershootratio with time tofirst zero for speed- fuel-flow control with limited rateof changeof fuel valve. r-, .,-. --

  • NACATN 3926 43

    dcol-l+

    8

    \o

    d

    Controlintegraltimeconstant,

    Tcjsec

    14 0.5

    12.1.0

    10–4.0

    2.0\

    81.0 1.2 1.4 1.6 1.8 2.0

    Speedovershootratio

    (a)aJ

    m ~2 dt

    0=”

    Figure16.- Variationof integralcriteriawithspeedover-shootratiofor speed- fuel-flowcontrolwithlimitedrateof changeof fuelvalve.

  • 44

    &

    i IControlintegral I

    Tc>aec

    I

    timeconstant,

    4.0~2.0

    \ !

    I

    %

    2.0

    ,.0

    I I

    1.0 1. 2 1.4 1.6 1.8 2Speedovershootratio

    /1 Im

    (b) b Ne dt.o —

    .0—

    Figure16.- Concluded.Variationof integralcriteriawithspeedovershootratioforspeed- fuel-flowcontrolwithlimitedrateof changeof fuelvalve.,

    .

    .

  • NACATN 3926 45

    0%-l-PaM

    IControlintegral

    6 timeconstant,Tcjsec

    4.0

    5. /

    4

    3

    2 / {

    71.0 1.2 1.4 1.6 1.8 2.0

    Speedovershootratio

    Figure17. - Variationof tailpipe-gas-temperatureovershootratiowithspeedovershootratiofor speed- fuel-flowcon-trolwithlimitedrateof changeof fuelvalve.

  • .-. .

    (8) ccnwol inte~l * wawut, 0,1 nemndi k-w pin, 7.5.

    ~~ 1S. - ~nient d4* fm emad-ama oontml type I for ntm inomam h .ngine set opead.

    T9iw , ,1

  • , , $ 4161 aI

    1

    (b)c~ml M.awal tti .msksnt,0.1aoooml;lmp gal.,1?.s.

    Fi.sorO18.- Continued.Franalentdatafarapaad+reaoontroltypaI faruterilnoreaseIn.znglnnmetapaed 11-4

  • .

    (0) control lntegra time Oommt, 0.5 moond; loop gsln, 17.5.

    - le. - Cmoluded. !I’ramlantchtY fm weed+- Cmh’d tyrm I for at+ horease h ●I@M set npeml

    T9H’

  • *

    1.6

    1.4

    1.2

    l,C

    0.5

    .25 \

    o

    Figuretrol

    4

    ,CJ-7 ,

    — _

    iz 16hop @iII, KL

    47161

    2

    .

    19. - Variationof speed overshootratio with loop gain for speed-axeacon-type I.

    I

  • ao

    Controlintegraltime constant,

    see

    112

    10\ 1

    .10

    8-

    6.0 4 8 12 16 20 24 28

    IOOp gain, KL

    (a) aJ

    N: dt.0

    Figure 20. - Variationof integral criteriawith loop gain for speed-areacontroltype I.

    t

    CN

    1%0)

    I1 191P

    , #

  • , ,M-7 :Rck 4161 , ,

    I Controlintegraltime constant, I I I I I IIsec

    12 0.10 .25 .50

    10

    \ \\

    \

    8

    6

    !4CA

    %O-I

    o 4 8 12 16 20 24 28I.oopgain, KL

    J’11.

    (b) b Ne dt.

    Figure 20. - Concluded. Variationof integralcriteriawith loop gain for speed-areacontroltype I.

    I

  • (a) Cantrol integral time conatar$, 0.1 flee.nd;Imp @n, 7.5.

    Fi~e 21.- Trarmientdetafor speed-areaoontroltypeII for nte~inareasein em aet ped.

    .-C9T7 .

  • . .“1

    4161 * e

    u1%m

    (b)controllntagral”tlmo.onstant,0.5 e.ea.nd; loop gain, 7.5.

    Figure 21. - Cmtmmd. !Mneiont data fm swad-=ea control type II fm ste9 ~AaSa ~ en~e set sWd.

  • . .

    (a)Controlintegralthe oormtmt, 1.0 sec!ond;loop gain, 7.5,

    F@ure 21. - Concluded.Trensientdatafor speed-areaocmtroltne II for stepIncreasein engineset speed.

    . -Em‘1

  • I, > . 4161 1 .

    1.4- ,Control integraltime constant,

    ~c>sec

    o.i1.2. \

    .25

    .ko

    1.0.0 4 8 12 16

    Mop gain, KL

    Figure 22. - VBJ?ia_biOUof speed overshoot ratio withtrol type II.

    20 24 28 ~

    loop gain for speed-areacon-

    1m(n

    I

    I

    ,, ,, I 1 -.

  • .

    olm

    12,Controlintegraltime constant,

    sec

    i.o10.

    I.5

    .i

    8.\

    60 4 8

    Figure 23. - Vaxiationofspeed-areacontroltype

    12mop gain,

    IntegralcriterionII.

    KL20 24

    . .I

    1‘“2a Ne dt with bop @n for28