national institute for fusion science the graduate ... · collective growth of zfs in the...

16
T.-H. Watanabe 1,2 , M. Nunami 1,2 , H. Sugama 1,2 , S. Satake 1,2 , S. Matsuoka 1,2 , A. Ishizawa 1 , S. Maeyama 3 , and K. Tanaka 1 , 1 National Institute for Fusion Science 2 The Graduate University for Advanced Studies (Sokendai) 3 Japan Atomic Energy Agency 2012/10/08-2012/10/13 24th IAEA FEC @ San Diego 1

Upload: phungminh

Post on 06-Aug-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

T.-H. Watanabe1,2, M. Nunami1,2, H. Sugama1,2, S. Satake1,2, !S. Matsuoka1,2, A. Ishizawa1, S. Maeyama3, and K. Tanaka1, !

1National Institute for Fusion Science!2The Graduate University for Advanced Studies (Sokendai)!

3Japan Atomic Energy Agency!

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 1

Non-axisymmetry: Big challenge in GK simulation of turbulence

!  Non-axisymmetry introduces …!!  Complicated particle orbits (e.g. ripple trapped particles)!!  Non-uniform B both in ! and " directions!!  Fast parallel motions of passing particles through ripples!

!  Major difficulty in EM GK simulation !!  Poloidal rotation due to the neoclassical transport!

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 2

!  Neoclassical transport => Er!!  influences ZFs and turbulence

which affect n & T profiles!

!  Zonal flow response depends on!!  Effective helical ripples!!  Equilibrium radial electric field !

Ishizawa et al. TH/P2-23

FORTEC-3D results Matsuoka et al. 2012

Er formation in LHD with high Te

Outline!  Introduction!

!  Gyrokinetic simulations for high-Ti LHD plasmas!!  Validation against LHD experiments!

!  Turbulence spectra and entropy transfer through ZFs-turbulence interactions!

!  Multi-scale modeling of helical plasmas with poloidal ExB rotation!!  Collective growth of ZFs in the flux-tube bundle simulation!

!  Summary2012/10/08-2012/10/1324th IAEA FEC @ San Diego 3

Validation of GK simulations against LHD exp. has recently been advanced

!  GKV-X simulations for LHD high-Ti plasma with the 3D experimental configuration.!

!  Observed density fluctuations are consistent with results of the ITG turbulence simulations

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 4

Nunami et al. PoP 2012

Tanaka et al. PFR 2010

Ion heat transport and turb. spectrum in the high-Ti LHD plasma (#88343)

!  The turbulence spectrum and the ion heat flux obtained from GK simulations are relevant to the experimental results.!

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 5

Ion heat flux Pi

Anomalous part = Total heat flux – Neoclassical part

Neoclassical part <= GSRAKE (Beidler et al. 1995)

Density fluctuation spectrum

Exp. Simulation

! !"# $!"!

$"!

%"!

&"!

! '()*+

,-./0'1/23

4'15673'8292817685:

Summary of #i in terms of the turbulence and zonal flow energy

!  Numerical modeling of the ion heat transport coefficient is tested.!

!  #i given by GK simulations are well fitted by means of turbulence and zonal flow energy (T and Z).!

!  Useful for construction of a reduced transport model.

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 6

GKV-X runs for high-Ti and inward-shifted cases

! "!! #!!!

$!

"!

Turbulence and zonal flow energy modeled by linear quantities

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 7

!"!! #"!! $"!!!"!

!"%

&"!

'())*!!"+)#,-".

/)$"%"&"0&+#

!"! #"! $"! %"!!

#!!

$!!

!"#&' ''('!"$'')'('&' *+

$'$*+'('%!')

&

ZF decay time

Mixing length estimate

#i modeled with linear results

!

ZT"#ZF + $ D

Turbulence Spectrum and Entropy TransferThe spectral spreading in kr direction is attributed to the strong magnetic shear and zonal flows.!

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 8

Stronger ZF

Weaker ZF

Nunami et al. PoP 2012

Turbulent entropy transfer function Tik describes turbulence-ZF interactions

!  From GK equations for each wavenumber k, one finds the entropy transfer among turbulence and ZF components!

!  $Sik: Entropy variable, Wk: potential energy, Qik: turbulent ion heat flux, Dik : collisional dissipation!

!  Entropy transfer function Tik describes nonlinear ExB interactions among turbulence and ZFs!

!  Successive entropy transfer into high kr region in ITG turb.!2012/10/08-2012/10/1324th IAEA FEC @ San Diego 9

δSik⊥ =

��dv

|δf (g)ik⊥

|2

2FM

�!!t

!Sik +Wk( ) = LT"1Qik +Tik +Dik

Tik⊥ =�

q⊥

p⊥

δk⊥+p⊥+q⊥,0Ji[k⊥|p⊥, q⊥]

Ji[k⊥|p⊥, q⊥] =

�c

Bb · (p⊥× q⊥)

�dv

1

2FMRe[δψp⊥hiq⊥hik⊥− δψq⊥hip⊥hik⊥ ]

Nakata et al. PoP 2012

Successive entropy transfer function leads to spreading of turb. spectrum

!  When ZFs are strongly generated in LHD plasma (e.g. inward-shifted or % > 0.65), the successive entropy transfer leads to spreading of the turbulence spectrum in kr.

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 10

2-D Spectrum of |!k|2 at "=0

kx

ky

J [ p | q, k] Entropy transfer to mode p from mode p

qx

qy

LHD high-Ti case for #=0.83

Enhancement of Zonal Flow Response by Er

The equilibrium-scale radial electric field Er generated by the neoclassical transport improves !•  collisionless particle orbits, and!•  simultaneously enhances the ZF

response

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 11

B

Er

vEXB

vdr Radial drift of helically-trapped particles

Orbit of helically- trapped particles modified by Er

Flux surface

$E

Watanabe et al. NF (2011)

Flux-Tube Bundle Model for Multi-Scale Interactions of Er, ZFs, and Turbulence

!  Zonal flow components with & dependence (non-axisymmetry)!

!  Turbulence components in the ith flux tube at &=&i!

where!

2012/10/08-2012/10/13 24th IAEA FEC @ San Diego 12

!

""t

+ v||b# $+ vd # $ %µmb# $B( ) "

"v||

%&' r0""y

(

) *

+

, - ˜ f +

cB0

.,/f{ }i

= v0 % vd % v||b( )# e$.T

FM + C ˜ h ( ) % SiZF

!

""t

+ v||b# $+ vdx""x

%µmb# $B( ) "

"v||

+&'q""(

)

* +

,

- . ! f = %vdx

" ˆ / "x

% v||b# $ ˆ / 0

1 2

3

4 5

eT

FM + C ˆ h ( ) + SiZF

!

"f i,k =˜ f iˆ f # = # i( )

$ % &

' &

for ky ( 0for ky = 0

Flux tube at &=&i (i=0, 1, 2, …)

Zonal flow generation by turbulence is enhanced by poloidal ExB rotation

!  Multi-scale simulation of the ITG turbulence with eight flux tubes for the inward-shifted LHD model!

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 13

Flux tube at & =&i (i=0, 1, 2, …)

ZF energy averaged over flux tubes

ZF response

Weaker ZFs for Mp=0.3

Strong ZFs for Mp=0.3 after t > 130

Poloidal ExB rotation synchronizes radial phase of ZFs in flux tubes

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 14

!  Collective growth of ZFs in the flux-tube bundle model appears for Mp = 0.3 through matching of the radial phase angles, or synchronization.!

For Mp = 0 For Mp = 0.3

Synchronization related to strong ZF generation

Transport reduction by ZFs enhanced in case with finite rotation (Mp > 0.1)

!  For cases with Mp > 0.1, the turbulent transport is reduced by enhanced ZFs, while #i is still larger than that for Mp = 0.!

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 15

#iIon heat transport

ZF energy

#i reduction by strong

ZFs due to Er

#i peaks depending on the initial ZF growth

Summary!  Recent developments of gyrokinetic simulations for LHD!

!  Validation, modeling, multi-scale ZFs, electromagnetic etc.!

!  The gyrokinetic simulation of ITG turbulence for helical plasmas is validated against the LHD experiments.!!  Radial profile of ion heat transport flux relevant to LHD exp.!!  Transport modeling based on the turbulence and ZF energy.!

!  Entropy transfer analysis among turbulence and ZFs!!  Quantitative evaluation for ZF-turbulence interactions !!  Contribution to spreading of turbulence spectrum in kr!

!  A multi-scale model developed for non-axisymmetric toroidal plasmas with mean Er.!!  Collective growth of ZFs through the radial phase matching!!  Influence of the poloidal rotation on turbulent transport!

2012/10/08-2012/10/1324th IAEA FEC @ San Diego 16