nasa perspective on certification by analysis...7 august 2012 martin s. annett structural dynamics...

29
NASA Fundamental Aeronautics- Rotary Wing Crashworthiness NASA Perspective on Certification by Analysis Use of Dynamic Analysis Methods for Aircraft Seat Certification Wichita, KS 7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA

Upload: others

Post on 14-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

NASA Perspective on Certification by Analysis

Use of Dynamic Analysis Methods for Aircraft Seat Certification

Wichita, KS

7 August 2012

Martin S. Annett Structural Dynamics Branch

NASA Langley Research Center Hampton, VA

Page 2: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s Outline

• Introduction

• Vertical Impulsive Testing and Analysis of ATD’s

• Multi-Dimensional Calibration of Full-Scale Crash Test Article

• Remarks

Page 3: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s Vertical Impulsive Testing of Hybrid II and III ATDs

– Three standard configurations

• Hybrid III Straight Spine (Aero)

• Hybrid III Curved Spine (Auto)

• Hybrid II Straight Spine

– Two loading conditions

• High Magnitude, short duration

• Low Magnitude, High duration

– 2 Finite Element Models

• LSTC

• FTSS

• Examined

– FTSS vs. LSTC Model

– Test vs. Model

– Test Configurations

FTSS LSTC Test

Page 4: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

• Lumbar loads show results for both pass and fail on FAR 27.562

• Pelvis accelerations show considerable scatter

• Calibration of Hybrid III ATD FEM performed to improve response – Mesh refinement

– Components switched form rigid to deformable

– Foam constitutive model

– Load transfer from pelvis to torso

– Preloading of ATD on seat

Vertical Impulsive Testing of Hybrid II and III ATDs

Page 5: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

• THOR-NT developed by NHTSA

• All existing THOR’s currently scheduled to be upgraded to the THOR-K version

• (16) drop tests performed with the 50th percentile THOR-NT ATD in the 14-ft Vertical Drop Tower in Building 1262 at LaRC

• Purpose of the tests – Validate THOR finite element models currently in

development

– Compare results to similarly conducted tests previously completed with Hybrid II and III ATDs

– Add additional data to the growing test database for THOR development.

• JSC and LaRC are interested in evaluating many of these recently developed ATDs under spacecraft and aircraft landing loads.

Vertical Impulsive Testing of THOR/NT ATD

Page 6: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s Vertical Impulsive Testing of THOR/NT ATD

Chair Pulses representative of FAR, DOD, and NASA Orion Requirements

Page 7: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s Vertical Impulsive Testing of THOR/NT ATD

Initial Correlation Efforts:

- Analysis performed by

Virginia Tech (THOR-NT FEM

v. 2011)

- Evaluate sensitivity of

kinematics, accelerations, and

force results in the FEM prior

to correlation to test results

Page 8: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s Vertical Impulsive Testing, Comparision of Hybrid II, Hybrid III, and THOR/NT

Page 9: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s Full-Scale Crash Test Objectives

• To evaluate the performance of an external Deployable Energy Absorber (DEA) under realistic crash test conditions

• To generate test data to validate a system-integrated LS-DYNA FEM that includes accurate physical representations of all critical components

• To establish methodologies for FEM development, calibration, and validation that will ultimately lead to crash certification by analysis

Page 10: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s MD-500 Crash Test with DEA

DEA

Test with DEA

Test Parameters Nominal

Conditions MD-500

with DEA Vehicle Weight (lb) 2,900 2,940

Linear Velocity (ft/sec)

Forward 40. 38.8 Vertical 26. 25.6 Lateral 0 0.5

Attitude (deg)

Pitch 0 -5.7 Roll 0 7.0 Yaw 0 9.3

Angular Velocity

(deg/sec)

Pitch Rate 0 0.4 Roll Rate 0 1.1 Yaw Rate 0 4.8

Page 11: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s Baseline LS-DYNA FEM

LS-DYNA Model 400,000 Elements

266,000 representing DEA

LSTC Hybrid III

FEM

Page 12: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Comparison-Crash Test with DEA

Page 13: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Pilot Seat Box Vertical Acceleration Passenger Floor Vertical Acceleration

Acceptable Test/Analysis Correlation for Airframe Response

Comparison-Crash Test with DEA

Page 14: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s MD-500 Crash Test without DEA

Test Parameters Nominal

Conditions MD-500

Without DEA

Vehicle Weight (lb) 2,900 2,906

Linear Velocity (ft/sec)

Forward 40. 39.1

Vertical 26. 24.1

Lateral 0 0.6

Attitude (deg)

Pitch 0 -6.2

Roll 0 1.9

Yaw 0 2.1

Angular Velocity

(deg/sec)

Pitch Rate 0 0.5

Roll Rate 0 0.7

Yaw Rate 0 1.7

Page 15: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Comparison-Crash Test without DEA

Increased number of airframe elements

from 134,000 to 250,000

Page 16: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Pilot Region Vertical Acceleration Passenger Floor Vertical Acceleration

Comparison-Crash Test without DEA

Inconsistencies in Acceleration Time Histories

Page 17: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Inconsistencies in Deformation Patterns

Comparison-Crash Test without DEA

Pilot Subfloor Deformation

Keel Beam Shear panel

Forward Forward

Page 18: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Rationale -Multi-Dimensional Calibration

• FEM deficiencies became apparent when severe loads and highly nonlinear responses were introduced for the test without the DEA • A comprehensive and systematic calibration was conducted

• Is modification of existing parameters sufficient? • Is more physical detail required in the model?

• Process implemented is divided into several steps: 1. Metric definition 2. Selection of candidate parameter set 3. Definition of parameter uncertainty model 4. Estimation of variance-based sensitivity 5. Model parameter calibration

Page 19: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Sensors (19 locations,

23 accelerometers, primarily oriented vertical)

Multi-dimensional Calibration FEM

Page 20: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Calibration Metrics

Metric 1: Let be the 2-norm of a response vector v and

let and . The probability to reconcile

test with analysis given N model realizations is bounded by:

),(min ptQp

),(max ptQp

NtQtQProbM ee /1))()((1

2),( vptQ

No

rm o

f R

esp

on

se

Time (sec)

N LS-DYNA Solutions

Uncertainty Bounds

Probability Bands

range

Parameter 1

Par

amet

er 2

y1y2

range

Parameter Space(all parameters in the range are equally likely)

Page 21: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s Calibration Metric 1: Uncertainty Bounds

Interim Calibration Cycle

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.161000

1100

1200

1300

1400

1500

1600

1700

1800

Time (sec)

PV

Bo

un

ds

Test

Upper Bound

Lower Bound

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160

50

100

150

200

250

300

Time (sec)

PV

Bo

un

ds

Test

Upper Bound

Lower Bound

No. Parameter Description Nominal

Upper

Bound

Lower

Bound

1 belly thickness (in) 0.09 0.12 0.08

2 keel beam thickness (in) 0.04 0.07 0.03

3 seat box thickness (in) 0.1 0.12 0.08

4 seat box bulkhead thickness (in) 0.05 0.07 0.03

5 yield stress (psi) 40,000 45,000 35,000

Accele

rati

on

2-N

orm

Velo

cit

y 2

-No

rm

Page 22: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Variance Based Global Sensitivity Analysis

• Analysis of variance (ANOVA) is used for parameter sensitivity

• LS-DYNA simulations limited compared to number of solutions required

• Response surface surrogates (ERBF) are used to estimate additional solutions

Vel

oci

ty

Time (sec)

Vari

an

ce C

on

trib

uti

on

Yield Stress

Seat Box Bulkhead Thickness

Seat Box Thickness

Keel Beam Thickness

Belly Thickness

Belly

Impact

Interim Calibration Cycle

Page 23: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s Calibration Metric 1: Uncertainty Bounds

Final Calibration Cycle: Keel Beam & Seat Pan Thicknesses

Increased

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160

50

100

150

200

250

300

350

Time (sec)

PV

Bo

un

ds

Test

Upper Bound

Lower Bound

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.161000

1100

1200

1300

1400

1500

1600

1700

1800

Time (sec)

PV

Bo

un

ds

Test

Upper Bound

Lower Bound

No. Parameter Description Nominal

Upper

Bound

Lower

Bound

1 belly thickness (in) 0.09 0.12 0.08

2 keel beam thickness (in) 0.12 0.15 0.10

3 seat box thickness (in) 0.1 0.12 0.08

4 seat box bulkhead thickness (in) 0.05 0.07 0.03

5 yield stress (psi) 40,000 45,000 35,000

Accele

rati

on

2-N

orm

Velo

cit

y 2

-Norm

Page 24: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s Calibration Metric 2: Impact Shapes

Test

LS-DYNA

Impact Shape =1 16.8 % Contribution

Impact Shape =1 36.6 % Contribution

1 2 3 4 5 6 7 8 9 10

35.57

12.90

10.32

6.98

5.00

4.05

3.50

3.31

2.57

2.25

Test

LS

-DY

NA

MAC

Frequency (Hz)

16

.77

14

.75

9.4

6

6.7

8

5.6

4

5.3

9

4.9

3

4.2

3

3.5

1

3.3

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

36.60

13.82

8.92

6.18

4.74

3.92

3.49

3.05

2.84

2.37

Test

LS

-DY

NA

MAC

Frequency (Hz)

16

.77

14

.75

9.4

6

6.7

8

5.6

4

5.3

9

4.9

3

4.2

3

3.5

1

3.3

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Test

LS

-DY

NA

Test

LS

-DY

NA

Baseline

Run # 44Final Calibration Cycle

Baseline

Acceleration

Page 25: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Final Calibrated FEM

LS-DYNA Model 590,000 Elements

266,000 representing DEA

Modified LSTC

Hybrid III FEM

Page 26: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Pilot Region Vertical Acceleration Passenger Floor Vertical Acceleration

Calibrated FEM-Crash Test without DEA

-60

-40

-20

0

20

40

60

80

0 0.05 0.1 0.15

Acc

ele

rati

on

(g)

Time (sec)

Test

Analysis-Original Model

Analysis-Calibrated Model

Filter: 60 Hz Butterworth

-30

-20

-10

0

10

20

30

40

50

60

70

80

0 0.05 0.1 0.15

Acc

ele

rati

on

(g)

Time (sec)

Test

Analysis- Original Model

Analysis- Calibrated Model

Filter: 60 Hz Butterworth

No.

Parameter

Description Nominal

Upper

Bound

Lower

Bound Calibrated

1 belly thickness (in) 0.09 0.12 0.08 0.089

2

keel beam thickness

(in) 0.12 0.15 0.10 0.12

3

seat box thickness

(in) 0.1 0.12 0.08 0.11

4

seat box bulkhead

thickness (in) 0.05 0.07 0.03 0.065

5 Yield Stress (psi) 40,000 45,000 35,000 35,210

Page 27: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Pilot Region Vertical Acceleration Passenger Floor Vertical Acceleration

Calibrated FEM-Crash Test with DEA

-5

0

5

10

15

20

0 0.05 0.1 0.15 0.2

Acc

ele

rati

on

(g)

Time (sec)

Test

Analysis-Original Model

Analysis-Calibrated Model

Filter: 60 Hz ButterworthFilter: 60 Hz Butterworth

-5

0

5

10

15

20

0 0.05 0.1 0.15 0.2

Acc

ele

rati

on

(g)

Time (sec)

Test

Analysis-Original Model

Analysis-Calibrated Model

Filter: 60 Hz Butterworth

No.

Parameter

Description Nominal

Upper

Bound

Lower

Bound Calibrated

1 belly thickness (in) 0.09 0.12 0.08 0.089

2

keel beam thickness

(in) 0.12 0.15 0.10 0.12

3

seat box thickness

(in) 0.1 0.12 0.08 0.11

4

seat box bulkhead

thickness (in) 0.05 0.07 0.03 0.065

5 Yield Stress (psi) 40,000 45,000 35,000 35,210

Page 28: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s Conclusions

• Multiple parameters required to calibrate ATD response, mostly relegated to pelvic/lumbar region

• For crash test of full-scale airframe, multi-dimensional model calibration was performed based on two new calibration metrics:

(1) 2-norm acceleration and velocity bound metric (Time variation)

(2) Orthogonality of test and analysis impact shapes (Spatial variation)

• Response surfaces generated from a subset of DYNA simulations for variance analyses

• Calibration cycles identified critical parameters and provided effective guidance to improve model responses for both tests, with and without DEA

Page 29: NASA Perspective on Certification by Analysis...7 August 2012 Martin S. Annett Structural Dynamics Branch NASA Langley Research Center Hampton, VA A onautics-ness Outline •Introduction

NA

SA F

un

dam

enta

l Aer

on

auti

cs-

Ro

tary

Win

g C

rash

wo

rth

ines

s

Remarks

• Important considerations when conducting severe crash tests for the purpose of validating analytical models

• Sensor suite must cover all critical components, and should be located to avoid high-frequency saturation of the acceleration output.

• Accelerometers should be chosen to ensure their velocity integration is accurate (limit drift)

• Multiple validation metrics should be applied between test and analysis which comprehensively identify modeling deficiencies, evaluate parameter importance, and propose required model changes.

• Building block approach to model calibration breaks up the problem into more manageable subsystems

The objective of crash certification by analysis achievable using

similar methodologies