nanotechnologynanotechnology understanding small systems rogers pennathur adams 0 ~~~,~~:~~p boca...

8
Nanotechnology Understanding Small Systems Rogers Pennathur Adams 0 Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an lnforma business

Upload: others

Post on 18-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Nanotechnology Understanding Small Systems

    Rogers Pennathur Adams

    0 ~~~,~~:~~p Boca Raton London New York

    CRC Press is an imprint of the Taylor & Francis Group, an lnforma business

  • Contents

    Preface

    Acknowledgments

    Authors

    CHAPTER 1 Big Picture and Principles of the Small World

    1.2 UNDERSTANDING THE ATOM: EX NIH/LO NIHIL FIT

    1.3 NANOTECHNOLOGY STARTS WITH A DARE: FEYNMAN'S BIG LITTLE

    xiii

    XV

    xvii

    1 3

    CHALLENGES 10

    1.4 WHY ONE-BILLIONTH OF A METER ISA BIG DEAL 14

    1.5 THINKING IT THROUGH: THE BROAD IMPLICATIONS OF NANOTECHNOLOGY 17

    1.5.1 Gray Goo

    1.5.2 Environmental Impact

    1.5.3 The Written Word

    1.6 THE BUSINESS OF NANOTECH: PLENTY OF ROOM AT THE BOTTOM UNE TOO

    1.6.1 Products

    HOMEWORK EXERCISES

    Short Answers

    Writing Assignments

    CHAPTER 2 lntroduction to Miniaturization

    2.1 BACKGROUND: THE SMALLER, THE BETTER

    2.2 SCALING LAWS

    2.2.l The Elephant and the Flea

    2.2.2 Scaling in Mechanics

    2.2.3 Scaling in Electricity and Electromagnetism

    2.2.4 Scaling in Optics

    19

    20

    21

    23

    25

    25

    27

    27

    29 29

    30

    30

    33

    37

    39

    V

  • vi • Contents

    2.2.5 Scaling in Heat Transfer

    2.2.6 Scaling in Fluids

    2.2.7 Scaling in Biology

    2.3 ACCURACY OF THE SCALING LAWS

    HOMEWORK EXERCISES

    Short Answers

    CHAPTER 3 lntroduction to Nanoscale Physics 3.1 BACKGROUND: NEWTON NEVER SAW A NANOTUBE

    3.2 ONE HUNDRED HOURS AND EIGHT MINUTES OF NANOSCALE

    41

    43

    45

    47

    49

    52

    53 53

    PHYSICS 53

    3.3 THE BASICS OF QUANTUM MECHANICS 55

    3.3.1 Atomic Orbitals (Not Orbits)

    3.3.2 Electromagnetic Waves 3.3.2.1 How Electromagnetic Waves Are Made

    3.3.3 The Quantization of Energy

    3.3.4 Atomic Spectra and Discreteness

    3.3.5 The Photoelectric Effect

    3.3.6 Wave-Particle Duality: The Double-Slit Experiment 3.3.6.1 Bullets 3.3.6.2 Water Waves 3.3.6.3 Electrons

    3.3.7 The Uncertainty Principle

    3.3.8 Particle in a Well

    3.4 SUMMARY

    HOMEWORK EXERCISES

    CHAPTER 4 Nanomaterials

    4.1 BACKGROUND: MATTER MATTERS

    4.2 BONDING ATOMS TO MAKE MOLECULES AND SOLIDS

    4.2.l Ionic Bonding

    4.2.2 Covalent Bonding

    4.2.3 Metallic Bonding

    4.2.4 Walking through Waals: van der Waals Forces 4.2.4.1 1he Dispersion Force

    4.2.4.2 Repulsive Forces 4.2.4.3 1he van der Waals Force versus Gravity

    55

    59

    61

    62

    63

    65

    69 69 69 70

    73

    75

    79

    80

    85 85

    85

    86

    89

    90

    90 92 92 93

  • Contents • vii

    4.3 CRYSTAL STRUCTURES 97 4.4 STRUCTURES SMALL ENOUGH TO BE DIFFERENT (AND USEFUL) 99

    4.4.1 Particles 99 4.4.1.1 Colloidal Particles 104

    4.4.2 Wir es 104

    4.4.3 Films, Layers, and Coatings 107

    4.4.4 Porous Materials 108

    4.4.5 Small-Grained Materials 110

    4.4.6 Molecules 113 4.4.6.1 Carbon Fullerenes and Nanotubes 114 4.4.6.2 Dendrimers 118 4.4.6.3 Mice lies 120

    4.5 SUMMARY 121

    HOMEWORK EXERCISES 122

    CHAPTER 5 Nanomechanics 127

    5.1 BACKGROUND: THE UNIVERSE MECHANISM 127

    5.1.1 Nanomechanics: Which Motions and Forces Make the Cut? 128

    5.2 A HIGH-SPEED REVIEW OF MOTION: DISPLACEMENT, VELOCITY, ACCELERATION, AND FORCE 129

    5.3 NANOMECHANICAL OSCILLATORS: A TALE OF BEAMS AND ATOMS 132

    5.3.1 Beams 133 5.3.1.1 Free Oscillation 133 5.3.1.2 Free Oscillation from the Perspective of Energy

    (and Probability) 136 5.3.1.3 Forced Oscillation 138

    5.3.2 Atoms 144 5.3.2.1 The Lennard-Jones Interaction: How an Atomic Bond Is

    Like a Spring 144 5.3.2.2 The Quantum Mechanics of Oscillating Atoms 149 5.3.2.3 The Schrödinger Equation and the Correspondence Principle 154 5.3.2.4 Phonons 159

    5.3.3 Nanomechanical Oscillator Applications 162 5.3.3.1 Nanomechanical Memory Elements 163 5.3.3.2 Nanomechanical Mass Sensors: Detecting Low

    Concentrations 165

    5.4 FEELING FAINT FORCES 170

    5.4.1 Scanning Probe Microscopes (SPMs) 170

  • viii • Contents

    5.4.1.l Pushing Atoms around with the Scanning Tunneling Microscope (STM) 170

    5.4.1.2 Skimming across Atoms with the Atomic Force Microscope (AFM) 171

    5.4.1.3 Pulling Atoms Apart with the Atomic Force Microscope 176 5.4.1.4 Rubbing and Mashing Atoms with the Atomic Force

    Microscope 178

    5.4.2 Mechanical Chemistry: Detecting Molecules with Bending Beams 181

    5.5 SUMMARY 185

    HOMEWORK EXERCISES

    CHAPTER 6 Nanoelectronics

    6.1 BACKGROUND: THE PROBLEM (OPPORTUNITY)

    6.2 ELECTRON ENERGY BANDS

    6.3 ELECTRONS IN SOLIDS: CONDUCTORS, INSULATORS, AND SEMICONDUCTORS

    6.4 FERMI ENERGY

    6.5 THE DENSITY OF STATES FOR SOLIDS

    6.5.1 Electron Density in a Conductor

    6.6 TURN DOWN THE VOLUME! (HOW TO MAKE A SOLID ACT MORE LIKE AN ATOM)

    6.7 QUANTUM CONFINEMENT

    6.7.1 Quantum Structures 6.Zl.1 Uses for Quantum Structures

    6.7.2 How Small Is Small Enough for Confinement? 6.Z2.l Conductors: 1he Metal-to-Insulator Transition 6.Z2.2 Semiconductors: Confining Excitons

    6.7.3 The Band Gap ofNanomaterials

    6.8 TUNNELING

    6.9 SINGLE ELECTRON PHENOMENA

    6.9.l Two Rules for Keeping the Quantum in Quantum Dot 6.9.1.l Rule 1: 1he Coulomb Blockade 6.9.1.2 Rule 2: Overcoming Uncertainty

    6.9.2 The Single-Electron Transistor

    6.10 MOLECULAR ELECTRONICS

    6.10.l Molecular Switches and Memory Storage

    6.11 SUMMARY

    HOMEWORK EXERCISES

    185

    191

    191

    191

    194

    197

    199

    202

    202

    205

    205 207

    208 209 211

    213

    214

    220

    220

    220 223

    224

    227

    230

    232

    232

  • fliAPTER 7 Nanoscale Heat Transfer

    7.1 BACKGROUND: HOT TOPIC

    7.2 ALL HEAT IS NANOSCALE HEAT

    7.2.1 Boltzmann's Constant

    Contents • ix

    237

    237

    237

    238

    7.3 CONDUCTION 239

    7.3.1 Tue Thermal Conductivity ofNanoscale Structures 241 7.3.1.1 Ihe Mean Free Path and Scattering of Heat Carriers 243 7.3.1.2 Ihermoelectrics: Better Energy Conversion with

    Nanostructures 245 7.3.1.3 Ihe Quantum of1hermal Conduction 247

    7.4 CONVECTION 249

    7.5 RADIATION 250

    7.5.1 Increased Radiation Heat Transfer: Mind the Gap! 250

    7.6 SUMMARY 253

    HOMEWORK EXERCISES 253

    t:t-iAPTER 8 Nanophotonics 257

    8.1 BACKGROUND: THE LYCURGUS CUP AND THE BIRTH OF THE PHOTON 257

    8.2 PHOTONIC PROPERTIES OF NANOMATERIALS

    8.2.l Photon Absorption

    8.2.2 Photon Emission

    8.2.3 Photon Scattering

    8.2.4 Metals 8.2.4.1 Permittivity and the Free Electron Plasma 8.2.4.2 Ihe Extinction Coefficient of Meta[ Particles 8.2.4.3 Colors and Uses of Gold and Silver Particles

    8.2.5 Semiconductors 8.2.5.l Tuning the Band Gap ofNanoscale Semiconductors 8.2.5.2 Ihe Colors and Uses ofQuantum Dots 8.2.5.3 Lasers Based on Quantum Confinement

    8.3 NEAR-FIELD LIGHT

    8.3.1 Tue Limits ofLight: Conventional Optics

    8.3.2 Near-Field Optical Microscopes

    8.4 OPTICAL TWEEZERS

    8.5 PHOTONIC CRYSTALS: A BAND GAP FOR PHOTONS

    8.6 SUMMARY

    HOMEWORK EXERCISES

    258

    258

    259

    260

    261 262 264 267

    268 268 269 271

    274

    274

    276

    279

    280

    281

    281

  • x • Contents

    CHAPTER 9 Nanoscale Fluid Mechanics

    9.1 BACKGROUND: BECOMING FLUENT IN FLUIDS

    9.1.l Treating a Fluid the Way lt Should Be Treated: Tue Concept of a Continuum 9.1.1.l Fluid Motion, Continuum Style: The Navier Stokes

    Equations 9.1.1.2 Fluid Motion: Molecular Dynamics Style

    9.2 FLUIDS AT THE NANOSCALE: MAJOR CONCEPTS

    9.2.1 Swimming in Molasses: Life at Low Reynolds Numbers 9.2.1.1 Reynolds Number

    9.2.2 Surface Charges and the Electrical Double Layer 9.2.2.1 Surface Charges at Interfaces 9.2.2.2 Gouy-Chapman-Stern Model and Electrical Double

    Layer(EDL) 9.2.2.3 Electrokinetic Phenomenon

    9.2.3 Small Particles in Small Flows: Molecular Diffusion

    9.3 HOW FLUIDS FLOW AT THE NANOSCALE

    9.3.1 Pressure-Driven Flow

    9.3.2 Gravity-Driven Flow

    9.3.3 Electroosmosis

    9.3.4 Superposition of Flows

    9.3.5 Ions and Macromolecules Moving through a Channel 9.3.5.1 Stokes Flow around a Particle 9.3.5.2 The Convection-Diffusion-Electromigration Equation:

    285

    285

    285

    287 293

    294

    295 295

    298 298

    300 302

    304

    308

    309

    312

    313

    317

    318 318

    Nanochannel Electrophoresis 324 9.3.5.3 Macromolecules in a Nanojluidic Channel 327

    9.4 APPLICATIONS OF NANOFLUIDICS 329

    9.4.1 Analysis of Biomolecules: An End to Painful Doctor Visits? 330

    9.4.2 ,EO Pumps: Cooling Off Computer Chips 331

    9.4.3 Other Applications 331

    9.5 SUMMARY 334

    HOMEWORK EXERCISES 334

    CHAPTER 10 Nanobiotechnology 337 10.1 BACKGROUND: OUR WORLD IN A CELL 337

    10.2 INTRODUCTION: HOW BIOLOGY "FEELS" AT THE NANOMETER SCALE 339

  • Contents • xi

    10.2.1 Biological Shapes at the Nanoscale: Carbon and Water Are the Essential Tools 339

    10.2.2 Inertia and Gravity Are lnsignificant: Tue Swimming Bacterium 340

    10.2.3 Random Thermal Motion 342

    10.3 THE MACHINERY OF THE CELL 345

    10.3.1 Sugars Are Used for Energy (But Also Structure) 345 10.3.1.1 Glucose 346

    10.3.2 Fatty Acids Are Used for Structure (But Also Energy) 348 10.3.2.1 Phospholipids 350

    10.3.3 Nucleotides Are Used to Store Information and Carry Chemical Energy 353 10.3.3.1 Deoxyribonucleic Acid (DNA) 355 10.3.3.2 Adenosine Triphosphate (ATP) 358

    10.3.4 Amino Acids Are Used to Make Proteins 10.3.4.1 ATP Synthase

    359 361

    10.4 APPLICATIONS OF NANOBIOTECHNOLOGY 364

    364

    364

    365

    365

    10.4.l Biomimetic Nanostructures

    10.4.2 Molecular Motors

    10.5 SUMMARY

    HOMEWORK EXERCISES

    Index 369