nanomechanics and mesoscopic phonons · usual cb theory does not apply since the gate capacitance...

40
nanomechanics nanomechanics and and mesoscopic mesoscopic phonons phonons Courtesy CT-Cnyugen (Berkeley)

Upload: others

Post on 23-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

  • nanomechanicsnanomechanics andand mesoscopicmesoscopic phononsphonons

    Courtesy CT-Cnyugen (Berkeley)

  • Smaller, cheaper, faster, lower power consumption

    “Phones of the future”: NEM-devices are in the right frequency range (1-5 GHz) to replace elements in cell phones

    Better frequency selectivity (higher Q)

    Bulk passive components replaced by smaller size MEMS/NEMS components

    New sensor applications

    Why NEMS? Device applicationsWhy NEMS? Device applications

    needed: high Q; high frequency

    Nanotube RAM (including movie): http://www.nantero.com/index.html

  • mass sensing on the level of single moleculesmass sensing on the level of single molecules

    Doubly-clamped beamDoubly-clamped beam

    m

    M

    0.0 0.5 1.0 1.5 2.00.0

    0.2

    0.4

    0.6

    0.8

    1.0

    ω / ω0

    Am

    plitu

    de ∂ω ω0 012min

    ~Q

    mass loading

    QmM /min ≈∂f0 L × w × t (µm) Meff Q ∂ mmin (d)

    7.7 MHz 10 x 0.2 x 0.1 230 fg 10,000 1.4×108 " " " 100,000 1.4×107

    380 MHz 1 x 0.05 x 0.05 3 fg 10,000 1.8×106 " " " 100,000 1.8×105

    7.7 GHz 0.1 x 0.01 x 0.01 23 ag 10,000 1400 " " " 100,000 140

    low M (high f); high Q

  • carboncarbon--nanotube nanotube oscillators towards oscillators towards zeptogram zeptogram detectiondetection

    M. Nishio et al. APL 86 (2005) 133111

  • nanorelaysnanorelays: : lowlow--powerpower mechanical switchesmechanical switches

    S.N. Cha et al. APL 86 (2005) 083105 S.W. Lee et al. Nanoletters (2004)

  • nanotubenanotube--nanomechanicsnanomechanics: rotator: rotator

    rotating mirror

    low-friction internal motion of the shells of a multi-wall nanotube makes motion possible

    Fennimore et al, Nature 286 (1999) 2148

  • biobio--nanomechanics nanomechanics IIII

    bio-motors: ATP fuelled biomotor with a fluorescent filament of a few micron length attached (time between pictures 133 ms)

    H. Nori et al. Nature 386 (1997) 299

  • nanomechanicsnanomechanics of breaking of breaking an atomic gold wirean atomic gold wire

    estimate force:

    nN2

    N/m10

    eV 3 nm2.0

    0

    2

    2

    0

    ==

    ≈∂

    ∂≈

    ==

    kxFx

    V(x)k

    Ex

    b

    G. Rubio et al., PRL 67 (1996) 2302

  • vibrationalvibrational modes in Ptmodes in Pt--HH22--Pt junctionsPt junctions

    lithographic break junctionInelastic tunneling spectroscopy (IETS)

    Djukic et al. cond/mat 0409640

  • -0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0,0

    45

    50

    85

    90PtD2 stretching

    Ener

    gy (m

    eV)

    δX (A)

    stretching the contact: longitudinal or stretching the contact: longitudinal or transversal modes?transversal modes?

    -100 -80 -60 -40 -20 0 20 40 60 80 100

    -0,1

    0,0

    0,1

    0,981,001,021,04

    same as stretched by 0.05 nm

    d2I/d

    V2 (a

    .u)

    dI/d

    V (G

    0)

    Energy (meV)

    mk

  • CasimirCasimir force: a force of nothingforce: a force of nothing

    L∫

    ∑∑∞

    =

    =

    ==

    0

    1

    d :cavity theoutside

    :cavity theinside

    nnL

    cE

    nL

    cEnk

    h

    hh

    π

    πω

    2

    0 0

    1 0

    12force

    12

    0)0('',121)0(',0)0(

    ......)0("720

    1)0('121)0(

    21d)()(

    :Maclauren-Euler

    d

    Lc

    LcE

    fff nf(n)

    fffnnfnf

    nnnL

    cE

    n

    n

    hh

    h

    ππ

    π

    =⇒−=∆

    =−==⇒=

    −+−=−

    −=∆

    ∑ ∫

    ∑ ∫

    =

    =

    can be generalized to other geometries (3D, plate-sphere), temperature effects and non-ideal conductors

  • vacuum fluctuations: vacuum fluctuations: Casimir Casimir effecteffectIn absence of electrostatic forces, attractive force between plate and sphere: F ∝ z-3

    z-3

    z-2

    MEMS technology(MicroElectroMechanical Systems)

    H.B. Chan et al., Science 291 (2001) 1941

  • mesoscopicmesoscopic phononsphonons

    Tkhv

    B

    λνmax max

    = ≈ =c hc

    k Tnm

    TB3112

    Inte

    nsity

    0 2 4 6 8 10 12 14

    3max ≈Tk

    hv

    B

    Planck Distribution

    λν

    max

    max

    =

    =

    11625

    nmGHz

    λ µν

    max

    max

    =

    =

    11625

    mMHz

    at 10K,

    at 10 mK,

    By nanofabrication techniques, we can enter domain where particle wavelength is comparable to channel dimensions.

    Courtesy Keith Schwab

  • the thermal conductance “quantum”

    [ ]

    Thk

    TJG

    TJ

    kkv

    ekvkkJ

    vnJ

    BTOTth

    TTOT

    Tk B

    3

    d

    dd)(;

    11)()()()(

    2d

    220

    /

    π

    ηηωηηω

    ωωηωηωπ

    ω

    η

    ω

    =∆

    =

    ∆=−−=

    =−

    ==

    =

    ∂∂−+

    ∞−+∫

    h

    h

    h

    h

    the thermal conductance “quantum”derivation analogous to that of the electrical conductance quantum but

    look at the energy flux (instead of electron flux) and use Bose-Einstein statistics(consider two reservoirs with a T difference ∆T coupled by a 1D channel)

    Wiedemann-Franz law:Gth = LGT, L= Lorentz constantWith G0 = e2/h one finds Gth = π2kB2T/3h

    the existence of a thermal conductance quantum also indicates that it is difficult to cool nano-objects to their ground state !!

  • quantum phonon transportquantum phonon transport

    g0 = π2kB2 T/3h

    Schwab et al, Nature 404 (2000) 974

  • eigenfrequencieseigenfrequencies cantilevers and beamscantilevers and beams

    classical elasticity, Euler-Bernoulli theory:

    solve and use appropriate boundary conditions

  • top-down fabrication: surface nanomachining

    1.starting material:heterostructurewith a singlestructural layer

    4.selective etch:removes thesacrificial layer;final structuresare suspended

    3.pattern transfer:anisotropic etch definesstructurevertically

    2.mask definition:by optical ande-beam lithographyand thin film deposition

    • high resolution e-beam lithography (x,y) • mono-crystalline epitaxial layers (z)

    • GaAs-based systems• Si-based systems (SOI)• Silicon Carbide

  • eigenfrequencieseigenfrequencies cantilevercantilever

    0)(''')(''0)0(')0(

    ====LL ξξ

    ξξ

    0)cos()cosh(1 =+ kLkL)12(

    2......,,6941.4,8751.1; 21 −==== nLk nnn

    παααα

    ρπα

    12212 223 E

    LHfWHI nn =⇒=

    boundary conditions:

    for the first modes: not harmonicsound velocity: v = (E/ρ)1/2

  • eigenmodeseigenmodes of cantilever of cantilever nanotube nanotube

    TEM work: Gao et al, PRL 85 (2000) 622 P. Poncheral et al., Science 283 (1999) 1513

  • eigenfrequencieseigenfrequencies double clamped beamsdouble clamped beams

    0)(')(0)0(')0(

    ====

    LL ξξξξ

    0)cos()cosh(1 =− LkLk nn)12(

    2......,,8532.7,7300.4; 21 +==== nLk nnn

    πββββ

    ρπβ

    12212 223 ELHfWHI nn =⇒=

    boundary conditions:

    silicon:L=1 µm, H=W=0.1 µm, f0= 1GHz

    nanotube:L= 100 nm, d = 1.4 nm, f0= 5 GHz

  • double clamped strings/beamsdouble clamped strings/beams

    022

    4

    4

    =−∂∂

    −∂∂ K

    zuT

    zuEI

    APL 78 (2001) 162

    frequency ∝ L-1frequency ∝ L-2

  • magnetomotive method: conducting beam (50 Ω)

    V

    Cleland and Roukes, Sensors and Actuators 72, 256 (1999)

  • example of a measurementexample of a measurement

    Rm ∝ B2

    Q decreases with B

    For Q > 10: response of the damped, driven the same as that of a harmonic oscillator.Lorentzian peak shape; the width defines the Q-factor.

  • increasing drive: nonlinear response increasing drive: nonlinear response ((DuffingDuffing oscillator)oscillator)

    “Jimmy Hendrix regime”

    Husain et al, APL 83 (2003) 1240

    interesting for applications (parametric amplification) and for new quantum effects (Thorwart et al. (2005))

  • quantumquantum--limited detection of motionlimited detection of motion

    detection of gravitational waves

    The MiniGRAIL detector is a cryogenic 68 cm diameter spherical gravitational wave antenna made of CuAl(6%) alloy with a mass of 1400 Kg, a resonance frequency of 2.9 kHz and a bandwidth around 230 Hz, possibly higher. The quantum-limited strain sensitivity dL/L would be ~4x10-21. The antenna will operate at a temperature of 20 mK. An other similar detector is being built in São Paulo, which will strongly increase the chances of detection by looking at coincidences. The sources we are aiming at are for instance, non-axisymmetricinstabilities in rotating single and binary neutron stars, small black-hole or neutron-star mergers etc.

    MiniGRAIL: Frossati (Leiden University)

  • quantum effects in a harmonic oscillatorquantum effects in a harmonic oscillator

    mpkxH

    22

    21

    21

    +=

    +=⇒

    21nEn ωh

    -2 0 2

    E=7hv/2

    E=5hv/2

    E=3hv/2

    n=0

    n=3

    n=2

    n=1

    E=hv/2

    Ene

    rgy

    position

    |0>

    |1>

    |2>

    zero-point motion:

    00 ωm

    x h=

    energy stored in the oscillator:1e2 / −

    += TkBE ωωω

    h

    hh

    quantum regime if occupation number (Nth) is of order one: 1 GHz ⇒ Tsample < 50 mK

  • zero point motionzero point motion

    expected rms displacement noise of a 4.4 GHz nanotube resonator as a function of temperature

    needed: high Q; high frequency, low mass

  • MEMS devices as electrometersMEMS devices as electrometers

    •measured sensitivity (300 K): 0.1 eHz-1/2

    •ultimate sens. (300 K): 2 x 10 -5 eHz-1/2

    Cleland and Roukes, Nature 392 (1998) 160

  • towardstowards zerozero--point motion detection using point motion detection using a SET and a mixing techniquea SET and a mixing technique

    00 ωm

    x h=

    x0 a factor 100 above the quantum limit; Nth = 10

    Knobel and Cleland, Nature 424 (2003) 291

  • almostalmost quantum detection limit with RFquantum detection limit with RF--SETSET

    22

    21

    21

    RMSB xmTk ω=

    x0 a factor 4.3 above the quantum limit; Nth = 58

    LaHaye et al., Science 304 (2004) 74

  • Coulomb blockade in SET that can moveCoulomb blockade in SET that can move

    • usual CB theory does not apply since the gate capacitance is distance dependent

    • mechanical degrees of freedom via classical theory of elasticity

    • nanotube modeled as an elastic rod

    • applicable to other suspended structures

    • nanotube: hope for high Q-factors (smooth on a nanometer level)

    S. Sapmaz et al., PRB 67 (2003) 235414

  • bottombottom--up fabrication: suspended up fabrication: suspended nanotubesnanotubes

    AFM markers

    catalyst

    ISWNTs

    electrodes catalyst + nanotubes

    electrodes ISWNT lateral Gate

  • bottombottom--up fabrication: suspended up fabrication: suspended nanotubesnanotubes

    Aunanotube

    Crbefore etchingSiO2

    doped-Si (backgate)

    after etching in acid (BHF)

    Nygård and Cobden, APL 79 (2001) 4216

  • electrostatic term in Coulomb Blockade is electrostatic term in Coulomb Blockade is displacement dependentdisplacement dependent

    Σ

    +≠

    CQneW

    2)( 2

    Electrostatic force (z

  • the the nanotube nanotube moves in discrete steps every time moves in discrete steps every time an additional electron tunnels onto it an additional electron tunnels onto it

    0 10

    1

    2

    3

    ~VG

    2/3

    ~VG

    2

    z max

    (nm

    )V

    G (V)

    S. Sapmaz et al., PRB 67 (2003) 235414

    r = 0.65

    r = 0.65 nm L = 500 nmR = 100 nmT0= 0; CR=CL=0

    weak bending:zmax < r, zmax ∝ VG2

    strong bending:zmax > r, zmax ∝ VG2/3

    As soon as zmax>d, the strain due to deformation has to be taken into account

  • eV

    new equilibrium position

    l

    electronelectron--vibron coupling in a movable dotvibron coupling in a movable dot

    xxmm

    pH λω ++= 2202

    21

    2)

    λ: e-ph coupling

    ωλ

    mg hl

    l

    l=

    == 0

    2

    0212

    21

    nmPRL,2

    beforeafterRL,RL, | Γ=ΨΨΓ⇒Γ

    in practice: steps visible if g > 0.1

    Frank - Condon factors determine step heights in IV

    !)(|)(

    20 n

    gexxPng

    n

    =Ψ−Ψ= lFrank-Condon factors: overlap

    between the harmonic oscillator wave functions in the

    initial ground state and the displaced final electronic state Braig and Flensberg, PRB 68 (2003) 205323

  • FrankFrank--Condon factors reproduce step heights in Condon factors reproduce step heights in the experiment reasonably well

    g = 0.5g = 0.95g = 0.9

    the experiment reasonably well

    e-ph coupling constant is about 1 and approximately length and gate independent: displacement ~1 pm !

    a nanotube of 1 micron length acts as a single quantum harmonic oscillator (ћω >> kBT) !!!

    A better fit may be obtained if the influence of a gate voltage and asymmetric coupling is considered (Braig and Flensberg, 2003) or if non-equilibrium phonons are present (Mitra, Aleiner and Milles, 2004); Negative Differential Resistance not understood

  • some some vibrationalvibrational modes modes nanotubesnanotubes

    squashing modef~0.54-1.0 THz, E~2.2-4.2 meV

    bending mode

    f~2.5 GHz-25 MHz(100 nm-1 µm)E~10-0.1 µeV

    Length indep.Length dep.

    radial breathing modef~4.5-6.2 THzE~18-25 meV

    f~1.3-0.13 THz(100 nm-1 µm)E~600-60 µeV

    stretching (longitudinal) mode

  • data fit longitudinal (stretching) modes the data fit longitudinal (stretching) modes the bestbest

    stretching

    RBM

    bendingd ≈ 1.5 nm E = 0.1 µV L[µm]-2

    E = 110 µV L[µm]-1

    E = 18.7 meV

    E = 1.67 meV L[µm]-1elec

    0.0 0.5 1.0

    10-4

    10-3

    10-2

    10-1

    100

    101

    E (m

    eV)

    L (µm)

    Sapmaz et al. PRL 96 (2006) 26801