nano-structured optics for gw detectors

22
1 A. Bunkowski Nano-structured Optics for GW Detectors Nano-structured Optics for GW Detectors A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel in collaboration with T. Clausnitzer, S. Fahr, E.-B. Kley, and A. Tünnermann Institute of Applied Physics, Jena Max-Planck-Institut Für Gravitationsphysik (Albert-Einstein-Institut) Universität Hannover

Upload: tamasine-mitsuyama

Post on 02-Jan-2016

49 views

Category:

Documents


2 download

DESCRIPTION

Max-Planck-Institut Für Gravitationsphysik (Albert-Einstein-Institut). Universität Hannover. Nano-structured Optics for GW Detectors. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel in collaboration with T. Clausnitzer, S. Fahr, E.-B. Kley, and A. Tünnermann - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Nano-structured Optics for GW Detectors

1A. Bunkowski Nano-structured Optics for GW Detectors

Nano-structured Optics for GW Detectors

A. Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel

in collaboration with

T. Clausnitzer, S. Fahr, E.-B. Kley, and A. Tünnermann

Institute of Applied Physics, Jena

Max-Planck-InstitutFür Gravitationsphysik(Albert-Einstein-Institut)

UniversitätHannover

Page 2: Nano-structured Optics for GW Detectors

2A. Bunkowski Nano-structured Optics for GW Detectors

Outline

Summary of:All-reflective Interferomtry

(with multilayer coatings)

Outlook to:High reflective diffractive structures

(without multilayer coatings)

Page 3: Nano-structured Optics for GW Detectors

3A. Bunkowski Nano-structured Optics for GW Detectors

Motivation #1

Interferometers beyond LIGOII (MW of power)

Transmission Absorption Thermal problems

All-reflective interferometers:

• Allow opaque test mass materials • New interferometer topologies

Page 4: Nano-structured Optics for GW Detectors

4A. Bunkowski Nano-structured Optics for GW Detectors

MI with all-reflective beamsplitter

Page 5: Nano-structured Optics for GW Detectors

5A. Bunkowski Nano-structured Optics for GW Detectors

What kind of gratings?

Coating below Coating on top

Period defines # of orders & direction

Grating equation: d>>scalar approachdrigorous theories (RCWA, Modal method)d<<effective medium theories (ETM)

Page 6: Nano-structured Optics for GW Detectors

6A. Bunkowski Nano-structured Optics for GW Detectors

1R

Cavity couplers

1st order Littrow 2nd order Littrow

Need high efficiency

(which is hard to achieve)

Only low efficiency

(3 ports are more Complicated)

99.62% achieved(Finesse of 1580)

A. Bunkowski et al, Applied Optics (in press) http://ao.osa.org/upcoming_pdf.cfm?id=66481

Input

0R1R

Input

0R2R

InputInput

Appl. Opt. (in press)

Page 7: Nano-structured Optics for GW Detectors

7A. Bunkowski Nano-structured Optics for GW Detectors

Cavity couplers

1st order Littrow 2nd order Littrow

Need high efficiency

(which is hard to achieve)

Only low efficiency

(3 ports are more Complicated)

A. Bunkowski et al, Applied Optics (in press) http://ao.osa.org/upcoming_pdf.cfm?id=66481

99.62% achieved(Finesse of 1580)

A. Bunkowski et al, Applied Optics (in press) http://ao.osa.org/upcoming_pdf.cfm?id=66481

Input

0R1R

Input

0R2R

InputInput

1R

Page 8: Nano-structured Optics for GW Detectors

8A. Bunkowski Nano-structured Optics for GW Detectors

3-port couplers

A. Bunkowski et al, Opt. Lett. 30, 1183 (2005)R. Schnabel et al, Opt. Lett. 31 658 (2006)

A. Bunkowski et al, Opt. Lett. 29, 2342 (2004)

A. Bunkowski et al, Opt. Lett. (in press) http://ol.osa.org/upcoming_pdf.cfm?id=69970

Page 9: Nano-structured Optics for GW Detectors

9A. Bunkowski Nano-structured Optics for GW Detectors

Angle resolved scattering

-1st +1st

diffraction ordersdue to e-beamwriting errors

backgrounddue to statistical roughness

„Variable shaped beam“

apertures

shapedbeam

electronbeam

work field stitching

E-beam exposure

Page 10: Nano-structured Optics for GW Detectors

10A. Bunkowski Nano-structured Optics for GW Detectors

Grating beneath coating

Small fill factor

same diffraction efficiency

systematical errorsreduced

statistical backgroundreduced

groove depth 40nmfill factor 50%

T. Clausnitzer et. al., Optics Express, 13, 4370 (2005)

Page 11: Nano-structured Optics for GW Detectors

11A. Bunkowski Nano-structured Optics for GW Detectors

diffraction efficiency1.5% 0.03%

systematical errors

statistical background

Large fill factor

groove depth 40nmfill factor 82%

Grating beneath coating II

T. Clausnitzer et al, Optics Express, 13, 4370 (2005)

Page 12: Nano-structured Optics for GW Detectors

12A. Bunkowski Nano-structured Optics for GW Detectors

Conclusion #1

Summary:• High quality all-reflective components • Demonstration of new cavity coupling concept • Reduction of scattering loss

Outlook:• Further reduction of loss• Scale to large test mass• Suspended 10 m all-reflected cavity to be built in Glasgow later this year

Page 13: Nano-structured Optics for GW Detectors

13A. Bunkowski Nano-structured Optics for GW Detectors

Motivation #2

S. Penn et.al, LIGO-P050049-00-R (2005)

Several fundamental noise sources as currently estimated for advanced LIGO:

Page 14: Nano-structured Optics for GW Detectors

14A. Bunkowski Nano-structured Optics for GW Detectors

Beating Coating Noise

The high refractive material tantala(Ta2O5) has been identified to be themain source of coating thermal noise.

Some ideas so far:

• Less tantala in stack

Innocenzo Pinto’s talk

• Doping of tantala with TiO2

Harry et al, Appl. Opt. 45, 1569 (2006)

• Total internal reflection Adalberto Giazotto’s talk

V. Braginsky and S. Vyatchanin,

Phys. Lett. A 324, 345 (2004)

• Double mirrors: F. Ya. Khalili, Phys. Lett. A 334, 67 (2005)

Substrate

Coating stack

AR-Coating stack

Page 15: Nano-structured Optics for GW Detectors

15A. Bunkowski Nano-structured Optics for GW Detectors

Coating Thermal Noise

Grating waveguide reflector AR-Coating stack

Substrate

Another approach:Substrate

Coating stack

Page 16: Nano-structured Optics for GW Detectors

16A. Bunkowski Nano-structured Optics for GW Detectors

Grating waveguide Structures

see for example: Sharon et al, J. Opt. Soc. Am. A, 14 (1997)

nLow

(substrate)

nHigh

Interfere destructively

100%reflection

Total internal reflection

0R

1T

0T

waveguide

(Simplified ray picture)

Page 17: Nano-structured Optics for GW Detectors

17A. Bunkowski Nano-structured Optics for GW Detectors

Narrow reflection peak

Liu et al,Opt. Lett. 23, 1556 (1998)

Page 18: Nano-structured Optics for GW Detectors

18A. Bunkowski Nano-structured Optics for GW Detectors

Design width of reflection peak

d: periodg: groove depthr: ridge widths: film thicknessr/d: fill factor

g

n=1.45(substrate)

d

sn=2.04

r

Fill factor

g [

µm

]

[%]

Page 19: Nano-structured Optics for GW Detectors

19A. Bunkowski Nano-structured Optics for GW Detectors

Design width of reflection peak

Fill factor

g [

µm

]

[%]

X

1-R

Page 20: Nano-structured Optics for GW Detectors

20A. Bunkowski Nano-structured Optics for GW Detectors

Broadband mirror for 1550nm

Mateus et al, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 16, NO. 7, JULY 2004

Si

SiO2

Poly-Si

0dB reference mirror with R=98.5%

Page 21: Nano-structured Optics for GW Detectors

21A. Bunkowski Nano-structured Optics for GW Detectors

Conclusion #2

Summary:• High reflectivity is possible with single layerOutlook:• Check fabrication tolerances, finite size effects…• Design, build and test gratings• Think of better suited wave guide structures

Page 22: Nano-structured Optics for GW Detectors

22A. Bunkowski Nano-structured Optics for GW Detectors

great, greater, grating