nakdong poster vertical€¦ ·...

1
Shifts in Depositional Environments as a Natural Response to Anthropogenic Alterations: Nakdong Estuary, South Korea Joshua Williams , Timothy Dellapenna †‡ , Guanhong Lee § Department of Oceanography , Texas A&M University, College Station, Texas 77840 Department of Marine Sciences, Texas A&M University at Galveston, Galveston, Texas 77554 § Department of Oceanography , Inha University, Incheon, S. Korea 402751 *Corresponding Author: [email protected] , (409) 7404746 CEML 연안지형역학실험실 Abstract: The Nakdong Estuary, located within the coastal zone of Busan, South Korea, has been subjected to a series of engineered alterations typical of many eastern Asian estuaries. The construction of two estuarine dams (1934 and 1983) and numerous seawalls associated with land reclamation projects has altered the timing and alux of sediment, and resulted in three contrasting discharge energy regimes. Additionally, the impoundments have appreciably reduced the tidal prism by at least 50%. Consequently, vast geomorphologic changes have occurred including the development of aive new barrier islands. In order to assess the impacts of these modiaications, 19 vibracores were obtained throughout the estuary. The dispersal and accumulation of sediment was evaluated utilizing 210 Pb and 137 Cs radioisotope geochronology of 6 cores. Average sediment accumulation rates range from 2.19 cm yr 1 adjacent to the airst constructed dam to as high as 6.55 cm yr 1 in the middle region of the estuary. These high rates are further supported by comparison of bathymetric survey data from 1985 to 2009. Laser diffraction grain size analyses and Xradiographs revealed distinctive changes associated with dam construction, and correlation of events between cores conveys the episodic sedimentation corresponding to aloodgate releases. Ultimately, anthropogenic alterations have resulted in a shift from a tidedominated to a wavedominated estuary. The increase in sediment trapping efaiciency that has ensued resulting from extensive coastal construction provides the basis for reevaluating traditional facies models for estuaries. A conceptual model is developed here to characterize the alterations in sediment depositional patterns according to relative discharge energy of the adjacent aloodgate. Conclusions: The construction of two estuarine dams and numerous seawalls have greatly modiaied the sediment transport dynamics of the Nakdong Estuary. These modiaications have eliminated large areas of intertidal zone, and appreciably reduced the tidal prism and river discharge. Sediment alux to the estuary is restricted to aloodgate releases which produce high alow velocities and episodic deposition. The implications of these alterations are evident in a rapid geomorphologic shift from tidedominated to wavedominated. High sediment accumulation rates within the central estuary are due to a reduction in accommodation space in the upper estuary. Additional evidence for this reclassiaication occurs as a series of barrier islands that have developed postdam construction accompanied by a redistribution of facies. The increase in sediment trapping efaiciency that has ensued resulting from extensive coastal construction provides the basis for reevaluating traditional facies models for unaltered estuaries. The observations made within this study have allowed the development of a conceptual model for facies distribution according to relative discharge energy of the adjacent aloodgate. " " " " " " " " " " " " " " " " " " " ND 9 ND 8 ND 7 ND 2 ND 1 ND 6 ND 5 ND 4 ND 3 ND 19 ND 18 ND 17 ND 16 ND 15 ND 14 ND 13 ND 12 ND 11 ND 10 0 1 2 3 4 Kilometers ± Daejeh Dam Limit of Tidal Influence Nakdong River Eulsukdo Myungjido 2012 Shoreline Nakdong Dam MFG Noksan Dam CG WG Shinpyung- Changlim ID Hwachun ID Shinho ID Noksan ID Myungji RD JN SN JA DM DY MG BH NM South Korea Seoul Mokpo Busan West Nakdong River " Coring Sites Cross Section A-A' Cross Section B-B' Image © 2012 GeoEye Image © 2012 TerraMetrics Image © 2012 DigitalGlobe W. Nakdong River E. Eulsuk Channel W. Eulsuk Channel Fig. 1) Detailed study area map showing core sampling locations and cross sections. Noksan, Nakdong, and Daejeh Dam locations, channel names, barrier islands, and industrial (ID) and residential districts (RD) are indicated (WG=Western gate, CG=Control gate, MFG=Main aloodgate, JN=Jinudo, DM=Daemadeung, JA=Jangjado, BH=Bakhabdeung, SN=Sinjado, DY=Doyodeung, NM=Namutsitdeung, and MG=Maenggeummeorideung). 0 50 100 150 200 250 300 350 400 450 500 Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Average Discharge (10 7 m 3 ) Fig. 2) Average monthly discharge from the Nakdong River Estuary Barrage for the period of Jan. 1990 Aug. 2010. 0 250 500 750 1,000 1,250 1,500 1,750 2,000 Discharge (10 7 m 3 ) Fig. 3) Time series of total monthly discharge from the Nakdong River Estuary Barrage from Jan. 1990 Aug. 2010. Island " " " " " " " " " " " " " " " " " " " ND 9 ND 8 ND 7 ND 2 ND 1 ND 6 ND 5 ND 4 ND 3 ND 19 ND 18 ND 17 ND 16 ND 15 ND 14 ND 13 ND 12 ND 11 ND 10 0 1 2 3 4 0.5 Kilometers ± 1927 Shoreline " " " " " " " " " " " " " " " " " " " ND 9 ND 8 ND 7 ND 2 ND 1 ND 6 ND 5 ND 4 ND 3 ND 19 ND 18 ND 17 ND 16 ND 15 ND 14 ND 13 ND 12 ND 11 ND 10 0 1 2 3 4 0.5 Kilometers ± 1963 Shoreline " " " " " " " " " " " " " " " " " " " ND 9 ND 8 ND 7 ND 2 ND 1 ND 6 ND 5 ND 4 ND 3 ND 19 ND 18 ND 17 ND 16 ND 15 ND 14 ND 13 ND 12 ND 11 ND 10 0 1 2 3 4 0.5 Kilometers ± 1971 Shoreline " " " " " " " " " " " " " " " " " " " ND 9 ND 8 ND 7 ND 2 ND 1 ND 6 ND 5 ND 4 ND 3 ND 19 ND 18 ND 17 ND 16 ND 15 ND 14 ND 13 ND 12 ND 11 ND 10 0 1 2 3 4 0.5 Kilometers ± 1998 Shoreline A B C D Noksan Dam Nakdong Dam and Seawall Shinpyung- Changlim ID Hwachun ID Shinho ID Noksan ID Myungji RD JN SN JA MG BH NM DM SH Fig. 4) Historical shoreline changes of the Nakdong Estuary compiled from KHOA marine charts. Construction and initiation of current islands occurring between publication dates of charts are indicated on the respective chart. Methods: 19 Vibracores of 7.6cm diameter were collected between Oct. 912, 2012. Xradiographs taken at 64 kV for 1.6 mAS with a Medison Xray source and a Varian PaxScan® Amorphous Silicon Digital Imager. Grainsize analyses done via laser diffraction using a Malvern Mastersizer 2000 Particle Size Analyzer. 210 Pb activities were measured indirectly using 210 Po and counted by α spectroscopy using a Canberra surface barrier detector. Activity of 137 Cs measured by gamma spectroscopy (662 keV) using a semi planar intrinsic germanium detector coupled with CANBERRA DSA1000 16K channel integrated multichannel analyzer. Altimeter Data was collected with an EchoLogger AA400. Spatial analysis of data was done in ArcGIS ® software using a Sibson Area/ Natural Neighbor interpolation technique. ND 13 0 50 100 150 200 250 300 350 400 0 0.1 0.2 0.3 0.4 Depth (cm) 137 Cs (dpm g -1 ) y = -155.89ln(x) + 183.41 R² = 0.823 0 50 100 150 200 250 300 350 400 0.01 0.1 1 10 Depth (cm) 210 Pb XS (dpm g -1 ) ND 11 0 50 100 150 200 250 300 350 400 0 0.1 0.2 0.3 0.4 Depth (cm) 137 Cs (dpm g -1 ) y = -181.40ln(x) + 59.75 R² = 0.844 0 50 100 150 200 250 300 350 400 0.01 0.1 1 10 Depth (cm) 210 Pb XS (dpm g -1 ) ND 12 SAvg = 5.45 cm y -1 SAvg = 5.72 cm y -1 SAvg = 6.25 cm y -1 SAvg = 6.85 cm y -1 1964 1964 0 50 100 150 200 250 300 350 400 0 0.1 0.2 0.3 Depth (cm) 137 Cs (dpm g -1 ) y = -105.12ln(x) + 58.71 R² = 0.913 0 50 100 150 200 250 300 350 400 0.01 0.1 1 10 Depth (cm) 210 Pb XS (dpm g -1 ) 0 50 100 150 200 250 0 0.1 0.2 0.3 0.4 Depth (cm) 137 Cs (dpm g -1 ) y = -63.02ln(x) + 37.79 R² = 0.935 0 50 100 150 200 250 0.01 0.1 1 10 Depth (cm) 210 Pb XS (dpm g -1 ) ND 19 ND 18 SAvg = 2.91 cm y -1 SAvg = 2.82 cm y -1 SAvg = 2.03 cm y -1 SAvg = 2.36 cm y -1 1964 1964 y = -154ln(x) + 41.56 R² = 0.825 0 50 100 150 200 250 300 350 400 0.01 0.1 1 10 Depth (cm) 210 Pb XS (dpm g -1 ) 0 50 100 150 200 250 300 350 400 0 0.1 0.2 0.3 Depth (cm) 137 Cs (dpm g -1 ) ND 15 ND 18 SAvg = 4.48 cm y -1 SAvg = 4.91 cm y -1 1964 y = -91.19ln(x) + 63.47 R² = 0.816 0 50 100 150 200 250 0.01 0.1 1 10 Depth (cm) 210 Pb XS (dpm g -1 ) 0 50 100 150 200 250 0 0.1 0.2 0.3 0.4 0.5 0.6 Depth (cm) 137 Cs (dpm g -1 ) ND 13 SAvg = 4.26 cm y -1 SAvg = 3.98 cm y -1 1964 Fig. 5) Excess 210 Pb and 137 Cs proailes. Error bars for activity are indicated or occur within the range of the plot symbol. Regression line for 210 Pb xs and respective average accumulation rates (S Avg ) are shown within plot. Note different depth scales depending on core. 0 25 50 75 100 125 150 175 200 225 250 275 Depth (cm) 0 50 100 Grainsize Percentage 0 50 75 100 125 150 175 200 225 250 275 300 ND 14 ND 13 ND 12 0 50 75 100 125 150 175 200 225 250 275 300 325 350 375 0 50 100 Grainsize Percentage 0 50 100 Grainsize Percentage 0 50 75 100 125 150 175 200 225 250 275 300 325 350 375 ND 11 0 50 100 Grainsize Percentage ND 9 0 50 10 0 50 75 100 125 150 175 200 225 0 50 100 Grainsize Percentage 1.40 km 1.06 km 1.29 km 1.57 km 1964 1983 Cross Section A-A’ Shell Sand Silt Clay Fig. 6) Shore normal cross section through the W. Eulsuk Channel. Correlations are based on radiochemically derived data with minor depth change interpretations to respect grainsize proailes. Distances between cores are indicated and grainsize composition is represented as relative percentages. ND 17 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 Depth (cm) 0 50 100 Grainsize Percentage ND 15 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 0 50 100 Grainsize Percentage 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 ND 11 0 50 100 Grainsize Percentage ND 8 0 25 50 75 100 125 150 0 50 100 Grainsize Percentage ND 6 0 25 50 75 100 125 150 175 200 225 250 275 0 50 100 Grainsize Percentage 1.14 km 2.5 km 1.45 km 1.12 km 1964 1983 Cross Section B-B’ Shell Sand Silt Clay Fig. 7) Shore parallel cross section across the central portion of the Nakdong Estuary. Isochron identiaication is maintained from Cross Section AA’. ND 19 0 50 100 Grainsize Percentage 0 25 50 75 100 125 150 175 200 225 1934 1964 1983 130 cm 175 cm Depth (cm) Shell Sand Silt Clay Core Dist. (m) 1985 Depth (m) 2009 Depth (m) S Bath (cm yr -1 ) ND 11 112 -1.22 0.06 5.33 ND 12 148 -1.01 0.12 4.70 ND 17 63 -1.46 -0.70 3.18 ND 18 66 -0.61 0.03 2.67 Table 1) Bathymetric survey data and accumulation rates for cores located a maximum 150 m from survey points. Core 210 Pb S Avg (cm yr -1 ) 137 Cs S Avg (cm yr -1 ) Average (cm yr -1 ) ND 11 5.45 5.72 5.59 ND 12 6.25 6.85 6.55 ND 13 4.26 3.98 4.12 ND 15 4.48 4.91 4.69 ND 18 2.91 2.82 2.86 ND 19 2.03 2.36 2.19 Table 2) Comparison of radioisotope accumulation rates derived from 210 Pb xs and 137 Cs proailes. Averaged rates were used for correlation. " " " " " " " " " " " " " " " " " " " ND 9 ND 8 ND 7 ND 2 ND 1 ND 6 ND 5 ND 4 ND 3 ND 19 ND 18 ND 17 ND 16 ND 15 ND 14 ND 13 ND 12 ND 11 ND 10 0 1 2 3 4 0.5 Kilometers " Coring Sites Accumulation Rate 8.0 cm/yr 1.5 cm/yr ± Fig. 11) Interpolated sediment accumulation rates. Known values are based on radioisotope analyses. Correlations of isochrons between cores were used to calculate unknown rates. Letters correspond to conceptual model in Fig. 12. Fig. 9) Representative Xradiograph sections from core ND 12. Location within core and key features indicated. West Nakdong River Waves 0 50 100 0 50 100 Relative Energy % Tidal Currents Total Energy Marine-Dominated Mixed Energy 0 50 100 0 50 100 Relative Energy % Total Energy Marine-Dominated Discharge-Dominated Mixed Energy West Eulsuk Channel 0 50 100 0 50 100 Relative Energy % Total Energy Marine-Dominated Discharge-Dominated Mixed Energy East Eulsuk Channel Barrier Island Flood-Tidal Delta Offshore Sediments Central Basin Noksan Dam Nakdong Dam WG Nakdong Dam CG/MFG Barrier Island Offshore Sediments Dredged X X X X Barrier Island Flood-Tidal Delta Offshore Sediments Central Basin Bay Head Delta Relict Tidal Sand Bar Central Basin Fluvial Fluvial Bay Head Delta Dam Discharge Waves Tidal Currents Waves Tidal Currents Very Low Energy Environment Dam Discharge Flood-Tidal Delta A B C Fig. 12) Conceptual model for relative energy and facies distribution depending on dam discharge for a wavedominated estuary. A) No discharge released B) Periodic (weekly to monthly), low energy discharge C) Consistent (daily to weekly), high energy discharge. Energy regimes are indicated as being either marine, mixed, or dam discharge dominated, and relative energy inputs are time averaged. Relative amounts of wave and tidal energy are assumed constant throughout the estuary. ND 12 25 cm 50 cm 195 cm 170 cm 250 cm 275 cm 380 cm 355 cm ND 12 ND 12 ND 12 A B C D In-situ bivalves High Degree of Bioturbation Minor Bioturbation Partial Preservation of Laminae Erosional Surface Coarser Grained Section Finer Grained Section Laminations Interspersed Different Bed Plane Dipping Directions Alternating Coarse / Fine Intervals Fig. 8) Complete grainsize composition proaile and core photograph for 130175 cm section of core ND 19. A rapid increase in silt and clay percentage corresponds to the construction of the dam in 1934. 0 25 50 75 100 125 150 175 200 225 250 0 20 40 60 80 Depth (cm) T-Hg Dry (ng g -1 ) ND 19 Fig. 10) Water level recorded at the Nakdong Dam (behind dam) compared to rainfall recorded at Gumi station (Top) corresponding to sonar altimetry data collected from the same time period (Bottom). 0 10 20 30 40 50 60 70 0.6 0.7 0.8 0.9 1 1.1 1.2 Oct-12 Nov-12 Dec-12 Jan-13 Feb-13 Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13 Rainfall (mm) Water Level Behind Dam (m) Water Level Rainfall NDA 1 NDA 3 Avg. = 4.7 cm yr -1 Avg. = 6.6 cm yr -1 Oct-12 Nov-12 Dec-12 Jan-13 Feb-13 Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13 Fig. 4) Total Hg concentration proaile for ND 19.

Upload: others

Post on 14-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Shifts  in  Depositional  Environments  as  a  Natural  Response  toAnthropogenic  Alterations:  Nakdong  Estuary,  South  Korea

    Joshua  Williams†,  Timothy  Dellapenna†‡,  Guan-‐hong  Lee§Department  of  Oceanography  ,  Texas  A&M  University,  College  Station,  Texas  77840  

    ‡ Department  of  Marine  Sciences,  Texas  A&M  University  at  Galveston,  Galveston,  Texas  77554§ Department  of  Oceanography  ,  Inha  University,  Incheon,  S.  Korea  402-‐751

    *Corresponding  Author:  [email protected],  (409)  740-‐4746CEML 연안지형역학실험실

    Abstract:

    The  Nakdong  Estuary,  located  within  the  coastal  zone  of  Busan,  South  Korea,  has  been  subjected  to  a  series  of  engineered  alterations  typical  of  many  eastern  Asian  estuaries.  The  construction  of  two  estuarine  dams  (1934  and  1983)  and  numerous  seawalls  associated  with  land  reclamation  projects  has  altered  the  timing  and  alux  of  sediment,  and  resulted  in  three  contrasting  discharge  energy  regimes.  Additionally,  the  impoundments  have  appreciably  reduced  the  tidal  prism  by  at  least  50%.  Consequently,  vast  geomorphologic  changes  have  occurred  including  the  development  of  aive  new  barrier  islands.  In  order  to  assess  the  impacts  of  these  modiaications,  19  vibracores  were  obtained  throughout  the  estuary.  The  dispersal  and  accumulation  of  sediment  was  evaluated  utilizing  210Pb  and  137Cs  radioisotope  geochronology  of  6  cores.  Average  sediment  accumulation  rates  range  from  2.19  cm  yr-‐1  adjacent  to  the  airst  constructed  dam  to  as  high  as  6.55  cm  yr  -‐1  in  the  middle  region  of  the  estuary.  These  high  rates  are  further  supported  by  comparison  of  bathymetric  survey  data  from  1985  to  2009.  Laser  diffraction  grain  size  analyses  and  X-‐radiographs  revealed  distinctive  changes  associated  with  dam  construction,  and  correlation  of  events  between  cores  conveys  the  episodic  sedimentation  corresponding  to  aloodgate  releases.  Ultimately,  anthropogenic  alterations  have  resulted  in  a  shift  from  a  tide-‐dominated  to  a  wave-‐dominated  estuary.  The  increase  in  sediment  trapping  efaiciency  that  has  ensued  resulting  from  extensive  coastal  construction  provides  the  basis  for  reevaluating  traditional  facies  models  for  estuaries.  A  conceptual  model  is  developed  here  to  characterize  the  alterations  in  sediment  depositional  patterns  according  to  relative  discharge  energy  of  the  adjacent  aloodgate.

    Conclusions:The  construction  of  two  estuarine  dams  and  numerous  seawalls  have  greatly  modiaied  the  sediment  transport  dynamics  of  the  Nakdong  Estuary.  These  modiaications  have  eliminated  large  areas  of  intertidal  zone,  and  appreciably  reduced  the  tidal  prism  and  river  discharge.  Sediment  alux  to  the  estuary  is  restricted  to  aloodgate  releases  which  produce  high  alow  velocities  and  episodic  deposition.  

    The  implications  of  these  alterations  are  evident  in  a  rapid  geomorphologic  shift  from  tide-‐dominated  to  wave-‐dominated.  High  sediment  accumulation  rates  within  the  central  estuary  are  due  to  a  reduction  in  accommodation  space  in  the  upper  estuary.  Additional  evidence  for  this  reclassiaication  occurs  as  a  series  of  barrier  islands  that  have  developed  post-‐dam  construction  accompanied  by  a  redistribution  of  facies.    

    The  increase  in  sediment  trapping  efaiciency  that  has  ensued  resulting  from  extensive  coastal  construction  provides  the  basis  for  reevaluating  traditional  facies  models  for  unaltered  estuaries.  The  observations  made  within  this  study  have  allowed  the  development  of  a  conceptual  model  for  facies  distribution  according  to  relative  discharge  energy  of  the  adjacent  aloodgate.  

    "

    "

    "

    "

    ""

    "

    "

    ""

    "

    "

    "

    "

    "

    "

    "

    "

    "

    ND 9

    ND 8

    ND 7

    ND 2ND 1

    ND 6

    ND 5

    ND 4

    ND 3

    ND 19

    ND 18

    ND 17

    ND 16

    ND 15

    ND 14

    ND 13

    ND 12

    ND 11

    ND 10

    0 1 2 3 4Kilometers

    ±

    0 1 2 3 40.5Kilometers

    ±Daejeh Dam

    Limit ofTidal Influence

    Nakdong River

    EulsukdoMyungjido

    2012 Shoreline

    Nakdong Dam

    MFG

    Noksan Dam

    CGWG

    Shinpyung-Changlim ID

    Hwachun ID

    Shinho IDNoksan ID

    Myungji RD

    JN

    SN JA

    DM

    DY

    MG

    BH

    NM

    SouthKorea

    Seoul

    Mokpo Busan

    West NakdongRiver

    "

    "

    "

    "

    ""

    "

    "

    ""

    "

    "

    "

    "

    "

    "

    "

    "

    "

    ND 9

    ND 8

    ND 7

    ND 2ND 1

    ND 6

    ND 5

    ND 4ND 3

    ND 19

    ND 18

    ND 17

    ND 16

    ND 15

    ND 14

    ND 13

    ND 12

    ND 11

    ND 10

    0 1 2 3 40.5Kilometers

    " Coring SitesCross Section A-A'Cross Section B-B'

    ±

    Image © 2012 GeoEyeImage © 2012 TerraMetricsImage © 2012 DigitalGlobe

    W. NakdongRiver E. Eulsuk

    ChannelW. EulsukChannel

    Fig.  1)  Detailed  study  area  map  showing  core  sampling  locations  and  cross  sections.  Noksan,  Nakdong,  and  Daejeh  Dam  locations,  channel  names,  barrier  islands,  and  industrial  (ID)  and  residential  districts  (RD)  are  indicated  (WG=Western  gate,  CG=Control  gate,  MFG=Main  aloodgate,  JN=Jinudo,  DM=Daemadeung,  JA=Jangjado,  BH=Bakhabdeung,  SN=Sinjado,  DY=Doyodeung,  NM=Namutsitdeung,  and  MG=Maenggeummeorideung).

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

    Average'Discha

    rge'(107

    ' m3 )'

    Fig.  2)  Average  monthly  discharge  from  the  Nakdong  River  Estuary  Barrage  for  the  period  of  Jan.  1990  -‐  Aug.  2010.

    0

    250

    500

    750

    1,000

    1,250

    1,500

    1,750

    2,000 D

    isch

    arge

    (107

    m3 )

    Fig.  3)  Time  series  of  total  monthly  discharge  from  the  Nakdong  River  Estuary  Barrage  from  Jan.  1990  -‐  Aug.  2010.  

    Island

    "

    "

    "

    "

    ""

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    ND 9

    ND 8

    ND 7

    ND 2ND 1

    ND 6

    ND 5

    ND 4ND 3

    ND 19

    ND 18

    ND 17

    ND 16

    ND 15

    ND 14

    ND 13

    ND 12

    ND 11

    ND 10

    0 1 2 3 40.5Kilometers

    ±

    1927 Shoreline"

    "

    "

    "

    ""

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    ND 9

    ND 8

    ND 7

    ND 2ND 1

    ND 6

    ND 5

    ND 4ND 3

    ND 19

    ND 18

    ND 17

    ND 16

    ND 15

    ND 14

    ND 13

    ND 12

    ND 11

    ND 10

    0 1 2 3 40.5Kilometers

    ±

    1963 Shoreline

    "

    "

    "

    "

    ""

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    ND 9

    ND 8

    ND 7

    ND 2ND 1

    ND 6

    ND 5

    ND 4ND 3

    ND 19

    ND 18

    ND 17

    ND 16

    ND 15

    ND 14

    ND 13

    ND 12

    ND 11

    ND 10

    0 1 2 3 40.5Kilometers

    ±

    1971 Shoreline"

    "

    "

    "

    ""

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    ND 9

    ND 8

    ND 7

    ND 2ND 1

    ND 6

    ND 5

    ND 4ND 3

    ND 19

    ND 18

    ND 17

    ND 16

    ND 15

    ND 14

    ND 13

    ND 12

    ND 11

    ND 10

    0 1 2 3 40.5Kilometers

    ±

    1998 Shoreline

    A B

    C D

    Noksan Dam

    Nakdong Damand Seawall

    Shinpyung-Changlim ID

    Hwachun ID

    Shinho IDNoksan ID

    Myungji RD

    JN

    SN

    JA

    MG

    BH

    NM

    DMSH

    Fig.  4)  Historical  shoreline  changes  of  the  Nakdong  Estuary  compiled  from  KHOA  marine  charts.  Construction  and  initiation  of  current  islands  occurring  between  publication  dates  of  charts  are  indicated  on  the  respective  chart.  

    Methods:•19  Vibracores  of  7.6cm  diameter  were  collected  between  Oct.  9-‐12,  2012.

    •X-‐radiographs  taken  at  64  kV  for  1.6  mAS  with  a  Medison  X-‐ray  source  and  a  Varian  PaxScan®  Amorphous  Silicon  Digital  Imager.

    •Grainsize  analyses  done  via  laser  diffraction  using  a  Malvern  Mastersizer  2000  Particle  Size  Analyzer.

    •210Pb  activities  were  measured  indirectly  using  210Po  and  counted  by  α-‐spectroscopy  using  a  Canberra  surface  barrier  detector.

    •Activity  of  137Cs  measured  by  gamma  spectroscopy  (662  keV)  using  a  semi-‐planar  intrinsic  germanium  detector  coupled  with  CANBERRA  DSA-‐1000  16K  channel  integrated  multichannel  analyzer.

    •Altimeter  Data  was  collected  with  an  EchoLogger  AA400.

    •Spatial  analysis  of  data  was  done  in  ArcGIS®  software  using  a  Sibson  Area/Natural  Neighbor  interpolation  technique.

    y = -91.19ln(x) + 63.47 R² = 0.816

    0

    50

    100

    150

    200

    250

    0.01 0.1 1 10

    Dep

    th (c

    m)

    210PbXS (dpm g-1)

    0

    50

    100

    150

    200

    250

    0 0.1 0.2 0.3 0.4 0.5 0.6

    Dep

    th (c

    m)

    137Cs (dpm g-1) ND 13

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 0.1 0.2 0.3 0.4

    Dep

    th (c

    m)

    137Cs (dpm g-1)

    y = -155.89ln(x) + 183.41 R² = 0.823

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.01 0.1 1 10

    Dep

    th (c

    m)

    210PbXS (dpm g-1)

    ND 11

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 0.1 0.2 0.3 0.4

    Dep

    th (c

    m)

    137Cs (dpm g-1)

    y = -181.40ln(x) + 59.75 R² = 0.844

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.01 0.1 1 10

    Dep

    th (c

    m)

    210PbXS (dpm g-1)

    ND 12

    SAvg = 5.45 cm y-1 SAvg = 5.72 cm y-1

    SAvg = 6.25 cm y-1 SAvg = 6.85 cm y-1

    SAvg = 4.26 cm y-1 SAvg = 3.98 cm y-1

    ∼1964

    ∼1964

    ∼1964

    y = -154ln(x) + 41.56 R² = 0.825

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.01 0.1 1 10

    Dep

    th (c

    m)

    210PbXS (dpm g-1)

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 0.1 0.2 0.3

    Dep

    th (c

    m)

    137Cs (dpm g-1)

    y = -105.12ln(x) + 58.71 R² = 0.913

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.01 0.1 1 10

    Dep

    th (c

    m)

    210PbXS (dpm g-1)

    0

    50

    100

    150

    200

    250

    0 0.1 0.2 0.3 0.4

    Dep

    th (c

    m)

    137Cs (dpm g-1)

    y = -63.02ln(x) + 37.79 R² = 0.935

    0

    50

    100

    150

    200

    250

    0.01 0.1 1 10

    Dep

    th (c

    m)

    210PbXS (dpm g-1)

    ND 19

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 0.1 0.2 0.3

    Dep

    th (c

    m)

    137Cs (dpm g-1) ND 15

    ND 18

    SAvg = 4.48 cm y-1

    SAvg = 4.91 cm y-1

    SAvg = 2.91 cm y-1 SAvg = 2.82 cm y-1

    SAvg = 2.03 cm y-1 SAvg = 2.36 cm y-1

    ∼1964

    ∼1964

    ∼1964

    y = -154ln(x) + 41.56 R² = 0.825

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.01 0.1 1 10

    Dep

    th (c

    m)

    210PbXS (dpm g-1)

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 0.1 0.2 0.3

    Dep

    th (c

    m)

    137Cs (dpm g-1)

    y = -105.12ln(x) + 58.71 R² = 0.913

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.01 0.1 1 10

    Dep

    th (c

    m)

    210PbXS (dpm g-1)

    0

    50

    100

    150

    200

    250

    0 0.1 0.2 0.3 0.4

    Dep

    th (c

    m)

    137Cs (dpm g-1)

    y = -63.02ln(x) + 37.79 R² = 0.935

    0

    50

    100

    150

    200

    250

    0.01 0.1 1 10

    Dep

    th (c

    m)

    210PbXS (dpm g-1)

    ND 19

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 0.1 0.2 0.3

    Dep

    th (c

    m)

    137Cs (dpm g-1) ND 15

    ND 18

    SAvg = 4.48 cm y-1

    SAvg = 4.91 cm y-1

    SAvg = 2.91 cm y-1 SAvg = 2.82 cm y-1

    SAvg = 2.03 cm y-1 SAvg = 2.36 cm y-1

    ∼1964

    ∼1964

    ∼1964

    y = -91.19ln(x) + 63.47 R² = 0.816

    0

    50

    100

    150

    200

    250

    0.01 0.1 1 10

    Dep

    th (c

    m)

    210PbXS (dpm g-1)

    0

    50

    100

    150

    200

    250

    0 0.1 0.2 0.3 0.4 0.5 0.6

    Dep

    th (c

    m)

    137Cs (dpm g-1) ND 13

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 0.1 0.2 0.3 0.4

    Dep

    th (c

    m)

    137Cs (dpm g-1)

    y = -155.89ln(x) + 183.41 R² = 0.823

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.01 0.1 1 10

    Dep

    th (c

    m)

    210PbXS (dpm g-1)

    ND 11

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0 0.1 0.2 0.3 0.4

    Dep

    th (c

    m)

    137Cs (dpm g-1)

    y = -181.40ln(x) + 59.75 R² = 0.844

    0

    50

    100

    150

    200

    250

    300

    350

    400

    0.01 0.1 1 10

    Dep

    th (c

    m)

    210PbXS (dpm g-1)

    ND 12

    SAvg = 5.45 cm y-1 SAvg = 5.72 cm y-1

    SAvg = 6.25 cm y-1 SAvg = 6.85 cm y-1

    SAvg = 4.26 cm y-1 SAvg = 3.98 cm y-1

    ∼1964

    ∼1964

    ∼1964

    Fig.  5)  Excess  210Pb  and  137Cs  proailes.  Error  bars  for  activity  are  indicated  or  occur  within  the  range  of  the  plot  symbol.  Regression  line  for  210Pbxs  and  respective  average  accumulation  rates  (SAvg)  are  shown  within  plot.  Note  different  depth  scales  depending  on  core.

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dept

    h (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dept

    h (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dept

    h (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0 50 100

    ND 14 ND 13 ND 12

    0 50 100

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dept

    h (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dept

    h (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0 50 100

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dept

    h (c

    m)

    Grainsize Percentage

    ShellSandSiltClay 0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dept

    h (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    ND 11

    0 50 100

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dept

    h (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    ND 9

    0 50 100

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dept

    h (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dept

    h (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    1.40 km 1.06 km 1.29 km 1.57 km

    ≈ 1964

    ≈ 1983

    Cross Section A-A’

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    Fig.  6)  Shore  normal  cross  section  through  the  W.  Eulsuk  Channel.  Correlations  are  based  on  radiochemically  derived  data  with  minor  depth  change  interpretations  to  respect  grainsize  proailes.  Distances  between  cores  are  indicated  and  grainsize  composition  is  represented  as  relative  percentages.

    0 50 100

    ND 170

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    ND 15

    0 50 100

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    ND 11

    0 50 100

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    ND 8

    0 50 100

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    ND 6

    0 50 100

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    1.14 km 2.5 km 1.45 km 1.12 km

    ≈ 1964

    ≈ 1983

    Cross Section B-B’

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    Fig.  7)  Shore  parallel  cross  section  across  the  central  portion  of  the  Nakdong  Estuary.  Isochron  identiaication  is  maintained  from  Cross  Section  A-‐A’.  

    ND 19

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (

    cm)

    Grainsize Percentage

    ShellSandSiltClay

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0 50 100

    ≈ 1934

    ≈ 1964

    ≈ 1983

    130 cm

    175 cm

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dep

    th (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    375

    400

    0 50 100

    Dept

    h (c

    m)

    Grainsize Percentage

    ShellSandSiltClay

    Core Dist. (m) 1985 Depth (m) 2009 Depth (m) SBath (cm yr-1)ND 11 112 -1.22 0.06 5.33ND 12 148 -1.01 0.12 4.70ND 17 63 -1.46 -0.70 3.18ND 18 66 -0.61 0.03 2.67

    Table  1)  Bathymetric  survey  data  and  accumulation  rates  for  cores  located  a  maximum  150  m  from  survey  points.  

    Core Dist. (m) 1985 Depth (m) 2009 Depth (m)ND 11 112 -1.22 0.06ND 12 148 -1.01 0.12ND 17 63 -1.46 -0.70ND 18 66 -0.61 0.03

    ND#1 5.25ND#2 4.93ND#3 3.73ND#4 3.60ND#5 6.07ND#6 4.57ND#7 4.82ND#8 5.00ND#9 6.78ND#10 9.07ND#11 5.59ND#12 6.55ND#13 4.12ND#14 4.07ND#15 4.91ND#16 4.90ND#17 3.36ND#18 2.86ND#19 2.19

    Core 210Pb SAvg (cm yr-1) 137Cs SAvg (cm yr

    -1) Average (cm yr-1)ND 11 5.45 5.72 5.59ND 12 6.25 6.85 6.55ND 13 4.26 3.98 4.12ND 15 4.48 4.91 4.69ND 18 2.91 2.82 2.86ND 19 2.03 2.36 2.19

    2.193839357

    Table  2)  Comparison  of  radioisotope  accumulation  rates  derived  from  210Pbxs  and  137Cs  proailes.  Averaged  rates  were  used  for  correlation.  

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    "

    ND 9

    ND 8

    ND 7

    ND 2ND 1

    ND 6

    ND 5

    ND 4

    ND 3

    ND 19

    ND 18

    ND 17

    ND 16

    ND 15

    ND 14

    ND 13

    ND 12

    ND 11

    ND 10

    0 1 2 3 40.5Kilometers

    " Coring SitesAccumulation Rate

    8.0 cm/yr

    1.5 cm/yr

    ±

    Fig.  11)  Interpolated  sediment  accumulation  rates.  Known  values  are  based  on  radioisotope  analyses.  Correlations  of  isochrons  between  cores  were  used  to  calculate  unknown  rates.  Letters  correspond  to  conceptual  model  in  Fig.  12.

    Fig.  9)  Representative  X-‐radiograph  sections  from  core  ND  12.  Location  within  core  and  key  features  indicated.

    West Nakdong River

    Waves

    0

    50

    100

    0

    50

    100

    Rel

    ativ

    e E

    nerg

    y %

    Tidal Cu

    rrents

    Total EnergyMarine-Dominated Mixed

    Energy

    0

    50

    100

    0

    50

    100

    Rel

    ativ

    e E

    nerg

    y %

    Total Energy

    Marine-Dominated Discharge-DominatedMixedEnergy

    West Eulsuk Channel

    0

    50

    100

    0

    50

    100

    Rel

    ativ

    e E

    nerg

    y %

    Total EnergyMarine-Dominated Discharge-DominatedMixed

    Energy

    East Eulsuk Channel

    Barrier Island Flood-TidalDelta

    OffshoreSediments

    CentralBasin

    NoksanDam

    NakdongDam WG

    NakdongDam CG/MFG

    Barrier Island

    OffshoreSediments

    DredgedX X X X

    Barrier Island Flood-TidalDelta

    OffshoreSediments

    CentralBasin

    Bay HeadDelta

    Relict TidalSand Bar

    CentralBasin

    Fluvial

    FluvialBay Head

    Delta

    Dam Discharge

    Waves

    Tidal Cu

    rrents

    Waves

    Tidal Cu

    rrents

    Very Low Energy Environment

    Dam Dis

    charge

    Flood-TidalDelta

    A

    B

    C

    Fig.  12)  Conceptual  model  for  relative  energy  and  facies  distribution  depending  on  dam  discharge  for  a  wave-‐dominated  estuary.  A)  No  discharge  released  B)  Periodic  (weekly  to  monthly),  low  energy  discharge  C)  Consistent  (daily  to  weekly),  high  energy  discharge.  Energy  regimes  are  indicated  as  being  either  marine,  mixed,  or  dam  discharge  dominated,  and  relative  energy  inputs  are  time  averaged.  Relative  amounts  of  wave  and  tidal  energy  are  assumed  constant  throughout  the  estuary.

    ND 1225 cm

    50 cm 195 cm

    170 cm 250 cm

    275 cm 380 cm

    355 cmND 12 ND 12 ND 12

    A B C D

    In-situ bivalves

    High Degreeof

    Bioturbation

    MinorBioturbation

    PartialPreservationof Laminae

    ErosionalSurface

    CoarserGrained Section

    FinerGrained Section

    LaminationsInterspersed

    DifferentBed Plane

    DippingDirections

    AlternatingCoarse /

    Fine Intervals

    Fig.  8)  Complete  grainsize  composition  proaile  and  core  photograph  for  130-‐175  cm  section  of  core  ND  19.  A  rapid  increase  in  silt  and  clay  percentage  corresponds  to  the  construction  of  the  dam  in  1934.

    0

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    0 20 40 60 80

    Dep

    th (c

    m)

    T-Hg Dry (ng g-1) ND 19

    Fig.  10)  Water  level  recorded  at  the  Nakdong  Dam  (behind  dam)  compared  to  rainfall  recorded  at  Gumi  station  (Top)  corresponding  to  sonar  altimetry  data  collected  from  the  same  time  period  (Bottom).

    0

    10

    20

    30

    40

    50

    60

    70

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    Oct-12 Nov-12 Dec-12 Jan-13 Feb-13 Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13

    Rainfall (m

    m)

    Water&Level&Beh

    ind&Da

    m&(m

    )&

    Water Level Rainfall

    NDA 1

    NDA 3

    Avg. = 4.7 cm yr-1

    Avg. = 6.6 cm yr-1

    0

    10

    20

    30

    40

    50

    60

    70

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    Oct-12 Nov-12 Dec-12 Jan-13 Feb-13 Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13

    Rainfall (m

    m)

    Water&Level&Beh

    ind&Da

    m&(m

    )&

    Water Level Rainfall

    Fig.  4)  Total  Hg  concentration  proaile  for  ND  19.    

    mailto:[email protected]:[email protected]