nae12s20-a dc-dc converter technical manual v1

35
NAE12S20-A DC-DC Converter Technical Manual V1.1 1 GLOBAL ENERGY EFFICIENCY SPECIALIST Copyright © 2017 Huawei Technologies Co., Ltd. All Rights Reserved. THIS DOCUMENT IS FOR INFORMATION PURPOSES ONLY AND DOES NOT CONSTITUTE A WARRANTY OF ANY KIND. NAE12S20-A DC-DC Converter Technical Manual V1.1 NAE12S20-A PSiP DC-DC Converter 314 V Input 0.63.7 V Output 20 A Current Positive Logic Product Description The NAE12S20-A is a Power Supply in Package (PSiP) DC-DC converter with an input voltage range of 3 V to 14 V and the maximum output current of 20 A. Its output voltage can be adjusted within a range of 0.6 V to 3.7 V. Operational Features Input voltage: 314V Output current: 020 A Output voltage: 0.63.7 V Efficiency: 94.5% (V in = 12.0 V, V out = 3.7 V, I out = 10.0 A) Control Features Output voltage trim Remote On/Off Mechanical Features SMT Power Supply in Package (PSiP) (L x W x H): 11 x 11 x 4 mm (0.43 x 0.43 x 0.16 in.) Weight: 1.6 g Safety Features RoHS6 complaint, lead-free reflow soldering Protection Features Input undervoltage protection Output overcurrent protection (hiccup mode) Output short circuit protection (hiccup mode) Output overvoltage protection (self-recovery) Overtemperature protection (self-recovery) Applications Servers Telecom and datacom Point of load regulation General purpose step-down DC/DC

Upload: others

Post on 18-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

1 GLOBAL ENERGY EFFICIENCY SPECIALIST

Copyright © 2017 Huawei Technologies Co., Ltd. All Rights Reserved.

THIS DOCUMENT IS FOR INFORMATION PURPOSES ONLY AND DOES NOT CONSTITUTE A WARRANTY OF ANY KIND.

NAE12S20-A

DC-DC Converter Technical Manual V1.1

NAE12S20-A

PSiP

DC-DC Converter 3–14 V Input 0.6–3.7 V Output 20 A Current

Positive

Logic

Product Description

The NAE12S20-A is a Power Supply in Package

(PSiP) DC-DC converter with an input voltage

range of 3 V to 14 V and the maximum output

current of 20 A. Its output voltage can be adjusted

within a range of 0.6 V to 3.7 V.

Operational Features

Input voltage: 3–14V

Output current: 0–20 A

Output voltage: 0.6–3.7 V

Efficiency: 94.5% (Vin = 12.0 V, Vout = 3.7 V,

Iout = 10.0 A)

Control Features

Output voltage trim

Remote On/Off

Mechanical Features

SMT

Power Supply in Package (PSiP) (L x W x H):

11 x 11 x 4 mm (0.43 x 0.43 x 0.16 in.)

Weight: 1.6 g

Safety Features

RoHS6 complaint, lead-free reflow soldering

Protection Features

Input undervoltage protection

Output overcurrent protection (hiccup mode)

Output short circuit protection (hiccup mode)

Output overvoltage protection (self-recovery)

Overtemperature protection (self-recovery)

Applications

Servers

Telecom and datacom

Point of load regulation

General purpose step-down DC/DC

Page 2: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

2 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

NAE 12 S 20 -A

1 2 3 4 5

1 — Non-isolated, analog, package type

2 — Input voltage: 12 V

3 — Single output

4 — Output current: 20 A

5 — Extension code

Model Naming Convention

Mechanical Diagram

Page 3: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

3 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Mechanical Diagram

Symbol Dimensions in Millimeters (Inches)

Min. Normal Max.

A - - 4.00 (0.16)

A1 0.520 (0.020) 0.577 (0.023) 0.634 (0.025)

D 10.90 (0.429) 11.00 (0.433) 11.10 (0.437)

D1 8.55 (0.337) 8.60 (0.339) 8.65 (0.340)

E 10.90 (0.429) 11.00 (0.433) 11.10 (0.437)

E1 10.45 (0.411) 10.50 (0.413) 10.55 (0.415)

f 0.10 (0.004) 0.15 (0.005) 0.20 (0.007)

aaa 0.08 (0.0031) BSC

ddd 0.08 (0.0031) BSC

Pin No. Name Function

1 Vsense Output voltage sense pin.

2 Vout Output pin. Connect these pins to loads and place output filter capacitors

between these pins and PGND pins.

Pin Description

1. All dimensions are in the unit of mm [in.]. Tolerances: x.x ± 0.1 mm [x.xx ± 0.03 in.]; x.xx ± 0.05 mm

[x.xxx ± 0.002 in.]; x.xxx ± 0.050 mm [x.xxx ± 0.002 in.]

2. Angle tolerance: ±1°

Page 4: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

4 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Pin Description

Pin No. Name Function

3, 16, 17 PGND Input and output power ground. Connect these pins to the ground electrode

of the input and output filter capacitors.

4 VCC Internal 3 V LDO output. The driver and control circuits are powered by this

voltage. Decouple with a minimum 1 μF ceramic capacitor as close to PGND

as possible. X7R grade dielectric ceramic capacitors are recommended for

their stable temperature characteristics.

5, 18 SW Switching node of the circuit.

6 BOOT Bootstrap. By default, this pin is left open.

7 AGND Analog ground.

8 CS Output overcurrent adjustment pin. It is connected to the AGND pin through a

5.1 kΩ internal resistor.

9 MODE Frequency adjustment pin. It is connected to the ground through a 59 kΩ

internal resistor. The default frequency is 1 MHz.

10 VREF Soft-start setting pin. A soft-start capacitor is embedded in the converter. By

default, this pin is left open.

11 RGND Signal ground.

12 FB Output adjustment pin. An external resistor divider from the output to RGND

sets the output voltage. It is advised to place the resistor divider as close to

FB as possible. Vias should be avoided on the FB traces.

13 EN Enable pin. The converter is enabled when the pin is left open and disabled

when the pin is low level. For details, see Remote On/Off (EN).

14 PG Power good signal. This is an open-drain signal. The pull-up resistor can be

connected to any voltage 0.8–4.0 V. If not used, leave it floating.

15, 19, 20 Vin Power input pins. Connect these pins to input power supply and place input

filter capacitors between these pins and PGND pins.

Page 5: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

5 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Parameter Min. Typ. Max. Unit Notes & Conditions

Absolute maximum ratings

Input voltage (continuous) - - 15 V

• Vin > 14 V, tested the voltage stress

in district I.

• Vin = 18 V, t ≤ 100 ms, the converter

must not be damaged.

Operating ambient

temperature (TA) –40 - 85 °C See the thermal derating curve.

Operating junction

temperature (Tj) –40 - 125 °C -

Storage temperature –55 - 125 °C -

Operating humidity 10 - 95 % RH Non-condensing

External voltage applied to

On/Off - - 4 V -

Input characteristics

Operating input voltage

8 12 14 V -

4.5 5.5 6.0 V -

4.0 4.5 5.4 V -

3.0 3.3 3.6 V -

Maximum input current - - 18 A Vin = 0–14 V; Iout = Ionom

No-load loss

- 0.3 0.5 W Vin = 12 V, Vout = 0.6 V, Iout = 0 A,

Freq = 600 kHZ

- 0.35 0.65 W Vin = 12 V, Vout = 0.9 V, Iout = 0 A,

Freq = 600 kHZ

- 0.4 0.8 W Vin = 12 V, Vout = 1.2 V, Iout = 0 A,

Freq = 600 kHZ

- 1.15 1.50 W Vin = 12 V, Vout = 3.3 V, Iout = 0 A,

Freq = 1000 kHZ

Input capacitance 30+100 - - µF 30 µF ceramic capacitor + 100 µF

polymer aluminum capacitor

Inrush transient - - 18 A -

Output characteristics

Output voltage setpoint –1.0 - 1.0 %Voset

Vin = 12 V; Iout = 50%Ionom; Tested with

0.1% tolerance for external resistor

used to set output voltage

Output voltage

0.6 - 3.7 V Vin = 8–14 V

0.6 - 2.1 V Vin = 4.5–6.0 V

0.6 - 1.3 V Vin = 4.0–5.4 V

0.6 - 1.2 V Vin = 3.0–3.6 V

Electrical Specifications

Page 6: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

6 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Electrical Specifications

Output characteristics

Output current 0 - 20 A -

Line regulation

–1.0 - 1.0 % Vin = 8–14 V; Iout = Ionom

–1.0 - 1.0 % Vin = 4.5–6.0 V; Iout = Ionom

–1.0 - 1.0 % Vin = 4.0–5.4 V; Iout = Ionom

–1.0 - 1.0 % Vin = 3.0–3.6 V; Iout = Ionom

Load regulation

–1.0 - 1.0 % Vin = 12 V; Iout = Iomin – Ionom

–1.0 - 1.0 % Vin = 5.5 V; Iout = Iomin – Ionom

–1.0 - 1.0 % Vin = 4.5 V; Iout = Iomin – Ionom

–1.0 - 1.0 % Vin = 3.3 V; Iout = Iomin – Ionom

Regulated voltage precision

–2.0 - 2.0 % Vin = 8–15 V; Iout = Iomin – Ionom

–2.0 - 2.0 % Vin = 4.5–6.5 V; Iout = Iomin – Ionom

–2.0 - 2.0 % Vin = 4.0–5.4 V; Iout = Iomin – Ionom

–2.0 - 2.0 % Vin = 3.0–3.6 V; Iout = Iomin – Ionom

Temperature coefficient –0.02 - 0.02 %/°C TA = –40°C to + 85°C

External capacitance 47x5 - 4000 µF

47 µF ceramic capacitor; 2000 µF

ceramic capacitor; 4000 µF polymer

aluminum capacitor; 2000 µF polymer

aluminum capacitor + 1000 µF ceramic

capacitor

Output ripple and noise (peak to

peak)

- 10 20 mV Vout ≤ 1.8 V, oscilloscope bandwidth: 20

MHz

- 30 50 mV Vout > 1.8 V, oscilloscope bandwidth: 20

MHz

Output voltage overshoot - - 5 % Full range of Vin, Iout, and TA

Output voltage delay time - 0.15 2.00 ms From EN logic on to 10%Vout

Output voltage rise time - 2.3 5.00 ms -

Switching frequency

- 600 - kHZ Vin = 8–14 V, Vout ≤ 1.8 V, Iout =

50%Ionom

- 1000 - kHZ Vin = 8–14 V, Vout > 1.8 V, Iout =

50%Ionom

- 600 - kHZ Vin = 4.5–6.0 V, Vout ≤ 1.8 V, Iout =

50%Ionom

- 1000 - kHZ Vin = 4.5–6.0 V, Vout > 1.8 V, Iout =

50%Ionom

- 600 - kHZ Vin = 4.0–5.4 V, Iout = 50%Ionom

- 600 - kHZ Vin = 3.0–3.6 V, Iout = 50%Ionom

Page 7: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

7 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Electrical Specifications

Parameter Output Min. Typ. Max. Unit Notes & Conditions

Protection characteristics

Input undervoltage protection

Protection threshold

Recovery threshold

Hysteresis

-

-

-

5

6

0.5

6

7

1.0

7

8

2.0

V

V

V

Vin = 8–14 V

Input undervoltage protection

Protection threshold

Recovery threshold

Hysteresis

-

-

-

3.30

4.00

0.40

3.55

4.25

0.70

3.80

4.50

1.00

V

V

V

Vin = 4.5–6.0 V

Input undervoltage protection

Protection threshold

Recovery threshold

Hysteresis

-

-

-

2.95

3.55

0.30

3.15

3.80

0.60

3.50

4.00

0.90

V

V

V

Vin = 4.0–5.4 V

Input undervoltage protection

Protection threshold

Recovery threshold

Hysteresis

-

-

-

2.20

2.65

0.20

2.40

2.85

0.40

2.60

3.00

0.60

V

V

V

Vin = 3.0–3.6 V

Output overcurrent protection - 110 - 200 % Hiccup mode

Output short circuit

protection - - - - - Hiccup mode

Output overvoltage

protection - 110 - 150 %Vset Self-recovery

Overtemperature protection

Threshold

Hysteresis

-

150

-

160

30

170

-

°C

°C

Self-recovery

Dynamic characteristics

Overshoot amplitude

Recovery time -

-

-

-

-

5

200

%Vout

µs

Current change rate: 5 A/µs

Load: 25%–50%–25%;

50%–75%–50%

Page 8: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

8 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Electrical Specifications

Parameter Output Min. Typ. Max. Unit Notes & Conditions

Efficiency

50% load

0.6 V 84.0 85.5 - %

Vin = 12 V; TA = 25°C

0.7 V 85.0 86.5 - %

0.8 V 86.0 87.5 - %

0.9 V 87.5 89.0 - %

1.0 V 87.5 89.0 - %

1.2 V 88.5 90.0 - %

1.5 V 89.5 91.0 - %

1.8 V 90.5 92.0 - %

2.5 V 91.5 93.0 - %

3.3 V 92.5 94.0 - %

3.7 V 93.0 94.5 - %

0.6 V 85.5 87.0 - %

Vin = 5.5 V; TA = 25°C

0.7 V 87.0 88.5 - %

0.8 V 87.5 89.0 - %

0.9 V 88.5 90.0 - %

1.0 V 88.5 90.0 - %

1.2 V 89.5 91.0 - %

1.5 V 90.0 91.5 - %

1.8 V 90.5 92.0 - %

2.1 V 92.5 94.0 - %

0.6 V 86.0 87.5 - %

Vin = 4.5 V; TA = 25°C

0.7 V 87.0 88.5 - %

0.8 V 87.5 89.0 - %

0.9 V 88.5 90.0 - %

1.0 V 89.0 90.5 - %

1.2 V 89.5 91.0 - %

1.3 V 90.0 91.5 - %

0.6 V 85.5 87.0 - %

Vin = 3.3 V; TA = 25°C 0.7 V 86.5 88.0 - %

0.8 V 87.5 89.0 - %

0.9 V 88.0 89.5 - %

Page 9: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

9 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Parameter Output Min. Typ. Max. Unit Notes & Conditions

Efficiency

50% load 1.0 V 88.5 90.0 - %

Vin = 3.3 V; TA = 25°C 1.2 V 89.0 90.5 - %

100% load

0.6 V 78.5 80.0 - %

Vin = 12 V; TA = 25°C

0.7 V 80.0 81.5 - %

0.8 V 81.5 83.0 - %

0.9 V 83.0 84.5 - %

1.0 V 84.0 85.5 - %

1.2 V 85.5 87.0 - %

1.5 V 87.0 88.5 - %

1.8 V 88.0 89.5 - %

2.5 V 90.0 91.5 - %

3.3 V 91.0 92.5 - %

3.7 V 91.5 93.0 - %

0.6 V 78.0 79.5 - %

Vin = 5.5 V; TA = 25°C

0.7 V 80.0 81.5 - %

0.8 V 81.0 82.5 - %

0.9 V 82.0 83.5 - %

1.0 V 83.0 84.5 - %

1.2 V 84.0 85.5 - %

1.5 V 85.5 87.0 - %

1.8 V 86.5 88.0 - %

2.1 V 89.0 90.5 - %

0.6 V 77.5 79.0 - %

Vin = 4.5 V; TA = 25°C

0.7 V 79.5 81.0 - %

0.8 V 80.5 82.0 - %

0.9 V 81.5 83.0 - %

1.0 V 82.5 84.0 - %

1.2 V 84.0 85.5 - %

1.3 V 84.0 85.5 - %

Electrical Specifications

Page 10: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

10 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Parameter Output Min. Typ. Max. Unit Notes & Conditions

Efficiency

100% load

0.6 V 77.0 78.5 - %

Vin = 3.3 V; TA = 25°C

0.7 V 78.0 79.5 - %

0.8 V 79.5 81.0 - %

0.9 V 80.5 82.0 - %

1.0 V 81.0 82.5 - %

1.2 V 82.0 83.5 - %

Other characteristics

Remote On/Off voltage

Low level

High level

-

-

–0.2

1.3

-

-

0.5

4.0

V

V

Positive logic

Sense+ - - - 100 mV

Sense– - - - - mV

Reliability characteristics

Mean time between

failures (MTBF) - - 2.5 -

Million

hours

Telcordia, SR332 Method 1 Case 3;

80% load; normal input; rated

output; airflow rate = 1.5 m/s (300

LFM); TA = 40°C

Electrical Specifications

Specifications are subject to change without notice.

Page 11: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

11 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Figure 1: Efficiency curve (Vnom = 3.3 V, Vout = 0.6 V)

Figure 2: Power dissipation curve (Vnom = 3.3 V,

Vout = 0.6 V)

Figure 3: Efficiency curve (Vnom = 3.3 V, Vout = 0.7 V)

Figure 4: Power dissipation curve (Vnom = 3.3 V,

Vout = 0.7 V)

Characteristic Curves

Conditions: TA = 25°C, unless otherwise specified

Figure 5: Efficiency curve (Vnom = 3.3 V, Vout = 0.8 V) Figure 6: Power dissipation curve (Vnom = 3.3 V,

Vout = 0.8 V)

Page 12: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

12 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Figure 7: Efficiency curve (Vnom = 3.3 V, Vout = 0.9 V)

Figure 8: Power dissipation curve (Vnom = 3.3 V,

Vout = 0.9 V)

Figure 10: Power dissipation curve (Vnom = 3.3 V,

Vout = 1.0 V)

Characteristic Curves

Figure 9: Efficiency curve (Vnom = 3.3 V, Vout = 1.0 V)

Conditions: TA = 25°C, unless otherwise specified

Figure 11: Efficiency curve (Vnom = 3.3 V, Vout = 1.2 V)

Figure 12: Power dissipation curve (Vnom = 3.3 V,

Vout = 1.2 V)

Page 13: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

13 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Figure 13: Efficiency curve (Vnom = 4.5 V, Vout =

0.6 V)

Figure 14: Power dissipation curve (Vnom = 4.5 V,

Vout = 0.6 V)

Figure 15: Efficiency curve (Vnom = 4.5 V, Vout =

0.7 V)

Figure 16: Power dissipation curve (Vnom = 4.5 V,

Vout = 0.7 V)

Characteristic Curves

Conditions: TA = 25°C, unless otherwise specified

Figure 17: Efficiency curve (Vnom = 4.5 V, Vout =

0.8 V)

Figure 18: Power dissipation curve (Vnom = 4.5 V,

Vout = 0.8 V)

Page 14: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

14 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Figure 19: Efficiency curve (Vnom = 4.5 V, Vout =

0.9 V)

Figure 20: Power dissipation curve (Vnom = 4.5 V,

Vout = 0.9 V)

Figure 22: Power dissipation curve (Vnom = 4.5 V,

Vout = 1.0 V)

Characteristic Curves

Figure 21: Efficiency curve (Vnom = 4.5 V, Vout =

1.0 V)

Conditions: TA = 25°C, unless otherwise specified

Figure 23: Efficiency curve (Vnom = 4.5 V, Vout =

1.2 V)

Figure 24: Power dissipation curve (Vnom = 4.5 V,

Vout = 1.2 V)

Page 15: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

15 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Figure 25: Efficiency curve (Vnom = 4.5 V, Vout =

1.3 V)

Figure 26: Power dissipation curve (Vnom = 4.5 V,

Vout = 1.3 V)

Figure 27: Efficiency curve (Vnom = 5.5 V, Vout =

0.6 V)

Figure 28: Power dissipation curve (Vnom = 5.5 V,

Vout = 0.6 V)

Characteristic Curves

Conditions: TA = 25°C, unless otherwise specified

Figure 29: Efficiency curve (Vnom = 5.5 V, Vout =

0.7 V)

Figure 30: Power dissipation curve (Vnom = 5.5 V,

Vout = 0.7 V)

Page 16: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

16 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Figure 31: Efficiency curve (Vnom = 5.5 V, Vout =

0.8 V)

Figure 32: Power dissipation curve (Vnom = 5.5 V,

Vout = 0.8 V)

Figure 34: Power dissipation curve (Vnom = 5.5 V,

Vout = 0.9 V)

Characteristic Curves

Figure 33: Efficiency curve (Vnom = 5.5 V, Vout =

0.9 V)

Conditions: TA = 25°C, unless otherwise specified

Figure 35: Efficiency curve (Vnom = 5.5 V, Vout =

1.0 V)

Figure 36: Power dissipation curve (Vnom = 5.5 V,

Vout = 1.0 V)

Page 17: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

17 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Figure 37: Efficiency curve (Vnom = 5.5 V, Vout =

1.2 V)

Figure 38: Power dissipation curve (Vnom = 5.5 V,

Vout = 1.2 V)

Figure 40: Power dissipation curve (Vnom = 5.5 V,

Vout = 1.5 V)

Characteristic Curves

Figure 39: Efficiency curve (Vnom = 5.5 V, Vout =

1.5 V)

Conditions: TA = 25°C, unless otherwise specified

Figure 41: Efficiency curve (Vnom = 5.5 V, Vout =

1.8 V)

Figure 42: Power dissipation curve (Vnom = 5.5 V,

Vout = 1.8 V)

Page 18: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

18 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Figure 43: Efficiency curve (Vnom = 5.5 V, Vout =

2.1 V)

Figure 44: Power dissipation curve (Vnom = 5.5 V,

Vout = 2.1 V)

Figure 46: Power dissipation curve (Vnom = 12.0 V,

Vout = 0.6 V)

Characteristic Curves

Figure 45: Efficiency curve (Vnom = 12.0 V, Vout =

0.6 V)

Conditions: TA = 25°C, unless otherwise specified

Figure 47: Efficiency curve (Vnom = 12.0 V, Vout =

0.7 V)

Figure 48: Power dissipation curve (Vnom = 12.0 V,

Vout = 0.7 V)

Page 19: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

19 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Figure 49: Efficiency curve (Vnom = 12.0 V, Vout =

0.8 V)

Figure 50: Power dissipation curve (Vnom = 12.0 V,

Vout = 0.8 V)

Figure 52: Power dissipation curve (Vnom = 12.0 V,

Vout = 0.9 V)

Characteristic Curves

Figure 51: Efficiency curve (Vnom = 12.0 V, Vout =

0.9 V)

Conditions: TA = 25°C, unless otherwise specified

Figure 53: Efficiency curve (Vnom = 12.0 V, Vout =

1.0 V)

Figure 54: Power dissipation curve (Vnom = 12.0 V,

Vout = 1.0 V)

Page 20: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

20 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Figure 55: Efficiency curve (Vnom = 12.0 V, Vout =

1.2 V)

Figure 56: Power dissipation curve (Vnom = 12.0 V,

Vout = 1.2 V)

Figure 58: Power dissipation curve (Vnom = 12.0 V,

Vout = 1.5 V)

Characteristic Curves

Figure 57: Efficiency curve (Vnom = 12.0 V, Vout =

1.5 V)

Conditions: TA = 25°C, unless otherwise specified

Figure 59: Efficiency curve (Vnom = 12.0 V, Vout =

1.8 V)

Figure 60: Power dissipation curve (Vnom = 12.0 V,

Vout = 1.8 V)

Page 21: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

21 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Characteristic Curves

Conditions: TA = 25°C, unless otherwise specified

Figure 65: Efficiency curve (Vnom = 12.0 V, Vout =

3.7 V)

Figure 66: Power dissipation curve (Vnom = 12.0 V,

Vout = 3.7 V)

Figure 61: Efficiency curve (Vnom = 12.0 V, Vout =

2.5 V)

Figure 62: Power dissipation curve (Vnom = 12.0 V,

Vout = 2.5 V)

Figure 64: Power dissipation curve (Vnom = 12.0 V,

Vout = 3.3 V)

Figure 63: Efficiency curve (Vnom = 12.0 V, Vout =

3.3 V)

Page 22: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

22 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Characteristic Curves

Figure 67: Thermal derating with airflow from VCC

to Vout (Vin = 3.3 V, Vout = 0.6 V)

Figure 68: Thermal derating with airflow from VCC

to Vout (Vin = 3.3 V, Vout = 0.7 V)

Figure 69: Thermal derating with airflow from VCC

to Vout (Vin = 3.3 V, Vout = 0.8 V)

Figure 70: Thermal derating with airflow from VCC

to Vout (Vin = 3.3 V, Vout = 0.9 V)

Figure 71: Thermal derating with airflow from VCC

to Vout (Vin = 3.3 V, Vout = 1.0 V)

Figure 72: Thermal derating with airflow from VCC

to Vout (Vin = 3.3 V, Vout = 1.2 V)

Page 23: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

23 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Characteristic Curves

Figure 73: Thermal derating with airflow from VCC

to Vout (Vin = 4.5 V, Vout = 0.6 V)

Figure 74: Thermal derating with airflow from VCC

to Vout (Vin = 4.5 V, Vout = 0.7 V)

Figure 75: Thermal derating with airflow from VCC

to Vout (Vin = 4.5 V, Vout = 0.8 V)

Figure 76: Thermal derating with airflow from VCC

to Vout (Vin = 4.5 V, Vout = 0.9 V)

Figure 77: Thermal derating with airflow from VCC

to Vout (Vin = 4.5 V, Vout = 1.0 V)

Figure 78: Thermal derating with airflow from VCC

to Vout (Vin = 4.5 V, Vout = 1.2 V)

Page 24: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

24 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Characteristic Curves

Figure 79: Thermal derating with airflow from VCC

to Vout (Vin = 4.5 V, Vout = 1.3 V)

Figure 80: Thermal derating with airflow from VCC

to Vout (Vin = 5.5 V, Vout = 0.6 V)

Figure 81: Thermal derating with airflow from VCC

to Vout (Vin = 5.5 V, Vout = 0.7 V)

Figure 82: Thermal derating with airflow from VCC

to Vout (Vin = 5.5 V, Vout = 0.8 V)

Figure 83: Thermal derating with airflow from VCC

to Vout (Vin = 5.5 V, Vout = 0.9 V)

Figure 84: Thermal derating with airflow from VCC

to Vout (Vin = 5.5 V, Vout = 1.0 V)

Page 25: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

25 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Characteristic Curves

Figure 85: Thermal derating with airflow from VCC

to Vout (Vin = 5.5 V, Vout = 1.2 V)

Figure 86: Thermal derating with airflow from VCC

to Vout (Vin = 5.5 V, Vout = 1.5 V)

Figure 87: Thermal derating with airflow from VCC

to Vout (Vin = 5.5 V, Vout = 1.8 V)

Figure 88: Thermal derating with airflow from VCC

to Vout (Vin = 5.5 V, Vout = 2.1 V)

Figure 89: Thermal derating with airflow from VCC

to Vout (Vin = 12.0 V, Vout = 0.6 V)

Figure 90: Thermal derating with airflow from VCC

to Vout (Vin = 12.0 V, Vout = 0.7 V)

Page 26: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

26 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Characteristic Curves

Figure 91: Thermal derating with airflow from VCC

to Vout (Vin = 12.0 V, Vout = 0.8 V)

Figure 92: Thermal derating with airflow from VCC

to Vout (Vin = 12.0 V, Vout = 0.9 V)

Figure 93: Thermal derating with airflow from VCC

to Vout (Vin = 12.0 V, Vout = 1.0 V)

Figure 94: Thermal derating with airflow from VCC

to Vout (Vin = 12.0 V, Vout = 1.2 V)

Figure 95: Thermal derating with airflow from VCC

to Vout (Vin = 12.0 V, Vout = 1.5 V)

Figure 96: Thermal derating with airflow from VCC

to Vout (Vin = 12.0 V, Vout = 1.8 V)

Page 27: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

27 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Characteristic Curves

Figure 97: Thermal derating with airflow from VCC

to Vout (Vin = 12.0 V, Vout = 2.5 V)

Figure 98: Thermal derating with airflow from VCC

to Vout (Vin = 12.0 V, Vout = 3.3 V)

Figure 99: Thermal derating with airflow from VCC

to Vout (Vin = 12.0 V, Vout = 3.7 V)

Page 28: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

28 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Typical Waveforms

Figure 100: Test set-up diagram Figure 101: Application circuit

Vout

Figure 102: Output voltage ripple

(for points B and C in the test set-up diagram,

Vin = 12.0 V, Vout = 1.2 V)

1. During the test of input reflected ripple current, the input must be connected to an external input filter (including a 12 µH

inductor and a 220 µF electrolytic capacitor), which is not required in other tests.

2. Points B and C are used for testing the output voltage ripple.

B

PGND Vs

L

DC-DC

converter

Vin Vout

Load

C

Cout C1 C2

Cin

C

External input filter

Cin: The 30 µF ceramic capacitor and 100 µF polymer

aluminum capacitor are recommended.

Cout: Five 47 µF ceramic capacitors are recommended.

C1: The 0.1 µF ceramic capacitor is recommended.

C2: The 10 µF aluminum electrolytic capacitor is

recommended.

Cin: The 30 µF ceramic capacitor and 100 µF polymer

aluminum capacitor are recommended.

Cout: Five 47 µF ceramic capacitors are recommended.

PGND

EN

Vs

Vin

Cin

R

CS

PG

RTrim

Vout

Vsense

RGND Load

Cout

AGND

FB

Page 29: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

29 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Figure 105: Startup by power-on Figure 106: Shutdown by power-off

Vout

Vout

Vin

Vin

Figure 103: Startup from On/Off

Figure 104: Shutdown from On/Off

Conditions: TA = 25°C, Vin = 12.0 V, Vout = 1.2 V

Vout

On/Off

Vout

On/Off

Iout

Vout Vout

Iout

Figure 107: Output voltage dynamic response

(load: 25%–50%–25%, di/dt = 5 A/µs)

Figure 108: Output voltage dynamic response

(load: 50%–75%–50%, di/dt = 5 A/µs)

Typical Waveforms

Page 30: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

30 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Remote On/Off

EN Pin Level Status

Low level Off

Left open On

Figure 109: Circuit configuration for On/Off function

The output voltage can be adjusted by connecting

an external resistor between the Trim (FB) pin

and the RGND pin.

Vout (V) Rtrim (kΩ)

0.6 -

0.7 12.000

0.8 6.000

0.9 4.000

1.0 3.000

1.2 2.000

1.5 1.333

1.8 1.000

2.5 0.632

3.3 0.444

3.7 0.387

k

VR

out

trim

6.0

2.1

Output Voltage Trim

Relationship between Rtrim and Vout:

PGND

Vs

Rtrim

Load

Vin

The output voltage varies depending on Rtrim.

Note that the trim resistor tolerance directly

affects the output voltage accuracy.

Figure 110: Rtrim external connections

It is recommended that the On/Off (EN) pin be

controlled using an open collector transistor or a

similar device. The following table describes the mapping between

Vout and Rtrim.

Power Good Signal (PG)

The power good (PG) signal is pulled up to Vin or

a fixed level not exceeding 4 V and not lower than

0.8 V through a resistor when in use. If the PG

function is not required, the pin is left open. The

configuration diagram of PG is shown in Figure

111.

Figure 111: Configuration diagram of PG

PG

R

0.8–4.0 V NAE12S20-A

System

EN

Vin Vout

Vs

R

Load

PGND

Vsense

Vout

Vsense

Rtrim

FB

RGND

FB

RGND

Vin (V) R (kΩ)

3.3 7.50

4.5 4.75

5.5 4.02

12.0 2.00

The following table describes the mapping

between Vin and R.

Page 31: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

31 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Input Undervoltage Protection

The converter will shut down if the input voltage

drops below the undervoltage protection threshold.

The converter will start to work again if the input

voltage reaches the input undervoltage recovery

threshold. For the hysteresis, see the Protection

characteristics.

Output Overcurrent Protection

The converter equipped with current limiting

circuitry can provide protection from an output

overload or short circuit condition. If the output

current exceeds the output overcurrent protection

set point, the converter will enter hiccup mode.

When the fault condition is removed, the converter

will automatically restart.

Output Overtemperature Protection

A temperature sensor on the converter senses the

average temperature of the converter. It protects

the converter from being damaged by high

temperatures. When the temperature exceeds the

overtemperature protection threshold, the output

will shut down. The converter will turn on again

when the temperature of the sensed location falls

by the value of the overtemperature protection

hysteresis.

Qualification Testing

Output Overvoltage Protection

If the output voltage exceeds the output

overvoltage protection threshold, the converter

will enter hiccup mode. When the fault condition

is removed, the converter will automatically

restart.

No. Test Item Unit Condition

1 Pre-condition 77/3 lot

Visual inspection → Electrical test → SAT → Bake (125°C, 24 h)

→ Moisture soaking → Reflow (3 cycles, 260°C) → Visual

inspection → Electrical test → SAT.

2 High temperature storage

life test 77/3 lot 125°C, 500/1000 h

3 Unbiased highly

accelerated stress test 77/3 lot 130°C, 85% RH, 96 h

4 Thermal shock 77/3 lot 1000 temperature cycles between –55°C and +125°C,

200/500/700/1000 cycles with no power on

5 Temperature humidity

bias 77/3 lot 85°C, 85% RH, 1200 operating hours

6 High temperature

operating life test 77/3 lot

Rated input voltage, ambient temperature 100°C, 1000

operating hours, thermal test point at 115°C for PCB or inductor

7 Power and temperature

cycling test 77/3 lot

Rated input voltage, thermal test point at 115°C for PCB or

inductor, ambient temperature between –40°C and +100°C,

temperature change rate between 10°C/min to 20°C/min, 1000

cycles under 50% load

8 Vibration 8/3 lot Vibration frequency range: 20–2000 Hz, vibration limit: 40 G

9 Solderability 5/3 lot Steam aging: 8 hours, Pb-free: 240–250°C, 4.5–5.5s

10 ESD 3 HBM 2000 V, CDM 500 V

Page 32: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

32 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Qualification Testing

No. Test Item Units Condition

11 Autoclave 25 121°C, 100% RH, 1 bar above atmosphere, 96 h

12 Salt fog 16 Classification C for 5 years: 2% salt fog, 90% RH, 35°C, 20

days

13 Moisture and dust 16

Classification B for 10 years: Dust accumulated for 6 days (30

mg/m3), steady damp heat (95% RH, 40°C) for 12 days, cyclic

damp heat for 4 days

Sufficient airflow should be provided to ensure reliable operating of the converter. Therefore, thermal

components are mounted on the top surface of the converter to dissipate heat to the surrounding

environment by conduction, convection, and radiation. Proper airflow can be verified by measuring the

temperature at the surface of the converter.

Thermal Consideration

Figure 112: Thermal test point

Thermal Test Point

Power Dissipation

The converter power dissipation is calculated based on efficiency. The following formula reflects the

relationship between the consumed power (Pd), efficiency (ŋ), and output power (Po): Pd = Po (1 – ŋ)/ŋ

Thermal test point

Page 33: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

33 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Encapsulation Size Diagram

Unit of measurement: mm (in.)

Package Information

The converter is supplied in tape and reel packaging. The following figure shows the tape dimensions.

Unit of measurement: mm

Page 34: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

34 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Item W A0 B0 K0 P0 E

Spec.

Item F D0 D1 P1 P2 T

Spec.

1. Carrier camber does not exceed 1 mm in 100 mm.

2. Cumulative tolerance of 10 sprocket hole pitch: ±0.2 mm.

3. Material: Blank anti-static PS 0.4 mm thick.

4. All type and sprocket hole dimensioning are as per EIA-481 unless otherwise stated.

5. A0 and B0 are measured on a place in the middle of the comer radii.

0.05

0.051.55

Mechanical Consideration

Surface Mount Information

The converter uses a PSiP structure and is designed for a fully automated assembly process.

The flat surface of the label on the large inductor can be the patch mounting surface. The converter weight

can be borne by a standard surface mount device (SMD). For most SMDs, the converter is heavy, and

mounting on the capacitor surface will cause deviation. The solution is to optimize the model and size of the

suction nozzle and increase the mounting speed and vacuum pressure.

The label meets all the requirements for surface mount processing, as well as safety standards, and is able to

withstand reflow temperatures of up to 300°C. The label also carries product information such as product

code and manufacturing date.

0.20

0.2024.00

0.10

0.1011.50

0.10

0.1011.50

0.10

0.104.20

0.10

0.104.00

0.10

0.1075.1

0.05

0.0511.50

0.05

0.051.55

0.10

0.1000.61

0.05

0.0500.2

0.05

0.0540.0

Package Information

Page 35: NAE12S20-A DC-DC Converter Technical Manual V1

NAE12S20-A

DC-DC Converter Technical Manual V1.1

35 GLOBAL ENERGY EFFICIENCY SPECIALIST

NAE12S20-A

DC-DC Converter Technical Manual V1.1

Mechanical Consideration

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Industrial Base Bantian Longgang

Shenzhen 518129

People's Republic of China

www.huawei.com

Figure 113: Recommended reflow profile using lead-free solder

Moisture Resistance Requirements

Store and transport the converter as required by the MSL rating 3 specified in the IPC/JEDEC J-STD-033.

The surface of a soldered converter must be clean and dry. Otherwise, the assembly, test, or even reliability

of the converter will be negatively affected.

Soldering

The converter supports reflow soldering techniques. Wave soldering and hand soldering are not allowed.

During the reflow process, the peak temperature must not exceed 260°C at any time.