n73-30948 application of composites to airframe and

146
N73-30948 APPLICATION OF COMPOSITES TO HELICOPTER AIRFRAME AND LANDING GEAR STRUCTURES M.J. Rich, et al Sikorsky Aircraft Stratford, Connecticut June 1973 DISTRIBUTED BY: National Technical ~nfar~ation Senrice U. S. DEPARTMENT OF ~~~ME~~ 5285 Port Royal Road, Springfield Va. 22151

Upload: others

Post on 19-Jan-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

N 7 3 - 3 0 9 4 8

A P P L I C A T I O N O F C O M P O S I T E S T O HELICOPTER A I R F R A M E A N D LANDING G E A R S T R U C T U R E S

M.J. R i c h , et al

S i k o r s k y A i r c r a f t S tra t ford , Connecticut

June 1 9 7 3

DISTRIBUTED BY:

National Technical ~nfar~ation Senrice U. S. DEPARTMENT OF ~ ~ ~ M E ~ ~ E 5285 Port Royal Road, Springfield Va. 22151

Page 2: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

NASA CR - 112333 (NASB-CB-112333) APPLICATION OF N73-3094 8

COBPOSXTES TO HELXZCOPTEB AIBFBAPiE AND L A N D I N G GEAR STRUCTURES Technical feport. Jul. 3972 - Feb. 1973 (United Aircraft Corp.) 138 p RC 1 CSCL 01c 63/02 1.4073

Unclas

APPLICATION OF COMPOSITES

TO HELICOPTER AIRFRAME

AND LANDING GEAR STRUCTURES

M.J. R ich , G.F. R i d g l e y , and D.W. Lowry

Ptepared under Contract PJo. N,cjkS1-11688

by Si kors ky .Ai rcraft,

Stratford, Conn. Division of United Aircraft I _ Corporation,

June 1973 for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Reproduced by

NATIONAL TECHNICAL INFORMATION SERVICE

US Department of Commerce Springlield, VA. 22151

4

I

Page 3: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

N O T I C E

T H I S D O C U M E N T HAS B E E N R E P R O D U C E D FROM T H E

B E S T C O P Y F U R N I S H E D US B Y T H E SPONSORING

A G E N C Y . ALTHOUGH I T I S R E C O G N I Z E D T H A T C E R -

T A I N P O R T I O N S A R E I L L E G I B L E , I T I S B E I N G R E -

L E A S E D I N T H E I N T E R E S T O F MAKING A V A I L A B L E

A S MUCH I N F O R M A T I O N A S P O S S I B L E .

Page 4: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

PRECEDING PAGE BLANE( NOT FILMED

FOREWORD

This r e p o r t w a s prepared by Sikorsky Aircraft, d i v i s i o n of United Aircraft Corporat ion, under XASA c o n t r a c t NAS1-11658 and covers t h e work performed during t h e per iod of J u l y 1 9 7 2 through February 1 9 7 3 . This program w a s j o i n t l y funded by t h e Materials Div is ion of NASA-Langley Research Center and t h e U. S. Army A i r Mobil i ty Research anC3evelopment Laboratory (Langley D i r e c t o r a t e I . The c o n t r a c t w a s monitored by R. L. Foye of t h e Composites Sect ion.

The au tho r s wish t o acknowledge t h e c o n t r i b u t i o n s of t h e fo l lowing Sikorsky personnel : H . Taylor , Materials; W . Araujo, T. Wilkes, J. Barto, and H. Spencer, Manuafcturing Engineering; G. Schneider , S t r u c t u r a l Analysis ; M. P. Menkes, System Design and Engineering, and Id. J. Salkind for h i s c o n s u l t a t i o n and thorough review i n t h e p repa ra t ion of t h i s r e p o r t .

Prece~~ng page blank

iii

Page 5: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

UNITS

Dimensional information is presented, customary foot, pound system together with in the International System of Units (SI).

in general, in the the equivalent value An exception is

made for airframe reference stations, which are sometimes presented in the text and figures in inch units only.

All calculations were performed in the customary system and converted to the SI units.

iv

Page 6: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

CONTENTS

Section Page

SUMMARY . . . . . . . . . . . . . . . . . . . . . . 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . 3

1.0 STRUCTURAL DESCRIPTION OF CH-539 AI3FRAME AND LANDING GEAR STRUCTURE . . . . . . . . . . . . 4

1.1 General Description . . . . . . . . . . . 4

1.2 Material Usage and Design Considerations . . . . . . . . . . . . . 8

2.0 DESIGN CRITERIA AYD DATA . . . . . . . . . . . . . 10 2.1 Material Candidates . . . . . . . . . . . 10 2.2 Design Criteria . . . . . . . . . . . . . 14 2.2.1 Shear Buckling of Skin Panels . . . . . . 14 2.2.2 Compression Buckling of Flange

Elements . . . . . . . . . . . . . . . . 16 2.2.3 Combined Loading . . . . . . . . . . . . . 18 2.2.4 Laminate Failure Criteria . . . . . . . . 18 2.2.5 Impact Strength Criteria . . . . . . . . 20

2 . 2 . 6 Overall Vehicle Design Criteria . . . 20

2.3 Design Allowables . . . . . . . . . . . . 22 2.3.1 Material Allowables . . . . . . . . . . . 22 2.3.2 Bonded Joint Shear Allowable . . . . . . 22

3 . 0 DESIGN COXCEPTS . . . . . . . . . . . . . . . . . . 24 3.1

3.1.1

3.1.2

3.1.3

Airframe Structure . . . . . . . . . . . 24 Preliminary Considerations . . . . . . . 24 Stringer Ccnstruction . . . . . . . . . . 26 Skin Construction . . . . . . . . . . . . 28

V

Page 7: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Sec t ion

3.1.4

3.1.5

3.1.6

3.1.7

3.1.8

3.1.9

3.2

3.2.1

3.2.2

Page

S k i d s t r i n g e r Panel Construct ion . . . . 30

Frame Construct ion . . . . . . . . . . . 30 S h e l l Construct ion . . . . . . . . . . . 30 Floor Construct ion . . . . . . . . . . . 32 Connections . . . . . ; . . . . . . . . . 34

F a b r i c a t i o n Concept . . . . . . . . . . . 36 Landing Gear S t r u c t u r e . . . . . . . . . 48 Trunnion . . . . . . . . . . . . . . . . 48 Axia l ly Loaded Menbers . . . . . . . . . 50

3.2.3 Torque A r m s . . . . . . . . . . . . . . . 50

3.2.4 Fabr i ca t ion Concepts . . . . . . . . . . 50

4.0 COMPOSITE DESIGX APPLICATIOTJ . . . . . . . . . . . 52 4.1 Airfr.e . . . . . . . . . . . . . . . . 52 4.1.1 Cockpit Sec t ion . . . . . . . . . . . . . 58 4.1.2 Cabin Sectioii . . e . . . . 58

4.1.3 Sponson Sec t ion . . . . . . . . . . . . . 66

4.1.L) A f t S e c t i o n . . a e . e . . . . 68

4.1.5 Floor Sec t ion . . . . . . . . . . . . . . 68 4.1.6 Main Rotor Pylon Fa i r ing . . . . . . . . 70

4.1.7 Tail Pylon . . . . . . . . . . . . . . . 70

.4. 1.8 Horizonta l S t a b i l i z e r . . . . . . . . . . 72 4.2 Landing Gear S t r u c t u r e . . . . . . . . . 74 4.2.1 Trunnion . . . . . . . . . . . . . . . . 74 4-2.2 Shock S t r u t . . . . . . . . . . . . . . . 74 4.2.3 Drag S t r u t Cylinder and P i s ton . . . . . 76

vi

Page 8: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Section Page

5 .0 COST EFFECTIVENESS EVALUATION. . . . a . - . . . 7 8

5 . 1 Product ion V e h i c l e C o s t C o m p a r i s o n . . 7 8

5.2 Prototype Vehicle C o s t C o m p a r i s o n . . . . 80

5 . 3 T e n - Y e a r L i f e C y c l e C o s t f o r Production Vehicle. . . . . . . . . . . . . . 8 0

6.0 RECOMMENDATIONS AND D I S C U S S I O N . . . . . . . . 82

6.1 R e c o m m e n d a t i o n s . . . . . . . . . . . . 8 2

6 .2 D i s c u s s i o n . . . . . . . . . . . . - . 8 2

APPENDIX A . STRUCTURAL DZTAILS OF

GEAR STRUCTURE . . . . . . . . . . . . . 85 CURRENT CH-53D AIRFRAME AYD LUDIBJG

APPENDIX B. VEIGI-IT TREND CURVES FOR HELICOPTER STRUCTURES. . . . . . . . 100 APPENDIX C. MATERIAL AND XMJUFACTURING COSTS. . . . . . . .. . . . . a e e 109

APPENDIX D. COST EFFECTIVENESS ANALYSIS e e a o a 4 e e 112

R e f e r e n c e s a . # . + * a . 4 . e 1 2 3

vii

Page 9: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

FIGURES

1

2

3

4

7

8

9

10

11

12

13

14

15

16

Current CH-53D Hel i cop te r . . . . . . . . . . . . . 5

Current CH-5 3D A i r f r a m e and Landing Gear are of Conventional Construct ion . . . . . . . . . . . 5

Current C H - 5 3 9 Nain Landing Gear i s of Forged Cons t ruc t ion . . . . . . . . . . . . . . . . 7

Current CH-5 3 D i s Composed of Nine Major Assemblies . . . . . . . . . . . . . . . . . . . . 7

Current CH-53D A i r f r a m e is P r imar i ly Aluminum Alloy with t h e Major Weight i n t h e Outer S h e l l Construct ion . . . . . . . . . . . . . . . . . . . 9

Current CH-53D Landing Gear i s P r imar i ly Aluminun And S t e e l Forgings. . . . . . . . . . . . 9

S p e c i f i c Tension Sti-ength and Yodulus for Composite Materials. . . . . . . . . . . . . . . . 13 S p e c i f i c Compression S t r eng th and Modulus f o r Composite Materials. . . . . . . . . . . . . . . . 13 Shear Buckling S t r eng th of Graphite/Zpoxy Skin Panels is Maintained over a I.?ide Range of Ply O r i e n t a t i o n s . . . . . . . . . . . . . . . . . . . 1 5

Shear Buckling S t r eng th of Boron/Cpoxy S k i n Panels i s 3 a i n t a i n c d over d Wide Range of Ply O r i e n t a t i o n s . . . . . . . . . . . . . . . . . . . 1 5

Cr ippl ing S t r eng th of Un id i r ec t iona l Graphi te l Epoxy Flange Elements. . . . . . . . . . . . . . . 17 Crippl ing S t r eng th of Un id i r ec t iona l Boron/ Epoxy Flange Elements. . . . . . . . . . . . . . . 17 Graphite/Epoxy and Boron/Epoxy Skin Panels have S imi l a r Combined Load C a p a b i l i t i e s . . . . . . 19 O f f - A x i s Loading L i m i t s S t rength of Laminate . . . 19 PRD-49 can be used t o i n c r e a s e Impact S t r eng th . . 21

Composite S t r i n g e r Concepts. . . . . . . . . . . . 27 v i i i

Page 10: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Page

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Foan-Stabilized Composite Stringer has Lowest Weight over required Load Range. . . . . . . . . . 27

Graphite/Epoxy Skin has higher Shear Buckling Efficiency than Boron/Epoxy or Aluminum Skin . . . 29

Graphite/Epoxy and Boron/Epoxy Skin/Stringer Panels have higher Combined Load Strength/ Weight Ratio than Aluminum Panels. . . . . e . . . 31

Stabilized Composite Frames are Lighter than Current Construction . . . . . . . . . . . . e 31

Composite Shell Concept. . . . . . . . . . . . . . 31

Low Cost Fiberglass Hybrid Floor can Reduce Weight by 2 8 Percent . . . . . . e . . . e . . . ., 33

Skin Splice Concepts . . . . . e . . . . . . . 35

Frame Splice Concepts. . . . . . . . . . e . 35

Stringer Splice Concepts . . e . e . . . e . . . 35

Flat Pattern of Layup for Cabin Skin Segment and Frame Outer Caps . . . . e . . e e * 37

Composite Shell Construction Details Of Components For First Cure Cycle. . . e * 39

Composite Shell Construction Details Of Components For Second Cure Cycle b e . 41

Composite Shell Construction Splice Details. . 43

Composite Cabin Section. Assenbly Details . . . . 45

Composite Airframe Assembly. . . . . . . * . . 47

Composite Central Cylinder is most Practical Concept for Landing Gear Trunnion. . . . . . . . . 49

Selective Replacement Concept is most Practical for Axially Loaded Gear Elements . . . 51

Composite Landing Gear Torque A m Concepts . . . 51

Selective Replacement is most Pracitcal Concept for Landing Gear . . . . . . . . . . . . e 51

ix

Page 11: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Page

36

37

38

39

40

41

42

43

44

4s

46

All-Composite Structural Assembly %eights are Reduced, Compared with Current Structure . . . . Composite Airframe. Major Assembly Connections.

Composite Cockpit Structure. Inboard Profile. . Composite Cockpit Structure. Auxiliary Views. . Composite Cabin Structure Details. . . . . . . . Composite Sponson Structure Details. . . . . . Composite Floor Structure. Typical Floor Panel.

Composite Main Rotor Pylon Fairing . . . . . . Composite Tail Pylon Structure . . . . e . . . Composite Tail Pylon Structure. Alternate Manufacturing Concept. . . . . . . . . . . . . . Composite Horizontal Stabilizer Structure. . .

53

55

59

59

61

67

69

71

71

71

73

47 Composite Landing Gear Trunnion. . . . . . . . . 75

48 Composite Shock Strut. . . . . . . .’ . . . . 75

49 Composite Landing Gear Drag Strut Details. . 77

50 Composite Production Vehicle Costs Three Percent more than Current Production Vehicle . . 79

51 Composite Prototype Vehicle Costs Four Percent more than Prototype Vehicle of Conventional Design . . . . . . . . . . . . . . . b , . . . . 81

B1 Weight Trend for Body Structure. . . . . . . . 101

B2 Ifeight Trend for Cockpit Structure . . . . . . . 102

33 Weight Trend for Cabin Structure . . . . . . . e 103

34 Weight Trend for Aft-Section Structure . . . . 104

35 \$eight Trend for Floor Structure . . e * . 105

B6 Weight Trend for Tail Pylon Structure, . . . , 106

X

Page 12: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Page

B7 I.Jeight Trend f o r H o r i z o n t a l S t a b i l i z e r S t r u c t u r e . . . . . . . . . . . . . . . . . . . . 1 0 7

B8 \?e ight Trend f o r Landing Gear S t r u c t u r e . . . . . 1 0 8

91 CE-53D Mission Environment . . . . . . . . . . . 118

xi

Page 13: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

TABLES

Page

1 Comparison of Materials. . . . . . . . . . . . . 11

2 Material Properties Data . . . . . . . . . . . . . 2 3

3 Composite CH-53D. Type of Structure. Weight . Summary.. . . . . . . . . . . . . . . . . . . . . 57

4 Composite CH-53D. Material Usage. . . . . . . . . 57

5

6

7

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

Cost and Weight Summary for Production Vehicles . . . . . . . . . . . . . . . . . . Cost Effectiveness Sunmary . . . . . . . . . Recommended Development Programs . . . . . . CH-53D Material Usage. . . . . . . . . . . . CH-53il Airframe, Summary of Structural Types and Design Conditions. . . . . . . . . . . . CH-53D Cockpit Section, Structural Types and Design Conditions. . . . . . . . . . . . C H - 5 3 3 Cabin Section, Structural Types and Design Conditions. . , . . * . . . . CH-532 S2onson Section, Structural Types and Design Conditions. . . . . . . . . . * . . CH-53D Aft Section, Structural Types and Design Conditions, . . . . . . . . . . . a

CII-53D Floor Section, Structural Types and Design Conditions. . . . . . . . . . . . . . CII-539 Main Rotor Pylon Fairing, Structural Types and Design Conditions. . . . . . . . . C'rI-53D Tail Pylon Section , Structural Types and Design Conditions. . . . . . . . . . CH-531) fiorizontal Stabilizer, Structural Types and Design Conditions. . . e e . . - .

. . . 79

. . . 81

. . . 8 3

. . . 89

0 . . 90

* . . 91

0 . . 9 4

. . . 9 5

. . . ' 9 6

. . . 97

. . 96

x i i

Page 14: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Page

All CH-539 Landing Gear. S t r u c t u r a l Types and Design Condi t ions . . . . . . . . . . . . . . . . 99

A i r f r a m e wi th Curren t Design . . . . . . . . . . 114 D 1 CH-53D Weight and Cost Comparison of Composite

D2 CH-53D Cost E f f e c t i v e n e s s Summary . . . . . . . . 115

Page 15: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

SYMBOLS

A 1

B/E

BL

b

C

d

E

FS

G

G/C

g

"c

KS

M

Q

qcr S

SGW

STA

T i

t

v

Aluminux

Boron/Epoxy

Butt Line

Panel o r Flange Width

S u f f i x f o r Compression

B e a m Depth

Elastic Modulus

Fuselage S t a t i o n

Shear Modulus

Graphite/Epoxy

G r a v i t a t i o n a l Acc'eleration

Compression i3uckling Constant

Shear Buckling Constant

Bending >foment

U l t i m a t e Load Factor

Axial Load, and \?eight Parameter

Shear Flow, and Design Dynamic Pressure

Crit ical Buckling Shear Flow

Wetted Area

S t r u c t u r a l Design Gross Weight

S t a t i o n

Titanium

Xaterial Thickness o r S u f f i x for Tension

Shear Force

xiv

Page 16: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

vf w 'WL

% E

P

Q

Qcc

Qcr

Qcu

Qtu

Qult

?

?cr

fult

Volume Fraction

We 5 gh t

Water Line

Ultimate Cabin Differential Pressure

Strain

Poisson's Xatio

Density

Direct Stress

Crippling Stress

Critical Compression Buckling Stress

Ultimate Allowable Compression Stress

Ultimate Allowable Tension Stress

Design Ultimate Direct Stress

Shear Stress

Critical Shear Buckling Stress

Design Ultimate Shear Stress

xv

Page 17: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

APPLICATION OF COMPOSITES TO HELICOPTER

AIRFRAME AND LANDING GEAR STRUCTURES

M. J. Rich, G. F. Ridgley and D. W. Lowry Sikorsky Aircraft

Division of United Aircraft Stratford, Connecticut

SUMMARY

A preliminary design study has indicated that advanced composite helicopter airframe structures can provide

percent increase in productivity and a five percent reduction in life cycle cost are projected. Due to their complexity, landing gear structures do not substantially benefit from the use of advanced composites.

* significant system cost advantages in the 1980's. A seven

Tne most successful concept was found to be all-molded composite modular panels, which provide integral skin/stringer and frame subassemblies. These subassemblies significantly reduce the number of parts relative to present construction. The subassemblies are mechanically joined together for econom- ical, rapid final assembly and permit field replacement in the event of major damage. The use of 1872 lbm (849.1 kg) of graphite/epoxy and 466 lbm (211.4 kg) of PRD-43/epoxy is pro- jected to save 1118 lbm (507.1 kg), or 1.8.5 percent of the airframe weight of the CH-5 3 D helicopter. Graphite/epoxy was selected for prima1.y s t r u c t u r e , and FRD-49/eyoxy for secondary structure and reirifcrcement of primary structure f o r damage tolerance improvement.

The system cost effectiveness analysis showed that while the composite airframe increases unit helicopter flyaway cost by 3 percent, the increased productivity of seven percent reduces the fleet size required and provides an overall system cost reduction of five percent. Life cycle costs were based on production starting in 1978 and extending into the 1980's.

Based on present information, a prototype composite air- frame would cost approximately four percent more than a proto- type netal airframe. The difference is due primarily to the higher engineering design time, as the increased materials cost is largely offset by reduction of fabrication labor costs.

Page 18: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Application of advanced composites to helicopter airframes can be made cost effective f o r production in the 1 9 8 0 ' ~ ~ provided further development efforts are made. efforts consist of further hardware design development, manu- facturing experience, and service experience to provide the necessary cost and technical data base.

These

2

Page 19: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

INTRODUCTION

The f e a s i b i l i t y of applying advanced composites t o aircraft s t r u c t u r e s has been amply demonstrated, and p ro jec t ed weight savings f o r f l i g h t hardware have been shown t o be achievable ( R e f . 1). Composite materials are now articles of commerce, and costs have dec l ined t o a l e v e l t h a t provides some c o s t effec- t i v e a p p l i c a t i o n s . New usage i s a n t i c i p a t e d t o f u r t h e r reduce costs f o r t h e 1 9 8 0 t i m e frame ( R e f . 2 ) . The h e l i c o p t e r airframe, with i t s r e l a t i v e l y l i g h t loading i n t e n s i t y , i s s i g n i f i c a n t l y d i f f e r e n t from t h a t of f i x e d wing a i rcraf t . To e f f i c i e n t l y use advanced composites i n t h e h e l i c o p t e r airframe, very l i g h t gage composite s k i n s must be u t i l i z e d i n t h e post-buckled stress state. c o p t e r s t r u c t u r e s w i l l be apprec iab ly d i f f e r e n t from those c u r r e n t l y developed f o r f i x e d wing a i rcraf t . 1x1 orde r t o e x p l o i t t h i s technology i n product ion , an adequate c o s t and t e c h n i c a l base must be developed t o assess cost e f f e c t i v e n e s s . Both s e r v i c e exper ience and manufacturing techniques must be developed i n a d d i t i o n t o d e t a i l e d design s t u d i e s .

For t h a t reason t h e design concepts used f o r t h e h e l i -

The o b j e c t i v e of t h i s s tudy w a s t o assess t h e a p p l i c a t i o n of advanced composite materials t o h e l i c o p t e r airframe and landing gear s t r u c t u r e s and t o p r o j e c t q u a n t i t a t i v e improvements i n v e h i c l e c o s t s and performance. To a t t a i n t h i s o b j e c t i v e , t h e s tudy u t i l i z e d the Sikorsky model CH-53D, a c u r r e n t product ion t r a n s p o r t h e l i c o p t e r , f o r comparison of composite w i t h c u r r e n t convent ional c o n s t r u c t i o n . Composite materials p o t e n t i a l l y offer s u b s t a n t i a l weight sav ing , reduct ion i n number of p a r t s , and p o s s i b l e r e d u c t i o n i n manufacturing c o s t s for t h e h igher s t r e s s e d s k i n / s t r i n g e r pane ls and forged frames and beams. This i s p a r t i c u l a r l y t r u e of t h e s i z e , weight , and performance class of t h e C H - 5 3 D h e l i c o p t e r , which involves a g r e a t e r propor- t i o n of s t r u c t u r e than do smaller rotary w i n g a i r c r a f t .

This r e p o r t is d iv ided i n t o s i x s e c t i o n s . The first sec- t i o n reviews t h e c u r r e n t CH-53D s t r u c t u r e and determines where t h e emphasis should be placed for a p p l i c a t i o n of advanced compos- i tes. The second s e c t i o n i s a compilat ion of s t r u c t u r a l d a t a and c r i t e r i a t o be uszd fo r composite design. a p p l i e s the des ign concepts t o t h e CH-53D and compiles t h e weight sav ings t h a t can be achieved through t h e use of advanced com- p o s i t e s . The f i f t h s e c t i o n assesses t h e c o s t s of a composite product ion and pro to type v e h i c l e and t h e l i f e cyc le cost effec- t i v e n e s s for f lee t ope ra t ions . The s i x t h s e c t i o n reviews t h e f u r t h e r efforts r equ i r ed t o achieve t h e cost e f f e c t i v e app l i ca - t i o n of advanced composites t o h e l i c o p t e r s t r u c t u r e s .

The t h i r d s e c t i o n

3

Page 20: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

SECTION 1 . 0 STRUCTURAL D E S C R I P T I O N OF CH-53D AIRFTIIL’.IE AND LANDING GEAR STRUCTURE

0 %le Sikorsky model CH-53D i s a l a r g e , modern, h igh speed t r a n s p o r t h e l i c o p t e r r e p r e s e n t a t i v e of convent ional cons t ruc t ion and material usage of the c u r r e n t genera t ion of h e l i c o p t e r s .

1.1 GENERAL D E S C R I P T I O N

The CH-53D uses high s t r e n g t h aluminum a l l o y as t h e primary s t r u c t u r a l material; 8 0 % of t h e airframe and landing gea r s t r u c t u r e weight i s of t h i s material,

The C H - 5 3 3 h e l i c o p t e r , shown i n Figure 1, i s of s i n g l e main r o t o r c o n f i g u r a t i o n , powered by two t u r b i n e engines , and incor - p o r a t i n g rear loading f o r cargo and t roops . This a i r c r a f t has sponsons t h a t provide water f l o t a t i o n , hydrodynamic and hydro- s ta t ic s t a b i l i t y , and support f o r the main landing gear and f u e l t anks . The landing gea r i s of t r i c y c l e conf igu ra t ion , i nco r - p o r a t i n g a i r -o i l o l e o s t r u t s and dua l main and nose wheels.

There arc c u r r e n t l y 348 of these aircraft i n s e r v i c e , and it is a n t i c i p a t e d t h a t a t o t a l of 600 of t h i s model w i l l even tua l ly be b u i l t . The growth p o t e n t i a l of t h i s fas t , l a r g e t r a n s p o r t makes it a l o g i c a l choice t o s tudy t h e improvements p o s s i b l e through use of advanced composites.

The o v e r a l l v e h i c l e design cr i ter ia are given below:

Design Gross Weight ................. 33,500lbm (15,196kg) Design L i m i t ( F l i g h t ) Load Fac tor . , ,3 .0 Design L i m i t (Landing) Sink Speed ... 8fps ( 2 . 4 4 m / s ) Design Limit Dive Speed.. .......... .195kts (100.31m/s) Design Alternate Gross Weight.. .... .42,0001bm (19,051kg3 (Reduced F l i g h t Load Fac tor ......... 2.39)

The airframe s t r u c t u r e , shown i n Figure 2 , is of s e m i - nonocoque ( s k i n / s t r i n g e r / f r a m e ) cons t ruc t ion , us ing m u i t i p l e s t r i n g e r s formed over s t r u c t u r a l framing. Aluminum a l l o y s are used throughout for t h e primary s t r u c t u r e . F o r t h e landing gear , shown i n Figure 3 , forged aluminum a l l o y i s t h e major s t r u c t u r a l material, a l though high-strength s tee l is used for many p a r t s .

The c u r r e n t CH-53D i s composed of n ine major subassemblies, as dep ic t ed i n Figure 4. They are t h e c o c k p i t , cab in , sponsons, aft s e c t i o n , f l oo r , main r o t o r pylon f a i r i n g , t a i l pylon, hor- i z o n t a l s t a b i l i z e r , and landing gea r assemblies. A more d e t a i l e d d e s c r i p t i o n i s presented i n Appendix A.

4

Page 21: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

. .

"-

I

FIGURE 1. CURRENT CH-53D HELICOPT^.

Page 22: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

FIGURE 2. cuRRE3"T C H - 5 3 AIRFRAME AND LANDING GEAR ARE OF CONVENTIONAL CONSTRUCTION.

5

Page 23: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

ARMS

FIGURE 3. CURRENT CH-’j3D MAIN LANDING GEAR IS OF FORGED CONSTRUCTION.

Page 24: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

FIGURE 4. CURRENT CH-53D IS COMPOSED OF N I N E MAJOR ASSEMBLIES.

7

Page 25: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

1.2 MATERIAL USAGE AND DESIGN CONSIDERATIONS

The major po r t ion of t h e present CH-53D weight is i n t h e o u t e r aluminum s k i n / s t r i n g e r / f r a m e s h e l l .

The d e s c r i p t i o n of s t r u c t u r a l weight i n t h e fuse l age and landing gear of t h e CH-533 by material, s t r u c t u r a l t y p e , design cons ide ra t ion , and subassembly is summarized i n F igures 5 and 6 . A more d e t a i l e d d e s c r i p t i o n i s presented i n Appendix A.

From t h e we igh t breakdown for t h e c u r r e n t airframe s t r u c t u r e , shown i n Figure 5 , it can be seen t h a t a major po r t ion of t h e s t r u c t u r e i s i n the alusinum o u t e r s h e l l ( s k i n / s t r i n g e r / f r a m e s ) , which i s designed by s t r e n g t h consid- e r a t i o n s t h a t inc lude c r i p p l i n g , buckl ing, and u l t i m a t e stress. This reg ion of t h e airframe is, t h e r e f o r e , h ighly s u i t a b l e f o r a p p l i c a t i o n of t h e h igh s p e c i f i c s t r e n g t h composite materials. The minimum gage and non- s t ruc tu ra l reg ions of t h e airframe appear s u i t a b l e f o r the a p p l i c a t i o n of lower s t r e n g t h b u t lower cost composite materials.

For the landing gea r , it can be seen from Figure 6 t h a t almost all t h e s t r u c t u r e weight i s designed by u l t i m a t e s t r e n g t h requirements. However, s i n c e t h e landing gear s t r u c t u r e con- sists mainly of aluminum and s teel forged parts, it is a n t i c i - pated t h a t t h e use of composite materials w i l l be l i m i t e d due t o t h e complexity of t h e r equ i r ed shapes.

.

8

Page 26: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

3000-

2000-

U J -1L

c I 13 3

2 t

Lu

Lu Iy

U

c u)

1000-

ALUMINUM

MATERIAL

TOTAL WT. = 6077 Ibm (2756.5 kel

MISC.

L O N G E R O N S

FAlRINGS

FITTINGS

BEAMS

;KIN-STRING€,

-

FRAMES

STRUCTURE TYPE

RlGlDlTY NON

STRUCTURAL

MIN. G A G E

M A N U - FACTURING

STRENGTH (CRI PPCl NG ,

BUCKLING. 6 ULTIMATE

STRESS1

HORIZONTAL STABILIZER

P Y L O N FAIRING

TAIL P Y L O N

FLOOR

COCKPIT

S P O N S O N

AFT SECTION

C A B I N

DESIGN MAJOR C O N D I T I O N ASSEMBLIES

FIGURE 5. CURREP?" CH-53D AIRFRAME IS PRIMARILY A L U M I m 3 ALLOY, 'WITH THE MAJOR WEIGIPT I N THE OUTER SHELL CONSTRUCTION.

Page 27: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

300-

200

m

I- I P z w m z U =I

I- v)

m

100

* INCLUDES METALLIC HARDWARE NOT CONSIDERED FOR FABRICATION FROM COMPOSITE MATERIALS

TOTAL WT. = 513 Ibm 1232.7 k@)

* MISC.

STEEL

ALUMINUM

MATERt Ai.

MISC.

BEAMS

FlrYlNGS

STRUYS

STRUCTURE TYPE

NOSE GEAR

MAIN GEAR

DESIGN CONDITION ASSEMBLIES

MAJOR

FIGURE 6 . CURRENT C H - 5 3 LANDING GEAR IS PRIMAl3ILY ALUMINUM AND STEEL FORGINGS.

9

Page 28: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

SECTIOX 2 . 0 DESIGN CRITERIA AXD DATA

0 St reng th and s t a b i l i t y des ign c r i t e r i a f o r composites are s i g n i f i c a n t l y d i f f e r e n t f r o m those used fo r metals due to t h e an i so t ropy of composites.

2.1 MATERIAL CAIIDI I),4TES

The h e l i c o p t e r airframe and landing gea r s t r u c t u r e s o p e r a t e i n a moderate temperature environment of -65OF (219OK) t o 16OoF (344OK) with the p r i n a r y des ign cond i t ions being of s t a t i c na tu re . Candidate composite materials w e r e , t h e r e f o r e , eva lua ted based on t h e room temperature s t a t i c s t r e n g t h of u n i d i r e c t i o n a l lamina tes .

O f t h e a v a i l a b l e n o n - n e t a l l i c and metallic natrices, only epoxy w a s cons idered f o r t h i s s tudy . Epoxy w a s s e l e c t e d because it has gained wide acceptance and t h e r e i s a cons ide rab le body of eyper ience e x i s t i n g f o r i t s use. Epoxy ma t r ix aaterials offer a good balance of process ing , s t r e n g t h , and adhesion c h a r a c t e r i s t i c s . Metal matrices w e r e e l imina ted f r o m con- s i d e r a t i o n , because t h e y are p r e s e n t l y so much m o r e expensive and more d i f f i c u l t t o f a b r i c a t e t h a n r e s i n matrix materials.

The composite materials cons idered f o r t h i s s tudy are summarized i n Table I , and t h e i r p r o p e r t i e s i l l u s t r a t e d i n F igures 7 and 8.

Both boron/epoxy and graphi te /epoxy appear t o be t h e prime cand ida te materials f o r t h e major po r t ion of t h e primary s t r u c - ture . This i s due t o t h e i r h igh specif ic s t r e n g t h and modulus i n both tensi.on and compression. PRD-49/epoxy is t h e prime cand ida te material f o r secondary s t r u c t u r e due t o i t s lower d e n s i t y and improvement i n modulus over f i b e r g l a s s I n a d d i t i o n PRD-49/epoxy may be a candidate i n pr imary s t r u c t u r a l areas where i t s h igh s p e c i f i c t e n s i o n strength can be u t i l i z e d . P2D-49 combined wi th g r a p h i t e may a lso be a cand ida te where moderate compression s t r e n g t h i s found adequate .

10

Page 29: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

TABLE 1. COMPARISON OF MATERIALS

Graphite/Epoq (High Strength, Mod I1 or ms)

Graphite/Epoxy (High Modulus, ms)

Graphite/Epow (AS)

E-Glass/Epoxy

?O75-T6 A~u. Alloy (For R e f .

Based on 1973 dollars

REASON FOR CONSIDERATION

High t e n s i l e and exceptionally high compres- s ive s t r e s s o f f e r a good choice f o r s t ructures designed for reversal of s t resses . mil f iber is used i n cost estimates s ince it offers some savings over t h e 4.0 m i l s ize .

Reason is similar t o t h a t for se lec t ing boron/epoxy. In addi t ion, the smaller f i b e r s i z e allows grea ter f l e x i b i l i t y i n producing conplex shapes.

The moderately high s t rength coupled with a high modulus makes t h i s material a possible f irst choice for con?ression s t a b i l i t y l imi ted s t ructures .

Moderate s t rength e?d modulus. P r i m a r v advantage is low cost at current pr ices .

A r e l a t i v e l y low cost composite mater ia l with a high t e n s i l e s t rength propert ies . While the lower conpression strength is a l imi t ing fac tor , t h e material is a good choice f o r lii.Jitlv loaded s t ructures .

A choice thn t ext.ends the raiipe where E-Glasslfpoxy would he used f o r increased in tens i ty of l o a d 11~s.

High t e n s j l r st . fereth arid v+rv l o w density o f f e r applicr.:?%a f secondxry stwwtures, or primary s t r w t u r e s deslmied for tension. The increased modulus over the f iberglass/ epoxies extends the range of usefulness. However, t h e material is severely 1in;ited i n e-ression.

The 5.6

-

.073 ?020.6)

,055 1522.4)

.058 ~605.4)

.055 L522.4

.065 1799.2)

.070 1937.6)

.UjO 13811 .o 1

~

CO'

1973

155

95

125

75

2.50

6

22

1

A B *

1978

65

25

30

25

2.50

6

1

1

11

Page 30: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

rn 4 X

w n

0 \ 0 I

OHS GRAPHITE/EPOXY

0 E-GLASS /EPOXY 0 BORON/EPOXY ( 4 MIL)

5000

4000 oPRD-4g-III/EPoxY

OHS GRAPHITE/EPOXY 3000

- 0 BORON/EPOXY ( 4 MIL) O E-GLASS /EPOXY

2000

0 HM GRAPHITE/EPOX

0 BORON/ALUMINUM (REF )

3.000

O 7075-T6 ALUM (REF)

_ r L 0 100 200 300 400 500

5000

4000

3000

2000

0 HM GRAPHITE/EPOX

0 BORON/ALU~INUM (REF )

3.000

0 7075-T6 ALUM (REF)

_ r L 0 100 200 300 400 500

SPECIFIC TENSION MODULUS - E/p, IN. X 10 5

r I I 0 5 10

6 SPECIFIC TENSION MODULUS - E/p , m x LO

FIGURE 7. SPECIFIC TENSION STRENGTH AND MODULUS FOR CO?@OSITE MATERIALS.

Page 31: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

5000

m 4

w x * 4000

a Q \ 0 I

3

E

H rn w z 0 . v

rn 2000

0

S P E C I F I C COMPRESSION MODULUS - E / p , IN. x 10 6

BORON/EPOXY (&MIL ) 0

HS GkAPHITE/EPOXY 0

0 BORON/ALUMINUM ( R E F )

HM GRAJ?HITE/EPOXY 0

0 E-GLASS/EPOXY -

0 PRD-b9- I I I /EPOXY 7 0 7 5 ~ 6

( REF ) A LULI .

I 1

0 ; 10

S P E C I F I C COMPRESSION MODULUS - E / p , m x 10 6

FIGURE 8. S P E C I F I C COMPRESSION STRENGTH AND MODULUS FOR COMPOSITE ?UiTERIALS.

13

Page 32: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

2 . 2 DESIGN CRITERIA

Some of t h e d e t a i l design cr i ter ia c u r r e n t l y used fo r m e t a l l i c a i r f rame s t r u c t u r a l elements cannot be used d i r e c t l y f o r elements cons t ruc ted from composite materials. For example, sk in panel shea r buckl ing and f l ange e l emen t compres- s i o n - buckling behavior cannot be p red ic t ed from known data us ing a simple elastic modulus r a t i o . These c r i t e r i a , t o g e t h e r w i t h cr i ter ia f o r laminate f a i l u r e and r equ i r ed impact s t r e n g t h , are h e r e reviewed and t h e c r i t e r i a used for design are presented .

2 . 2 . 1 Shear Buckling of Skin Panels

For metallic s k i n pane l s , t h e c r i t i ca l buckl ing shea r stress T C r i s given by t h e gene ra l r e l a t i o n

where E = elast ic modulus t = panel t h i ckness b = panel width

and Ks i s a func t ion of t h e p l a t e a spec t r a t i o and edge support c o n d i t i o n s .

. For a composite material t h e p red ic t ion of t h e onse t of shear buckl ing is not so simple. To e s t a b l i s h t h e c r i t i c a l buckl ing shear stress, a computer program i s used ( R e f . 3 ) . The program p r e d i c t s the buckl ing load fo r an a n i s o t r o p i c p l a t e by searching fo r t h e equ i l ib r ium b i f u r c a t i o n p o i n t , using a n energy minimization technique . Results from this program are shown i n Figures 9 and 10 , where the shear flow q is def ined as qcr = t CY causes t h e induced pr incipal . stresses t o rotate 90". 'This is e q u i v a l e n t t o a d i f f e r e n t ply-layup sequence, and hence t h e p a n e l buckl ing load i s a func t ion of the d i r e c t i o n of t he shea r l oad ing . For a l a r g e s k i n - s t r i n g e r panel of composite construc- t i o n , t h e sense of t h e shea r f l o w can vary i n i n d i v i d u a l sub- panels and can change for d i f f e r e n t airframe loading condi t ions . For t h i s reason , t he curves of Figures 9 and 1 0 are drawn through minimum values of the buckl ing shea r flow. These mini- nium curves are a p p l i c a b l e f o r des ign , with some conservat ism, wi thou t regard t o ply-layup sequence o r d i r e c t i o n of shea r load-

An a n a l y t i c a l procedure f o r p r e d i c t i o n of shear panel ' f a i l u r e i s not c u r r e n t l y a v a i l a b l e , and tes t data are lacking . The d a t a of R e f . 4 i n d i c a t e t h a t , f o r +45O ply, o r i e n t a t i o n of boron/epoxy lamina tes , t h e r a t i o of f a r l i n g load t o i n i t i a l

t . A r e v e r s a l of shear. loading on t% panel

ing.

14

Page 33: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

40

30

20

10

* O

F I G U R E 9 .

300

20c

l o o

0 .02 .04 ' .06 .08

t S K I N THICKNESS, I N .

I I 1 0 0.5 1.0 1.5

I

t S K I N THICKNESS, mm

SHEAR BUCKLING STFENGTH OF GRAPHITE/EPOXY S K I N PANELS IS MAINTAINED OVER A WIDE RANGE OF P L Y ORIENTATION.

Page 34: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

SO

40

E \

30 I

5: 0 GI Er

ii * 20

9

10

0 0 to2 .04 .08

t SKIN THICKNESS - IN. I 1 I I

0 0.5 1.0 1.5 t SKIN THICKNESS - IIIZU

FIGURE 10. SHEAR BUCKLING STRENGTH OF BOROI?/EPOXY SKIN PANELS IS MAINTAINZD OVER A WIDE W G E OF PLY ORIENTATIOB.

Page 35: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

buckl ing load i s approximately 8:l. One of t h e o v e r a l l v e h i c l e des ign c r i te r ia (see Sec t ion 2.2.6) r e q u i r e s no shear buckling of s k i n pane ls at a 1.Og load l e v e l . This impl ies shea r panel l oad ing of 3 X i n i t i a l buckl ing load a t t h e airframe design l i m i t load f a c t o r . On t h i s basis, t h e f a i l u r e c r i t e r i o n f o r boron/epoxy and graphi te /epoxy panels does not appear c r i t i ca l .

up as a symmetric, balanced laminate t o prevent out-of-plane warping.

I n Figures 9 and 1 0 , t h e panel t h i ckness i s considere6 made

2.2.2 Compression Buckling of Flange Elements

As f o r shea r buckl ing, t h e c r i t i ca l compression buckl ing stress for a metallic f l ange e l emen t can be p red ic t ed by a simple r e l a t i o n s h i p . T h i s gene ra l r e l a t i o n is

3

where E, = elast ic compression modulus t = f l ange th i ckness b = f l a n g e width

and Kc is a funct ion of t h e f l a n g e a spec t ra t io and edge suppor t condi t ion .

. T h i s r e l a t i o n i s not d i r e c t l y a p p l i c a b l e t o a f l ange element of composite material and, as for shea r buckl ing , t h e a l lowab le loading for a composite e l emen t i s obtained by use of a computer program. T h i s program, developed by F r a t t and Whitney A i r c r a f t , uses t h e s t i f f n e s s mat r ix of t h e anisotropic f l a n g e element t o c a l c u l a t e the critical buckl ing stress levels. The curves of Figures 11 and 1 2 present t h e al lowable compres- sion stress for f l ange elements of u n i d i r e c t i o n a l boronlepoxy and graphi te /epoxy der ived from this program.

16

Page 36: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

1.5

6

d

m tn w tn 0

crl PI

cu 2 1.0

e

w 3

0.5 b

0

200

cu E \ k P rl

0 U

b

0 10 20 30 40

b/t RATIO

FIGURE 11. CRIPPLING STRENGTH OF UNIDIRECTIONAL GRAPHITE/EPOxy FLANGE ELEMENTS.

Page 37: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

300,000

200,000 (u

2 \ %

ft

w"

w 2

n m

P; E-r m 0

GI pc

ffi u 0 0 1oo,ooc

t,

C

I I I 1

t

i I !

: I

i i

# i i

I I

I !

I I

10 20 30 b/t RATIO

FIGURE 12. CRIPPLING STRENGTH OF UNIDIRECTIONAL BORON/EPOXY FLANGE ELEMENTS.

17

Page 38: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

2.2.3 Combined Loading

t h e comonly used design curve i s an i n t e r a c t i o n curve of combined shea r and compression. To o b t a i n such a curve for t h i s s tudy , t h e s h e a r buckl ing c h a r a c t e r i s t i c s of boron/epoxy and graphi te /epoxy (Figures 9 and 10) are compared with the buckl ing c h a r a c t e r i s t i c s of an aluninum panel of s i m i l a r a spec t r a t i o and panel t h i ckness . From t h i s comparison, an effect- i v e elastic modulus is der ived for t h e composite materials. This e f f e c t i v e modulus- i s then used as inpu t t o a computer program, t o produce t h e i n t e r a c t i o n curves of Figure 13. The panel s i z e considered is t h e 6 . 0 i n . (152.4mm) x 20.0 i n . (508.0nm) pane l , t y p i c a l f o r the c u r r e n t airframe. The maximum s t r i n g e r compression load c a p a b i l i t y shown i n Figure 1 3 is r e p r e s e n t a t i v e of t h e r equ i r ed load c a p a b i l i t y f o r the panel s i z e considered.

For panels c a r r y i n g both shea r and compre ion loading ,

2.2.4 Laminate F a i l u r e Criteria

For an element of s t r u c t u r e b u i l t - u p f r o m p l i e s with d i f f e r i n g f i lament o r i e n t a t i o n , t h e c r i t e r i o n f o r element f a i l u r e i s more complex than f o r a homogeneous material or a laminate w i t h u n i d i r e c t i o n a l f i l amen t s . Previous work i n t h i s area shows a d i v e r s i t y of opinion concerning t h e def in- i t i o n of laminate f a i l u r e . i t i o n s are given below, i n which t h e term laminate stress refers t o t h e nominal stress ( load/gross a r e a ) :

Three varying summarized de f in -

Design u l t i m a t e laminate stress defined as t h e maxi- mum l a m i n a t e stress a t ta inable without r u p t u r e of any p l y ( R e f . 5).

0 Design l i m i t laminate s%r*css defined as the maximum l a m i n a t e stress a t t a i n a b l e without rup tu re of any p l y ( R e f . 6). T h i s d e f i n i t i o n is i l l u s t r a t e d i n Figure 14.

e Design u l t i m a t e laminate stress def ined as t h e maximum stress a t t a i n a b l e without rup tu re of more than one p l y ( R e f . 7 ) .

The n a t u r e of the loading app l i ed t o any s t r u c t u r a l element w i l l i n f l u e n c e t h e choice of f a i l u r e cr i ter ia used for des ign . I n g e n e r a l , airframe s t r u c t u r a l elements are sub jec t ed t o repea ted loading of varying i n t e n s i t y during the i r design l i v e s . p o s s i b l e by using t h e first and t h i r d d e f i n i t i o n s above) would impair t h e c a p a b i l i t y of such an element t o c a r r y f u r t h e r loading. For t h i s reason t h e second d e f i n i t i o n above, i l l u s t r a t e d by Figure 1 4 , is used fo r design.

Any p l y f a i l u r e a t l i m i t load (which is

1 8

Page 39: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

100

P 2 Y

5 8 50

0

FIGURE

600

500

400

300

200

100

0 1000 2000 MOO 4c

STRINGER COMPRESSION WAD, 1bf

I I I i 0 5 10 15

STRINGER COMPRESSION LOAD, kN

13. GRAPHITE/EPOXY AND BORON/EPOXY SKIN PANELS HAVE SIMILAR COMBINED LOAD CAPABILITIES.

FIGURE 14. OFF-AXIS LOADING LIMITS STRENGTH OF LAMIUATE.

19

Page 40: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

2.2.5 Inpac t S t r eng th Cri ter ia

Impact r e s i s t a n c e i s an important cons ide ra t ion f o r t h e l i g h t gage c o n s t r u c t i o n envisaged f o r e x t e r i o r s k i n pane ls i n t h e composite airframe. C u r r e n t d a t a ( R e f . 8) i n d i c a t e t h e fol lowing comparative Charpy impact c a p a b i l i t i e s f o r uni- d i r e c t i o n a l composite lamina tes :

PRI)-QS/Type 111 2 5 0 f t . lbf / i n 2 ( 5 6 5kmN/m2 1 PRD-49/Type I 1 5 0 f t . l b f / i n 2 ( 3 39kmN/m2 1 Boron/Epoxy ' 50 f t .lbf/in2(113kmN/m2) Thornel-50(Graphite)/Epoxy 20 f t . l b f / i n 2 (45kmEJ/m2 1 25% ?R3-49/Type 111-75% Boron/

1 3 0 f t . l b f / i n 2 ( 2 94kmN/m2 1 Aluminum, 2024-T4 ( re f . 1 220 f t . l b f / i n 2 ( 4 9 7kmN/m2 1

EPOXY

These va lues are i l l u s t r a t e d i n Figure 1 5 .

There i s i n s u f f i c i e n t s e r v i c e experience t o i n d i c a t e t h e r equ i r ed impact s t r e n g t h t o maintain impact damage a t an accep tab le l e v e l . A minimum Charpy impact s t r e n g t h of 50 f t . l b f / i n 2 (113 kml?/n21 fo r e x t e r n a l a i r f r ame s u r f a c e s w a s a r b i t r a r i l y e s t a b l i s h e d as a c r i t e r i o n f o r t h i s s tudy. With t h i s c r i t e r i o n , t h e use of graphi te /epoxy would r e q u i r e an i n c r e a s e i n t h e material impact s t r e n g t h t o meet t h e minimum requirement . Such an improvement can be obtained by t h e use of PRD-49 material i n conjunct ion wi th t h e graphi te /epoxy.

2.2.6 Overa l l Vehicle Design Criteria

'

The fo l lowing c r i t e r i a , which are independent of t h e material s e l e c t e d , are used f a r v e h i c l e des ign:

0 U l t i m a t e factor of safety of 1 . 5 based on 1i.rni.t design l oads .

0 I?o buckl ing for 1.Og f l i g h t load cond i t ion .

0 Material des ign a l lowables based on t y p i c a l room temperature va lues with s ta t is t ical r educ t ion for des ign r e l i a b i l i t y .

0 Material elastic cons t an t s taken as t y p i c a l room temperature va lues .

20

Page 41: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

EL - 'jO/EPOXY I I I I

I BORON /EPOXY.

I I I I

125% PRD-49 TYPE I I I / E P O X Y 75% BORON

i I I I PRD-49 TYPE I

I I I

PRD-49 TYPE I11

I I t I I a I

I I I I

50 100 150 200 250

CHARPY IMPACT STRENGTH, FT lbf /IN.

0

I I I I I

0 100 20c 300 4:O 500

CHARPY IMPACT STRENGTH, kmN/m2

FIGURE 15. PRD-49 CAN BE USED TO IIICREASE IMPACT STRENGTH.

21

Page 42: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

2.3 DESIGN ALLOWABLES

2.3.1 Haterial Allowables

For primary redundant a i r f r ame s t r u c t u r e and a l l second- a r y s t r u c t u r e , it is customary t o use t h e '3' s t r e n g t h allow- a b l e , which i s de f ined such t h a t t h e r e is a 90 percent s u r v i v a b i l i t y with 95 percent confidence, The ' B ' a l lowable s t r e n g t h i s used i n t h i s s tudy , s i n c e t h e ma jo r i ty of t h e s t r u c t u r e fa l ls w i t h i n t h e ' B f s t r u c t u r a l ca tegory .

Material e las t ic c o n s t a n t s u s u a l l y e x h i b i t smaller v a r i a t i o n s than t h e s t r e n g t h a l lowables ; t h e r e f o r e , €or t h i s s tudy , t y p i c a l va lues are used.

Most of t h e f i b r o u s composites have no def ined y i e l d p i n t for u n i d i r e c t i o n a l f i l a m e n t s , i .e. t h e 0 . 2 percent s t r a i n dev ia t ion f a l l s o u t s i d e the s t r e n g t h envelope. For t h i s s tudy , t h e r e f o r e , t h e u l t i m a t e a l lowables are used. The material p r o p e r t i e s used i n design are presented i n Table 2,

2.3.2 Bonded J o i n t Shear Allowable

For a given j o i n t , t h e a l lowable shear load i s a f u n c t i o n of s e v e r a l parameters , i nc lud ing adhesive type and th i ckness , adherend materials and th i cknesses , and j o i n t type and geometry.

I n view of t h e number and d i v e r s i t y of bonded j o i n t s cons idered i n t h e CH-53D composite airframe, a d e t a i l e d a n a l y s i s is n o t performed f o r each j o i n t . I n s t e a d an allowable average shear stress i s used far design purposes. U s e of t:liis d e s i g n allowable throughout t h e s t ructur te r e s u l t s i n some j o i n t s that are no t of optimum design locally. However, small changes in j o i n t design , although c i l i ti cal. for s t r e n g t h z e q u i r e r w n t s , do not s i g n i f i c a n t l y a f fec t ttie s t ruc tu i ' e weight oz' manufacturing cost. The design average al lowable shear stress is set a t 3000 p s i ( 0 . 0 2 1 G M / m L ) , which corresponds , for example, t o t h e s h e a r allowable for t h e j o i n t sketched below ( d a t a f r o m R e f . 9 ) .

UNIDIRECTIONAL TITANIUM GWHITE/EPOXY

22

Page 43: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

la H

D

8 t t

r(- m N

n e o u d Y

E: 0 ..I

E R

8 8 8 8 , * * * 8 .

Page 44: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

SECTION 3.0 DESIGX CONCEPTS

0 The use of conpos i te materials permi ts a reduct ion i n weight and number of p a r t s , t o g e t h e r with s i m p l i f i e d f a b r i c a t i o n and assembly processes .

To u t i l i z e t h e design p o t e n t i a l of composite materials i n a c o s t e f f e c t i v e manner, e f f o r t i s d i r e c t e d t o achieving t h e fol lowing f e a t u r e s i n t h e f i n a l des ign:

0

0

0

0

0

Minimum number of s e p a r a t e d e t a i l p a r t s .

Fab r i ca t ion of s e p a r a t e p a r t s us ing automated equip- nent such as i n f l a t p a t t e r n layup.

I n t e g r a l she l l cons t ruc t ion t o reduce mechanical f a s t e n i n g t o t h a t r equ i r ed fo r j o i n i n g of major assemblies.

Minimum number of s e p a r a t e cu re cyc le s .

Matching laminate layup s t r e n g t h p r o p e r t i e s t o d i r e c t i o n of loading.

The concepts for design are l i m i t e d by t h e fol lowing geometric c o n s t r a i n t s , which are considered unchanged from the c u r r e n t v e h i c l e :

0 Externa l airframe shape.

0 Location of major s t r u c t u r a l components, e , g . , l anding gear suppcirt frames,

Geometry and location of doors, windows, access panels, etc.

0 Geometry and support l o c a t i o n of a l l non- s t ruc tu ra l systems

3.1 AIRFRAME STRUCTURE

3.1.1 Prel iminary Considerat ions

The fol lowing gene ra l i zed concepts are used throughout t h e composite s t r u c t u r e .

24

Page 45: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

0 F i t t i n g s

F i t t i n g s , both forged and machined, are used i n many r e g i o n s of t he c u r r e n t airframe and landing gear s t r u c t u r e . They e x i s t , i n gene ra l , a t the i n t e r s e c t i o n of s t r u c t u r a l l oad p a t h s , a t s p l i c e l o c a t i o n s , and a t p o i n t s of concen- t r a t ed loading se rv ing t o d i f f u s e t h e loading i n t o ad jacen t s t r u c t u r e . The f i t t i n g s are, t h e r e f o r e , of complex shape , c a r r y i n g high l e v e l s of combined loading .

Considerat ion of p o s s i b l e cornposite materials f o r t h e f a b r i c a t i o n of f i t t i n g s are l i m i t e d t o s h o r t (chopped) f ibe r / epoxy materials o r Soron/aluminum. Considerat ion of bu i l t -up f i t t i n g s us ing metall ic elements bonded t o laminated epoxy based composites i s n o t considered cost e f f e c t i v e .

For short f iber /epoxy materials, the p o t e n t i a l weight r e d u c t i o n i s s m a l l . The d a t a of R e f . 1 6 sugges t a s p e c i f i c

' t e n s i o n a l lowable of 7 0 0 , 0 0 0 i n . ( 1 7 , 8 0 O m ) , which is compar- able t o t h a t f o r aluminum. I n a d d i t i o n , material c o s t s are s u b s t a n t i a l l y h ighe r t h a n alu.?inum, s o t h e concept i s no t cost e f f e c t i v e .

U s e of boron/aluminum composite material has t h e poten- t i a l of braz ing c a p a b i l i t y t o enable complex shapes t o be f a b r i c a t e d . IIowever, t h e p o t e n t i a l c o s t of f i t t i n g s made f r o m t h i s material i s h igh , an& t h e concept i s n o t considered cost e f f e c t i v e .

F i t t i n g s r e p r e s e n t only 5.5 percent of t h e airframe s t r u c t u r e weight and, based on t h e comments ahave, the air- frame f i t t i n g s are r e t a i n e d as m e t a l l i c elements. To i-ediice t h e problems a s s o c i a t e d with thema1 misma-tcli , t h e c u r r e n t aluminum f i t t i n g s are rep1.ace.d by t i t a n i u m fittings of equiva len t s t r e n g t h and s t i f f n e s s ,

a Graphite/Epoxy P l y Thickness

For graphi te /epoxy lamina tes , t h e p l y t h i c k n e s s a v a i l a b l e from s u p p l i e r s v a r i e s from 0 .005 i n . (0,127mm) t o 0 .020 in. (0.508mm). Considerat ion of optimum p l y th i ckness f o r each s t r u c t u r a l element would r e s u l t i n t h e use of many d i f f e r e n t p l y t h i c k n e s s e s i n t n e composite airframe. T h i s s i t u a t i o n is not d e s i r a b l e f o r r easons of both material c o s t and q u a l i t y c o n t r o l dur ing manufacture. For these reasons , a s tandard p l y t h i c k n e s s of 0 . 0 1 i n . (9.254mm) is used i n t h e concepts fo r a l l graphi te /epoxy lamina tes .

2 5

Page 46: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

0 Laminate I.?arping

To prevent out-of-plane warping, a l l laminates are con- s ide red t o be ba lanced , symmetric layups. Exceptions t o t h i s genera l r u l e occur i n r eg ions where l o c a l s t r eng then ing i s made by a d d i t i o n a l lamina te bui ldup and, fo r some sandwich panel face s h e e t s , where l o c a l bonding w i l l r e s t r a i n t h e warping.

0 Primary S t r u c t u r a l Naterial

The r e l a t i v e s t r e n g t h s of boron/epoxy and graphi te /epoxy laminates under combined loading are shown by Figure 1 3 t o be of comparable magnitude. Since boron/epoxy has a p ro jec t ed cost much h ighe r t han t h a t for graphi te /epoxy (see Table 11, t h e composite material considered f o r t h e primary airfraz!e and landing gear s t r u c t u r e is graphi te /epoxy, i n both HMS and MTS forms.

3.1.2 S t r i n g e r Construct ion

shown i n Figure 1 6 . A comparison of t h e concepts on a weight b a s i s i s presented i n Figure 1 7 , which i n d i c a t e s t h e s u p e r i o r s t rength /weight c h a r a c t e r i s t i c s of t h e foam-stabi l ized con-

The concepts considered f o r s t r i n g e r c o n s t r u c t i o n are

posi t ; s t r i n g e r over t h e a n t i c i p a t e d load range. t h i s type of c o n s t r u c t i o n i s s u i t e d t o t h e concept of i n t e -

I n a d d i t i o n ,

g r a l s h e l l c o n s t r u c t i o n .

The aluminum s t r i n g e r s with composite re inforcement are c l o s e s t t o t h e foam-s tab i l ized com?osite s t r i n g s r on a btisis of we igh t However, t h e C s e c t i o n aluminum stri.rigex'8 ~ A J C U ~ ~ in t roduce problems of thermal bowing due t o the bond c u r e temperature of 250° F (394OK) and would r equ j xie c l i p p i n g at fraine l o c a t i o n s t o g ive tors i .ona1 s t a b i l i t y . The aluininum ex t rus ion i n f i l t r a t e d with composite would have similar pi-oblems and a p o t e n t i a l l y high c o s t .

For t h e s e r easons , t h e foam-stabi l ized graphi te /epoxy s t r i n g e r is considered t h e m o s t cost e f f e c t i v e concept for s t r i n g e r cons t ruc t ion .

26

Page 47: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

UNIDIRECTIONi ,COMPOSITE

1

(a) CURRENT ALUMINUM STRINGER (b) SELECTIVE REINFORCEMENT 1

UNIDIRECTIONAL

/coMposlTE ALUMINUM EXTRUSION

( e ) SELECTIVE REINFORCETvlENT 2

UNID I R E CT IOM LAMINATE

(d) ALL COMPOSITE STRINGER

UNIDIRECTIOUAL - LAMINATE

(e) COMFJOSITE/FOAM STRINGEX (f) ALL COMPOSITE STRINGER

FIGURE 16. COMPOSITE STRINGER CONCEPTS.

Page 48: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

.OE

.ox

. .ooE

5

E *oat

5 n

!3 x

!xi

zi H a I3

s!

.001

.DO2

- TYPICAL LOAD RANGE FOR

CII-53D

2000 4000 6000 81 CRITICAL COMPRESSION LOAD, lbf

t I 1 i 0 10 20 30

CRITICAL COMPRESSION LOAD, kN

FIGURE 17. FOAM STABILIZED COMPOSITE STRINGER HAS LOVXST WEIGHT OVER REQUIRED LOAD RANGE.

27

Page 49: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

3.1.3 Skin Construction

The current CH-S3D outer skin in the cabin and aft sec- tion region is aluminum sheet, mainly of 0.025 in. (0.64mm) o r 0.032 in. (0.81mm) gage. The light gage composite laminate of equivalent shear strength would result in a low shear buckling allowable and.be damage prone. The use of sandwich panel construction for the outer skin would reduce both these problems. Xowever, a comparison of this type of construction with the current aluminum skin, on a weight basis, shows an adverse result. For composite sandwich panels, the sketch below indicates the minimum dimensions considered practicable from manufacturing considerations and normal service require- ments for minimum gages of airframe outer skin.

= 0.02 IN. (0.5l~1m) 1 to 1

= 0.25 IN. (6.35mm) core ADHESIVE t - 3.

.06 lbn f = 0.01 IN. (0.25mm) i/FT-/ layer

ti

The following comparison is made:

Sandwich panel

Graphite/epoxy skins ,255 (1.243) Core 4.01bm/ft3 (64.1 kg/m3) ,083 ( .405)

W. lbm/ft2 (kg/rn2 1

Adhesive m120 ( .585)

Total for panel cI__ ,458 (2,233)

.O32lr aluminum skin (typ. f o r current airframe skins) .460 (2.243) - This comparison indicates essentially no weight saving

potential for a sandwich panel replacing only the airframe skin.

A more efficient use of sandwich panel construction would be as a replacement for skin and supporting structure. ever, for a large transport helicopter, such as the CH-53D, the internal concentrated loads require deep frames f o r struc- tural efficiency, Therefore, the sandwich construction would be limited to only replacing the skidstringer combination,

How-

For the CH-53D a typical aluminum skidstringer combination has a weight of . 6 5 1bm/ft2 (3.170 kg/m*). The required

28

Page 50: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

50

40

E! \ z 2 30 *

50 c-7 R

3 X m

g 20 0'

10

0

300

20c

1oc

0 ,002 .006 .o

t p S K I N WEIGET P W T E R , l b m / I N 2

c I I I 1 0 1.0 2 .o 3.0 4 .O

t p SKIN WEIGHT PARAMETER, kg/m2

FIGURE 18. GRAPHITE/EPOXY S K I N HAS HIGHER SHEAR BUCKLING E F F I C I E N C Y THAN BOROK/EPOXY OR ALUMINUM S K I N . '

29

Page 51: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

g r a p h i t e / e oxy sandwich c o n s t r u c t i o n i s e s t ima ted t o weigh . 7 0 lbm/f t 3 (3 .413 kg/m2). Therefore , it is concluded t h a t a more e f f i c i e n t s t r u c t u r a l concept i s r equ i r ed .

The a l t e r n a t i v e concept of a s i n g l e composite laminate as an o u t e r s k i n r e q u i r e s t h e comparison of composite s h e a r buck- l i n g c h a r a c t e r i s t i c s wi th thos;! of an aluminkm panel , s i n c e t h e c r i t i ca l design c r i t e r i o n f o r t h e s k i n i s t h a t no buckl ing occur a t a 1.Og f l i g h t load cond i t ion (see Sec t ion 2 . 2 . 6 ) . This comparison i s i l l u s t r a t e d i n Figure 1 8 , which shows t h e s u p e r i o r shear buckl ing e f f i c i e n c y of t h e - +45O graphi te /epoxy.

s k i n pane ls i s a s i n g l e graphi te /epoxy laminate o f balanced - +4S0 p l i e s .

3.1.4 Skin /S t r inge r Panel Construct ion

~

Based on t h i s comparison, t h e concept employed fo r t h e o u t e r

The concepts presented f o r s t r i n g e r and s k i n c o n s t r u c t i o n are f u r t h e r v e r i f i e d by comparison of t h e i r combined loading s t r e n g t h as a s k i n / s t r i n g e r panel combination w i t h t h e equiva- l e n t s k i d s t r i n g e r pane l of aluminum c o n s t r u c t i o n as i n t h e c u r r e n t airframe.

This comparison is presented i n Figure 1 9 , which shows t h e h ighe r combined s t r e n g t h c a p a b i l i t y of the composite s k i n pane l , p a r t i c u l a r l y i n t h e h ighe r s h e a r flow reg ion . The com- p res s ion a l lowable load f o r the aluminum c o n s t r u c t i o n i s t h a t for a s tandard aluminum C s e c t i o n s t r i n g e r + s k i n , as i l l u s t r a - t e d i n Figure 1 6 , and t h e composite s t i f f e n e r i s designed for t h i s load .

3.1.5 Frame Construct ion

Concepts considered f a r frame basic cross s e c t i o n are shown i n Figure 20 t o g e t h e r w i t h the weight /uni t i eng th for each concept , based on a t y p i c a l loading po in t and f r a m e depth r equ i r ed i n t h e lower r eg ion of t h e cabin frames. The concepts of Figures 2 0 c , d , and e are seen t o have s i m i l a r weight p r o p e r t i e s . For cons ide ra t ion of frames i n the cab in r e g i o n , the foam s t a b i l i z e d frame (Figure 2 0 d ) can be i n t e g r a t e d i n t o t h e concept of an i n t e g r a l s h e l l layup-and-cure c y c l e without p r i o r d e t a i l f a b r i c a t i o n of p a r t s , which i s r e q u i r e d for t h e concepts of F igures 2 0 c , e.

For r eg ions of the s t r u c t u r e i n which d e t a i l p a r t f a b r i - c a t i o n i s considered t o precede the f i n a l assembly, t h e concept of Figure 2 0 c i s considered an acceptab le a l t e r n a t i v e .

30

Page 52: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

WEB STABILIZING STlF FEN E RS

1.4- 2.0-

1.2--

E \ m

a1.5- E 1.0-- e- \ I € " 2 - 3 I

1.0- z +- 0.8-- Lu

UJ

2 3 0.6-- & U J z

2 0.4--

0.5-

(a) BUILT UP [b] SELECTIVE (c] COMPOSITE ALUMINUM REINFORCEMENT SANDWICH

ALUMINUM EXTRUSION

COMPOSITE

NIDIRECTIONAL RECTIONAL OSITE 90°

FIBERGLASS

(dl COMPOSITE/ (el BUILT UP (f) COMPOSITE FOAM COMPOSITE INFILTRATED

ALUMINUM

. "'L

STIFF.

WEB

CAPS

a

(J ~ ~ 1 0 0 , 0 0 0 I N . #

# / 10,000

TYPICAL DESIGN LOADING

STIFF. -I ADHfSlLE

WEB

CORE

WEB

CAPS

CAPS

b C

FOAM

WEB

CAPS

d

STIFF.

~ a

WEIGH!" COMPARISON - COMPOSITE BEAM CONCEPTS (COMPOSITE MATERIAL CONSIDERED TO BE GWHITE/EPOXY)

'

FIGURE 20. S T A B I L I Z E D COMPOSITE FRAMES ME LIGHTER T M CuRR;ENT COIJSTRUCTION .

STIFF.

WEB

CAPS

f

31

Page 53: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

3.1.6 S h e l l Construct ion

The concepts presented f o r s t r i n g e r , s k i n , and frame con- s t r u c t i o n can be i n t e g r a t e d t o produce t h e concept f o r com- p o s i t e s h e l l c o n s t r u c t i o n . The concept is i l l u s t r a t e d i n Figure 21. The s t r i n g e r s are considered cont inuous, passing through a cut-out i n t h e frame web, and are jogged over the o u t e r frame cap t o preserve c o n t i n u i t y of frame bending cap- a b i l i t y .

3.1.7 . Floor Construct ion

Cargo f l o o r design i s governed by t h e requirements of Reference 17 which s p e c i f i e s both d i s t r i b u t e d cargo loading and l o c a l wear and i n p a c t loading. The c u r r e n t f l o o r construc- t i o n i s of aluminum sheet bonded t o C s e c t i o n aluminum ext ru- s i o n s .

The concept considered f o r the composite airframe i s a hybrid sandwich pane l , shown i n Figure 2 2 , which a l s o i n d i c a t e s t h e v a r i a t i o n i n f l o o r weight for t h e composite materials considered. T h i s concept i s s i m i l a r t o a design c u r r e n t l y being evaluated by Sikorsky A i r c r a f t f o r f u t u r e h e l i c o p t e r a p p l i c a t i o n . An upper face sheet of t i t a n i u m , t o g e t h e r w i t h an upper l a y e r of dense aluminum core, i s considered i n order t o meet t h e design cond i t ions of s u r f a c e wear and local impact loading. The lower face sheet of composite material t o g e t h e r with t h e lower layer. of less dense aluminum honeycomb provide t h e necessary beam depth t o c a r r y t h e f loor bending moments and shears.

From Figure 2 2 , it can be seen t h a t little weight v a r i a t i o n occurs wi th m a t e r i a l v a r i a t i o n for t he composite el.eiiients of t h e f l o o r , u i t h the except ion of PRD-4S/epaxy, due to its low co~npr~essio~i s t r 'ength ( s e e Table 2 ) . For tliis r eason , f ibex-glass is chosen as t h e composite material for t h e floorb panels, due t o i t s much lower c o s t t han the o t h e r composites. On an over- a l l cost basis, a comparison with the c u r r e n t aluminum construc- t i o n shows t h e hybr id panel cons t ruc t ion t o be less c o s t l y . With t h e reduct ion i n f l o o r weight , shown by Figure 2 2 , t h e o v e r a l l concept i s judged cost e f f e c t i v e .

32

Page 54: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

6.0

5

4.0 hJ f3 Ert \ E ft n

3.0 0

F Er; 0 0 4 %I

2.0

1.0

0

(TYP s:

~ I I I

-t---- 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

FLOOR THICKNESS, I N .

I I I 1 0 10 20 30

FLOOR THICKNESS, mm

FIGURE 22. LOW COST FIBERGLASS HYBRID FLOOR CAN REDUCE WEIGHT BY 28 PERCENT.

33

Page 55: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

FIGURE

1201

.04

COMPRESSION LOADDANEX WT - lbf/lbm I I I I I I I i 0 100 200 300 100 500 600 700

COMPRESSION LOAD/PANEL W l - N/kg

19. G W H I T E / E P O X Y AND BORON/EPOXY SKIN/STRINGER PANELS HAVE HIGHER COMBINED LOAD STRENGTH/WE3GHT RATIO THAN ALUMINUM PANELS.

WRTINU0V:I FEAW CAP (VIIIDIRECTIOIIAL)

FIGURE 21. COMPOSITE SHELL CONCEPT.

Page 56: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

3.1.8 Connections

S t r u c t u r a l connect ions are considered t o be bonded where- e v e r p r a c t i c a b l e . For mechanical j o i n i n g , involv ing f a s t e n e r ho le s through composite lamina tes , t h e a s s o c i a t e d stress concen- t r a t i o n s r e q u i r e t h a t a d d i t i o n a l l o c a l material be added t o reduce the stresses t o an accep tab le l e v e l o r t h a t some o t h e r means be used f o r j o i n t re inforcement , such as bear ing s t r i p s bonded t o t he composite material. Each of t h e s e e f f e c t s i n c u r s a weight and c o s t pena l ty .

bonded j o i n t s , such as t h e stepped l a p j o i n t , i s o f f s e t , t o some e x t e n t , by t h e inc reased manufacturing c o s t caused by t o l e r a n c e c o n t r o l and p o s s i b l e machining a t t h e connection i n t e r f a c e . For these reasons , emphasis is placed on bonded connect ions of simple cons t ruc t ion .

However, t h e high s t r u c t u r a l e f f i c i e n c y of w e l l designed

Exceptions t o the concept of all-bonded connections are made a t t h e mating faces of the major s t r u c t u r a l assemblies and subassemblies. Considerat ion of mechanical connect ions a t t h e s e l o c a t i o n s w i l l assist i n assembly and f a c i l i t a t e d i s - assembly f o r p o s s i b l e in - se rv ice replacement of s eve re ly dam- aged s e c t i o n s of s t r u c t u r e .

A t the mating faces of t h e cabin subassemblies, a s k i n s h e a r s p l i c e i s r equ i r ed . The concepts considered f o r t h i s s k i n s p l i c e are shown i n Figure 2 3 , which i n d i c a t e s the f i n a l design concept used. I n a d d i t i o n t o t h e skin shear s p l i c e , t h e cabin frames r e q u i r e a shea r and moment s p l i c e a t this location, and the concepts considered for this connection are stiown i n Figure 2 4 .

A t the m a t i n g faces of the cabin region with t h e cockpit and aft fuselage s e c t i o n , the axial mzmbem require a s p l i c e connection i n a d d i t i o n t o t h e s k i n shear s p l i c e . Concepts considered for t h i s connect ion are shown i n Figure 25.

34

Page 57: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

4 I

\

w U

3 B

a N

\

Page 58: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

3.1.9 F a b r i c a t i o n Concept

The concepts presented i n s e c t i o n s 3 . 1 . 2 through 3.1.8 are i n t e g r a t e d i n t o an o v e r a l l concept f o r airframe c o n s t r u c t i o n and assembly and are i l l u s t r a t e d , f o r t h e cab in sec t ion , i n F igures 2 6 through 2 9 .

The cab in s e c t i o n i s conceived as formed f r o m f o u r sub- assemblies, with each subassembly formed i n only t w o cu re c y c l e s . The f i rs t of t h e s e c y c l e s invo lves t h e o u t e r s k i n , o u t e r frane caps , s t r i n g e r s , and s p l i c e f i t t i n g s shown i n F igu res 26 and 2 7 . The f l a t p a t t e r n u n i d i r e c t i o n a l lamina te f o r t h e s t r i n g e r i s f i rs t l a i d i n t o s t r inger -shaped pockets i n a s p l i t male mold f o r m . Molded-foam s t r i n g e r co res are then i n s e r t e d over t h e s t r i n g e r lamina tes followed by t h e u n i d i r e c t i o n a l lamina tes t o form t h e o u t e r f rame.caps. To minin ize problems a t s t r i n g e r / f r a m e i n t e r s e c t i o n s , t h e o u t e r frame caps are t ape red i n t h e width d i r e c t i o n . The o u t e r s k i n is t h e n l a i d up ove r t h e mold s u r f a c e t o g e t h e r wi th t h e t i t a n i u m s h e e t i n s e r t s (see Figure 2 6 ) and t h e s t r i n g e r end f i t t i n g s (see Figure 2 7 ) . These elements are then co-cured i n the f i rs t cu re c y c l e .

The second c u r e c y c l e invo lves t h e frames, shown i n F igure 28. The cured f i rs t s t a g e i s removed f r o m t h e s p l i t m a l e mold arid t r a n s f e r r e d t o a female mold. The molded foam frame c o r e is l a i d up over t h e o u t e r f r a m e caps followed by t h e uni- d i r e c t i o n a l lamina tes f o r t h e frame i n n e r cap. The f la t p a t t e r n layup of t h e +4S0 l amina te , and the frame s p l i c e f i t t i n g s (see Figure 2-91 are then added, and t h e second cu re c y c l e i s performed t o c o m p l e t e t h e subassenttly. At t h i s s t a g e , d e t a i l trimming of s k i n c u t o u t s i s completed.

Vacuum l i f t i n g equipment i s considered f o r handl ing of parts i n t h e subassembly and final. assembly s t a g e .

The f i n a l assembly i s completed by mechanically connect ing t h e f o u r subassemblies , as shown i n F igure 30.

It is p o s s i b l e t o f a b r i c a t e c a b i n subassemblies us ing o n l y one c u r e c y c l e , t h u s reducing t h e f a b r i c a t i o n costs. There i s however, t h e problem of t h e lamina te s t r e n g t h p rope r ty of t h e s t r i n g e r a t t h e s t r i n g e r / f r a m e i n t e r s e c t i o n . Therefore , a t t h i s t i m e , t h e conse rva t ive approach of two cure c y c l e s is used fo r cost e s t i m a t i o n purposes .

Other airframe assembl ies are cons idered s u i t a b l e f o r f a b r i c a t i o n and assembly i n a manner s i m i l a r to t h a t ind'icated fo r t h e cabin . Detail drawings of t h e f i n a l airframe concepts are presented i n Sec t ion 4 .0 , and a schematic i n d i c a t i o n of t h e complete airframe assembly i s shown i n F igure 31.

36

Page 59: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

E- m

Page 60: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND
Page 61: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

F R E C E T ~ G PAGE BLANP; BOT m

Page 62: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND
Page 63: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND
Page 64: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND
Page 65: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

m t m PBECEDING PAGE BLANK NOT FILMED

p7

I I I I +

--/----

Page 66: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND
Page 67: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

PRECEDING PAGE BLANK NQT F I L m

Page 68: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND
Page 69: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

PRECEDING PAGE BLANK NOT FXLMED

Page 70: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

3.2 L'liJDIiJrJ GEAR STRUCTURE

The rolling gear is not included in the study of concepts for composite material application. wheels, tires, brakes, and miscellaneous hardware. With the exception of the wheels, all items of the rolling gear are not considered replaceable by equivalent parts of composite construc- tion. For the wheel, which is currently an aluminum forging, the only practical concept f o r composite material construction is considered to be a molded form of short fiber/epoxy material. Section 3.1.1 indicates that this material is not

. competitive on a cost effective basis compared with the aluminum forging.

The remainder of the landing gear consists of major steel and aluminum forgings together with miscellaneous hardware and nonmetallic elements. The structural elements considered f o r construction of composite materials are the oleo trunnion, shock strut, the drag strut cylinder and piston, and the torque arms. The current construction of the main landing gear is shown in Figure 3 , with the nose landing gear being of similar construction-.

This gear consists of

The choice of elements of the landing gear considered unsuitable f o r replacement by equivalent parts of composite material is substantiated by other work in this field, such as Reference 18.

3.2.1 Trunnion

Concepts considered for this p a r t are shown in Figure 32. For the all-composite construction, two mater*ials are potential candidates : short fiber/cpoxy molding or boron/al umiiiurn wi.tf-i brazed connections, as outlined in section 3.1.1. The use of short f iber/epoxy material does not appear cos t effective. Use of bcir*onialumirium composite ciarer ia l is 1 ini ted by t h e low tension strength allowable f o r O o , 90° laminates when based on the criteria illustrated by Figure 14. Using data from Reference 9 for unidirectional boron/aluminum laminates, the allowable tensile stress is reduced to 32.5 ksi (0.224G1J/m2) when the criteria of Figure 14 are applied. In addition, boron/aluminum construction is not considered comparable on a cost basis with the highly developed aluminum forging process.

For these reasons, the concept judged to have cost effective potential is that of selective replacement of the simple shaped elements of the trunnion with cylindrical shapes built up from graphite/epoxy laminates. The complex shape and loading of the connections require metallic fittings at these points. For a bonded joint connection of these fittings to the composite cylinders, the weight of metal replaced in the inclined

48

Page 71: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

(a) ALL COMPOS;TE CONSTRUCTION NOT COST EFFECTIVE

I

1 (b) SELECTIVE REPLACEMENT

METALLIC FITTINGS AT JOINTS, MANY PARTS, HIGH COST

I

( c 1 COMPOSITE ~ENTRAL CYLINDER

FITTINGS

FIGURE 32. COMPOSITE CENTRAL CYLINDER IS MOST PRACTICAL CONCEPT FOR LANDING GEAR TRUNNION.

49

Page 72: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

and h o r i z o n t a l a r m s of t h e t runnion would be very s m a l l . The concept considered t o have t h e g r e a t e s t p o t e n t i a l i s t h a t i n which the c e n t r a l c y l i n d r i c a l s e c t i o n a lone i s rep laced by composite material (see Figure 3 2 c ) .

3.2.2 Axia l ly Loaded Members

The o l e o shock s t r u t and drag s t r u t p i s t o n and c y l i n d e r are similar i n t h a t t h e i r design loading cond i t ions are a x i a l , a l though t h e o l e o shock s t r u t also carries shea r and bending moment due t o wheel d r a g and s ide loads .

Each of these members i s e s s e n t i a l l y of c y l i n d r i c a l form, with complex machined d e t a i l s a t each end. Following t h e con- c e p t s o u t l i n e d for t h e t runnion i n s e c t i o n 3 .2 .1 , t h e concept considered for each of these members is a composite c y l i n d e r bonded a t each end t o s tee l f i t t i n g s t h a t con ta in t h e necessary d e t a i l e d machined f e a t u r e s . This concept i s shown i n Figure 33.

3.2.3 Torque A r m s

Concepts considered f o r t h e landing gear to rque a r m s are shown i n Figure 34. The a l l -composi te concept is no t consider- ed cost e f f e c t i v e , based on the reasoning o u t l i n e d i n s e c t i o n 3.2.1 f o r t h e landing gea r t runnion . The a l t e r n a t i v e concepts shown i n Figure 34 are s i m i l a r i n t h a t they both con ta in many p a r t s , w i t h associated high manufacturing and assembly cost. The torque a r m s r e p r e s e n t only 5.0 percent of t h e landing gea r s t r u c t u r e weight , and t h e inhe ren t complexity of the s t r u c t u r e for o t h e r than a one-piece c o n s t r u c t i o n , s u g g e s t s a low cost e f f e c t i v e p o t e n t i a l . For t h e s e l’easoxis, tila t o r q u e arms are not considered changed from c u r r e n t cons t ruc t ion in the composite landing gear s t r u c t u r e .

3.2.4 Fabr i ca t ion Concepts

The f i n a l des ign concept for t h e landing gea r s t r u c t u r e is shown i n Figure 35. Details for i n d i v i d u a l components are presented i n Sec t ion 4 .0 .

For proto type c o n s t r u c t i o n of t h e composite c y l i n d r i c a l elements of t h e landing gea r , a hand layup sequence would be used. For product ion an automated f i lament winding or r o l l i n g process i s considered most e f f e c t i v e , with trimming and machin- ing r equ i r ed p r i o r t o bonding ’to t h e s teel e n d - f i t t i n g s .

50

Page 73: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

N

t m

Page 74: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

SECTION 4.0 COMPOSITE

9 Appl ica t ion o f c o n s t r u c t i o n and reduces

DES1 GI4 APPLI CAT1 ON

composites t o t h e CH-53D s i m p l i f i e s t h e s t r u c t u r e weight by 1 1 8 6 lbm

(538 k g ) , or 18.0 percen t .

For purposes of t h i s s tudy , it w a s assumed t h a t t h e i n t e r n a l loading d i s t r i b u t i o n s remain e s s e n t i a l l y unchanged i n t h e composite s t r u c t u r e f r o m t hose i n t h e c u r r e n t s t r u c t u r e . The loads used for! design are, t h e r e f o r e , taken from t h e Sikorsky Load and S t r e s s Reports for t h e c u r r e n t CH-53D s t r u c t u r e .

Major f e a t u r e s of t h e f i n a l des ign are presented i n t h e fo l lowing s e c t i o n s . A d e s c r i p t i o n i s presented for each of t h e n ine major assembl ies i n d i c a t e d i n Figure 4 . A summary of comparative weights for each major assembly is presented i n F igure 36 and Table 3.

4.1 AIRFRAME

De ta i l ed a n a l y s i s f o r t h e composite airframe r e s u l t s i n a weight r educ t ion of 1118 lbm (507.1 kg) (18.5 p e r c e n t ) compared wi th t h e c u r r e n t s t r u c t u r e . Major usage of composite material i s i n graphi te /epoxy E1872 lbm (849.1 k g ) l and PRD-49-III/epoxy E466 lbm (211.4)kgl. A breakdown of material usage i n t h e com- p o s i t e airframe i s presented i n Table 4. An o v e r a l l view of t h e composite airframe s t r u c t u r e is shown i n Figure 37. Appendix B con ta ins weight t r e n d curves for t h e major airframe assembl ies , wi th t h e composite design p o i n t i n d i c a t e d on each curve.

52

Page 75: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

MAIN ROTOR I I CURRENT STRUCTURE PYLON F A I R I N G (13%)

500 1000 1500 2000 STRUCTURE WEIGHT - l b m w

COMPOSITE STRUCmE

T A I L PYLON (19%)

FLOOR (11%)

I I

LANDING GEAR (13%)

FOR TOTAL AIRFRAME AM) LANDING GEAR, THE WEIGHT IS REDUCED BY 18% (SEE TABLE 3 FOR

NUMXRICAL DATA)

COCKPIT (16%)

SPONSON ( 15% ) 7 I CABIN (22%)

I I I I

I 200

I I - 1 ~

400 600 800 STRUCTURE WEIGHT - kg

I 1000

F I G m 36. ALL-COWOSITE STRUCTURAL ASSEMBLY UXIGHTS ARE REDUCED, COMPARED WITH THE CURRENT STRUCTURE.

53

Page 76: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND
Page 77: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND
Page 78: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND
Page 79: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

PRECEDING PAGE BUNK, NOT FlLMED

I I I

I I

I I

Page 80: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

4.1.1 Cockpit Sec t i o n

The upper cockp i t s t r u c t u r e i s c u r r e n t l y of one-piece molded f i b e r g l a s s c o n s t r u c t i o n . Since it a l r e a d y embodies t h e manufacturing advantages of composite materials, no s u b s t a n t i a l change i s cons idered . The t y p i c a l s e c t i o n s shown i n Figure 38 i n d i c a t e t h e complex s t r u c t u r a l shapes t h a t are a t t a i n a b l e whi le main ta in ing t h e one-piece c o n s t r u c t i o n concept . A r e d u c t i o n i n weight i s ob ta ined by c o n s i d e r a t i o n of PRD-49/ epoxy r e p l a c i n g t h e c u r r e n t f i b e r g l a s s material . Details of t h i s r eg ion are shown i n F igures 38 and 39.

The lower cockp i t r eg ion is c u r r e n t l y of bu i l t -up con- s t r u c t i o n wi th complex f i t t i n g s and m u l t i p l e c u t o u t s f o r t h e v a r i o u s systems l o c a t e d i n t h e r eg ion . An e v a l u a t i o n of t n i s r e g i o n i n d i c a t e d l i t t l e p o t e n t i a l - f o r cost e f f e c t i v e a p p l i c a - t i o n of composite material , and t h e local s t r u c t u r e i s r e t a i n e d .

4.1.2 Cabin Sec t ion

The c u r r e n t CII-53D cab in s e c t i o n i s e s s e n t i a l l y a s t r e n g t h - designed aluminum s k i n / s t r i n g e r / f r a m e s h e l l and r e p r e s e n t s 40 p e r c e n t of t h e airframe s t r u c t u r e weight . The composite s h e l l concepts developed i n Sec t ion 3 are a p p l i e d t o t h i s s e c t i o n .

The l i g h t gage aluminum o u t e r s k i n i s cons idered r ep laced by a s i n g l e lamina te of +45O graphi te /epoxy. Due t o t h e t h i n l amina te s t h a t r e s u l t from t h i s approach, PRD-49/epoxy is used f o improve t h e impact s t r e n g t h of t h e graphi te /epoxy. A l amina te con ta in ing 2 0 percen t PRP-49 and 8 0 pe rcen t g r a p h i t e should raise t h e impact s t r e n g t h of t h e graphi te /epoxy t o t h e minimum cons idered necessary for s e r v i c e use ( s e e s e c t i o n 2 . 2 . 5 ) .

Axial members (strlingerts arid longerons 1 are cons idered of foam-s tab i l ized graphi te /epoxy c o n s t r u c t i o n , as shown in Figure 40. A s i m i l a r concept i s used fori frane c o n s t r u c t i c n , as ir idi- c a t e d i n F igure 4 0 . For t h o s e framzs t h a t are cu r re r i t l y of fo rged c o n s t r u c t i o n , t h e h e a v i l y loaded r eg ions wi th complex fo rged d e t a i l s are cons idered r ep laced by t i t a n i u m f i t t i n g s t h a t are bonded t o t h e composite frame. Typica l frarnes are shown i n F igure 40 .

For ease of f a b r i c a t i o n and assembly, t h e c a b i n s t r u c t u r e is c o n s t r u c t e d as f o u r subassembly u n i t s t h a t are mechanical ly connected t o f o r m t h e f i n a l assembly. The subassembly connec- t i o n d e t a i l s are shown i n F igure 30.

5 8

Page 81: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

F

4

8 P w

Q) m

Page 82: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND
Page 83: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

3

>-

PRECEDmG PAGE BLAXE NOT F'ILl@D P- "Z

' . . _ . . . . . -

a

.

Page 84: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Typical design a n a l y s i s c a l c u l a t i o n s are presented h e r e f o r some l o c a l d e t a i l s o f t h e cabin s t r u c t u r e .

Skin Construct ion

The c u r r e n t aluminum s k i n is considered r ep laced by a s i n g l e graphi te /epoxy lamina te (see s e c t i o n 3.1.3).

Typical Analysis

Lower cabin s k i n s between FS 2 2 2 and 302 are 0.025 i n . (0.535mm) t h i c k and a r e designed f o r a naximum u l t i m a t e s h e a r flow of 1 5 7 l b f / i n . (27.4kN/m) wi th an u l t i m a t e v e r t i c a l load factor of 4.5.

From t h e c r i t e r i a o f non-buckled s k i n f o r a load f a c t o r of 1 . 0 (see s e c t i o n 2 . 2 . 6 1 , t h e c r i t i ca l buckl ing shea r f l o w q c r i s given by

q c r - - 4.5 = 34.9 l b f / i n . (6.lkI?/m)

From Figure 9 , t h e r e q u i r e d +-4S0 H?IS graphi te /epoxy lamina te t h i c k n e s s f o r qcr = 34.8-lbf/in. ( 6 . 1 kX/m) i s 0.034 i n . (0.862mm). Following t h e concepts f o r laminate layup and p l y t h i c k n e s s o f s e c t i o n 3 .1 .1 , t h e des ign lamina te i s a balanced four-ply - +4S0 laminate 0 . 0 4 i n . (1.02mm) t h i c k .

Aluminum s k i n weight = 0.360 lbm/f t* (1 .76 kg/m2)

Composite s k i n weight = 0 .406 l bm/ f t2 (1.98 kg/m2)

The h ighe r weight fo r t h e graphi te /epoxy s k i n , i nc lud ing 20 pe rcen t PRD-49/epoxy3 i n d i c a t e s t h e d i f f i c u l t y of weight r educ t ion f o r very t h i n gage aluminum sk in . However, t h e four - p l y graphi te /epoxy laminate is also used t o r e p l a c e t h e 0 .032 i n . (0.813mm) gage s k i n s t h a t form t h e major p o r t i o n of t h e c a b i n s k i n . For t h i s Fag?, t h e aluminum s k i n weight i s 0 . 4 6 1 l b i d f t 2 ( 2 . 2 5 kg/m2), i n d i c a t i n g a 1 2 percent r educ t ion for t h e composite c o n s t r u c t i o n . S imi l a r weight r educ t ions are . ob ta ined i n t h e h e a v i e r gage s k i n s around door and window cu t - outs.

6 2

Page 85: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Skin-St r inger Panel

The graphi te /epoxy s k i n is considered s t i f f e n e d by foam-

Typical Analysis

A local maximum u l t i m a t e s t r i n g e r compression load of 3030 l b f (13.4kX) with an a s s o c i a t e d u l t i m a t e pane l shea r f l o w of 38 l b f / i n . (6,6kM/m) occurs i n t h e c u r r e n t s t r u c t u r e i n t h e lower cabin s i d e w a l l a t FS 3 2 2 . The c u r r e n t c o n s t r u c t i o n i s a 0.025 i n . (0.635mm) t h i c k aluminum s k i n r i v e t e d t o a 0.04 i n . (1.02mm) t h i c k aluminum s t r i n g e r , g iv ing a panel weight of 0 . 6 1 l bm/ f t2 ( 2 . 9 8 kg/m2). For t h e foam-stabi l ized graphi te /epoxy c o n s t r u c t i o n , t h e s t r i n g e r laminate is 0 .02 i n . (0.508mm) t h i c k and is combined with a 0 .04 i n . (1.02mm) t h i c k +45O g r a p h i t e / epoxy 5kin , i nc lud ing PXD-49, t o g ive a panel wcight of 0.54

s t a b i l i z e d graphi te /epoxy s t r i n g e r s (see s e c t i o n 3 .1 .4) .

, l b d f t ( 2 . 6 4 kg/m2).

Therefore , t h e composite s k i n / s t r i n g e r panel i s 1 2 percent l i g h t e r than t h e c u r r e n t aluminum panel . I n reg ions of n ighe r s h e a r loading r e q u i r i n g 0 .032 i n (0.813mm) aluminum s k i n , t h e same four-ply graphi te /epoxy laminate i s used, g iv ing a panel t h a t is 1 7 percent l i g h t e r than c u r r e n t cons t ruc t ion .

Frame Construct ion

A foam-stabi l ized graphi te /epoxy cons t ruc t ion i s considered for t h e cabin frames (see s e c t i o n 3.1 .SI.

Typical Analys is

The frame a t FS 402 is t y p i c a l for frames a t FS 4 0 2 , 4 2 2 , 462, 482, and 502. The frame, shown i n t h e fol lowing sketch, is designed by f loor and hydrodynamic l o a d i n g ,

I

63

Page 86: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Sect ion A-A (see Sketch)

Axial load Pm = -489 l b f ( u 1 t ) (-2.19kN)

Shear load V u = 690 l b f ( u 1 t ) (3.10kN)

Bending moment X u = -9886 i n l b f ( u 1 t ) (-111.7kmN)

Frame depth d = 2.0 i n . (S0.8mm)

Outer cap ( t e n s i o n )

Pt = 4699 l b f (21.0kM)

Q t u = 160,000 l b f / i n 2 ( 1 . 1 G N / r n 2 ) (from Table 2 f o r €ITS graphi te /epoxy)

A r e a r e q u i r e d = 4699 = 0.029 i n 2 ( 1 8 . 7 u m 2 ) 160,000

This i s provided by 4 p l i e s of u n i d i r e c t i o n a l g r a p h i t e / epoxy 0 . 0 1 i n . ( 0 . 2 5 4 m ) t h i c k by 0.75 i n . (19.Omm) wide.

Inner cap (compression)

Pc = -5187 l b f (-23.2kN)

Qcu - - 1 8 3 , 0 0 0 l b f / i n 2 (1.26G11/m2) ( f r o m Table 2 f o r HTS graphi te /epoxy)

Area requ i r ed = 5187 = 0.028 i n 2 ( 1 7 . 9 p m 2 ) 183,000

This i s provided by a laminate of t h e same dimensions as those f o r t h e ou ter cap.

Shear web

V = 690 l b f (3.10kX)

= 6 6 , 0 0 0 l b f / i n 2 (0.454GY/rn2) ;%&n Table 2 for - +4S0 graphi te /epoxy)

Web th i ckness r equ i r ed = 690 = 0.002 i n . ( 0 . 0 5 1 m ) 2 ~ 2 ~ 6 6 , 0 0 0

64

Page 87: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

This requirement i s covered by t h e minimm web laminate th i ckness of 0.02 i n . ( 0 . 5 0 8 mm) considered f o r use i n t h e frames.

Sec t ion B3 (see ske tch ) i s a deeper , more h igh ly loaded section.

Axial load PBB = 1 8 4 6 l b f ( u l t ) (8.25kfJ)

Shear load VBB = 7708 l b f ( u l t ) (34.60kN)

Bending moment MBB = -157,023 i n . l b f Cul t ) (-1,770 kmN)

Frame depth d = 7.0 i n . (177 mm)

Following t h e a n a l y s i s o u t l i n e d for s e c t i o n AA above and maintaining t h e frame width of 0.75 i n . ( 1 9 . 0 m m ) , t h e i n n e r cap r e q u i r e s 1 6 x .01 i n . ( 0 . 2 5 4 mm) p l i e s of u n i d i r e c t i o n a l

' graphi te /epoxy and t h e o u t e r cap r e q u i r e s 2 1 p l i e s . The web requirement is maintained a t t h e mininum of 2 x .01 i n . (0.254 mm) p l i e s of + 4 5 O graphi te /epoxy. The deep cap l a m i - n a t e s r equ i r ed a t s e c t i o n BB are t a p e r e d , as t h e loading de- creases, t o t h e f o u r p l i e s r equ i r ed a t s e c t i o n AA.

(10.42 kg) compared wi th 35.0 lbm (15.86 kg) f o r t h e c u r r e n t aluminum frame. This 34 percent reduct ion i n weight i s t y p i c a l f o r t h e l i g h t l y loaded cabin frames. S i m i l a r a n a l y s i s for t h e landing gear support frame a t FS 442 (shown i n Figure 40) shows a composite frame weight of 9 6 . 0 lbm ( 4 3 . 5 kg) com- pared with t h e c u r r e n t weight of 1 3 6 . 0 lbm ( 6 1 . 6 kg). This r e p r e s e n t s a 29 percent weight r educ t ion , which i s t y p i c a l for t h e more h e a v i l y loaded cabin frames.

The composite frame a t FS 402 has a weight of 23.0 lbm

F o r t h e cabin assembly, t h e f i n a l weight rleduction is 2 2 percen t , compared with c u r r e n t c o n s t r u c t i o n , as i n d i c a t e d i n F igure 36.

6 5

_r

Page 88: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

4.103 Sponson Sec t ion

The primary s t r u c t u r a l members i n t h e c u r r e n t s t r u c t u r e are t h e bulkheads connected t o t h e fuse l age a t FS 3 0 2 , 3 8 2 , and 442. These c a r r y t h e v e r t i c a l loading from t h e landing gea r and f u e l i n e r t i a loading . I n a d d i t i o n main landing g e a r drag loads are c a r r i e d by major beams i n t h e a f t sponson r eg ion .

These primary members d i c t a t e t h e i n t e r n a l load d i s - t r i b u t i o n i n t h e sponson and ad jacen t cabin s t r u c t u r e . They are, t h e r e f o r e , n o t considered removeable i n t h e composite des ign . A s i m p l i f i c a t i o n of design is achieved f o r the bulk- heads by f a b r i c a t i n g them as sandwich panels with i n t e g r a l s t i f f e n e r s . The h igh l e v e l of shear s t a b i l i t y , i n p lane s t r e n g t h and p l a t e bending s t r e n g t h of t h i s t ype of cons t ruc t ion make it s u i t a b l e f o r both t h e landing gear bulkheads and f u e l c e l l bulkheads. Tne h igh s p e c i f i c s t r e n g t h of t h e graphi te /epoxy is f u l l y u t i l i z e d i n t h i s c o n s t r u c t i o n , due t o t h e i n h e r e n t s t a b i l i t y of t he sandwich panel .

The remaining sponson s t r u c t u r e is t h e e x t e r n a l s k i n i n s t a l l a t i o n , t o g e t h e r with suppor t ing r i b s and i n t e r c o s t a l s . Considerat ion of sandwich panels i n reg ions o f l o w cu rva tu re enables much of t h e suppor t ing s t r u c t u r e t o be renoved, which y i e l d s b e n e f i t s of reduced manufacturing t i m e and lower weight. I n r e g i o n s of high cu rva tu re , t h e i n h e r e n t s t a b i l i t y and load ca r ry ing capac i ty due t o shape enable suppor t ing s t r u c t u r e t o be removed without us ing sandwich cons t ruc t ion . PR3-49 i s used, wi th t h e graphi te /epoxy, t o improve t h e impact r e s i s t a n c e c h a r a c t e r i s t i c s of t h e o u t e r s k i n s .

Details of t h e f i n a l design are shown in Figure 41 .

66

Page 89: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

c- W

-j $ F,

t f

0 rl f

,

Page 90: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

4.1.4 A f t Sec t ion

The a f t s e c t i o n of t h e airframe is e s s e n t i a l l y an ex tens ion of t h e cabin s e c t i o n , bu t i nc ludes t h e cargo loading ramp and overhead door , which produce, i n t h i s r eg ion , a "C" s e c t i o n s h e l l s t r u c t u r e . Design d e t a i l s f o r t h i s s t r u c t u r e are s i m i l a r t o those presented i n s e c t i o n 4 .1 .2 f o r t h e cabin .

The cargo loading ramp becomes, i n t h e open p o s i t i o n , an ex tens ion of tne cargo f l o o r and i s sub jec t ed t o f l o o r design load ing . The c u r r e n t i n n e r s k i n of supported aluminum s h e e t i s rep laced by t h e hybr id sandwich panel used fo r t h e cargo f l o o r (see s e c t i o n 4 . 1 . 5 ) . I n t h e open p o s i t i o n , t h e o u t e r sur - face of t h e cargo ramp rests on t h e l o c a l ground su r face t o provide , with t h e h inges , t h e ranp suppor t . Due t o t h e uncer- t a i n na tu re of l o c a l ground s u r f a c e i n s e r v i c e use, t h e o u t e r s k i n of t h e ramp is maintained as an aluminum s h e e t . This is due t o cons ide ra t ion of t h e lower impact s t r e n g t h of g r a p h i t e / epoxy laminates (see Figure 151, which may no t be adequate f o r this l o c a l area.

The i n t e r n a l support beams of t h e ramp, which are c u r r e n t l y of bu i l t -up aluminum c o n s t r u c t i o n , are rep laced by composite sandwich beams of t h e type shown i n Figure 2 0 c .

4.1.5 F loor Sec t ion

The concept f o r f l oo r c o n s t r u c t i o n presented i n s e c t i o n 3.1.7 and shown i n Figure 2 2 i s analyzed f o r t h e loading requirements of Reference 1 7 . The f i n a l design s e c t i o n i s shown i n Figure 4 2 .

A t t h e f l o o r / c a b i n f r a m e i n t e r s e c t i o n s t a t i o n s , cargo t i e - down f i t t i n g s are l o c a t e d i n c i r c u l a r cups t h a t are i n t e g r a l wi th t h e f l o o r . Local d e t a i l s of t h e s e connections arc shown i n F igure 4 0 ,

68

Page 91: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

5

Page 92: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

4.1 .6 Main Rotor Pylon F a i r i n g

The c u r r e n t c o n s t r u c t i o n c o n s i s t s of an o u t e r s k i n , p r imar i ly o f f i b e r g l a s s , supported by aluminum frames of minimum gage cons t ruc t ion . Ex i s t ing geometry and l o c a t i o n wi th in t h e f a i r i n g of access panels , vent screens, e tc . and geonetry and support l o c a t i o n f o r t h e var ious systems housed wi th in t h e f a i r i n g are not changed i n t h e composite s t r u c t u r e .

This maintenance of e x i s t i n g geometry combined with ex is t - i ng l i g h t gage cons t ruc t ion reduces t h e p o s s i b i l i t y of s i g n i f - i c a n t c o s t and weight reduct ion f o r t h i s assembly. A reduct ion i n weight i s obtained by t h e use of PRD-49-III/epoxy i n p l ace of t h e f i b e r g l a s s used i n t h e e x i s t i n g f a i r i n g . No change i s envisaged f o r t h e l i g h t gage aluminum s t r u c t u r e wi th in t h e f a i r i n g .

An o v e r a l l view of t h e f a i r i n g i s shown i n Figure 43.

4.1.7 T a i l Pylon

The major p o r t i o n of t h e curpent s t r u c t u r e i s of box beam c o n s t r u c t i o n , with t h e s t r u c t u r a l - leading edge combining t o form a two-cel l to rque box. For composite cons t ruc t ion , shown i n Figure 4 4 , t h e beam webs are considered of sandwich cons t ruc t ion wi th cap material bonded between t h e face s h e e t s . The inhe ren t l o c a l s t a b i l i t y of t h e caps enables f u l l use t o be made of a composite with- high s p e c i f i c a x i a l s t r e n g t h . Graphite/epoxy i n t h e HTS f o r m i s used for t h i s a p p l i c a t i o n and for t h e beam face s h e e t s .

Within t h e box s e c t i o n , t h e f o u r formed s t i f f e n e r s on t h e o u t e r sk in of t h e c u r r e n t cons t ruc t ion are rep laced by two composite s t i f f e n e r s s i m i l a r t o those considered for t h e cabin s t r u c t u r e (see Figure 4 0 ) . Although t h i s produces a l a r g e r s k i n panel width, with a s s o c i a t e d reduct ion in shear buckling s t r e n g t h , t h e r e s u l t i n g s t r u c t u r e has fewer p a r t s and lower weight. The o u t e r graphi te /epoxy s k i n s are considered t o inc lude PRD-49/epoxy, as descr ibed for t h e cabin s e c t i o n , t o improve t h e sk in impact r e s i s t a n c e .

The t r a i l i n g edge s e c t i o n c o n s i s t s of minimum. gage detach- a b l e f i b e r g l a s s f a i r i n g s i n t h e c u r r e n t s t r u c t u r e . Replacement of t h e f i b e r g l a s s by PR3-49-III/epoxy y i e l d s a weight reduct ion without change i n manufacturing t i m e .

Two concepts are considered f o r assembly of t h e composite s t r u c t u r e . The convent ional approach, shown i n Figure 4 4 , has t h e m e r i t of simple subassembly u n i t s being assembled'in one bonding f i x t u r e . An a l t e r n a t i v e concept i s shown i n Figure 45 ,

70

Page 93: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

m f

f t

Page 94: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

which i s an a t tempt t o s impl i fy the f i n a l assembly bonding by using fewer, more complex subassemblies. However, t o l e r a n c e problems are envisaged a r i s i n g from t h e simultaneous bonding a t t h r e e p o i n t s a long the s t r u c t u r e c e n t e r l i n e , and the concept of Figure 44 i s considered p re fe rab le .

4.1.8 Horizonta l S t a b i l i z e r

The basic c o n f i g u r a t i o n of t h e c u r r e n t three-beam, t h r e e - ce l l box s t r u c t u r e i s not considered changed for t h e composite s t r u c t u r e (see Figure 4 6 ) . The two major beams, which provide t h e connection t o t h e t a i l pylon, are of sandwich c o n s t r u c t i o n , enabl ing the high s p e c i f i c s t r e n g t h s of graphi te /epoxy uni- d i r e c t i o n a l and c r o s s p l y lamina tes t o be u t i l i z e d due t o t he high l e v e l of local s t a b i l i t y f o r both web and caps.

The t i t a n i u m f i t t i n g connecting the s t a b i l i z e r t o t h e t a i l pylon is s p l i c e d t o the major beans us ing t i t a n i u m angles . This simple connection is considered p r e f e r a b l e , from a manufacturing s t a n d p o i n t , t o the a l t e r n a t i v e of a c a p / f i t t i n g machined connect ion.

Current aluminum cover s k i n s are rep laced by c rossp ly graphi te /epoxy i n HMS form, using PRD-49-III/epoxy t o improve t h e s k i n impact r e s i s t a n c e , as descr ibed i n s e c t i o n 4 . 1 . 2 . Close t o t h e s t a b i l i z e r ! r o o t , t he s k i n pane ls are designed by combined shear and a x i a l loading. For t h i s r eascn , r i b and s t i f f e n e r spacing i s n o t changed i n t h i s area t o maintain local buckl ing s t r e n g t h .

Details of c o n s t r u c t i o n f o r t h e composite h o r i z o n t a l s t a b i l i z e r are shown i n Figure 4 6 . ,

72

Page 95: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

,

Page 96: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

4.2 LANDING GEAX STRUCTURE

The cost e f f e c t i v e a p p l i c a t i o n of composites t o t h e landing gea r s t r u c t u r e i s seve re ly r e s t r i c t e d by the complexity of the s t r u c t u r e . S e l e c t i v e replacement of simple s t r u c t u r a l shapes by equiva len t s t r u c t u r e o f composite material reduces t h e weight by 68 l b m ( 3 0 . 8 kg) ( 1 3 . 2 percent r e d u c t i o n ) , using 37 lbm (16.8 kg) graphi te /epoxy. A breakdown of material usage i n t h e composite landing g e a r i s presented i n Table 4 .

Details o f t h e f i n a l composite design are d iscussed below. However, due t o i t s l o w cost e f f e c t i v e p o t e n t i a l , t h e composite landing g e a r i s no t considered i n t h e f i n a l eva lua t ion o f t h e composite CH-533.

4.2.1 Trunnion

The f i n a l design f o r the main landing gear t runn ion , based on the concepts of s e c t i o n 3.2.1, i s shown i n Figure 47 .

, Graphite/epoxy i n HTS forrn is chosen, s i n c e the design r e q u i r e s h igh s t r e n g t h and local s t a b i l i t y f o r t h e c y l i n d e r w a l l . The b a s i c laminate i s of Oo, f4So, 90° cons t ruc t ion with a d d i t i o n a l Oo and 90° p l i e s i n t h e reg ion of the c e n t r a l f i t t i n g t o assist in forming t h e bonded shea r connection and t o c a r r y hoop com- p res s ion loading f o r gea r s ide- loading cond i t ions . A metallic l i n e r i s considered necessary for the c y l i n d r i c a l con tac t s u r f a c e t o provide a smooth, w e a r r e s i s t a n t su r f ace . S u i t a b l e wear tests would be necessary t o s u b s t a n t i a t e t h i s requirement.

Tne central metallic f i t t i n g , which connects t h e drag s t r u t and side brace a r m s of t h e t runnion t o t h e c e n t r a l c y l i n d e r , i s e s s e n t i a l l y a t h i c k c y l i n d e r u n d e r t he a c t i o n of a x i a l and r a d i a l loading . Comparison of aluminum, t i t a n i u m , and s tee l f o r t h i s f i t t i n g shows lowest weight f o r aluminum. I n a d d i t i o n aluminum has t h e lowest material and fabrication c o s t s , For t h e s e reasons , aluminum is considered preferable, al thougl i no d e t a i l e d a n a l y s i s i s performed for the l o c a l problems, due t o thermal m i s m a t c h between the aluminum f i t t i n g and graphi te /epoxy c y l i n d e r .

4.2.2 Shock S t r u t

Following t h e concepts o u t l i n e d i n s e c t i o n 3.2.2, t h e shock s t r u t i s designed wi th t h e c u r r e n t c e n t r a l c y l i n d r i c a l s e c t i o n r ep laced by a-graphitet 'epoxy c y l i n d e r , using- a O o , +45O l amina te , w i t h bonded connect ions t o s teel end f i t t r n g s . f i n a l design i s shown i n Figure 48 .

The

74

Page 97: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

. .. 4) -f

.

Page 98: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

A t the l o w e r bonded connect ion, t he basic c y l i n d e r w a l l t h i ckness i s inc reased i n order t o reduce t h e induced bending stresses t o a l e v e l t h a t t h e bond can c a r r y . T h i s in t roduces an adverse f e a t u r e of t he des ign , s i n c e t h i s increased w a l l - - t h i c k n e s s is r equ i r ed t o be maintained over an apprec i ab le l e n g t h of the c y l i n d e r w a l l , due t o t h e des ign requirement f o r cons t an t r a d i u s c o n c e n t r i c con tac t s u r f a c e s .

4.2.3 Drag S t r u t Cyl inder and P i s ton

p r i m a r i l y by a x i a l l oad ing , are considered as composite c y l i n d e r s bonded t o s teel end f i t t i n g s . The f i n a l design i s shown i n Figure 4 9 .

As o u t l i n e d i n s e c t i o n 3 . 2 . 2 , these components, designed

Considerat ion o f w a l l t h i ckness for s t r e n g t h requirements and local buckl ing shows both components c r i t i c a l f o r local buckl ing. For t h i s design cond i t ion , the IIMS form of g r a p h i t e / epoxy is used. The laminate c o n s i s t s p r imar i ly of Oo ( u n i d i r e c t i o n a l ) p l i e s , a l though some 90° p l i e s , approximately $0 percent of t o t a l , are considered necessary t o prevent s p l i t t i n g of t he u n i d i r e c t i o n a l p l i e s . The 90° p l i e s are combined with t h e Oo p l i e s i n a symmetric layup t o prevent lamina te warping.

Metallic l i n e r s are considered f o r reg ions subjec ted t o w e a r caused by s l i d i n g c o n t a c t s u r f a c e s .

76

Page 99: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

NICKEL PLATE ON OUTER SURFACE

P I S T O N STEEL END F I T T I N G S BONDED TO CYLINDERS

TYPICAL CONNECTION DETA

3.25 I N . 1 . D .

19.1 I N . ( 4 8 5 . b )

CKEL PLATE ON

C Y L I r n E R

FIGURE 49. COMPOSITE LANDING GEAR DRAG STXUT DETAILS.

77

Page 100: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

SECTION 5.13 COST EFFECTIVENESS EVALUATION

8 A composite CH-53D a i r f r ame reduces weight by 1118 lbm (507,l kg) ( 1 8 . 5 percent of airframe weight ) , i n c r e a s e s a c q u i s i t i o n cost by 3 p e r c e n t , and r e s u l t s i n a 5 pe rcen t reduc- t i o n i n t h e 10-year l i f e c y c l e c o s t .

5.1 PRODUCTION VEHICLE COST COMPARISON

T h e c o s t comparison for c u r r e n t and composite product ion v e h i c l e s is presented i n Figure 5 0 , i n which the composite pro- duc t ion v e h i c l e c o s t s are based on t o t a l product ion of 600 v e h i c l e s i n a 1980 t i m e frame, s t a r t i n g i n 1 9 7 8 . The detai ls of t h i s a n a l y s i s are contained i n Appendix C .

The moderate i n c r e a s e i n veh ic l e fly-away c o s t (under 3 percen t ) i s shown by t h e c o s t breakdown of Figure 50 t o be l a r g e l y a t t r i b u t a b l e t o the increased c o s t of the composite m a t e r i a l s , compared with the metals used i n t h e c u r r e n t v e h i c l e . T h i s i n c r e a s e i s o f f s e t , t o some degree, by t h e reduct ion i n l a b o r c o s t for f a b r i c a t i o n using composite materials.

'

Table 5 shows t h a t t h e reduct ion of airframe weight by 1 , 1 1 8 l b m ( 5 0 7 . 1 kg) is achieved a t a c o s t of $ 8 4 . 2 / l b m ($186/kg) r educ t ion .

Page 101: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

F

Page 102: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

5.2 PROTOTYPE VEEICLE COST CO?IPARISON

The c o s t comparison between prototype composite and con- ven t iona l material v e h i c l e s i s presented i n Figure 51 , with both veh ic l e costs r e f l e c t i n g a 1 9 8 0 t i m e frame.

From t h e c o s t breakdown shown i n Figure 51, it i s apparent t h a t a major source of t h e 3 .6 percent h ighe r c o s t for t h e com- p o s i t e veh ic l e i s t h e h ighe r engineer ing c o s t . This i s i n t r o - duced by t h e a d d i t i o n a l des ign and a n a l y s i s e f f o r t , which would be r equ i r ed for proto type des ign using composite materials. This c o s t i n c r e a s e , t o g e t h e r wi th t h e h igher composite material costs, is o f f s e t t o sone e x t e n t by t h e reduct ion i n f a b r i c a - t i o n l a b o r c o s t s us ing composite materials. However, t h e t o o l - i ng i s an unknown f a c t o r . Fur ther work i s r e q u i r e d i n t h i s area. Vhile it i s be l ieved t h a t t h e t o o l i n g f o r a composite airframe should c o s t less than t h a t for t h e convent ional m e t a l des ign , t h e conserva t ive estimate is made t h a t t o o l i n g c o s t s are t h e same.

5.3 TEN-YEAR LIFE CYCLE COST FOX PRODUCTION VEHICLE

A c o s t e f f e c t i v e n e s s a n a l y s i s w a s conducted for t h e CH-53D on t h e b a s i s of a 600-vehicle f l ee t with an average u t i l i z a t i o n of 500 hours p e r v e h i c l e p e r yea r . The f lee t ope ra t ion c o n s i s t s of t h e prirnary t r a n s p o r t mission r o l e , with 30 percent t roop and 70 percent car20 usage. For t h i s r o l e , t h e average gross weight is 4 0 , 7 7 0 lbn ( 1 8 , 5 2 0 kg). The r e s u l t s of a 10-year l i f e c y c l e c o s t of ope ra t ion a n a l y s i s are summarized i n Table 6 . Fur ther d e t a i l s of t h i s a n a l y s i s are presented i n Appendix D. -

From Table 6 it can be seen t h a t , d e s p i t e t h e 3 percent increase i n v e h i c l e a c q u i s i t i o n cost, t h e composite veh ic l e has a 7 percent g r e a t e r p r o d u c t i v i t y than t h e c u r r e n t v e h i c l e , r e s u l t i n g i n a 5 percen t r educ t ion i n f leet l i f e c y c l e cost.

80

Page 103: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

4 , I I I 9 2 - u; P n

I 0 0 0

)01 x t * It03

Page 104: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

SECTION 6 . 0 RECOMMENDATIONS A?ID DISCUSSION

8 Cost e f f e c t i v e a p p l i c a t i o n of advanced composite materials can be achieved by t h e use of all-molded composite s h e l l s f o r airframe c o n s t r u c t i o n ; however, f u r t h e r development is r equ i r ed t o provide a complete c o s t and data base.

6 .1 RECOMMENDATIONS

Development programs are r e q u i r e d , aimed a t an ex tens ion of manufacturing techniques lead ing t o f a b r i c a t i o n of composite hardware and even tua l s e r v i c e use. Such programs should inc lude airframe components designed s p e c i f i c a l l y f o r h e l i - c o p t e r a p p l i c a t i o n s .

The manufacturing program should inc lude such d e t a i l s as inspec t ion techniques and bonding processes , i n a d d i t i o n t o achiev ing experience i n t h e f a b r i c a t i o n of l a r g e molded assemblies. A t e c h n i c a l data base , furn ished by t e s t i n g of both d e t a i l components and major assembl ies , would be r equ i r ed t o supplement the composite hardware f a b r i c a t i o n program. Add i t iona l q u a n t i t a t i v e d a t a i n t h e areas of damage t o l e r a n c e and r e p a i r a b i l i t y should then be obta ined by s e r v i c e use.

Some recormended programs are summarized i n Table 7 .

6.2 DISCUSSION

He l i cop te r airframe s t r u c t u r e s are l i g h t l y loaded compared w i t h f i xed wing a i rcraf t . The a p p l i c a t i o n of composite materials t o h e l i c o p t e r airframe s t r u c t u r e s r e q u i r e s , there- fore, a d i f f e r e n t type of s t r u c t u r a l design t o provide t h e m o s t e f f e c t i v e use of t h e materials.

Due t o t h e r e l a t i v e l y low airframe loadings , t h e composite h e l i c o p t e r s t r u c t u r e r e q u i r e s t h e use of t h i n composite. l a m i - n a t e s , both fo r s k i n and support s t r u c t u r e , in o r d e r t o achieve a s t r u c t u r a l weight lower than t h e c u r r e n t aluminum s t r u c t u r e . T h i s requirement l e d t o t h e development, i n t h i s s tudy , of t h e all-molded composite s h e l l concept. The a p p l i - c a t i o n of t h i s concept involves t h e use of i n i t i a l buckl ing c a p a b i l i t y and post-buckled s t r e n g t h f o r t h e l i g h t gage s k i n s . The design a n a l y s i s i s based on a n a l y t i c a l methods, with some c o r r e l a t i o n f r o m diagonal t e n s i o n ( shea r ) t e s t i n g . Ana ly t i ca l methods are also used t o p r e d i c t t h e combined load c a p a b i l i t y ( shea r and compression) f o r t h e s k i n - s t r i n g e r combination. Tine all-molded c o n s t r u c t i o n f o m s a monoli thic s t i f f e n e d s h e l l and t h u s t ends t o i n c r e a s e the s t r e n g t h c a p a b i l i t y . S t r eng th t e s t - i n g of such a s t r u c t u r e would be necessary t o v a l i d a t e t h e

i g n a n a l y s i s . Since t h e major weight of t h e airframe i s i n t h e o u t e r s h e l l , such t e s t i n g could r e s u l t i n a f u r t h e r weight

82

Page 105: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

TABLE 7. RECOMMENDED DEVELOPMENT PROGRAMS

STRUCTUBE

Foam-Stabilized Compos i te Structures

Light-Gage Compos it e Skins

Composite -to- Metal Joints

Light-Gage Composite Skins With Foam- Stabilized Stringers

All-Molded Shell of Skin/ Stringer and Fra-e Construc- tion

MAVJFACTURI XG SERVICE i'ECH."IICAL DATA

Develop rnolding process for foam cores. fabrica- tion and inspection techniques for built-up foam stabilized composite stringers and frames. Fabricate sample struc- tures.

Install foam stabiliz- Test foam stabil- ed stringer on heli- ized stringers for copter to determine cor?.pression effect of load E. strength. Develop environment crippling data.

Test foam stabil- ized frames in bending and shear.

Fabricate large composite Install composite skin Conduct shear tests skin panels, both flat and section on helicopter on various ply

to determine ability orientations for of panel to withstand flat panels. Ex-

curved. Develop rapid methods for including cutouts (for windows, access, etc.). Investi- gate possibility of single cure construction for skin/stringer/frame shell.

Fabricate joints using composites and titanium and aluminum fittings. Develop inspection techniques for bond integrity.

Fabricate skin/stringer panels. Evaluate pro- duction methods for build-up of structures.

Develop build-up of fabrication. Evaluate possibility of single- cure layup.

environmental damage. tend tests to curved panels. Determine initial buckling E strength characteristics as dependent on ply orientation and effect of panel curvature. Con- duct impact tests on G/E and P.W-49 coabination of plies for damage tolerance.

Install simple joints Conduct experi- for secondary struc- mental tests using Tures to evaluate narmai ( 250° to load and environmental 350° F cure) and effects. room temperature

cures. Evaluate different bonding techniques witn combination of composites and metals.

Conduct combined load tests (shear and compression, and shear and ten- 'sion). Both flat and curved panels to be evaluated.

Install se,pent of Conduct tests on shell construction typical shell con- and evaluate effect struction for of service usage. typical loadings

on shell. Evalu- ate effects of all molded constrw- tion on strength characteristics.

8 3

Page 106: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

reduction and increased cost effectiveness for the all-molded construction. The all-bonded concept raises the problem of thermal mismatch in the region of metallic fittings. Titanium fittings, replacing the current aluminum fittings, alleviate this problem to some extent. Ilowever, the development of a lower temperature adhesive bond, preferably a room temperature cure, may allow the use of aluminum fittings, which would further increase the cost effectiveness of the composite shell construc- tion.

The manufacture of the shell conceived in this study requires experience in the handling, laying-up, and curing of large, thin, composite panels. In addition, the use of such thin laminates for external airframe skins requires knowledge of the damage tolerance capability required for service use. In this study, PRD-49 is used with the graphite/epoxy, to increase the impact resistance to the level judged necessary for damage tolerance.

Service experience is necessary to confirm the damage tolerance assumptions and to provide confidence in the type of construction and fabrication methods used. Such experience may well provide data to further increase the cost effectiveness of the composite application.

All the factors mentioned above indicate that further efforts are required to provide the confidence and necessary data for cost effective application of composites to helicopter airframe structures.

84

Page 107: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

APPENDIX A

STRUCTURAL DET-ULS OF CUflXEIIT CH-5 3D AIRFRAME AX3 M N D I I I G GEAR STWCTURE

Sect ion 1 . 0 of t h e r e p o r t p re sen t s a b r i e f d e s c r i p t i o n of t h e c u r r e n t CH-53D s t r u c t u r e . Fu r the r d e t a i l s are presented here, inc luding t h e material usage, presented i n Table Al, and t h e s t r u c t u r e weight breakdown, presented i n Table A 2 . The s t r u c t u r e i s cons idered broken i n t o n ine major assembl ies , as i n d i c a t e d i n F igure 4 , and a weight breakdown is presented for each assembly (see Tables A 3 through A l l ) .

AIRFWIE STXJCTURE

e The airframe i s cons t ruc t ed mainly of aluminum a l l o y , w i th t h e major weight being i n t h e o u t e r s h e l l . A b r i e f d e s c r i p t i o n of material usage, type of s t r u c t u r e , and governing des ign cond i t ions i s presented f o r each major s t r u c t u r a l assembly shown i n F igure 4.

Cockpit Sec t ion

The cockpi t s e c t i o n extends from fuse l age s t a t i o n (FS) 84 t o 1 6 2 and r e p r e s e n t s 9 . 5 % of t h e airframe s t r u c t u r e weight . . - The upper canopy; which forms t h e p i l o t ' s enc losure , i s an i n t e g r a l l y cons t ruc ted f i b e r g l a s s s h e l l ( sk in / f rame) . The lower cockpi t s t r u c t u r e , which provides suppor t for nose land- i n g gear lEads t o g e t h e r - with eqiipment and- personnel loads , i s of aluminum cons t ruc t ion wi th t h e o u t e r s h e l l s u r f a c e being -

aluminum honeycomb sandwich panels .

The primary materials used i n t h i s s e c t i o n are aluminum ( 5 9 % ) and f i b e r g l a s s ( 2 2 % ) . Mater ia l usage for t h i s s e c t i c n i s presented i n Table Al, and t h e weight breakdown by type of s t r u c t u r e and des ign cond i t ion is presented i n Table A3.

Cabin Sec t ion

T h i s s e c t i o n ex tends from FS 162 t o 5 2 2 and conta ins 40 .5% of t h e airframe s t r u c t u r e weight. The s t r u c t u r e i s g e n e r a l l y of semi-monocoque c o n s t r u c t i o n , employing s h e e t m e t a l fo rned s t r i n g e r s and b u i l t - u p frames. Major , heav i ly loaded frames are brought ou t t o the s k i n line, i n t e r r u p t i n g t h e l o n g i t u d i n a l members ( s t r i n g e r s and longerons) . Minor frames are a t t a c h e d t o t h e s t r i n g e r s and no t brought o u t t o the s k i n l i n e ( f loat- ing frame c o n s t r u c t i o n ) .

85

Page 108: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Major frames are l o c a t e d a t t h e cockpi t /cab in and a f t sec t ion /cab in i n t e r f a c e s as r e d i s t r i b u t i o n bulkheads. Other major frames c a r r y loading; from t h e engines , main r o t o r , and main landing gea r .

The s t r i n g e r s , longerons, and s k i n act t o c a r r y t h e design bending moment and shear l oads . S t r i n g e r spacing is g e n e r a l l y 6.0 i n . (152 .4 mm) around t h e cabin per iphery , and frames are spaced a t 2 0 . 0 i n . ( 5 0 8 . 0 m m ) , g iv ing a t y p i c a l s k i n pane l s i z e of 6.0 i n . ( 1 5 2 . 4 mm) x 20 .0 i n . (508.0 m m ) .

The major material used for t h i s s e c t i o n i s aluminum ( 9 5 % ) . Material usage f o r t h i s s e c t i o n i s presented i n Table Al, and t h e s t r u c t u r e weight breakdown i s presented i n Table A 4 .

Sponson Sec t ion

The sponson i s an a i r f o i l - s h a p e d s t r u c t u r e a t t ached t o t h e cabin between FS 2 7 2 and 4 9 4 . The forward s e c t i o n houses t h e f u e l c e l l s and i s designed by f u e l loading cond i t ions and walk- i n g loads on t h e upper su r face . Construct ion i s p r imar i ly of aluminum s h e e t supported by s t i f f e n e r s f o r i n t e r n a l bulkheads and supported by i n t e r c o s t a l s f o r o u t e r s k i n .

The a f t sponson s e c t i o n houses t h e n a i n landing gea r (MLG) , which in t roduces the p r i n c i p a l design loading cond i t ion . i n t o t h e s e c t i o n . design cond i t ions i n t h i s reg ion . MLG loading is carried

Walking and hydrodynamic loads aFe o t h e r

by bulkheads and beams of bu i l t -up cons t ruc t ion . s k i n i s supported by i n t e r c o s t a l s t o c a r r y t h e normal loading.

Two back-to-back balkheads a t t h e forward and a f t s e c t i o n i n t e r f a c e permit s t r u c t u r a l i s o l a t i o n of t h e t w o s e c t i o n s .

The o u t e r

Aluminum a l l o y is t h e major m a t e r i a l used for t h i s s e c t i o n ( 8 8 % ) . Material usage for t h i s s e c t i o n i s presented i n Table A l , and t h e s t r u c t u r e weight breakdown i s presented i n Table A5 .

A f t Sec t ion

This s e c t i o n l i es behind the cabin s e c t i o n and extends f r o m FS 522 t o 749. Primary design loads are t h e t o r s i o n , s h e a r , and bending noment from t h e t a i l pylon, which i s connected t o the rear of t h i s s e c t i o n . The presence of the cargo ramp and overhead door i n t h e forward reg ion produces an open channel s e c t i o n . A f t of t h i s r eg ion , t h e s t r u c t u r e i s a f u l l y c losed s e c t i o n .

The s t r u c t u r e is of bui l t -up s h e l l c o n s t r u c t i o n ( sk in / s t r i n g e r / f r a m e ) , with forged aluminum f i t t i n g s loca t ed a t t h e i n t e r f a c e with t h e t a i l pylon.

86

Page 109: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Aluminum a l l o y i s t h e major material used f t h i s s e c t i o n ( 9 2 % ) . Material usage i s presented i n Table Al, and t h e s t r u c t u r e weight breakdown i s presented i n Table A 7 .

Floor Sect ion

This s e c t i o n i s designed by cargo , v e h i c l e , and personnel loading and c o n s i s t s of an aluninun s h e e t s t i f f e n e d by aluminum ex t rus ions . The f l o o r suppor ts , a t t h e cabin s e c t i o n frames, are designed t o i s o l a t e t h e f l o o r from primary airframe load- ing.

The major material used f o r t h i s s e c t i o n i s aluminum ( 9 9 % ) . Material usage for the s e c t i o n is presented i n Table A l , and t h e s t r u c t u r e weight breakdown i s presented i n Table A 7 .

Main Rotor Pylon F a i r i n g

This s t r u c t u r e provides an aerodynamic f a i r i n g around t h e main r o t o r s h a f t and i t s associated s y s t e m above t h e cabin . It c o n s i s t s of a f i b e r g l a s s sk in supported by formed aluminum framing.

Major materials used are aluminum ( 5 9 % ) and f i b e r g l a s s ( 3 8 % ) . Details of material usage are presented i n Table Al, and t h e s t r u c t u r e weight breakdown is presented i n Table AB.

T a i l Pylon Sec t ion

The t a i l pylon extends from FS 749 t o 890 . Design loads are t h e bending moments, s h e a r s , and t o r s i o n s introduced by t h e t a i l r o t o r , t a i l ro to r geap box, and h o r i z o n t a l s t a b i l i z e r , which are a l l supported by t h e t a i l pylon.

The s t r u c t u r e is of c losed s e c t i o n , with two i n t e r n a l beams,' b u i l t up from aluminum shee t and e x t r u s i o n s with forged f i t t i n g s a t t h e connect ions t o t h e h o r i z o n t a l s t a b i l i z e r and af t s e c t i o n . A f i b e r g l a s s f a i r i n g houses t h e t a i l r o t o r d r i v e s h a f t , which runs along the a f t face of the pylon.

Aluminum is t h e major material used i n t h e t a i l pylon (84%). Details of material usage are presented i n Table Al, and the s t r u c t u r e weight breakdown is presented i n Table A 9 ,

87

Page 110: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Horizontal Stabilizer

The horizontal stabilizer is an asymmetric structure mounted on the upper right hand side of the tail pylon. Design loading comes from stabilizer air loads and is carried to the tail pylon by a three-beam, three-cell box structure. Beams and outer skin are built up from aluminum sheet with aluminum stiff- ening and support members. The leading edge, carrying local airload only, is a fiberglass skin supported by formed alumimun ribs.

Aluminum is the major material used for the stabilizer ( 8 9 % ) . Details of material usage are presented in Table Al, and the structure weight breakdown is presented in Table A10.

LANDING GEAR STRUCTURE

The landing gear uses aluminum alloy as the major structural material ( 4 2 % ) , but with a high proportion ( 3 3 % ) of high- strength steel parts.

air-oil oleo struts and dual main and nose wheels. The landing gear is of tricycle configuration, incorporating

The main landing gear is housed in the sponson structure and retracts forward. The nose landing gear is housed in the , cockpit section and retracts aft.

Both gears are of similar construction. The main landing gear is shown in Figure 3 . Material usage for the landing gear is presented in Table Al, and the structure weight break- down is presented in Table A l l .

8 8

Page 111: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

TABU A1 C H - 5 3 MATERIAL USAGE MATERIAL WEIGHT l b m (kg)

409 (185.5)

MAJOR ASSEMBLY

248 (112.5

Cockpit Section

- -

Cabin Section

66 (29.9)

59 (26.8)

Sponson Section

A f t Section

Floor & Supports Section

Main Rotor Pylon Fa i r ing

T a i l Pylon Section

Hori zcnt a1 S t a b i l i z e r

Total Airframe

Main Landing Gear

Nose Landing Gear

Tota l Landing G e a r

333 (151)

2315 (1049.9)

685

1066 (483.4)

445

176

( 310.7

(201.8

(79.8)

264 (119.7 )

91 (41.3j

5 375 (2438.1)

146 (66.2)

73 (33.1)

219 (99.31

STEEL

3 ( 1 . 4 )

4 (1.8)

-

1 (045)

4 (1.8)

1 ( .45 )

(0451

(.9>

16

1

2

(7.25)

131 (59.4)

38 (17.2)

169 (76.6)

FIBER GLASS

MISC. NON MET AND

HARDWARE SUBTOTAL

564 (255.8)

2424 (1099.31

767 (347.9)

(525.65

449 (203.6)

29 7 (134.65

315 ( 142.85

102 (46.3)

1159

5 13 (232.7)

Total Airframe & Landing Gear Structural. Weight (2988.65 kg)

6590 lbm

89

Page 112: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

tn 2 0 H B

E 0 u

cu 4 w

n h h n n h

r l m K I K

n t-

n rl

n li

I

I

n

0 c o . w m w o M

h

t- e - r n e t-03 rit-

W v

I

n m

I n c v r l f Mr l v

c C

l i n mcr c u r , -

m

B k ih

B Fs"

tll 4

.P tn 2

90

h

ln t-• F U J o n Wt- cu

W

n

cn cuo dln r l -

h

0: o\d wcu curl

U

m li ld 4 0 t3 -

Page 113: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

E! M w R E

h h h h

W U

I I

I I I I I l l I I

I

n h

1 1 1 I

91

Page 114: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

k 0

n n n n n n

M dtn v v U v v

n t-

I I I o * 00 cu2!

I I 1 I 1 1 1 1 I

1 1 I I 1 1 1 1 I

n n h h

I

92

Page 115: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

M w PI w I3

Fy 0

n h n

rl W

v rl v

I I I

n Ln

I I O * I . r l f W

h

M . . I a .

lnw cu

I I I

I I I l l 1 I I

I I I I l l 1 I I

I

rn k Q) M G .d k -P M \ c .d X M

rn

B k a

Q c .d k .d cd

Fy

93

Page 116: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

R 0

Y

n

I I I r- cu \ D * I I W

I I I

n n n \o rl rl

rl I 0 . I r l . I O . I o m o f

.I4 v v

I I

n

I I I I . . U

n n n n n n

W

8 E: .rl k 4 a3 R

8

i2

E: d -P -P

94

Page 117: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

I I I t i l l I I

n

I I I

U

I I I 1 1 1 1 I I

I I I 1 1 1 1 I I

m -P

-P cn ?I

95

n t-

r l * cow M W

I

I

Page 118: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

n

m

affi b H 2 2

ffi

h

1 I I I I ! I l l

I I i l l 1 I I

I I 1 1 1 1 I I I

n n n W rl 0

In. c u e I I I ( u * I 1 coco 3-0. CUO

rl crl v

rt U U

I

I I I l l 1 I 1 I

m k

c .rl k iJ Cn m c

8

' H .A k cn # E r

m M) c d k .A a! F4

I

I

v1 rl a! iJ 0 I3

96

Page 119: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

2 I i O U e 3

I3 m

Ik 0

I I I 1 1 1 I

n

I I 1 1 1 1 I I I

1 I I I l l I I I

I I n

I I gz I d U

I I

n n

rn k a, M c .d k 4 m \ c d X m

u1 c 0 k a, ha F: 0 I4

rn 4

4 m 2

8 c k , Ld ik

4

*d

97

Page 120: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

R O

n n n n 3 0 cu t-

\ o * r l * 4). I I I I t - * I lnln dLn do3 dt- cu v W v v

I I I l l l t l I

I I 1 1 1 1 1

I I I 1 1 1 1

I I

I I

n d 3

o \ * I I l l l l l U

I

h n n

cu W W v

m k aJ bD G

*PI k 4 cn \ c 4 A cn

rn

3 k I%

rn 4J s k 4J cn

n CUM 0 . d W f W

I

I

I

h

d

v

n cu

c r ) * mcu f v

rl a3 e 8

98

Page 121: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

u .

h n A n

v

I 1 I l l I I

n m V ) . I MV)

rl v

1 1 1 I I I I I I

1 1 1 I I I I I I

I I I 1

! k a, w c 0 4

m +J

4J tn 2

D c 4 k .d ld ik

i= m - r l c u Lnm "

W

n M

V ) . mu3 I-l U

I

I

I

W

99

Page 122: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

APPENDIX B

WEIGHT TREND CURVES FOR HELICOPTER STRUCTURES

The curves of Figures B1 through B8 indicate the weight trends for the major assemblies of helicopter structures. Points corresponding to the current and composite CH-53D structure are given in all tables.

100

Page 123: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

10,000 PB, BODY WEIGHT PARPLlETER

I

* LESS SPONSONS, RAE.IpS, T A I L PYLON, AND PYLON FOLD

100 1 .1 1

-Wf = 1071.8 PB, l b m

(4125 PB,sI kg) NZ = ULT LOAD FACTOR

SGW = STRUCTURAL DESIGN

Sf = FUSELAGE VETTED

AP = ULT CABIN D I F F E R E $ T l A L 2

q = DESlGN g Y I a V I $ PRESSURE,

GROSS UT. lbm (kg)

AREA, FT2 (m"\

PRESSURE, lbf /IN. <N/m

l b f / I N . (X/m )

I I 1 I 1 1 1 1 10

FIGURE B1. WEXGHT TREND FOR BODY STRUCTLTRE.

10 1

Page 124: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

2000

1000 Po Y

, - E2

500 V 8

200

1oc ““t

5000

Ei R g 1000 E m

V 0 0

& 500 XV

I I I I I I I I 10 ,a

100 100 1000

Sf, COCKPIT WEITED AREA, FT2

(sf,sI = .0929 Sf’ ”)

FIGURE B2. WEIGHT TREND FOR COCKPIT STRUCTURE.

10 2

Page 125: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

PCAB, CABIN WEIGHT PARANETEX

0.3056 0.875

10,000 1000

PCAB, -0983 Pcm

Q 3

2000

1000 M Y

*- E

R s 2

0

k! 500

m

. m 4

200

1oc

100 1

,0.133

NZ = ULT MAD FACTOR

SGW = STRUCTURAL GROSS W, lbm (kg)

8CAb = CAB114 k%lTF3 AREA, FI'* (m2)

AP = ULT CABIN D I F F E R E g T I A L PRESSURE. l b f / I N . (N/m )

I I I I I 1 1 1 100

FIGURE B3. WEIGHT TREND FOR CABIN STRUCTUF.E.

10 3

Page 126: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

I I I I l i l t 10 100 1(

Sf. WETTED ARZA, FT2

(.,,,, = .0929 Sf .')

0

F I G U R E B4. WEIGHT TREND FOR AFT SECTION STRUCTURE.

10 4

Page 127: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

10 10

PERSONNEL FLOOR

I I I I I I I I I 10

2 sm, F'LOOR AREA, FT

= .0929 SFL .'>

FIGURE B5. WIGHT TREXD FOR FLOOR STRUCTURE.

10 5

Page 128: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

200

200

El f:

* * g 100

2 5;

PI

d d 50

2 0 ~

* LESS PYLON FOLD F I T T I N G

10 I I I I I I I I . I I I I I I l l 10 100 1000

STp, TAIL PYLON PLKTFORM AREA, FT2

FIGURE B6. WEIGHT TREND FOR TAIL PYLON STRUCTURE;

106

Page 129: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

2 SHs, HORIZOIiTAL STABILIZER PLANFORM AREA, i”p

(‘HS,SI ‘HS,

FIGURE B7. WEIGHT TREND FOR HORIZONTAL STABILIZER STRUCTURE.

107

Page 130: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

* 2000 M Y

* * -9

* INCLUDES GEAR SUPPORT STRUCTURE DOES NOT INCLUDE RUNNING GEAR, t

€IO-3s-1

100 1.0 1

II

P 20c

SGW/lOOO , lbm

SGWsI = .454 SGW,kg)

U Z S , ETC.

I I I 1 1 1 1 1 3 1

FIGURE ~ 8 , WIGHT TREND FOR LANDING GFXS STRUCTURE.

no8

Page 131: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

APPENDIX C

MATERIAL AND MANUFACTURIXG COSTS

Material Costs

For t h e pro to type and production composite v e h i c l e s , t h e material costs used are va lues fo r 1 9 7 8 p ro jec t ed from c u r r e n t c o s t t r e n d s . Poss ib l e cost i n c r e a s e s due t o i n f l a t i o n are excluded.

The p ro jec t ed costs used are given below:

T i PRD-491 MATERIAL G/E FORGING ALUM FOAM EPOXY ADHESIVE

UNIT* 25 .00 7.00 1 . 0 0 3.00 2.50 1 .96 COST (55.00) (15.45) ( 2 . 2 0 ) (6.60) ( 2 . 7 4 ) (21.50)

* For adhes ive , t h e u n i t cost i s N f t 2 f o r one l a y e r .

For PRD-49/epoxy, t h e u n i t cost is $/yd ( $ / m ) f o r 0 . 1 i n . ( 2 . 5 4 mm) f i n i s h e d f a b r i c 38 i n . ( 0 . 9 2 6 m) wide.

A l l o t h e r u n i t costs are $/lbm ($/kg).

Manufacturing Costs

The cost eva lua t ion assumes t h e accomplishment of a manu- f a c t u r i n g r i s k r educ t ion program for f a b r i c a t i o n techniques prior t o composite pro to type f a b r i c a t i o n . The cost of t h i s program has been inc luded i n t h e t o t a l c o s t for t h e composite pro to type .

For both pro to type and product ion composite v e h i c l e manu- f a c t u r e , t h e r e n t - f r e e use and a v a i l a b i l i t y of e x i s t i n g faci l - i t i es and equipment are assumed.

The effects of i n f l a t i o n on manufacturing l a b o r costs are not cons idered , and c u r r e n t (1973) l a b o r rates are used.

Engineering and Tooling

Current (1973) rates are used for t h e assessment of engineer ing des ign and a n a l y s i s costs for t h e composite proto- type v e h i c l e , and f o r t o o l design and s u s t a i n i n g engineer ing effort f o r both pro to type and production composite v e h i c l e s .

1 0 9

Page 132: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Cost Estimation

3,383.00 3,290.00 Total Vehicle

I 1

Based on the assumptions outlined above an estimation of the cost f o r both prototype and production composite vehicles is made. The breakdown of these cost estimates is given in tabular form below.

Production composite vehicle cost. Cost/unit f o r total production of 600 vehicles.

(Tabulated values are in $1000 units)

CONVENTIONAL

I 681.19 I I Total Airframe

I Non-Airframe I I I I 2,701.81 I Acquisition 2,701.81. I

F I I i

110

Page 133: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Prototype Composite Vehicle

(Tabulated values are in $1000 units)

1 COMPOSITE I CONVENTIONAL VEHICLE ' VEHICLE (REF)

Engr . 1 6,555.00 1 Material

I 16,893.60 I 16,213.00 Total Airframe

Non-Airframe Acquisition 2,701.81 2,701.81

T o t a l I 19,595.41 I 18,914.81 Vehicle I I

111

Page 134: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

APPENDIX D

COST EFFECTIVENESS ANALYSIS

In comparing current and composite designs, the two are evaluated for mission performance and fleet cost. Performance is measured on the basis of aircraft mission productivity expressed in ton-knots (kg.m/s). Cost is measured on the basis of fleet cost to maintain a constant fleet effectiveness.

To determine mission productivity representative of the conditions in which the CII-53D operates in its primary transport mission, a probabilistic mission environment was established, and 1000 simulated missions were flown. The mission environment used in the simulation was defined by the cumulative probability distributions of the following parameters:

1. sea level temperature (standard altitude lapse rate was assumed)

2. take-off pressure altitude

3 . sortie radius

4. cruise altitude elevation above take-off

5. percentage of outbound payload carried inbound

6. required payload

7 . down time per sortie

8 . hover time per sortie

9 . take-off hover power margin (fraction of hover out- of-ground-effect power actually required)

Cumulative probability distributions are shown in Figure D1. Take-off pressure altitude was based on 20% of time take- off is at sea level, 50% of time take-off is at 500 feet (153 m) or less, 904 of time at 2 5 0 0 feet (762 m) or less, and 100% of time at 10,000 feet (3048 m) or less. This is representative of land area from shore to 50 n. mi. (92.6 km) inland typical of CH-531) operations. Sea-level temperature distribution is based on an average world-wide temperature distribution of 76OF (298OK) f o r potential areas of engagement on or near coastlines; 85% of time temperature is 83OF (302OK) or below, and 100% of time temperature is at 12OOF (322OK) or below. This distribu- tion also approximates the sea-level temperature distribution for regions of anticipated operation. Cruise pressure altitude

112

Page 135: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

above take-off is es t imated t o average 2000 feet (610 m > wi th 90% of t i m e f l y i n g 2500 feet (762 m) or less, and 1 0 0 % f l y i n g 6000 feet (1830 m ) o r less above take-off p re s su re a l t i t u d e .

Required payload, a demand func t ion independent of capab i l - i t y , i s based on c a r r y i n g t roops 30% of t h e t i m e and cargo 70% of t h e t i m e . Cargo d i s t r i b u t i o n i s based on redeployment of a i r - c a r g o f r o m C-130 and C-141 f o r 30% of cargo load ings , and redeployment of 2 1/2-ton (2268 kg) and 5-ton (4536 kg) t r u c k ca rgo for 70% of cargo loadings . Required payload-out averages 16.8 t o n s (15,240 kg). T h i s requirement exceeds t h e CH-533 payload c a p a b i l i t y . Therefore , any i n c r e a s e i n payload capab i l - i t y w i l l produce an i n c r e a s e i n p r o d u c t i v i t y .

Inbound payload averages 12% of outbound payload w i t h 50% of f l i g h t s r e t u r n i n g empty. S o r t i e r a d i u s average i s 25 n. m i . (46.3 kn), w i t h 50% of missions being 1 5 n . m i . (27.8 km) or less and 90% of missions being 50 n. m i . (92.6 krn) o r less.

v a l u e of .75. Hover t i m e p e r s o r t i e averages 1/3 minute, wi th t w o minutes maximum hover t ine p e r so r t i e . Down t i m e pe r s o r t i e averages t w o minutes , wi th 90% of t i m e less than seven minutes and 100% of t i m e less than 30 minutes.

,Take-off power margin range i s .60 t o 1 . 0 , wi th an average

Other i n p u t s t o the mission a n a l y s i s inc lude CH-53D r o t o r parameters , engine performance, b a s i c ope ra t ing weight , and c o n s t r a i n t s imposed by maximum gross weight, d r i v e system r a t i n g , speed l i m i t , and f u e l capac i ty . The CH-53D parameters are :

Rotor D i a m e t e r

T o t a l Blade A r e a

Basic Operating Weight ( i n c l u d e s 725 l b s . (329 kg) of f i x e d u s e f u l l oad )

Engine

Drive System Maximum Power

Maximum Gross Veight

Red Line Speed L i m i t

7 2 ' - 2 . 7 " (22.0 m)

469 sq. f t . (43.5 m*)

2 4 2 1 0 lbm (11.,000 kg)

T64-GE-41

7 ,000 HP (0.523 MU)

42 ,000 lbm ( 1 9 , 0 6 0 kg)

1 7 0 K t s . (87.3 m / s )

630 g a l s . (2.39 m3) Fuel Capaci ty

113

Page 136: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Simula t ion of t h e cur ren? CtI53D i n t h e e s t a b l i s h e d miss ion environment y i e l d e d t h e fo l lowing r e s u l t s :

Average Take-Off Gross Weight 40 ,770 lbm (18,520 kg)

Average Outbound Payload 1 4 , 6 2 0 lbm (6,630 kg)

Average Fuel Flow 2,285 lbm/hr (1,517 kg/ h r )

Average S o r t i e T i n e 0.362 h r

Average Mission P r o d u c t i v i t y 372.8 Ton-Kts. (173,500 kgm/s)

Comparison of t h e e x i s t i n g and composite airframe d e s i g n s on t h e b a s i s of weight and c o s t f o r a s i n g l e p ro to type f l i g h t v e h i c l e and a f l e e t of 690 aircraft are g iven i n t h e f o l l o w i n g Table 31. F u r t h e r d e t a i l s of v e n i c l e c o s t s are g iven i n Appendix C .

TABLE 01. C H - 5 3 WEIG,W AND C O S T COMPARISON OF COMPOSITE A I R F W I E WITH CURRENT D E S I G N .

Prototype C o s t ($1 16,213,000

Prcduction Cost ($1 I Current C H - 5 3 Airframe Weight l b m 6,077

(2756.5 - (kg)

Prototype Cost ($1 16,093,600

Composite Production Cost ($1 681,190 CH-53D 4,959

(kg) I (2249.4) A i r f r a m e

114

Page 137: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

For a single aircraft, the increased cost is $680,600 to achieve 1,118 lbm (507.1 kg) of weight savings by use of compos- ites. For a 600-aircraft fleet, the cost is reduced to $83.2 per pound of weight saved ($184/kg). In order to relate the impact of the candidate design characteristics on aircraft performance and cost, it is necessary to evaluate the operation- al changes in aircraft productivity and mission effectiveness achieved by the use of composites. Change in fleet cost of the composite design to maintain the same fleet effectiveness as the current design is used to evaluate tne impact of cost and technical factors.

Table 9 2 compares the two designs, considering (a) perfor- mance in the CH-53D primary transport mission role and (b) the total system cost over the expected 10-year service life to maintain a constant fleet effectiveness of 600 baseline aircraft flying an average 500 hours per aicraft annually.

TABLE D2. CH-53D COST EFFECTIVENESS SUMMARY.

Acquisition Cost (mill ion $1 per Aircraf t

Weight Empty lbm (kg)

Miss ion Avai labi l i ty Mission Re l i ab i l i t y Average Aircraf t Productivity ton-knots

(kg .m/s

Operating Cost per F l igh t Hour ($1 F l e e t Size F l e e t Life Cycle Cost (mill ion $1

3.290

23,485 (10,670

90'3 992

372.8 ( 173 , 500

715 600

4 119

COMPOSITE CH-53D

3.384

22,367 (10,143)

.go9 0992

397.4 (184,950 1

715 562.86

3916.9

CHANGE

+. 094

-1,118 (507 1

0 0

+24.6 (11,450:

0

-202.1 -37.14

115

Page 138: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

Acquis i t ion c o s t , es t imated a t $ 3 , 2 9 0 , 0 0 0 , i nc lud cost , i n i t i a l s p a r s , ground support equipment (GSE), a i n g c o s t s . I n i t i a l spa res and GSE c o s t are assumed un from t h e c u r r e n t CH-53D. The use of PRD-49 i n of t h e airframe i s considered t o provide a dam l e v e l s i m i l a r t o t h a o f t h e c u r r e n t aluminum s t r u c t u r e . Fo r t h i s reason , no change i s considered i n MElH/FH, so t h e i n c r e - mental c o s t t o t r a i n maintenance personnel i s zero. Changes i n flyaway c o s t are obta ined from Table D1 f o r t h e product ion air- craf t , ad jus t ed f o r amor t i za t ion of composite a i rc raf t non- r e c u r r i n g c o s t , and are added t o t h e c u r r e n t CH-53D a c q u i s i t i o n cost t o o b t a i n the composite a i rcraf t a c q u i s i t i o n c o s t .

t i o n SD 5 5 2 - 1 - 3 . The composite CH-53D empty weight is obta ined by adding t o t h e c u r r e n t a i rcraf t t h e incremental change due t o t h e composite des ign obta ined from Table D1.

Weight empty of t h e c u r r e n t CH-53D i s based on s p e c i f i c a -

Mission a v a i l a b i l i t y is based on a down-hour r a t e of 1 . 6 p e r f l i g h t hour f o r t h e c u r r e n t CH-53D. The use of composite materials may reduce t h i s rate through reduct ion of co r ros ion and r e l a t e d in spec t ion . However, i n t h e absence of s e r v i c e experience i n t h i s area, t h e rate is considered unchanged, g iv ing t h e same a v a i l a b i l i t y f o r t h e composite CH-53D as f o r t h e c u r r e n t v e h i c l e . Mission r e l i a b i l i t y i s based on an a b o r t rate of 2 3 pe r thousand f l i g h t hours and an average mission t i m e of . 3 6 2 hour. For t h e composite v e h i c l e mission, r e l i a b i l i t y is considered unchanged, due t o l ack of s e r v i c e information.

Average mission p r o d u c t i v i t y of t h e c u r r e n t CH-53D i s obta ined from t h e mission s imula t ion previous ly d iscussed . The mission c a p a b i l i t y of t h e composite CH-53L)- is obtained by adding t o t h e c u r r e n t aircraft va lue t h e incremental change i n p r o d u c t i v i t y due t o t h e incremental change i n weight. The p a r t i a l d e r i v a t i v e o f mission p roduc t iv i ty with r e s p e c t t o weight i s -.022 ton-k ts . pe r pound ( - 2 2 . 6 kg.m/s/kg).

Operation cost of t h e c u r r e n t CH-53D, es t imated a t $357,500 annua l ly , i nc ludes naintenance, replacement s p a r e s , replacement GSE, replacement t r a i n i n g , f u e l , and crew costs. Replacement s p a r e s , replacement GSE, and crew costs are assumed no t t o change. Change from t h e c u r r e n t aircraft naintenance cost and replacement t r a i n i n g c o s t of maintenance personnel i s a func t ion of t h e incremental I.ZEIH/FH change f o r t he composite aircraft . A s mentioned previous ly , t h e MMH/FH are considered unchanged for t h e composite v e h i c l e compared with t h e c u r r e n t CH-53D. Therefore , maintenance and replacement t r a i n i n g costs do no t change. The effect of composite design on annual f u e l cost i s obta ined from t h e incremental f u e l flow due t o change i n aircraft weight empty c1.8 lbm fue l /hour (0 .81 k g / h r ) l t i m e s

116

Page 139: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

t h e c o s t of f u e l 11.85 cents/pound of fue l , (4 .08 c e n t s / k g ) l t i m e s t h e annual 500 f l i g h t hour s , i . e . , $16 .7 annua l ly , cons idered n e g l i g i b l e . The re fo re , t h e o p e r a t i n g cost of t h e composite CH-53D i s cons ide red t o be t h e same as t h e c u r r e n t CH-5 3D *

F l e e t s i z e of t h e composite GI-533 i s based on t n e nuqber of a i rc raf t r e q u i r e d t o main ta in t h e f l e e t miss ion e f f e c t i v e n e s s of t h e c u r r e n t CH-53D, where mission e f f e c t i v e n e s s i s d e f i n e d as t h e product o f p r o d u c t i v i t y , a v a i l a b i l i t y , and r e l i a b i l i t y .

F l e e t l i f e c y c l e c o s t i s t h e summation of a c q u i s i t i o n c o s t , a s sun ing t h a t t h e b a s i c a i rcraf t development c o s t has been amor t ized , p lus o p e r a t i n g c o s t for t h e r e q u i r e d f l e e t s i z e f l y i n g a n average of 500 hours a y e a r p e r a i rcraf t o v e r a 10-year s e r v i c e l i f e .

The i n c r e a s e d p r o d u c t i v i t y of t h e composi’te a i rcraf t off- sets i t s i n c r e a s e d a c q u i s i t i o n cost , r e s u l t i n g i n a reduced f l ee t c o s t o f $ 2 0 2 , 1 0 0 , 0 0 0 over the 10-year s e r v i c e l i f e .

117

Page 140: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

!O

OF

I I 1 280 300 320

OK

1.0

.a

.6

.4

.2

I 1 I -

I

0 2 4 6 8 1 I

FT x 103 1 I I i 0 1.0 2.c 3.0

FIGURE D1. C H - 5 3 M I S S I O N ENVIROHME2iT.

118

Page 141: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

(a) CRUISE ALTITUDE ELEVATIOP INCREMENT ABOVE T@-OFF

b I I #

0 0.5 1.0 1.5 km

!O N. M I .

$.I r 1 I E 0 Go 80 G o 160 200 km

F I G W D1. CH-53D M I S S I O N ENVIRONMEDT. (CONTINUED)

119

Page 142: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

0 PERCENT

T O N S

$00 10.000 15:OOO 20;OOO 25,000 1

kt3

FIGURE D1. CK-53D M I S S I O N ENVIRONMENT. (CONTINUED )

120

Page 143: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

MINUTES

0 1 2

MINUTES

F I G U R E 'D1. CH-53D M I S S I O N ENVIRONMENT (CONTINUED)

221

Page 144: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

FRACTION OF HOVER OGE POWER

FIGURE D1. CH-53D MISSION ENVIRONMENT (CONCLUDED)

122

Page 145: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

RCFE XEITCE S

1.

2.

3.

4.

5 .

6.

7 .

8 .

9 .

1 0 .

11.

1 2 .

13.

14.

M . J. Sa lk ind and G . S . Molister, ed. App l i ca t ion of Composite !.laterials, S p e c i a l Technica l P u b l i c a t i o n 524, ASTM, P h i l a d e l p h i a , Pa . , J anua ry , 1973.

Composites Recast, Panel Reports of Composite Recast, AF/!\JASA Long Range Planning Study, February, 1 9 7 2 .

J . E . Ashton, A n i s o t r o p i c Plate Ana lys i s , Report FZ1.I-4899 AFML, Advanced Fi lament and Composite D i v i s i o n , Wright P a t t e r s o n AFB, Ohio, October , 1 9 6 7 .

B. E . Kaminski and J . E. Ashton, Diagonal Tension Behavior of Boron-Epoxy Shear Pane l s , J o u r n a l of Composite Materials, Vol. 5 , October , 1 9 7 1 .

F-15 Composite Wing F l i g h t T e s t , Thi rd Q u a r t e r l y Technica l Report MDC A 1546, AFML, Wright P a t t e r s o n AFB, Ohio, February, 1 9 7 2 .

Same as R e f . 9 , F i r s t E d i t i o n , August, 1 9 6 9 .

Filament Composite Landing Gear Program, Technica l Report AFFDL-TR-72-78, AF F l i g h t Dynamics Labora tory , AF Systems Command, Wright P a t t e r s o n AF3, Ohio, January , 1 9 7 3 .

J. W . Moore, PRD-49 A IJew Organic High Modulus Re in fo rc ing F i b e r , E. I . Du Pont de IJemours Co., I n c . , Text i le F i b e r s D iv i s ion , Wilmington , Delaware.

Advanced Composites Design Guide, AFML, Wright P a t t e r s o n AFB, Ohio, Thi rd E d i t i o n , November, 1 9 7 1 .

P l a s t i c s for F l i g h t Vehic les , MIL-HDBK-17.

J. !?. Davis , N . R . Zurkowski, Put S t r e n g t h and S t i f f n e s s Where You Heed I t , Techn ica l Repor t , 311 C o . , Reinforced P l a s t i c s D iv i s ion , S t . Pau l , Plinnesota.

Technica l Data Shee t for ' 'Scotchply" Type 1002, 3M C o . , St. Pau l , Minnesota.

K. 11. Boller , Effect of Hotches on Fa t igue S t r e n g t h of Conposite Materials , Technica l Report ATML-TR-69-6, AFML, Wright P a t t e r s o n AF3, Ohio, J u l y , 1969.

Advanced Composite Wing S t r u c t u r e s , , Techn ica l Report AFML-TR-70-231, Vols. I , 11, AFML, Wright P a t t e r s o n AFB, Ohio, December, 1970.

123

Page 146: N73-30948 APPLICATION OF COMPOSITES TO AIRFRAME AND

15. E. F. O l s t e n , U. S. Naval Systems Command Report , Contract N00019-71, A p r i l , 1971 t o A p r i l , 1972.

1 6 . F l igh twor thy Graph i t e Reinforced Aircraft Primary S t r u c t u r a l Assemblies , Techn ica l Report AFNL-TR-70-207, Vol. I1 Tasks 3 th rough 1 2 , AFML, Wright P a t t e r s o n AFB, Ohio , October , 1970,

1 7 . General S p e c i f i c a t i o n f o r Design and Cons t ruc t ion of Aircraft Weapon Systems, SD 24 J , Vol. 11, Dept. of t h e Navy, Bur. of Naval Weapons, Washington, D . C.

18. S. Yurenka, I n v e s t i g a t i o n of Advanced Fi lament Wound Aircraf t Landing Gear S t r u c t u r e s , Technica l Report AFML-TR-69-229 , AFML, Wright Pa t te rson AFB , Ohio, January , 1 9 7 0 .

124