n = 1980-993x (online) ana lucia suriani affonso universidade estadual do centro-oeste (unicentro)...

260
N = 1980-993X (Online) http://www.ambi-agua.net 31 st Edition of Revista Ambiente & Água - An Interdisciplinary Journal of Applied Science, Taubaté, v. 10, n. 4, p. 707-953 Oct./Dec. 2015. (doi:10.4136/ambi-agua.v10.n4)

Upload: others

Post on 08-Feb-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • N = 1980-993X (Online) http://www.ambi-agua.net

    31st Edition of Revista Ambiente & Água - An Interdisciplinary Journal of Applied

    Science, Taubaté, v. 10, n. 4, p. 707-953 Oct./Dec. 2015. (doi:10.4136/ambi-agua.v10.n4)

    http://www.ambi-agua.net/http://dx.doi.org/10.4136/ambi-agua.V10.N4

  • i

    EDITORIAL BOARD Editor

    Getulio Teixeira Batista

    Instituto de Pesquisas Ambientais em Bacias Hidrográficas (IPABHi), SP, BR

    Associate Editors

    Amaury Paulo de Souza Universidade Federal de Viçosa (UFV), BR

    Ana Aparecida da Silva Almeida Universidade de Taubaté (UNITAU), BR

    Andrea Giuseppe Capodaglio University of Pavia, ITALY

    Antonio Evaldo Klar Universidade Est. Paulista Júlio de Mesquita Filho (UNESP), BR

    Antonio Teixeira de Matos Universidade Federal de Viçosa (UFV), BR

    Carlos Eduardo de M. Bicudo Instituto de Botânica, IBT, BR

    Cláudia S. de C. M. dos S. Cordovil Centro de estudos de Engenharia Rural (CEER), Lisboa, Portugal

    Dar Roberts University of California, Santa Barbara, United States

    Delly Oliveira Filho Universidade Federal de Viçosa (UFV), BR

    Ehsan Noroozinejad Farsangi International Institute of Earthquake Engineering and

    Seismology(IIEES), Farmanieh, Tehran, Iran

    Gabriel Constantino Blain Instituto Agronômico de Campinas, IAC, Brasil.

    Giordano Urbini University of Insubria, Varese, Italy

    Gustaf Olsson Lund University, Lund, Sweden

    Hélio Nobile Diniz Inst. Geológico, Sec. do Meio Amb. do Est. de SP (IG/SMA),BR

    János Fehér Debrecen University, Hungary

    João Vianei Soares Instituto Nacional de Pesquisas Espaciais (INPE), BR

    José Carlos Mierzwa Universidade de São Paulo, USP, BR

    Julio Cesar Pascale Palhares Embrapa Pecuária Sudeste, CPPSE, São Carlos, SP, BR

    Luis Antonio Merino Institute of Regional Medicine, National University of the Northeast,

    Corrientes, Argentina

    Marcelo dos Santos Targa Universidade de Taubaté, (UNITAU), BR

    Massimo Raboni Polytechnic University of Milan, Milan, Italy

    Nelson Wellausen Dias Inst. Bras. de Geogr. e Estatística (IBGE). Aracaju, SE, BR

    Petr Hlavínek Brno University of Technology República Tcheca

    Richarde Marques da Silva Universidade Federal da Paraíba, UFPB, BR

    Sergio Francisco de Aquino Universidade Federal de Ouro Preto, UFOP, BR

    Silvio Jorge Coelho Simões Univ. Est. Paulista Júlio de Mesquita Filho, UNESP, BR

    Stefan Stanko Slovak Technical University in Bratislava Slovak, Eslováquia

    Teresa Maria Reyna Universidad Nacional de Córdoba, Argentina

    Yosio Edemir Shimabukuro Instituto Nacional de Pesquisas Espaciais (INPE), BR

    Zhongliang Liu Beijing University of Technology, China

    Editorial Section Nelson Wellausen Dias, PPGCA, UNITAU, IBGE, BR

    Text Editors Theodore D`Alessio, FL, USA, Maria Cristina Bean, FL, USA

    Getulio T. Batista, UNITAU, BR

    Reference Editor Liliane Castro, Bibliotecária - CRB/8-6748, Taubaté, BR

    Layout Editors Vera L. F. Batista, IPABHi & Getulio T. Batista, UNITAU, BR

    Technical Support Tiago dos Santos Agostinho, LAGEO, UNITAU, BR

    Secretaria e Comunicação Luciana Gomes de Oliveira, UNITAU, BR

    Library catalog entry by Liliane Castro CRB/8-6748

    Revista Ambiente & Água - An Interdisciplinary Journal of Applied Science / Instituto

    de Pesquisas Ambientais em Bacias Hidrográficas. Taubaté. v. 10, n. 4 (2006)-

    Taubaté: IPABHi, 2015.

    Trimestral

    ISSN 1980-993X

    1. Ciências ambientais. 2. Recursos hídricos. I. Instituto de Pesquisas Ambientais em

    Bacias Hidrográficas.

    CDD - 333.705

    CDU - (03)556.18

  • ii

    TABLE OF CONTENTS COVER Land use and land cover classes and points of extraction of biophysical indexes of Puruzinho River Basin in the southwest of the Brazilian Amazon.

    Source: TARTARI, R. et al. Análise de índices biofísicos a partir de imagens TM Landsat 5 em paisagem heterogênea no Sudoeste da Amazônia. Rev. Ambient. Água, Taubaté, vol. 10 n.4, p. 943-953, 2015. doi:10.4136/ambi-agua.1663

    SCIENTIFIC REVIEWERS Reviewers of Volume 10, 2015 of Revista Ambiente & Água doi:10.4136/ambi-agua.1792

    iv-xii

    ARTICLES

    01

    Physical, chemical, and biological properties of soil under soybean cultivation and at an adjacent rainforest in Amazonia doi:10.4136/ambi-agua.1696 Troy Patrick Beldini; Raimundo Cosme de Oliveira Junior; Michael Meier Keller; Plinio Batista de Camargo; Patrick Michael Crill; Alessandra Damasceno da Silva; Darlisson Bentes dos Santos; Daniel Rocha de Oliveira

    707-719

    02

    Removal of benzene and toluene from a refinery waste air stream by water sorption and biotrickling filtration doi:10.4136/ambi-agua.1764 Paolo Viotti; Marco Schiavon; Renato Gavasci; Andrea G. Capodaglio

    720-727

    03

    Degradation of 17α-ethinylestradiol in water by heterogeneous photocatalysis doi:10.4136/ambi-agua.1308 Wilton Silva Lopes; Maria Graziela Cristo de Oliveira Azevedo; Valderi Duarte Leite; José Tavares Sousa; Josué Silva Buriti

    728-736

    04

    Physical-chemical effects of irrigation with treated wastewater on Dusky Red Latosol soil doi:10.4136/ambi-agua.1695 Vanessa Ribeiro Urbano; Thaís Grandizoli Mendonça; Reinaldo Gaspar Bastos; Claudinei Fonseca Souza

    737-747

    05

    Deoxygenation rate, reaeration and potential for self-purification of a small tropical urban stream doi:10.4136/ambi-agua.1599 Joao Paulo Cunha de Menezes; Ricardo Parreira Bittencourt; Matheus De Sá Farias; Italoema Pinheiro Bello; Luiz Fernando Coutinho de Oliveira; Ronaldo Fia

    748-757

    06 Distribution and contamination of metals in the soil of Guandu Watershed doi:10.4136/ambi-agua.1639 Aldo Pacheco Ferreira

    758-769

    07

    Heterogeneidade espacial e temporal de variáveis limnológicas no reservatório de Itupararanga associadas com o uso do solo na Bacia do Alto Sorocaba-SP doi:10.4136/ambi-agua.1715 Daniele Frascareli; Frederico Guilherme de Souza Beghelli; Sheila Cardoso da Silva; Viviane Moschini Carlos

    770-781

    08

    Qualidade da água superficial por meio de análise do componente principal doi:10.4136/ambi-agua.1468 Nícolas Reinaldo Finkler; Denise Peresin1; Jardel Cocconi; Taison Anderson Bortolin; Adivandro Rech; Vania Elisabete Schneider

    782-792

    http://dx.doi.org/10.4136/ambi-agua.1663http://dx.doi.org/10.4136/ambi-agua.1792http://dx.doi.org/10.4136/ambi-agua.1696http://dx.doi.org/10.4136/ambi-agua.1696http://dx.doi.org/10.4136/ambi-agua.1764http://dx.doi.org/10.4136/ambi-agua.1308http://dx.doi.org/10.4136/ambi-agua.1695http://dx.doi.org/10.4136/ambi-agua.1599http://dx.doi.org/10.4136/ambi-agua.1639http://dx.doi.org/10.4136/ambi-agua.1715http://dx.doi.org/10.4136/ambi-agua.1468http://dx.doi.org/10.4136/ambi-agua.1468

  • iii

    09

    Atividades de lactato desidrogenase e malato desidrogenase de Astyanax bimaculatus (lambari) da bacia hidrográfica do rio Una como biomarcadoras de impacto ambiental doi:10.4136/ambi-agua.1615 Anne Caroline Ribeiro; Maria Tereza Oliveira Batista; Edson Rodrigues Junior; Mariana Feijó de Oliveira; Gannabathula Sree Vani; Edson Rodrigues; Cecilia Nahomi Kawagoe Suda

    793-803

    10

    Análise de metais, agrotóxicos, parâmetros físico-químicos e microbiológicos nas águas da Represa Dr. João Penido, Juiz de Fora, MG doi:10.4136/ambi-agua.1534 Maria Magaly Heidenreich Silva Bucci; Francisco Eduardo da Fonseca Delgado; Claudiomir da Silva Santos; Luiz Fernando Cappa de Oliveira

    804-824

    11

    Efeitos de poluentes do ar e doenças respiratórias utilizando dados estimados por modelo matemático doi:10.4136/ambi-agua.1592 Vanessa Villalta Lima Roman; João Andrade de Carvalho Jr; Luiz Fernando Nascimento; Ana Cristina G. Cesar

    825-831

    12

    Redundância entre métricas da qualidade ambiental de riachos em paisagem agrícola doi:10.4136/ambi-agua.1665 Marcel Okamoto Tanaka; Andréa Lúcia Teixeira de Souza; Alexandre Kannebley de Oliveira; Luiz Eduardo Moschini

    832-846

    13

    Crescimento de plantas de milho em solo acrescido de vermicompostos de lodo de curtume e irrigado com água residuária de esgoto doméstico doi:10.4136/ambi-agua.1625 Guilherme Malafaia; Aline Sueli de Lima Rodrigues; Fernando Godinho de Araújo; Wilson Mozena Leandro

    847-862

    14

    Desempenho de um reator Fenton em escala industrial aplicado à remoção de fenóis em uma planta de recuperação de resíduos da indústria de papel e celulose doi:10.4136/ambi-agua.1638 Everton Skoronski; Adilvo Ferrari; Mylena Fernandes; Cyntia Ely; Jair Juarez João

    863-873

    15 Identificação de fontes de geração de resíduos sólidos em uma unidade de alimentação e nutrição doi:10.4136/ambi-agua.1640 Mariana Gardin Alves; Mariko Ueno

    874-888

    16

    Evolução e desafios no gerenciamento dos resíduos sólidos urbanos no Brasil doi:10.4136/ambi-agua.1635 Victor Fernandez Nascimento; Anahi Chimini Sobral; Pedro Ribeiro de Andrade; Jean Pierre Henry Balbaud Ometto

    889-902

    17

    Sustentabilidade de cardápio: avaliação da pegada hídrica nas refeições de um restaurante universitário doi:10.4136/ambi-agua.1664 Virgílio José Strasburg; Vanusca Dalosto Jahno

    903-914

    18

    Avaliação da adsorção de Fenol e Bisfenol A em carvões ativados comerciais de diferentes matrizes carbonáceas doi:10.4136/ambi-agua.1698 Carla Rênes de Alencar Machado; Enrico Mendes Saggioro; Yuri Gomes Leite e Silva; Luiza Penna dos Santos Pereira; Juacyara Carbonelli Campos

    915-927

    19

    Influência topo-edafo-climática na vegetação de um fragmento de Mata Atlântica na Serra da Mantiqueira, MG doi:10.4136/ambi-agua.1705 Marcela de Castro Nunes Santos Terra; José Marcio de Mello; Carlos Rogério de Mello; Rubens Manoel dos Santos; Amanda Candida Ribeiro Nunes; Marcel Régis Raimundo

    928-942

    20

    Análise de índices biofísicos a partir de imagens TM Landsat 5 em paisagem heterogênea no Sudoeste da Amazônia doi:10.4136/ambi-agua.1663 Rodrigo Tartari; Nadja Gomes Machado, Marcelo Rodrigues dos Anjos, José Maurício da Cunha; Carlo Ralf De Musis; José de Souza Nogueira; Marcelo Sacardi Biudes

    943-953

    http://dx.doi.org/10.4136/ambi-agua.1615http://dx.doi.org/10.4136/ambi-agua.1615http://dx.doi.org/10.4136/ambi-agua.1534http://dx.doi.org/10.4136/ambi-agua.1534http://dx.doi.org/10.4136/ambi-agua.1592http://dx.doi.org/10.4136/ambi-agua.1592http://dx.doi.org/10.4136/ambi-agua.1665http://dx.doi.org/10.4136/ambi-agua.1665http://dx.doi.org/10.4136/ambi-agua.1625http://dx.doi.org/10.4136/ambi-agua.1625http://dx.doi.org/10.4136/ambi-agua.1638http://dx.doi.org/10.4136/ambi-agua.1638http://dx.doi.org/10.4136/ambi-agua.1640http://dx.doi.org/10.4136/ambi-agua.1640http://dx.doi.org/10.4136/ambi-agua.1635http://dx.doi.org/10.4136/ambi-agua.1635http://dx.doi.org/10.4136/ambi-agua.1664http://dx.doi.org/10.4136/ambi-agua.1664http://dx.doi.org/10.4136/ambi-agua.1698http://dx.doi.org/10.4136/ambi-agua.1698http://dx.doi.org/10.4136/ambi-agua.1705http://dx.doi.org/10.4136/ambi-agua.1705http://dx.doi.org/10.4136/ambi-agua.1663http://dx.doi.org/10.4136/ambi-agua.1663

  • Ambiente & Água - An Interdisciplinary Journal of Applied Science

    ISSN 1980-993X – doi:10.4136/1980-993X

    www.ambi-agua.net

    E-mail: [email protected]

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    Reviewers of Volume 10, 2015 of Revista Ambiente & Água

    Masthead Section

    doi:10.4136/ambi-agua.1792

    Getulio Teixeira Batista

    Editor of Revista Ambiente & Água

    e-mail: [email protected]

    The following list includes the names and affiliations of all reviewers that evaluated the

    submissions processed for Volume 10, 2015 of Revista Ambiente & Água, including

    manuscripts that were accepted and published in one of the four annual issues and also

    manuscripts submitted and rejected in 2015. It may therefore include the names of reviewers

    that completed their evaluations between September, 2014 and October, 2015. Several of the

    reviewers evaluated more than one manuscript.

    We are deeply indebted to all of them that voluntarily and anonymously spent their

    precious time to support the journal, and contributed immensely to the quality of the

    published articles. We gratefully acknowledge their professional work and outstanding

    product.

    Table 1. Ad Hoc Peer Reviewers that evaluated submissions for the 2015 edition of Revista Ambiente

    & Água, Volume 10, n. 1, 2, 3 and 4, 2015.

    Abel Talabi Ekiti State University, Ekiti State University, Ado Ekiti, Nigeria

    Ademir Kleber de Oliveira Universidade Anhanguera (UNIDERP)

    Adriane Martins de Freitas Universidade Tecnológica Federal do Paraná (UTFPR)

    Alberto Adriano Cavalheiro Universidade Estadual de Mato Grosso do Sul (UEMS)

    Aldo Pacheco Ferreira Escola Nacional de Saúde Pública (FIOCRUZ)

    Alessandra Cristina Silva Valentim Universidade Federal do Recôncavo da Bahia (UFRB)

    Alexandra Sofia Baptista Vicente

    Baeta

    Marine and Environmental Sciences Centre, Faculty of

    Sciences and Technology, Univ. of Coimbra, Portugal

    Alexandre Lioi Nascentes Universidade Federal Rural do Rio de Janeiro (UFRRJ)

    Aline Maria Meiguins de Lima Universidade Federal do Pará (UFPA)

    Aline Sueli de Lima Rodrigues Instituto Federal Goiano (IF Goiano - Câmpus Urutaí)

    Ana Cristina Gobbo César Instituto Federal de São Paulo (IFSP)

    Ana Lucia Suriani Affonso Universidade Estadual do Centro-Oeste (UNICENTRO)

    http://www.ambi-agua.net/seer/index.php/ambi-agua/indexhttp://dx.doi.org/10.4136/1980-993Xhttp://dx.doi.org/10.4136/1980-993Xhttp://www.ambi-agua.net/splash-seer/http://www.ambi-agua.net/splash-seer/http://dx.doi.org/10.4136/ambi-agua.1792http://dx.doi.org/10.4136/ambi-agua.1792

  • v Reviewers of Volume 10, 2015 …

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    André Felippe Nunes Freitas Universidade Federal Rural do Rio de Janeiro (UFRRJ)

    Andre Luis Teixeira Fernandes Universidade de Uberaba (UNIUBE)

    André Monteiro Costa Fundação Oswaldo Cruz (FIOCRUZ)

    André Quintão de Almeida Universidade Federal de Sergipe (UFS)

    André Ricardo de Araújo Lima Universidade Federal de Pernambuco (UFPE)

    Andrea Giuseppe Capodaglio Università degli Studi di Pavia, Pavia, Itália

    Andrea Nunes Vaz Pedroso Instituto de Botânica (IBT)

    Andreia Maria Anunciação Gomes Universidade Federal de Itajubá (UNIFEI)

    Anne Hélène Fostier Universidade Estadual de Campinas (UNICAMP)

    Antonio Cezar Leal Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP)

    Antonio Laverde Junior Universidade Tecnológica Federal do Paraná (UTFPR)

    Antônio Pereira Magalhães Junio Universidade Federal de Minas Gerais (UFMG)

    Armando Augusto Henriques Vieira Universidade Federal de São Carlos (UFSCAR)

    Caio Fernando Gromboni Instituto Federal da Bahia (IFBA)

    Carla Cristine Müller Cestari Companhia Riograndense de Saneamento (CORSAN)

    Carlos Alexandre Borges Garcia Universidade Federal de Sergipe (UFS)

    Carlos Alexandre Rey Matias Universidade Federal Rural do Rio de Janeiro (UFRRJ)

    Carlos Alexandre Santos Querino Centro Gestor e Operacional do Sistema de Proteção da

    Amazônia (CENSIPAM)

    Carlos Elizio Cotrim Instituto Federal de Educação Ciência e Tecnologia Baiano

    (IFBAIANO)

    Carlos Frederico Bernardo Loureiro Universidade Federal do Rio de Janeiro (UFRJ)

    Catarinie Diniz Pereira Universidade Estadual de Campinas (UNICAMP)

    Célia Alves Souza Universidade do Estado de Mato Grosso (UNEMAT)

    César Augusto Moreira Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP)

    Cilia Leonor Fuentes Piedrahita Universidad Nacional de Colombia, Bogotá, Colombia

    Ciro Alberto de Oliveira Ribeiro Universidade Federal do Paraná (UFPR)

    Claudia Albuquerque Linhares Instituto Nacional de Pesquisas Espaciais (INPE)

    Cláudia Maria Luz Lapa Teixeira Instituto Nacional de Tecnologia (INT)

    Claudinei Fonseca Souza Universidade Federal de São Carlos (UFSCAR)

    Claudio Fernando Mahler Universidade Federal do Rio de Janeiro (UFRJ)

    Claudio José Von Zuben Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP)

  • vi Getulio T. Batista

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    Claudio Marcio Souza Universidade Federal dos Vales do Jequitinhonha e Mucuri

    (UFVJM)

    Claudio Campos Montenegro Universidade Federal de Lavras (UFLA)

    Cleber Antonio Lindino Universidade Estadual do Oeste do Paraná (UNIOESTE)

    Clovis Antonio Rodrigues Universidade do Vale do Itajaí (UNIVALI)

    Conrado de Moraes Rudorff Centro Nacional de Monitoramento e Alertas de Desastres

    Naturais (CEMADEN)

    Daiana Cardoso de Oliveira Universidade Federal de Santa Catarina (UFSC)

    Daniel Vidal Perez Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)

    Danielle Palma de Oliveira Fac. de C. Farmacêuticas de Rib. Preto (FCFRP/USP)

    Danilo Paulúcio da Silva Universidade Estadual do Sudoeste da Bahia (UESB)

    Delvio Sandri Universidade de Brasília (UnB)

    Diego de Souza Sardinha Universidade Federal de Alfenas (UNIFAL)

    Diego Rodrigues Macedo Fundação Instituto Brasileiro de Geografia e Estatística (IBGE)

    Eden Albuquerque Junior Instituto de Tecnologia de Pernambuco (ITEP)

    Ederio Dino Bidoia Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP)

    Edison Barbieri Instituto de Pesca (IP)

    Eduardo Rodrigues Viana de Lima Universidade Federal da Paraíba (UFPB)

    Eline Simões Gonçalves Fundação Oswaldo Cruz (FIOCRUZ)

    Elmo Rodrigues da Silva Universidade do Estado do Rio de Janeiro (UERJ)

    Elvis Vasquez Rimachi Instituto Nacional da Amazônia (INPA)

    Érika Andressa da Silva Universidade Federal de Lavras (UFLA)

    Fabiana Valéria da Fonseca Universidade Federal do Rio de Janeiro (UFRJ)

    Fábio Kummrow Universidade Federal de São Paulo (UNIFESP)

    Fábio Marcelo Breunig Universidade Federal de Santa Maria (UFSM)

    Fabio de Oliveira Sanches Universidade Federal da Fronteira Sul (UFFS)

    Fabrício Berton Zanchi Universidade Federal do Amazonas (UFAM)

    Fernando França da Cunha Universidade Federal dos Vales do Jequitinhonha e Mucuri

    (UFVJM)

    Flávia Maria Galizoni Universidade Federal de Minas Gerais (UFMG)

    Flavia Mariani Barros Universidade Estadual do Sudoeste da Bahia (UESB)

    Flávio Rubens Lapolli Universidade Federal de Santa Catarina (UFSC)

    Gabriel Constantino Blain Instituto Agronômico de Campinas (IAC)

  • vii Reviewers of Volume 10, 2015 …

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    Gabriela Vázquez Hurtado Universidad Veracruzana, Instituto de Ecología (INECOL),

    Veracruz, México

    Gannabathula Sree Vani Universidade de Taubaté (UNITAU)

    Geison Jader Mello Instituto Federal de Mato Grosso (IFMT)

    Gerson Araujo de Medeiros Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP)

    Gesinaldo Ataíde Cândido Universidade Federal de Campina Grande (UFCG)

    Getulio Teixeira Batista Universidade de Taubaté (UNITAU)

    Gilberto Chohaku Sediyama Universidade Federal de Viçosa (UFV)

    Gilvan Sampaio de Oliveira Instituto Nacional de Pesquisas Espaciais (INPE)

    Giordano Urbini Università Degli Studi dell'Insubria, Varese, Italia

    Giovani de Oliveira Garcia Centro de C. Agrárias da Univ. Fed. do ES (CCAUFES)

    Gleyci Aparecida Oliveira Moser Universidade do Estado do Rio de Janeiro (UERJ)

    Gordon Tami Amangabara Federal University of Technology, Owerri, Nigeria

    Guilherme Luiz Dotto Universidade Federal de Santa Maria (UFSM)

    Guilherme Malafaia Instituto Federal Goiano (IF Goiano - Câmpus Urutaí)

    Guilherme Viana de Alencar Inst. Brasileiro do Meio Ambiente e dos Recursos Naturais

    Renováveis (IBAMA)

    Henry Louis Spach Universidade Federal do Paraná (UFPR)

    Honoria de Fatima Gorgulho Universidade Federal de São João Del-Rei (UFSJ)

    Hugo Alexandre Soares Guedes Universidade Federal de Pelotas (UFPEL)

    Hycienth Nwankwoala University of Port-Harcourt, Port Harcourt, Rivers State,

    Nigeria

    Irajá do Nascimento Filho Universidade de Caxias do Sul (UCS)

    Iria Fernandes Vendrame Instituto Tecnológico de Aeronáutica (ITA)

    Irineu Bianchini Júnior Universidade Federal de São Carlos (UFSCar)

    Isabel Cristina de Barros Trannin Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP)

    Jácomo Divino Borges Universidade Federal de Goiás (UFG)

    Jaime Lopes da Mota Oliveira Departamento de Saneamento e Saúde Ambiental

    (ENSP/FIOCRUZ)

    Jair Max Furtunato Maia Universidade do Estado do Amazonas (UEA)

    Jairo Osvaldo Cazetta Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP)

    João Carlos Costa Guimarães Universidade Federal de Itajubá (UNIFEI)

    Jonas Teixeira Nery Unidade Diferenciada Ourinhos (UNESP)

  • viii Getulio T. Batista

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    Joost van Haren The University of Arizona, Tucson, Arizona, US

    Jorge Armando Guevara Gil Pontifica Universidad Católica del Perú, San Miguel, Lima -

    Perú

    Jorge Luiz Rodrigues Filho Universidade do Estado de Santa Catarina (UDESC)

    José Antonio Rodrigues de Souza Instituto Federal Goiano (IF Goiano - Câmpus Urutaí)

    José Augusto de Lollo Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP)

    José Carlos Mierzwa Universidade de São Paulo (USP)

    José Cleidimário Araújo Leite Universidade Federal de Campina Grande (UFCG)

    José Dias Corrêa Junior Universidade Federal de Minas Gerais (UFMG)

    José Marinaldo Gleriani Universidade Federal de Viçosa (UFV)

    José Luis Ibarra-Montoya Instituto Tecnológico de Estudios Superiores de Moterrey,

    México

    José Luiz Silvério da Silva Universidade Federal de Santa Maria (UFSM)

    José Max Barbosa Oliveira Jr. Universidade do Estado de Mato Grosso (UEMG)

    Josely Dantas Fernandes Universidade Estadual da Paraíba (UEPB)

    Josino Costa Moreira Fundação Oswaldo Cruz (FIOCRUZ)

    Julio Cesar Raposo de Almeida Universidade de Taubaté (UNITAU)

    Julio Pascale Palhares Pecuária Sudeste (EMBRAPA)

    Julio Vieira Neto Universidade Federal Fluminense (UFF)

    Karime Rita de Souza Bentes Universidade Federal do Amazonas (UFAM)

    Katia Canil Universidade Federal do ABC (UFABC)

    Kaveh Madani Imperial College London, South Kensington Campus, London,

    UK

    Kelly das Graças Fernandes Dantas Universidade Federal do Pará (UFPA)

    Kettrin Farias Bem Maracajá Universidade Federal do Rio Grande do Norte (UFRN)

    Lincoln Eloi de Araújo Universidade Federal da Paraíba (UFPB)

    Lourival Ferreira Cavalcante Universidade Federal de Campina Grande (UFCG)

    Luciano dos Santos Rodrigues Universidade Federal de Minas Gerais (UFMG)

    Luisa Elizabeth Delgado Isasi Universidad de Chile, Fundacion Centro Transdisciplinario de

    Estudios Fes-Sistemicos (CTF-FES), Santiago, Chile

    Luiz Augusto do Amaral Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP)

    Luiz Augusto Manfré Cargill, Incorporated, Agribusiness Intelligence, MN, US

    Luiz Drude de Lacerda Universidade Federal do Ceará (UFC)

  • ix Reviewers of Volume 10, 2015 …

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    Luiz Ermindo Cavallet Universidade Estadual do Paraná (UNESPAR)

    Luiz Fernando Scheibe Universidade Federal de Santa Catarina (UFSC)

    Luiz Roberto Santos Moraes Universidade Federal da Bahia (UFBA)

    Magali Christe Cammarota Universidade Federal do Rio de Janeiro (UFRJ)

    Magali Rezende Gouvea Meireles Pontifícia Universidade Católica de Minas Gerais (PUC)

    Manuel de Jesus Flores Montes Universidade Federal de Pernambuco (UFPE)

    Marcel Fantin Instituto de Arquitetura e Urbanismo (USP)

    Marcelo De Julio Instituto Tecnológico de Aeronáutica (ITA)

    Marcelo Henrique Otenio Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)

    Marcelo Sandin Dourado Universidade Federal do Paraná (UFPR)

    Marcelo Tavares Gurgel Universidade Federal Rural do Semi-Árido(UFERSA)

    Marcia Terezinha Zilli University of California, , Santa Barabra, California, US

    Marcio Rossi Instituto Florestal do Estado de São Paulo (IF)

    Marcos Antonio Gomes Universidade Federal de Viçosa (UFV)

    Marcos Moreira de Barros Salomão Universidade Estadual do Norte Fluminense Darcy Ribeiro

    (UENF)

    Maria Cristina Borba Braga Universidade Federal do Paraná (UFPR)

    Maria do Carmo Martins Sobral Technische Universität Berlin, Berlin, Deutschland

    Maria Gizelda de Oliveira Tavares Universidade Federal de Goiás (UFG)

    Maria Lourdes Souza Santos Universidade Federal Rural da Amazônia (UFRA)

    Maria Rosaria Boni University of Rome “La Sapienza”, Roma, Italia

    Maria Teresa Calvão Rodrigues Universidade Nova de Lisboa (UNL), Lisboa, Portugal

    Marluce Martins Martins de Aguiar Instituto Federal de Educação Ciência e Tecnologia do Espírito

    Santo (IFES)

    Marselle Bevilacqua Amadio Centro Universitário Senac (SENAC/SP)

    Marta Margarete Cestari Universidade Federal do Paraná (UFPR)

    Masato Kobiyama Universidade Federal de Santa Catarina (UFSC)

    Massimo Raboni University LIUC, Varese, Italia

    Matheus Fonseca Durães Universidade Federal de Lavras (UFLA)

    Mathias Alberto Schramm Instituto Federal de Educação Ciência e Tecnologia de Santa

    Catarina (IF/SC)

    Maurea Nicoletti Flynn EcoAdvisor Associados, São Paulo, SP

  • x Getulio T. Batista

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    Mauricio José Borges Instituto Taquaritinguense de Ensino Superior, Taquaritinga,

    SP

    Mauricio Luiz Sens Universidade Federal de Santa Catarina (UFSC)

    Mesfin Mergia Mekonnen University of Twente, Enschede, The Netherlands

    Michele Morais Oliveira Pereira Universidade Federal de Viçosa (UFV)

    Miguel Mansur Aisse Universidade Federal do Paraná (UFPR)

    Mônica Luisa Kuhlmann Companhia Ambiental do Estado de São Paulo (CETESB)

    Monica Maria Pereira da Silva Universidade Estadual da Paraíba (UFPB)

    Montse Meneses Universitat Autonoma de Barcelona (UAB), Bellaterra,

    Barcelona, Espanha

    Nádia Hortense Torres Instituto de Tecnologia e Pesquisa (ITP)

    Natalino Perovano Filho Universidade Estadual do Sudoeste da Bahia (UESB)

    Nei Kavaguichi Leite Universidade Federal de Santa Catarina (UFSC)

    Nelson Wellausen Dias Instituto Brasileiro de Geografia e Estatística (IBGE)

    Nildo da Silva Dias Universidade Federal Rural do Semi-Árido (UFERSA)

    Núbia Natália de Brito Universidade Federal de Goiás (UFG)

    Olga Venimar de Oliveira Gomes Universidade Federal Fluminense (UFF)

    Osmar Gustavo Wöhl Coelho Universidade do Vale do Rio dos Sinos (UNISINOS)

    Osvaldo Luiz Gonçalves Quelhas Universidade Federal Fluminense (UFF)

    Otidene Rossiter Sa da Rocha Universidade Federal de Pernambuco (UFPE)

    Paulo Cesar de Jesus Universidade Federal do Rio de Janeiro (UFRJ)

    Paulo Cesar Rocha Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP)

    Paulo Cesar Sentelhas Universidade de São Paulo (ESALQ/USP)

    Paulo Henrique Caramori Instituto Agronômico do Paraná (IAPAR)

    Pedro Daniel da Cunha Kemerich Universidade Federal de Santa Maria (UFSM/CESNORS)

    Priscila Fernanda Campos de

    Menezes Instituto de Física e Química de São Carlos (USP)

    Rafael Oliveira Batista Universidade Federal Rural do Semi-Árido (UFERSA)

    Regina Peralta Moreira Universidade Federal de Santa Catarina (UFSC)

    Reinaldo G Bastos Universidade Federal de São Carlos (UFSCAR)

    Reinaldo Vargas Universidade de Guarulhos (UNG)

    Renata Stábile Amais Centro de Energia Nuclear na Agricultura (CENA/USP)

    Renata de Souza Leão Martins Instituto de Energia e Ambiente (IEE)

  • xi Reviewers of Volume 10, 2015 …

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    Renato Farias do Valle Junior Instituto Federal de Educação Ciência e Tecnologia do

    Triângulo Mineiro (IFTM)

    Renato Gavasci University of Rome “Tor Vergata”, Roma, Italia

    Renato Igor da silva Alves Universidade de São Paulo (USP)

    Ricardo dos Santos Coelho Instituto Federal de São Paulo (IFSP)

    Rita de Cássia Colman Simões Universidade Federal Fluminense (UFF)

    Roberto Avelino Cecílio Universidade Federal do Espírito Santo (UFES)

    Roberto Moraes Lima Silveira Universidade Federal de Mato Grosso (UFMT)

    Rodolfo Carapelli Universidade Federal do Rio Grande (FURG)

    Rogério Caetano da Costa Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP)

    Ronaldo Borges Barthem Museu Paraense Emílio Goeldi (MPEG)

    Ronaldo de Almeida Universidade Federal do Amazonas (UFAM)

    Ronaldo Fia Universidade Federal de Lavras (UFLA)

    Ronaldo Teixeira Pelegrini Universidade Federal de São Carlos (UFSCAR)

    Rosana Icassatti Corazza Faculdades de Campinas (FACAMP)

    Rose Maria Duda Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP)

    Rute Isabel Costa Pinto Marine and Environmental Research Centre (IMAR-CMA),

    Coimbra, Portugal

    Sandro Geraldo de Castro Britto Univ. Estadual Paulista Júlio de Mesquita Filho (UNESP) -

    Laboratório de Biologia e Ecologia de Peixes, Botucatu

    Selma Gomes Ferreira Leite Universidade Federal do Rio de Janeiro (UFRJ)

    Selma Simões de Castro Universidade Federal de Goiás (UFG)

    Sérgio Marcos Sanches Instituto Federal de Educação Ciência e Tecnologia do

    Triângulo Mineiro (IFTM)

    Sergio Nascimento Duarte Universidade de São Paulo (ESALQ-USP)

    Sergio Salinas Universidad de Zaragoza, Zaragoza, Espanha

    Sigrid Neumann Leitão Universidade Federal de Pernambuco (UFPE)

    Silvia Mattos Nascimento Universidade Federal do Estado do Rio de Janeiro (UNIRIO)

    Silvio Bueno Pereira Universidade Federal de Viçosa (UFV)

    Simone Andrea Pozza Universidade Estadual de Campinas (UNICAMP)

    Simone Bittencourt Companhia de Saneamento do Paraná (SANEPAR)

    Simone Maria Ribas Vendramel Instituto Federal de Educação Ciência e Tecnologia do Rio de

    Janeiro (IFRJ)

    Sueli Yoshinaga Pereira Universidade Estadual de Campinas (UNICAMP)

  • xii Getulio T. Batista

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    Tamara Maria Gomes Universidade de São Paulo (USP)

    Tânia Regina Kinasz de Oliveira Universidade Federal de Mato Grosso (UFMT)

    Teodorico Alves Sobrinho Universidade Federal de Mato Grosso do Sul (UFMS)

    Teresa Cristina Brazil de Paiva Universidade de São Paulo (USP)

    Teresa Maria Reyna Universidad Nacional de Córdoba, Córdoba, Argentina

    Toni Jefferson Lopes Universidade Federal do Rio Grande do Sul (UFRGS)

    Tulio Assunção Pires Ribeiro Universidade Estadual de Campinas (UNICAMP)

    Valéria Peixoto Borges Universidade Federal da Paraíba (UFPB)

    Valérie Genty Pot Institut National de la Recherche Agronomique (INRA),

    Marrocos

    Vandré Barbosa Brião Universidade de Passo Fundo (UPF)

    Vanessa Empinotti Universidade de São Paulo (USP)

    Vincenzo Torretta University of Insubria, Varese, Italia

    Wagner Walker de Albuquerque

    Alves Universidade Federal de Rondônia (UNIR)

    Wallisson da Silva Freitas Instituto Federal de Educação Ciência e Tecnologia do Espírito

    Santo (IFES)

    Walter de Paula Lima Universidade de São Paulo (USP)

    Welber Senteio Smith Universidade Paulista (UNIP)

    Willames de Albuquerque Soares Universidade de Pernambuco (UPE)

    Zagabathuni Venkata Panchakshari

    Murthy S. V. National Institute of Technology, Gujarat, India

    Note: 1) Some of these reviewers evaluated more than one manuscript; 2) This list includes reviewers that

    evaluated submissions that were not accepted for publication, in addition to the ones that were published in

    2015.

    As seen in Table 2, 27 reviewers are from international institutions abroad. This is an

    indication that the journal is gaining international acceptance and inclusion.

    Table 2. Number and type of institutions of reviewers that contributed to Volume 10 of 2015.

    From Brazil From abroad

    Federal

    Universities

    State

    Universities

    Federal

    Institutions

    National

    private

    Universities

    Municipal

    Universities

    Reviewers from

    international Institutions

    Total

    101 49 48 8 3 27 236

  • Ambiente & Água - An Interdisciplinary Journal of Applied Science

    ISSN 1980-993X – doi:10.4136/1980-993X

    www.ambi-agua.net

    E-mail: [email protected]

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    Physical, chemical, and biological properties of soil under soybean

    cultivation and at an adjacent rainforest in Amazonia

    doi:10.4136/ambi-agua.1696

    Received: 03 Jul. 2015; Accepted: 13 Oct. 2015

    Troy Patrick Beldini1; Raimundo Cosme de Oliveira Junior

    2*;

    Michael Meier Keller3;Plinio Batista de Camargo

    4; Patrick Michael Crill

    5;

    Alessandra Damasceno da Silva6; Darlisson Bentes dos Santos

    6;

    Daniel Rocha de Oliveira6

    1Instituto de Biodiversidade e Floresta (UFOPA), Santarém, PA, Brasil

    2Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Santarém, Para, Brasil

    3University of New Hampshire, (UNH), New Hampshire, USA

    4Centro de Energia Nuclear na Agricultura USP (CENA/USP), Piracicaba, SP, Brasil

    Laboratório de Isótopos 5University of Stockholm, Sweden

    Department of Geoscience 6Centro Universitário Luterano de Santarém (CEULS/ULBRA), Santarém, PA, Brasil

    *Corresponding author: e-mail: [email protected],

    [email protected], [email protected], [email protected], [email protected],

    [email protected], [email protected], [email protected]

    ABSTRACT Land-use change in the Amazon basin has occurred at an accelerated pace during the last

    decade, and it is important that the effects induced by these changes on soil properties are

    better understood. This study investigated the chemical, physical, and biological properties of

    soil in a field under cultivation of soy and rice, and at an adjacent primary rain forest.

    Increases in soil bulk density, exchangeable cations and pH were observed in the soy field

    soil. In the primary forest, soil microbial biomass and basal respiration rates were higher, and

    the microbial community was metabolically more efficient. The sum of basal respiration

    across the A, AB and BA horizons on a mass per area basis ranged from 7.31 to 10.05 Mg

    CO2-C ha-1

    yr-1

    , thus yielding estimates for total soil respiration between 9.6 and 15.5 Mg

    CO2-C ha-1

    yr-1

    across sites and seasons. These estimates are in good agreement with literature

    values for Amazonian ecosystems. The estimates of heterotrophic respiration made in this

    study help to further constrain the estimates of autotrophic soil respiration and will be useful

    for monitoring the effects of future land-use in Amazonian ecosystems.

    Keywords: land use change, microbial metabolic quotient, seasonality.

    Propriedades físicas, químicas, e biológicas de solo sob cultivação de

    soja e em floresta adjacente na Amazônia

    RESUMO As mudanças no uso da terra na bacia Amazônica têm ocorridas num ritmo acelerado durante

    a última década, e é importante que os efeitos dessas mudanças nos recursos edáficos

    http://www.ambi-agua.net/seer/index.php/ambi-agua/indexhttp://dx.doi.org/10.4136/1980-993Xhttp://dx.doi.org/10.4136/1980-993Xhttp://www.ambi-agua.net/splash-seer/http://www.ambi-agua.net/splash-seer/http://dx.doi.org/10.4136/ambi-agua.1696http://dx.doi.org/10.4136/ambi-agua.1696mailto:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]:[email protected]

  • 708 Troy Patrick Beldini et al.

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    sejam explicados. Este trabalho teve como objetivo investigar as propriedades físicas,

    químicas, e biológicas de um solo sob cultivo de soja e arroz, e um solo de floresta primária

    adjacente. O solo do campo de soja teve aumentos na densidade, cátions trocáveis, e pH. Na

    floresta primária a biomassa microbiana e a respiração do solo foram maiores, e a comunidade

    microbiana demonstrou maior eficiência metabólica. A soma da respiração basal nos três

    horizontes estudados variou entre 7,31 a 10,05 Mg CO2-C ha-1

    ano-1

    , assim dando estimativas

    de 9,6 a 15,5 Mg CO2-C ha-1

    ano-1

    para a respiração total do solo somada para sítios e épocas

    de amostragem, valores que estão de acordo com dados reportados na literatura para

    ecossistemas amazônicos. As estimativas da respiração heterotrófica nesse estudo ajudarão a

    estreitar as estimativas de respiração autotrófica e serão importantes na determinação dos

    efeitos de futuras mudanças no uso da terra e no clima em sistemas amazônicos.

    Palavras-chave: mudança no uso da terra, quociente metabólico, sazonalidade.

    1. INTRODUCTION

    During the last decade the agricultural frontier in the Amazon has progressively migrated

    northward away from the crescent of deforestation that arches across the south and

    southeastern portion of the Amazon basin (Nepstad et al. 2006; 2008). Historically, the

    majority of land-use change in Amazonia has been deforestation followed by cattle pasture

    installation. However, during recent years the expansion of large-scale industrialized

    agriculture has become a major land-use change (Nepstad et al., 2006). The area under

    intensive mechanized agriculture in the Brazilian Legal Amazon increased by > 3.6 million ha

    during 2001-2004, with 87% of this growth in the State of Mato Grosso (Morton et al., 2006).

    Soybeans occupy a larger area than any other crop in Brazil, and during the last 10 years,

    Amazonia became the region of Brazil with the largest increase in area under soy cultivation

    (Costa et al., 2007). For example, the 2006 Censo Agropecuário conducted by the Brazilian

    Institute of Geography and Statistics (IBGE, 2006) showed that, of the regions of Brazil, the

    North (Amazonia) had the largest increase in area under soy cultivation: 275.5%.

    Furthermore, there are indications that there is considerable potential for expansion of the area

    under soybean cultivation in the Amazon. Vera-Diaz et al. (2007), using a regression model of

    soybean yield that integrates the major climatic, edaphic, and economic determinants in the

    Amazon Basin, estimated that 20% of the Legal Amazon could yield 2 Mg.ha-1

    of soybeans, a

    lower-threshold value believed to make soybean cultivation economically viable.

    The 2006 Censo Agropecuário also demonstrated a trend of substitution of pasture areas

    for cultivated areas during the period 1996 – 2006, due to the progressive insertion of Brazil

    into the international grain production market, principally through the cultivation of soybeans.

    In some areas of the Amazon, direct deforestation for soybean planting occurs. For example,

    in the State of Mato Grosso, Morton et al. (2006) demonstrated a strong positive relationship

    (R2 = 0.72) between area deforested for cropland and mean annual soybean price in the year

    of forest clearing for the period 2001 through 2004.

    The area under soybean cultivation in the Legal Amazon is approximately 2 million

    hectares, with 1.5 million ha in the State of Mato Grosso, and the remaining area distributed

    in the States of Pará, Amazonas, Roraima, and Maranhão (Costa et al., 2007). The State of

    Pará had 533,386 ha planted in grains under mechanized agriculture in 2009, with

    approximately 100,000 ha in soy. In the region of western Pará (Santarém and Belterra) there

    were 6,000 ha of soybeans and 550 ha of corn planted in 2003, and in 2009 there were 28,150

    ha of soybeans and 11,500 ha of corn (IBGE, 2010).

    Questions that arise, in light of these accelerated land-use changes in the Amazon, are how do

    edaphic resources change due to differing land uses, and more specifically, how does

  • 709 Physical, chemical, and biological properties of soil …

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    the biological component of the soil respond? It is the microbiological constituent of the soil

    that is responsible for maintaining nutrient cycling in the soil-plant-atmosphere continuum,

    and therefore the fertility and sustainability of the system. Rodrigues et al. (2013), studying in

    pasture and forest in the Amazon showed a homogenization of microbial communities in

    response to human activities that was driven by the loss of forest soil bacteria and a net loss of

    diversity. Mueller et al. (2014) sampled the soil microbial and plant community composition

    across a chronosequence of deforestation in the Amazon and found significant effects of land-

    use change on fungal community composition, which was more closely correlated to plant

    community composition than to changes in soil properties. Secondary forests had fungal

    communities more similar to primary forests than to those in pastures, which suggest that the

    recuperation of fungal communities after pasture abandonment is dependent upon that of plant

    diversity. Jesus et al. (2009) showed that microbial community structure changed significantly

    along gradients of base saturation, [Al3+

    ] and pH in different land use types in the Amazon,

    and that pasture and crop soil communities were among the most diverse.

    The primary objective of this study was to compare changes in soil properties between

    primary forest and adjacent agricultural fields through measurements of soil chemical and

    physical properties, and measurements of microbial biomass and activity. In addition, through

    analysis of the basal respiration data, this work aimed to provide an estimate of root and total

    soil respiration in each of the ecosystems studied. These data will be useful for refining

    estimates of atmospheric C flux from the soil. Furthermore, these data will be useful to

    evaluate the effects of forest conversion and land use change on soil qualities when compared

    with analyses of soil from nearby native rain forest.

    2. MATERIALS AND METHODS

    This study was conducted in the Tapajós National Forest (TNF) and an adjacent (≈ 2 km)

    agricultural field (soy field). The region has a mean annual temperature of 25°C, receives

    approximately 2000 mm of rain per year with a dry season lasting from July to December, and

    is located on an old, nearly flat, erosional remnant plateau (Parrotta et al., 1995). Soils are

    deep and highly weathered with dominantly clayey texture (>80%). The soil type at both sites

    is a Typic Haplustox (red-yellow Oxisol).

    The TNF is a mature, closed-canopy evergreen tropical lowland forest situated 50 km

    south of the city of Santarém, Pará, and is bordered on the east by the Santarém – Cuiabá

    highway for over 200 km. Much of the area along this border is deforested and used as

    pasture or for industrialized agricultural activities where soy, rice, beans, corn, sorghum, and

    other crops are cultivated on a large scale.

    Sampling in the agricultural field was conducted on the farm called “Fazenda Paraiso” at

    km 77 of the Santarém-Cuiabá highway. The area in which this sampling was conducted was

    under Brachiara brizantha pasture until November 2001, and was then placed under a

    rotation of upland rice and soybean during the previous 4 years. In general, the fertilization

    scheme used is 50 kg ha-1

    of a urea-based fertilizer (8% N, 28% P2O5, 16% K2O, 0.3% Zn)

    and a lime application of 2 t.ha-1

    .yr-1

    . In November 2005, in locations separated by about

    1,000 meters, two soil pits measuring 1 meter in width by 2 meters in length by 2 meters in

    depth were dug in order to define the horizons, and soil samples were taken based on this

    horizontal differentiation. Three samples from each horizon were taken for the bulk density

    analysis at the midpoint of each horizon (5-, 16-, 35-, 66-, 124-, and 182 cm) in each soil pit,

    yielding a total of 36 samples using a sliding-hammer type soil core sampler with 100 cm3

    cores (AMS, Inc., American Falls, ID). Samples for analysis of soil chemical properties were

    taken from each horizon in the two pits yielding a total of 2 samples from each horizon, or 12

    samples total from these 2 pits. Additionally, soil chemical properties samples were also taken

  • 710 Troy Patrick Beldini et al.

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    at 15 randomly-located points across an area of approximately 1 km2. At each of the 15

    points, 4 holes were augured to a 2 m depth and soil from the same horizon from each of the

    four auger holes was bulked and thoroughly mixed, and one composite sample was taken

    from this bulked sample. The 90 samples from the augured holes plus the 12 samples from the

    two soil pits yielded a total of 102 soil samples, or 17 samples for each horizon.

    Soil samples for chemical and physical properties in the TNF were taken in November

    2005 by excavating two soil pits measuring 1 m x 1 m x 2 m soil pit and taking three replicate

    samples (samples were not bulked) yielding a total of 2 samples from each horizon, or 12

    samples total from these 2 pits. Additionally, soil chemical properties samples were also taken

    at 10 randomly-located points across an area of approximately 1ha. At each of the 10 points, 4

    holes were augured to a 2 m depth and soil from the same horizon from each of the four auger

    holes was bulked and thoroughly mixed, and one composite sample was taken from this

    bulked sample. The 60 samples from the augured holes plus the 12 samples from the two soil

    pits yielded a total of 72 soil samples, or 12 samples for each horizon. Bulk density samples

    from the TNF were taken following the same scheme used in the soy field. All soil samples

    for characterization of chemical properties were sent to EMBRAPA soils laboratory in Belém

    for analysis of C and N, cation exchange capacity, exchangeable phosphorus, exchangeable

    acidity, pH and texture.

    Soil samples for basal respiration and microbial biomass were taken in November 2006

    (dry season) and May of 2007 (wet season) at Fazenda Paraíso and TNF. Samples were taken

    in the entire interval of each of the A, AB, and BA horizons (see Table 1 for depths) at 10

    points in each land-use type. At each of the 10 sampling points, 4 holes were augured and soil

    from the same horizon from each of the four auger holes was bulked and thoroughly mixed,

    and one composite sample was taken from this bulked sample.

    Table 1. Soil chemical properties in the TNF and soy field.

    Site Horizon (cm) %C %N pH P K Na Ca+Mg Al

    Soy field

    Ap (0-10) 1.88 0.23 5.2 28.8 102.0 26.6 2.9 0.4

    AB (10-22) 1.07 0.18 4.7 6.9 55.0 17.1 1.5 1.0

    BA (22-48) 0.70 0.14 4.8 2.1 39.4 12.5 0.9 1.3

    BW1 (48-85) 0.43 0.11 4.6 1.1 19.5 8.8 0.8 1.3

    BW2 (85-163) 0.36 0.09 4.7 1.1 12.8 6.6 0.82 1.2

    BW3 (163-200) 0.22 0.07 4.7 1.0 11.5 6.7 0.87 1.2

    TNF

    A (0-8) 1.88 0.26 3.2 8 57 25 1.0 3.4

    AB (8-21) 0.71 0.16 3.6 3 22 10 0.2 2.3

    BA (21-48) 0.47 0.11 4.0 1 10 6 0.2 1.7

    BW1 (48-76) 0.26 0.07 3.9 1 8 4 0.2 1.3

    BW2 (76-125) 0.18 0.06 4.0 1 0.2 0.7 0.2 0.8

    BW3 (125-200) 0.11 0.04 4.3 1 6 4 0.2 0.7

    Note: P, K, Na = mg.dm-3

    ; Ca + Mg and Al = cmolc.dm-3

    .

    Basal respiration was measured in the laboratory following the alkali base trap technique

    outlined in Anderson (1982), and soil microbial biomass was measured using the chloroform

    fumigation-extraction protocol in Vance et al. (1987) with subsequent analysis of the extracts

    done using the Walkley-Black wet oxidation method. Ten samples were taken for each

    procedure and in each season, and the samples were stored at 4°C and laboratory analysis of

    microbial biomass and basal respiration was conducted the next day. For each procedure,

    samples were analyzed in triplicate and a mean value was taken for each group of three

    replicates. Ten grams of oven-dry soil (ODS) equivalent (soils were not oven-dried) were

  • 711 Physical, chemical, and biological properties of soil …

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    used for the basal respiration technique, and samples were brought to 60% of water-holding

    capacity (WHC) then incubated with 10 mL of 1M NaOH for three days in 1.3 L glass jars

    sealed with Teflon tape (WHC of these soils was determined through laboratory

    experimentation previous to the start of the extraction and analysis of samples). Jars with only

    alkali solution were also prepared in order to correct for any extraneous absorption of CO2 by

    the samples during handling and incubation. For the microbial biomass procedure, 50 g of

    ODS brought to 60% of WHC were incubated in a glass desiccator under vacuum pressure

    with 30 mL of ethanol-free CHCl3 for 24 hours. The desiccator was protected from light with

    a covering of heavy, black plastic, and 200 mL of K2SO4 was used as an extractant. Extracts

    were shaken for one hour at 180 rpm on a horizontal table shaker. The microbial metabolic

    quotient, or qCO2 value, was calculated as the ratio of soil basal respiration to microbial

    biomass (Anderson and Domsch, 1993; Wardle and Ghani, 1995). All soils data are reported

    on a dry-weight basis.

    The microbial biomass and basal respiration data were analyzed using ANOVA with site,

    season, and horizon as fixed effects. Scheffe’s post hoc test (Sokal and Rohlf, 1981) was used

    to separate means, and a probability level of α = 0.05 was used for all tests. The microbial

    biomass and basal soil respiration data were log10 transformed for the ANOVA analysis to

    correct for slight deviations from normality. Homogeneity of variances was tested using

    Levene’s test and the p-value of 0.10 indicated no violation of the equal variance assumption

    for the ANOVA test.

    The asymmetric 95% confidence intervals for the microbial biomass, basal respiration,

    and qCO2 data are based on the antilog of the confidence intervals (Sokal and Rohlf, 1981),

    yielded from statistical testing of the log10 transformed data.

    3. RESULTS

    Compared to the TNF, the soy field shows large differences in pH, exchangeable cations,

    and P, differences which are most likely related to liming and fertilization. The TNF soil has a

    higher concentration of Al in the upper horizons, a difference that is once again an effect of

    the liming that the soy field receives, which raises the pH. The total carbon in the first two

    meters was 129.0 and 151.5 Mg.ha-1

    in the soy field and TNF, respectively. Total N in the soy

    field in the first two meters was 28.1 Mg.ha-1

    , and 15.9 Mg.ha-1

    in the TNF. The TNF had

    higher C:N in all horizons (TNF:12.5 – 8.9 and soy: 8.1 to 3.1, A and BW3 horizons,

    respectively).

    There are striking differences in bulk density throughout the profile up to 2 meters, with

    the soy field soil always having a larger bulk density than the TNF at all depths, with the

    largest differences in the A, AB, and BA horizons (for example, 0.76 and 1.4 Mg.m-3

    , A

    horizons in TNF and soy field, respectively; Figure 1).

    The microbial biomass data followed a statistically significant trend of a larger biomass

    in the TNF than in the soy field in all three horizons when comparing within a season.

    Additionally, within a site there were statistically significant larger biomass values in the wet

    season than in the dry for all 3 horizons (Figure 2).

    Basal respiration was greater in the TNF than in the soy field only in the A horizon in the

    wet season, and there were no other significant differences. The mean microbial activity,

    which was measured as basal respiration in the soil horizons, ranged from to 2.97 to 6.85 µg

    CO2-C.g-1

    .soil h-1

    during the sampling period, with a general trend of greater respiration in the

    superficial horizons in the wet season. The microbial metabolic quotient, or qCO2 value,

    ranged from 4.66 to 24.89 μgCO2-C.mg-1

    h-1

    (Figure 3). The ANOVA for qCO2 was

    significant for site and season, but there were no differences between the TNF and the soy

    field within a horizon and season (a non-significant three-way interaction term).

  • 712 Troy Patrick Beldini et al.

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    Figure 1. Soil bulk density (Mg.m

    -3) in primary

    forest (TNF) and a soy field in two profiles.

    Figure 2. Soil basal respiration and microbial biomass in primary forest (TNF) and in

    a soy field, in 3 horizons across rainy and dry seasons. Bars are 95% confidence

    intervals. Different letters indicate significant difference at α = 0.05.

    Basal respiration was greater in the TNF than in the soy field only in the A horizon in

    the wet season, and there were no other significant differences. The mean microbial activity,

    which was measured as basal respiration in the soil horizons, ranged from to 2.97 to 6.85 µg

    CO2-C.g-1.soil h

    -1 during the sampling period, with a general trend of greater respiration in the

  • 713 Physical, chemical, and biological properties of soil …

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    superficial horizons in the wet season. The microbial metabolic quotient, or qCO2 value,

    ranged from 4.66 to 24.89 μgCO2-C.mg-1

    h-1

    (Figure 3). The ANOVA for qCO2 was

    significant for site and season, but there were no differences between the TNF and the soy

    field within a horizon and season (a non-significant three-way interaction term).

    Figure 3. qCO2 values for primary forest and an agricultural field in 3 horizons across rainy and dry seasons. Bars are 95% confidence intervals.

    4. DISCUSSION

    The results for the microbial biomass analysis (Figure 2) are within the range of data

    reported from other studies done in Amazonian forests and other land uses. Feigl et al. (1995)

    reported a range of 890 to 1,100 μgC.g-1

    , and Luizão et al. (1992) reported 765 to 1,290

    μgC.g-1

    . Moreira and Malavolta (2004) found a range of 148 to 708 μgC.g-1

    , in primary forest,

    pastures, and agroforest. Marschner et al. (2002), working in an Amazonian agroforest, found

    between 850 and 1,500 μgC.g-1

    during the rainy season, and between 200 and 350 μgC.g-1

    in

    the dry season, and Matsuoka et al. (2003) found large decreases in soil organic matter and

    microbial biomass in soy fields on Oxisols in Mato Grosso. The basal soil respiration data

    (Figure 2) are similar to those reported in other studies done in Amazonian ecosystems. In

    Amazonian primary forest, Menyailo et al. (2003) reported a basal respiration rate ranging

    from 3.33 to 6.25 μgCO2-C.g-1

    .h-1

    . Likewise, Luizão et al. (1992) described basal respiration

    rates of 4.5 to 8.08 μgCO2-C.g-1

    .h-1

    in Amazonian primary forest, burned areas, and pastures,

    and Feigl et al. (1995) reported a range of 5.83 to 7.25 μgCO2-C.g-1

    .h-1

    in Amazon primary

    forest. The differences between the sites in the current study were not statistically significant,

    and a possible explanation for the equality of basal respiration between the TNF and soy field,

    wherein higher basal respiration rates should be expected in the TNF, might be related to the

    higher pH and lower C:N in the soy field, factors that could stimulate microbial respiration

    rates. Marschner et al. (2002) reported higher pH values in the rhizosphere than in the bulk

    soil in an Amazonian forest during the wet season, and this change could promote significant

    changes soil CO2 efflux, microbial community composition, and substrate use and efficiency.

    Cenciani et al. (2009), studying microbial dynamics in Amazonian forests and pastures,

    concluded that elevation of pH in the pasture soils contributed to the greater diversity of

    nitrifying bacteria in comparison to forest soils. The higher pH and N-fertilization of the soy

    field soils in the current study could have stimulated the activities of nitrifying bacteria and

    thus increased the basal respiration rate.

    Although the differences between site, season and depth were not large, the greater respiration

    rate in the A horizon of the TNF soil during the wet season points to an interesting possibility

    to explain this result in terms of microbial community structure. For example, Cleveland et al.

    (2007) reported an average of 9.1 μgCO2-C.g-1

    .h-1

    for basal respiration of lowland rain forest

    soils in Costa Rica. However, identical soil samples were amended with dissolved organic

    matter (DOM) instead of just water, and this had the effect of increasing the

  • 714 Troy Patrick Beldini et al.

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    respiration rate to 35.1 μgCO2-C.g-1

    .h-1

    , a four-fold increase. The authors also found an

    increase in the abundance of organisms within the Gammaproteobacteria and Firmicutes

    groups, and determined that these groups are likely to have a greater ability than other

    organisms to respond to inputs of carbon, thus rapidly increasing the CO2 flux from the soil.

    This might help to explain the greater basal respiration in the TNF A horizon during the wet

    season (Figure 2). The dry season soils received the same treatment as the wet season soils for

    the basal respiration experiment, so the difference in respiration must be related to differences

    in the structure of the microbial communities between seasons. A possible explanation is that

    the A horizon of the TNF soil during the wet season may have had a different community

    composition that responded more efficiently to greater soil moisture. Although we have no

    evidence to support the following conjecture, since the soil sample was taken at a time of year

    when the profile would be rich in dissolved nutrients from leaching of litter fall and

    vegetation, this could have stimulated changes in the microbial community structure, favoring

    the proliferation of organisms that have a greater efficiency for substrate use, as described by

    Cleveland et al. (2007). The authors suggest that DOM inputs may drive higher rates of soil

    respiration by stimulating an opportunistic subset of the soil bacterial community, and

    therefore the types of microorganisms vary through time in response to different rates and

    types of C inputs, suggesting that temporal shifts in community structure may directly affect

    soil respiration rates following C inputs.

    The qCO2 data in Figure 3 are similar to results published by Moreira and Costa (2004)

    for primary Amazon rain-forest (11.8 – 26.1 μgCO2-C.mg-1

    .h-1). Although there were no

    statistical differences, the qCO2 data support the hypothesis of changes in microbial

    community composition. The microbial metabolic quotient values provide an idea of the

    efficiency of microbial metabolic activity. Lower qCO2 values indicate that less CO2 is lost

    through microbial activity and more C is incorporated into the microbial biomass thus

    conferring increased efficiency of microbial activity. Lower qCO2 values are indicative of an

    ecosystem that is closer to steady-state condition, and higher qCO2 values are an indication of

    lower quality organic inputs into the soil system. Lower qCO2 values are also indicative of a

    larger proportion of fungal biomass since fungal metabolism is more efficient than that of

    bacteria. The low qCO2 in the presence of a possibly more diverse substrate input in the TNF

    soil during the wet season possibly indicates that subsets or groups of microbes that are more

    capable of metabolizing the large flush of nutrients increase in abundance. Cleveland et al.

    (2007) reported that specific and unique soil bacterial assemblages were responsible for the

    decomposition of individual soil organic compounds, and the same changes in microbial

    community composition could be happening in the TNF soils, and to a certain extent also in

    the soy field soils during the wet season.

    Changes in microbial community species composition have been hypothesized to occur

    due to land use change and seasonal variation, and land use changes can select for specific

    groups of microorganisms to be dominant, or can cause decreases in microbial diversity

    (Cleveland et al., 2003). Marschner et al. (2002) studying soil microorganism dynamics in

    agro forestry systems in Amazonia concluded that during the dry season there is a less diverse

    microbial community, which could be due to the survival of only a subset of the population of

    the wet season. Cenciani et al. (2009), studying in Amazonian forest and pastures showed

    that, although the pasture soils had more organic C and N in the soil and the microbial

    biomass, mineralization of C and N during the dry season was significantly reduced compared

    to the forest, which may reflect a change in microbial diversity in the pasture due to seasonal

    variation.

    The ratio of the microbial biomass C to total soil C in each horizon and season increased

    with depth and from dry season to rainy season for each site (TNF dry/wet 3.4/5.1; Soy

    dry/wet 1.0/2.3; A horizons only), a result that follows the same trend described in Luizão et

    al. (1992) for Amazonian forests and pasture. In the current study, the TNF always had a

  • 715 Physical, chemical, and biological properties of soil …

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    greater percentage of total C in the microbial biomass than did the soy field. Since the sites

    have nearly identical amounts of total carbon (Table 1), the difference comes from the greater

    amount of microbial biomass in the TNF soils, and is an indication of greater input of organic

    matter to the TNF soil. The large change in the ratio between seasons in the TNF, and the

    absence of this change in the soy field soil indicates the response of the microbial community

    to the large pulse of labile compounds entering the soil during the wet season, and endows the

    TNF soil with a greater capacity for nutrient cycling. The qCO2 data support this conclusion

    because the qCO2 was lower in the TNF than the soy field in all horizons, and soil carbon

    decreased in each successive horizon. The trend of higher qCO2 with depth, or reduced

    metabolic efficiency, may be an indication that soil microbial communities at these sites are

    C-limited. Examples of C-limitation on microbial activity in tropical soils have been shown

    by Cleveland and Townsend, (2006), wherein soil respiration rates were shown to be

    positively related to seasonal increases in labile C inputs in tropical forest in Costa Rica and

    by Ferreira et al. (2008) who demonstrated C-limitation of microbial activity in Brazilian

    oxisols amended with mineral P.

    The soil microbial community contribution to total soil respiration is another result from

    this work that provides insight into microbial activities in these systems. Soil basal respiration

    represents the contribution of heterotrophic organisms (Rh) to total soil respiration (Rs).

    Hanson et al. (2000) in a review of root and microbial contributions to total soil respiration

    reported that the average contribution of Rh from diverse forested ecosystems worldwide was

    54.2%, with 45.8% coming from roots. Silver et al. (2005) investigating root dynamics and

    soil respiration on clay soils in the TNF reported that soil heterotrophs strongly dominate soil

    respiration in this forest. They concluded that fine root respiration accounts for 24 – 35% of

    total soil respiration, therefore, heterotrophic respiration would account for 65 – 76% of total

    soil respiration.

    Although there is a limitation imposed when attempting to extrapolate values for Rs from

    the fluxes measured in the current study because they are simple laboratory incubations and

    are not field-measured (and also because the litter layer is not included), the range of Rh as a

    percentage of Rs would yield plausible values for total soil CO2 efflux on a Mg CO2-C ha-1

    yr-

    1 basis, summed across the 3 horizons. For example, if Rh accounted for between 65 – 76% of

    Rs, then in the TNF during the dry season, Rs would be between 9.6 and 11.3 Mg CO2-C

    ha-1yr

    -1, and 13.0 and 15.2 Mg CO2-C ha

    -1yr

    -1 in the wet season. Likewise, in the soy field,

    during the dry season, Rs would be between 12.5 and 14.7 Mg CO2-C ha-1

    yr-1

    , and 13.2 and

    15.5 Mg CO2-C ha-1

    yr-1

    in the wet season. These values are in agreement with the data in

    Salimon et al. (2004). Working in forests and pastures in Amazonia, the authors reported a

    range of total annual soil CO2 flux of 13.5 – 27.5 Mg CO2-C ha-1

    yr-1

    , with mean values of 24-,

    17-, and 16 Mg CO2-C ha-1

    yr-1

    for pastures, mature forest, and secondary forest, respectively.

    The estimates for Rs from the current study provide an excellent fit with the estimates of Rs

    in Salimon et al. (2004), and therefore indicate that the estimates of Rh made in the current

    study are reasonably accurate. For example, the mature forest land use in Salimon et al.

    (2004) had a Rs range of 14.7 to 17.7 Mg CO2-C ha-1

    yr-1

    , and the estimates for Rs (Mg CO2-C

    ha-1

    yr-1

    ) in the TNF made in the current study range from 9.6 in the dry season, to 15.2 in the

    wet season, with an average of 12.3. In addition, Davidson et al. (2008) working in the

    primary forest in the TNF reported a mean soil CO2 flux during 5 years of measurements of

    12.8 Mg CO2-C ha-1

    yr-1

    . Data from soy fields in Amazonia are not well represented in the

    literature, but soil CO2 flux measurements from pastures have been reported. Salimon et al.

    (2004), calculated soil CO2 flux of 16.9 Mg CO2-C ha-1

    yr-1

    in a pasture that was recently

    (3 years) converted from a rice/bean field.

    The Rh data from the soy field were very similar to those from the TNF (Figure 1). One

    explanation for the lack of large differences in Rh is that the pH in the soy field was always

    greater than that in the TNF (5.21 – 4.72 soy field and 3.2 – 4.2 TNF, A and BW3 horizons,

  • 716 Troy Patrick Beldini et al.

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    respectively). The reduction in acidity induced by liming most likely stimulated microbial

    activity and promoted a more diverse decomposer community (Insam, 1990). The effects of

    liming (and fertilization) on microbial biomass can be seen in Table 2.

    Table 2. Pearson product-moment correlation analysis for selected variables, soy field.

    Variable P K Na Ca Ca+Mg Al pH

    Microbial biomass dry season 0.75* 0.72* 0.71* 0.74* 0.73* -0.61* 0.25

    Microbial biomass wet season 0.66* 0.42* 0.40* 0.63* 0.64* -0.51* 0.26

    * indicates significance at p < 0.05.

    Correlation analysis showed only a slight positive relationship between pH and microbial

    biomass in either season, but microbial biomass was positively related to cations, and

    negatively related to Al.

    5. CONCLUSIONS

    1. Compared to the nearby primary forest, soil under soy cultivation presented higher pH,

    exchangeable cations, and bulk density up to 2 meters.

    2. Soil microbial biomass was greater in the primary forest in both seasons, and during

    the wet season there were larger biomass values than in the dry for all 3 horizons comparing

    within and between sites.

    3. The absence of differences in basal respiration between sites and seasons may be due

    to the application of lime and fertilizer to the soy field soil, which increased pH and promoted

    microbial activity. The soy field soils also had substantially lower C:N in all horizons, which

    could also stimulate microbial respiration rates.

    4. The microbial community in the forest demonstrated a tendency for higher metabolic

    efficiency as indicated by the qCO2 data, and the ratio of microbial carbon to soil carbon

    increased from dry to wet seasons. The large change in the ratio between seasons in the TNF,

    and the absence of this change in the soy field soil suggests a greater diversity of the

    microbial community in the TNF soil and therefore a greater capacity for nutrient cycling.

    This also suggests that the microbial community in the soy field soil may be carbon-limited.

    6. ACKNOWLEDGEMENTS

    The authors thank the TG-07 research group of the LBAECO project for funding of this

    work. We also thank field assistant Cleuton Pereira for his collaboration, patience and

    availability every day to go to the field.

    7. REFERENCES

    ANDERSON, J. P. E. Soil Respiration. In: PAGE, A. L. (Ed.). Methods of Soil analysis,

    Part II. Chemical and Microbiological Properties. [S.l.]: Amer Society of

    Agronomy, 1982. p.831-871

    ANDERSON T.-H.; DOMSCH K. H. The metabolic quotient for CO2, (qc02) as a specific

    activity parameter to assess the effects of environmental conditions, such as ph, on the

    microbial biomass of forest soils. Soil Biology and Biochemistry, 25, n. 3, p. 393-395,

    1993. http://dx.doi.org/10.1016/0038-0717(93)90140-7

    http://dx.doi.org/10.1016/0038-0717(93)90140-7

  • 717 Physical, chemical, and biological properties of soil …

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    CENCIANI, K.; LAMBAIS, M. R.; CERRI, C. C.; AZEVEDO, L. C. B.; FEIGL, B. J.

    Bacteria diversity and microbial biomass in forest, pasture and fallow soils in the

    southwestern Amazon basin. Revista Brasileira de Ciência do Solo, v. 33, p. 907-916,

    2009. http://dx.doi.org/10.1590/S0100-06832009000400015

    CLEVELAND, C. C.; TOWNSEND, A. R. Nutrient additions to a tropical rain forest drive

    substantial soil carbon dioxide losses to the atmosphere. Proceedings of the National

    Academy of Sciences, v. 103, p. 10316–10321, 2006.

    http://dx.doi.org/10.1073/pnas.0600989103

    CLEVELAND, C. C.; TOWNSEND A. R.; SCHMIDT, S. K.; CONSTANCE, B. C. Soil

    microbial dynamics and biogeochemistry in tropical forests and pastures, southwestern

    Costa Rica. Ecological Applications, v. 13, n. 2, p. 314–326, 2003.

    http://dx.doi.org/10.1890/1051-0761(2003)013[0314:SMDABI]2.0.CO;2

    CLEVELAND, C. C.; NEMERGUT, D. R.; SCHMIDT, S. K.; TOWNSEND A. R. Increases

    in soil respiration following labile carbon additions linked to rapid shifts in soil

    microbial community composition. Biogeochemistry, v. 82, p. 229–240, 2007.

    http://dx.doi.org/10.1007/s10533-006-9065-z

    COSTA, M. H.; YANAGI, S. N. M.; SOUZA, P. J. O. P.; RIBEIRO, A.; ROCHA, E. J. P.

    Climate change in Amazonia caused by soybean cropland expansion, as compared to

    caused by pastureland expansion. Geophysical Research Letters, v. 34, p. L07706,

    2007. http://dx.doi.org/10.1029/2007GL029271

    DAVIDSON, E. A.; NEPSTAD, D. C.; ISHIDA, F. Y.; BRANDO, P. M. Effects of an

    experimental drought and recovery on soil emissions of carbon dioxide, methane,

    nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biology, v. 14,

    p. 2582-2590, 2008. http://dx.doi.org/10.1111/j.1365-2486.2008.01694.x

    FEIGL, B. J.; SPARLING, G. P.; ROSS, D. J.; CERRI, C. C. Soil microbial biomass in

    Amazonian soils: evaluation of methods and estimates of pool sizes. Soil Biology &

    Biochemistry, v. 27, n. 11, p. 1467-1472, 1995. http://dx.doi.org/10.1016/0038-

    0717(95)00063-K

    FERREIRA, A. S.; DE OLIVEIRA, R. S.; DOS SANTOS, M. A.; BORGES, E. N. Atividade

    respiratória da microbiota e conteúdo de glicose em resposta à adição de fósforo em

    solo de cerrado. Revista Brasileira de Ciência do Solo, v. 32, p. 1891-1897, 2008.

    HANSON, P. J.; EDWARDS, N. T.; GARTEN, C. T.; ANDREWS, J. A. Separating root and

    soil microbial contributions to soil respiration: A review of methods and observations.

    Biogeochemistry, v. 48, p 115–146, 2000. http://dx.doi.org/10.1023/A:1006244819642

    INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. Censo

    Agropecuário 2006. 2006. Available at: http://www.ibge.gov.br/home/estatistica/

    economia/agropecuaria/censoagro/2006/defaulttab_censoagro.shtm. Accessed October

    2015.

    INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. Levantamento

    Sistemático da Produção Agrícola-LSPA/2003 a 2009. 2010. Available at:

    http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/lspa/.

    Accessed October 2015.

    http://dx.doi.org/10.1590/S0100-06832009000400015http://dx.doi.org/10.1073/pnas.0600989103http://dx.doi.org/10.1890/1051-0761(2003)013%5b0314:SMDABI%5d2.0.CO;2http://dx.doi.org/10.1007/s10533-006-9065-zhttp://dx.doi.org/10.1029/2007GL029271http://dx.doi.org/10.1111/j.1365-2486.2008.01694.xhttp://dx.doi.org/10.1016/0038-0717(95)00063-Khttp://dx.doi.org/10.1016/0038-0717(95)00063-Khttp://dx.doi.org/10.1023/A:1006244819642http://www.ibge.gov.br/home/estatistica/%20economia/agropecuaria/censoagro/2006/defaulttab_censoagro.shtmhttp://www.ibge.gov.br/home/estatistica/%20economia/agropecuaria/censoagro/2006/defaulttab_censoagro.shtmhttp://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/lspa/

  • 718 Troy Patrick Beldini et al.

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    INSAM, H. Are the soil microbial biomass and basal respiration governed by the climatic

    regime? Soil Biology & Biochemistry, v. 22, n. 4, p. 525-532, 1990.

    http://dx.doi.org/10.1016/0038-0717(90)90189-7

    JESUS, E. C.; MARSH, T. L.; TIEDJE, J. M.; MOREIRA, F. M. S. Changes in land use alter

    the structure of bacterial communities in Western Amazon soils. ISME Journal, v. 3, p.

    1004-1011, 2009. http://dx.doi.org/10.1038/ismej.2009.47

    LUIZAO, R. C. C.; BONDE, T. A.; ROSSWALL, T. Seasonal variation of soil microbial

    biomass – the effects of clearfelling a tropical rainforest and establishment of pasture in

    the central amazon. Soil Biology and Biochemistry, v. 24, n. 8, p. 805-813, 1992.

    http://dx.doi.org/10.1016/0038-0717(92)90256-W

    MARSCHNER, P.; MARINO, W.; LIEBEREI, R. Seasonal effects on microorganisms in the

    rhizosphere of two tropical plants in a polyculture agroforestry system in Central

    Amazonia, Brazil. Biology Fertility of Soils, v. 35, p. 68-71, 2002.

    http://dx.doi.org/10.1007/s00374-001-0435-3

    MATSUOKA, M.; MENDES, I. C.; LOUREIRO, M. F. Biomassa microbiana e atividade

    enzimática em solos sob vegetação nativa e sistemas agrícolas anuais e perenes na

    região de primavera do leste (MT). Revista Brasileira de Ciência do Solo, v. 27, p.

    425-433, 2003.

    MENYAILO, O. V.; LEHMANN, J.; SILVA M. C.; ZECH, W. Soil microbial activities in

    tree-based cropping systems and natural forests of the Central Amazon, Brazil. Biology

    Fertility of Soils, v. 38, p. 1-9, 2003. http://dx.doi.org/10.1007/s00374-003-0631-4

    MOREIRA, A.; COSTA, D. G. Dinâmica da matéria orgânica na recuperação de clareiras da

    floresta amazônica. Pesquisa Agropecuária Brasileira, v. 39, n. 10, p. 1013-1019,

    2004.

    MOREIRA, A.; MALAVOLTA, E. Dinâmica da matéria orgânica e da biomassa microbiana

    em solo submetido a diferentes sistemas de manejo na Amazônia Ocidental. Pesquisa

    Agropecuária Brasileira, v. 39, n. 11, p. 1103-1110, 2004.

    MORTON, D. C.; DEFRIES, R. S.; SHIMABUKURO,Y. E.; ANDERSON, L. O.; ARAI, E.;

    ESPIRITO-SANTO, F. D. B. et al. Cropland expansion changes deforestation dynamics

    in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences,

    v. 103, n. 39, p. 14637–14641, 2006. http://dx.doi.org/10.1073/pnas.0606377103

    MUELLER, R. C.; PAULA, F. S.; MIRZA, B. S.; RODRIGUES, J. L. M.; NUSSLEIN, K.;

    BOHANNAN, B. J. M. Links between plant and fungal communities across a

    deforestation chronosequence in the Amazon rainforest. The ISME Journal, v. 8, p.

    1548-1550, 2014. http://dx.doi.org/10.1038/ismej.2013.253

    NEPSTAD, D. C.; STICKLER, C. M.; ALMEIDA, O. T. Globalization of the Amazon Soy

    and Beef Industries: Opportunities for Conservation. Conservation Biology, v. 20, p.

    1595-1603, 2006. http://dx.doi.org/10.1111/j.1523-1739.2006.00510.x

    NEPSTAD, D. C.; STICKLER, C. M.; SOARES, B; MERRY, F. Interactions among Amazon

    land use, forests and climate: prospects for a near-term forest tipping point.

    Philosophical Transactions of the Royal Society B-Biological Sciences, v. 363, p.

    581 1737-1746, 2008. http://dx.doi.org/10.1098/rstb.2007.0036

    http://dx.doi.org/10.1016/0038-0717(90)90189-7http://dx.doi.org/10.1038/ismej.2009.47http://dx.doi.org/10.1016/0038-0717(92)90256-Whttp://dx.doi.org/10.1007/s00374-001-0435-3http://dx.doi.org/10.1007/s00374-003-0631-4http://dx.doi.org/10.1073/pnas.0606377103http://www.nature.com/ismej/journal/v8/n7/pdf/ismej2013253a.pdfhttp://www.nature.com/ismej/journal/v8/n7/pdf/ismej2013253a.pdfhttp://dx.doi.org/10.1038/ismej.2013.253http://dx.doi.org/10.1111/j.1523-1739.2006.00510.xhttp://dx.doi.org/10.1098/rstb.2007.0036

  • 719 Physical, chemical, and biological properties of soil …

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    PARROTTA, J. A.; FRANCIS, J. K.; ROLO DE ALMEIDA, R. Trees of the Tapajos: a

    photographic field guide. Rio Piedras: United States Department of Agriculture Forest

    Service; International Institute of Tropical Forestry, 1995.

    RODRIGUES, J. L. M.; PELLIZARI, V. H.; MUELLER, R.; BAEK, K.; JESUS, E. C.;

    PAULA, F. et al. Conversion of the Amazon rainforest to agriculture results in biotic

    homogenization of soil bacterial communities. Proceedings of the National Academy

    of Sciences, v. 110, p. 988–993, 2013. http://dx.doi.org/10.1073/pnas.1220608110

    SALIMON, C. I.; DAVIDSON, E. A.; VICTORIA, R. L.; MELO, A. W. F. CO2 flux from

    soil in pastures and forests in southwestern Amazonia. Global Change Biology, v. 10,

    p. 833–843, 2004. http://dx.doi.org/10.1111/j.1529-8817.2003.00776.x

    SILVER, W. L.; THOMPSON, A. W.; MCGRODDY, M. E.; VARNER, R. K.; DIAS, J. D.;

    SILVA, H. et al. Fine root dynamics and trace gas fluxes in two lowland tropical forest

    soils. Global Change Biology, v. 11, p. 290–306, 2005.

    http://dx.doi.org/10.1111/j.1365-2486.2005.00903.x/abstract

    SOKAL, R. R.; ROHLF, F. J. Biometry. 2. ed. New York: McGraw-Hill, 1981. 859 p.

    VANCE, E. D.; BROOKES, P. C.; JENKINSON, D. S. An extraction method for measuring

    soil microbial biomass C. Soil Biology & Biochemistry, v. 19, n. 6, p. 703-707, 1987.

    http://dx.doi.org/10.1016/0038-0717(87)90052-6

    VERA-DIAZ, M. C.; KAUFMANN, R. K.; NEPSTAD, D. C.; SCHLESINGER, P. An

    interdisciplinary model of soybean yield in the Amazon Basin: the climatic, edaphic,

    and economic determinants. Ecological Economics, v. 65, p. 420-431, 2007.

    http://dx.doi.org/10.1016/j.ecolecon.2007.07.015

    WARDLE, D.A.; GHANI, A. A critique of the microbial metabolic quotient (qc02) as a

    bioindicator of disturbance and ecosystem development. Soil Biol. Biochemistry, v.

    27, n. 12, p. 1601-1610, 1995. http://dx.doi.org/10.1016/0038-0717(95)00093-T

    http://dx.doi.org/10.1073/pnas.1220608110http://dx.doi.org/10.1111/j.1529-8817.2003.00776.xhttp://dx.doi.org/10.1111/j.1365-2486.2005.00903.x/abstracthttp://dx.doi.org/10.1016/0038-0717(87)90052-6http://dx.doi.org/10.1016/j.ecolecon.2007.07.015http://dx.doi.org/10.1016/0038-0717(95)00093-T

  • Ambiente & Água - An Interdisciplinary Journal of Applied Science

    ISSN 1980-993X – doi:10.4136/1980-993X

    www.ambi-agua.net

    E-mail: [email protected]

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    Removal of benzene and toluene from a refinery waste air stream by

    water sorption and biotrickling filtration

    doi:10.4136/ambi-agua.1764

    Received: 24 Sep. 2015; Accepted: 13 Oct. 2015

    Paolo Viotti1; Marco Schiavon

    2; Renato Gavasci

    3; Andrea G. Capodaglio

    4*

    1University of Roma “La Sapienza”, Roma, Italy

    Department of Civil and Environmental Engineering 2University of Trento, Trento, Italy

    Department of Civil, Environmental and Mechanical Engineering 3University of Rome “Tor Vergata”, Rome, Italy

    Department of Civil and Computer Science Engineering 4University of Pavia (UNIPV), Pavia, PV, Italy

    Department of Civil Engineering and Architecture *Corresponding author: e-mail: [email protected],

    [email protected], [email protected],

    [email protected]

    ABSTRACT The paper presents the results of an analysis of a two-stage pilot plant for the removal of

    toluene and benzene from the exhaust air of an industrial wastewater treatment plant

    (WWTP). The two-stage air process combines a water scrubber and a biotrickling filter (BTF)

    in sequence, and treats air stripped from the liquid phase compartments of the WWTP. During

    the experimental period, the pilot plant treated an airflow of 600 Nm3h

    -1. Average

    concentrations of the waste air stream entering the water scrubber were 10.61 mg Nm-3

    benzene and 9.26 mg Nm-3

    toluene. The water scrubber obtained medium-high removal

    efficiencies (averages 51% and 60%, for benzene and toluene, respectively). Subsequent

    passage through the BTF allowed a further reduction of average concentrations, which

    decreased to 2.10 mg Nm-3

    benzene and to 0.84 mg Nm-3

    toluene, thereby allowing overall

    average removal efficiencies (REs) of 80% and 91% for benzene and toluene, respectively.

    Results prove the benefits obtained from a combination of different removal technologies:

    water scrubbers to remove peak concentrations and soluble compounds, and BTFs to remove

    compounds with lower solubility, due to the biodegradation performed by microorganisms.

    Keywords: absorption, air treatment, scrubber, volatile organic compounds.

    Remoção de benzeno e tolueno de um efluente de refinaria por

    absorção e filtração “biotrickling”

    RESUMO Este estudo apresenta os resultados obtidos em uma instalação piloto de duplo estágio

    para a remoção de tolueno e benzeno no efluente de uma estação de tratamento de águas

    residuárias (ETAR) industriais. A instalação de tratamento de ar de duplo estágio combina um

    scrubber de água com um filtro biotrickling (BTF) e trata o ar despojado dos compartimentos

    http://www.ambi-agua.net/seer/index.php/ambi-agua/indexhttp://dx.doi.org/10.4136/1980-993Xhttp://dx.doi.org/10.4136/1980-993Xhttp://www.ambi-agua.net/splash-seer/http://www.ambi-agua.net/splash-seer/http://dx.doi.org/10.4136/ambi-agua.1764http://dx.doi.org/10.4136/ambi-agua.1764mailto:[email protected]:[email protected]

  • 721 Removal of benzene and toluene from a refinery waste air stream …

    Rev. Ambient. Água vol. 10 n. 4 Taubaté – Oct. / Dec. 2015

    da ETAR. Durante a atividade experimental, a instalação piloto tratou um fluxo de ar de

    600 Nm3 h

    -1. As concentrações médias do fluxo de ar residual que entraram no scrubber

    foram 10,61 e 9,26 mg Nm-3

    de benzeno e tolueno, respectivamente. O scrubber permitiu

    obter eficiências de remoção (ER) média-altas (valores máximos de 84% e 92%,

    respectivamente). A passagem pelo BTF permitiu uma redução adicional das concentrações

    médias, que diminuíram até 2,10 mg Nm-3

    de benzeno e 0,84 mg Nm-3

    de tolueno. Isto

    permitiu a obtenção de uma ER média global de 80% e 91% de benzeno e tolueno,

    respectivamente. Esses resultados comprovam os benefícios associados a uma combinação de

    diferentes tecnologias de remoção: scrubber de água para remover as concentrações máximas

    e compostos solúveis, e BTF para remover também compostos com baixa solubilidade, graças

    à biodegradação realizada por microorganismos.

    Palavras-chave: absorção, compostos orgânicos voláteis, scrubber, tratamento de ar.

    1. INTRODUCTION

    Benzene and toluene are typical components of oil and its derivatives. Such compounds

    are abundantly present in refinery wastewater as well as in wastewaters from chemical and

    petrochemical industries. Due to their volatility, and to the liquid-air exchanges occurring, for

    example, in aerated or vigorously mixed tanks, benzene and toluene are also present in air

    emissions from wastewater treatment plants (WWTPs) of these industries, as well as in

    emissions from other processes that use benzene and toluene as solvents, thin