myelodysplastic syndromes bwi mar 2015.pdfcount monitoring, growth factors, transfusion support ......

16
1 Myelodysplastic Syndromes “A Guide to the Disease” B. Douglas Smith, M.D. Associate Professor Kimmel Cancer Center @ JH What Is MDS? Basic Biology…Basic Work-up… Myelodysplastic Syndromes 15,000 - 25,000 new cases/year Median age > 60 (70% > 50 years) M > F Clonal disorder: multilineage hematopoietic progenitor Ineffective hematopoiesis with peripheral cytopenias Bone Marrow Failure: Majority succumb from infection or bleeding Transformation to AML in ~ 1 in 3 Best Supportive Care has been the standard treatment count monitoring, growth factors, transfusion support Allo BMT only curative option MDS Pathogenesis Stage 1 Intrinsic increase in apoptotic response and inflammation Stage 2 Acquisition of anti-apoptotic molecules Stage 3 Initiation of clonal evolution ↑ TNFα-induced apoptosis ↑ ROS ↑ Bcl-2 MP MP MP MP aMP MP MP MP MP MP MP aMP aMP aMP MP MP MP MP Induction of homeostatic mechanisms Expansion Telomere erosion and senescence Impaired immunosurveillance by NK and T-cells Stem cell depletion Emergence of abnl clones with point mutations in NRas + AML1 Abnormalities in DNA repair mechanisms with propagation of abnormal cells Bone marrow Abnormal ribosomes Altered T-cell homeostasis Inflammatory microenvironment Altered MP localization Stromal cell defects Molecular model of MDS progression Suppressed hematopoiesis High risk for leukemia transformation Epling-Burnette PK, et al. Curr Opin Hematol. 2009;16:70-76. Karyotype Array CGH SNP Array Karyotype / FISH Genotyping Sequencing Genetic Abnormalities in MDS Translocations/ Rearrangements Uniparental Disomy/ Microdeletions Copy Number Change Point Mutations Rare in MDS Rare often at sites of point mutations About 50% of cases Most common t(6;9) i(17q) t(1;7) t(3;?) t(11;?) inv(3) idic(X)(q13) 4q - TET2 7q - EZH2 11q - CBL 17p - TP53 del(5q) -7/del(7q) del(20q) del(17p) del(11q) +8 -Y Likely in all cases ~80% of cases have mutations in a known gene Vardiman,JW, et al. Blood. 2009;114(5): 937-951. Tiu R, et al. Blood. 2011;117(17):4552-4560. Schanz, J, et al. J Clin Oncol. 2011; 29(15):1963-1970. Bejar R, et al. N Engl J Med. 2011;364(26):2496-2506. Bejar R, et al. J Clin Oncol. 2012;30(27):3376-3382. Epidemiology Age at Diagnosis (Yrs) *P for trend < .05 Rollison DE, et al. Blood. 2008;112:45-52. 0 10 20 30 40 50 < 40 40-49 50-59 60-69 70-79 ≥ 80 0.1 0.7 2.0 7.5 20.9 36.4* Females Males Overall Overall incidence: 3.4 per 100,000

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Myelodysplastic Syndromes

    “A Guide to the Disease”

    B. Douglas Smith, M.D.Associate Professor

    Kimmel Cancer Center @ JH

    What Is MDS?

    Basic Biology…Basic Work-up…

    Myelodysplastic Syndromes

    • 15,000 - 25,000 new cases/year

    • Median age > 60 (70% > 50 years) M > F

    • Clonal disorder: multilineage hematopoietic progenitor

    • Ineffective hematopoiesis with peripheral cytopenias

    • Bone Marrow Failure:

    • Majority succumb from infection or bleeding

    • Transformation to AML in ~ 1 in 3

    • Best Supportive Care has been the standard treatment

    • count monitoring, growth factors, transfusion support

    • Allo BMT only curative option

    MDS PathogenesisStage 1

    Intrinsic increase in apoptotic response and

    inflammation

    Stage 2

    Acquisition of anti-apoptotic molecules

    Stage 3

    Initiation of clonal evolution

    ↑ TNFα-induced apoptosis

    ↑ ROS ↑ Bcl-2

    MPMP

    MP

    MP

    aMP

    MPMP

    MP

    MPMPMP

    aMP

    aMP

    •aMPMP

    MP

    MPMP

    Induction of homeostatic mechanisms Expansion

    Telomere erosion andsenescence

    Impairedimmunosurveillance

    by NK and T-cells

    Stem cell depletionEmergence of abnl clones

    with point mutations in NRas + AML1

    Abnormalities in DNA repair mechanisms with propagation

    of abnormal cellsBone marrowAbnormalribosomes

    Altered T-cellhomeostasis

    •Inflammatorymicroenvironment

    Altered MPlocalization

    Stromal celldefects

    Molecular model of MDS progressionSuppressed

    hematopoiesis

    High risk for leukemia

    transformation

    Epling-Burnette PK, et al. Curr Opin Hematol. 2009;16:70-76.

    KaryotypeArray CGH

    SNP ArrayKaryotype / FISH

    Genotyping

    Sequencing

    Genetic Abnormalities in MDS

    Translocations/

    Rearrangements

    Uniparental Disomy/

    Microdeletions

    Copy Number

    Change

    Point Mutations

    Rare in MDSRare – often at sites of

    point mutationsAbout 50% of cases Most common

    t(6;9)

    i(17q)

    t(1;7)

    t(3;?)

    t(11;?)

    inv(3)

    idic(X)(q13)

    4q - TET2

    7q - EZH2

    11q - CBL

    17p - TP53

    del(5q)-7/del(7q)

    del(20q)

    del(17p)

    del(11q)

    +8

    -Y

    Likely in all cases

    ~80% of cases have mutations in a

    known gene

    Vardiman,JW, et al. Blood. 2009;114(5): 937-951. Tiu R, et al. Blood. 2011;117(17):4552-4560.

    Schanz, J, et al. J Clin Oncol. 2011; 29(15):1963-1970. Bejar R, et al. N Engl J Med. 2011;364(26):2496-2506.

    Bejar R, et al. J Clin Oncol. 2012;30(27):3376-3382.

    Epidemiology

    Age at Diagnosis (Yrs)*P for trend < .05

    Rollison DE, et al. Blood. 2008;112:45-52.

    0

    10

    20

    30

    40

    50

    < 40 40-49 50-59 60-69 70-79 ≥ 80

    0.1 0.72.0

    7.5

    20.9

    36.4*

    FemalesMalesOverall

    Overall incidence: 3.4 per 100,000

  • 2

    MDS: Diagnosis

    • No specific clinical feature distinguishes

    MDS from other causes of pancytopenia

    • Laboratory evaluation often prompted by

    signs or symptoms, including:

    – Fatigue (anemia)

    – Infections (neutropenia)

    – Bleeding (thrombocytopenia)

    Bennett JM, et al. Int J Hematol. 2002 Aug;76 Suppl 2:228-38.

    Clinical Overlap / Associations:

    • Acute Myeloid Leukemia • Myeloproliferative Disease• Paroxsymal Nocturnal

    Hemoglobinuria

    • Autoimmune diseases• Aplastic Anemia• LGL leukemia• Pure Red Cell Aplasia

    AML

    PRCA

    PNH

    MDS

    AA

    LGL MPD

    J Maciejewski,M.D. Taussig Cancer Center/ Cleveland Clinic FoundationAmerican College of Physicians from Young NS. Ann Intern Med. 2002 Apr 2;136(7):534-46

    Bone Marrow Failure: Signs and Symptoms

    Anemia

    • Fatigue, pallor

    • Shortness of breath, decreased exercise tolerance

    • Exacerbation of heart failure, angina

    Neutropenia

    • Active infection (bronchitis, sinusitis, pneumonia, etc.)

    • Risk of infections

    Thrombocytopenia

    • Petechiae, bruising, bleeding

    • Risk of bleeding

    MDS: Diagnostic Evaluation

    • Peripheral blood counts + reticulocyte count

    • Bone marrow biopsy and aspiration

    – Bone marrow blasts %

    – Cytogenetics

    – Iron stain

    – Reticulin stain

    • Additional tests

    – Iron saturation, ferritin

    – B12, folate levels

    – EPO level

    Establish diagnosis of MDS & determine subtype & prognosis:

    – FAB/WHO Classification

    – IPSS score

    http://www.nccn.org/professionals/physician_gls/PDF/mds.pdfhttp://www.ishapd.org/1996/1996/016.pdf

    MDS: Diagnostic Evaluation

    • Peripheral blood counts + reticulocyte count

    • Bone marrow biopsy and aspiration

    – Bone marrow blasts %

    – Cytogenetics

    – Iron stain

    – Reticulin stain

    • Additional tests

    – Iron saturation, ferritin

    – B12, folate levels

    – EPO level

    Establish diagnosis of MDS & determine subtype & prognosis:

    – FAB/WHO Classification

    – IPSS score

    http://www.nccn.org/professionals/physician_gls/PDF/mds.pdfhttp://www.ishapd.org/1996/1996/016.pdf

    Performing a bone marrow aspiration

  • 3

    Courtesy of Dr. Bennett and Dr List.

    Cytologic Dysplasia: Bone Marrow

    DysErythropoiesis

    Courtesy of Dr. Bennett and Dr List.

    Cytologic Dysplasia: Marrow and

    Blood DysGranulopoiesis

    Courtesy of Dr. Bennett and Dr List.

    Cytologic Dysplasia: Marrow and

    Blood DysMegakaryopoiesis

    FAB vs WHO Classification

    FAB WHO Dysplasia(s)

    RA 5q-Syndrome Erythropoietic

    RA Erythropoietic

    RCMD 2-3 lineages

    MDS-U 1 lineage

    RARS RARS Erythropoietic

    RCMD-RS 2-3 lineages

    RAEB RAEB-1 1-3 lineages

    RAEB-2 1-3 lineages

    RAEB-T AML

    CMML CMML (if WBC < 13,000u/l)

    Germing U, et al. Leukemia Research 2000:24:983-92.

    Harris NL, et al. J Clin Oncol 1999:12:3835-3849.List AF, et al. The Myelodysplastic Syndromes. In: Wintrobe’s Hematology 2003.

    Silverman LR. The Myelodysplastic Syndromes. In: Cancer Medicine. 2000.

    IPSS Is Most Common Tool for Risk

    Stratification of MDS

    Score Value

    Prognostic variable 0 0.5 1.0 1.5 2.0

    Bone marrow blasts < 5% 5% to 10% -- 11% to 20% 21% to 30%

    Karyotype* Good Intermediate Poor -- --

    Cytopenias† 0/1 2/3 -- -- --

    *Good = normal, -Y, del(5q), del(20q); intermediate = other karyotypic abnormalities; poor = complex ( 3 abnormalities) or chromosome 7 abnormalities. †Hb < 10 g/dL; ANC < 1800/L; platelets < 100,000/L.

    Greenberg P, et al. Blood. 1997;89:2079-2088.

    Total Score

    0 0.5 1.0 1.5 2.0 2.5

    Low Intermediate I Intermediate II High

    Median survival, yrs 5.7 3.5 1.2 0.4

    Survival and AML Progression

    IPSS MDS Risk Classification

    Higher risk MDS (INT-2, High) is associated with a median

    survival of 0.4—1.2 years1

    1. Greenberg P, et al. Blood. 1997;89(6):2079-2088.

  • 4

    Survival: MDS

    Greenberg P, et al. Blood. 1997;89(6):2079-2088. Adebonojo et al. Chest 1999; 115:1507-1513

    MDS

    IPSS

    Score

    Risk

    Group

    Median Survival

    (Yrs)

    0 Low 5.7

    0.5-1 Int-1 3.5

    1.5-2 Int-2 1.2

    >2 High 0.4

    Survival: MDS

    Greenberg P, et al. Blood. 1997;89(6):2079-2088. Adebonojo et al. Chest 1999; 115:1507-1513

    MDS Lung Cancer

    IPSS

    Score

    Risk

    Group

    Median Survival

    (Yrs)

    Stage Median Survival

    (Yrs)

    0 Low 5.7 la 8

    0.5-1 Int-1 3.5 lla 5.4

    1.5-2 Int-2 1.2 llla 2.4

    >2 High 0.4 IV 1.2

    What Does MDS Look Like?

    Clinician’s perspective…

    Physician Survey Data

    • Questionnaires completed by 101 docs

    – Geographically representative

    – Took place over 1.5 year period from 2005-07

    • 4514 surveys returned

    – $30 incentive for completing each survey

    Sekeres et al. J National Cancer Inst 2008;100:1542

    U.S. MDS Characteristics

    Age (median) Newly diagnosed 71 years

    Established 72-75 years

    Sex (mean) Male (Newly diagnosed)

    (Established)

    55%

    51-57%

    Duration of MDS

    (median)13-16 months

    MDS Status Primary 88 – 93%

    Secondary 7 – 12%

    Secondary Chemotherapy 55 – 80%

    Cause Radiation 6 – 21%

    Chemical exposure 2 – 9%

    Sekeres et al. J National Cancer Inst 2008;100:1542

    U.S. MDS Characteristics

    Sekeres et al. J National Cancer Inst 2008;100:1542

    • Median Hgb: 9.1 g/dl (IQ range 8-10)

    • Median Plt: 100,000/mm3 (IQ range 56-151)

    • Median ANC: 1780/mm3 (IQ range 1070-2800)

    • Circulating Blasts: 1-5%: 16%>5%: 10%

  • 5

    U.S. Classification of MDS PatientsFewer higher-risk established patients

    Sekeres et al. J National Cancer Inst 2008;100:1542

    18%

    15%

    18%29%

    23%

    26%

    Transfusion Burden of MDS Patients

    Sekeres et al. J National Cancer Inst 2008;100:1542

    What Does MDS Look Like?

    The Patient’s perspective…

    MDS Patient Survey

    • A self-directed, online survey of MDS patients

    conducted over a 2-week period in March 2009

    – Sponsored by the AA & MDS Intl. Foundation

    – MDS pts registered with the AA & MDS Intl. Foundation

    • N = 358 people from 46 states

    • Results were presented at ASH, December 2009

    Who Took the Survey?

    • Average age: 65 years old

    • Gender: 51% women, 49% men

    Supportive Care

    73%

    Active

    Treatment

    27%

    Low / Int-1

    67%

    Int-2 / High

    33%

    Type of Care IPSS Risk Score

    Sekeres et al. ASH 2009; abstract 1771.

    How Long Did It Take to Get an MDS Diagnosis?

    First abnormal blood test

    Diagnosisof MDS

    3 years

    Sekeres et al. ASH 2009; abstract 1771.

  • 6

    4%

    6%

    7%

    7.50%

    15%

    17%

    19%

    32%

    56%

    80%

    0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

    Hematologic malignancy

    Leukemia

    Cancer

    Other

    Syndrome

    Thrombocytopenia

    Neutropenia

    Blood disorder

    Anemia

    Bone marrow disorder

    Percent of total responses

    How Doctors First Describe MDS

    Sekeres et al. ASH 2009; abstract 1771.

    What’s My Risk?

    13%18%

    11%

    4%

    55%

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    Low risk Int-1 Int-2 High Don't knowIPSS Risk Score

    Sekeres et al. ASH 2009; abstract 1771

    What’s My Prognosis?

    35%33%

    19%

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    35%

    40%

    All patients Lower-risk patients

    Higher-risk patients

    Percentage of MDS patients who never discussedlife expectancy with their doctor

    Conclusions: MDS Biology

    • MDS is a complex group of bone marrow

    malignancies that result in marrow failure

    • MDS is rare – but growing cancer

    • Challenging to diagnosis

    • Marrow testing critical to obtain information

    • Morphology, cytogenetics, molecular profiles

    • Important to understand your disease

    prognosis and implications for therapy

    • IPSS – starting point for risk stratification

    Myelodysplastic Syndromes

    “A Guide to the Evolving Treatment Paradigms and What’s New”

    B. Douglas Smith, M.D.Associate Professor

    Kimmel Cancer Center @ JH

  • 7

    How do we treat MDS?

    Oncologist’s perspective…

    Therapeutic Options – 1995

    Available

    • Best Supportive Care

    • Growth Factor Support

    • Allogeneic BMT options

    In Development

    • DNA Methyltransferase Inhib• Azacitidine

    • Immunomodulatory• Thalidomide

    Therapeutic Options – 2015

    Available

    • Best Supportive Care

    • Growth Factor Support

    • DNA Methyltransferase Inhibitors

    • Azacitidine Decitabine

    • Immunomodulatory

    • Lenalidomide

    • Other Agents

    • ↓ dose Ara-C ATG

    • Arsenic Amifostine

    • Allogeneic BMT options

    • alternative BMT options

    In Development

    • Differentiation Therapy

    • Growth Factors

    • Clonal Suppression

    • Arsenic Trioxide

    • Anti-VEGF inhibitors• Bevacizumab

    • HDAC inhibitors• Valproic Acid• SAHA MS-275

    • FTIs

    • Tipifarnib Lonafarnib

    • Immunotherapy

    • Ipilumumab Vaccines

    Therapeutic Options – 2015

    Available

    • Best Supportive Care

    • Growth Factor Support

    • DNA Methyltransferase Inhibitors

    • Azacitidine Decitabine

    • Immunomodulatory

    • Lenalidomide

    • Other Agents

    • ↓ dose Ara-C ATG

    • Arsenic Amifostine

    • Allogeneic BMT options

    • alternative BMT options

    In Development

    • Differentiation Therapy

    • Growth Factors

    • Clonal Suppression

    • Arsenic Trioxide

    • Anti-VEGF inhibitors• Bevacizumab

    • HDAC inhibitors• Valproic Acid• SAHA MS-275

    • FTIs

    • Tipifarnib Lonafarnib

    • Immunotherapy

    • Ipilumumab Vaccines

    Do we NEED to treat MDS?

    Oncologist’s perspective…

    Treatment Goals in MDS

    Greenberg P, et al. Blood. 1997;89(6):2079-2088. Adebonojo et al. Chest 1999; 115:1507-1513

    MDS

    IPSS

    Score

    Risk

    Group

    Median Survival

    (Yrs)

    0 Low 5.7

    0.5-1 Int-1 3.5

    1.5-2 Int-2 1.2

    >2 High 0.4

    Improve marrow function

    Decrease Transfusion Needs

    Decrease impact of MDS on QOL

    Establish careful monitoring plan

    Stabilize marrow function withtrilineage improvement

    Lower risk AML transformation

    Move to definitive therapy

    ORMaximize benefit

  • 8

    Treatment Goals in MDS

    Greenberg P, et al. Blood. 1997;89(6):2079-2088. Adebonojo et al. Chest 1999; 115:1507-1513

    MDS

    IPSS

    Score

    Risk

    Group

    Median Survival

    (Yrs)

    0 Low 5.7

    0.5-1 Int-1 3.5

    1.5-2 Int-2 1.2

    >2 High 0.4

    Improve marrow function

    Decrease Transfusion Needs

    Decrease impact of MDS on QOL

    Establish careful monitoring plan

    Stabilize marrow function withtrilineage improvement

    Lower risk AML transformation

    Move to definitive therapy

    ORMaximize benefit

    What are Hematopoietic Growth Factors?

    • Synthetic versions of proteins normally made in the body to

    stimulate growth of red cells, white cells and platelets

    – Promote growth and differentiation

    – Inhibitors of apoptosis (cell death)

    • RED CELL Growth Factors

    – Erythropoietin (EPO,Procrit®, Epogen®)

    – Darbepoietin (Aranesp®)

    • WHITE CELL Growth Factors

    – Granulocyte colony stimulating factor (GCSF, Neupogen®)

    – Granulocyte-macrophage colony stim factor (GM-CSF, Leukine®)

    – Peg-filgrastim (Neulasta®)

    • PLATELET Growth Factors

    – Thrombopoietin (TPO, romiplostim, Nplate®)

    • Note, these are not FDA-approved for MDS

    Score > +1

    Score -1 to +1

    Score < -1

    RA, RARS, RAEBIntermediate

    (23%, n = 31)

    Poor

    (7%, n = 29)

    Good

    (74%, n = 34)

    Response Probability

    Treatment Response Criteria Treatment Response Score

    Predictive Model for Response to

    Treatment With rhuEPO + G-CSF

    CR Stable hemoglobin

    > 11.5 g/dL

    PR Increase in Hb with >1.5g/dL or total stop in RBC transfusions

    S-EPO

    U/l

    < 100

    100-500

    > 500

    +2

    +1

    -3

    Transf

    U RBC/ m

    < 2 units/m

    ≥ 2 units/m

    +2

    -2

    Hellström-Lindberg E, et al. Br J Hematol. 2003;120:1037-1046.

    Problem with EPO

    • Studies of EPO in solid tumor patients showed increased

    heart attacks, stroke, heart failure, blood clots, increased

    tumor growth, death, especially when hgb >12

    • Has resulted in concern for MDS patients, but NO DATA yet

    showing these effects in MDS patients

    • Has had major effects on insurance coverage

    Stimulating White Blood Cells and PLTS

    • White Cell Growth Factors:

    • Not routine – DON’T treat the number, treat the patient

    • active infections- recurrent/resistant infections

    • neutropenic fever

    • Can be combined with red cell growth factors to improve responses in some patients

    • Side effects: fever, bone pain, injection site reactions

    • Does stimulating white blood cells cause leukemia

    • Platelet Growth Factors:

    • Not routine – Don’t’ treat number, treat the patient

    • Bleeding history - Single digit plts

    • Romiplostim: Azacitidine Rx pts Romiplostim vs placebo

    • Less bleeding events

    • Does stimulating platelets cause leukemia??

    Lenalidomide: Pharmacologic

    Evolution

    • More “potent” immunomodulator than thalidomide- Up to 50,000 times more potent inhibitor of TNFα- ↑ stimulation of T-cell proliferation, IL-2 and IFNγ production

    • Anti-angiogenesis impact

    Bartlett JB et al Nat Rev Cancer 2004; 4:314Sterling D Semin Oncol 2001; 28:602

    Data on file: Summit, NJ: Celgene Corporation 2005

    Thalidomide Lenalidomide

  • 9

    Lenalidomide:

    Phase I = Responses:

    - Low Risk, INT-1 pts

    - History of low # of transfusions

    - Del (5) (q31.1)

    List et al. NEJM 2005

    Primary Endpoint: Transfusion-Independence [Hgb>1g/dl]

    Secondary: Cytogenetic response, Path Response

    R

    E

    S

    P

    O

    N

    S

    E

    R

    E

    G

    I

    S

    T

    E

    R

    10 mg po qd

    Eligibility

    del 5q31

    >2U RBC/8wks

    16 wk trnsfn Hx

    Platelets >50/109

    ANC >500/109

    Low/Int-1 Risk

    Yes Continue

    No Off Study

    Week: 0 4 8 12 16 20 24

    10 mg po x21

    [Schema MDS - 003]

    Dose Reduction

    5 mg qd5 mg qod

    Lenalidomide MDS - 003Study Design

    List, et al. NEJM ; 2006; 355:1456-65.

    Kaplan-Meier Estimate of the Duration of Independence from Red-Cell

    Transfusion

    List A et al. N Engl J Med 2006;355:1456-1465

    Most Frequently Observed Hematological

    Adverse Events: del 5q MDS Safety Data

    N=148 ALL Grades Grade ¾

    Neutropenia 58.8% 53.4%

    Thrombocytopenia 61.5% 50.0%

    Anemia NOS 11.5% 6.1%

    Leukopenia NOS 8.1% 5.4%

    • Grade ¾ febrile neutropenia reported in 4.1% (6/148) of MDS pts

    • In registration trial, G-CSFs were permitted for patients who developed neutropenia or fever in association with neutropenia

    • Patients may require the use of blood product support and/or growth factors

    Clinical Overlap / Associations:

    • AML • PNH• Myeloproliferative Disease

    • Autoimmune diseases• Aplastic Anemia• LGL leukemia• Pure Red Cell Aplasia

    AML

    PRCA

    PNH

    MDS

    AA

    LGL MPD

    J Maciejewski,M.D. Taussig Cancer Center/ Cleveland Clinic Foundation

    American College of Physicians from Young NS. Ann Intern Med. 2002 Apr 2;136(7):534-46

    5q(-)

  • 10

    Hypomethylating AgentsStructural Differences

    Kuykendall JR. Ann Pharmacother. 2005:39:1700-9 . Meletis J, et al. Med Sci Monit. 2006, 12(9):RA194-206.

    RNA

    DNA

    Nucleic Acid

    Incorporation

    VIDAZA x 7 days, every 28

    DACOGEN x 5 days every 28

    5-2-2: 75 mg/m2

    N=50

    5-2-5: 50 mg/m2

    N=51

    5: 75 mg/m2

    N-50

    x 6 IWG

    2000 HI

    12 Cycles

    AZA x 5d

    q4-6 wks

    Study Design (N = 151)

    Lyons RM, et al. J Clin Oncol. 2009;27:1850-1856.

    Eligibility

    All FAB

    Cytopenia

    ECOG PS: 0-3

    Randomized Phase II Study of Alternative

    Azacitidine Dose Schedules

    *IWG 2000 criteria

    Lyons RM, et al. J Clin Oncol. 2009;27:1850-1856.

    Alternate AzaC Dose Schedule Study: Frequency

    of Major HI in Evaluable Patients (N = 139)

    Lineage HI in

    Evaluable Pts,* n (%)

    5-2-2

    (n = 50)

    5-2-5

    (n = 51)

    5d

    (n = 50)

    ErythroidMa 19/43 (44) 19/43 (44) 20/44 (46)

    RBC-TI 12/24 (50) 12/22 (55) 15/25 (64)

    PlateletMa 12/28 (43) 8/30 (27) 11/22 (50)

    Any HI 22/50 (44) 23/51 (45) 28/50 (56)

    NeutrophilMa 4/23 (17) 4/23 (17) 9/24 (38)

    Heme AEs > Gr 3 33/50 (66) 24/48 (50) 17/50 (34)

    AE Tx delay 34/50 (68) 30/48 (63) 17/50 (34)

    Hypomethylating AgentsStructural Differences

    Kuykendall JR. Ann Pharmacother. 2005:39:1700-9 . Meletis J, et al. Med Sci Monit. 2006, 12(9):RA194-206.

    RNA

    DNA

    Nucleic Acid

    Incorporation

    VIDAZA x 7 days, every 28

    DACOGEN x 5 days every 28

    Treatment Goals in MDS

    Greenberg P, et al. Blood. 1997;89(6):2079-2088. Adebonojo et al. Chest 1999; 115:1507-1513

    MDS

    IPSS

    Score

    Risk

    Group

    Median Survival

    (Yrs)

    0 Low 5.7

    0.5-1 Int-1 3.5

    1.5-2 Int-2 1.2

    >2 High 0.4

    Improve marrow function

    Decrease Transfusion Needs

    Decrease impact of MDS on QOL

    Establish careful monitoring plan

    Stabilize marrow function withtrilineage improvement

    Lower risk AML transformation

    Move to definitive therapy

    ORMaximize benefit

    Pathway for the Methylation of Cytosine in the

    Mammalian Genome and Effects of Inhibiting

    Methylation with 5-Azacytidine

    Cytosine 5-Methyl Cytosine

    •N

    •N

    •NH2

    •O

    •4•5

    •6•1

    •2

    •3

    CH3

    5-adenosyl-methionine

    DNMT

    •N

    •N

    NH2

    •O

    •4•5

    •6•1

    •2

    •3

    Herman JG, Baylin SG. NEJM 2003;349:2042-54.

  • 11

    Pathway for the Methylation of Cytosine in the

    Mammalian Genome and Effects of Inhibiting

    Methylation with 5-Azacytidine

    N

    N N

    NH2

    O

    45

    61

    2

    3

    5-Azacytidine

    Cytosine 5-Methyl Cytosine

    N

    N

    NH2

    O

    45

    61

    2

    3

    CH3

    5-adenosyl-methionine

    DNMT

    X

    N

    N

    NH2

    O

    45

    61

    2

    3

    Herman JG, Baylin SG. NEJM 2003;349:2042-54.

    Transcription

    Unmethylated CpG Islands

    Promoter

    Transcription Factor

    Functional Control of Gene Transcription:Methylation and Gene Silencing

    Jones PA and Baylin; Fundamental Role of epigenetic events in Cancer, 2002

    •Transcription

    Methylated CpG Islands “DNMT”

    Promoter

    Transcription Factor

    Aberrant Methylation Epigenetic

    Gene Silencing

    Jones PA and Baylin; Fundamental Role of epigenetic events in Cancer, 2002

    Epigenetics

    Change in gene expression which is heritable and does not

    involve a change in DNA sequence (not genetic):

    Could inactivate tumor suppressor genes according to

    Knudson two-hit hypothesis:

    Azacitidine Key Studies in MDS

    Study N AZA Dose Reference

    AZA-001:

    Azacitidine vs CCR in Patients

    with Higher-Risk MDS

    (phase 3)

    35875 mg/m2/d x 7d SC

    q28d

    Fenaux et al.

    Lancet Oncol.

    2009;10:223-332.

    Azacitidine in Patients with MDS:

    Studies 8421 (phase 2), 8921

    (phase 2), and 9221 (phase 3) by

    CALGB (azacitidine vs

    observation)

    30975 mg/m2/d x 7d SC

    q28d

    Silverman et al.

    J Clin Oncol.

    2006;24:3895-3903.

    Study of Alternative Dosing

    Schedules of Azacitidine in

    Patients with MDS (phase 2)

    148

    5-2-2

    75 mg/m2 SC

    5-2-5

    50 mg/m2 SC

    5

    75 mg/m2 SC

    Lyons et al

    J Clin Oncol.

    2009;27:1850-1856.

    Decitabine Key Studies in MDS

    Study N Decitabine Dose Reference

    Study of Decitabine plus Best

    Supportive Care (BSC) vs BSC

    (phase 3)

    170

    15 mg/m2

    (3 h q8h)

    3 d IV q6wk

    Kantarjian et al.

    Cancer.

    2006;106:1794-1803.

    Low-Dose Decitabine versus BSC

    (EORTC)

    (phase 3)

    233

    15 mg/m2 on

    days 1-3

    of 6-wk cycle

    Wijermans et al.

    ASH. 2008

    Abstract 226.

    Alternative Dosing with Decitabine –

    MD Anderson

    (phase 2)

    95

    20 mg/m2/d IV

    x 5 d

    20 mg/m2/d SC

    x 5 d

    10 mg/m2/d IV

    x 10 d

    Kantarjian et al.

    Blood.

    2007;109:52-57.

    ADOPT, Alternate Dosing for

    Outpatient Treatment

    (phase 2)

    9920 mg/m2/d IV

    x 5 d

    Steensma et al.

    J Clin Oncol.

    2008;26

    Abstract 7032

  • 12

    Efficacy of Azacitidine Compared with that

    of Conventional Care Regimens in the

    Treatment of higher-risk MDS: A

    Randomized, Open-label, Phase III Study

    P Fenaux, GJ Mufti, E Hellstrom-Lindberg, V Santini, C Finelli,

    A Giagounidis, R Schoch, N Gatterman, G Sanz, A List, S Gore,

    J Seymour, J Bennett, J Byrd, J Backstrom, L Zimmerman,

    D McKenzie, CL Beach and L Silverman

    on behalf of the International Vidaza High-Risk MDS

    Survival Study Group

    Lancet Oncology 2009

    VIDAZA® + BSC

    (75 mg/m2/d x 7d SC q28d)

    Stratify:

    •FAB = RAEB, RAEB-T

    • IPSS = INT-2, High

    N=179

    N=179

    Treatment continued until unacceptable toxicity or AML transformation or disease progression

    AML=acute myeloid leukemia; BSC=best supportive care; CCR=conventional care regimen; IPSS=international prognostic scoring system; LDAC=low-dose Ara-C.

    AZA-001: Trial Design

    1. BSC only or

    2. LDAC or(20 mg/m2/d SC x 14d q 28-42d)

    3. 7+3 chemotherapy (Induction + 1 or 2 consolidation cycles)

    CCR

    R

    A

    N

    D

    O

    M

    I

    Z

    E

    Physician Choice of 1 of 3 Conventional Care Regimens

    AZA-001 Randomization Schema

    (N=358)

    Physician Choice of 1 of 3

    Conventional Care Regimens

    (Best Supportive Care (BSC) or LDAC or 7+3

    Chemo)

    VIDAZA® or BSC

    VIDAZA or LDAC

    VIDAZA or 7+3 Chemo

    R

    A

    N

    D

    O

    M

    I

    Z

    E

    VIDAZA (n=117)

    VIDAZA (n=45)

    VIDAZA (n=17)

    7+3 Chemo (n=25)

    n=222

    n=94

    n=42

    BSC (n=105)

    LDAC (n=49)

    Fenaux, et al, Lancet Oncology 2009

    Azacitidine Survival Study Baseline Clinical Characteristics, n = 358

    Parameter

    AZA

    N=179

    CCR

    N=179

    CCR Regimens

    BSC

    Only

    N=105

    LDAC

    N=49

    Std

    Chemo

    N=25

    Age (yrs) Median

    Pts ≥ 65 (%)

    69

    68

    70

    76

    70

    77

    71

    86

    65

    52

    FAB (%) RAEB

    RAEB-T

    CMML

    58

    34

    3

    58

    35

    3

    65

    29

    4

    51

    39

    2

    40

    52

    0

    IPSS (%) INT-1

    INT-2

    High

    3

    43

    46

    7

    39

    48

    9

    44

    44

    4

    43

    43

    8

    12

    72

    Fenaux, et al, Lancet Oncology 2009

    Overall Survival: Azacitidine vs CCR ITT Population

    0 5 10 15 20 25 30 35 40

    Time (months) from Randomization

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Pro

    po

    rtio

    n S

    urv

    ivin

    g

    CCRAZA

    Difference: 9.4 months

    24.4 months

    15 months

    50.8%

    26.2%

    Log-Rank p=0.0001

    HR = 0.58 [95% CI: 0.43, 0.77]

    Deaths: AZA = 82, CCR = 113

    Fenaux, et al, Lancet Oncology 2009

    AZA vs CCR: OS with CRs Removed

    0 5 10 15 20 25 30 35 40

    Time (months) from Randomization

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Pro

    po

    rtio

    n S

    urv

    ivin

    g

    AZA

    CCR

    # at risk

    AZA 149 122 101 61 39 23 7 1 0

    CCR 165 118 82 59 25 11 4 0 0

    17.3 months

    Log-rank P=0.005

    HR=0.65 [95% CI: 0.48–0.88]

    Death: AZA = 75, CCR = 104

    Difference: 3.4 months

    24

    24.8%

    44.9%

    13.9 months

  • 13

    EORTC-06011 Decitabine Phase III Trial Study Design

    • Open-label, multicenter, 1:1 randomized study

    • IPSS: Int-1,2, and high-risk MDS; > 60years (n=223)

    • Primary endpoint: Overall Survival

    Stratification

    - IPSS

    - Primary vs.

    secondary

    R

    A

    N

    D

    O

    M

    I

    Z

    E

    Decitabine 15 mg/m2/ over 3H

    q8h x 3 days q 6 wks

    (max 8 cycles) [n=119]

    Supportive Care (SC)

    [n=114]

    Response assessment q2 cycles; HI, CR, PR & SD continue for up to 8 cycles;

    Exception: CR – 2 additional cycles.

    Wijermans P, Lubbert M, Suciu S, et al. ASH, December 6-9, 2008

    O N Number of patients at risk :

    96 114 71 38 22

    (months)

    0 6 12 18 24 30 36 42

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    10 6 3

    99 119 83 53 24 15 4 4

    Median (months): 10.1 vs 8.5

    HR = 0.88 , 95% CI (0.66, 1.17)

    Logrank test: p=0.38

    Decitabine

    Supportive care

    EORTC: Overall Survival

    Wijermans P, Lubbert M, Suciu S, et al. ASH, December 6-9, 2008

    Outcome After Azanucleoside Failure

    in Higher-Risk MDS and CMML

    Institution N AZA Failures

    n

    AML Progression

    n (%)

    Med OS

    (mos)

    OS @

    12 mos (%)

    Moffitt [1] 151 59 12 (20.3) 5.8 30

    GFM * [2] 435 NR NR 5.6 29

    MDACC † [3] NR 87 25 (29) 4.3 28

    * Includes AZA001, J9950, J0443 studies† Decitabine only

    1. Duong V, et al. Clin Lymph Myel Leuk. 2013;13:711-715. Abstract 2913.

    2. Prebet T, et al. J Clin Oncol. 2011;29:3322-3327.

    3. Jabbour E, et al. Cancer. 2010;116:3830-3834.

    Type of Salvage N ORR Median OS, Mos

    Unknown 165 NA 3.6

    Best supportive care 122 NA 4.1

    Low-dose chemotherapy 32 0/18 7.3

    Intensive chemotherapy 35 3/22 8.9*

    Investigational therapy 44 4/36 13.2*

    Allogeneic transplantation 37 13/19 19.5*

    Prébet T, et al. J Clin Oncol. 2011;29:3332-3327.

    * Log-rank comparison of BSC vs intensive CT (P = .04), investigational therapy (P < .001), or alloSCT (P < .001).

    † Intensive CT vs investigational therapy (P = .05), intensive CT vs ASCT (P = .008), or IT vs ASCT (P = .09).

    Salvage Therapy After Azacitidine

    Failure: GFM and AZA001 Studies

    100

    75

    50

    25

    00 365 730 1095 1460

    OS

    (%

    )

    Days Since AZA Failure

    Investigational

    Allo-SCT

    Allogeneic BMT for MDS: General Principles and the Decision

    Time

    % S

    urv

    ival

    HCT

    No HCT

    With Permission of C. Cutler,MD

    BMT is potentially curative:

    - however part of the benefit is lost

    due to its morbidity + mortality

    Many patients are not eligible for SCT:

    - stable medical condition

    - stable disease

    - available donor

    - age (@ JH up to 76 birthday)

    Approximation of Life Expectancy

    for Alternative Transplant Strategies

    Transplant at

    Diagnosis

    Transplant

    in 2 Years

    Transplant at

    Progression

    Low 6.51 6.86 7.21

    Int-1 4.61 4.74 5.16

    Int-2 4.93 3.21 2.84

    High 3.20 2.75 2.75

    Cutler C, et al. Blood July 2004; 104:2

  • 14

    Myelodysplastic Syndromes

    “What’s New?”

    B. Douglas Smith, M.D.Associate Professor

    Kimmel Cancer Center @ JH

    Revised IPSS: Prognostic Score Values

    and Risk Categories/Scores

    Greenberg PL, et al. Blood. 2012;120:2454-2465.

    Score Value

    Prognostic

    Variable0 0.5 1.0 1.5 2.0 3.0 4.0

    CytogeneticsVery

    good

    --Good

    -- Intermediat

    e

    Poo

    r

    Very

    poor

    BM blast, % ≤ 2--

    > 2 to < 5--

    5-10 > 10--

    Hemoglobin,

    g/dL≥ 10

    --8 to < 10 1.5 to 3

    Intermediate > 3.0 to 4.5

    High > 4.5 to 6.0

    Very high > 6

    Revised IPSS: Survival by Risk Category

    Greenberg PL, et al. Blood. 2012;120:2454-2465.

    Pro

    po

    rtio

    n o

    f P

    ati

    en

    ts A

    live

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 2 4 6 8 10 12

    Very lowLowIntermediateHighVery high

    Median Survival (95% CI)

    8.8 (7.8-9.9) years

    5.3 (5.1-5.7) years

    3.0 (2.7-3.3) years

    1.6 (1.5-1.7) years

    0.8 (0.7-0.8) years

    Azacitidine

    Azacitidine + Lenalidomide

    Azacitidine + Vorinostat

    Patients with higher-risk MDS or CMML (IPSS >

    1.5 or blasts > 5%)

    (Planned N = 267)

    Phase II SWOG-S1117 Study: Aza + Len or

    Vorinostat in Higher-Risk MDS/CMML

    • Primary endpoint: 20% RR improvement (2006 IWG criteria)

    • Secondary endpoints: OS, RFS, LFS, toxicity, cytogenetic responses

    • 81% power (P = .05 for each combination arm vs azacitidine alone)

    Groups: SWOG, ECOG,CALGB, NCIC

    Anticipated time: 2.5 yrs

    ClinicalTrials.gov. NCT01522976.

    RUNX1

    ETV6

    WT1 PHF6

    GATA2

    DNMT3AEZH2

    ASXL1

    IDH1 & 2

    UTX

    TP53

    Transcription FactorsTyrosine Kinase Pathway

    Epigenetic Dysregulation

    SF3B1

    Splicing Factors

    JAK2

    NRAS

    BRAFKRAS

    RTKs

    PTPN11

    NOTCH?MAML?

    ZSWIM4?UMODL1?

    CBL

    NPM1

    ATRX

    Others

    SRSF2

    U2AF1ZRSF2

    SETBP1

    SF1SF3A1

    PRPF40BU2AF2

    PRPF8

    BCOR

    TET2

    Genes Recurrently Mutated in MDS

    Bejar R.

    Selective JH and Cooperative Trials

    Low Risk (IPSS 0 or INT 1)

    E2905 Open EPO+/-

    Revlamid

    Prior EPO failure OR epo level >500

    (treatment naïve)

    IPSS Low or INT 1

    Cytogenetics required

    Untransfused Hb

  • 15

    Selective JH and Cooperative Trials

    High Risk (IPSS INT 2 or High)

    S1117 Interim

    Analysis

    – on hold

    AZA+ Revlamid

    vs

    AZA

    vs AZA+ vorinostat

    Treatment naïve

    RAEB1 or 2

    CMML1 or 2

    IPSS INT 2 or High Risk

    IPSS INT 1 if blasts >5%

    No AML

    SWOG PI: DeZern

    RN: Cecelia

    J1276 Open Ipilumimab Must fail demethylating agents or

    lose response

    IPSS INT 2 or High Risk

    IPSS INT 1 if blasts >5%

    Relapsed transfusion dependence

    CTEP PI: Smith

    RN: Anna

    J1229 Open Hedgehog Inhibitor Treatment naïve

    RAEB 2 or High Risk (BMBx 10-19%

    blasts)

    AML

    Pfizer PI: Smith

    RN: Joan

    The Hope Project

    Sidney Kimmel Comprehensive Cancer

    Center at Johns Hopkins

    Anna Ferguson, RN, BSN

    Research Nurse Hematologic Malignancies

    Hope is…

    • A belief, a sense, an idea that something good

    can come from something bad

    • The anticipation of positive things to come

    • A positive state of being or feeling

    Hope is…

    • An alternative to despair

    • A guide

    • A sustaining force and reservoir of strength

    • Associated with:

    – less depression

    – less fear

    – stronger relationships with caregivers and providers

    – better quality of life

    Hope is not…

    • Optimism

    • Stoicism

    • “Looking at the bright side…”

    • Blind faith

    The Hope Project seeks to…

    • Elevate the concept of Hope beyond its

    association with cure

    • Bring the concept of Hope to the forefront of

    the care we deliver

    • Generate discussion in our SKCCC

    community about the importance of Hope

  • 16

    What are you hoping for?

    What is important to you?

    What are you most worried about?

    What brings you joy?

    As a patient…caregiver…family

    member…friend…

    Hope Matters… MDS Treatment Paradigm - 2015

    Low + INT-1 IPSS

    with 5q-

    Low + INT-1 IPSS

    (non-5q-)

    INT-2 + High IPSS

    Lenalidomide

    Azacitidine Decitabine

    Low + INT-1 IPSS

    Is therapy needed clinically?

    Will Growth Factors help?

    Azacitidine

    Decitabine

    LenalidomideAllogeneic BMT

    @ progression

    Conclusions: Optimizing Therapy

    • Effective treatments for MDS exist

    • IPSS – starting point for risk stratification

    • Important to set GOALS of therapy

    • Growth Factors, support

    • Lenalidomide = lower risk, goal ↓ transfusions

    • DNA methyltransfer inhibitors = high risk

    • 5-aza associated with ↑ survival vs CCR

    • Allogeneic SCT remains curative but toxic

    Acknowledgements

    • JH Leukemia Program• Mark Levis Amy DeZern

    • Ivana Gojo Keith Pratz

    • Margaret Showel Michael McDevitt

    • Gabrielle Prince Gabriel Ghiaur

    • Lukasz Gondek

    • Stem Cell Biology• Rick Jones Bill Matsui

    • Hope Project• Anna Ferguson