muros de contencion.pdf

59
UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL CONSTRUCCIÓN I MUROS DE CONTENCIÓN 1 INDICE I. RESUMEN.................................................................................................................................. 2 ABSTRACT ........................................................................................................................................ 2 II. PALABRAS CLAVES ........................................................................................................... 3 KEY WORDS ................................................................................................................................. 3 III. INTRODUCCION .................................................................................................................. 3 IV. OBJETIVOS ....................................................................................................................... 4 a. Objetivo general .................................................................................................................. 4 b. Objetivos específicos ........................................................................................................... 4 V. MARCO TEORICO ................................................................................................................ 4 Los muros de contención .................................................................................................... 6 HISTORIA ............................................................................................................................. 6 VI. ESTRUCTURAS RIGIDAS ............................................................................................. 16 a. CONCRETO REFORZADO .................................................................................................... 16 1. RESISTENCIA A LA VOLCADURA......................................................................................... 20 b. CONCRETO CICLÓPEO ....................................................................................................... 21 VII. ESTRUCTURAS FLEXIBLES ........................................................................................ 23 1. MUROS CRIBA ................................................................................................................... 24 2. GAVIONES.......................................................................................................................... 27 3. MUROS EN PIEDRA (MURO DE CONTENCION EN ESCOLLERA) ......................................... 38 4. MUROS EN LLANTAS USADAS ........................................................................................... 43 VIII. TIERRA REFORZADA ................................................................................................... 46 IX. ESTRUCTURAS ANCLADAS........................................................................................ 48 X. ESTRUCTURAS ENTERRADAS ....................................................................................... 52 XI. CONCLUSIONES ............................................................................................................ 57 XII. RECOMENDACIONES ................................................................................................... 57 XIII. BIBLIOGRAFÍA:.............................................................................................................. 57 XIV. PANEL FOTOGRÁFICO ............................................................................................. 58

Upload: gerardo-vasquez-campos

Post on 01-Jan-2016

466 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 1

INDICE I. RESUMEN .................................................................................................................................. 2

ABSTRACT ........................................................................................................................................ 2

II. PALABRAS CLAVES ........................................................................................................... 3

KEY WORDS ................................................................................................................................. 3

III. INTRODUCCION .................................................................................................................. 3

IV. OBJETIVOS ....................................................................................................................... 4

a. Objetivo general .................................................................................................................. 4

b. Objetivos específicos ........................................................................................................... 4

V. MARCO TEORICO ................................................................................................................ 4

Los muros de contención .................................................................................................... 6

HISTORIA ............................................................................................................................. 6

VI. ESTRUCTURAS RIGIDAS ............................................................................................. 16

a. CONCRETO REFORZADO .................................................................................................... 16

1. RESISTENCIA A LA VOLCADURA ......................................................................................... 20

b. CONCRETO CICLÓPEO ....................................................................................................... 21

VII. ESTRUCTURAS FLEXIBLES ........................................................................................ 23

1. MUROS CRIBA ................................................................................................................... 24

2. GAVIONES .......................................................................................................................... 27

3. MUROS EN PIEDRA (MURO DE CONTENCION EN ESCOLLERA) ......................................... 38

4. MUROS EN LLANTAS USADAS ........................................................................................... 43

VIII. TIERRA REFORZADA ................................................................................................... 46

IX. ESTRUCTURAS ANCLADAS ........................................................................................ 48

X. ESTRUCTURAS ENTERRADAS ....................................................................................... 52

XI. CONCLUSIONES ............................................................................................................ 57

XII. RECOMENDACIONES ................................................................................................... 57

XIII. BIBLIOGRAFÍA:.............................................................................................................. 57

XIV. PANEL FOTOGRÁFICO ............................................................................................. 58

Page 2: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 2

I. RESUMEN

Los muros de contención o de sostenimiento son aquellas construcciones que ofrecen estabilidad al

suelo, cuando tienen lugar diferencias de nivel. (1) El peso muerto en tales muros es un requisito de

la mayor importancia, tanto para resistir el volcamiento debido a las presiones laterales de la tierra,

arena o cualquier otro material de relleno, que se deposite detrás de él, después de su construcción;

como para resistir el desplazamiento horizontal motivado por las mismas fuerzas.

En todo el estudio que sigue, un muro de contención se representa como una estructura de dos

dimensiones, teniendo un espesor unitario. Dentro de la consideración de este tipo de estructuras,

tiene importancia establecer la diferencia entre:

Los muros de contención y los llamados muros de revestimiento, ya que representando una estructura

análoga tienen diferentes fines.

Los muros de contención tienen por objeto resistir presiones laterales, en tanto que los muros de

revestimiento, sirven para evitar la caída de tierras que pertenecen en el sitio de su yacimiento, pero

que se han excavado, dejando un parámetro vertical o inclinado.

ABSTRACT The walls of containment or support are those constructions that offer stability to the ground, when

different levels take place. (1) The weight on such walls is a requirement of the utmost importance,

both to resist overturning due to the lateral pressures of Earth, sand or any other filling material,

deposited behind him, after its construction; as to resist the horizontal displacement motivated by the

same forces. In the entire study that follows, a retaining wall is represented as a two dimensional

structure, having a unit thickness. In consideration of this type of structure, importance establish the

difference between: the retaining walls and the so-called cladding walls, since representing an

analogous structure have different purposes. Retaining walls are intended to resist lateral pressures,

while cladding walls, serve to prevent the fall of lands that belong on the site from your site, but

which have been excavated, leaving a vertical or inclined parameter.

Page 3: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 3

II. PALABRAS CLAVES

Muros de contención.

Gaviones

Concreto ciclopeo

Pilotes

Concreto reforzado

muros griva

estructuras ancladas

KEY WORDS

Muros containment

Gaviones

Concreto ciclópeo

Pilotes

Concreto reforzado

muros griva

estructuras anchored

III. INTRODUCCION A fin de fortalecer conocimientos se presenta este trabajo expositor de una recopilación de

muchas ideas que la construcción hoy en día nos ofrece a la solución de problemáticas y en

la posibilidad de mejorar la calidad de vida.

Es muy importante saber que hay obras constructivas desarrolladas con el pasar de los días,

la ejecución de dichas estructuras llevan a cuestas infinidad de procesos y trabajo colaborativo

que no solo implica la labor de construir sino de innovar, crear y fortalecer ideas y ensayos

que a simple vista parecen salir de las mentes más ingeniosas. En cuestión de estudios los

muros de contención son estructuras que llevan años de historia; desde las más antiguas

civilizaciones crearon templos, contrafuertes y murallas, basadas a simple lógica en cubrir

una necesidad primaria pero con muchas investigaciones actualmente han logrado asombrar

a muchos ya que son invenciones que físicamente una persona con mucho estudio podría

hacer.

Los muros de contención como estructuras contenedoras de algún material presentan diversos

diseños y muchas tipologías ya sean por su forma, función, modo de interacción entre otras.

Básicamente podemos decir que un muro de contención no solo retiene un material sino

Page 4: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 4

también delimita una parte de otra, contiene fuerzas y empujes y contrarresta esfuerzos

aplicados a la misma estructura.

IV. OBJETIVOS

a. Objetivo general

Investigar y conocer la importancia que tienen los muros de contención en zonas donde los

deslizamientos de tierras son ejercidas por la fuerza de la naturaleza.

b. Objetivos específicos

Conocer los diferentes procesos constructivos de los muros de contención

Identificar Maquinarias y Materiales de Obra en los procesos constructivos de los

muros de contención

V. MARCO TEORICO

a. Concepto general:

Construcción estructural de ingeniería, cuyo fin es contener los empujes de tierras que

pueden afectar a una determinada obra. Puede ser una única obra con un

único proyecto (como es el caso de la construcción de un muro de contención con el

fin de obtener parcelas de superficie horizontal), o puede ser parte de un proyecto

más grande, (como por ejemplo, un muro para contener el empuje de tierras próximo

a una carretera, o pantallas para la construcción de los sótanos de un edificio).

Page 5: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 5

El propósito de un muro de contención es resistir fuerzas ejercidas por la tierra contenida y

transmitirlas en forma segura a la fundación o a un sitio por fuera de la masa analizada en el

movimiento. Para esto se diferencian dos condiciones para el diseño de una estructura de contención:

b. Condición de talud Estable

Este es el caso del muro de contención en donde el suelo es homogéneo y se genera una

presión de tierras de acuerdo a las teorías de Rankin y Coulomb y la fuerza activa tiene

una distribución de presiones en forma triangular.

Page 6: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 6

c. Condición de deslizamiento

En este caso generalmente las fuerzas

actuantes son superiores a las fuerzas activas

calculadas por teorías tradiciones. El costo de

construir una estructura de contención es

generalmente mayor, por lo que se debe tener

muy en cuenta el diseño que debe hacerse con

el fin de sostener fuerzas y empujes además de

mantener la altura lo más baja posible.

Los muros de contención

Se denomina muro de contención a un tipo estructura de contención rígida, destinada a

contener algún material, generalmente tierras.

Los muros de contención tienen como finalidad resistir las presiones laterales ó empuje

producido por el material retenido detrás de ellos, su estabilidad la deben fundamentalmente

al peso propio y al peso del material que está sobre su fundación. Los muros de contención

se comportan básicamente como voladizos empotrados en su base.

Designamos con el nombre de empuje, las acciones producidas por las masas que se

consideran desprovistas de cohesión, como arenas, gravas, cemento, etc. En general los

empujes son producidos por terrenos naturales, rellenos artificiales o materiales almacenados.

HISTORIA

Aunque en la antigüedad se construyeron muchos tipos de muros de carga, los más antiguos

que se conservan son de adobe o piedra. Se tiene constancia de la existencia de pastas

y morteros precursores del hormigón desde los tiempos del Antiguo Egipto, pero fueron los

romanos los que impulsaron este material con la técnica del Emplectum, consistente en crear

dos hojas exteriores de sillares de piedra, rellenas de un mortero de cal con arena y

cascotes.2 Esta técnica constructiva se ha repetido con ligeras variantes (como el muro Dacio),

a lo largo de la historia.

En los lugares donde la piedra escaseaba o era excesivamente costoso conseguirla, ésta se

sustituyó por el barro en forma de adobe: un ladrillo de barro secado al sol. Asimismo, se

puede establecer un paralelismo entre el emplectum y el tapial, una forma de construcción

consistente en aprisionar barro entre dos placas o encofrados de madera, y compactarlo en

Page 7: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 7

sucesivas tongadas mediante mazos o pisones. Una vez se terminaba una hilada de tapiales,

se colocaban el encofrado encima, y se repetía la operación. Con estas técnicas de tapial y

adobe se lograron erigir edificios de hasta seis alturas, algunos de los cuales perduran

en Yemen.

Al igual que en las épocas anteriores, también existe un reflejo del emplectum romano en el

empleo actual del hormigón en masa, donde, como sucediera en el tapial, el hormigón se

confina mediante encofrados hasta que éste fragua y adquiere dureza.

La aparición del acero, capaz de soportar las tensiones de tracción, posibilitó la aparición

del hormigón armado y de las estructuras metálicas, que modificó radicalmente la forma de

construir, dejando obsoletos los muros de carga. En la actualidad, estos muros sólo se

emplean en obras de poca entidad, como muros de contención de terreno en obras públicas y

en sótanos, siendo el resto de la estructura una combinación de vigas y pilares, por lo que

muros rara vez adquieren funciones portantes o estructurales, y su único propósito es el de

compartimentar o aislar los espacios.

Hasta finales del siglo XIX, se construían muros de mampostería y piedra, a partir del siglo

XX se comenzó a construir muros de concreto en masa y de concreto armado, desplazando

en muy buena parte a los materiales anteriormente utilizados.

características muros de contención

Page 8: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 8

CRITERIOS PARA ESCOGER EL TIPO DE ESTRUCTURA

Los siguientes factores deben tenerse en cuenta para seleccionar el tipo de muro de

contención:

Localización del muro de contención propuesto, su posición relativa con

relación a otras estructuras y la cantidad de espacio disponible.

Altura de la estructura propuesta y topografía resultante

Condiciones del terreno (Suelo)

Nivel freático

El nivel freático corresponde (en un acuífero libre) al lugar en el que se encuentra el agua

subterránea. En este nivel la presión de agua del acuífero es igual a la presión atmosférica.

Page 9: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 9

También se conoce como capa freática, manto freático, napa freática, napa subterránea, tabla

de agua o simplemente freático.

Al perforar un pozo de captación de agua subterránea en un acuífero libre, el nivel freático es

la distancia a la que se encuentra el agua de la superficie del terreno. En el caso de un acuífero

confinado, el nivel de agua que se observa en el pozo, corresponde al nivel piezométrico.

Cantidad de movimiento del terreno aceptable durante la construcción y la vida útil

de la estructura, y el efecto de este movimiento en muros vecinos, estructuras o servicios.

Disponibilidad de materiales

Tiempo disponible para la construcción.

Apariencia (Estética)

Vida útil

Mantenimiento

CRITERIOS DE COMPORTAMIENTO

Una estructura de contención y cada parte de esta, requiere cumplir ciertas condiciones

fundamentales de estabilidad, rigidez o flexibilidad, durabilidad, etc., durante la construcción

y a lo largo de su vida útil y en muchos casos se requiere plantear alternativas para poder

cumplir con las necesidades de un proyecto específico. Estas alternativas pueden requerir de

análisis y cálculos adicionales de interacción suelo -estructura. En todos los casos el diseño

debe ser examinado de una manera crítica a la luz de la experiencia local. Cuando una

estructura de contención no satisface cualquiera de sus criterios de comportamiento se puede

considerar que ha alcanzado el “Estado Límite”. Durante el período de diseño se deben

discutir en toda su extensión todo el rango posible de estados límite. Las siguientes clases

principales de estado límite deben analizarse:

1. Estado límite último

Es el estado en el cual se puede formar un mecanismo de falla, bien sea en el suelo o en la

estructura (inclinación o fractura). Para simplicidad en el diseño debe estudiarse el estado

inmediatamente anterior a la falla y no el colapso total del muro.

2. Estado límite de servicio

Es el estado en el cual no se cumple un criterio específico de servicio. Los estados límite de

servicio deben incluir los movimientos o esfuerzos que hagan ver una estructura deformada

o “fea", que sea difícil de mantener o que se disminuya su vida útil esperada. También se

debe tener en cuenta su efecto sobre estructuras adyacentes o redes de servicios. Siempre que

sea posible, una estructura de contención debe diseñarse en tal forma que se muestren signos

visibles de peligro que adviertan de una falla. El diseño debe evitar que pueda ocurrir falla

súbita o rotura, sin que hayan ocurrido previamente deformaciones que indiquen que puede

Page 10: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 10

ocurrir una falla. Se recomienda en todos los casos que las estructuras de contención tengan

suficiente “ductilidad” cuando se acerquen a una falla.

3. Durabilidad y mantenimiento

Una durabilidad inadecuada puede resultar en un costo muy alto de mantenimiento o puede

causar que la estructura de contención alcance muy rápidamente su estado límite de servicio

o su estado límite último. Por lo tanto, la durabilidad del muro y la vía de diseño junto con

los requisitos de mantenimiento deben ser consideradas en el diseño, seleccionando

adecuadamente las especificaciones de los materiales de construcción, teniendo en cuenta

el clima local, y el ambiente del sitio donde se plantea colocar la estructura. Por ejemplo, el

concreto, el acero y la madera se deterioran en forma diferente de acuerdo a las

circunstancias del medio ambiente reinante.

4. Estética

Las estructuras de contención pueden ser un detalle dominante de un paisaje urbano o rural y

debe realizarse un diseño adecuado para mejorar lo más posible su apariencia, sin que esto

lleve a incrementos significantes en su costo. Además de satisfacer los requerimientos de

funcionalidad, la estructura de contención debe mezclarse adecuadamente con el ambiente a

su alrededor para complacer las necesidades estéticas del paisaje.

5. Procedimientos de construcción

Es importante para la seguridad y economía, que los diseñadores de estructuras de contención

tengan especial consideración con los métodos de construcción y los materiales a ser

utilizados. Esto ayudará a evitar diseños peligrosos y puede resultar en economía

significativa. Generalmente, se pueden lograr ahorros incorporando en parte los trabajos

temporales dentro de la estructura permanente.

6. Selección y Características del Relleno

El relleno ideal generalmente, es un material drenante, durable, de alta resistencia y rígido

que esté libre de materiales indeseables. Sin embargo la escogencia final del material depende

de su costo y disponibilidad contra el costo de utilizar materiales de menor calidad pero de

comportamiento aceptable.

7. El relleno detrás de un muro generalmente no debe contener:

Turba, material vegetal, maderas, materiales orgánicos o degradables, materiales tóxicos,

materiales susceptibles a combustión, caucho, metales, plásticos o materiales sintéticos, lodo,

Page 11: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 11

arcillas expansivas, suelos colapsibles o materiales solubles. También el relleno no debe ser

químicamente agresivo; por ejemplo la presencia de sulfatos en los suelos puede acelerar el

deterioro del concreto o el acero.

Colocación y compactación del relleno. Todos los materiales que se coloquen detrás de

estructuras de contención, incluyendo los filtros, deben ser compactados

8. Excavaciones para colocar ductos después de construida la estructura

Es muy común que después de construido un muro se construya redes de servicios junto a las

estructuras de contención utilizando zanjas. Por ejemplo, a lo largo de las carreteras se

construyen gasoductos o poliductos enterrados entre la vía y los muros de contención. Una

recomendación prudente de diseño es que en los muros junto a las carreteras o calles debe

asumirse en el diseño que algún día se va a construir una zanja de al menos un metro de

profundidad en su pie. Es recomendable que la mínima profundidad de cimentación de todo

muro de contención sea de un metro por debajo del nivel del suelo en su pie para evitar que

al construir zanjas para servicios el muro quede en el aire. En un muro empotrado la

resistencia pasiva debe reducirse en el diseño para tener en cuenta la posibilidad de

excavaciones de redes de servicios.

9. Cargas a tener en cuenta en el análisis

Para cada situación de diseño deben obtenerse las cargas concentradas o distribuidas que

pueden afectar la estructura de contención tales como peso del suelo, la roca y el agua,

presiones de tierra, presiones estáticas de agua, presiones dinámicas del agua, sobrecarga y

cargas sísmicas. Adicionalmente, deben determinarse las cargas relacionadas con factores

geológicos tales como la reptación del talud, la disolución de la roca, el colapso de cavernas;

y delas actividades del hombre como excavaciones y uso de explosivos en sitios cercanos, así

como el efecto de temperatura en áreas industriales y fundaciones de máquinas

Para determinar las cargas debe tenerse una información muy clara de la geometría del talud,

la geometría del modelo geológico y los niveles de excavación, así como los parámetros

geotécnicos tales como peso unitario, resistencia al corte, permeabilidad, esfuerzos en el sitio,

parámetros de deformación de la roca y el suelo.

10. Factores de seguridad

La calidad de un diseño depende no solamente del factor de seguridad asumido sino también

del método de análisis los modelos de cálculo, el modelo geológico, los parámetros

geotécnicos y la forma como se definen los factores de seguridad; por lo tanto, los factores

Page 12: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 12

de seguridad por sí solos no representan una garantía para la estabilidad de la estructura de

contención.

PRESIONES DE TIERRA

1. Presiones de tierra en condiciones estables

En el caso de un corte o terraplén donde no existe posibilidad de ocurrencia de un

deslizamiento grande masivo se acostumbra construir muros de contención para resistirlas

presiones generadas por la existencia de un talud de gran pendiente o semi-vertical. La

necesidad del muro se debe a que dentro del suelo se generan unas presiones horizontales que

puede inducir a la ocurrencia del derrumbamiento o deslizamiento de una cuña de suelo

relativamente sub-superficial. La presión lateral que actúa sobre un muro en condiciones de

talud estable son una función de los materiales y las sobrecargas que la estructura soportan,

el nivel de agua freática, las condiciones de cimentación y el modo y magnitud del

movimiento relativo del muro. Los esfuerzos que actúan sobre un elemento de suelo dentro

de una masa pueden ser representados gráficamente por el sistema de Mohr, en el cual el

estado de esfuerzo es indicado por un círculo y las combinaciones críticas del diagrama de

Mohr representan la envolvente de falla. En general la envolvente de falla es curvilínea pero

para minimizar los esfuerzos de cálculo se supone aproximada a una línea recta. Existen tres

tipos de presión de acuerdo a las características de deformación supuestas en la interacción

suelo-estructura:1. Presión en Reposo2. Presión Activa3. Presión Pasiva La presión en reposo

se supone que ocurre cuando el suelo no se ha movido detrás del muro y se le ha prevenido

de expandirse o contraerse. Es el caso por ejemplo, de un muro de concreto armado rígido o

un muro rígido detrás del cual se ha colocado un relleno compactado. La Oficina de Control

Geotécnico de Hong Kong recomienda que todos los muros rígidos deben diseñarse para

presiones de reposo.

2. Presión de tierra en reposo

La presión de tierra en reposo es una función de la resistencia al cortante del suelo, su historia

esfuerzo deformación y su historia de meteorización. El valor de la presión de reposo

solamente debe aplicarse para aquellas situaciones de diseño donde el muro no puede

moverse lateralmente por ningún motivo. Para una superficie de tierra horizontal el

coeficiente de presión de reposo se define como la relación entre el esfuerzo horizontal y el

vertical efectivo, en el suelo bajo condiciones cero deformaciones.

3. Subdrenajes

Con excepción de los muros diseñados para resistir presiones de agua tales como las paredes

de sótanos de edificios, es una buena práctica de Ingeniería construir subdrenes detrás de todo

tipo de muros. El sistema de drenaje debe diseñarse en tal forma que se anticipe a capturar el

agua antes de que afecte el muro. Adicionalmente, a los subdrenes deben colocarse huecos

Page 13: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 13

de drenaje para prevenir la presión hidrostática, los cuales son normales de diámetro de dos

a tres pulgadas espaciados no más de 1.5metros horizontalmente y 1.0 metros verticalmente,

las columnas deben intercalarse. Los lloraderos deben colocarse desde una altura baja mínima

de 30 centímetros por encima del nivel del pie del muro. Como una guía general el material

de drenaje debe tener una permeabilidad de al menos100 veces mayor que la del suelo o roca

a drenarse

4. Diseño de muros

Un diseño adecuado para un muro de contención debe considerar los siguientes aspectos:

a. Los componentes estructurales del muro deben ser capaces de resistir los esfuerzos de corte

y momento internos generados por las presiones del suelo y demás cargas.

b. El muro debe ser seguro contra un posible volcamiento.

c. El muro debe ser seguro contra un desplazamiento lateral.

d. Las presiones no deben sobrepasar la capacidad de soporte del piso de fundación.

e. Los asentamientos y distorsiones deben limitarse a valores tolerables.

f. Debe impedirse la erosión del suelo por debajo y adelante del muro bien sea por la presencia

de cuerpos de agua o de la escorrentía de las lluvias.

g. Debe eliminarse la posibilidad de presencia de presiones de agua detrás del muro.

h. El muro debe ser estable a deslizamientos de todo tipo.

5. Procedimiento

Para proceder al diseño una vez conocida la topografía del sitio y la altura necesaria del muro

debe procederse a:

a. Escoger el tipo de muro a emplearse.

b. Dibujar a escala la topografía en perfil de la sección típica del muro.

c. Sobre la topografía dibujar un diagrama "tentativo" supuesto del posible muro.

d. Conocidas las propiedades de resistencia del suelo y escogida la teoría de presiones a

emplearse, calcular las fuerzas activa y pasiva y su punto de aplicación y dirección de1/2 a

2/3, de acuerdo al ángulo de fricción del suelo y la topografía arriba del muro. Para paredes

posteriores inclinadas se recomienda en todos los casos calcular las presiones con la teoría de

Coulomb.

Page 14: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 14

e. Calcular los factores de seguridad así:- Factor de seguridad contra volcamiento.- Factor de

seguridad contra deslizamiento de la cimentación

f. Si los factores de seguridad no satisfacen los requerimientos deben variarse las dimensiones

supuestas y repetir los pasos de a hasta e. Si son satisfactorios se procederá con el diseño.

g. Calcular las presiones sobre el piso y el factor seguridad contra capacidad de soporte. Si es

necesario debe ampliarse el ancho de la base del muro.

h. Calcular los asentamientos generados y si es necesario ampliar la base del muro.

i. Diseñar los sistemas de protección contra:- Socavación o erosión en el pie.- Presencia de

presiones de agua detrás del muro.

j. Finalmente deben calcularse los valores de los esfuerzos y momentos internos para proceder

a reforzar o ampliar las secciones del muro, de acuerdo a los procedimientos estandarizados

de la Ingeniería estructural.

6. Recomendaciones para el diseño de muros

Deseablemente la carga en la base debe estar concentrada dentro del tercio medio para evitar

esfuerzos de tracción

Para volcamiento en muros permanentes debe especificarse un factor de seguridad de2.0 o

mayor.

Para deslizamiento debe especificarse un factor de seguridad de 1.5 o mayor.

El análisis estructural es similar al de una viga con cargas repartidas. Debe conocerse

previamente al diseño, el tipo de suelo que se empleará en el relleno detrás del muro. En

ningún caso se deben emplear suelos expansivos

Page 15: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 15

CLASIFICACION ESTRUCTURAS DE CONTENCION

Las estructuras de contención pueden ser:

Page 16: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 16

VI. ESTRUCTURAS RIGIDAS

Son estructuras rígidas, generalmente de concreto, las cuales no permiten deformaciones

importantes sin romperse. Se apoyan sobre suelos competentes para transmitir fuerzas de su

cimentación al cuerpo del muro y de esta forma generar fuerzas de contención.

Las estructuras de contención rígidas son aquellas estructuras de contención cuyos

movimientos son de sólido rígido, pero no presentan movimientos en el interior de la

estructura, es decir, no se producen flexiones en la misma. Por lo tanto, la ley de empujes

viene influida exclusivamente por el valor, pero no por la forma. La utilización de muros

rígidos es una de las formas más simples de manejar cortes y terraplenes. Los muros rígidos

actúan como una masa relativamente concentrada que sirve de elemento contenedor a la masa

inestable. El empleo de muros de contención rígidos para estabilizar deslizamientos es una

práctica común en todo el mundo, pero su éxito ha sido limitado por la dificultad que existe

en el análisis de cada caso en particular y por las diferencias que existen entre las fuerzas

reales que actúan sobre el muro, en un caso de deslizamiento y los procedimientos de análisis

basados en criterios de presiones activas, utilizando las teorías de presión de tierras de

Rankine o Coulomb.

Entre estos tenemos:

a. CONCRETO REFORZADO

Una estructura de concreto reforzado resiste movimientos debidos a la presión de la tierra

sobre el muro. El muro a su vez se apoya en una cimentación por fuera de la masa inestable.

Existen los siguientes tipos de muro reforzado:

1. Muros empotrados o en cantiliber, en forma de L o T invertida, los cuales tienen una

placa semivertical o inclinada monolítica con otra placa en la base.

2. Muros con contrafuertes, en los cuales la placa vertical o inclinada está soportada por

contrafuertes monolíticos que le dan rigidez y ayudan a transmitir la carga a la placa

decimentación.

3. Muros con estribos, en los cuales adicionalmente a la placa vertical y la placa de

cimentación y los contrafuertes, se construye una placa superior sub-horizontal que aumentan

la rigidez y capacidad para soportar momentos. En la mayoría de los casos se colocan llaves

o espolones de concreto debajo de la placa de cimentación para mejorar la resistencia al

deslizamiento. Una pared en concreto reforzado es generalmente, económica y viable para

alturas hasta de 8 metros. Para alturas mayores el espesor de la placa semi-vertical aumenta

en forma considerable y el muro se vuelve muy costoso. Debe tenerse en cuenta que, la

utilización de contrafuertes o estribos generalmente disminuye el costo comparativamente

con un muro empotrado en L o T invertida. La pendiente de la pared de fachada debe dársele

una inclinación ligera para evitar la sensación visual de que el muro se encuentra inclinado.

Page 17: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 17

Generalmente, se recomienda una pendiente de 1 en 50.El diseño de un muro en concreto

armado incluye los siguientes aspectos:

Diseño de la estabilidad intrínseca del muro para evitar volcamiento o deslizamiento

sobre el suelo de cimentación.

Diseño de la estabilidad general del talud o cálculo del factor de seguridad incluyendo

la posibilidad de fallas por debajo de la cimentación del muro.

Diseño de las secciones y refuerzos internos para resistir momentos y cortantes.

Cálculo de capacidad de soporte de la cimentación. Para el diseño estructural se

supone que la placa vertical del muro se encuentra totalmente empotrada en la placa

de cimentación. La Oficina de Control Geotécnico de Hong Kong recomienda que

en todos los casos de muro de concreto armado se utilicen presiones de reposo para

el cálculo de las fuerzas sobre las paredes del muro.

Page 18: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 18

Page 19: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 19

CARACTERISTICAS

Resiste muy bien los esfuerzos de compresión, pero no tiene buen comportamiento frente a

otros tipos de esfuerzos (tracción, flexión, cortante, etc.), por este motivo es habitual usarlo

asociado al acero, recibiendo el nombre de hormigón armado.

CARACTERISTICAS FISICAS

Densidad: en torno a 2.350 kg/m3

Resistencia a compresión: de 150 a 500 kg/cm2 (15 a 50 Mapa) para el hormigón

ordinario. Existen hormigones especiales de alta resistencia que alcanzan hasta 2.000

kg/cm2 (200 Mapa).

Resistencia a tracción: proporcionalmente baja, es del orden de un décimo de la

resistencia a compresión y, generalmente, poco significativa en el cálculo global.

Page 20: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 20

MAQUINARIA

Equipo de Cerrilladlo:

1 Grúa pequeña (si fuese necesario)

Equipo de Hormigonado:

1 Camión Hormigonera.

1 Grúa con cubilote.

1 Bomba de hormigón (si fuese necesario)

Vibradores con cantidad en reserva

Este tipo de muro resiste el empuje lateral de la presión del terreno, por medio del voladizo

de un muro vertical y una base horizontal. El muro se proyecta para resistir los momentos de

momentos de flexión y el cortante debidos al empuje del terreno. Primero se predimensiona

el muro en su totalidad, luego se establece las características geométricas reales de la losa de

base para satisfacer los requisitos de:

1. RESISTENCIA A LA VOLCADURA

Deslizamiento y Asentamiento

Por lo general, el muro se hace más grueso de lo requerido en la parte inferior con la

finalidad que la sección adoptada, logre satisfacer el esfuerzo cortante y el diseño

balanceado. El Talón y la punta dela base se proyectan como voladizos soportados

por el muro, el peso del suelo tiende a doblar el Talón hacia abajo en sentido contrario

de una "resistencia pequeña" de la presión del suelo bajo la base, por contraste la

presión ascendente del suelo tiende a doblar la punta hacia arriba, por ello para el

Talón el acero principal se coloca cerca de la parte superior y para la punta, cerca de

la parte inferior. El muro se construye después de la base, por lo general se forma una

cuña en la parte superior de la base para evitar que el muro se deslice, además se

dejan espigas salientes en la base para amarrar el muro a ellas (a razón de una espiga

por varilla del muro); las espigas pueden prolongarse para que sirvan también como

refuerzo del muro.

Recomendaciones para muros de concreto armado

El diseño de muros en voladizo difiere del de muros de gravedad en los siguientes factores:

La fricción suelo - muro en su parte posterior no se tiene en cuenta por no

existir desplazamiento a lo largo de este plano. Se considera que el suelo se

desplaza solidariamente con el muro.

El peso del suelo sobre el cimiento se considera como parte integral de la

masa del muro en el cálculo de fuerzas.

Page 21: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 21

Se supone que el plano de aplicación de las presiones activas es el plano

vertical tomado en el extremo posterior del cimiento del muro.

El diseño estructural interno requiere de especial cuidado. En ocasiones en

necesario colocar un dentellón para mejorar la resistencia al deslizamiento.

En los demás aspectos el diseño debe realizarse en la misma forma que el de

un muro de gravedad

b. CONCRETO CICLÓPEO

Se llama construcción ciclópea a la realizada con grandes piedras sin argamasa.

Aunque algunos arqueólogos, las denominan también construcciones megalíticas, las

construcciones ciclópeas se distinguen de aquéllas en que tienen algún aparejo que

puede ser más o menos poligonal y semi escuadrado o bien ciclópeo propiamente

dicho; no así las megalíticas.

Los muros de concreto ciclópeo requieren un terreno de apoyo firme y no susceptible

a sufrir asentamientos por consolidación de las capas del suelo, esto es una condición

indispensable

Los muros de contención de hormigón ciclópeo son aquellos elementos estructurales

que se sitúan para retener cargas de empujes laterales del terreno hacia un posible

espacio, evitando deslizamientos al interior del mismo.

Page 22: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 22

Estos muros tienen una buena reacción ante esfuerzos de compresión que ejerce el

empuje lateral sobre la superficie excavada, sin embargo el desempeño del muro de

contención a esfuerzos de pandeo por sub momentos de tracción ocasionados por

curvas laterales, niveles freáticos, por lo cual se debe incrementar el espesor del muro

de contención para retener estas cargas.

Los muros de ciclópeo más frecuentes que se utilizan son:

la Trunco Piramidal (1),

la Trunco Piramidal Media (2)

la Escalonada (3):

Procedimiento para la ejecución:

Una vez realizada la excavación para el muro de contención, se procede a realizar el

encofrado de acuerdo al diseño propuesto en los planos de construcción arquitectónicos y

civiles.

La base de la excavación que va a portar el elemento estructural, deberá estar nivelada y

compactada, para lo cual se recomienda colocar una carpeta de hormigón pobre de

dosificación H-18 (180 kg cemento/m3) en proporciones 1:4 en cemento y arena corriente de

construcción para optimizar la nivelación de las primeras capas.

Se recomienda que el encofrado no tenga una altura mayor a 1 metro, ya que siendo así,

podría dificultarse el colocado de piedras. Una vez terminado el encofrado se utilizara una

mezcla estructural de dosificación media H-25 (250kg cemento/m3) en proporciones 1:2:2

entre cemento, arena corriente y grava de granulometría mayor a 3/8”, la misma que se

vaciara sobre la carpeta o base con un espesor mínimo de 15 centímetros para adherir la

Page 23: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 23

primera hilera de piedra. La piedra que se utiliza para estos muros debe ser un de diámetro

entre 20 y 30 cm.

características del hormigón ciclópeo

El hormigón ciclópeo deberá tener las siguientes características principales según lo

especificado.

• Resistencia mínima a la compresión de probetas a los 28 días de 130 kg./cm2

• Cantidad mínima de cemento utilizada será de 220 kg/m3 de hormigón colocado.

• La relación máxima de agua - cemento deberá ser 0.70.

• Revenimiento de 5 a 7.5 cm, vibrado y sin vibrar respectivamente.

• Tamaño máximo del agregado grueso de 2".

• El hormigón ciclópeo estará constituido por un 40% de piedra desplazada en un

60% de hormigón.

VII. ESTRUCTURAS FLEXIBLES

Son estructuras masivas, flexibles. Se adaptan a los movimientos. Su efectividad depende de

su peso y de la capacidad de soportar deformaciones importantes sin que se rompa su

estructura

Las estructuras de contención flexibles son aquellas en las que los movimientos de sólido

rígido y los movimientos debidos a la flexión de la propia estructura, se producen en

porcentajes similares. Esta deformación hace que el movimiento de la estructura influya tanto

en el valor, como en la forma de la ley de empujes sobre la estructura.

Page 24: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 24

La principal diferencia entre pantallas y entibaciones, es que las entibaciones son mucho más

flexibles que las pantallas.

Los muros pantalla son elementos estructurales de contención de tierras, empleados tanto

para sistemas de retención y contención temporal como paredes permanentes, solución muy

utilizada en sótanos y aparcamientos subterráneos.

Un muro pantalla o pantalla de hormigón in situ es una estructura de contención flexible muy

empleado en ingeniería civil y que se realiza en la propia obra, lo que les diferencia de las

pantallas de paneles prefabricados de hormigón.

1. MUROS CRIBA

Los muros criba, o también denominados muros jaula, están formados por dos clases de vigas

cortas, que pueden ser de hormigón prefabricado o madera y que se entrecruzan entre sí,

formando un armazón que es rellenado posteriormente con material granular drenante.

Generalmente son instalados con su intradós en pendiente, aunque puede ser vertical para

aplicaciones de escasa altura. El muro criba es básicamente una estructura parecida a una caja

formada por prefabricados de concreto entrelazados. El espacio interior de las cajas se rellena

con suelo granular permeable o roca para darle resistencia y peso, conformando un muro de

gravedad. Generalmente existen dos tipos de prefabricados que se colocan en forma paralela

a la superficie del talud o normal a este. Los travesaños son prefabricados normales al eje del

muro en forma de I horizontal. En ocasiones, los travesaños son de una longitud tal que obliga

a la construcción de un elemento intermedio similar a sus puntas. Los largueros son

prefabricados largos que se apoyan sobre los travesaños y que tienen como objeto contener

el material colocado dentro de las cajas o Cribas. Las fuerzas son transferidas entre los

prefabricados en los puntos de unión. Adicionalmente, se pueden colocar pequeños bloques

que se les llaman “Almohadas” en localizaciones críticas entre los prefabricados para soportar

algunos esfuerzos, tales como torsiones y reducir la flexión. Algunos diseños de muros criba

incluyen uniones metálicas o de madera entre los prefabricados para ayudar a transmitir las

fuerzas. El muro criba tiene la ventaja de permitir asentamientos diferenciales importantes

(Brandl, 1985).El diseño de los muros criba consiste en diseñar el muro de gravedad y las

secciones refuerzo de los prefabricados de concreto. Debe tenerse en cuenta que algunos

sistemas son objeto de patentes. El ancho del muro criba depende de la longitud de travesaños

disponibles. El ancho mínimo generalmente, es de 1.2 metros. Los muros de baja altura puede

construirse verticales pero, para alturas superiores a 2 metros generalmente, se construyen

inclinados para mejorar su estabilidad. La inclinación del muro depende de las características

de estabilidad y es común encontrar taludes inclinados de 1 a 4 hasta 1 a 10.En ocasiones se

han utilizado muros criba, conformados por travesaños de madera. La cara exterior del muro

criba generalmente, tiene una pendiente no superior a 0.25H: 1V El diseño del muro criba

Page 25: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 25

incluye la estabilidad intrínseca de la masa total y el chequeo de la estabilidad interna a

diversos niveles de altura del muro. Se sugiere realizar análisis de estabilidad a cada metro

de altura del muro. El muro Criba teóricamente se comporta como un muro de gravedad, pero

presenta el problema de que no es masivo y se debe analizar la posibilidad de que ocurran

superficies de falla por encima del pie del muro. Los travesaños y los largueros deben

diseñarse para resistir flexiones debidas a la presión horizontal del relleno sobre los

prefabricados. Las cabezas de los travesaños deben ser diseñadas para resistir el cortante

generado y deben ser capaces de transferir las fuerzas de tensión inducidas. Los muros criba

son más sensitivos a los asentamientos diferenciales que otros tipos de muros flexibles. La

altura mínima a la cual puede construirse una pared criba de celda simple es aproximadamente

5 metros y la altura máxima generalmente utilizada es 7 metros, utilizando celdas dobles o

triples. Los muros criba se construyen generalmente en alineamientos rectos, pero con el

manejo adecuado de elementos especiales pueden construirse en forma curva en radios

mínimos hasta de 25 metros. Para el diseño del muro se pueden utilizar teorías de presión de

tierras desarrolladas para silos de granos. Sin embargo, algunos autores recomiendan diseñar

las unidades para el doble de la presión calculada para este método.

Page 26: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 26

Page 27: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 27

2. GAVIONES

Los gaviones son contenedores de piedras retenidas con malla de alambre. Se colocan a pie

de obra desarmados y, una vez en su sitio, se rellenan con piedras del lugar. Los primeros en

usar los gaviones fueron los egipcios hace más de 2000 años, y estaban fabricados con caña

y rellenos de piedra; eran usados para sus fortificaciones y para el control de erosión. En

nuestros días, los gaviones son cajas conformadas en malla de alambre de acero. Cada pieza

es llenada con piedra y conectada una con otra para formar una estructura de retención

monolítica y que trabaja por gravedad. Se fabrican con mallas (de triple torsión y escuadrada

tipo 8x10 cm) de alambre de acero (con bajo contenido de carbono) de 2,7 mm, al que se le

da tres capas de galvanizado. Los gaviones pueden tener diferentes aspectos, es muy frecuente

encontrarlos con forma de cajas, que pueden tener largos de 1,5, 2, 3 y 4 metros, un ancho de

1 metro y una altura de 0,5 ó 1,0 metros. Los alambres que forman las mallas de los gaviones,

siempre que necesario, además del revestimiento con recubrimiento zinc aluminio, también

pueden ser recubiertos por una vaina continua de PVC (clorito de polivinilo). Esto confiere

una mejora a la protección contra la corrosión y la torna eficientes para el uso en marinas,

ambientes contaminados y/o químicamente agresivos.

Cuando los gaviones son instalados y rellenados con piedras, se convierten en elementos

flexibles, armados, drenantes y aptos a ser utilizados en la construcción de las estructuras más

diversas (muros de contención, diques, canalizaciones, etc.).

Page 28: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 28

Se acostumbra a emplear una profundidad de 50 cm, sin embargo en algunos casos es

aconsejable aumentarla un metro o más dependiendo de la garantía que ofrezca el suelo de

fundación en lo referente a erosión por acción del agua u otro agente mecánico; para esto se

debe realizar un estudio de suelos para determinar parámetros de resistencia peso unitario

compresibilidad; capacidades del suelo y los asentamientos.

Usos

Muros de contención: los muros de gaviones están diseñados para mantener una

diferencia en los niveles de suelo en sus dos lados constituyendo un grupo importante

de elementos de soporte y protección cuando se localiza en lechos de ríos.

Conservación de suelos: la erosión hídrica acelerada es considerada sumamente

perjudicial para los suelos, pues debido a este fenómeno, grandes superficies de

suelos fértiles se pierden; ya que el material sólido que se desprende en las partes

media y alta de la cuenca provoca el azolvamiento de la infraestructura hidráulica,

eléctrica, agrícola y de comunicaciones que existe en la parte baja.

Control de ríos: en ríos, el gavión acelera el estado de equilibrio del cauce. Evita

erosiones, transporte de materiales y derrumbamientos de márgenes, además el

gavión controla crecientes protegiendo valles y poblaciones contra inundaciones.

Decorativos: Recientemente se han utilizado como un nuevo recurso. Ejemplo: en

Puerto Madero, Buenos Aires.

2.1. CLASES DE GAVION

Gavión Caja

Los gaviones tipo caja son estructuras en forma de prisma rectangular fabricadas con malla

hexagonal de doble torsión producidas con alambres de bajo contenido de carbono revestidos.

Los gaviones son subdivididos en células por diafragmas cuya función es reforzar la

estructura. Toda la red, con excepción la de los diafragmas, es reforzada en sus extremidades

por alambres de diámetro mayor que el de la malla, para fortalecer los gaviones y facilitar su

montaje e instalación.

Gavión Saco

Estos gaviones están formados a partir de un único panel de malla hexagonal a doble torsión

producida con alambres de bajo tenor de carbono revestidos y adicionalmente protegidos por

una camada continua de material plástico (aplicada por extrusión).

Para el cierre de las extremidades del gavión tipo saco, cada unidad es provista con alambres

de acero insertados alternadamente entre las penúltimas mallas de los bordes libres. Tales

alambres refuerzan cada elemento y le confieren mayor rapidez durante su instalación.

Debido al contacto constante con aguas de calidad en general desconocida, los gaviones tipo

saco son producidos en malla hexagonal a doble torsión fabricada con alambres protegidos

con aleación Zinc/Aluminio y revestidos con material plástico, tornándolos eficientes para

uso en marinas, ambientes químicamente agresivos.

Page 29: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 29

Los gaviones tipo saco son usados principalmente en obras emergenciales, en obras

hidráulicas donde las condiciones locales requieren una rápida intervención o cuando el agua

no permite un fácil acceso al lugar (instalaciones subacuáticas) o cuando el suelo de apoyo

presenta baja capacidad soporte

Las ventajas y características son:

Flexibilidad

Permeabilidad

Durabilidad

Resistencia

Versatilidad

Integración paisajística

Competitivos

No necesitan cimentación

Page 30: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 30

GAVION CAJA

Page 31: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 31

IMPORTANTES CONSIDERACIONES DE

LOS GAVIONES

Recubrimiento del alambre y durabilidad

Fuerza de la conexión

Asentamientos diferenciales

Piezas pre-ensambladas

Fuerzas puntuales

Ensamble

Bioingeniería de suelo

Fuerzas puntuales

Una estructura de gaviones alta estará

expuesta a cargas internas de compresión

altas. Esta sobrecarga tiende a hacer que la

roca salga y cargue la cara vertical de los gaviones. Es por tanto fundamental que los gaviones

sean capaces de repartir estas fuerzas. La malla doble torsión puede repartir cargas puntuales

altas gracias a las características de la malla y a la fuerza de las uniones

Ventajas

La construcción de este tipo de estructuras es muy sencilla.

Page 32: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 32

Por lo general es más económica que las obras realizadas en hormigón.

Este tipo de estructuras soportan movimientos diferenciales sin perder la eficiencia.

En la práctica de la construcción de carreteras son muy utilizados tres tipos, que se distinguen

entre sí más por su tamaño que por su comportamiento.

Gaviones de Base

Son gaviones de poco espesor (por lo general 0.50 m) y se emplean como fundación de una

estructura.

Gaviones de Cuerpo

Con mayor espesor que los gaviones de base (1m), son usados para conformar la parte exterior

de la obra.

Gaviones de recubrimiento, también denominados colchonetas

Son de gran área, se emplean en el recubrimiento taludes y canales como protección contra

la erosión superficial

TIRANTES

Son alambres preferiblemente del mismo calibre al de la malla, se ubican a medida que se

colocan las capas de roca y es aconsejable cada 30 cm en forma horizontal o vertical según

el requerimiento para hacer solidarias las caras opuestas de la estructura, y así evitar las

deformaciones ocasionados por el peso del material de relleno. Además de los tirantes

horizontales y verticales se utilizan los diagonales que son ubicados especialmente en los

extremos de cada hilada de la estructura.

En los últimos años se ha incrementado del desarrollo de gaviones plásticos utilizando

productos plásticos, tales como el polietileno de alta densidad (HDEP) y el polipropileno

biaxial. Estas mallas utilizan un sistema de estabilización contra los rayos UV del sol con el

2% de carbón negro.

Estos gaviones son canastas de forma muy similar a los gaviones metálicos, las cuales se

elaboran con mallas plásticas de alta resistencia. La flexibilidad de los gaviones plásticos

permite que estas estructuras se acomoden fácilmente a los asentamientos diferenciales, pero

su principal propiedad es su resistencia a la corrosión química del agua salada en los

ambientes marinos, donde los gaviones metálicos no son viables por el problema de su alta

susceptibilidad a la corrosión.

Page 33: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 33

Diseño estructural

PROCESO CONTRUCTIVO

Se prepara la cimentación hasta la profundidad ya preestablecida.

Se coloca el filtro de geotextil de tal forma que cubra el piso y los lados de la excavación.

Se estiran las mallas que conforman la estructuran para luego ser colocadas en el sitio fijado

y llenado posteriormente con el material asignado.

Page 34: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 34

Una vez estiradas las caras y ubicado el gavión, se rellena con el material asignado hasta

completar una capa de 30 cm.

Se verifica si es necesario colocar los tirantes para unir las caras opuestas, de ser así, se

colocan sobre la capa de 30 cm ya construida, de la misma forma para los tirantes diagonales

conformando las esquinas.

Se realiza el mismo procedimiento para la fabricación de la segunda y tercera capa, teniendo

en cuenta de colocar los tirantes si es necesario a los 30 cm como se hizo en la primera capa.

Completadas las capas necesarias del material de relleno se observa que el gavión este lleno y se

procede a cerrar la tapa de la canasta.

Page 35: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 35

Una vez cerrada la tapa de la canasta, se cosen todas las aristas superiores incluyendo las

aristas de los diafragmas.

Page 36: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 36

MURO VENTAJAS DESVENTAJAS

GAVIONES

Fácil alivio de presiones de agua. Soportan

movimientos sin pérdida de eficiencia. Es de

construcción sencilla y económica

Gran flexibilidad y tolerancia ya que las

estructuras de la tierra reforzada con

geotextil se ajustan fácilmente a los

pequeños asentamientos y los movimientos

diferentes

Las mallas de acero galvanizado se

corroen fácilmente en ambientes

ácidos, por ejemplo, en suelos

residuales de granitos se requiere cantos

o bloque de roca, los cuales no

necesariamente están disponibles en

todos los sitios.

Al amarre de la malla y las unidades

generalmente no se le hace un buen

control de calidad

FLEXIBLE

Permiten la adaptación de las estructuras a las

deformaciones y movimientos del terreno, sin perder su

estabilidad y eficiencia. Debido a su flexibilidad es el único

tipo de estructura que no requiere fundaciones profundas,

aun cuando son construidas sobresuelos con baja capacidad

de soporte. Esa característica también permite, en la mayor

de los casos, que la estructura se deforme mucho antes del

colapso permitiendo la detección anticipada del problema y

dando oportunidad de realizar intervenciones de

recuperación, minimizando gastos y evitando accidentes de

proporciones trágicas

Page 37: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 37

DETERMINACIÓN DEL EMPUJE

Conceptos básicos

Empuje de tierra es la resultante de las presiones laterales ejercidas por el suelo sobre

una estructura de contención o de fundación. Estas presiones pueden ser debido al peso

propio del suelo o a sobrecargas aplicadas sobre él. El valor del empuje sobre una

estructura depende fundamentalmente de la deformación que esta sufre debido a la

acción de este empuje. Se puede visualizar esta interacción efectuándose un experimento

que utiliza un paramento vertical móvil, como el mostrado en la figura 3.4.1, soportando

un desnivel de suelo. Se verifica que la presión ejercida por el suelo el paramento varía

con el desplazamiento de este último

Análisis de estabilidad de la estructura de contención

TIPOS DE ROTURA

Es necesario la verificación de seguridad de la estructura de contención a los diversos

tipos de rotura. En el caso de muros de contención de gaviones, los tipos principales de

rotura que pueden ocurrir están mostrados en la figura

Deslizamiento sobre la base:

Ocurre cuando la resistencia al deslizamiento a lo largo de la base del muro, sumada

al empuje pasivo disponible al frente de la estructura, es insuficiente para neutralizar

el efecto del empuje activo actuante.

Teoría y cálculos de estabilidad

Page 38: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 38

Vuelco:

Ocurre cuando el momento estabilizante del peso propio del muro en relación al punto de vuelco es

insuficiente para neutralizar el momento del empuje activo.

No asentamientos excesivos:

Ocurre cuando las presiones aplicadas por la estructura sobre el suelo de fundación son

superiores a su capacidad de carga.

Rotura global del macizo:

Deslizamiento a lo largo de una superficie de rotura que envuelve a la estructura de contención.

Rotura interna de la estructura:

Rotura de las secciones intermedias entre gaviones, que puede ocurrir tanto por deslizamiento

como por exceso de presión normal. Rotura de la fundación

3. MUROS EN PIEDRA (MURO DE CONTENCION EN

ESCOLLERA)

El elemento principal que interviene en la ejecución de la tipología de muro es el bloque de

escollera, unidad básica a partir de la cual, por agregación se construye el muro.

Es por ello que las propiedades de los bloques tienen una especial incidencia en el

comportamiento de la obra. Los bloques de escollera deben provenir de macizos rocosos

sanos, de canteras, o de las excavaciones de la propia obra y se obtendrán mediante voladura.

Page 39: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 39

a. Cimiento

La cota de cimentación será de acuerdo con los criterios establecidos en el análisis

del estudio de suelos, siendo recomendable en todo caso, una profundidad mínima

de un metro. El fondo de la excavación de la cimentación se ejecutara normalmente

con una contra inclinación respecto a la horizontal de valor aproximado de 3H: 1V.

En general la escollera del cimiento se debe hormigonar pudiendo en ocasiones

utilizar recebo pétreo con material de las mismas características de la escollera. El

hormigonado del cimiento del muro de escollera es necesario para poder considerar

que trabaja como elemento rígido.

Page 40: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 40

La cota a alcanzar con el hormigón y las pendientes a dar con su superficie para evitar a

comulaciones de agua enrazando normalmente con los bordes de la excavación o los

elementos de drenaje.

Page 41: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 41

b. Cuerpo del muro

La superficie de apoyo de la primera hilada de la escollera sobre la cara superior del

cimiento de escollera hormigonada, debe tener una inclinación media hacia el trasdós

entorno al 3H:1V y presentar una superficie final dentada e irregular que garantiza

la Trabazón entre el cuerpo del muro y la cimentación.

Page 42: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 42

c. Trasdós

En general se deberá disponer un relleno de material granular en el trasdós del muro

con un espesor mínimo de un metro. Con este relleno de material granular se pretende

las siguientes funciones.

Materializar una transición granulo métrica entre el terreno natural relleno del

cuerpo del muro.

Repartir del modo relativamente uniforme, los empujes sobre el cuerpo del muro

de escollera.

Interponer una capa granular con buenas características drenantes entre el

terreno natural o relleno y el muro

Dificultar la salida de material del terreno natural o relleno, a través de los huecos

entre bloques de escollera.

d. Elementos de drenaje

Drenaje superficial: se debe proyectar medidas oportunas para evitar que el agua de

escorrentía desagüe al relleno granular del trasdós del propio muro de escollera.

Drenaje subterráneo: debe evitarse la comulación de aguas en el trasdós y el

cimiento del muro.

Page 43: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 43

e. Particularidades de los muros de contención

El principal condicionante que suele presentar los muros de contención es que se

deben ejecutar sobre una ladera natural o talud en desmonte en la que únicamente se

podrán emprender determinadas actividades puntuales en el motivo de la ejecución

del muro es que dichas laderas o taludes presentan problemas de estabilidad

pretendiéndose con el mismo bien de forma aislada o conjuntamente con otras

actuaciones proporcionar un nivel de contención adecuado.

4. MUROS EN LLANTAS USADAS

Los muros en llantas usadas conocidos como Pneusol o Tiresoil consisten en rellenos de suelo

con llantas de caucho usadas embebidas. Las llantas son unidas entre sí por soga de refuerzo.

Generalmente, se utilizan sogas de polipropileno y se conoce de la utilización de elementos

metálicos (Abramson 1996).La resistencia a la extracción (pull out) es relativamente alta para

los grupos de llantas y el peso unitario del relleno es relativamente bajo. La de formabilidad

del terraplén es alta pero su resistencia al cortante también aumenta. Generalmente, el análisis

interno de los muros con llantas es el de un muro armado. Tanto los elementos de anclaje

como los de retención superficial del suelo son construidos con llantas. Varias de las llantas

en la superficie del talud son conectadas por medio de sogas de acuerdo a una determinada

distribución. Como las llantas en la superficie están conectadas a las llantas de anclaje, se

generan una fuerza de acción en la soga que las conecta. Si este refuerzo es lo suficientemente

fuerte para no fallar la tensión y la resistencia de la extracción de la llanta es mayor que la

fuerza de fricción, entonces la estructura permanecerá estable. Los muros de llantas usadas

son muy flexibles y se acomodan fácilmente a los asentamientos referenciales. Cada llanta se

Page 44: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 44

conecta a su vecina con soga de polipropileno o nylon. Generalmente, se utilizan tendones

de 8 a 10 mm. De diámetro. Sumanarathna, (1997), reporta muros hasta de 20 metros de

altura utilizando llantas usadas. El muro de llantas puede ser integral en tal forma, que todo

el volumen de terraplén esté entrelazado con llantas, las cuales ocupan buena parte de su

volumen total, o puede utilizarse el sistema de muro de llantas en el cual se colocan llantas

en la parte posterior del terraplén como anclaje de sogas de polipropileno, las cuales amarran

las llantas internas con las llantas en la pared exterior del muro.

Page 45: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 45

Page 46: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 46

VIII. TIERRA REFORZADA

El sistema más popular de muros de tierra reforzada es el refuerzo de terraplenes con

geotextiles, en el cual el mecanismo de transmisión de esfuerzos es predominantemente de

fricción. Existe una gran cantidad de geotextiles de diferentes propiedades mecánicas, tejidos

y no tejidos. Los rellenos utilizados son generalmente materiales granulares que van desde

arenas limosas hasta gravas. Un problema importante de los geotextiles es su deterioro con la

luz ultravioleta del sol y por esto se requiere que este material permanezca cubierto, con

concreto emulsión asfáltica o suelo con vegetación. Recientemente se han introducido en el

mercado las geomallas que son mallas poliméricas o metálicas con una forma determinada,

en dos direcciones, en el cualse incluye el efecto de fricción y además, el efecto de agarre

dentro del suelo. En ocasiones la geomallas lleva varillas para ayudar a la resistencia de

arrancamiento de la malla. Generalmente, las geomallas tienen mayor resistencia al

arrancamiento que los geotextiles.

1. Relleno

El material de relleno debe ser un material capaz de desarrollar fricción y no debe contener

materiales orgánicos o perecederos como vegetación o residuos indeseados. Comúnmente se

utiliza relleno granular pero cuando no se dispone de materiales de grava o arena se utiliza

arcilla o suelos residuales, en estos casos se debe tener especial cuidado, teniendo en cuenta,

la importante reducción de capacidad al arrancamiento en los suelos arcillosos, cuando son

saturados (Elias y Swanson, 1983).En ocasiones se utiliza piedra triturada. En este caso debe

tenerse cuidado de que el refuerzo sea de un grosor suficiente que impida su rotura, causada

por los bordes angulosos del triturado

Page 47: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 47

2. Pared exterior del Muro

En la parte exterior del muro se pueden colocar elementos prefabricados de concreto

reforzado en láminas de acero, o geotextiles recubiertos con concreto lanzado o protecciones

vegetales.

3. Conectores

El material utilizado para conectar las paredes del muro con los anclajes y las paredes entre

sí debe ser de material electrolíticamente compatible, en tal forma que no promueva la

corrosión por el uso de metales disímiles. Las tuercas que se utilicen deben ser de acero grado

8. Los conectores deben diseñarse en tal forma que la resistencia total del conector no sea

inferior a la resistencia total del refuerzo.

Page 48: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 48

El PH del relleno en el caso de tierra armada con refuerzo metálico debe ser superior a seis

para impedir la corrosión acelerada del acero. El material debe compactarse a una densidad

tal que garantice la estabilidad del relleno en cuanto a resistencia y compresibilidad.

Comúnmente se exigen densidades superiores al 95% de la densidad máxima Proctor

modificado. El proceso de compactación debe realizarse teniendo cuidado de no romper o

deteriorarlos elementos de refuerzo. Debe impedirse que los vehículos tales como volquetas

pasen por encima del refuerzo, antes de colocar el relleno.

IX. ESTRUCTURAS ANCLADAS

El concepto básico de los muros anclados es el de resistir y reforzar las presiones de tierra

mediante la instalación de anclajes de acero a espaciamientos muy entre si, usualmente entre

1 a 2 metros. Estos anclajes son conocidos como clavos de anclaje y se colocan en el talud o

excavación a los espaciamientos y según las longitudes dictados por el diseño

El procedimiento constructivo típico consiste en la construcción desde la cima al pie del corte,

realizando la excavación a medida se va profundizando el corte.

1. ESPECIFICACIONES ESTRUCTURALES

los clavos de estabilización indicados en el detalle, será de varilla corrugada #6, grado 60

que deberá instalarse en la posición y a las longitudes requeridas según la altura del diseño

del muro y a un ángulo de 5 grados con respecto a la horizontal tal y como se muestra

en los planos constructivos del sistema.

Page 49: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 49

el agujero para la instalación del clavo será de 4.5 pulgadas, una vez que el clavo este

instalado deberá rellenarse con lechada fabricada con cemento.

la proporción requerida para la fabricación de la lechada es: 7.5 gal de agua (1 1/2 baldes)

para 1 bolsa de cemento.

debido a que el clavo de anclaje no puede quedar en contacto directo con el suelo y para

lograr un adecuado recubrimiento al momento de verter la lechada es necesario

introducirlo al agujero de perforación con unos centralizadores o separadores de

seguridad a intervalos irregulares, estos separadores serán fabricados de PVC.

la pantalla del muro consistirá en una pantalla de 15cm de espesor, utilizando un

hormigón con resistencia f´c=210 kg/cm2, reforzado con una malla electrosoldada.

la malla electrosoldada utilizada para la pantalla del muro deberá cumplir con la

especificación de una electromalla 6x6 pulgadas.

la placa de metal a utilizarse deberá tener un espesor e=3/8pulgadas, sujetando a 4 varillas

de 3/8”y a la malla electrosoldada, a esta se le aplicara soldadura para sujetarla al clavo.

2. ESPECIFICACIONES DE DRENAJE

para este sistema consistirá en un tubería de PVC de 2 pulgadas de diámetro y con una

longitud que deberá sobre pasar la longitud máxima de los clavos de anclaje a un angulo

inverso de 15 grados

el procedimiento de perforación para instalar la tubería de drenaje será el mismo que el

descrito en las especificaciones estructurales, con la excepción de que el diámetro de

perforación deberá ser menor

Los anclajes en roca pueden realizarse de muchas formas:

Dovela de concreto reforzada para prevenir que se suelte un bloque de roca en la cresta de un

talud. Estos pernos son comúnmente varillas de acero colocadas en huecos preperforados,

inyectando una resina epóxica o cemento, las varillas generalmente, no son tensionadas

debido a que la roca puede moverse al colocar la tensión, se utiliza hierro de alta resistencia

en diámetros que varían desde 1/2 a 1.5 pulgadas.

Mallas exteriores de alambre galvanizado ancladas con pernos para evitarla ocurrencia de

desprendimientos de bloques de roca o material. Debe tenerse en cuenta que los anclajes de

mallas protegen de la caída de bloques superficiales, pero no representan estabilidad para el

caso de fallas de bloques grandes o movimientos de grandes masas de suelo o roca.

Anclajes tensionados para impedir el deslizamiento de bloques de roca a lo largo de un plano

de estratificación o fractura. Estos anclajes, generalmente utilizan cable de acero, los cuales

se colocan en huecos preperforados e inyectados. La fuerza de tensionamiento depende de la

longitud y características del anclaje y no es raro utilizar fuerzas hasta de 50 toneladas por

ancla.

Page 50: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 50

3. MICROPILOTES (SOIL NAILING)

El Soil Nailing es un método de refuerzo in situ utilizando micropilotes vacíos capaces de

movilizar resistencia a tensión en el caso de ocurrencia de un movimiento. Se diferencian de

los pilotes en cuanto los micropilotes no resisten cargas laterales a flexión. Los micropilotes

pueden ser varillas de acero, tubos o cables que se introducen dentro del suelo natural o la

roca blanda y son inyectados dentro de huecos preperforados. Generalmente son espaciados

a distancias relativamente pequeñas. Los micropilotes pueden ser hincados o inyectados en

perforaciones previamente realizadas. Junto con el suelo estos alfileres o nail forman una

estructura de suelo reforzado. Los nail o alfileres se diferencian de los anclajes en el sentido

de que son pasivos, o sea, que no son postensionados. Adicionalmente los Nails están muchos

más cercanamente espaciados que los anclajes.

Comúnmente se utiliza un alfiler por cada uno o seis metros cuadrados desuelo de superficie.

La estabilidad de la superficie del terreno es controlada por una capa delgada de concreto

lanzado, de espesor de 12 a 18 centímetros con una malla de refuerzo. Estas estructuradas se

les utilizan tanto en suelos granulares como cohesivos.

Etapa constructiva de Soil Nailing:

Page 51: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 51

Pernos Individuales no tensionados

Los pernos son elementos estructurales generalmente constituidos por varillas de acero, las

cuales se colocan dentro de una perforación, la cual se inyecta posteriormente con cemento

para unir la varilla al macizo de roca. Realmente, lo que ocurre es un refuerzo del macizo de

roca por intermedio de la varilla. En esta forma, se pueden evitar los caídos de roca y en

ocasiones los deslizamientos de macizos de roca fracturada con discontinuidades muy

espaciadas. El diseño de los pernos, generalmente, es empírico basado en un análisis de las

discontinuidades en el macizo y de la estabilidad de los bloques. La parte más importante del

diseño es determinar la localización, ángulo de inclinación y longitud de cada perno.

4. ANCLAJES INDIVIDUALES TENSIONADOS (ANCLAS ACTIVAS)

Este método consiste en la colocación dentro del macizo de roca y muy por debajo de la

superficie de falla real o potencial de una serie de tirantes de acero anclados en su punta y

tensados por medio de gatos en superficie. Los anclajes generan fuerzas de compresión que

aumentan la fricción y / o contrarrestan la acción de las fuerzas desestabilizadoras.

al ángulo de fricción. Se ahorra gran cantidad de pernos, instalándolos al ángulo óptimo, en

lugar de colocarlos normales a la falla.

Page 52: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 52

X. ESTRUCTURAS ENTERRADAS

Las estructuras enterradas son elementos capaces de resistir esfuerzos a flexión que se

colocan dentro del suelo atravezando la posible superficie de falla. Estas estructuras trabajan

enpotradas en el suelo por debajo de la falla. Se conocen varios tipos de estructura enterrada

así:

1. Tablestacas

2. Pilotes

3. Pilas o Caissons

1. Tablestacas

Las tablestacas son estructuras de contención hincadas, delgadas y esbeltas las cuales trabajan

generalmente a flexión enpotradas o ancladas. Pueden ser de acero, de concreto o de madera

siendo las de acero las más utilizadas. El muro de tablestaca está conformado por una serie

de pilotes unidos entre sí para formar una pared continua. La integridad del muro depende de

las uniones entre pilotes individuales.

Las tablestacas son utilizadas con relativa frecuencia como estructura de contención para la

conformación de muelles en ríos o mares. Para su hincado se requiere que el suelo permita la

penetración del pilote y no existan bloques o cantos grandes de roca. La sección de la

tablestaca depende de la altura de la tierra a retenerse y de las condiciones del suelo y agua,

así como del sistema de anclaje de los pilotes.

Page 53: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 53

La altura de los muros de tablestacas varían

generalmente entre 4.5 y 12 metros.

2. Pilotes

Los pilotes hincados han sido utilizados en

ocasiones para la estabilización de

deslizamientos activos. Este método sólo es

apropiado para deslizamientos poco profundos

y suelos que no fluyan entre los pilotes.

Los deslizamientos profundos generalmente

producen fuerzas laterales muy grandes que no pueden ser resistidas fácilmente por los pilotes.

Los pilotes deben enterrarse en suelo firme y competente para evitar su arrancamiento o inclinación.

Es común la utilización de estructuras de concreto armado, uniendo las cabezas de los pilotes para

mejorar su rigidez y comportamiento en general. La resistencia o capacidad de un pilote y su efecto

de factor de seguridad depende de la profundidad a la cual se encuentra hincado el pilote por debajo

de las superficies de falla. El diseño de los pilotes supone la ocurrencia de presiones de tierra sobre

el pilote arriba de la superficie de falla y de reacción de subrasante por debajo de esta. Internamente

los pilotes se diseñan a flexión y a cortante, como se indica en la figura (Roman, 1996).

Para determinar el espaciamiento entre pilotes y su longitud de empotramiento dentro del suelo quieto

se deben cumplir las siguientes condiciones:

a. La presión lateral sobre el pilote debe ser menor que su capacidad de soporte bajo cargas

horizontales.

Page 54: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 54

b. El suelo entre pilotes no debe ser extruido.

Page 55: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 55

3. Muros de pilas de gran diámetro

En ocasiones se construyen grandes muros a profundidades importantes construyendo pilas

de gran diámetro unidas entre sí, conformando una estructura o muro de gravedad. Estos

muros o pilas generalmente son de concreto armado y se excavan utilizando procedimientos

similares a los de las pilas para cimentación de edificios. Generalmente se construye una sola

hilera de pilas o pilotes, pero en algunos casos se utilizan dos hileras. La construcción de pilas

de gran diámetro para la estabilización de deslizamientos fue descrita por Pachakis y otros

(1997) para la estabilización de un talud en Grecia. El sistema consiste en la construcción de

filas de pilas fundidas en sitio de más de un metro de diámetro a un espaciamiento similar a

su diámetro. Las pilas se excavan en el suelo o roca y se unen entre sí por medio de vigas

formando una estructura reticular. Se pueden construir en el pie, en la parte media o en la

parte alta de los deslizamientos.

Page 56: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 56

En muchas ocasiones la construcción de muros es difícil debido a la imposibilidad de realizar

excavaciones previamente a la construcción del muro. En estos casos la construcción de pilas

Page 57: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 57

perforadas de 1 a 2 metros de diámetro unidas entre sí para conformar un muro puede resultar

una solución muy efectiva. Las pilas deben enterrarse a una profundidad suficiente dentro de

un estrato competente para producir fuerzas laterales que permitan la estabilidad de los muros.

En todos los casos la profundidad de las pilas debe sobrepasar la superficie de falla crítica.

XI. CONCLUSIONES El diseño de un muro de contención depende principalmente de las características de la

estructura y de la tierra a soportar.

Es de gran importancia establecer y conocer las condiciones del lugar en donde se ejecutará

el muro, así como las condiciones del relleno

Concluimos que los muros de contención son proyectos que tienen mucha importancia y

de beneficio para una comunidad de personas.

XII. RECOMENDACIONES

XIII. BIBLIOGRAFÍA:

https://www.google.com.pe/#psj=1&q=recomendaciones+para+la+construccion+de+mur

os+de+contencion

https://www.google.com.pe/#psj=1&q=muros+de+concreto+armado

ftp://ftp.unicauca.edu.co/Facultades/FIC/IngCivil/Geotecnia/profesor_lucio_cruz/Curso

https://www.google.com.pe/#psj=1&q=tipos+de+muros+de+contencion+de+concreto+ar

mado+Y+++sus+normas

http://www.slideshare.net/maxterlopez/muros-de-contencin-2008rt

Page 58: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 58

XIV. PANEL FOTOGRÁFICO

Page 59: muros de contencion.pdf

UNIVERSIDAD PRIVADA DEL NORTE INGENIERÍA CIVIL

CONSTRUCCIÓN I MUROS DE CONTENCIÓN 59