multiwavelength properties of hyperluminous infrared galaxies

Download Multiwavelength properties of hyperluminous infrared galaxies

If you can't read please download the document

Upload: angel-ruiz-camunas

Post on 11-Jun-2015

179 views

Category:

Technology


0 download

DESCRIPTION

Ph.D. thesis dissert

TRANSCRIPT

  • 1. Multiwalength properties ofHyperluminous Infrared Galaxies Angel Ruiz Camuas Ph.D. thesis

2. Talk outline

  • Introduction
  • AGN and SB

3. AGN / galaxy formation coevolution 4. ULIRG and HLIRG HLIRG samples 5. Methodology

  • X-ray analysis

6. MIR analysis 7. SED analysis Results and discussion 8. Conclusion and future work 9. Introduction 10. Active Galactic Nuclei

  • Energetic phenomena in the central region of galaxies (~10%).Not associated to starlight!

11. ~10-1000 more luminous than the host galaxy. 12. Enormous diversity of AGN. 13. Most relevant (for this work) classifications:

  • Luminosity: Seyfert | QSO(e.g. L X> 10 44erg s -1 )

14. Optical spectra: Type 1 | Type 2(broad emission lines) 15. Active Galactic Nuclei

  • Significant emission over the entire EM spectrum:

Prieto et al. 2010 Absorption 16.

  • Power source: accretion into SMBH

17. Unified Model:(Antonucci & Miller 1985, Urry & Padovani 1996) Active Galactic Nuclei X-ray: inverse Compton scattering (electron corona) Optical/UV: black body (direct) + emission lines IR: black body (reprocessed by dust) 18. Starburst Galaxies

  • Galaxies with intense on-going star formation.

19. Current SFR exhaust gas in less than dynamical time-scale (i.e. one rotation period). 20. Properties depend on age, luminosity and metallicity. 21. SB episodes in blue dwarf galaxies, Wolf-Rayetgalaxies, Luminous IR galaxies (LIRG),... 22. Starburst Galaxies

  • Strong IR emitters:

Schmitt et al. 1997 Radio: electrons from SN (synchrotron) HII regions (free-free) Optical/UV: host galaxy starlight and young hot stars IR: reprocessed radiation by dust X-rays: last stages of stellar evolution (X-ray binaries, SNR,...) 23. AGN SB

  • All galaxies harbour central SMBH.(Ferrarese & Ford 2005)

24. Correlation between SMBH mass and bulge mass.(Hring & Rix 2004) 25. Accretion history (luminosity function of AGN) matches star formationhistory of the Universe.(Ebrero et al. 2009, Marconi et al. 2006) Sometimes both present SMBH growth formation BULGE Co-evolution! Physical connection between AGN and starburst! 26. Observing AGN-galaxy co-evolution

  • Star formationtakes place in heavily obscured environments: need penetrating radiation:
    • X-rays(of course!): thermalbremsstrahlung , X-ray binaries
  • 27. MIR-FIR-submm : radiation absorbed and re- emitted

SMBH growth through accretion producesAGN activity :

    • X-raysare the smoking gun,but :
    • Most accretion power absorbed(Fabian et al. 1999)
  • 28. X-ray background synthesis modelsrequiremost AGN in the Universe absorbed(Gilli et al. 1999)

WarmMIR-FIRcolours: direct emission absorbed and re- emitted Happy marriage of X-ray and MIR-FIR astronomy:coincidence in time ofChandra, XMM-Newton, Suzaku, Spitzer, Akari, Herschel... 29. Observing AGN-galaxy co-evolution

  • Multi-wavelength surveys: AEGIS, GOODS, COSMOS

30. Targeted MIR observations of X-ray sources:

  • X-ray absorbed broad line QSO(Stevens et al. 2010, Page et al. 2007)

Targeted X-ray observations of IR-emitting objects:

  • Ultraluminous IR Galaxies (Franceschini et al. 2003, Teng et al. 2005,2009)

31. Hyperluminous IR Galaxies 32. Infrared Galaxies

  • Galaxies where most of the bolometric output is emitted in the IR(Sanders & Mirabel 1996)

33. LIRG: L IR> 10 11L

    • Ultraluminous IR Galaxies(ULIRG) : L IR> 10 12L
      • Hyperluminous IR Galaxies (HLIRG) : L IR> 10 13L

34. ULIRG

  • First ULIRG discovered in IRAS surveys(Houck et al. 1985)

35. Rare in local Universe, but large number detected in deep IR surveys(Franceschini et al. 2001) 36. Paradigm : mergers of gas-rich galaxies trigger a sort of combination of dust-enshrouded SB and AGN: (Lonsdale et al. 2006)

    • Dominated by SB and some (~50-70%) harbour AGN(Farrah et al. 2003, Nardini et al 2009)
  • 37. Fraction of AGN and relative contribution increases with IR luminosity(Veilleux et al. 1999, Nardini et al. 2010)

38. HLIRG

  • First HLIRG discovered byKleinmann et al. (1988): three times more luminous than any other ULIRG!

39. Paradigm not so well-grounded ->Not triviallyhigh luminosity tail of ULIRG:

    • Only ~30% interacting(Farrah et al. 2002b)
  • 40. Contradictory results:
  • SB powered:Frayer et al. 1998, 1999

41. AGN powered:Evans et al. 1998, Yun et al. 1998 42. AGN dominated with significant SB contribution:Rowan-Robinson 2000, Farrah et al. 2002a

  • HLIRGs:
  • Powerful AGN emission

43. Strong star formation: > 1000 M / yr 44. Excellent laboratory to investigate star formation and BH growth! 45. Aims of this thesis

  • Characterize the properties of HLIRG in several energy ranges:
      • Star formation rates.
    • 46. Hydrogen column density and dust covering factor.

Disentangle the AGN and SB emission. 47. Reproduce broadband emission (SED) using simple AGN and SB models. 48. Do HLIRG form an homogeneous population? 49. Samples of HLIRG 50.

  • Selected from several IR surveys and AGN follow-ups

51. Largest sample of HLIRG, but:

    • Highly inhomogeneous
  • 52. Biased toward AGN content

53. Contamination of pure bright QSO Samples of HLIRG Rowan-Robinson 2000 sample (44 HLIRG) L IR> 10 13h 65 -2L Farrah et al. 2002 (10 HLIRG)

  • Selection independent of obscuration, inclination or AGN content.

54. From 60m m and 850m m surveys -> statisticallyhomogeneous and complete 55. X-ray data for just 6 sources (half undetected) XMM-Newton sample (13 sources) Archive + own AO5 data Spitzer sample (13 sources) Archive data 9 sources in common 56. Samples of HLIRG Spitzer sample (13) XMM/SED sample (13) F02 sample (10) 4 5 1 4 0 3 0 RR00 sample 57. Samples of HLIRG Source Type z L FIR[ L ] CT IRAS F00235+1024 IRAS 07380-2342 IRAS F23569-0341 IRAS F10026+4949 PG 1206+459 PG 1247+267 IRAS 14026+4341 IRAS F14218+3845 IRAS F16124+3241 IRAS 16347+7037 EP90 J1640+4105 IRAS 18216+6418 IRAS 00182-7112 IRAS 09104+4109 IRAS 12514+1027 IRAS F15307+3252 IRAS F12509+3122 SB (NL) SB (NL) SB (NL) Sy1 QSO QSO QSO QSO SB (NL) QSO QSO QSO QSO 2 QSO 2 Sy 2 QSO 2 QSO 0.575 0.292 0.59 1.12 1.158 2.038 0.323 1.21 0.71 1.334 1.099 0.297 0.327 0.442 0.32 0.926 0.78 13.2 13.0 12.2 13.5 13.6 14.1 12.7 14.2 12.9 13.8 13.1 12.9 12.9 12.8 12.6 13.5 13.3 58. Multiwavelength analysis of HLIRG 59. Methodology

  • XMM-Newton study (XMM sample)
  • Spectral analysis

Spitzer study (Spitzer sample)

  • AGN/SB decomposition

SEDanalysis (XMM sample)

  • Modelling with observational templates

60. X-ray analysis

  • XMM-Newton data reduction:
    • EPIC data reprocessed with standard SAS to include the latest calibration files at that time.
  • 61. 10 out of 13 sources detected, heterogeneous spectra

Modelling the X-ray (0.2-12 keV) spectra:

    • AGN: [absorption]*powerlaw( G ~2) + [soft excess] +[reflection]
  • 62. SB: thermal (kT~0.5 keV) or flat powerlaw

IRAS 18216+6418 IRAS 00182-7112 Risaliti & Elvis 2004 Compton-Thick:N H> 10 24cm -2 63. X-ray analysis

  • What can we obtain?
  • AGN and SB signatures

64. X-ray luminosities (observed and intrinsic) 65. Hydrogen column density ->CT absorption? 66. AGN contribution to bolometric output (assuming a SED) 67. MIR analysis

  • Spitzer data reduction:
    • IRS low resolution spectra extracted from coadded images with SPICE.
  • 68. 12 out of 13 sources detected, low resolution spectra with fair quality.

Modelling MIR spectra:

    • Low dispersionof AGN and SB emission within5-8m m -> modelling of MIR spectra withsimple templates .
  • 69. MIR spectral decompositionsuccessfully in ULIRG(Nardini et al. 2008, 2009, 2010)

Nardini et al. 2008 Brandl et al. 2006 Dispersion 70. MIR analysis

  • f l obs= f 6 m m int[a 6u l AGN e - t ( l )+(1 -a 6 ) u l SB]

AGN: absorbed powerlaw spectral index 0.8(Netzer et al. 2007) SB: average observed spectra of 5 SB-dominated ULIRGs(Nardini et al. 2008) 71. MIR analysis

  • What can we obtain?
  • AGN and SB signatures

72. MIR luminosities 73. Star formation rates 74. Covering factor 75. AGN contribution to total IR output 76. SED analysis

  • SED (radio to X-rays) data from:
    • Intensive search in astronomical data bases and literature.
  • 77. Rebined MIR and X-ray spectra

Modelling SED:

    • Qualitative analysis the whole SED -> observational templates:
    • F n= F BOL[au n AGN+ (1 -a ) u n SB]
  • 78. Composite templates (AGN and SB both present)

79. Templates Type 1 AGN Lum. independent Richards et al. 2006 Lum. dependent Hopkins et al. 2007 80. Templates Type 2 AGN Minimal SB contribution(Bianchi et al. 2006) NGC 5506 N H= 3x10 22cm -2 NGC 4507 N H= 4x10 23cm -2 Mrk 3 N H= 1.4x10 24cm -2 NGC 3393 N H> 1x10 25cm -2 81. Templates - Starburst NGC 5253 Young and dusty NGC 7714 Young and unobscured M82 Old SB IRAS 12112+0305 SB-dom. ULIRG 82. Templates - Composite NGC 1068 AGN ~50% Mrk 231 AGN ~70% IRAS 19254-7245 AGN ~45% IRAS 22491-1808 AGN ~70% 83. SED analysis

  • What can we obtain?
  • AGN and SB signatures

84. Obscuration features 85. AGN and SB bolometric luminosities 86. Relative contribution of AGN and SB components 87. Results 88. Source AGN SB Obscur. Farrah et al. 2002b IRAS F00235+1024 IRAS 07380-2342 IRAS F16124+3241 IRAS 00182-7112 IRAS 09104+4109 IRAS 12514+1027 IRAS F15307+3252 IRAS F10026+4949 PG 1206+459 PG 1247+267 IRAS 14026+4341 IRAS F14218+3845 IRAS 16347+7037 EP90 J1640+4105 IRAS 18216+6418 IRAS F12509+3122 1.0 1.0 1.0 >0.8 0.5 0.6 0.3 >0.8 0.6 0.7 0.8 0.2 0.8 0.9 0.5 0.6 AGN fraction ~1 0.2 ~1 ~1 ~1 0.7 CF ??? ??? SFR