multiscale simulation of nanocomposites by means of the ... · molecular dynamic finite element...

11
Andreas Kempe , Lutz Nasdala, Raimund Rolfes Institute of Structural Analysis, LUH Multiscale Simulation of Nanocomposites by means of the Molecular Dynamic Finite Element Method IRTG, Hannover 30.09.2013

Upload: others

Post on 24-May-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multiscale Simulation of Nanocomposites by means of the ... · Molecular Dynamic Finite Element Method 4 MDFEM1),2) Superposition Molecular Dynamics DREIDING Force Field Introduction

Andreas Kempe, Lutz Nasdala, Raimund Rolfes

Institute of Structural Analysis, LUH

Multiscale Simulation of Nanocomposites by means of the Molecular Dynamic Finite Element Method

IRTG, Hannover 30.09.2013

Page 2: Multiscale Simulation of Nanocomposites by means of the ... · Molecular Dynamic Finite Element Method 4 MDFEM1),2) Superposition Molecular Dynamics DREIDING Force Field Introduction

Introduction to Nanocomposites

• Nanoparticles exhibit a large specific surface

• Can be used to modify material properties

• Size effect/dependency

3

2,6 g Al2O3 = 260 m2 (tennis court)

• Virtual Institute: Enhancement of properties of CFRP by means of Nanoparticles

• Central Questions: Mechanims of Particles? Role Particle-Matrix Interface?

Improve compressive strength by 21% with 15 wt.% boehmite nanoparticles

source: VI/DLR

Introduction MDFEM Composite Modeling

Num. Results Multiscale Scheme Conclusions

Page 3: Multiscale Simulation of Nanocomposites by means of the ... · Molecular Dynamic Finite Element Method 4 MDFEM1),2) Superposition Molecular Dynamics DREIDING Force Field Introduction

Molecular Dynamic Finite Element Method

4

MDFEM1),2)

Superposition

Molecular Dynamics

DREIDING Force Field

Introduction MDFEM Composite Modeling

Num. Results Multiscale Scheme Conclusions

1) Nasdala, Kempe, Rolfes, Computers, Materials & Continua 2010. 2) Nasdala, Kempe, Rolfes, Composites Science and Technology 2012.

Page 4: Multiscale Simulation of Nanocomposites by means of the ... · Molecular Dynamic Finite Element Method 4 MDFEM1),2) Superposition Molecular Dynamics DREIDING Force Field Introduction

Nanocomposite Modeling

• System: γ-Al2O3 nanoparticles in epoxy matrix

5

SEM image of UD layer modified using focused ion beam (FIB)

Nano- particle

Fiber Fiber

… …

• homogeneous particle distribution

• unit cell approach

Introduction MDFEM Composite Modeling

Num. Results Multiscale Scheme Conclusions

SEM image of UD layer

Page 5: Multiscale Simulation of Nanocomposites by means of the ... · Molecular Dynamic Finite Element Method 4 MDFEM1),2) Superposition Molecular Dynamics DREIDING Force Field Introduction

Nanocomposite Modeling

• Structure Generator: Randomized unit cell

• Matrix: LY556 epoxy resin; HY917 Anhydride Curing Agent

• Particle-Matrix interaction: physical bonds

MDFEM Simulation Procedure

1. Relaxation: Minimize Energy, [Equilibration: Thermostat] 2. Loading: Apply 5% tensile strain, „quasi-static analysis“

6

1. Particle 2. Matrix 3. Composite

Introduction MDFEM Composite Modeling

Num. Results Multiscale Scheme Conclusions

Page 6: Multiscale Simulation of Nanocomposites by means of the ... · Molecular Dynamic Finite Element Method 4 MDFEM1),2) Superposition Molecular Dynamics DREIDING Force Field Introduction

Neat Epoxy Resin: Averaged Stress-Strain Curves

7

Vir

ial

Introduction MDFEM Composite Modeling

Num. Results Multiscale Scheme Conclusions

source: VI/DLR

Page 7: Multiscale Simulation of Nanocomposites by means of the ... · Molecular Dynamic Finite Element Method 4 MDFEM1),2) Superposition Molecular Dynamics DREIDING Force Field Introduction

Size-Dependency of Tensile Modulus

8

Introduction MDFEM Composite Modeling

Num. Results Multiscale Scheme Conclusions

Page 8: Multiscale Simulation of Nanocomposites by means of the ... · Molecular Dynamic Finite Element Method 4 MDFEM1),2) Superposition Molecular Dynamics DREIDING Force Field Introduction

Radial Density around Particle after Relaxation

9

• Density increases around particle

Distance to Particle Core [Å]

Particle Matrix

Radial Density

cell density: 1.2 g/cm³

Den

sity

[g/

cm^3

]

Introduction MDFEM Composite Modeling

Num. Results Multiscale Scheme Conclusions

Page 9: Multiscale Simulation of Nanocomposites by means of the ... · Molecular Dynamic Finite Element Method 4 MDFEM1),2) Superposition Molecular Dynamics DREIDING Force Field Introduction

Multiscale Simulation of Nanocomposites

10

Homogenization of Particle Core

Homogenization of Matrix Material

Handshaking Region:

Bridging Domain Method1)

Energy scaling factor

Introduction MDFEM Composite Modeling

Num. Results Multiscale Scheme Conclusions

1) Xiao, Belytschko, Comp. Meth. in Apl. Mech & Eng 2004.

Numerical Homogenziation

Page 10: Multiscale Simulation of Nanocomposites by means of the ... · Molecular Dynamic Finite Element Method 4 MDFEM1),2) Superposition Molecular Dynamics DREIDING Force Field Introduction

Conclusions & Outlook

• MDFEM simulation of nanocomposites: Predict properties and gain insights into mechanims due to MD

• Interface central role in nanocomposites: e.g. size-dependent tensile modulus due to increased density at interface -> special Multiscale Scheme

• Virtual Material Development at the Nanoscale

• Current Work: Nanocomposite VE/RVE

11 Introduction MDFEM Composite Modeling

Num. Results Multiscale Conclusions

Page 11: Multiscale Simulation of Nanocomposites by means of the ... · Molecular Dynamic Finite Element Method 4 MDFEM1),2) Superposition Molecular Dynamics DREIDING Force Field Introduction

12

Funded/Supported by

IRTG, Hannover 30.09.2013

Thank you for your attention.