multiple phase behavior of carbon dioxide …baervan.nmt.edu/publications/media/pdf/thesis/mangone,...

121
MULTIPLE PHASE BEHAVIOR OF CARBON DIOXIDE AND HYDROCARBON SYSTEMS INCLUDING THE EFFECTS OF WATER by Dean Joseph Mangone B.S. in Ch.E., University of Pittsburgh, 1984 Submitted to the Graduate Faculty of the School of Engineering in partial fulfillment of the requirements for the degree of Master of Science in Chemical and Petroleum Engineering University of Pittsburgh 1985 The author grants permission to reproduce copies. Signed

Upload: truongnhu

Post on 22-Mar-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

MULTIPLE PHASE BEHAVIOR OF CARBON DIOXIDE AND

HYDROCARBON SYSTEMS INCLUDING THE EFFECTS OF WATER

by

Dean Joseph Mangone

B.S. in Ch.E., University of Pittsburgh, 1984

Submitted to the Graduate Faculty

of the School of Engineering

in partial fulfillment of

the requirements for the degree of

Master of Science

in

Chemical and Petroleum Engineering

University of Pittsburgh

1985

The author grants permissionto reproduce copies.

Signed

ACKNOWLEDGMENTS

I would like to thank my co-advisors, Professor G. D. Holder and Professor

B. I. Morsi for their time and assistance over the past year. I would especially like

to thank Professor R. M. Enick for his significant contribution to this work.

I would also like to thank all of the graduate students who I shared an

office with, D. Dempsey, R. Enick, R. Foster, S. Klara and R. Mohamed for putting

up with me.

I would also like to thank Jocie Glasser for typing this otherwise it would

have taken another month to complete.

Finally, I would like to thank my family for their support and constant

encouragement.

ABSTRACT

Signature

MULTIPLE PHASE BEHAVIOR OF CARBON DIOIXIDE AND

HYDROCARBON SYSTEMS

INCLUDING THE EFFECTS OF WATER

Dean Josepii Mangone, M.S.

University of Pittsburgh

An experimental study for characterizing the effect of water on binary

and ternary carbon dioxide and hydrocarbon systems has been completed.

Specifically, the multiple phase behavior of the carbon dioxide and normal

tetradecane system has been compared with the carbon dioxide, normal tetradecane

and water system. The carbon dioxide, methane and normal tetradecane system

was also compared ot the carbon dioxide, methane, normal tetradecane and water

system.

Pressure-temperature-volume (PVT) data has been collected for these

systems at various compositions at temperatures of 305.5 and 343.3 K. Pressure-

composition (Px) diagrams are presented for each case. It has been determined that

the effect of water on the dew and bubble points is due to the solubility of carbon

dioxide in water.

A study of the three phase region for the binary system of carbon dioxide

and normal tetradecane and the four phase region for the ternary system of carbon

dioxide, normal tetradecane and water at 305.5 K is also presented. Numerical

methods for determining the multiple phase densities and compositions from only

volumetric behavior data are presented, and a new method for predicting the

volumetric behavior in the three and four phase region is also outlined.

DESCRIPTORS

Carbon dioxide High pressure volumetric behavior

Minimum miscibility pressure Multiple phase behavior

Normal alkanes PVT data

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

NOMENCLATURE

LO INTRODUCTION

1.1 Overview of Conventional Oil-Recovery Methods

1.2 Carbon Dioxide Flooding

L3 Review of Previous Work

2.0 STATEMENT OF THE PROBLEM

3.0 EXPERIMENTAL

3.1 Experimental Apparatus

3.2 Experimental Procedure

4.0 RAW DATA

4.1 PVT Data for C02/nCi4H3o

4.2 PVT Data for C02/nCi4H3o/H20

4.3 PVT Data for C02/CH4/nCi4H3o

4.4 PVT Data for C02/CH4/nCi4H3o/H20

5.0 RESULTS AND DISCUSSION

5.1 CO2/nCi4H30 and C02/nCi4H3o/H20 Systems

5.2 C02/CH4/nCi4H3o and C02/CH4/nCi4H3oH20Systems

5.3 Three Phase Volumetric Behavior

5.4 Four Phase Volumetric Behavior

/»>

(*.

TABLE OF CONTENTS

(Continued)

Page

5.5 Effects of Water

6.0 CONCLUSIONS

7.0 RECOMMENDATION

BIBLIOGRAPHY

LIST OF FIGURES

Figure No. Page

1 Critical Loci of C02/Alkane Systems

2 Experimental Apparatus

3 Volumetric Behavior at Various Pressures for90.0% CO2 and 10.0% nCi4H3o

4 Volumetric Behavior at Various Pressures for36.83% CO2, 4.08% nCi4H3o and 59.09% H2O

5 Pressure-Phase Volume Fraction Diagram,90.0% CO2 and 10.0% nCi4H3o at 305.5 K

6 Pressure-Phase Volume Fraction Diagram,86.0% CO2 and 14.0% nCi4H3o at 343.3 K

7 Pressure-Phase Volume Fraction Diagram,36.83% CO2, 4.08% nCi4H3o and 59.09% H2Oat 305.5 K

8 Pressure-Phase Volume Fraction Diagram,28.45% CO2, 4.62% nCi4H3o and 66.93%H2O at 343.3 K

9 Pressure-Phase Volume Fraction Diagram,82.34% CO2, 9.66% CH4 and 8.00%nCi4H3o at 305.5 K

10 Pressure-Phase Volume Fraction Diagram,85.92% CO2, 10.08% CH4 and 4.00%nCi4H3o at 343.3 K

11 Pressure-Phase Volume Fraction Diagram,38.20% CO2, 4.48% CH4, 3.71%nCi4H3o and 53.61% H2O at 305.5 K

12 Pressure-Phase Volume Fraction Diagram,54.46% CO2, 6.38% CH4, 2.54%nCi4H3o and 36.63% H2O at 343.3 K

13 Pressure-Composition Diagram, C02/nCi4H3oSystem at 305.5 K

14 Pressure-Composition Diagram, C02/nCi4H3o/H2O System at 305.5 K

LIST OF FIGURES

(Continued)

Figure No.

15 Pressure-Composition Diagram, Comparisonof C02/nCi4H3o and C02/nCi4H3o/H20Systems at 343.3 K

16 Pressure-Composition Diagram, Comparisonof C02/CH4/nCi4H3o and CO2/CH4/nCi4H3o/H20 Systems at 305.5 K

17 Pressure-Composition Diagram, Comparisonof C02/CH4/nCi4H3o and CO2/CH4/nCi4H3o/H20 Systems at 343.3 K

18 Three Phase Volumetric Behavior, C02/nCi4H3oSystem at 305.5 K

19 Calculated Three Phase Volumetric Behavior,CO2MC14H30 System at 305.5 K

20 Four Phase Volumetric Behavior, CO2/11C14H30/H2O System at 305.5 K

21 Calculated Four Phase Volumetric Behavior,C02/nCi4H3o/H20 System at 305.5 K

LIST OF TABLES

Table No. Page

1 Volumetric Data for CO2/nCi4H30 Systemat 305.5 K

2 Volumetric Data for C02/nCi4H3o/H20 Systemat 305.5 K

3 Volumetric Data for C02/nCi4H3o Systemat 343.3 K

4 Volumetric Data for C02/nCi4H3o/H20 Systemat 343.3 K

5 Volumetric Data for C02/CH4/nCi4H3o Systemat 305.5 K

6 Volumetric Data for C02/CH4/nCi4H3o/H20System at 305.5 K

7 Volumetric Data for C02/CH4/nCi4H3o Systemat 343.3 K

8 Volumetric Data for C02/CH4/nCi4H3o/H20System at 343.3 K

9 Comparison of Bubble and Dew Points Calculatedand Measured for C02/nCi4H3o/H20 Systems at305.5 and 343.3 K

10 Three Phase Densities and Compositions

11 Comparison of the Actual and Calculated OverallComposition for the Three Phase Region

12 Four Phase Densities and Compositions

13 Comparison of the Actual and Calculated OverallComposition for the Four Phase Region

NOMENCLATURE

BPP bubble point pressure

CP critical point

DPP dew point pressure

F degrees Fahrenheit

K degrees Kelvin

L liquid

Ll hydrocarbon rich liquid

L2 carbon dioxide rich liquid

L3 water rich liquid

LL liquid-liquid

LLL liquid-liquid-liquid

LLV liquid-liquid-liquid-vapor

LLV liquid-liquid-vapor

LV liquid-vapor

MMP minimum miscibility pressure

MPa pascals X10®

MW molecular weight

P pressure

Psia pounds per square inch, absolute

PVT pressure-volume-temperature

T temperature

V vapor, m^

W weight, kg

X liquid mole fraction

y vapor mole fraction

z overall mole fraction

p density, kg m~3

NOMENCLATURE

(Continued)

1.0 INTRODUCTION

1.1 Overview of Conventional Oil-Recovery Methods

After discovery, most oil reservoirs typically undergo a period of

production called primary recovery in which natural energy associated with a

reservoir is used to recover a portion of the oil in place. Mechanisms which utilize

the initial pressure energy such as liquid expansion and rock compaction help drive

reservoir fluid into wellbores as the pressure declines. When the pressure of the

reservoir drops far enough, additional recovery is obtained from gas expansion and

liberation. In some reservoirs additional oil is recovered from water encroachment

from an aquifer. Water displaces oil and oil production is sustained. When this

energy has been depleted and the rate of oil recovery becomes uneconomical, oil

production can only be increased through the injection of secondary energy into the

reservoir.

A secondary method for recovery is often justified due to the fact that

typical values for primary recovery are only five to twenty percent of the original oil

in place. Direct fluid injection into the reservoir has become the acceptable

method for both maintaining reservoir pressure and displacing oil. The two methods

most widely employed utilized primary recovery mechanisms. Water is injected to

enhance the recovery by water encroachment and gas is injected, at a pressure

where the gas is immiscible with the oil, to enhance gas cap expansion. These

techniques have become known as secondary recovery. However, the ultimate

recovery achievable by waterflooding or immiscible gas injection is somewhat

limited primarily because of low volumetric sweepout efficiency of the injection

fluid, poor displacement efficiency of the injection fluid in rock that is swept, and

oil displaced from the swept reservoir volume is not all captured by the producing

wellbore but goes to resaturate unswept rock which may have been depleted during

primary recovery.

Even though significant amounts of oil are recovered from primary and

secondary recovery methods, ultimate oil recovery generally is only in the range of

twenty to forty percent of the original oil in place. Therefore, tertiary recovery

methods have been developed to recover the remaining oil in place. The tertiary

methods include such techniques as miscible fluid displacement, microemulsion

flooding, thermal methods, and other chemical flooding methods. These methods

target mobilization of residual oil, interfacial tension reduction between the oil and

rock and oil and water, viscosity reduction, and increased volumetric sweep

efficiency respectively.

However, application of tertiary processes usually entails substantial risk

because of their technological sophistication and front loaded financial

requirement. Operational problems such as the corrosion of equipment, high heat

losses, and high material costs lead to the unattractiveness of these methods.

Therefore, extensive planning and design along with careful operation are required

when a method is applied in the field.

1.2 Carbon Dioxide Flooding

Recent activity in miscible flooding has focused on the C02-miscible

process. Carbon dioxide flooding has been studied since the 1950's(^"^)* but

♦Parenthetical references placed superior to the line of text refer to thebibliography.

currently this process is of most interest with respect to the other tertiary

recovery processes.^^) The attractiveness of carbon dioxide as a component for the

supercritical extraction process is that carbon dioxides critical temperature, Sl^C,

is at the lower end of a relatively narrow range of reservoir temperatures (30-

120OC).(®) Even though carbon dioxide has a low viscosity, thus reducing the

volumetric sweepout efficiency, carbon dioxides high density and strong solvent

properties above the critical temperature minimized C02/oil segregation. This

allows for greater mixing and relatively low pressures for miscibility. Other

mechanisms involved during CO2 floods, other than miscibility, are oil swelling,

viscosity reduction, interfacial tension reduction, solution gas drive, and

immiscibilty drive. All of these factors will increase the overall recovery of oil

from the reservoir. The major drawbacks are mobility control, asphaltene

decompostion, and cost.

Carbon dioxide flooding may be applied in the field as a secondary or, in

most cases, a tertiary process. It can be carried out in any of the following

manners:

1. Continuous injection of CO2

2. Carbon dioxide followed by less expensive gas

3. Carbon dioxide followed by water

4. Simultaneous/alternate injection of CO2 and water

5. Combination C02/solvent injection

6. Combination C02/heat injection(7)

The choice between these modes of application will depend on a great number of

factors. Nevertheless, as a general guide, in reservoirs in which the displacement is

horizontal or nearly so, the CO2 flooding process will involve alternating injection

of CO2 and water to attempt to control the mobility of the fluids, whereas in

vertical floods the various fluids will be injected sequentially.

In the evaluation of whether a field is appropriate for carbon dioxide

flooding^! several types of experiments are performed on the oil from the field.(®)

The test includes high pressure volumetric (PVT) and vapor-liquid equilibrium (VLE)

studies, slim tube displacement (STD) studies, core displacements and continuous

multiple contact experiments. Along with the results of these tests, for a miscible

flood to be a competitive process in a given reservoir, an adequate volume of CO2

must be available at a rate and cost that will allow favorable economics, the

reservoir pressure required for miscibility must be attainable and the incremental

oil recovery must be sufficiently large and timely for project economics to

withstand the added costs.^®) The primary concern of this study is the PVT and

VLE studies.

1.3 Review of Previous Work

Multiple phase behavior may be experienced during the carbon dioxide

miscible flooding of petroleum reservoirs. In water-free carbon dioxide/crude oil

systems, three phases often exist in equilibrium at low temperatures.^^^) However,

since water is almost universally present, either interstitially or because it is

injected for mobility control,^^) its presence should also be considered in phase

behavior studies. Due to the relatively low miscibility of water with both carbon

dioxide and hydrocarbons at reservoir conditions, an aqueous phase will almost

always exist, resulting in the possibility of a fourth phase being present.

Alkanes constitute a large portion of a typical crude oil, and therefore

many carbon dioxide-normal alkane binary systems have been studied. Liqid-liquid-

vapor (LLV) immiscibility has been observed in CO2 + n-paraffin binary systems

ranging from n-heptane(^2) to n-ercosane.^^^) Schneider et performed the

earliest studies showing the LLV immiscibility with n-octane, n-undecane, n-

tridecane and n-hexadeeane. Kulkarni et al.^^*^) studied the CO2 + n-decane system

along with its multiple phase loci, including LLV while Hbttory et al.(^^) detailed

the LLV behavior of the binary systems containing n-dodecane to n-pentadecane.

Luks et al.(19) performed studied to determine the LLV immiscibility limits for

CO2 +n-nonadecane and CO2 +n-heneicosane. Orr et al.(20) presented data on the

three phase pressure for O2 + n-tetradecane at various temperatures. Enick et

al.(21) presented extensive equilibria data on the multiple phase behavior of the

CO2 + n-tridecane binary system.

It was learned from the Enick, Holder and Morsi study that there is a

transition in the nature of the LLV loci (see Figure 1). As the length of the

hydrocarbon chain increases up to nCi2H26> the steep liquid-liquid (LL) critical

branch joins the critical points of the two pure components. The liquid-liquid-

vapor (LLV) locus extends from the quadrupole point (Q) to the upper critical end

point (UCEP). A transition occurs in the nCi3H28 system. The critical branch

which originates at the critical point of CO2 terminates at the K point, point

where L2 and V phases become critical. An LLV locus joins the K point and the

lower critical end point (LCEP) where the Lj and L2 phases become critical.

Another critical branch extends from the LCEP to the critical point of nCi3H28»

These two liquid-vapor (LV) loci cross near the LCEP.^^^^ For the nCi4H28 system,

the LL branch does merge with the LV branch. This critical locus continues to

shift to high temperatures as the carbon number of the normal alkane increases. In

each of these systems, a second critical branch extends from the critical point of

carbon dioxide to the K point. The LLV locus lies just beneath the vapor pressure

curve of carbon dioxide and is bounded by the Q and K points. The temperature

.-:;

*u

cE

P--

•'X

-L-V)C

EP

C.R

II'V C0

2-"

Ci2

H2

4

UC

EP

XL

-L-V

C.R

II

C02

-^C

-j3H

28

✓O*

L-L

-V

CO

2-n

Ci4

H3

0

FiB

ure

1C

riti

cal

Loc

iof

CO^

/A

lkan

eSy

stem

s

range of the LLV locus is greatest with n-tetradecane, which has an LLV locus

extending from a Kpoint at 311.15 Kto a Q point at 269.10 K.(20) For this reason,

normal tetradecane was chosen for this study in hopes that multiple phase behavior

would be observed in the systems containing methane, an impurity which would

lower the temperature range of multiple phase behavior. Furthermore, no critical

point data is available for this particular C02/alkane binary system.

In this study, the primary concern is the PVT and VLE of a normal alkane

and carbon dioxide along with the effects water has on the system. Although many

ions are present in the brine actually found in fields, pure water will be used in this

study. This will probably yield the maximum changes in phase behavior since the

main effects of the ions is to decrease solubilities of gases such as CO2 in the

water. Specifically, phase equilibria data are presented for the liquid-vapor (LV)

and the LLV region for the binary system of carbon dioxide and tetradecane. In

addition to the binary data, phase equilibria data are presented for the LLV and

liquid-liquid-liquid-vapor (LLLV) region for the same binary system with addition of

water. LV equilibria data are also presented for the carbon

dioxide/methane/tetradecane system along with LLV equilibria data for water

added to the system. Although several numerical and graphical methods of

determining the properties of each of the three phases have been proposed, new

techniques for determining phase densities and compositions using volumetric

behavior of a system of a known constant overall composition for three and four

phases will be presented. Also, a technique using volume, mass and component

balances will be presented which enables the multiple phase behavior to be

predicted.

2.0 STATEMENT OF THE PROBLEM

Recently, specific attention has been directed toward the liquid-vapor and

liquid-liquid-vapor pahse equilibria behavior of binary carbon dioxide-hydrocarbon

mixtures, specifically the carbon dioxide-normal alkane series. These binary

mixtures are important constituent pairs in carbon dioxide-crude oil systems as

encountered in the carbon dioxide miscible displacement of crude oil from a

petroleum reservoir. However, it is apparent that the effects of water, which is

present in all petroleum reservoirs, on the multiple phase behavior should also be

investigated.

Due to its relatively low solubility with both compounds, the effects of

water have often been assumed to be negligible. Another common approach has

been to simply account for the CO2 solubility in water. This study will determine

if either of these assumptions are justified and, if not, will establish a need for a

more thermodynamically sound model.

The primary goal of this study was to gain an understanding of the effects

of water. One, two and three phase equilibrium data for the binary system of

carbon dioxide and n-tetradecane are measured at various compositions,

temperatures and pressures. Two, three and four phase equilibrium data for the

same system is measured after the addition of water at the same temperatures. In

addition, 10.5 mole percent methane was added as an impurity to the carbn dioxide.

The change in phase behavior was measured at the same temperatures for systems

with and without water. The secondary goal of this work is to present a systematic

analysis of three phase volumetric behavior of binary systems and four phae

volumetric behavior of ternary systems.

3.0 EXPERIMENTAL

3.1 Experimental Apparature

The apparatus used in the PVT experiments is shown in Figure 2.

The major component of this experiments, the visual cell, is contained within a

constant temperature air bath. This oven consists of 3 mm aluminum walls

insulated with 3 cm of Fiberfrax, a ceramic material. Expanded aluminum sheets

hold the insulation against the walls and also secure five heating tapes against the

insulation facing the oven's interior. The oven floor is also insulated and is covered

by a 3 mm steel sheet to which hardware is firmly attached. The entire front of

the oven is hinged along the 2.5 cm x 2.5 cm x 3 mm angle iron supporting

structure to allow access to the inside of the oven. A 6 mm tempered glass panel is

attached to this door to allow visual observation. A mirror is mounted at a 45<^

angle along the center of the glass to enable the high pressure cell to be observed

indirectly for safety reasons. Four high temperature lights and sockets are found

on the sides of the box's interior which illuminate the equipment. A constant

temperature within the oven is maintained by a Thermoelectric temperature

controller.

A uniform temperature distribution is achieved in this 1.25 m x 1.25 m x

1.00 m volume using a .25 m fan at the top of the box which rotates a 1750 RPM and

forces the lighter, warmer air towards the bottom of the oven. Temperatures at

the top and bottom of the oven are monitored with Omega iron-constantum

thermocouples. The outputs of these and all other thermocouples are then

converted into a digital temperature readings by an Omega Model 400 temperture

indicator. This display, along with all on-off switches, the temperature controller

Hxh

>

(sn)

hN"

1 Nitrogen Tank 5 Water Cell

2 Solvent Cell 6 Oil Cell

3 Ruska Windowed Condensate Cell 7 Carbon Dioxide Tank

Direction of Rotation Indicated8 Mercury Reservoir

Colled Tubing9 Ruska Proportionating Pump

Figure 2 Experimental Apparatus

3

and pressure guages are mounted on two 3 mm aluminum side panels which flank the

oven.

The tetradecane and carbon dioxide are charged into a 400 cm^ Ruska

windowed) volatile oil cell) which is rated to 150®C and 70 MPa. The entire volume

of the ceil may be viewed, allowing visualdetermination of bubble points. This cell

is supported by a 3.0 cm x 3.0 cm x 0.5 cm angle iron frame upon which two pillow

blocks are bolted. The pillow blocks hold a 2.5 em 304 stainless steel rod which is

welded to a 304 stainless steel plate which in turn is bolted to the cell. The rod

passes through the back wall and is bolted into a 8.0 cm x 2.5 cm x 10 cm 304

stainless steel bar. This bar may be rotated manually in order to invert the cell in

the event that an interface is hidden by the two steel supports in front of the

wondows. The levels of all interfaces are measured with an Eberbach 40 cm

cathetometer. The cell is designed such that if an interface is hidden, it must be

visible when the cell is inverted. The cell may be rocked in order to mix the

components by a Scotch yoke assembly powered by a variable speed D.C. motor.

All tubing which leads to the cell is coiled about the supporting rod to permit

rotation without removal of any fittings or connections.

Thermocouples are inserted into the cell's thermowells to accurately

monitor the temperature in the cell's walls. Omega retractable sensor cables were

employed to facilitate the rotation of the cell.

All mercury displacement is achieved with a Ruska double cylinder

proportioning pump. A two liter Ruska mercury reservoir is used to safely store

mercury which is not in use.

Pressure is measured on the mercury injection line to + 12 kPA on a 35

MPa Heise gauge along with a Viatran, Model 701-115, transmitter to + 0.25%.

Pressure readings are read and recorded with a Kaye Digistrip II recorder.

The system is evacuated with a Cence Hyvac 14 vacuum pump.

Tetradecane is added to the cell using a 500 cm^ Ruska high pressure oil

storage cell by mercury displacement. Water is also added to the cell by mercury

displacement but it is stored in a one liter Whitey high pressure sample cylinder.

Upon completion of an experiment, vapor was discharged to a hood and

liquids to a waste container. In order to clean the visual cell, a 300 cm^ cylinder

was charged with solvent. Nitrogen from an Air Products A cylinder, regulated to

low pressure, forced solvent from the cylinder into the Ruska cell, removing all

residuals. The nitrogen then followed the solvent, dry the interior of the cell.

3.2 Experimental Procedure

The Ruska condensate cell is evacuated and carbon dioxide at a 99.99

percent purity is allowed to fill the cell at the vapor pressure of carbon dioxide at

25®C. The carbon dioxide is compressed by mercury injection to three supercritical

pressures, approximately 2000, 2500 and 3000 psia, where experimentally

determined compressibility factor are known.(^) The temperature and volume is

recorded and the number of moles of carbon dioxide is calculated using the gas law

to an average accuracy of + 0.005 moles. Mercury is then slowly drawn out of cell

until the desired experimental starting pressure is reached. The mass and volume of

the required normal tetradecane is calculated to obtain the desired composition.

The specific volume of the tetradecane, 99% purity, is displaced from its storage

cell using mercury, which is immimscible with other fluids, to displace it with an

accuracy of + 0.05 cm^.

The temperature controller is set at the desired temperature controller is

set at the desired temperature and the heaters turned on. The cell is kept at a

constant temperature, + 0.25 K, in the thermostated air bath. Mercury is then

injected directly into the cell to the compress the contents. After rocking the cell

for five to ten minutes to promote equilbrium, the cell is placed in the verticle

position for several minutes to promote drainage of the liquids from the wall of the

cell. The interface levels are then measured with the cathetometer whose height

readings were previously calibrated. The pressure is then read and recorded on the

digistrip recorder. Small volumes, 5-20 cm^, of mercury are then repeatedly

injected and new volume and pressure readings are taken after each injection. This

activity is continued until only one phase is present. The mercury is then slowly

withdrawn until the saturation pressure is reached, which is indicated by the first

bubble of vapor. Retrograde dewpoints, as indicated by the formation of a more

dense fluid, liquid, upon pressure reduction, may also occur. Mercury is then slowly

drawn out until the original pressure is attained.

Water, at a one to one volume ratio of water to tetradecane, is added by

mercury displacement into the cell. The same method previously outlined is

conducted. After completion, the mercury is drawn out and the cell is emptied and

cleaned.

4.0 RAW DATA

In this section, the experimental data will be presented. Data has been

taken for the carbon dioxide and normal tetradecane binary system at 305.5 K and

343.3 K and various compositions. For the same binary system, data was also taken

with water added to the system. Water was added at a one to to one volume ratio

between water and tetradecane. In addition, data was taken for the ternary system

of carbon dioxide, methane and normal tetradecane. Methane at 10.5 mole percent

was added to the carbon dioxide as an impurity.

Figure 3 and 4 are a visual representative of the experiments conducted

and the data obtained. Figure 3 shows the sequence of the volumetric behavior of

each phase for a typical run for the C02/nCi4H28 system at 305.5 K. At this

temperature and composition, two and three phase behavior are exhibited. Figure 4

shows the sequence of the volumetric behavior of each phase for the same system

shown in Figure 3 but with water added. At this temperature and composition,

three and four phase behavior are exhibited.

4.1 PVT Data for C02/nCi4H3o

Figure 5 exhibits the volumetric data for 90.0% CO2 and 10.0% nCi4H3o

at 305.5 K. At low pressures, a clear liquid and a clear vapor were observed. As

pressure was increased a second clear liquid formed. By increasing the amount of

mercury in the cell, the vapor phase disappeared leaving the two liquid phases.

Finally, as pressure was increased, the lower density, CO2 rich liquid disappeared at

the bubble point of the mixture. Table 1 presents the data for the system at 305.5

K. Figure 6 shows the volumetric data for 86.0%C02 and 14.0% nCi4H3o at 343.3

K. At this temperature, only two phase behavior was observed as pressure increased.

U

i'f-

ilfel

Ki;

i-:

10

70

VV

apo

rP

hase

.-.

f••?

•.,'•

SI

10

80

••"'

;f-.

.

Bf.

&V

/i

mm

i

X0

80

Li

Ci^H

^oR

ich

Liq

uid

Phas

e

li2CO

^R

ich

Liq

uid

Pha

se

Merc

ury

10

80

5?''i*

•':

*•

11

20

m(

^.V

feii

12

62

5'V-

<'••

y.;

:r'

12

75

Fig

ure

3V

olu

met

ric

beh

avio

rat

vari

ou

s

pres

sure

sfo

r$0

*0'f>

CO2

an<i

10.0

i

®^lU

®30

-PJ

^sss

ures

inps

iaar

ein

dica

ted

belo

weach

fig

ure

.T

=3

05

«5

K

?'"

V

WM

s9

90

10

55

10

88

10

88

VV

apo

rP

hase

Ll

Liq

uid

Phas

e

COg

Ric

hL

iqui

dPh

ase

L3

HgO

Ric

hL

iqu

idPh

ase

Merc

ury

•itm

i

m'ij

-

••••

10

38

10

99

12

W1

29

6

Fig

ure

^V

olum

etri

cb

ehav

ior

at

var

iou

s

pre

ssu

res

for

36.8

3i>

CO2,

*f.0

3^

and

59.0

9^

H2O

.P

ress

ures

inp

sia

are

ind

icate

db

elo

weach

fig

ure

,T

s=3

05

.5K

1s3

U)

i

1350

1300-

1250-

1200

1150

1100

lA A lA

1050

1000

UfliindO UOUitt »HMtC

»L»«.CIil UQUIB i»HA«C

-f fHilXC

950 I I I I I I I0 0.2 0»4 • 0.6

Phase Voluma Fraction

Figure 5 Pressure-Phase Volume Fraction Diagram, 90.0^ CO2 and 10.0^nCiij.H3o at 305.5 K

/•n

P(psi)

TABLE 1

Volumeteric Data for CO /nC H Systems at 305.5 K2 14 30

Composition (molar): 99.00 %CO^ 1.00

V (cm)Ll

V (cm)L2

nC H14 30

V (cm)V

962. 8.80 0.00 350.01

985. 8.80 0.00 330.61

997. 8.90 0.00 319.31

1012. 9.10 0.00 306.01

1025. 9.50 0.00 292.21

1038. 9.90 0.00 278.81

1047. 10.20 0.00 266.41

1057. 10.50 0.00 255.41

1068. 10.70 0.00 241.91

1076. 10.90 0.00 231.01

1079. 9.50 8.40 210.91

1079. 7.50 18.60 191.21

1080. 7.00 28.30 170.01

1080. 6.60 30.70 156.41

1080. 3.10 50.70 127.71

1081. 0.50 58.70 113.81

1093. 0.00 66.40 99.81

1101. 0.00 74.60 82.11

1113. 0.00 84.30 61.71

1124. 0.00 94.05 39.96

1128. 0.00 97.06 27.85

1133. 0.00 113.50 0.21

1150. 0.00 112.41 0.00

TABLE 1

(CitonL)

Volumeteric Data for CO /nC H Systems at 305.5 K2 14 30

Composition (molar): 98.00 % CO2

2.00 % nC H14 30

P(psi) V (cm^)Ll

V (cmL2

') V (cm'V

940. 14.40 0.00 336.21

961. 14.50 0.00 319.21

981. 14.60 0.00 302.51

996. 15.10 0.00 288.41

1013. 15.20 0.00 274.21

1026. 15.40 0.00 259.71

1037. 15.60 0.00 250.11

1046. 17.20 0.00 241.01

1056. 17.30 0.00 228.41

1066. 18.20 0.00 217.71

1075. 18.40 0.00 205.21

1079. 16.30 8.70 185.51

1079. 13.50 21.50 160.01

1080. 11.30 34.40 135.11

1081. 9.10 46.60 110.21

1082. 6.90 59.10 85.91

1082. 5.70 77.40 54.81

1083. 3.10 88.22 32.39

1098. 0.00 101.40 13.81

1120. 0.00 101.87 4.54

1129. 0.00 102.09 0.12

1203. 0.00 101.01 0.00

TABLE 1

(Cont)

Volumeteric Data for CO /nC H Systems at 305.5 K2 14 30

Composition (molar): 96.00 %CO^ 4.00 %

P(psi) V (cm^) V (cm^) V (cm^)Ll L2 V

946. 27.40 0.00 325.61

964. 27.60 0.00 308.21

981. 28.90 0.00 291.01

999. 30.60 0.00 272.81

1013. 30.90 0.00 258.51

1028. 31.50 0.00 240.51

1045. 33.10 0.00 220.01

1056. 35.80 0.00 200.81

1065. 35.20 6.20 179.01

1065. 33.10 19.90 151.30

1066. 30.00 32.80 123.41

1068. 27.90 43.00 103.71

1069. 25.20 56.10 78.11

1070. 21.20 70.90 51.31

1071 20.50 82.00 27.31

1073. 18.00 92.88 5.33

1074. 16.00 93.72 0.29

1122. 11.50 97.01 0.00

1139. 7.90 99.81 0.00

1142. 1.70 105.70 0.00

1153. 0.00 107.21 0.00

TABLE 1

(ConL)

Volumeieric Data for CO /nC H Systems at 305.5 K2 14 30

Composition (molar): 94.00 %CO^ 6.00 %

Kpsi) V (cm') V (cm') (cm')ILl ^*2

932. 30.70 0.00 289.41

950. 35.40 0.00 270.71

970. 36.60 0.00 254.51

991. 36.90 0.00 236.61

1008. 37.60 0.00 221.71

1030. 39.20 0.00 201.51

1051. 39.90 0.00 182.31

1063. 43.20 0.00 167.21

1071. 44.40 0.00 155.91

1076. 46.00 0.00 148.51

1080. 47.60 2.60 136.51

1081. 43.60 13.40 116.41

1083. 41.50 21.60 100.11

1084. 39.70 33.70 75.91

1085. 37.50 49.08 49.63

1085. 37.60 52.66 37.55

1085. 36.40 53.90 30.51

1084. 34.60 66.53 10.08

1082. 33.10 69.50 0.71

1194. 25.00 74.01 0.00

1198. 23.40 75.31 0.00

1205. 20.00 78.21 0.00

1215. 18.70 79.21 0.00

1237. 10.60 87.01 0.00

1247. 0.00 97.51 0.00

TABLE 1

(Cont)

Volumeteric Data for CO /nC H Systems at 305.5 K2 14 30

Composition (molar): 92.00 %CO^ 8.00 %

p(psi) (cm^) (cm^) (cm)

974. 45.90 0.00 223.51

992. 46.50 0.00 209.01

1009. 47.50 0.00 193.81

1026. 49.00 0.00 178.71

1041. 50.80 0.00 163.61

1055. 53.60 0.00 148.21

1065. 55.70 0.00 136.81

1072. 58.30 0.00 125.11

1078. 60.40 0.00 117.01

1081. 61.20 3.10 105.41

1081. 59.40 11.60 89.31

1082. 57.80 19.60 74.31

1082. 56.40 27.90 59.01

1081 54.60 35.15 44.56

1083. 53.40 42.60 30.11

1082. 52.00 49.90 15.71

1081. 51.10 55.45 4.86

1081. 50.40 57.10 1.61

1080. 50.20 56.50 0.91

1081. 50.10 56.24 0.27

1090. 49.90 55.81 0.00

1116. 49.20 55.31 0.00

1138. 48.40 55.21 0.00

1168. 47.50 55.21 0.00

1203. 46.20 55.71 0.00

1242. 42.30 58.71 0.00

1255. 39.60 60.81 0.00

1266. 0.00 100.31 0.00

1309. 0.00 99.91 0.00

TABLE 1

(ConL)

Volumeteric Data for CO /nC H Systems at 305.5 K2 14 30

Composition (molar): 90.00 % CO 10.00 % nC H2 14 30

P(psi) V (cm^)Ll

V (cm^)L2

V (cm^]V

964. 74.40 0.00 278.51

980. 75.70 0.00 264.91

993. 77.40 0.00 248.71

1008. 79.10 0.00 233.01

1030. 82.20 0.00 207.71

1048. 82.80 0.00 195.01

1051. 84.80 0.00 178.61

1060. 87.40 0.00 165.41

1070. 91.10 0.00 147.81

1076. 94.70 0.00 132.51

1083. 97.20 0.00 118.11

1084. 96.60 7.80 100.51

1084. %.20 17.70 79.41

1084. 94.20 28.30 58.71

1085. 92.10 37.90 39.31

1085. 90.60 46.95 20.96

1086. 89.00 54.98 5.23

1086. 87.60 56.20 2.71

1086. 87.60 56.65 0.76

1120. 88.51 54.90 0.00

1143. 89.05 53.36 0.00

1174. 90.93 50.58 0.00

1212. 93.61 46.90 0.00

1254. 103.66 35.85 0.00

1262. 119.45 19.26 0.00

1275. 138.51 0.00 0.00

1313. 138.31 0.00 0.00

TABLE 1

(ConL)

Volumeteric Data for CO /nC H Systems at 305.5 K2 14 30

Composition (molar): 88.00 %CO^ 12.00 %

Wpsi) V (cm') V (cm') (cm')Ll

970. 89.10 0.00 234.11

988. 90.90 0.00 218.81

1001. 93.20 0.00 202.21

1015. 94.00 0.00 189.31

1025. 94.50 0.00 174.81

1038. 97.50 0.00 158.11

1049. 101.00 0.00 142.41

1058. 102.50 0.00 126.71

1067. 107.10 0.00 108.71

1074. 113.40 0.00 88.61

1078. 115.00 7.50 68.41

1078. 113.20 11.58 54.13

1078. 109.53 27.67 28.41

1078. 107.70 36.20 12.21

1078. 107.27 39.26 •6.18

1079. 106.82 40.78 1.81

1079. 106.80 40.86 0.85

1087. 107.43 39.96 0.00

1115. 108.31 38.20 0.00

1128. 109.60 36.21 0.00

1154. 111.90 32.91 0.00

1179. 115.33 28.98 0.00

1204. 120.12 23.89 0.00

1230. 127.80 15.41 0.00

1238. 142.91 0.00 0.00

TABLE 1

(Cont)

Volumeteric Data for CO /nC H Systems at 305.5 K2 14 30

Composition (molar): 86.00 % CO 14.00 % nC H2 14 30

Wpsi) V (cm') V (cm') V (cm')LI L2 V

900. 88.10 0.00 237.71

914. 89.20 0.00 223.41

935. 90.70 0.00 205.81

955. 92.40 0.00 188.51

973. 92.90 0.00 170.81

993. 93.70 0.00 153.51

1012. 97.80 0.00 131.91

1029. 100.50 0.00 115.11

1043. 105.10 0.00 96.21

1051 109.10 0.00 82.11

1061. 113.30 0.00 66.71

1072. 117.82 0.00 48.79

1076. 119.36 5.47 30.68

1076. 117.54 15.76 11.51

1075. 117.43 16.86 9.12

1075. 117.09 17.94 7.48

1075. 116.80 18.75 5.56

1075. 116.31 19.75 3.45

1076. 116.33 20.77 1.41

1076. 116.24 20.00 0.77

1095. 116.77 19.64 0.00

1124. 117.87 17.94 0.00

1140. 120.40 14.61 0.00

1159. 124.43 10.08 0.00

1174. 126.90 6.91 0.00

1180. 133.51 0.00 0.00

1212. 133.31 0.00 0.00

TABLE 1

(Cont)

Volumeteric Data for CO /nC H Systems at 305.5 K2 14 30

Composition (molar): 84.00 %CO^ 16.00 %

Kpsi) V^^(cm^ V^(cm') (cm')

942. 105.50 0.00 187.31

961. 106.20 0.00 171.31

977. 108.00 0.00 153.21

993. 110.90 0.00 137.41

1009. 111.80 0.00 121.11

1026. 115.60 0.00 101.61

1041. 121.20 0.00 81.51

1053. 125.90 0.00 63.71

1066. 131.14 0.00 43.87

1074. 136.90 0.00 25.61

1080. 138.72 5.30 4.39

1080. 138.95 5.78 0.48

1080. 138.78 6.02 0.01

1104. 140.74 3.37 0.00

1122. 140.85 3.06 0.00

1140. 141.12 2.59 0.00

1148. 143.51 0.00 0.00

/*N

TABLE 1

(ConL)

^ Volumeteric Data for CO /nC H Systems at 305.5 K^ 2 14 30

Composition (molar): 82.00 % CO 18.00 % nC H2 14 30

Kpsi) V (cm') V (cm') V (cm')LI L2 V

892. 116.60 0.00 240.61

909. 117.50 0.00 225.31

926. 119.30 0.00 209.01

944. 120.70 0.00 192.71

960. 123.50 0.00 176.51

978. 125.70 0.00 158.41

995. 127.30 0.00 139.41

1012. 128.60 0.00 123.01

1030. 132.50 ✓ 0.00 103.41

1043. 136.30 0.00 86.51

1058. 141.80 0.00 66.11

1065. 145.48 0.00 49.73

1070. 150.58 0.00 33.93

1075. 155.02 0.00 18.89

1080. 159.98 0.00 3.53

1081. 160.36 0.00 0.25

1133. 159.81 0.00 0.00

1207. 159.01 0.00 0.00

TABLE 1

(ConL)

Volumeteric Data for CO /nC H Systems at 305.5 K2 14 30

Composition (molar): 80.00 % CO 20.00 % nC H^ 2 14 30

^ P(psi) V (cm^) V (cm^) V (cm^)Ll L2 V

/Wf

883. 93.70 0.00 152.41

908. 95.00 0.00 136.21

933. 95.70 0.00 121.31

955. 98.50 0.00 105.21

976. 102.50 0.00 89.91

995. 105.70 0.00 73.01

1017. 108.80 0.00 56.71

1038. 111.96 0.00 41.25

1053. 115.91 0.00 24.50

1069. 121.69 0.00 5.72

1071. 122.62 0.00 2.59

1072. 122.44 0.00 1.07

1073. 122.42 0.00 0.49

1101. 122.11 0.00 0.00

1157. 121.71 0.00 0.00

1206. 121.51 0.00 0.00

1

e3uM

3000-

2O00-

2600-

2400

2200

2000

laOO

1600

UOO

UOO

10000 0^

ImQmndO XU-6W uauiBnuu^ kv-VAFOi riM»c

I I I I"

OU 0.6

Phoso Volume Fraction

I I i i-i"!-!

0.8

Figure 6 Pressiire-Pbase Volume Fraction Diagram, 86.0 i COg andllf.O i> nCj^i^Hp a* 3^3-3 K

Table 2 presents the data for this system at 343.3 K.

4.2 PVT Data for C02/nCi4H3o/H20

Figure 7 illustrates the volumetric data for the same system shown in

Figure 5 but with water added. The same type of phase behavior was observed but

with the addition of a third clear liquid, the aqueous phase. Table 3 presents the

data for this system at 305.5 K. Figure 8 shows the volumetric data for the same

system shown in Figure 6 but with water added. Again, the same type of phase

behavior was observed but with the addition of an aqueous liquid phase. Table 4

presents the data for the system at 343.3 K.

4.3 PVT Data for CO2/CH4/nCi4H30

Figure 9 exhibits the volumetric data for 82.34%C02> 9.66% CH4 and

8.00% nCi4H3o at 305.5 K. Two phases were observed over the pressure range

ending at a bubble point. Table 5 presents the data for the system at 305.5 K.

Figure 10 exhibits the volumetric data for 85.92% C02> 10.08% CH4 and 4.00%

nCi4H3o at 343.3 K. At this temperature and composition, two phase behavior was

observed over the pressure range ending at a dew point. Table 6 presents the data

for this system at 343.3 K.

4.4 PVT Data for C02/CH4/nCi4H3o/H20

Figure 11 illustrates the volumetric data for the same system shown in

Figure 9 but with the addition of water. The same type of phase behavior was

observed except for the addition of a second liquid phase. Table 7 presents the data

TABLE 2

Volumeteric Data for CO /nC H /H O Systems at 305.5 K2 14 30 2

Composition (molar): 86.50 % CO 0.88 % nC H 12.62 % H 02 14 30 2

WpsO V (cm^ V (cm') V (cm') V (cm')^ L3 LI L2 V

975. 4.30 9.80 0.00 344.01

992. 4.40 9.80 0.00 328.31

1006. 4.40 9.90 0.00 315.21

1020. 4.50 9.90 0.00 301.91

1034. 4.70 10.10 0.00 288.61

1045. 4.70 10.30 0.00 275.61

1059. 4.60 10.50 0.00 261.11

1071. 4.50 10.70 0.00 246.21

1081 4.40 12.10 0.00 231.21

1087. 4.40 11.30 4.80 214.31

1087. 4.40 9.20 17.60 190.21

1087. 5.20 8.00 22.50 171.51

1088. 5.30 4.70 39.20 147.21

1088. 5.50 3.70 42.80 140.31

1088. 5.50 2.80 47.30 132.41

1088. 5.60 1.90 49.00 130.01

1089. 5.60 1.00 51.00 127.31

1099. 4.80 0.00 61.10 108.71

1105. 4.10 0.00 70.10 88.91

1111. 3.90 0.00 79.90 68.31

1116. 4.00 0.00 89.20 48.41

1118. 4.10 0.00 101.23 24.68

1119. 4.10 0.00 111.59 5.72

1121. 4.20 0.00 111.71 0.10

1129. 4.30 0.00 111.61 0.00

1148. 4.40 0.00 111.21 0.00

TABLE 2

(Cont)

Volumeteric Data for CO /nC H /H O Systems at 305.5 K2 14 30 2

Composition (molar): 76.02 % CO 1.55 % nC H 22.43 % H O2 14 30 2

PCpsi) V (cm^) V (cm^) V (cm^) V (cm^)L3 LI Li2 V

951. 8.30 14.20 0.00 330.11

968. 7.30 14.90 0.00 315.31

989. 8.00 14.90 0.00 297.41

1008. 7.80 15.70 0.00 280.61

1025. 8.00 15.80 0.00 264.21

1038. 7.90 16.20 0.00 250.81

1051. 7.50 17.20 0.00 237.51

1061. 7.20 18.20 0.00 226.61

1072. 7.50 19.20 0.00 214.61

1081. 7.00 20.10 0.00 200.61

1083. 7.80 17.60 9.50 180.01

1086. 7.60 16.30 22.90 154.51

1086. 7.20 14.30 34.40 132.71

1088. 8.50 11.60 47.10 106.11

1091. 7.40 9.00 63.10 75.71

1092. 8.10 6.90 80.17 48.54

1093. 7.20 4.70 91.25 26.16

1093. 7.10 2.10 96.58 19.73

1102. 6.50 0.00 105.82 4.39

1113. 6.70 0.00 106.13 0.58

1115. 6.50 0.00 105.66 0.15

1145. 8.20 0.00 101.91 0.00

11%. 7.00 0.00 101.61 0.00

TABLE 2

(CoriL)

Volumeteric Data for CO /nC H /H O Systems at 305.5 K2 14 30 2

Composition (molar): 60.86 % CO 2.54 % nC H 36.60 % H 02 14 30 2

P(psi) V (cm^) V (cm^) V (cm^) V (cm^)L3 LI L2 V

965. 17.00 26.00 0.00 309.11

984. 17.10 26.40 0.00 291.01

1002. 17.30 27.50 0.00 273.51

1013. 17.20 29.50 0.00 260.71

1029. 17.70 30.00 0.00 245.61

1043. 17.30 30.90 0.00 228.51

1056. 17.40 32.40 0.00 210.91

1064. 16.50 34.10 0.00 199.91

1070. 16.80 35.60 0.00 187.31

1072. 17.60 34.20 7.60 176.81

1072. 17.00 33.20 17.00 150.31

1074. 17.60 30.10 30.20 124.31

1075. 17.60 27.90 39.90 102.91

1076. 17.70 25.30 51.80 80.01

1076. 17.30 20.20 66.00 58.31

1077. 17.30 20.00 74.86 35.85

1078. 14.60 19.50 85.62 20.49

1078. 15.80 18.80 92.47 3.14

1078. 15.80 17.60 93.22 1.59

1103. 15.30 14.10 95.01 0.00

1124. 14.90 10.10 98.41 0.00

1149. 14.90 6.40 100.61 0.00

1165. 14.90 0.90 105.51 0.00

1223. 15.20 0.00 105.61 0.00

TABLE 2

(ConL)

Volumeteric Data for CO /nC H /H O Systems at 305.5 K2 14 30 2

Composition (molar): 50.36 % CO 3.21 % nC H 46.43 % H O2 14 30 2

P(psi) V (cm^) V (cm^) V (cm^) V (cm^)L3 LI *

914. 19.30 32.40 0.00 293.01

936. 20.00 33.70 0.00 274.61

956. 20.30 34.60 0.00 258.41

977. 20.30 35.30 0.00 241.21

999. 20.40 35.50 0.00 227.21

1020. 20.50 35.80 0.00 205.91

1042. 20.00 37.90 0.00 186.81

1059. 20.60 39.00 0.00 169.51

1071. 20.00 41.90 0.00 153.11

1081. 20.20 45.20 0.00 138.31

1085. 20.80 43.10 8.00 118.41

1084. 20.40 40.40 17.40 102.31

1085. 19.60 40.20 27.20 81.71

1084. 20.40 36.80 36.10 66.21

1086. 18.40 35.40 51.71 34.50

1087. 18.40 37.30 56.79 21.92

1087. 18.50 35.30 62.89 11.62

1087. 17.80 34.60 67.17 1.64

1101. 17.80 33.40 67.31 0.00

1111. 17.70 31.90 68.21 0.00

1130. 18.50 30.30 68.41 0.00

1146. 18.10 29.80 68.51 0.00

1183. 18.20 27.20 70.31 0.00

1198. 17.70 25.50 72.21 0.00

1230. 18.50 18.90 77.11 0.00

1272. 18.70 0.00 95.21 0.00

1217. 18.60 20.90 75.21 0.00

1238. 18.30 15.20 80.71 0.00

1243. 18.30 9.40 86.31 0.00

TABLE 2

(Cont)

Volumeteric Data for CO /nC H /H O Systems at 305.5 K2 14 30 2

Compoatioii (molar): 42.69 %CO 3.71 %nC 53.60 %H^O

P(psi) V (cm^)u

988. 29.40

1003. 28.60

1018. 28.50

1033. 28.10

1047. 27.70

1055. 27.60

1064. 28.00

1077. 28.10

1087. 28.80

1087. 28.50

1088. 28.60

1088. 28.30

1089. 28.80

1088. 28.50

1088. 28.00

1089. 28.10

1089. 28.00

1088. 28.00

1104. 28.00

1140. 27.60

1176. 27.30

1210. 27.10

1231. 27.10

1252. 27.10

1265. 27.10

1306. 27.10

^ V <cm^ (cm') (cm') (cm)

50.90 0.00 199.21

52.00 0.00 186.01

53.90 0.00 172.01

56.10 0.00 157.01

59.40 0.00 140.91

61.10 0.00 129.51

64.70 0.00 117.31

68.80 0.00 101.11

68.50 7.30 80.21

67.50 13.00 69.31

64.90 22.80 51.71

63.00 29.50 38.01

61.20 35.41 26.90

60.30 39.66 17.75

59.90 45.42 7.39

58.90 47.35 3.76

58.70 48.20 1.61

57.92 48.24 0.95

57.83 47.38 0.00

58.19 46.22 0.00

59.74 43.77 0.00

63.58 39.03 0.00

63.84 38.57 0.00

64.84 37.37 0.00

102.11 0.00 0.00

101.71 0.00 0.00

PCpsi)

TABLE 2

(ConL)

Volumeteric I^ta for CO /nC H /H O Systems at 305.5 K2 14 30 2

Composition (molar): 36.82 % CO 4.09 % nC H 59.09 % H Or 14 30 "

V (cm)L3

V (cm') V (cm') V (cm')LI L2

990. 48.40 80.70 0.00 229.81

1003. 48.60 82.70 0.00 215.41

1014. 49.70 83.00 0.00 203.01

1025. 50.00 84.70 0.00 190.11

1036. 51.50 85.20 0.00 175.91

1046. 51.60 88.10 0.00 161.31

1055. 51.30 91.10 0.00 146.11

1064. 49.30 92.70 0.00 133.31

1071. 48.80 97.09 0.00 117.11

1088. 47.70 101.80 2.00 98.71

1088. 49.70 98.00 13.30 77.01

1088. 50.00 95.60 24.60 54.81

1090. 49.80 94.50 33.68 36.33

1091. 50.00 93.30 42.47 17.94

1092. 49.80 91.70 60.10 1.71

1092. 49.80 91.58 50.30 1.23

1092. 49.70 91.35 50.50 0.56

1099. 49.60 92.19 49.92 0.00

1112. 49.70 92.77 48.04 0.00

1141. 49.60 95.45 44.46 0.00

1174. 49.40 97.57 41.44 0.00

1215. 48.90 104.30 34.31 0.00

1248. 48.40 126.88 11.23 0.00

1250. 48.90 132.34 5.17 0.00

1296. 49.00 137.21 0.00 0.00

fm

PCpsi)

TABLE 2

(ConL)

Volumeteric Data for CO /nC H /H O Systems at 305.5 K2 14 30 2

Composition (molar): 32.15 % CO 4.39 % nC H 63.46 % H 02 14 30 2

V (cm)L3

V (cm)Ll

V (cm)L2

V (cm)V

990. 57.40 92.60 0.00 208.01

1005. 58.30 93.80 0.00 192.41

1017. 60.20 94.50 0.00 178.21

1030. 60.50 96.50 0.00 162.81

1043. 61.00 98.60 0.00 147.91

1054. 60.40 101.60 0.00 133.21

1064. 59.30 103.40 0.00 119.91

1074. 57.90 107.80 0.00 102.61

1081. 57.00 113.00 0.00 86.51

1086. 59.10 115.80 0.00 70.71

1089. 60.10 114.30 9.20 51.61

1089. 59.70 112.60 18.56 33.25

1089. 59.50 111.12 27.48 15.31

1089. 59.30 110.51 32.48 5.72

1090. 58.90 110.25 34.10 1.36

1090. 59.20 110.02 33.94 0.85

1090. 59.20 110.00 34.16 0.25

1090. 59.20 110.00 34.27 0.04

1094. 59.20 109.90 34.21 0.00

1104. 59.10 110.93 32.58 0.00

1117. 59.10 111.11 32.10 0.00

1132. 58.90 113.64 29.07 0.00

1149. 58.80 115.47 26.44 0.00

1171. 58.30 118.41 23.20 0.00

1195. 58.10 123.00 18.41 0.00

1225. 57.70 132.10 9.21 0.00

1231. 57.60 141.21 0.00 0.00

1249. 57.30 141.11 0.00 0.00

1309. 56.90 140.81 0.00 0.00

TABLE 2

(Cont)

Volumeteric Data for CO /nC H /HO Systems at 305.5 K2 14 30 2

Composition (molar): 28.44 % CO 4.63 % nC H 66.93 % H 02 14 30 2

P(psi) V (cm^) V (cm^) V (cm^) V (cm^)L3 Ll L2 V

945. 57.70 98.40 0.00 186.91

963. 57.70 98.50 0.00 172.21

980. 59.40 99.00 0.00 156.01

997. 59.40 100.60 0.00 140.81

1013. 57.60 102.10 0.00 127.61

1030. 57.00 105.50 0.00 108.91

1045. 56.80 109.40 0.00 91.01

1059. 57.70 113.20 0.00 72.81

1070. 57.20 119.35 0.00 54.26

1078. 57.40 124.42 0.00 37.09

1086. 59.20 128.06 1.42 18.13

1085. 58.80 127.50 5.64 10.27

1085. 57.80 126.90 8.31 4.70

1085. 58.70 126.59 9.55 1.97

1084. 58.80 126.60 9.26 1.15

1085. 58.80 126.90 8.73 0.58

1102. 59.40 126.47 8.64 0.00

1125. 59.20 127.86 5.95 0.00

1152. 59.00 131.61 2.90 0.00

1158. 59.00 134.35 0.06 0.00

1178. 58.60 134.31 0.00 0.00

m,

TABLE 2

(Cont)

Volumetedc Data for CO /nC H /H O Systems at 305.5 K2 14 30 2

Composition (molar): 25.40 % CO 4.83 % nC H 69.77 % H O

iKpsi) (cm') (cm') (cm') (cm')

949. 73.20 104.00 0.00 17161

968. 74.20 105.90 0.00 154.71

987. 73.70 107.90 0.00 138.51

1001 74.30 109.70 0.00 123.41

1018. 7140 11190 0.00 108.71

1033. 71.30 116.70 0.00 91.21

1047. 71.90 120.40 0.00 74.41

1059. 7110 124.50 0.00 57.11

1070. 71.10 129.68 0.00 40.33

1080. 71.70 135.22 0.00 20.49

1085. 71.70 139.82 0.00 6.49

1087. 73.40 138.66 1.02 0.13

1087. 73.60 138.38 1.08 0.05

1087. 73.60 138.20 1.09 0.02

1091 73.70 138.20 0.91 0.00

1095. 7180 139.14 0.67 0.00

1097. 7180 139.70 0.01 0.00

1115. 71.90 140.41 0.00 0.00

1141. 71.90 140.21 0.00 0.00

KpsO

958.

972.

986.

1002.

1016.

1029.

1042.

1054.

1063.

1072.

1075.

1077.

1145.

1182.

1222.

TABLE 2

(Cont)

Volumeteric Data for CO /nC H /H O Systems at 305.5 K2 14 30 2

Composition (molar): 22.78 % CO 4.99 % nC H 72.23 % H O2 14 30 2

V (cm') V (cm') V (cm') V (cm')L3 LI U V

83.60

85.10

85.10

84.50

85.00

84.80

84.30

82.20

82.00

80.50

81.40

81.70

81.20

81.40

81.30

125.80

127.10

n8.00

131.70

135.10

139.10

143.10

148.03

152.70

158.64

156.70

158.58

158.61

158.21

158.11

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

149.51

135.51

12131

106.31

89.91

72.91

57.61

40.98

25.61

10.27

5.01

0.13

0.00

0.00

0.00

/•t

TABLE 2

(ConL)

Volumeteric Data for CO /nC H /H O Systems at 305.5 K2 14 30 2

Composition (molar): 20.57 % CO 5.15 % nC H 74.28 % H O2 14 30 2

WpsO V (cm') V (cm') V (cm') V (cm')U LI L2 V

832. 73.10 92.30 0.00 175.01

853. 74.00 93.70 0.00 156.81

878. 74.40 95.80 0.00 139.41

903. 74.00 96.90 0.00 122.91

930. 73.00 98.50 0.00 106.81

956. 7110 100.50 0.00 88.91

981. 71.90 103.90 0.00 71.91

1006. 71.60 108.20 0.00 53.21

1029. 71.20 111.12 0.00 37.09

1054. 70.40 116.91 0.00 16.70

1068. 70.00 121.36 0.00 0.35

1134. 73.40 117.81 0.00 0.00

1171. 73.70 116.71 0.00 0.00

1261. 73.90 116.21 0.00 0.00

UlO.

I

£3lAM

0

1350

1300-

1250

1200

1150

1100

1050-

1000-

950

L«9«ndO UDUIO l»M4»C^ XL^»eol UttUID yHA»C4- >HA«CX icLi«mo uauiD WAtC

-r-nr

0.4 0.6

Phase Voluma Fraction

Figure 7 Pressure-Phase Volume Fraction Diagram, 36.33 ^1^.08 ^ nCii^H3o and 59-09 ^ H2O at 305-5 K

TABLE 3

Volumeteric Data for CO /nC H Systems at 343.3 K2 14 30

Composition (molar): 98.00 % CO 2.00 % nC H2 14 30

Hpsi) V (cm^) V (cm^) V (cm^)Ll L2 V

1174. 11.40 0.00 290.21

n34. 1L40 0.00 268.21^ 1300. 11.40 0.00 246.81

1370. 11.40 0.00 225.41

1452. 11.60 0.00 202.81

1540. 11.80 0.00 18L31

1636. 12.00 0.00 160.71

^ 1747. 12.20 0.00 138.911875. 1Z40 0.00 119.71

2007. 11.50 0.00 103.81

2102. 10.20 0.00 95.41

223L 3.10 0.00 92.21

2240. 0.30 0.00 94.31

2285. 0.00 0.00 93.41

TABLE 3

(ConL)

Volumeteric Data for CO /nC H Systems at 343.3 K2 14 30

Composition (molar): 94.00 % CO 6.00 % nC H2 14 30

P(psi) V (cm^) V (cm^) V (cm^)Ll L2 V

1048. 2140 0.00 264.11

1099. 22.70 0.00 244.91

1153. 23.00 0.00 226.31

1215. 23.40 0.00 207.61

1283. 23.80 0.00 190.11

1356. 24.10 0.00 171.21

1440. 24.60 0.00 152.51

1533. 25.40 0.00 133.31

1640. 26.30 0.00 116.11

1766. 27.10 0.00 96.41

1922. 28.40 0.00 77.11

2152. 30.00 0.00 57.31

2273. 31.00 0.00 50.01

2286. 30.80 0.00 49.31

2319. 31.40 0.00 47.91

2345. 32.85 0.00 45.46

2389. 34.00 0.00 42.81

2401. 75.91 0.00 0.00

2485. 75.41 0.00 0.00

2543. 75.01 0.00 0.00

TABLE 3

(Cont)

Volumeteric Data for CO /nC H2 14 30

Composition (molar): 90.00 % CO2

P(psi) V (cm^)Ll

V (cm'L2

1171 43.60 0.00

1227. 44.00 0.00

1279. 44.60 0.00

1339. 45.20 0.00

1404. 46.20 0.00

1475. 47.10 0.00

1550. 48.10 0.00

1639. 49.00 0.00

1743. 50.00 0.00

1860. 54.20 0.00

1973. 57.50 0.00

2193. 63.38 0.00

2275. 75.74 0.00

2353. 89.21 0.00

2401. 96.01 0.00

2707. 93.51 0.00

14 30

V (cm')V

234.61

215.91

199.41

183.41

166.31

148.71

131.91

^ 1639. 49.00 0.00 114.41

96.41

78.31

60.21

40.33

23.87

7.00

0.00

0.00

TABLE 3

(Cont)

Volumeteric Data for CO /nC H Systems at 343.3 K2 14 30

Composition (molar): 86.00 %CO^ 14.00 %nC^^H^^

P(psi) V (cm^) V (cm^) V (cm^)Ll L2 V

1160. 65.50 0.00 247.31

1218. 65.90 0.00 226.11

1271 66.20 0.00 206.01

133L 66.70 0.00 188.11

1394. 68.20 0.00 169.11

1467. 69.80 0.00 148.71

1547. 72.50 0.00 128.91

1637. 74.10 0.00 109.11

1744. 76.80 0.00 88.21

1851 80.60 0.00 68.91

1957. 84.67 0.00 53.54

2039. 89.50 0.00 41.71

2086. 92.52 0.00 34.79

2149. 97.33 0.00 25.98

2195. 98.30 0.00 23.41

2247. 112.32 0.00 7.29

2268. 117.06 0.00 L15

2288. 117.71 0.00 0.00

TABLE 3

(Cont)

Volumeteric Data for CO /nC H Systems at 343.3 K^ . 2 14 30

Composition (molar): 82.00 % CO 18.00 % nC H2 14 30

P(psi) V (cm^) V (cm^) V (cm^)Ll L2 V

1034. 75.30 0.00 210.21

1099. 75.40 0.00 187.31

1168. 76.40 0.00 165.31

1237. 77.90 0.00 145.41

1316. 79.10 0.00 125.91

1405. 81.10 0.00 105.01

1509. 84.00 0.00 83.51

1637. 87.80 0.00 60.21

1801. 98.56 0.00 30.85

1956. 103.20 0.00 15.31

2079. 109.74 0.00 1.07

2083. 109.78 0.00 0.73

2126. 110.31 0.00 0.00

SOOO-V

2&00-

2600-

2200

2000

1600-

WOO-

1200-

1000-f

Lig«ndO MAMA xu-cu u«iiio rwAsc•4* XU-MaO UftMlB MME

Pha^io Volume Fraction

Figure 8 PressTire-Phase Volume Fraction Diagram, 2Q,h^ ^ COg,4.62 i nCii^H3o and 66.93 ^ HgO at 3^3.3 K-

TABLE 4

Volumeteric Data for CO /nC H2 14

/H 0 Systems at 343.3 K30 2

Composition (molar):: 75.82 % CO2

1.57 % nC H 22.6114 30

% HO2

P(psi) V (cm^)L3

V (cm^)Ll

V (cm^)L2

V (cm"V

1140. 5.80 12.50 0.00 303.81

1200. 5.70 12.50 0.00 281.41

1260. 5.50 12.70 0.00 258.31

1327. 5.60 12.90 0.00 236.31

1403. 5.60 13.20 0.00 214.01

1485. 5.60 13.40 0.00 192.81

1576. 5.60 13.70 0.00 17L31

1683. 5.50 14.20 0.00 148.51

180L 5.40 14.50 0.00 127.11

1929. 5.50 13.90 0.00 109.71

2000. 5.70 13.10 0.00 101.91

2027. 5.80 12.80 0.00 98.71

2066. 5.90 11.80 0.00 95.51

2112. 6.00 10.10 0.00 93.51

2160. 6.50 8.30 0.00 90.11

2202. 6.30 6.70 0.00 89.21

2219. 5.80 5.20 0.00 89.71

2224. 5.70 5.00 0.00 89.71

2235. 5.70 0.00 0.00 94.51

2248. 5.60 0.00 0.00 93.71

2296. 4.80 0.00 0.00 92.51

TABLE 4

(Cont)

Volumeteric Data for CO /nC H /H O Systems at 343.3 K2 14 30 2

Composition (molar): 50.35 % CO2

3.21 % nC H 46.4414 30

% HO2

P(psi) V (cm^)u

V (cm^)Ll

V (cm^)L2

V (cm^)V

1099. 14.60 24.60 0.00 241.11

1159. 14.60 24.90 0.00 221.11

1221. 14.90 25.10 0.00 201.61

1290. 14.70 25.20 0.00 183.21

1366. 14.80 26.10 0.00 165.01

1451. 15.00 26.40 0.00 145.81

1550. 15.10 26.60 0.00 126.71

1663. 15.10 27.50 0.00 106.61

1796. 15.80 29.00 0.00 87.91

1955. 16.10 30.30 0.00 68.91

2116. 16.30 32.00 0.00 55.01

2232. 16.50 30.96 0.00 49.55

2331. 15.40 31.09 0.00 46.62

2372. 15.30 31.27 0.00 46.34

2412. 15.60 77.11 0.00 0.00

2464. 15.80 74.71 0.00 0.00

2688. 15.80 72.71 0.00 0.00

TABLE 4

(ConL)

Volumeteric Data for CO /nC H /H O Systems at 343.3 Kr»s 2 14 30 2

Composition (molar): 36.82 % CO 4.09 % nC H 59.09 % H O2 14 30 2

Wpsa V (cm^ V (cm^) V (cm') V (cm')L3 LI L2 V

1123. 32.40 45.80 0.00 245.511171. 33.90 46.00 0.00 226.61

1225. 34.00 46.20 0.00 207.41

1284. 33.60 46.40 0.00 189.81

1347. 33.50 46.70 0.00 172.01

1415. 33.40 47.40 0.00 154.41

1489. 33.00 49.00 0.00 137.71^ 1573. 33.40 49.60 0.00 120.21

1670. 33.30 51.00 0.00 101.41

1779. 33.20 54.10 0.00 82.71

1907. 32.50 60.00 0.00 63.91

2075. 32.60 64.25 0.00 44.462284. 32.80 81.20 0.00 16.21

2326. 33.10 91.42 0.00 4.392344. 33.00 94.70 0.00 0.912365. 33.00 95.41 0.00 0.002401. 33.40 94.61 0.00 0.002471. 33.10 94.41 0.00 0.00

7^

TABLE 4

(Cont)

Volumeteric Data for CO /nC H /H O Systems at 343.3 K^ 2 14 30 2

Composition (molar): 28.45 % CO 4.62 % nC H 66.93 % H O2 14 30 2

Kpsi) V (cm') V W) V (cm') V (cm')L3 LI L2 V

/«s

/•S

1160. 46.60 68.00 0.00 235.41

1217. 46.60 68.70 0.00 214.21

1273. 46.20 69.10 0.00 195.91

1335. 46.40 70.50 0.00 176.21

1403. 46.10 7L60 0.00 156.11

1482. 45.40 72.40 0.00 137.31

1568. 45.80 74.10 0.00 116.91

1668. 46.60 76.30 0.00 95.61

1787. 46.30 80.80 0.00 72.71

1912. 46.30 86.80 0.00 5L71

2018. 46.60 9L14 0.00 37.37

2114. 45.80 98.46 0.00 23.75

2180. 45.90 106.94 0.00 11.97

2228. 46.20 114.15 0.00 1.56

2240. 46.20 115.14 0.00 0.17

2405. 46.30 114.61 0.00 0.00

249L 46.40 113.31 0.00 0.00

TABLE 4

(Cont)

Volumeteric Data for CO /nC H /H 0 Systems at 343.3 K2 14 30 2

Composition (molar): 22.78 % CO 5.00 % nC H 72.22 % H O2 14 30 2

P(psi) V (cm^) V (cm^) V (cm^) V (cm^)U Ll L2 V

5^

1015. 58.50 77.40 0.00 200.41

1077. 58.70 77.50 0.00 178.21

1145. 58.90 78.50 0.00 156.21

ni5. 57.30 80.20 0.00 135.41

1297. 56.50 81.30 0.00 114.61

1389. 56.10 83.40 0.00 93.61

1499. 56.10 87.00 0.00 70.91

1624. 55.90 9L37 0.00 49.64

179L 55.20 99.14 0.00 24.77

1837. 55.10 102.05 0.00 17.66

1900. 55.00 106.03 0.00 10.08

1949. 54.80 108.37 0.00 4.54

1999. 54.40 110.54 0.00 0.17

2305. 54.40 109.31 0.00 0.00

2438. 54.10 109.01 0.00 0.00

2740. 53.90 108.21 0.00 0.00

2600-h

2400-

2200'

2000-

IttOO-

I

3 1600HMM

UOO'

1200

1000-

ttOO-

Lji>g«nd

A xu-cu uauid

0 0^ OA' 0.6 0.8

Phasa Voluma Fraction

Figure 9 Pressure-Phase Voliame Fraction Diagram, 82.3U ^ COg,9.66 i, CHi^ and 8.00 i at 305.5 K

TABLE 5

Volumetenc Data for CO /CH /nC H Systems at 305.5 K2 4 14 30

Composition (molar):

85.88 % CO 10.09 % CH 4.03 % nC H2 4 14 30

P(psi) V (cm^) V (cm^) V (cm^)Ll L2 V

828. 12.50 0.00 209.21

876. 12.60 0.00 191.21

930. 12.70 0.00 171.91

992. 13.10 0.00 150.91

1058. 13.50 0.00 131.211127. 14.20 0.00 112.71

1207. 14.90 0.00 92.61

1285. 15.60 0.00 73.111381. 16.30 0.00 53.411450. 15.18 0.00 45.831507. 14.37 0.00 41.62

1645. 12.86 0.00 38.011718. 11.15 0.00 37.921857. 6.67 0.00 40.421885. 3.62 0.00 43.381896. 0.00 0.00 46.901908. 0.00 0.00 46.711964. 0.00 0.00 46.32

TABLE 5

(ConL)

Volumeteric Data for CO /CH /nC H Systems at 305.5 K2 4 14 30

Composition (molar):

8134 % CO2

9.66 % CH 8.00 94

h nC H14 30

P(psi) V (cm^)Ll

V (cm^)L2

V (cm^V

869. 25.40 0.00 201.21

917. 25.50 0.00 183.51

971. 26.10 0.00 163.01

1027. 27.00 0.00 144.01

1090. 27.80 0.00 124.21

1158. 28.80 0.00 107.81

1232. 30.00 0.00 87.21

1314. 31.70 0.00 68.01

1420. 33.22 0.00 48.89

1572. 33.43 0.00 35.08

1710. 34.38 0.00 29.83

1960. 35.34 0.00 24.87ifi».

1969. 35.52 0.00 24.59

1979. 60.01 0.00 0.00

2007. 59.81 0.00 0.00

2166. 58.81 0.00 0.00

TABLE 5

(Cont.)

Volumeteric Data for CO /CH /nC H Systems at 305.5 K^ 2 4 14 30

Composition (molar):

78.75 % CO 9.25 % CH 12.00 % nC H2 4 14 30

im

P(psi) V (cm^) V (cm^) V (cm^)Ll L2 V

845. 36.50 0.00 190.31

895. 37.30 0.00 171.11

947. 38.20 0.00 152.01

1007. 39.50 0.00 131.71

1071. 40.80 0.00 113.61

1147. 42.30 0.00 92.41

1230. 44.00 0.00 71.91

1327. 46.80 0.00 51.11

1424. 47.67 0.00 36.14

1520. 48.83 0.00 25.88

1826. 56.13 0.00 10.18

1946. 63.75 0.00 0.96

2066. 64.21 0.00 0.00

TABLE 5

(Cont)

Volumeteric Data for CO /CH /nC H Systems at 305.5 K2 4 14 30

Composition (molar):

75.18 % CO 8.82 % CH 16.00 % nC H2 4 14 30

P(psi) V (cm^)Ll

V (cm^)L2

V (cm^;V

568. 33.00 0.00 272.51

59L 33.20 0.00 255.81

613. 33.40 0.00 242.51

637. 33.60 0.00 228.01

668. 34.00 0.00 21L41

706. 34.40 0.00 193.91

745. 35.00 0.00 177.51

790. 35.40 0.00 159.41

841. 36.00 0.00 141.41

906. 36.90 0.00 121.61

974. 38.10 0.00 103.41

105L 39.30 0.00 84.51

1098. 39.90 0.00 74.01

1117. 40.40 0.00 69.71

1133. 4L30 0.00 66.11

1152. 41.10 0.00 63.01

1174. 41.30 0.00 58.11

1199. 4L50 0.00 53.61

1226. 41.80 0.00 50.11

1252. 41.47 0.00 45.24

1282. 43.16 0.00 40.45

1322. 43.90 0.00 34.41

1367. 45.19 0.00 28.32

1420. . 45.73 0.00 22.18

1491. 47.10 0.00 16.31

1580. 48.80 0.00 10.51

1787. 53.95 0.00 2.59

1840. 56.00 0.00 0.45

2306. 55.45 0.00 0.00

TABLE 5

(Cont)

Volumeteric Data for CO /CH /nC H Systems at 305.5 K^ 2 4 14 30

Composition (molar):

71.60 % CO 8.40 % CH 16.00 % nC H2 4 14 30

P(psi) V (cm^) V (cm^) V (cm^)Ll L2 V

792. 56.00 0.00 168.71

839. 56.90 0.00 149.81

893. 57.80 0.00 129.71

955. 58.90 0.00 109.21

1027. 60.20 0.00 88.01

1107. 62.80 0.00 68.71

1197. 64.74 0.00 49.17

1307. 68.27 0.00 29.64

1393. 69.75 0.00 17.66

1510. 74.74 0.00 5.17

1585. 76.14 0.00 1.17

1614. 76.16 0.00 0.55

1668. 76.01 0.00 0.00

ina.

1

23MlA

tsa.

3SOO<

SOOO

2500

2000-

isoo-

1000

soo I I I0 0.2 0.4 0.6

Phasd Voluma Fraction

Figure 10 Pressure-Phase Volume Fraction Diagram, 85.92 ^ COg,10.08 i CHi^. and 1^.00 ^ a-t 3^3.3 K

biO«ndO XU-CM U«aiB ¥tUML

xv-VAPoanuu

' I ' '

0.8

TABLE 6

Volumetenc Data for CO /CH /nC H /H O Systems at 305.5 K2 4 14 30 2

Composition (molar):

54.30 % CO 6.38 % CH 2.55 % nC H 36.77 % H O2 4 14 30 2

Kpsi) V (cm') V (cm') V (cm') V (cm')u LI U V

885. 7.90 13.00 0.00 186.11

939. 7.90 13.00 0.00 166.31

1002. 8.00 13.30 0.00 146.21

1068. 7.70 14.00 0.00 126.71

1140. 7.60 14.80 0.00 109.01

1217. 8.10 15.20 0.00 89.41

1304. 8.20 16.00 0.00 68.81

1408. 8.30 16.30 0.00 49.41

1514. 8.30 14.22 0.00 40.79

1636. 8.32 13.30 0.00 37.09

1717. 8.86 11.62 0.00 36.23

1799. 8.80 10.85 0.00 36.71

1872. 9.60 6.65 0.00 38.20

1908. 10.88 2.40 0.00 40.98

1932. 11.59 0.00 0.00 42.40

1965. 11.72 0.00 0.00 41.91

2045. 11.84 0.00 0.00 41.52

A

TABLE 6

(ConL)

Volumeteric Data for CO /CH /nC H /H O Systems at 305.5 K^ 2 4 14 30 2

Composition (molar):

38.20 % CO 4.48 % CH 3.71 % nC H 53.61 % H O2 4 14 30 2

P(psi) V (cm^) V (cm^) V (cm^) V (cm^)U Ll L2 V

rm

888. 19.10 25.00 0.00 189.61

940. 18.60 26.00 0.00 169.81

996. 18.40 27.20 0.00 150.31

1059. 18.20 28.30 0.00 130.41

1124. 18.10 29.40 0.00 111.01

1202. 18.00 31.00 0.00 91.81

1287. 18.00 32.70 0.00 71.91

1384. 18.30 33.00 0.00 53.71

1489. 18.80 33.27 0.00 38.94

1666. 19.00 33.55 0.00 29.36

1845. 19.00 35.65 0.00 24.96

1990. 19.10 41.11 0.00 17.00

2022. 19.20 57.81 0.00 0.00

2040. 19.10 57.11 0.00 0.00

2250. 19.00 56.91 0.00 0.00

TABLE 6

(Cont.)

A

Volumeteric Data for CO /CH /nC H /H O Systems at 305.5 K2 4 14 30 2

Composition (molar):

28.81 % CO 3.38 % CH 4.39 9h nC H 63.42 9h HO2 4 14 30 2

P(psi) V (cm^) V (cm^) V (cm^) V (cm-u Ll L2 V

832. 28.70 37.10 0.00 188.71

881. 28.80 37.60 0.00 168.61

936. 28.70 38.50 0.00 148.51

999. 28.60 39.80 0.00 127.71

1068. 28.30 40.80 0.00 107.61

1147. 28.10 42.20 0.00 87.21

1241. 27.90 45.50 0.00 66.01

132L 28.00 47.41 0.00 50.30

1417. 28.30 48.93 0.00 34.98

1562. 28.60 50.74 0.00 20.87

1701. 29.00 53.00 0.00 13.71

1829. 29.30 56.83 0.00 7.68

1930. 29.40 61.81 0.00 1.50

1939. 29.60 62.89 0.00 0.12

2007. 29.30 63.01 0.00 0.00

2131. 29.10 63.01 0.00 0.00

2208. 28.70 63.21 0.00 0.00

TABLE 6

(ConL)

^ Volumeteric Data for CO /CH /nC H /H O Systems at 305.5 K^ 2 4 14 30 2

Composition (molar):

22.70 % CO 2.66 % CH 4.83 % nC H 69.81 % H O2 4 14 30 2

.

P(psi) V (cm^) V (cm^) V (cm^) V (cm^)L3 Ll L2 V

865. 30.10 35.90 0.00 124.91

930. 30.30 37.70 0.00 106.01

1004. 30.70 39.10 0.00 87.21

1085. 30.80 40.60 0.00 70.11

1191. 31.00 41.92 0.00 50.49

1249. 30.90 43.50 0.00 40.61

1323. 31.00 44.80 0.00 30.21

1424. 31.20 46.71 0.00 18.60

1584. 31.10 49.45 0.00 8.16

1775. 31.20 53.34 0.00 1.37

1781. 31.20 53.40 0.00 0.91

1954. 31.20 53.81 0.00 0.00

2410. 31.10 53.41 0.00 0.00

2792. 31.20 52.91 0.00 0.00

TABLE 6

(ConL)

Volumeteric Data for CO /CH /nC H /H O Systems at 305.5 K2 4 14 30 2

Composition (molar):

18.41 % CO 2.16 % CH 5.14 % nC H 74.29 % H O2 4 14 30 2

Kpsi) V (cm') V (cm') V (cm') V (cm')U LI L2 V

837. 43.90 58.40 0.00 137.31

893. 44.00 58.70 0.00 119.31

955. 44.20 59.70 0.00 99.41

1025. 44.10 61.40 0.00 79.61

10%. 44.40 63.20 0.00 62.71

1173. 44.90 64.06 0.00 46.85

1267. 45.30 65.74 0.00 30.87

1385. 44.70 71.50 0.00 14.71

1482. 43.90 74.63 0.00 4.78

1543. 44.20 74.45 0.00 1.26

1576. 45.00 74.18 0.00 0.53

1582. 44.90 74.71 0.00 0.00

1605. 44.50 74.71 0.00 0.00

1796. 44.30 74.11 0.00 0.00

2fi00-

2200

1000-

ttOO-

600- -1 I I I

Ljig«ndO kv-VAraahu»£

XU-CM USMItt niAU

ku-ioa uauia^MAftC

Phaso Volume Fraction

Figure 11 Pressure-Phase Volume Fraction Diagram, 38.20^ COg,3.71^ and 53.615^ H2O at 305.5 K

(«*»

TABLE 7

Volumeteric Data for CO /CH /nC H Systems at 343.3 K2 4 14 30

Composition (molar):

85.92 % CO 10.08 % CH 4.00 % nC H2 4 14 30

P(psi) V (cm^) V (cm^) V (cm^)Ll L2 V

1019. 13.50 0.00 214.91

1100. 13.60 0.00 193.61

1193. 13.90 0.00 172.01

1302. 14.20 0.00 150.31

1432. 14.70 0.00 128.81

1583. 15.20 0.00 109.81

1760. 15.60 0.00 90.11

1982. 16.40 0.00 7L71

2180. 17.00 0.00 59.31

2403. 17.50 0.00 49.31

2638. 16.26 0.00 44.75

U13. 14.43 0.00 43.38

2876. 9.49 0.00 46.32

2890. 6.93 0.00 48.70

2910. 0.00 0.00 55.26

3014. 0.00 0.00 54.36

TABLE 7

(Cont)

Volumeteric Data for CO /CH /nC H Systems at 343.3 K2 4 14 30

Composition (molar):

82.33 % CO 9.67 % CH 8.00 % nC H2 4 14 30

P(psi) V (cm^) V (cm^) V (cm^)Ll L2 V

981 23.70 0.00 226.61

1047. 23.80 0.00 206.81

1126. 24.10 0.00 186.21

1218. 24.60 0.00 164.41

1325. 25.20 0.00 143.211445. 25.80 0.00 122.91

1581. 26.50 0.00 105.111748. 27.50 0.00 86.11

1936. 29.00 0.00 68.41

2098. 30.40 0.00 56.312295. 30.88 0.00 45.832456. 31.69 0.00 39.222590. 32.99 0.00 34.022714. 34.28 0.00 29.73

2860. 38.77 0.00 22.742936. 40.90 0.00 20.213000. 59.41 0.00 0.00

TABLE 7

(Cont)

Volumeteric Data for CO /CH /nC H Systems at 343.3 K2 4 14 30

Composition (molar):

78.76 % CO 9.24 % CH 12.00 % nC H2 4 14 30

Hpsi) V (cm') V (cm') V (cm')LI L2 V

861. 33.20 0.00 •248.01

912. 33.30 0.00 228.61

971. 33.70 0.00 208.41

1037. 34.00 0.00 189.71

1108. 34.40 0.00 170.81

1193. 35.00 0.00 151.21

1291. 35.60 0.00 131.91

1400. 36.40 0.00 115.01

1520. 37.80 0.00 97.21

1637. 38.60 0.00 82.91

1784. 40.30 0.00 67.61

1910. 41.90 0.00 56.51

2055. 42.70 0.00 46.51

2179. 43.88 0.00 39.03

2291. 45.73 0.00 32.68

2420. 47.68 0.00 26.53

2525. 49.49 0.00 21.72

2654. 52.80 0.00 15.61

2840. 63.84 0.00 1.47

2868. 64.28 0.00 0.33

3200. 63.21 0.00 0.00

TABLE 7

(Cont)

Volumeteric Data for CO /CH /nC H2 4 14 30

Systems at 343.3 K

Composition (molar):

75.18 % CO2

8.82 % CH 164

.00 % nC H14 30

P(psi) V (cm')LI

V (cm^)L2

V (cm^)V

957. 45.10 0.00 200.31

1028. 45.50 0.00 180.01

1108. 45.00 0.00 158.81

1200. 47.10 0.00 137.81

1307. 48.50 0.00 117.01

1437. 49.90 0.00 96.21

1590. 51.40 0.00 77.71

1764. 53.70 0.00 59.21

1938. 55.78 0.00 44.83

2139. 58.21 0.00 32.00

2300. 61.29 0.00 22.92

2458. 63.29 0.00 16.42

2600. 69.42 0.00 7.19

2720. 73.18 0.00 1.23

2725. 73.68 0.00 0.33

2752. 73.81 0.00 0.00

2945. 73.31 0.00 0.00

/«(

TABLE 7

(ConL)

Volumeteric Data for CO /CH /nC H Systems at 343.3 K- 2 4 14 30

Composition (molar):

71.60 % CO 8.40 % CH 20.00 % nC H2 4 14 30

Hpsi) V (cm') V (cm') V (cm')LI L2 V

953. 55.10 0.00 186.61

1030. 55.80 0.00 164.81

1113. 57.00 0.00 143.51

1212. 58.00 0.00 122.21

1330. 59.70 0.00 100.91

1478. 61.40 0.00 79.01

1645. 64.50 0.00 58.51

1818. 68.11 0.00 42.10

1990. 71.61 0.00 28.60

2243. 76.90 0.00 12.81

2465. 80.81 0.00 3.20

2516. 81.48 0.00 0.63

2543. 82.01 0.00 0.00

2692. 81.51 0.00 0.00

fop this system at 305.5 K. Figure 12 exhibits the volumetric data for the same

system shown in Figure 10 but with water added. Again, the same type of phase

behavior was observed except for the addition of aqueous phase. Table 8 presents

the data for this system at 343.3 K.

3600-w

SOOO

2S00-

COH.

I

^ 2000MM

M

1S00<

1000-

500

Ui9«n<iO XV-VAMII ntMNCA xu-cu uatfitt riuMt+ KU-waouaMOmum

()()

d)

(TH 'I 'I'"!—I'l 'I' I 9*9'

a 0^' 0.6 0.A

Phas« Volume Fraction

Figure 12 Pressure-Phase Volume- Fraction Diagram^ 3k*k6ffi CO2, 6.38^GHl^, nCiP^o an«i 36.63^ HgO at 34-3.3 K

TABLE 8

Volumeteric Data for CO /CH /nC H /H O Systems at 343.3 K2 4 14 30 2

Composition (molar):

54.46 % CO 6.38 % CH 2.54 % nC H 36.62 % H O2 4 14 30 2

Wpsi) V (cm') V (cm') V (cm') V (cm')L3 LI L2 V

1004. 7.50 15.90 0.00 215.911111. 7.50 16.00 0.00 187.01

1200. 7.20 16.50 0.00 166.31

1305. 7.00 17.00 0.00 145.51

1425. 6.90 17.50 0.00 125.41

1578. 6.70 18.20 0.00 105.81

1763. 6.40 19.30 0.00 85.71

1965. 6.40 20.50 0.00 68.212127. 6.30 21.50 0.00 57.51

2296. 6.70 22.20 0.00 48.51

2404. 7.00 22.45 0.00 44.06^ 2500. 7.10 22.70 0.00 40.81

2615. 7.00 22.74 0.00 37.772751. 6.90 22.43 0.00 35.182854. 7.00 19.18 0.00 36.43

2861. 7.00 17.05 0.00 38.262876. 7.10 0.00 0.00 54.91

2990. 7.00 0.00 0.00 54.013071. 7.00 0.00 0.00 53.71

TART.F 8

(ConL)

Volumeteric Data for CO /CH /nC H /H 0 Systems at2 4 14 30 2

343.3 K

Composition (molar):

38.20 % CO2

4.48 % CH 3.71 %4

nC H 53.61 9114 30

j HO2

P(psi) V (cm^)u

V (cm^)Ll

V (cm')L2

V (cm^)V

984. 17.10 24.10 0.00 221.11

1058. 17.00 24.30 0.00 198.81

1139. 16.90 24.60 0.00 178.01

1230. 16.70 25.30 0.00 157.31

1335. 16.40 26.40 0.00 137.01

1460. 16.30 27.20 0.00 115.91

1609. 16.40 27.90 0.00 96.41

1775. 16.60 28.80 0.00 79.41

1968. 16.70 30.40 0.00 62.71

2151. 16.90 31.80 0.00 50.11

2353. 17.30 31.91 0.00 40.70

2475. 17.30 32.95 0.00 35.66

2609. 17.50 34.50 0.00 30.21

2721. 17.60 36.13 0.00 25.98

2827. 17.60 39.47 0.00 21.24

2894. 17.70 45.10 0.00 14.51

2916. 17.70 55.36 0.00 3.45

2948. 17.60 58.31 0.00 0.00

3065. 17.40 57.91 0.00 0.00

TABLE 8

(Cont.)

Volumeteric Data for CO /CH /nC H /H O Systems at 343.3 K/<*> 2 4 14 30 2

/*!•

am,

Composition (molar):

28.81 % CO 3.38 % CH 4.39 % nC H 63.42 % H O2 4 14 30 2

P(psi) V (cm^) V (cm^) V (cm^) V (cm^)U LI L2 V

944. 24.30 34.70 0.00 211.41

1012. 24.30 35.00 0.00 190.31

1087. 24.40 35.60 0.00 169.71

1175. 24.80 35.90 0.00 149.11

1275. 24.90 36.30 0.00 129.51

1394. 24.70 36.70 0.00 110.21

1534. 24.50 37.70 0.00 91.11

1700. 24.60 40.40 0.00 72.01

1858. 25.10 4130 0.00 57.31

2045. 25.40 42.25 0.00 44.06

2227. 25.50 45.27 0.00 33.44

2419. 26.00 47.96 0.00 23.75

2570. 26.00 52.20 0.00 15.81

ms. 26.10 57.50 0.00 6.81

2851. 26.10 62.38 0.00 0.63

2895. 26.00 62.81 0.00 0.00

2945. 25.90 62.71 0.00 0.00

3085. 25.80 61.91 0.00 0.00

A

TABLE 8

(ConL)

Volumeteric Data for CO /CH /nC H /H 0 Systems at2 4 14 30 2

343.3 K

Composition (molar):

22.71 % CO2

2.66 % CH 4.83 %4

nC H 69.80 9114 30

9 HO2

P(psi) V (cm^)L3

V (cm^)Ll

V (cm^)L2

V (cm^V

987. 33.80 47.50 0.00 184.71

1066. 33.50 48.40 0.00 162.11

1155. 33.30 49.90 0.00 140.61

1255. 33.30 50.70 0.00 120.21

1377. 33.30 52.10 0.00 99.21

1522. 33.20 54.00 0.00 78.51

1690. 32.90 56.30 0.00 59.81

1896. 3160 58.83 0.00 43.38

2072. 33.10 61.25 0.00 31.06

2300. 33.40 64.79 0.00 18.32

2407. 33.30 68.10 0.00 12.01

2515. 33.20 71.47 0.00 6.34

2623. 33.30 74.00 0.00 1.61

2650. 33.70 73.42 0.00 0.49

2689. 33.60 73.81 0.00 0.00

2799. 33.50 73.71 0.00 0.00

2864. 33.20 73.61 0.00 0.00