multiple curve lévy forward price model allowing for ......jan 03, 2020  · multiple curve levy...

28
c Eberlein, Uni Freiburg, 1 Multiple Curve L ´ evy Forward Price Model Allowing For Negative Interest Rates Ernst Eberlein Department of Mathematical Stochastics and Center for Data Analysis and Modeling (FDM) University of Freiburg Joint work with Christoph Gerhart and Zorana Grbac 12th Financial Risks International Forum Paris, France March 18–19, 2019

Upload: others

Post on 20-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • c©Eberlein, Uni Freiburg, 1

    Multiple Curve Lévy Forward Price ModelAllowing For Negative Interest Rates

    Ernst Eberlein

    Department of Mathematical Stochasticsand

    Center for Data Analysis and Modeling (FDM)University of Freiburg

    Joint work with Christoph Gerhart and Zorana Grbac

    12th Financial Risks International ForumParis, France March 18–19, 2019

  • c©Eberlein, Uni Freiburg, 1

    20−06−2005 01−12−2006 02−06−2008 01−12−2009 01−06−2011 03−12−2012

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    220

    240b

    pEURIBOR−EONIA OIS rate Spread

    12m 9m 6m 3m 1m

  • c©Eberlein, Uni Freiburg, 2

    Basic interest rates

    B(t ,T ): price at time t ∈ [0,T ] of a default-free zero coupon bond

    f (t ,T ): instantaneous forward rate (short rate r(t) = f (t ,t))

    B(t ,T ) = exp(−∫ T

    t f (t ,u) du)

    L(t ,T ): default-free forward Libor rate for the interval T to T + δ

    L(t ,T ) := 1δ

    (B(t,T )

    B(t,T+δ) − 1)

    FB(t ,T ,U): forward price process for the two maturities T and U

    FB(t ,T ,U) := B(t,T )B(t,U)

    =⇒ 1 + δL(t ,T ) = B(t ,T )B(t ,T + δ)

    = FB(t ,T,T + δ)

  • c©Eberlein, Uni Freiburg, 3

    ECB, Frankfurt

  • c©Eberlein, Uni Freiburg, 4

    15−09−2006 01−03−2009 01−09−2011 01−03−2014

    0.60.7

    0.80.9

    1.0

    Bonds

    15−09−2008 01−03−2011 01−09−2013 01−03−2016

    0.60.7

    0.80.9

    1.0

    Bonds

    15−09−2010 01−03−2013 01−09−2015 01−03−2018

    0.65

    0.70

    0.75

    0.80

    0.85

    0.90

    0.95

    1.00

    Bonds

    17−09−2012 01−03−2015 01−09−2017 01−03−2020

    0.70

    0.75

    0.80

    0.85

    0.90

    0.95

    1.00

    Bonds

    15−09−2014 01−03−2017 01−09−2019 01−03−2022

    0.80

    0.85

    0.90

    0.95

    1.00

    Bonds

    15−09−2016 01−03−2019 01−09−2021 01−03−2024

    0.80

    0.85

    0.90

    0.95

    1.00

    Bonds

    Evolution of Discount Curves 2006 – 2016

  • c©Eberlein, Uni Freiburg, 5

    09−02−2017 01−08−2018 01−02−2020 01−08−2021 01−02−2023 01−08−2024 01−02−2026

    0.90

    0.92

    0.94

    0.96

    0.98

    1.00

    1.02

    Discount Curves, February 9, 2017

  • c©Eberlein, Uni Freiburg, 6

    16−09−2013 01−03−2016 01−09−2018 01−03−2021

    0.75

    0.80

    0.85

    0.90

    0.95

    1.00

    Bonds

    15−09−2016 01−03−2019 01−09−2021 01−03−2024

    0.75

    0.80

    0.85

    0.90

    0.95

    1.00

    Bonds

    16−09−2013 01−03−2016 01−09−2018 01−03−2021

    0.000

    0.005

    0.010

    0.015

    0.020

    0.025

    0.030

    0.035

    Instantaneous forward rates

    15−09−2016 01−03−2019 01−09−2021 01−03−2024

    −0.00

    50.0

    000.0

    050.0

    100.0

    15

    Instantaneous forward rates

    Derived Instantaneous Forward Rates 2013 and 2016

  • c©Eberlein, Uni Freiburg, 7

    Bootstrapping of Initial Curves

    The quoted overnight indexed swap rate (OIS) for a discrete tenorstructure T = {T0, . . . ,Tn} with tenor δ can be expressed in the form

    Son0 (T ) =Bd0(T0)− Bd0(Tn)∑n

    k=1 δBd0(Tk )

    Quotes of the swap rates are given for increasing maturities.

    From the Bd0(Tk ) we derive for each pair of consecutive datesTk−1,Tk ∈ T the discretely compounded forward reference rates

    Ld(0,Tk−1,Tk ) =1δ

    (Bd0(Tk−1)Bd0(Tk )

    − 1)

  • c©Eberlein, Uni Freiburg, 8

    0

    1

    2

    3

    2005−0

    9−07

    2006−0

    9−07

    2007−0

    9−07

    2008−0

    9−07

    2009−0

    9−07

    2010−0

    9−07

    Maturity

    FRA R

    ates (

    in bp

    s)

    colour

    3m

    6m

    Basic

    (a)

    0

    1

    2

    3

    4

    5

    2007−1

    2−27

    2008−1

    2−27

    2009−1

    2−27

    2010−1

    2−27

    2011−1

    2−27

    2012−1

    2−27

    Maturity

    FRA R

    ates (

    in bp

    s)

    colour

    3m

    6m

    Basic

    (b)

    0

    1

    2

    3

    4

    2009−1

    1−26

    2010−1

    1−26

    2011−1

    1−26

    2012−1

    1−26

    2013−1

    1−26

    2014−1

    1−26

    Maturity

    FRA R

    ates (

    in bp

    s)

    colour

    3m

    6m

    Basic

    (c)

    0

    1

    2

    2012−0

    3−15

    2013−0

    3−15

    2014−0

    3−15

    2015−0

    3−15

    2016−0

    3−15

    2017−0

    3−15

    Maturity

    FRA R

    ates (

    in bp

    s)

    colour

    3m

    6m

    Basic

    (d)

    0.0

    0.4

    0.8

    2014−1

    0−02

    2015−1

    0−02

    2016−1

    0−02

    2017−1

    0−02

    2018−1

    0−02

    2019−1

    0−02

    Maturity

    FRA R

    ates (

    in bp

    s)

    colour

    3m

    6m

    Basic

    (e)

    −0.25

    0.00

    0.25

    2016−0

    9−15

    2017−0

    9−15

    2018−0

    9−15

    2019−0

    9−15

    2020−0

    9−15

    2021−0

    9−15

    Maturity

    FRA R

    ates (

    in bp

    s)

    colour

    3m

    6m

    Basic

    (f)

    Historical Evolution of the Tenor-Dependent FRA Curves

  • c©Eberlein, Uni Freiburg, 9

    The Initial 6-month CurveStart with its value at the maturity of six months by using the quoteddeposit rate R6m0 (0.5)

    B6m0 (0.5) =1

    1 + 0.5 · R6m0 (0.5).

    For mid and long term maturities from one year upwards proceed bybootstrapping. Use quoted swap rates based on a 6-month floating legaccording to

    S0(T 6m, T ) =0.5∑n6m

    k=1 Bd0(T

    6mk )L

    6m(0,T 6mk−1,T6mk )

    δ∑n

    l=1 Bd0(Tl)

    where

    L6m(0,T 6mk−1,T6mk ) =

    10.5

    (B6m0 (T

    6mk−1)

    B6m0 (T6mk )

    − 1

    ).

    Values for the maturities of one and three months are added by usingrates of forward rate agreements

  • c©Eberlein, Uni Freiburg, 10

    Literature on Modelling MultipleCurves

    Kijima, Tanaka and Wong (2009)

    Kenyon (2010), Mercurio (2009, 2010)

    Bianchetti (2010), Morini (2009)

    Crépey, Grbac and Nguyen (2012)

    Crépey, Douady (2013)

    Filipović and Trolle (2013)

    Henrard (2010, 2014)

    Grbac and Runggaldier (2015)

    Cuchiero, Fontana and Gnoatto (2016, 2017)

    Grbac, Papapantoleon, Schoenmakers and Skovmand (2015)

    Crépey, Macrina, Nguyen and Skovmand (2016)

    Eberlein and Gerhart (2018)

    Macrina and Mahomed (2018)

    Afeus, Grasselli and Schlögl (2018)

  • c©Eberlein, Uni Freiburg, 11

    The Driving Process

    L = (L1, . . . , Ld) is a d-dimensional time-inhomogeneous Lévyprocess, i.e. L has independent increments and the law of Lt is given bythe characteristic function

    E[exp(i〈u, Lt〉)] = exp∫ t

    0θs(iu) ds with

    θs(z) = 〈z, bs〉+12〈z, csz〉+

    ∫Rd

    (e〈z,x〉 − 1− 〈z, x〉

    )Fs(dx)

    where bt ∈ Rd , ct is a symmetric nonnegative-definite d × d-matrixand Ft is a Lévy measure

  • c©Eberlein, Uni Freiburg, 12

    Description in Terms of ModernStochastic Analysis

    L = (Lt) is a special semimartingale with canonical representation

    Lt =∫ t

    0bs ds +

    ∫ t0

    c1/2s dWs +∫ t

    0

    ∫Rd

    x(µL − ν)(ds, dx)

    and characteristics

    At =∫ t

    0bs ds, Ct =

    ∫ t0

    cs ds, ν(ds, dx) = Fs(dx) ds

    W = (Wt) is a standard d-dimensional Brownian motion,

    µL the random measure of jumps of L and ν is the compensator of µL

  • c©Eberlein, Uni Freiburg, 13

    Simulation of a GH Lévy motionNIG Levy process with marginal densities

    t

    valu

    es o

    f NIG

    (100

    ,0,1

    ,0)

    Levy

    pro

    cess

    0.0 0.5 1.0 1.5 2.0

    104.

    610

    4.8

    105.

    010

    5.2

    105.

    4

  • c©Eberlein, Uni Freiburg, 14

    The Basic Discount Curve (1)(following Eb., Özkan (2005))

    Tenor structure T : 0 ≤ T0 < T1 < · · · < Tn = T ∗ with Tk −Tk−1 = δ

    Bdt (T ): bond price at time t maturing at T

    Ld(t ,Tk−1,Tk ): forward reference rate for the interval Tk−1 to Tk

    Ld(t ,Tk−1,Tk ) :=1δ

    (Bdt (Tk−1)Bdt (Tk )

    − 1)

    F d(t ,Tk−1,Tk ): forward price process for the maturities Tk−1, Tk

    F d(t ,Tk−1,Tk ) :=Bdt (Tk−1)Bdt (Tk )

    ⇒ F d(t ,Tk−1,Tk ) = 1 + δLd(t ,Tk−1,Tk )

  • c©Eberlein, Uni Freiburg, 15

    The Basic Discount Curve (2)Assumptions

    (DFP.1) The initial term structure of bond prices Bd0 (T ) for T ∈ [0,T ∗]is given. This defines the starting values of the forwardprocesses

    F d(0,Tk−1,Tk ) =Bd0 (Tk−1)Bd0 (Tk )

    (DFP.2) For any maturity Tk−1 ∈ T there is a bounded, continuous anddeterministic function

    λd(·,Tk−1) : [0,T ∗]→ Rd+.

    We require that

    λd(t ,Tk−1) = (0, . . . , 0) for t > Tk−1

    Tn T *0 T T1 2 3TT =

  • c©Eberlein, Uni Freiburg, 16

    Backward Induction (1)We postulate

    F d(t ,Tn−1,Tn)

    = F d(0,Tn−1,Tn) exp(∫ t

    0λd(s,Tn−1)dLTns +

    ∫ t0

    bd(s,Tn−1,Tn)ds)

    where LTn = LT∗

    is given in the form

    LT∗

    t =

    ∫ t0

    √cs dW T

    ∗s +

    ∫ t0

    ∫Rd

    x(µL − νT∗)(ds, dx)

    with PdT∗ -Brownian motion WT∗ and compensator νT

    ∗(dt , dx).

    Choose the drift bd(·,Tn−1,Tn) s.t. F d(·,Tn−1,Tn) becomes aPdT∗ -martingale

    bd(t ,Tn−1,Tn) = −12λd(t ,Tn−1)ctλd(t ,Tn−1)>

    −∫Rd(eλ

    d (t,Tn−1)x − 1− λd(t ,Tn−1)x)F T∗

    t (dx)

  • c©Eberlein, Uni Freiburg, 17

    Backward Induction (2)

    Define the forward martingale measure associated with Tn−1

    dPdTn−1dPdTn

    :=F d(Tn−1,Tn,Tn)F d(0,Tn−1,Tn)

    By Girsanov’s theorem

    W Tn−1t := WT∗t −

    ∫ t0

    √cs λd(s,Tn−1)>ds

    is a PdTn−1 -standard Brownian motion and

    νTn−1(dt , dx) := exp(λd(t ,Tn−1)x)νT∗(dt , dx) = F Tn−1t (dx)dt

    defines the PdTn−1 -compensator of µL.

  • c©Eberlein, Uni Freiburg, 18

    Backward Induction (3)

    Proceeding backwards along the tenor structure T one gets for eachk ∈ {1, . . . , n}

    F d(t ,Tk−1,Tk )

    = F d(0,Tk−1,Tk ) exp(∫ t

    0λd(s,Tk−1)dL

    Tks +

    ∫ t0

    bd(s,Tk−1,Tk )ds)

    where

    LTkt =∫ t

    0

    √cs dW

    Tks +

    ∫ t0

    ∫Rd

    x(µL − νTk )(ds, dx)

    and the drift term is chosen s.t. F d(·,Tk−1,Tk ) is a PdTk -martingale.

  • c©Eberlein, Uni Freiburg, 19

    Multiple Term Structure Curves

    Consider m tenor structures nested in T

    T m ⊂ · · · ⊂ T 1 ⊂ T

    T i = {T i0, . . . ,T ini }

    0 ≤ T i0 = T0 < T i1 < · · · < T ini = Tn = T∗

    year fractions: δi = δi(T ik−1,Tik ) independent of k

    Li(T ik−1,Tik ): T

    ik−1-spot Libor/Euribor rate

    DefineLi(t ,T ik−1,T

    ik ) := EdT ik [L

    i(T ik−1,Tik ) | Ft ]

    as the forward reference rate corresponding to δi .

  • c©Eberlein, Uni Freiburg, 20

    Possibilities to Model the Spreads

    (1) Additive forward spreads

    si(t ,T ik−1,Tik ) := L

    i(t ,T ik−1,Tik )− Ld(t ,T ik−1,T ik )

    or

    (2) Multiplicative forward spreads

    S i(t ,T ik−1,Tik ) :=

    1 + δiLi(t ,T ik−1,Tik )

    1 + δiLd(t ,T ik−1,Tik )

    =1 + δiLi(t ,T ik−1,T

    ik )

    F d(t ,T ik−1,Tik )

    In the forward price framework the natural choice are multiplicativespreads.

    Lemma

    Li(·,T ik−1,T ik ) is a PdT ik -martingale

    ⇔ S i(·,T ik−1,T ik ) is a PdT ik−1-martingale

  • c©Eberlein, Uni Freiburg, 21

    Model Variant (a)

    Choose bounded, continuous, deterministic volatilities γ i(·,T ik−1)and postulate for each pair T ik−1,T

    ik ∈ T i

    S i(t ,T ik−1,Tik )

    = S i(0,T ik−1,Tik ) exp

    (∫ t0γ i(s,T ik−1)dL

    T ik−1s +

    ∫ t0

    bi(s,T ik−1)ds)

    where bi(·,T ik−1) is chosen s.t. S i(·,T ik−1,T ik ) is a PdT ik−1-martingale

    → maximum of tractabilitybasic forward reference rate as well as the δi - forward ratescan become negative (the initial rates can be negative)multiplicative spread not necessarily ≥ 1

  • c©Eberlein, Uni Freiburg, 22

    Model Variant (a) Continued

    We get the following explicit form for the δi -forward rate

    1 + δiLi(t ,T ik−1,Tik ) = S

    i(t ,T ik−1,Tik )F

    d(t ,T ik−1,Tik )

    =(

    1 + δiLi(0,T ik−1,Tik ))

    exp

    (∫ t0

    [∑j∈Jik

    λd(s,Tj−1) + γ i(s,T ik−1)]dLT

    ik

    s

    +

    ∫ t0

    [bi(s,T ik−1) + 〈γ i(s,T ik−1),w(s,T ik−1,T ik )〉

    +∑j∈Jik

    [〈λd(s,Tj−1),w(s,Tj ,T ik )〉+ bd(s,Tj−1,Tj)

    ]]ds

    ).

  • c©Eberlein, Uni Freiburg, 23

    Model Variant (b)

    Choose again volatilities γ i(·,T ik−1) as before and postulate for eachpair T ik−1,T

    ik ∈ T i

    S i(t ,T ik−1,Tik )− 1

    S i(0,T ik−1,Tik )− 1

    = exp(∫ t

    0γ i(s,T ik−1)dL

    T ik−1s +

    ∫ t0

    bi(s,T ik−1)ds

    )where

    bi(t ,T ik−1) = −

    12γ i(t ,T ik−1)ctγ

    i(t ,T ik−1)>

    −∫Rd(eγ

    i (t,T ik−1)x − 1− γ i(t ,T ik−1)x)FT ik−1t (dx).

    → reasonable tractabilitymultiplicative spread is > 1

  • c©Eberlein, Uni Freiburg, 24

    Calibration

    Pricing formula for caps with tenor length δl : T + δl = Tk

    Cpl(t ,T , δl ,K )

    = δlBdt (Tk )EdTk[ (

    Ll(T ,Tk )− K)+| Ft]

    = Bdt (Tk )EdTk[ (

    1 + δlLl(T ,T ,Tk )− (1 + δlK ))+| Ft]

    = Bdt (Tk )EdTk[(

    F d(T ,T ,Tk )S l(T ,T ,Tk )− K̃ l)+| Ft]

    = Bdt (Tk )(Zkt )−1EdT∗

    [Z kT(

    F d(T ,T ,Tk )S l(T ,T ,Tk )− K̃ l)+| Ft]

  • c©Eberlein, Uni Freiburg, 25

    Calibration Continued

    Assumption: volatility functions are decomposable

    λd(t ,T ) = λd1(T )λ(t)

    andγ l(t ,T ) = γ l1(T )λ(t)

    Define XT :=∫ T

    0λ(s)dLT

    ∗s

    ⇒ Cpl(0,T , δl ,K ) = Bd0 (Tk ) EdT∗ [fk,lK (XT )] for a function f

    k,lK

    Applying the Fourier-based approach one gets

    Cpl(0,T , δl ,K ) =Bd0 (Tk )π

    ∫ ∞0

    Re(ϕXT (u − iR) f̂

    k,lK (iR − u)

    )du

  • c©Eberlein, Uni Freiburg, 26

    Calibration Results

    Maturity

    2.5

    3.0

    3.5

    4.0

    4.5

    5.0

    Strike

    Rate

    −0.2

    0.0

    0.2

    0.4

    Market and M

    odel Volatility

    0

    20

    40

    60

    80

    (a) Model (a)

    Maturity

    2.5

    3.0

    3.5

    4.0

    4.5

    5.0

    Strike

    Rate

    −0.2

    0.0

    0.2

    0.4M

    arket and Model V

    olatility

    0

    20

    40

    60

    80

    (b) Model (b)

    Figure: Calibrated Volatility Surfaces on September 15, 2016

  • c©Eberlein, Uni Freiburg, 27

    References

    Ametrano, F. M. and Bianchetti, M.: Everything You Always Wanted toKnow About Multiple Interest Rate Curve Bootstrapping But Were Afraidto Ask. Available at SSRN 2219548, 2013

    Eberlein, E., Gerhart, C.: A Multiple-Curve Lévy Forward Rate Model ina Two-Price Economy. Quantitative Finance, 18(4): 537-561, 2018

    Eberlein, E., Gerhart, C., and Grbac, Z.: Multiple-Curve Lévy ForwardPrice Model Allowing for Negative Interest Rates. (to appear inMathematical Finance), 2018

    Eberlein, E. and Özkan, F.: The Lévy Libor Model. Finance andStochastics, 9(3):327–348, 2005

    Eberlein, E., Glau, K., and Papapantoleon, A.: Analysis of FourierTransform Valuation Formulas and Applications. Applied MathematicalFinance, 17(3):211–240, 2010