mul$%modal)bayesian)embeddingsfor

40
Mul$Modal Bayesian Embeddings for Learning Social Knowledge Graphs Zhilin Yang 12 , Jie Tang 1 , William W. Cohen 2 1 Tsinghua University 2 Carnegie Mellon University

Upload: others

Post on 30-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mul$%Modal)Bayesian)Embeddingsfor

Mul$-­‐Modal  Bayesian  Embeddings  for  Learning  Social  Knowledge  Graphs  

Zhilin  Yang12,  Jie  Tang1,  William  W.  Cohen2  1Tsinghua  University  

2Carnegie  Mellon  University  

Page 2: Mul$%Modal)Bayesian)Embeddingsfor

AMiner:  academic  social  network  

Research  interests  

Page 3: Mul$%Modal)Bayesian)Embeddingsfor

Text-­‐Based  Approach  

List  of  publica$ons   Research  interests  Infer  

Page 4: Mul$%Modal)Bayesian)Embeddingsfor

Text-­‐Based  Approach  

Term  Frequency  =>  “challenging  problem”  TF-­‐IDF  =>  “line  drawing”  

Page 5: Mul$%Modal)Bayesian)Embeddingsfor

Knowledge-­‐Driven  Approach  

List  of  publica$ons  

Research  interests  Infer  Ar>ficial  Intelligence  

Data  Mining   Machine  Learning  

Clustering  Associa>on  Rules  

Knowledge  bases  

Page 6: Mul$%Modal)Bayesian)Embeddingsfor

Problem:  Learning  Social  Knowledge  Graphs  

Mike  

Jane   Kevin  

Jing  

Natural  Language  Processing  

Deep  Learning  for  NLP  

Recurrent  networks  for  NER  

Deep  Learning  

Page 7: Mul$%Modal)Bayesian)Embeddingsfor

Problem:  Learning  Social  Knowledge  Graphs  

Mike  

Jane   Kevin  

Jing  

Natural  Language  Processing  

Deep  Learning  for  NLP  

Social  network  structure  Social  text  

Knowledge  base  

Recurrent  networks  for  NER  

Deep  Learning  

Page 8: Mul$%Modal)Bayesian)Embeddingsfor

Problem:  Learning  Social  Knowledge  Graphs  

Mike  

Jane   Kevin  

Jing  

Deep  Learning   Natural  Language  Processing  

Deep  Learning  for  NLP  

Recurrent  networks  for  NER  

Infer  a  ranked  list  of  concepts  

Kevin:  Deep  Learning,  Natural  Language  Processing  Jing:  Recurrent  Networks,  Named  En$ty  Recogni$on  

Page 9: Mul$%Modal)Bayesian)Embeddingsfor

Challenges  Mike  

Jane   Kevin  

Jing  

Natural  Language  Processing  

Deep  Learning  for  NLP  

Recurrent  networks  for  NER  

Deep  Learning  

Two  modali$es  –  users  and  concepts  How  to  leverage  informa$on  from  both  modali$es?  How  to  connect  these  two  modali$es?  

Page 10: Mul$%Modal)Bayesian)Embeddingsfor

Approach  

Jane   Kevin  

Jing  

Deep  Learning  for  NLP  

Recurrent  networks  for  NER   Natural  Language  

Processing  Deep  Learning  

Learn  user  embeddings   Learn  concept  embeddings  

Social  KG  

Model  

Page 11: Mul$%Modal)Bayesian)Embeddingsfor

Model  

T

θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

Tτ r

τ k

α

User  Embedding  

Concept  Embedding  

Page 12: Mul$%Modal)Bayesian)Embeddingsfor

T

θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

Tτ r

τ k

α

User  Embedding  

Concept  Embedding  

Gaussian  distribu$on  for  user  embeddings  

Gaussian  distribu$on  for  concept  embeddings  

Align  users  and  concepts  

Page 13: Mul$%Modal)Bayesian)Embeddingsfor

Inference  and  Learning  

T

θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

Tτ r

τ k

α

Collapsed  Gibbs  sampling  

Iterate  between:  1.   Sample  latent  variables  

Page 14: Mul$%Modal)Bayesian)Embeddingsfor

Inference  and  Learning  

T

θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

Tτ r

τ k

α

Iterate  between:  1.  Sample  latent  variables  2.   Update  parameters  

Collapsed  Gibbs  sampling  

Page 15: Mul$%Modal)Bayesian)Embeddingsfor

Inference  and  Learning  

T

θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

Tτ r

τ k

α

Iterate  between:  1.  Sample  latent  variables  2.  Update  parameters  3.   Update  embeddings  

Collapsed  Gibbs  sampling  

Page 16: Mul$%Modal)Bayesian)Embeddingsfor

AMiner  Research  Interest  Dataset  Ø  644,985  researchers  Ø  Terms  in  these  researchers’  publica>ons  

§  Filtered  with  Wikipedia  Ø  Evalua>on  

§  Homepage  matching  •  1,874  researchers  •  Using  homepages  as  ground  truth  

§  LinkedIn  matching  •  113  researchers  •  Using  LinkedIn  skills  as  ground  truth  

Code  and  data  available:  h\ps://github.com/kimiyoung/genvector  

Page 17: Mul$%Modal)Bayesian)Embeddingsfor

Homepage  Matching  

Method   Precision@5  GenVector   78.1003%  GenVector-­‐E   77.8548%  Sys-­‐Base   73.8189%  Author-­‐Topic   74.4397%  NTN   65.8911%  CountKG   54.4823%  

Using  homepages  as  ground  truth.  

GenVector   Our  model  GenVector-­‐E   Our  model  w/o  embedding  update  Sys-­‐Base   AMiner  baseline:  key  term  extrac>on  

CountKG   Rank  by  frequency  Author-­‐topic   Classic  topic  models  NTN   Neural  tensor  networks  

Page 18: Mul$%Modal)Bayesian)Embeddingsfor

LinkedIn  Matching  

Method   Precision@5  GenVector   50.4424%  GenVector-­‐E   49.9145%  Author-­‐Topic   47.6106%  NTN   42.0512%  CountKG   46.8376%  

GenVector   Our  model  GenVector-­‐E   Our  model  w/o  embedding  update  

CountKG   Rank  by  frequency  Author-­‐topic   Classic  topic  models  NTN   Neural  tensor  networks  

Using  LinkedIn  skills  as  ground  truth.  

Page 19: Mul$%Modal)Bayesian)Embeddingsfor

Error  Rate  of  Irrelevant  Cases  

Method   Error  rate  GenVector   1.2%  Sys-­‐Base   18.8%  Author-­‐Topic   1.6%  NTN   7.2%  

Manually  label  terms  that  are  clearly  NOT  research  interests,  e.g.,  challenging  problem.  

GenVector   Our  model  Sys-­‐Base   AMiner  baseline:  key  term  extrac>on  

Author-­‐topic   Classic  topic  models  NTN   Neural  tensor  networks  

Page 20: Mul$%Modal)Bayesian)Embeddingsfor

Qualita$ve  Study:  Top  Concepts  within  Topics  

Query  expansion  Concept  mining  Language  modeling  Informa>on  extrac>on  Knowledge  extrac>on  En>ty  linking  Language  models  Named  en>ty  recogni>on  Document  clustering  Latent  seman>c  indexing  

GenVector  

Speech  recogni>on  Natural  language  *Integrated  circuits  Document  retrieval  Language  models  Language  model  *Microphone  array  Computa>onal  linguis>cs  *Semidefinite  programming  Ac>ve  learning  

Author-­‐Topic  

Page 21: Mul$%Modal)Bayesian)Embeddingsfor

Qualita$ve  Study:  Top  Concepts  within  Topics  

Image  processing  Face  recogni>on  Feature  extrac>on  Computer  vision  Image  segmenta>on  Image  analysis  Feature  detec>on  Digital  image  processing  Machine  learning  algorithms  Machine  vision  

GenVector  

Face  recogni>on  *Food  intake  Face  detec>on  Image  recogni>on  *Atmospheric  chemistry  Feature  extrac>on  Sta>s>cal  learning  Discriminant  analysis  Object  tracking  *Human  factors  

Author-­‐Topic  

Page 22: Mul$%Modal)Bayesian)Embeddingsfor

Qualita$ve  Study:  Research  Interests  

Feature  extrac>on  Image  segmenta>on  Image  matching  Image  classifica>on  Face  recogni>on  

GenVector  

Face  recogni>on  Face  image  *Novel  approach  *Line  drawing  Discriminant  analysis  

Sys-­‐Base  

Page 23: Mul$%Modal)Bayesian)Embeddingsfor

Qualita$ve  Study:  Research  Interests  

Unsupervised  learning  Feature  learning  Bayesian  networks  Reinforcement  learning  Dimensionality  reduc>on  

GenVector  

*Challenging  problem  Reinforcement  learning  *Autonomous  helicopter  *Autonomous  helicopter  flight  Near-­‐op>mal  planning  

Sys-­‐Base  

Page 24: Mul$%Modal)Bayesian)Embeddingsfor

Online  Test  

Method   Error  rate  GenVector   3.33%  Sys-­‐Base   10.00%  

A/B  test  with  live  users  §  Mixing  the  results  with  Sys-­‐Base  

Page 25: Mul$%Modal)Bayesian)Embeddingsfor

Other  Social  Networks?  Mike  

Jane   Kevin  

Jing  

Natural  Language  Processing  

Deep  Learning  for  NLP  

Social  network  structure  

Social  text  Knowledge  base  

Recurrent  networks  for  NER  

Deep  Learning  

Page 26: Mul$%Modal)Bayesian)Embeddingsfor

Conclusion  

Ø Study  a  novel  problem  §  Learning  social  knowledge  graphs  

Ø Propose  a  model  § Mul>-­‐modal  Bayesian  embedding  §  Integrate  embeddings  into  graphical  models  

Ø AMiner  research  interest  dataset  §  644,985  researchers  §  Homepage  and  LinkedIn  matching  as  ground  truth  

Ø Online  deployment  on  AMiner  

Page 27: Mul$%Modal)Bayesian)Embeddingsfor

Thanks!  

h\ps://github.com/kimiyoung/genvector    

Code  and  data:  

Page 28: Mul$%Modal)Bayesian)Embeddingsfor

Social  Networks  Mike  

Jane   Kevin  

Jing  

AMiner,  Facebook,  Twi\er…    Huge  amounts  of  informa$on  

Page 29: Mul$%Modal)Bayesian)Embeddingsfor

Knowledge  Bases  Computer  Science  

Ar>ficial  Intelligence   System  

Deep  Learning   Natural  Language  Processing  

Wikipedia,  Freebase,  Yago,  NELL…    Huge  amounts  of  knowledge  

Page 30: Mul$%Modal)Bayesian)Embeddingsfor

Bridge  the  Gap  Mike  

Jane   Kevin  

Jing  

Computer  Science  

Ar>ficial  Intelligence   System  

Deep  Learning   Natural  Language  Processing  

Bejer  user  understanding    e.g.  mine  research  interests  on  AMiner  

Page 31: Mul$%Modal)Bayesian)Embeddingsfor

Approach  

Social  network   Knowledge  base  

User  embeddings   Concept  embeddings  

Social  KG  

Model  

Social  text  

Copy  picture  

Page 32: Mul$%Modal)Bayesian)Embeddingsfor

Model  

T

θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

Tτ r

τ k

α

Documents  (one  per  user)  

Concepts  for  the  user  

Parameters  for  topics  

Page 33: Mul$%Modal)Bayesian)Embeddingsfor

Model  

T

θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

Tτ r

τ k

α

Generate  a  topic  distribu$on  for  each  document  (from  a  Dirichlet)  

Page 34: Mul$%Modal)Bayesian)Embeddingsfor

Model  

T

θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

Tτ r

τ k

α

Generate  Gaussian  distribu$on  for  each  embedding  space  (from  a  Normal  Gamma)  

Page 35: Mul$%Modal)Bayesian)Embeddingsfor

Model  

T

θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

Tτ r

τ k

α

Generate  the  topic  for  each  concept  (from  a  Mul$nomial)  

Page 36: Mul$%Modal)Bayesian)Embeddingsfor

Model  

T

θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

Tτ r

τ k

α

Generate  the  topic  for  each  user  (from  a  Uniform)  

Page 37: Mul$%Modal)Bayesian)Embeddingsfor

Model  

T

θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

Tτ r

τ k

α

Generate  embeddings  for  users  and  concepts  (from  a  Gaussian)  

Page 38: Mul$%Modal)Bayesian)Embeddingsfor

Model  

T

θ

D

f r

f k M

µ r

λ r

µ k

λ kz

My

Tτ r

τ k

α

General  

Page 39: Mul$%Modal)Bayesian)Embeddingsfor

Inference  and  Learning  Collapsed  Gibbs  sampling  for  inference  

Update  the  embedding  during  learning    Different  from  LDAs  with  discrete  observed  variables  

Sample  latent  variables  

Update  parameters  

Update  Embeddings  

Add  picture  

Page 40: Mul$%Modal)Bayesian)Embeddingsfor

Methods  for  Comparison  

Method   Descrip$on  GenVector   Our  model  GenVector-­‐E   Our  model  w/o  embedding  update  Sys-­‐Base   AMiner  baseline:  key  term  extrac>on  CountKG   Rank  by  frequency  Author-­‐topic   Classic  topic  models  NTN   Neural  tensor  networks