mth263 lecture 1

29
MTH 263 Probability and Random Variables Lecture 1 Dr. Sobia Baig Electrical Engineering Department COMSATS Institute of Information Technology, Lahore

Upload: tariq88

Post on 18-May-2015

66 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Mth263 lecture 1

MTH 263  Probability and Random Variables

Lecture 1Dr. Sobia Baig

Electrical Engineering DepartmentCOMSATS Institute of Information Technology, Lahore

Page 2: Mth263 lecture 1

ContentsContents

• Probability and Random Variables‐briefProbability and Random Variables brief introduction/motivation

• Mathematical Models as tools in Analysis and• Mathematical Models as tools in Analysis and Design

D t i i ti M d l– Deterministic Models

– Probability Models

• Examples

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 2

Page 3: Mth263 lecture 1

A Typical Communication SystemA Typical Communication System

• Probabilistic methods in making decisions about the transmitted/received message / g

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 3

Page 4: Mth263 lecture 1

Digital Communication with b b l fProbability of Error

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 4

Page 5: Mth263 lecture 1

Probability/ Uncertainty Element in Systems

• Wireless communication networks provide voice e ess co u cat o et o s p o de o ceand data communications to mobile users in severe interference environments.

• The vast majority of media signals, voice, audio, images, and video are processed digitally.

• The systems the designers build are unprecedented in scale and the chaotic environments in which they must operate areenvironments in which they must operate are untrodden terrritory. 

• So there is “Uncertainty”So there is  Uncertainty

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 5

Page 6: Mth263 lecture 1

Probability ModelsProbability Models

• Probability models are one of the tools thatProbability models are one of the tools that enable the designer to make sense out of the chaos and to successfully build systems thatchaos and to successfully build systems that are efficient, reliable, and cost effective

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 6

Page 7: Mth263 lecture 1

MATHEMATICAL MODELS AS TOOLS IN ANALYSIS AND DESIGNAND DESIGN

• Experiments: Costly way of testing a design or solve a problem. 

• Model: Approximate representation of a physical situation. • Useful Model: Able to explain all relevant aspects of a givenUseful Model: Able to explain all relevant aspects of a given 

phenomenon. • Mathematical Models: If observational phenomenon has 

measurable properties then a mathematical modelmeasurable properties then a mathematical model consisting of a set of assumptions about the system is employed

• Conditions under which an experiment is performed and aConditions under which an experiment is performed and a model is assumed are very critical. Change the assumptions then a “good” model can be a great failure.

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 7

Page 8: Mth263 lecture 1

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 8

Page 9: Mth263 lecture 1

Computer Simulations & Deterministic d lModels 

• Computer Simulation Models: They mimic or p ysimulate the dynamics of a system 

• Deterministic Models: Lab and textbook cases, conditions determine outcomeconditions determine outcome 

• 1. Circuit Theory • 2 Ohm’s Law• 2. Ohm s Law • 3. Kirchoffs’ Laws • 4 Transforms: FFT; Laplace Transforms4. Transforms: FFT; Laplace Transforms • 5. Convolution :Input/output behavior of systems with well‐defined coefficients 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 9

Page 10: Mth263 lecture 1

Probability ModelsProbability Models

• Probabilistic (Stochastic Random) Models:Probabilistic (Stochastic, Random) Models: involve phenomena that exhibit unpredictable variation and randomnessvariation and randomness. 

h h b ll (Ex: Urn with three balls; (0,1,2 marked) ‐‐ Outcome: A number from the set {0,1,2} { , , }‐‐ Sample Space: All possible outcomes of an experiment: S = {0,1,2} 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 10

Page 11: Mth263 lecture 1

Statistical RegularityStatistical Regularity

• Relative Frequency:Relative Frequency: 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 11

Page 12: Mth263 lecture 1

Statistical RegularityStatistical Regularity

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 12

Page 13: Mth263 lecture 1

Statistical RegularityStatistical Regularity

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 13

Page 14: Mth263 lecture 1

Properties of Relative FrequencyProperties of Relative Frequency 

• Suppose a random experiment has K possibleSuppose a random experiment has K possible outcomes: S = {1,2,…,K}. Then in “n” trials we havehave 

Ex: Consider the 3‐ball urn experiment A: even = {0,2} then, 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 14

Page 15: Mth263 lecture 1

• Disjoint (mutually exclusive) events: If A or BDisjoint (mutually exclusive) events: If A or B can occur but not both, then

• Relative frequency of two disjoint events is h f h i i di id l l i fthe sum of their individual relative frequency. 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 15

Page 16: Mth263 lecture 1

Axioms of ProbabilityAxioms of Probability

• Kolmogorov’s axioms to form a Theory of Probability: Assumptions: 

1. Random experiment has been defined and the sample space S has been identified. 

2. A class of subsets of S has been specified. 3. Each event A has been assigned a number P(A) such that, 

– 1 0 ≤ P(A) ≤ 11. 0 ≤ P(A) ≤ 1 – 2. P(S) = 1 – 3. If A and B are mutually exclusive events then 

• P(A or B) = P(A) + P(B)P(A or B) = P(A) + P(B) 

• Kolmogorov’s axioms are sufficient to build a consistent Theory of ProbabilityTheory of Probability. 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 16

Page 17: Mth263 lecture 1

ExampleExample

• Example: Packet Voice CommunicationExample: Packet Voice Communication system Efficiency 

• Due to silences voice communication is veryDue to silences voice communication is very inefficient on dedicated lines. It is observed that only “1/3” of the time actual speech goes through. How to increase this rate by using prob. approaches??? 

• Solution: Error vs rate trade off in digital information (BCS) transmission/storage 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 17

Page 18: Mth263 lecture 1

Packet Voice Communication system ff ( )Efficiency (2)

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 18

Page 19: Mth263 lecture 1

Packet Voice Communication system ff ( )Efficiency (3)

• A is the outcome of a random experiment, determining which p , gpackets contain active speech

• M<48 packets are transmitted every 10 ms

• If A≤ M, then all packets are active

• If A> M, then A‐M active packets are discarded randomly 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 19

Page 20: Mth263 lecture 1

Packet Voice Communication system ff ( )Efficiency (4)

• E[A]=48*1/3E[A]=48 1/3

• E[A]=16

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 20

Page 21: Mth263 lecture 1

ExampleExample

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 21

Page 22: Mth263 lecture 1

Example: Signal Enhancement Using lFilters 

• Given a signal x(t) corrupted with noise andGiven a signal x(t) corrupted with noise and has a Signal‐to‐Noise Ratio value SNR. If you filter this noisy signal with a properly designedfilter this noisy signal with a properly designed adaptive filter to suppress noise, we obtain an enhanced signal (smoothed by the filter )enhanced signal, (smoothed by the filter.) 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 22

Page 23: Mth263 lecture 1

Example: Signal Enhancement Using lFilters 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 23

Page 24: Mth263 lecture 1

Resource SharingResource Sharing

• Example: Multi User Systems with Queues:Example: Multi User Systems with Queues: Resource sharing 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 24

Page 25: Mth263 lecture 1

Multi User Systems with Queues: hResource sharing 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 25

Page 26: Mth263 lecture 1

System Reliability: Cascade vs. Parallel Systems 

• Issues: Need of a clock vs the system delay orIssues: Need of a clock vs. the system delay or throughput rate. 

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 26

Page 27: Mth263 lecture 1

ProblemProblem

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 27

Page 28: Mth263 lecture 1

Reading AssignmentReading Assignment

• Text Book Chapter 1 pages 17 ‐34Text Book, Chapter 1, pages 17  34

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 28

Page 29: Mth263 lecture 1

SummarySummary

• Mathematical Models– Relate system parameters and variables– Allow system designers to predict system performance by using 

equations– Experimentation may be too costly– Experimentation may be too costly– Experimentation may not be feasible

• Computer simulation models predict system performance• Deterministic models give output of an experiment with an exact• Deterministic models give output of an experiment with an exact 

outcome• Probability models determine probabilities of the possible 

outcomes• Probabilities and averages for a random experiment can be found 

experimentally by computing relative frequencies and sample averages in a large number of trials of experiment

Probability and Random Variables, Lecture 1, by Dr. Sobia Baig 29