mst121 chapter a2

Upload: radu20122012

Post on 04-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Mst121 Chapter a2

    1/60

    MST121Using Mathematics

    Chapter A2

    Lines and circles

  • 8/13/2019 Mst121 Chapter a2

    2/60

    About this course

    Thiscourse,MST121Using Mathematics,andthecoursesMU120OpenMathematics andMS221Exploring Mathematics provideaflexiblemeansofentrytouniversity-levelmathematics. Furtherdetailsmaybeobtainedfromtheaddressbelow.MST121usesthesoftwareprogramMathcad(MathSoft,Inc.)andothersoftwaretoinvestigatemathematicalandstatisticalconceptsandasatool inproblemsolving. Thissoftware isprovidedaspartofthecourse.

    Thispublication formspartofanOpenUniversitycourse. DetailsofthisandotherOpenUniversitycoursescanbeobtainedfromtheStudentRegistrationandEnquiryService,TheOpenUniversity,POBox197,MiltonKeynesMK76BJ,UnitedKingdom: tel.+44(0)8453006090,[email protected],youmayvisittheOpenUniversitywebsiteathttp://www.open.ac.ukwhereyoucanlearnmoreaboutthewiderangeofcoursesandpacksofferedatall levelsbyTheOpenUniversity.TopurchaseaselectionofOpenUniversitycoursematerialsvisithttp://www.ouw.co.uk,orcontactOpenUniversityWorldwide,WaltonHall,MiltonKeynesMK76AA,UnitedKingdom,forabrochure: tel.+44(0)1908858793, fax+44(0)1908858787,[email protected]

    TheOpenUniversity,WaltonHall,MiltonKeynes,MK76AA.Firstpublished1997. Secondedition2001. Thirdedition2008. Reprinted2008.Copyright1997,2001,2008TheOpenUniversitycAllrightsreserved. Nopartofthispublicationmaybereproduced,stored inaretrievalsystem,transmittedorutilised inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,withoutwrittenpermissionfromthepublisherora licencefromtheCopyrightLicensingAgencyLtd. Detailsofsuchlicences(forreprographicreproduction)maybeobtainedfromtheCopyrightLicensingAgencyLtd,SaffronHouse,610KirbyStreet,LondonEC1N8TS;websitehttp://www.cla.co.uk.Edited,designedandtypesetbyTheOpenUniversity,usingtheOpenUniversityTEX System. PrintedintheUnitedKingdombyCambrianPrinters,Aberystwyth.ISBN

    978

    07492

    2938

    2

    3.2

  • 8/13/2019 Mst121 Chapter a2

    3/60

    Contents

    Study guide 4Introduction 51 Lines 6

    1.1 Equations of lines 61.2 Some applications 16

    2 Circles 202.1 Circles and their equations 202.2 Finding the circle through three points 232.3 Completing the square 262.4 Intersections of circles and lines 28

    3 Trigonometry 333.1 Sine and cosine 333.2 Calculations with triangles 36

    4 Parametric equations 404.1 Parametric equations of lines 404.2 Parametric equations of circles 43

    5 Parametric equations by computer 46Summary of Chapter A2 47

    Learning outcomes 47Appendix: Modelling the Earth 49Solutions to Activities 53Solutions to Exercises 58Index 60

    3

  • 8/13/2019 Mst121 Chapter a2

    4/60

    Study guide

    Thischaptercontainsfivesections,whichare intendedtobestudiedconsecutively,andanappendix.Sections1,2and4areofaveragelength,andtheothertwoarerelativelyshort. TheAppendixcanberead,forinterest,atanytimeafterSection3.YouwillneedaccesstoyourDVDplayeratthestartofSubsection2.1. However,ifthis isnotconvenient,thencontinuewiththetextandviewthevideowhenthisbecomesfeasible. YouwillneedaccesstoyourcomputerandComputerBookA inordertostudySection5.Althoughthischaptermay look long, itshouldrequirenomorethanaveragestudytimesincesomeoftheideasincludedintheRevision Pack arerevisited inparticular,thetopicsofcoordinatesand lines,andtrigonometry.Thedivisionofyourtimeforthechaptermightbeasfollows.Studysession1: Section1.Studysession2: Section2.Studysession3: Section3.Studysession4: Section4andSection5.Sections4and5couldbesplit intotwostudysessions.Theorganisationofyourtimewithineachstudysession is likelytodependonyourexperienceandconfidenceinworkingwithalgebraicexpressions.Inadditiontothetopicsmentioned inthethirdparagraphabove,beforestudyingthischapteryoushouldalsobefamiliarwiththefollowingtopics fromtheRevision Pack : PythagorasTheorem; radianmeasureforangles; similartriangles.

    TheoptionalVideoBandA(iv)Algebra workout Quadratic equations couldbeviewedatanystageduringyourstudyofthischapter.

    4

  • 8/13/2019 Mst121 Chapter a2

    5/60

    Introduction

    Linesandcirclesareusedextensivelyasmodelsofobjectswithintherealworldandofpathswhichdescribethemotionsofobjects. Approximateoccurrencesofthesegeometricalshapesoccurinnature,andtheyhavebeenusedasabasisformanyhumanartefacts,bothancientandmodern.Thischapterconcentratesmainlyuponthemathematicaldescriptionandpropertiesof linesandcircles. While it isnaturaltothinkofthemingeometricterms, it isalsopossibletodescribethemalgebraically. Infact,it isoneofthetriumphsofmathematicstohavecreatedthe linkbetweengeometryandalgebra. Geometryreliesmoreuponourvisualsense,whereasalgebracanberegardedasameansofcodingvisual items inaformthatappearsmoreabstractbutrenderscalculationseasier. Inasense,algebracanbeusedtomodelgeometricstatements. It isoftenthecasethatageometricproblemmaybetranslated intoalgebraicterms,solvedusingalgebraicmanipulation,andtheninterpretedoncemoregeometrically. Thestudyhereof linesandcirclesillustratesthisprocess.Youwillalsoseethetopicoftrigonometry introducedhere,since itisconnectedbothwithcirclesandwithtriangles(whicharegeometricobjectsmadeupfromsegmentsof lines). Itoffersfurtherscopetodescribeand interpretageometricviewoftheworld inalgebraicterms.Section1showshow linescanberepresentedbyalgebraicequations,viaastatementofthegeometricalrestrictionwhich ineffectdefineswhata(straight) line is. Youwillthenseehowthepointatthe intersectionofa Inmathematics,thewordlinepairof linesmaybecalculatedbysolvingsimultaneouslytheequations usuallymeansstraight line.whichrepresentthe lines.Section2seekstocarryoutasimilarprogramme forcircles,whichreliesupon

    the

    use

    of

    Pythagoras Theorem.

    An

    important

    algebraic

    procedure,

    knownascompleting the square foranexpressionoftheformx2 + 2px, is explainedandappliedhere.InSection3,thetrigonometricquantitiessine andcosine are introducedintermsofthecoordinatesofpointsonacircle. Theirexpressionasratioswithinaright-angledtriangle,withwhichyoumaybemorefamiliar, isalsomadeapparent.The ideas inthefirstthreesectionsaredevelopedinthe introductionofparametric equations inSection4. Foranobjecttravelling inspace,asingleequationthatrelatesthespatialcoordinatesoftheobjectcandescribe itsoveralltrajectory. Ontheotherhand,parametricequationscanbeusedtoexpresseachspatialcoordinateintermsoftheelapsedtime,whichpermitsthemotionalongthetrajectorytobedescribed. There iscomputerwork inSection5associatedwiththetopics inSection4.TheAppendix indicateshowsomeoftheideasofthechaptercanbeapplied intriangulation formappingpurposesand inaglobalpositioningsystem.

    5

  • 8/13/2019 Mst121 Chapter a2

    6/60

    1 Lines

    TheadjectiveCartesiancomes

    from

    the

    surname

    of

    thefamousFrenchmathematicianandphilosopherReneDescartes(15961650). He iscreditedwithbeingthefirsttorealisethatcurvesandsurfacescanbestudiednotjustusingideasofshape,butalsousingthetoolsofalgebra.

    Thissectionshowshowcertainequationsdescribe lines,anddemonstratessomepracticalusesforthisalgebraicdescription. Subsection1.1introducesthegeneralformwhichtheequationofa linetakes,andshowshowtheappropriateequationmaybefound inspecificcases. Itgoesontoconsiderhowtheequationsoftwolinescanbeusedtofindtheirintersectionpoint. Subsection1.2 looksbrieflyatsomemodellingapplicationsofthismathematics.

    1.1 Equations of lines

    Points and coordinates

    Asyouknow,points intheplanemaybespecifiedbypairsofcoordinates.Wegenerallyusearectangular orCartesian coordinatesystemtodothis,in

    which

    apair

    of

    straight

    lines

    at

    right

    angles

    are

    chosen

    as

    the

    x-axisandy-axis ofthesystem. Thepointof intersectionoftheseaxes iscalled

    theorigin,whichisusually labelledOanddescribedbythecoordinates(0, 0). Eachofthex-axisandy-axis isdrawnwithanarrowheadtoindicateapositivedirectionalongit,asshowninFigure1.1. Eachaxiscanberegardedasacopyoftherealnumber line,withauniformscalealong it. (Usually,thesamescaleisusedforeachaxis.)

    Figure 1.1 CartesiancoordinatesFigure1.1showstwopoints,AandB. The point Ahascoordinates(1.5, 2.5),because itisreachedbymovingfromOby1.5unitsinthepositivex-directionand2.5units inthepositivey-direction. Similarly,pointB hascoordinates(3, 2),becauseit isreachedbymovingfromOby3units inthenegativex-directionand2units inthenegativey-direction.Moregenerally,apointwithcoordinates(x, y) is

    totherightofthey-axis ifx > 0,tothe leftofthey-axis ifx < 0,

    6

  • 8/13/2019 Mst121 Chapter a2

    7/60

    SECTION 1 LINES

    andabovethex-axis ify > 0,belowthex-axis ify < 0.

    For a point (x, y) on the y-axis itself,wehavex=0. Similarly, if(x, y) lies onthex-axis,theny= 0.

    Lines parallel to the coordinate axesYouprobablyhaveagood intuitivesenseofwhatthestraightnessassociatedwith linesmeans. Onewayofputtingit isthatasyoumovealongastraight line,youmaintainthesamedirection. However,thisobservation leavesussomewayshortofbeingabletodescribe linesbyequations.Theequationofastraight line,or indeedofanycurve,specifiesthepropertyorconditionthatissatisfiedbythecoordinates(x, y) of any point onthatlineorcurve. Forexample,thetwoaxesofaCartesiancoordinatesystemarethemselvesstraight lines. Allpointsonthex-axishavethepropertythattheiry-coordinate iszero,becausetoarriveatthesepointswedonotneedtomoveatall inthey-direction. Thex-coordinateofsuchapointdependsonhowfarfromtheoriginthepoint is,andwhetherweneedtomoveleft(x < 0)orright(x > 0)fromtheorigintoreachit. Thusthecoordinatesofallpointsonthex-axishavetheform(x, 0).Consequently,wedescribethex-axisasthelineconsistingofallpoints(x, y) for which y=0. Hencetheequationy=0 isanalgebraicrepresentationofthex-axis. Similarly,theequationx=0 isanalgebraicrepresentationofthey-axis,sincethepropertywhichdistinguishespointsonthey-axis isthattheirx-coordinate iszero;allpointsherehavecoordinatesoftheform(0, y).Thisconnectionbetweenlinesandequationsextendstoany linewhich isparallel toeitherthex- or y-axis. Consider,forexample,thelinewhich is3unitsverticallyabovethex-axis. Anypointonthis linehascoordinatesoftheform(x, 3). Wecanthereforeusetheequationy=3torepresentthe line. Similarly,theequationy=2representsthelinewhich isparalleltothex-axisbut2unitsverticallybelow it. The linesy= 3 and y=2areshowninFigure1.2.Ingeneral,anylineparalleltothex-axishasanequationoftheformy=c, where cisaconstant. Thevalueofc ispositiveforalineabovethex-axis,andnegativefora linebelow.

    Activity 1.1 Parallel to the y-axis

    (a) Aline isparalleltoand3unitstotheleftofthey-axis. Writedowntheequationwhichrepresentstheline.

    (b) Writedownthegeneralformofequationforalineparalleltothey-axis. Explainhowtodistinguishbetweenthetwocases inwhichtheline istotheleftortotherightofthey-axis.

    (c) Sketcheachofthe linesx=3 and x= 4. Solutionsaregivenonpage53.

    Thelineorcurveissometimescalledthelocus oftheequation.

    Figure 1.2Linesparalleltothex-axis

    Thephrasethe liney= 3 is shorthandforthelinewhoseequationisy=3. Shorthandforms likethisareincommonuse.

    7

  • 8/13/2019 Mst121 Chapter a2

    8/60

    CHAPTER A2 LINES AND CIRCLES

    Asyoufoundinthisactivity,anylineparalleltothey-axishasanequationoftheformx=d, where disaconstant. Itremainsnowtodeterminewhatequationscorrespondto linesthatarenotparalleltoacoordinateaxis.Equations of lines in general

    TheshorthandA(2,0),for Considerfirstthelinewhichcutsthex-axisatthepointA(2,0)andtheexample,meansthatthe

    y-axisat

    the

    point

    B(0,

    1).

    This

    line

    is

    shown

    in

    Figure

    1.3.

    pointlabelledAhascoordinates(2,0).

    Figure 1.3 P liesonthe linethroughAandBInthefollowingdiscussion, ThepointP,withcoordinates(x,y), ischosento lieonthis line. Whatx > 0 and y > 1. algebraicconditiononxandy representsthefactthat(x,y) liesonthe

    line?LetQbethepointonthesameverticallineasP and on the same horizontal lineasB seeFigure1.3. Thenthestraightnessofthe line

    Similartriangleshavethe ABP meansthatthetrianglesABOandBPQaresimilar toeachother,sameshape. sothattheratiosof lengthsofcorrespondingsidesareequal. Forexample,

    wehaveOB QP

    = .AO BQ This leadstothealgebraicconditionwhichweseek. Thehorizontal lengthAOandvertical lengthOBarefound,fromthecoordinatesofthepointsA(2,0),B(0,1)andO(0,0),tobe

    AO= 0 (2)=2 and OB= 1 0 = 1.ThepointQhasthesamex-coordinateasP andthesamey-coordinateasB,so itscoordinatesare(x,1). Itfollowsthat

    BQ =x0 = x and QP =y1.Theconditionabovefortheratiosofcorrespondingsidesthereforeyieldstheequation

    1 y1= .

    2 xAftermultiplyingthroughbyxand then making ythesubjectoftheequation,thisbecomes

    Infact,thisequationholdsfor y=allpoints(x,y)ontheline.

    12

    x+ 1,whichistheequationofthelineshown inFigure1.3. Asacheck,thepairofvaluesx=2,y=0satisfiesthisequation(thepoint(2,0) liesontheline),asdoesthepairofvaluesx= 0, y=1(thepoint(0,1) liesonthe line).

    8

  • 8/13/2019 Mst121 Chapter a2

    9/60

    SECTION 1 LINES

    It isworthanalysingthemanner inwhichthisequationwasderived,sincetheapproachcanbeappliedmoregenerally. ReferringbackoncemoretoFigure1.3,whatwedidwastoequatetheratiosOB/AOandQP/BQ,workingfromapairofsimilartriangles. Inthefirstoftheseratios,OB istheverticalchangefromAtoB,whileAO isthehorizontalchangefromAtoB. Thesecondratiosimilarly featurestheverticalchangeQP andhorizontalchangeBQ betweenthetwopointsB andP. Infact,whateverpairofpoints ischosenonthe line,

    theratioofverticaltohorizontalchangebetweenthem isthesame.Thisratio isacharacteristicpropertyofthe line itself,called itsslope orgradient.Wenowconsiderthisideamoregenerally. SupposethatA(x1, y1) and B(x2, y2)areanytwopointsonagiven line,asshowninFigure1.4.

    Figure 1.4 Riseandrun

    xStartingfromA, we reach Bbymovinghorizontally(inthex-direction)by

    2

    x1 alongAC,andvertically(inthey-direction)byy2

    y1 alongCB .

    Wecalltheverticalchangey2 y1 therise inmovingfromAtoB,whilethehorizontalchangex2 x1 iscalledthecorrespondingrun. As drawn in Figure1.4,boththeriseandtherunfromAtoB arepositivequantities,sinceB istotherightofandaboveA. If,alternatively,B werebelowA(sothaty2 < y1),thentherisefromAtoB wouldbenegative. Infact,therise inthiscasewouldactuallydescribeafall. IfB weretothe leftofA(sothatx2 < x1),thentherunfromAtoB wouldbenegative.Aswasremarkedupon inaspecificcaseearlier,thestraightnessofthe lineinFigure1.4canbedescribedbytheobservationthat,howeverthetwopointsAandB arechosenonthe line,theratiooftherisetotherunfromAtoB isthesame. Thisratio iscalledtheslope orgradient ofthe line.

    Rise, run and slope

    Foranypairofpoints,A(x1, y1) and B(x2, y2),onagiven line,therise fromAtoB isy2 y1 andtherun fromAtoB isx2 x1. If therun isnotzero,thenthequantityriserun(calledtheslope ofthe line) is independentofthepairofpointschosen.

    TheslopeofthelineinFigure1.3is 1 .2Notetheuseofsubscriptnotationhere,withx1 forx-coordinateoffirstpoint,x2 forx-coordinateofsecondpoint,andsoon.

    Inthesedefinitions,theorderofthepointsissignificant.TherisefromB toAhastheoppositesigntotherisefromAtoB.

    Thisfollowsfromthefactthat

    all

    right-angled

    triangles

    ABC,asinFigure1.4,whichcanbedrawnwithA,B onthe line,aresimilartooneanother.Thedefinitionofslopecanbesummedupinthephraseslopeequalsriseoverrun.

    9

  • 8/13/2019 Mst121 Chapter a2

    10/60

    CHAPTER A2 LINES AND CIRCLES

    Activity 1.2 Two special cases

    (a) Thestatementaboveexcludesthecasewheretherunbetweenthetwopoints iszero(as itmust,toavoidtheundefinedoperationof divisionbyzero). Whattypeofstraight lineleadstoazerorunbetweentwopointsonthe line?

    (b)

    Whattype

    of

    line

    has

    zero

    slope?

    Solutionsaregivenonpage53.

    Asyousaw inthesolutiontoActivity1.2(a),everylineoftheformx=d,whered isaconstant,hasinfinite slope.Wefoundtheequationforthe lineshowninFigure1.3byequatingtwoexpressionsfortheslopeoftheline: one intermsofthecoordinatesofthe

    1twoknownpointsAandB,whichgavethenumericalvalue2

    fortheslope,andtheother intermsofB andafurthergeneralpointP whosecoordinates(x,y)wereunspecified. Thisproceduregeneralisesasfollows.IfA(x1, y1) and B(x2, y2)areanytwopointswithknowncoordinatesonagivenline,thentheslopemofthe line isgivenby

    risefromAtoB y2 y1m=

    runfromAtoB = x2 x1 , (1.1)as illustrated inFigure1.5(a).

    Figure 1.5 Riseandrun: particularandgeneralcasesNowletP(x,y)beageneralpointonthe line,asshown inFigure1.5(b).Theslope isexpressibleonceagainas

    risefromAtoP yy1m= = . (1.2)runfromAtoP xx1

    Equation(1.1)permitscalculationofthevalueofm,givenanytwopointsonthe line. Equation(1.2)thenprovidesanalgebraicconnectionbetweenthevariablesxandy,whichembodiestheconditionthatthepoint(x,y)liesonthe line. Equation(1.2)canberearrangedasfollows:

    yy1 =m(xx1); that is, y=mx+ (y1 mx1).

    10

  • 8/13/2019 Mst121 Chapter a2

    11/60

    SECTION 1 LINES

    Herem,x1 andy1 areconstants. Theequationofa linethereforehastheform

    y=mx+c,wheremandcareconstantsforanyparticular line.Thesymbolmstandsfortheslope ofthe line. To interpretthesymbolc,notethatthepoint(0, c) liesonboththey-axisandonthe liney=mx+c. Hencecisthevalueofy wherethe liney=mx+ccutsthey-axis,whichiscalledthey-intercept oftheline. Similarly,thevalueofxwherethelinecutsthex-axisiscalledthex-intercept ofthe line. Theseinterceptsare illustrated inFigure1.6.

    Figure 1.6 InterceptsTheslopemofa linegivesan indicationofhowsteeptheline is.Ifm iszero,thenthe line ishorizontal(paralleltothex-axis).Ifm ispositive,thenthelinerisesfrom lefttoright. Thesteepnessoftheline increasesforgreatervaluesofm. This is illustrated inFigure1.7(a)for linesthroughtheorigin, forwhichc=0andtheequationofthelinebecomesy=mx.Ifm isnegative,thenthelinefallsfrom lefttoright. The largerthemagnitude ofm,thesteeperisthecorresponding line(seeFigure1.7(b)).

    Thiscoversallcasesexceptthatoflinesparalleltothey-axis,asconsidered inActivity1.2(a).

    ThelineshowninFigure1.3hasy-intercept1andx-intercept2.

    Themagnitude ofanumbera isaifa0,andaifa < 0. Forexample,themagnitudesof2and2areboth2.

    Figure 1.7 Steepnessandslope

    11

  • 8/13/2019 Mst121 Chapter a2

    12/60

    CHAPTER A2 LINES AND CIRCLES

    Activity 1.3 Sketching lines a reminder

    Tosketchaliney=mx +c, it issufficienttofindtwopointsontheline.Itisusuallyconvenienttochooseonepointtobe(0, c). Sketchthe linewhichcorrespondstoeachofthefollowingequations.

    1(a) y=3

    x (b) y=2x (c) y= 2x 1 (d) y=3x + 1 Solutionsaregivenonpage53.Activity1.3concernedlineswhoseequationsweregiven. It isoftenthecasethatweneedtofindtheequationofa line,startingfromotherinformationabout it. Thenextexampleshowshowtotacklesuchproblems,usingthe informationabouttheequationsof linesobtainedsofar,whichissummarisedbelow.

    The equation of a line

    Anylinewhichisnotparalleltothey-axishasanequationoftheformy=mx +c,

    wheremistheslopeofthe lineandcis itsy-intercept. Theequationcanalsobeexpressedas

    yy1 =m(x x1),Notethattheformulaforthe where(x1, y1)isanyonepointonthe line. Theslopemcanbeslopecanequallywellbe calculatedfromtheformulawrittenas y2 y1

    m= ,y1 y2 x2 x1m= ,x1 x2

    where(x1, y1) and (x2, y2)aretwopointsonthe line.showingthattheorder inwhichthetwopointsaretakendoesnotaffecttheoutcome,providedthattheorderisthesame inthedenominatorasinthe Example 1.1 Finding equations of linesnumerator.

    (a) Findtheequationofthe linewhichhasslope3andpassesthroughthepoint(1, 2).

    (b) Findtheequationofthe linewhichpassesthroughthepoints(1, 5)and(4, 7).

    Solution

    (a) Sinceboththeslopeofthe lineandonepointon itaregiven,wemayapplytheequationyy1 =m(x x1) in this case, with m= 3 and (x1, y1) = (1, 2). Thisgives

    y(2)=3(x 1).Onmultiplyingoutthebracketsandthensubtracting2frombothsides,thisbecomes

    y= 3x 5.Asacheck,theequation isindeedsatisfiedbythepairofvaluesx= 1 andy=2(as itmustbe ifthepoint(1, 2) istolieonthe lineasspecified).

    12

  • 8/13/2019 Mst121 Chapter a2

    13/60

    SECTION 1 LINES

    (b) Heretheslopeofthe line isnotgiveninitially,butitcanbecalculatedfromtheriseandrun involved inmovingbetweenthegivenpoints.From (1, 5)to(4, 7),therun is41 = 3 and the rise is 75 = 12. Hencetheslopemisgivenby

    rise 12m= = =4.

    run 3Nowwecanproceedas inpart(a),applyingtheequationyy1 =m(x x1) with m=4 and either (x1, y1) = (1, 5)or (x1, y1) = (4, 7). Takingthefirstpossibility,wehave Youmayliketocheckthat

    thesecondpossibilityleadstoy5 = 4(x 1).

    thesameequationfortheline.Onmultiplyingoutthebracketsandthenadding5tobothsides,thisbecomes

    y=4x + 9.Asacheck,theequation is indeedsatisfiedbythepairofvaluesx= 1 andy=5(as itmustbe ifthepoint(1, 5) isto lieonthe lineasspecified). Similarly,thepoint(4, 7)doeslieonthelineasrequired,sincetheequation issatisfiedbythepairofvaluesx= 4 and y=

    7.

    Activity 1.4 Finding equations of lines

    (a) Findtheequationofthe linewhichhasslope2andpassesthroughthepoint(5, 3).

    (b) Findtheequationofthe linewhichhasx-intercept3andy-intercept6(thatis,the linewhichpassesthroughthepoints(3, 0)and(0, 6)).

    Solutionsaregivenonpage53.

    Parallel lines

    Notethattwo(distinct) linesareparallelwhenevertheyhavethesameslope,sincetheyarethen equallysteep. Forexample,the liney= 3x + 2 isparalleltotheliney= 3x. The +2 inthefirstequation indicatesthatthefirst lineisaverticaldistance2unitsabovethesecond line. Similarly,the liney= 3x 1 isalsoparalleltotheliney= 3x,butaverticaldistance1unitbelow it. ThesethreelinesareshowninFigure1.8. Differentscaleshavebeen

    usedfortheaxesinFigure1.8 inorderthatthefigureisnottoolarge. Thefactthatthelinesareparallelisnotaffected.

    Figure 1.8 Parallellines

    13

  • 8/13/2019 Mst121 Chapter a2

    14/60

    CHAPTER A2 LINES AND CIRCLES

    Perpendicular lines

    Weseenextthatthereisasimpleconnectionbetweentheslopesoftwolineswhichareperpendicular(atrightanglestoeachother). Firsttrythefollowingactivity.

    Activity 1.5 Perpendicularity in a particular case

    PlotthepointsA(2,3),B(1,1)andC(4,2),usingthesamescaleforeachaxis,andjoinAB andAC. Observethatthetwo linesegmentsAB andAC appeartobeperpendicular,andthencalculatetheirslopes.Asolution isgivenonpage54.

    NowconsiderthegeneralsituationdepictedinFigure1.9,inwhichthelinesegmentAC hasbeenconstructedbyrotatinga linesegmentAB through

    Congruenttriangleshavethe arightangleaboutA,sothatthetwotrianglesmarkedarecongruent.sameshapeandsize.

    Thephraseequalinmagnitudemeans equalexceptforthepossibilitythatthey may be of opposite sign.

    NotethattheparticularslopesfoundinActivity1.5satisfythisrelationship.

    Alinewithslope0ishorizontal;a linewithinfiniteslopeisvertical.

    Figure 1.9 CongruenttrianglesBecausethesetrianglesarecongruent,therisefromAtoB isequalinmagnitudetotherunfromAtoC,andtherunfromAtoB isequal inmagnitudetotherisefromAtoC. However,iftherisefromAtoB ispositive(as inFigure1.9),thentherunfromAtoC isnegative,andviceversa,whereastherunfromAtoB andtherisefromAtoC alwayshavethesamesign. Hencewehave

    slopeofAB= risefromAtoBrunfromAtoB =

    runfromAtoCrise fromAtoC =

    1slopeofAC.

    Anotherwayofexpressingthis istosaythat(slopeofAB)(slopeofAC) = 1.

    Thiscalculation

    depends

    on

    the

    slope

    of

    AC

    not

    being

    0or

    infinite,

    since

    otherwisethedivision involvedwouldnotmakesense.Ingeneral, iftwo linesareperpendicular(butnotparalleltotheaxes),thentheproductoftheirslopesis1,andviceversa.

    Perpendicularity condition

    Iftwolinesareperpendicular,theneither theproductoftheirslopesis1or onehasslope0andtheotherhas infiniteslope.

    14

  • 8/13/2019 Mst121 Chapter a2

    15/60

    SECTION 1 LINES

    Activity 1.6 Applying the perpendicularity condition

    (a) ThepointAhascoordinates(1,4)andthepointB hascoordinates(5,2). FindtheslopeofthelineAB.

    (b) What istheslopeofeachlineperpendiculartoAB?(c) Findtheequationofthe linewhichpassesthroughAand is

    perpendiculartoAB.Solutionsaregivenonpage54.

    Inter section of two lines

    Youhaveseenhowanylinemayberepresentedbyanequationoftheformy=mx+cor(ifparalleltothey-axis)x=d, where m,canddareconstants. Itwaspointedoutthattwolineswhichhavethesameslopemareparalleltoeachother,andhenceneverintersect. Ontheotherhand, Twocurvesintersect, or meet,anytwolineswithdifferentslopesmust intersectatexactlyonepoint. iftheyhaveapointinThismaybevisible ifthetwo linesareplottedonagraph,eitherbyhand common.orbycomputer,andfromsuchaplotthepositionofthe intersectionpointcanbeestimated.The intersectionpointcanalsobefoundalgebraically. Itliesonbothofthe lines,whichmeansthatitscoordinates(x,y)satisfytheequationsofboth lines. Thevaluesofthesecoordinatescanthereforebefoundbysolvingthetwoequationssimultaneously. This isillustratedbelow.

    Example 1.2 Finding points of intersection

    Findthepointatwhichthe liney= 2x+3meetsthe liney=4x+ 1. Solution

    Thecoordinates(x,y)ofthepointofintersectionAsatisfybothequations,y= 2x+ 3 and y=4x+ 1.

    Hencethex-coordinateofAmustsatisfytheequation Thisapproachtosolving2x+ 3 = 4x+ 1; that is, 6x=2, theseequationsisequivalent

    tosubstitutingtheexpressionwhosesolution isx=1

    3. The y-coordinateofA isthenfoundby

    substitutingthisvalueforx intoeitherofthetwooriginalequations.For

    example,

    putting

    x

    =

    1

    3 intothe

    equation

    y= 2x

    + 3

    gives

    fory fromthefirstequationinthesecondequation,asdiscussed inChapterA0.

    y= 2 ( 13

    ) + 3 = 73

    . Hencethepointof intersectionofthetwolineshascoordinates( 71

    3,

    3).

    Asacheck,thesecoordinatesalsosatisfythesecondequation,y=4x+ 1, since we have 4( 1

    3) + 1 = 7

    3.

    15

  • 8/13/2019 Mst121 Chapter a2

    16/60

    CHAPTER A2 LINES AND CIRCLES

    Activity 1.7 Finding points of inter section

    (a) Findthepointatwhichthe liney= 5x 7 intersectsthe liney=3x +1,bysolvingthetwoequationssimultaneously.

    (b) Showthat it isnotpossibletofindthepointatwhichthe liney= 2x +3meetsthe liney= 2x 3,andexplainwhythis isso.

    Solutionsaregivenonpage54.

    1.2 Some applications

    Wenow lookbrieflyathowthemathematics inSubsection1.1canbeappliedintheprocessofmodellingrealproblems. Thetopicofmathematicalmodellingwasconsideredfirst inChapterA1,Section7,wherea looseframeworktodescribe itwas introduced. Thisframeworkencompassedfivekeystages,andinthissubsectionweareconcernedwithaspectsofthethreemiddlestages,namely, Createthemodel, Dothemathematicsand Interprettheresults.

    modelCreate Thestageofcreatingthemodelinvolveschoosingvariables,stating

    assumptionsandformulatingmathematicalrelationshipsbetweenthechosenvariables. InChapterA1therelationships involvedwererecurrence

    Thevariablesaresaidtobe systems. Hereweare interestedinthepossibilityofformulating linearlinearly related insuchacase. relationships,that is,relationshipswhichwouldberepresentedbystraight

    lines ifplottedonagraph. Youhavealreadyseenthealgebraic formy=mx +cthatsucharelationshiptakes,whenthevariablesarexandy.Youneedtobeabletorecognisethelinearformalsowhenothersymbolsarechosenforthevariables. Itwilloftenbethecasethattheconstantsmandcrepresentsomethingsignificant inthesituationbeingmodelled.

    Herethesymbolstandstake For example, if trepresentstimeinseconds,andsmetresisthepositionoftheplacesofxandy, anobjectrelativetosomefixedpoint,thenthe linearrelationshiprespectively. It isusualto s= 20t +100givesthepositionoftheobjectatanytime,as indicated indenotetimebyt. thefollowingtable. Herem= 20 and c=100.

    t 0 1 2 3 . . . s 100 120 140 160 . . .

    Inthecontextofmotion, Theobjectchangespositionatasteadyvelocityof20ms1 (metrespersteadyisoftenusedtomean second),and isatpositions=100whent= 0. constant.

    Sometimeswithinamodellingsituationtherearetwo linearrelationshipsof interestbetweenthesamepairofvariables. Forexample,twoobjectsinsteadymotionoverthesameperiod leadtotwodistancetimeequationsthatrepresentstraight lines. Itmightthenbeamatterof interesttodeterminewhere, ifatall,theobjectswillmeeteachother.Thiscorrespondstofindingthepointof intersectionoftwostraight lines,eitherbydrawingtheirgraphsorbyadoptingthealgebraicapproachoutlinedattheendofSubsection1.1. ThiscorrespondstotheDothemathematicsstageofmodelling.Domathematics

    16

  • 8/13/2019 Mst121 Chapter a2

    17/60

    SECTION 1 LINES

    Example 1.3 Coinciding hands

    Thepositionsoftheminuteandhourhandsofatraditionalclockcoincideat12noon. Theynextcoincideatsometimeafter1pm(seeFigure1.10).Byfollowingthestepsbelow,findthistime.

    Figure 1.10 Coincidinghands(a) Takettobethetime,measuredinminutes,after1pm. Take(>0)to

    betheangle indegreesthroughwhichahandhasrotated(clockwise!),measuredfromthe12oclockposition. Assumethatthehandsmovesteadily,ratherthan indiscretejumps. Finda linearrelationshipbetweentandforeachoftheminutehandandthehourhand.

    (b) Findthepointof intersectionofthetwolineswhoseequationswerefound inpart(a).

    (c) By interpretingtheanswertopart(b)appropriately,estimatewhenthehourandminutehandsnextcoincideontheclock-faceafter12noon.

    Solution

    (a) Thereare360inarevolutionofeitherhand. Theminutehand360undergoesonerevolutionperhour,or60

    = 6perminute. Hencetheslopeofthe linerepresentingthe linearrelationshipbetweentand inthe(t,)-plane is6. Also,sincet= 0 at 1 pm, we have = 0 at t= 0. Hencethemotionoftheminutehand isdescribedbythe linewithequation

    = 6t,asshowninFigure1.11.Similarly,thehourhandundergoesonerevolutionevery12hours,or

    3601260 = 12 perminute. At1pm(t=0),thehourhandhasreached=30,whichis

    1

    12 ofacompleterevolution. Itsequationthereforetakestheform

    Unlessthereisgoodreason,ashere, itisusualtomeasureanticlockwiserotationsbypositiveangles.

    = 12

    t+c, where= 30 when t= 0.Inotherwords,theline= 1

    2t+cpassesthroughthepoint

    Figure 1.11Theline= 6t

    (t,) = (0,30),sothatc=30. The linearrelationship forthehourhand istherefore

    = 12

    t+ 30.

    17

  • 8/13/2019 Mst121 Chapter a2

    18/60

    Thesymbolisreadasisapproximatelyequalto.Inthischapter,theapproximationsarecorrecttothenumberofsignificantfiguresgiven.

    Interpretresults

    CHAPTER A2 LINES AND CIRCLES

    1(b) Thetwolines,= 6tand=2

    t +30,meetwhen16t= t +30; that is, t= 60 5.4545.2 11

    (c) Since0.4545minutes is600.454527seconds,thetwohandsnextcoincide(after12noon)atabout5minutesand27secondspast1pm.

    Thelast

    part

    of

    Example

    1.3

    corresponds

    to

    the

    Interpret

    the

    results

    stageofmodelling.

    Activity 1.8 Modelling the motion of trains

    ApassengertrainsetsofffromEdinburghWaverleytowardsLondonKingsCross(600kmaway)at7am. Ittravelsatanaveragespeedof100kmperhour. Onthesameday,afreighttrainstartsat8.30amfromLondontoEdinburgh,travellingatanaveragespeedof60kmperhour. Inthisactivityyouareaskedtoestimatethetimeandpositionatwhichthetwotrainspassoneanother.Letdbethedistance inkilometresfromEdinburgh,andtthetime inhourssince7am. Aspartofthemodellingprocess,youshouldassumethatthetwotrainstravelsteadilyattheaveragespeedsgiven.(a) Writedownanequationwhichrelatesdandtforthepassengertrain.(b) Forthefreighttrain,whatarethevaluesoftanddat8.30am? Find

    anequationwhichrelatesdandtforthefreighttrain. (Notethattheslopeofthe line involvedherewillbenegative,sinceduringthetrainsjourneyddecreaseswhiletincreases.)

    (c) Bysketchingthetwo linesonagraph,estimatewhenandwherethetwotrainspassoneanother.

    (d) Usingalgebra,estimatethetimeanddistancefromEdinburghatwhichthetwotrainspassoneanother.

    Solutionsaregivenonpage54.

    Summar y of Section 1

    Thissectionhasreviewedor introduced:

    x

    theslopeofastraight line,whichis riserunforanypairofpointsA(x1, y1) and B(x2, y2)ontheline,wheretherunfromAtoB is

    2 x1 andtherise isy2 y1; theequationy=mx +c,whichrepresentsastraight line inthe(x, y)-planethathasslopemandy-interceptc;

    theequationyy1 =m(x x1),whichrepresentsastraight line inthe(x, y)-planethathasslopemandpassesthroughthepoint(x1, y1);

    thefactthatparallel lineshavethesameslope; theconditionthat iftwo linesareperpendicular,theneither the

    productoftheirslopes is1or onehasslope0andtheotherhasinfiniteslope;

    themethodforfindingthepointof intersectionoftwolinesbysolvingthe

    equations

    of

    the

    lines

    simultaneously.

    18

  • 8/13/2019 Mst121 Chapter a2

    19/60

    SECTION 1 LINES

    Exercises for Section 1

    Exercise 1.1

    (a) Writedowntheriseandrunfrom(3,2)to(1,10).(b) Calculatetheslopeofthelinewhichpassesthrough(3,2)and(1,10).(c) Findtheequationofthe linedescribed inpart(b).(d)

    Find

    the

    x-intercept

    and

    y-intercept

    of

    the

    line

    described

    in

    part

    (b).

    Exercise 1.2

    Findtheequationofthe linethatpassesthroughthepoints(2,3)and(1,2).Exercise 1.3

    Findtheequationofthe lineperpendiculartothatinExercise1.2whichpassesthroughthepoint(2,3).Exercise 1.4

    Findthe

    point

    of

    intersection

    of

    the

    two

    lines

    y= 5x

    7 and y=x+11.

    19

  • 8/13/2019 Mst121 Chapter a2

    20/60

    2 Circles

    If it isinconvenienttowatchthevideonow,thencontinuewiththetextandviewthevideolater.

    TostudySubsection2.1youwillneedaDVDplayerandDVD00104.Thevideoband indicatesvariouswaysof seeingcirclesand illustratessomeoftheirproperties. IntheremainderofSubsection2.1,youwillseehowPythagorasTheorem leadstoalgebraicequationsforcircles.Subsection2.2demonstratesamethodforfindingtheparticularcirclethatpassesthroughthreespecifiedpoints. Subsection2.3showsyouhowtotellwhetheragivenalgebraicequationdescribesacircle,and ifso,whichcircle itdescribes. InSubsection2.4youwillseehowtolocateanypointsatwhichagiven linecutsagivencircle.

    2.1 Circles and their equations

    Justasyouhavean intuitiveideaofwhatthe straightnessofastraightline involves,youprobablyhaveagoodunderstandingofwhatthecircularityofacircleentails. Thecircle is, inasense,the mostperfectofgeometricalfiguresinaplane. Mathematicallyspeaking,thisperfectioncanbetieddownasfollows.Associatedwithanycirclethere isaspecialpointcalled itscentre. If the circle iseitherrotated throughany angleabout itscentre,orreflectedacrossany linethrough itscentre,thentheresultingfigureoccupiespreciselythesameposition intheplaneastheoriginalcircle. Onlyacirclepossessesthesefeatures.Youwillalsobefamiliarwiththeideathatallpointsonacircleareatthesamedistancefromitscentre,andthatthisdistanceiscalledtheradius ofthecircle. Thevideobandreferstothisandtootherpropertiesofcircles.

    Activity 2.1 Properties of circles

    Thevideobandstartswithan introductionthatshowsvariousoccurrencesofnearlycircularshapes inthenaturalandmanufacturedworlds,andcontraststhesewiththeidealcirclewhichhumanssee intheirminds.This is followedbyfourshortepisodesthataddressdifferentpropertiesofcircles.Comment

    Thefourepisodesinthevideobandarerelatedtothefollowingproperties.[1]Points equidistant from a fixed pointThis leadstothebest-knownwayofconstructingacircle.

    20

  • 8/13/2019 Mst121 Chapter a2

    21/60

    SECTION 2 CIRCLES

    [2]Three points fix a circleArising fromthisfact,thecentreofthecirclethatpassesthroughthreegivenpointscanbefoundbylocatingthe intersectionoftheperpendicular Thereismoreaboutbisectorsofthe linesegmentsthatjoinpairsofpoints. Theradiusofthe thisconstruction incircle isthedistancefromthecentretoanyofthethreegivenpoints. Subsection2.2.Inthespecialcase inwhichthethreegivenpoints lieona line,thisconstructionbreaksdown,sincetheperpendicularbisectorsareparalleltooneanother. Inthiscasewecanthinkofthe centreasbeing infinitelyfaraway. Inotherwords,astraight linecanberegardedasa circleof infiniteradius.[3]Angles subtended by a fixed chordTheanglemadeatapointonthecircumferenceofacircle,bydrawinglinestothepointfrombothendsofafixedchord(whichiscalledtheanglesubtended bythechordatthepoint), isthesamewhereveronthecircumferencethepoint ischosen,providedthat it istakenonthesamesideofthechord.Ifthechordisnotadiameter,then itsubtendsanacute angle(ananglebetween0and90)onthelongerarc,andanobtuse angle(ananglebetween90and180)ontheshorterarc(seeFigure2.1). Thesetwoanglesaddupto180. Ifthechordisadiameter,thenbothanglesareexactly90. Figure 2.1[4]Horizontal and vertical components SubtendedanglesTheuniformmovementofapointaroundacircleinaverticalplanecanbeseenashavingtwocomponents: avertical(ory-)component,showingthevariableheightofthepoint,andahorizontal(orx-)component,showingtheside-to-sidemotion. Thegraphofeachcomponentwithtimehasasimilar wavyshape. Youwillsee laterthatforacirclewithunitradius,thesecomponentsarebydefinitionthesine andcosine oftheanglethroughwhichthepointhastravelledaroundthecentreofthecircle.

    Afundamentalresultneededforthealgebraicdescriptionofcircles isPythagoras Theorem. SupposethatABC isaright-angledtriangle,withtherightangleatC,asshown inFigure2.2. Thelongestsideofsuchatriangle,which isthesideoppositetherightangle, iscalledthehypotenuse. We denote by AB the lengthofthehypotenuse. Similarly,BCandAC representthe lengthsoftheothertwosidesofthetriangle.PythagorasTheoremstatesthat inaright-angledtriangle,thesquareofthehypotenuseisequaltothesumofthesquaresoftheothertwosides;that is,

    AB2 =AC2 +BC2.Weareinterestedhereinwhatthetheoremtellsusaboutthedistancebetweentwopoints. InFigure2.2,the lengthAB isthedistancefromAtoB,andaccordingtoPythagorasTheorem,thisdistancecanbeexpressed intermsofthelengthsAC andBC. SupposethatAhascoordinates(x1, y1) and that B hascoordinates(x2, y2). ThesepointsareshowninFigure2.3,overleaf,togetherwiththeriseandrunfromAtoB.

    Figure 2.2Right-angledtriangleABC

    21

  • 8/13/2019 Mst121 Chapter a2

    22/60

    CHAPTER A2 LINES AND CIRCLES

    Figure 2.4 CirclewithcentreO andradius2

    Figure 2.3 RiseandrunfromAtoBHerethelinesegmentAB can be considered as the hypotenuse of a right-angledtrianglewhoseothertwosideshave lengthsequaltothemagnitudesoftheriseandtherun,respectively. ApplyingPythagorasTheoremtothisright-angledtrianglegives

    AB2 = run2 + rise2.SincetheriseandrunfromAtoB aregivenbyrun=x2 x1 andrise=y2 y1,wecandeducethefollowingresult.

    Distance between two points

    ThedistanceAB betweentwopointsA(x1, y1) and B(x2, y2) is givenby

    AB2 = (x2 x1)2 + (y2 y1)2.

    Activity 2.2 Finding distances between pairs of points

    Findthedistancebetweeneachofthefollowingpairsofpoints.(a) (3,2)and(7,5) (b) (1,4)and(3,2)Solutionsaregivenonpage55.

    Theformulaaboveforthedistancebetweentwopoints isthekeytowritingdownanequationforacircle,sinceadefiningpropertyofacircleisthatallpointsareatthesamedistance(theradius)fromthecentre.Suppose,forexample,thatweseekanequationforthecircleshown inFigure2.4,whichhascentreattheoriginO andradius2. SupposethatP(x,y) isanypointonthecircumferenceofthiscircle. ThenthedistancefromOtoP isOP =2. Accordingtotheboxedformulaabove,wehave

    2OP2 = (x0)2 + (y0)2 =x2 +y .Wededucethatx2 +y2 =4. Hencetheequationx2 +y2 = 4 describes preciselythecirclewithcentreattheoriginandradius2,sinceapoint liesonthecircleonly if itscoordinates(x,y)satisfythisequation.

    22

  • 8/13/2019 Mst121 Chapter a2

    23/60

    SECTION 2 CIRCLES

    Thisargumentgeneralisestoanycircle. Thesquareofthedistancefromafixedpoint(a,b) to any point (x,y) intheplane isgivenby(xa)2 + (yb)2. If (x,y) liesonthecirclewhosecentreis(a,b) and whoseradius isr,thenthecoordinates(x,y) must satisfy the equation

    (xa)2 + (yb)2 =r2.

    The equation of a circle

    Thecirclewithcentre(a,b)andradiusrhasequation Foranyparticularcircle,a,b(xa)2 + (yb)2 =r2. andr areconstants.

    Activity 2.3 Writing down equations of circles

    Write down the equation of the circle in the (x,y)-planewhichsatisfieseachofthefollowingspecifications.(a) Centreat(0,0),radius3.

    (b) Centreat(5,7),radius 2.(c) Centreat(3,1),radius1.Solutionsaregivenonpage55.

    Activity 2.4 Writing down the centre and radius

    Writedownthecentreandradiusofthecirclespecifiedbyeachofthefollowingequations.(a) (x1)2 + (y2)2 = 25 (b) (x+ 1)2 + (y+ 2)2 = 49 (c) (x)2 + (y+)2 =2(d) x2 + (y 3 )2 = 7 Solutionsaregivenonpage55.

    2.2 Finding the circle through three points

    Aswas

    pointed

    out

    during

    the

    Video

    Band,

    if

    three

    points

    are

    given

    which

    donotall lieonasinglestraight line,thenthere isacircle(andonlyone)thatpassesthroughallthreepoints. Youwillnowseehowthecentreandradius(andhencetheequation)ofthiscirclemaybefound,giventhethreepoints incoordinate form.ThebasisofthemethodwasreferredtointheCommentforActivity2.1,and is illustrated inFigure2.5overleaf.

    23

  • 8/13/2019 Mst121 Chapter a2

    24/60

    CHAPTER A2 LINES AND CIRCLES

    Theline segment ABcomprises that part of the line throughAandB which liesbetweenAandB,includingAandB themselves.

    Figure 2.5 A,B andC defineacircleIffixedpointsA,B andC defineacircle,thenitscentreDmustbeequidistantfromthemall.NowthepointswhichareequidistantfromAandB makeupa linewhichcutsthe linesegmentAB halfwayalong itslength(atM, say) and is at rightanglestoAB. This line, shown as MD inFigure2.5, iscalledtheperpendicular bisector ofAB.HencethecentreDmust lieontheperpendicularbisectorofeachofthelinesegmentsAB,BCandAC. Takinganytwooftheseperpendicularbisectors(asdrawninFigure2.5),thecentreD isattheirpointofintersection. OnceDhasbeenlocated,theradius isthedistancefromDtoanyoftheoriginalthreepoints.Thisprescription involvesfindingtheperpendicularbisectorofa linesegmentbetweentwogivenpoints,whichpassesthroughthemidpointofthelinesegment. Wethereforeneedtostartbyobtainingthepositionofthemidpoint,whosecoordinatesaregivenbytherulebelow.

    Midpoint rule

    ThemidpointofthelinesegmentbetweentwopointsA(x1, y1) and B(x2, y2)hascoordinates

    1 12

    (x1 +x2),2(y1 +y2) ;that is,itsx-coordinate isthemeanoftheoriginalx-coordinates,anditsy-coordinate isthemeanoftheoriginaly-coordinates.

    Themethoddescribedaboveisapplied inaspecificcase inthefollowingexample.

    Example 2.1 Finding the circle through three points

    FindthecentreandradiusofthecirclethatpassesthroughthethreepointsA(4,8),B(1,1)andC(3,3).

    24

  • 8/13/2019 Mst121 Chapter a2

    25/60

    SECTION 2 CIRCLES

    Solution

    LetM,N bethemidpointsofthelinesegmentsAB,BC,respectively,andletDbethecentreofthecircle(seeFigure2.6).

    Figure 2.6 FindingthecentreThe linesegmentAB hasslope(18)(14)=3andmidpointM at

    7

    1 1 52

    (4+1),2

    (8+(1)) =2

    , .2

    ItsperpendicularbisectorMD thereforehasslope13

    (usingthe 7

    5perpendicularityconditionfromSubsection1.1)andpassesthrough2

    , .2

    Itsequation isy7 =1x5 x+13; that is, y=1 .

    2 3 2 3 3

    Similarly,the linesegmentBChasslope(3(1))(31)= 1 and2

    midpointN at1 1

    2(1+(3)),

    2(1 + (3)) = (1, 2).

    ItsperpendicularbisectorND thereforehasslope2andpassesthrough(1, 2). Itsequation is

    y(2)=2(x(1)); that is, y=2x4.Thetwoperpendicularbisectors,y=1x+13 (M D) and y=2x4

    3 3

    (N D),intersectatD, where x+131 =2x4; that is, x=5.

    3 3

    BysubstitutingthisvalueofxintotheequationforN D,wefindthatthecorrespondingvalueofy isy=2(5)4=6,sothecentreDofthecircle isat(5, 6).The

    radius

    ris

    the

    distance

    between

    D

    and

    A

    (or

    B, or

    C),

    so

    it

    is

    given

    by

    r2 = (4 (5))2 + (8 6)2 =85;

    thustheradius isr= 859.22.Theresultingequationofthecircle is(x+ 5)2 + (y6)2 =85. Asacheck, Another(rough)check istothisequationshouldbesatisfiedbythecoordinatesofeachofA,B andC. sketchthepositionsoftheFor example, for B wehave fourpointsA,B,C andD, as

    inFigure2.6,andtoverify(1+5)2 + (16)2 = 36 + 49 = 85. thatthecoordinatesfoundfor

    D andthecalculatedradiuslookapproximatelycorrect.

    25

  • 8/13/2019 Mst121 Chapter a2

    26/60

    CHAPTER A2 LINES AND CIRCLES

    Activity 2.5 Finding the circle through three points

    Byfollowingthestepsbelow,findthecentre,radiusandequationofthecirclethatpassesthroughthethreepointsO(0,0),A(4,2)andB(8,6).(a) ShowthattheperpendicularbisectorofOAhasequationy= 2x+ 5. (b) ShowthattheperpendicularbisectorofOBhasequation

    x+25y=4 .3 3(c) Bysolvingsimultaneouslytheequationsfoundinparts(a)and(b),

    findthecentreofthecircle.(d) Useyouranswertopart(c)tofindtheradiusofthecircle.(e) Writedowntheequationofthecircle.Solutionsaregivenonpage55.

    2.3 Completing the square

    InActivity2.3youwereaskedtowritedowntheequationsofcircleswithgivencentreandradius. Althoughastandardformforsuchequationshasbeengiven,theymayalsobeexpressedindifferentbutequivalentways.Forexample,theequationx2 +y2 =9,foracirclewithcentre(0,0)andradius3, isequivalentto2x2 + 2y2 =18, inwhicheachtermofthefirstequationhasbeenmultipliedby2. Whenevertheequationofacircle(or indeedofa line) ismultipliedthroughbyanon-zeromultiple inthisway,theresultingequation isanequivalentrepresentationofthesamecircle(orline).Similarly,wecouldrearrangetheequation

    (x5)2 + (y7)2 =2 (foracirclewithcentre(5,7)andradius 2)bymultiplyingoutthetwobrackets,toobtain

    x2 10x+ 25 + y2 14y+ 49 = 2; thatis,

    x2 10x+y2 14y+ 72 = 0.Thisequationdescribesthesamecircle,but it isno longerpossibletoreadoffdirectlythecoordinatesofthecentreandthevalueoftheradius.However,anequationmaybe initiallyobtained insuchaform,whichraisesthequestionofhowyouwouldthenfindthecentreandradiusfromtheequation. Thisquestion isnowaddressed.Themethodrequireddependsuponatechniqueknownascompleting

    Thisidentityappearedin the square. This isbasedonthealgebraic identityChapterA0,Section4,inthe

    x2 + 2px+p2 = (x+p)2.form

    (a+b)2 =a2 + 2ab+b2. Onsubtractingthep2 frombothsidesoftheequation,wehave2x2 + 2px= (x+p)2 p .

    Theright-handside iscalledthecompleted-square form oftheleft-handside,sincethevariablexappearsontherightonlywithina

    Youwillseeanotheruseof squaredterm. Atermofthissquaredform isexactlywhatweseekincompletingthesquarein orderto identifythex-coordinateofacirclescentre.Subsection4.1.26

  • 8/13/2019 Mst121 Chapter a2

    27/60

    SECTION 2 CIRCLES

    Example 2.2 Finding the centre and radius

    Verifythattheequationx2 + 4x+y2 5y3 = 0

    describesacircle,andfind itscentreandradius.SolutionIfwecanfindnumbersa,bandr forwhichtheequationgivenisequivalentto(xa)2 + (yb)2 =r2,thenweshallknowthattheequationdoes indeeddescribeacircle,withradiusrandcentreat(a,b).First,considertheexpressionx2 + 4x. Comparingthisexpressionwiththeidentity

    2x2 + 2px= (x+p)2 p ,wecanmatchx2 + 4xwiththe left-handsidebyputting2p= 4; that is, p=2. Puttingthisvaluealso intotheright-handside,weobtainthecompleted-squareform

    x2 + 4x= (x+ 2)2 22 = (x+ 2)2 4.Nowproceedsimilarlyfortheexpressiony2 5y. With y inplaceofx, the generalform is

    2y2 + 2py= (y+p)2 p .We can match y2 5ywiththeleft-handsidebyputting2p=5,that is,p=5 . Puttingthisvaluealso intotheright-handside,weobtainthe

    2

    completed-squareform2

    )2 252

    )2 (5y2 5y= (y52

    )2 = (y5 .4

    Itremainstosubstitutebothofthecompleted-squareforms intotheequationgiven,namely

    x2 + 4x+y2 5y3 = 0.Intermsofthecompleted-squareforms,thisbecomes

    2)2 25(x+ 2)2 4 + (y5

    43 = 0.

    Oncollectingthenumbertermsandrearranging,wehave53

    2)2 =(x+ 2)2 + (y5

    4.

    5Hencetheequation is indeedthatofacircle,whichhascentre(2,2

    ) and 1radius 533.64.2

    Activity 2.6 Finding the centre and radius

    (a) Findthecompleted-squareformoftheexpressionx2 4x.(b) Findthecompleted-squareformoftheexpressiony2 6y.(c) Usingyouranswerstoparts(a)and(b),verifythattheequation

    x2 4x+y2 6y12=0describesacircle,andfinditscentreandradius.

    Solutionsaregivenonpage55.

    27

  • 8/13/2019 Mst121 Chapter a2

    28/60

    2

    Hence3x2 + 2y2 = 1 is not theequationofacircle.

    Theremainderofthissubsectionwillnotbeassessed.

    CHAPTER A2 LINES AND CIRCLES

    x

    Notethatnotallequationsinvolvingx2 +y2,x,yandnumbertermswillnecessarilydescribecircles. Tobeacircle,theequationmustbeexpressibleas(xa)2 + (yb)2 equaltoapositive quantity,namelyr ,thesquareoftheradiusofthecircle. Anexamplewhich isnotofthispattern isx2 +y2 =1. Sincex2 isnotnegativeforanyvalueofx, and similarly fory2,there isnopoint intheplanewhichsatisfiesthecondition

    2 +y2 =1. Anothernon-circleequation isx2 +y2 = 0. This is satisfied bythesinglepoint(x,y) = (0,0),andasinglepoint isnotusuallyregardedasacircle.Tohaveachanceofdescribingacircle,theequationmusthavethesame

    2coefficientforx2 andy . Intheexamplesconsideredsofar,thiscoefficienthasbeenchosentobe1; ifthis isnotinitiallythecase,thenitcanbeachievedbydividingthroughbythecoefficientconcerned.Forthisreason,theformulawhichwederivedearlierforcompletingthesquare issufficientforthepurposeof identifyingthecentreandradiusofacirclegiven ingeneralform. Italsosufficestoderivetheformulaforsolutionofageneralquadraticequation,as isnowshown.Ageneralquadraticequation inthevariablexhastheform

    ax2 +bx+c= 0,wherea,bandcareconstants. Weassumethata=0,sinceotherwisethereisnoquadraticterm. Ondividingthroughbya, we obtain

    x2 + b x+ c = 0. (2.1)a a

    Thetermsx2 + (b/a)xcanbematchedwiththe left-handsideofourprevious completingthesquareequation,

    2x2 + 2px= (x+p)2 p .Thematching isachievedwithp=b/(2a),sowehave

    b b2 b2x2 + x= x+ .a 2a 4a2

    Thusequation(2.1) isequivalenttob2 b2 c

    x+ + = 0; 2a 4a2 a

    thatis,b2 b2 c b2 4ac

    x+ = =4a2

    .2a 4a2 a

    Finally,wetakethesquarerootandthensubtractb/(2a) from both sides. This

    leads

    to

    the

    familiar

    formula

    b b2 4ac b b2 4ac

    x= = .2a 4a2 2a

    2.4 Inter sections of circles and lines

    YousawinSubsection1.1that iftwonon-parallel linesarerepresentedbyequations,thenthe intersectionpointofthe linesmaybefoundbysolvingtheirequationssimultaneously. Thesame istrueforotherpairsofcurvesforwhichtheequationsareknown.

    28

  • 8/13/2019 Mst121 Chapter a2

    29/60

    SECTION 2 CIRCLES

    Inparticular,wecanfindwhereagiven line intersectsagivencircle. Aswithparallel lines,theremayturnouttobeno intersectionpoint insomecases. Fora lineandacircletherearethreepossibilities,asillustrated inFigure2.7.

    Figure 2.7 Three possible cases The linemayintersectthecircle intwodistinctpoints,asshown in(a).Alternatively, itmaytouchthecircleatasinglepointas in(b), inwhichcasethe line isatangent tothecircle. Thirdly,thelinemaynot intersectthecircleatall,asshown in(c).Whentheequationsofa lineandacirclearesolvedsimultaneously,thesolutionprocessleadstoaquadratic equation,andthethreecasesthatarise insolvingsuchanequation(tworealroots,onerootornorealroot)correspondtothethreepossibleoutcomesshowninFigure2.7.

    Example 2.3 Finding where line and circle meet

    Findanypointsatwhichthecircle(x+ 7)2 + (y2)2 =80intersectseachofthefollowing lines. Notethatthethree lines(a) y= 2x4(b) y= 2x given

    are

    all

    parallel,

    since

    eachhasslope2.

    (c) y= 2x6Solution

    (a) Usingtheequationofthe line,y= 2x4,tosubstitutefory intheequationofthecircle,wehave

    (x+ 7)2 + (2x42)2 = 80.Onmultiplyingoutthebracketsandsimplifying,weobtainthesuccessive(equivalent)equations

    (x+ 7)2 + (2x6)2 = 80,x2 + 14x+ 49 + 4x2 24x+ 36 = 80,5x2 10x+ 5 = 0,x2 2x+ 1 = 0.

    The lastequationfactorisesas(x1)2 =0,whichhasthesinglesolutionx=1. Onfeedingthisvaluebackintotheequationoftheline,wefindy= 2 14 = 2.Hencethe line istangenttothecircleatthepoint(1,2).

    29

  • 8/13/2019 Mst121 Chapter a2

    30/60

  • 8/13/2019 Mst121 Chapter a2

    31/60

    SECTION 2 CIRCLES

    Activity 2.7 Finding where line and circle meet

    Findanypointsatwhichthecircle(x3)2 + (y+ 4)2 =53intersectstheliney=x+ 2. Asolution isgivenonpage56.

    Ifthelinegivenisparalleltothex-axis,thenthecalculationbecomessimpler. Forexample,the liney=3meetsthecircle(x2)2 + (y+ 1)2 = 25 where

    (x2)2 + (3 + 1)2 =25; that is, (x2)2 = 25 16=9.Hencewehavex2 = 3,sox= 5 or x=1. Thepointsof intersectionare(5,3)and(1,3),sincethe line involved isy= 3. Similarsimplificationoccurs ifthegivenline isparalleltothey-axis,butherethequadraticequationtosolvewillbe intermsofy ratherthanx.Youmightwonderwhetherthesolvingsimultaneousequationsapproach Theremainderofthiscanalsobeappliedtotheproblemofdeterminingwhere(ifatall)two subsectionwillnotbecircles intersect. Itcan: themethod is illustratedbrieflybelow. Consider assessed.thecaseofthetwocircles

    (x3)2 + (y+ 4)2 = 53 and (x+ 2)2 + (y1)2 = 13.Aftermultiplyingoutthebracketsandsimplifying,theseequationsbecome,respectively,

    x2 6x+y2 + 8y28=0,x2 + 4x+y2 2y8 = 0.

    Onsubtractingthesecondequationfromthefirst,wehave10x

    + 10y

    20

    =

    0;

    that

    is,

    y=

    x

    + 2,

    which istheequationofastraightline. This linehasthepropertythatifA isapointlyingonthe lineandoneofthecircles,thenAalso liesontheothercircle. The intersectionpointsofthetwocirclesarethereforefoundbylocatingwherethelinemeetseitherofthecircles.YoushowedinActivity2.7thatthislinemeetsthefirstofthecirclesgivenatthetwopoints(4,2)and(1,3). Hencethesearethetwointersectionpointsofthecircles.Ingeneral,aswithalineandacircle,twocirclesmaymeetattwopoints,onepointornopoints. Thesethreecasesare illustrated inFigure2.9. Ineachcase,thelinewhich isgeneratedfromthecircles inthemannerdescribedaboveisdrawn in. It isalwaysperpendiculartothe linejoiningthecirclecentres. Wherethecirclesmeetatasinglepoint(case(b)),theline isacommontangenttothecircles.

    Figure 2.9 Three possible cases 31

  • 8/13/2019 Mst121 Chapter a2

    32/60

    CHAPTER A2 LINES AND CIRCLES

    Summar y of Section 2

    Thissectionhasintroduced: theformulaAB2 = (x2 x1)2 + (y2 y1)2 givingthedistanceAB

    betweentwopoints A(x1, y1) and B(x2, y2); theequation(xa)2 + (yb)2 =r2 todescribeacirclewith

    centre(a,b)andradiusr;1 1 thecoordinates 2(x1 +x2),2(y1 +y2) forthemidpointofthe linesegmentbetweentwopoints(x1, y1) and (x2, y2);

    themethodforfindingacirclethroughthreegivenpoints; thecompleted-squareformforx2 + 2px, namely

    2x2 + 2px= (x+p)2 p ,anditsuse,wherenecessary,infindingthecentreandradiusofacirclewhoseequationisgiven;

    themethodforfindingthepointsof intersectionofalineandacircle,bysolvingtheirequationssimultaneously.

    Exercises for Section 2

    Exercise 2.1

    (a) Writedownanequationwhichdescribesthecirclewithcentre(2,3)andradius4.

    (b) Writedownthecentreandradiusofthecirclewithequation(x+ 5)2 + (y4)2 = 17.

    Exercise 2.2

    FindthecentreandradiusofthecirclewhichpassesthroughthethreepointsA(2,2),B(1,0)andC(1,6). Writedowntheequationofthecircle.Exercise 2.3

    (a) Findthecompleted-squareformoftheexpressionx2 + 14x.(b) Findthecompleted-squareformoftheexpressiony2 24y.(c) Usingyouranswerstoparts(a)and(b),verifythattheequation

    x2 + 14x+y2 24y96=0describesacircle,andfinditscentreandradius.

    Exercise 2.4

    Findanypointsatwhichthecircle(x3)2 + (y+ 7)2 =65 intersectsthe3liney=2

    x+3 .2

    32

  • 8/13/2019 Mst121 Chapter a2

    33/60

    3 Trigonometry

    Trigonometry isconcernedwithvariousratiosof lengthsthatareassociatedwithangles. InSubsection3.1youwillseedefinitionsoftwooftheseratios,thesine andcosine,togetherwithsomeoftheirbasicproperties. Subsection3.2thenexplainshowthesineandcosinemaybeputtousewithintriangles,forthepurposeofdeducing lengthsfromanglesizesorviceversa.It isassumedthatyouhavecomeacrossmostofthetopics inthissectionpreviously. Theywillbecoveredquiterapidly.

    3.1 Sine and cosine

    ConsiderthecircleshowninFigure3.1. Thiscirclehasradius1andcentreattheorigin,O. Itisoftencalledtheunit circle.

    Figure 3.1 TheunitcircleConsiderthepointP onthecircumferenceoftheunitcircle,placedsothattheanglebetweenthepositivex-axis and the line segment OP, measured anticlockwise,is, where ispositive.SupposenowthatP hascoordinates(x,y). Thisisthesameassayingthatthevertical linethroughP meetsthex-axisat(x,0),andthehorizontallinethroughP meetsthey-axisat(0, y),asmarked. Thenthecosine andsine oftheanglearedefinedby

    cos=x, sin=y.Theanglemaybemeasuredeither indegrees (360percompleterevolution)or inradians (2radianspercompleterevolution). Weshalluseradiansforthemoment,butswitchtodegreesinthecontextoftriangles inSubsection3.2.Asanexampleofapplyingthedefinitionsofcosineandsine,supposethat

    If isnegative,thenP isplacedbyrotatingclockwisefromthepositivex-axisthroughtheangle.

    Thesedefinitionsapplytoallvalues of negative,zeroandpositive.

    . Then P hascoordinates(0,1),socos( )=0andsin( ) = 1. = 12 12 12

    33

  • 8/13/2019 Mst121 Chapter a2

    34/60

    CHAPTER A2 LINES AND CIRCLES

    Figure 3.2Signsinquadrants

    These identitiesarevalidforallvaluesof.

    Activity 3.1 Values of cos and sin

    ByplacingP atappropriatepointsontheunitcircle,findthevaluesofthefollowing.(a) cos0andsin0 (b) cos(1) and sin(1) (c) cosandsin

    2 2

    Solutionsaregivenonpage56.

    Thevaluesofsineandcosinemaybepositive,negativeorzero,dependingwhereonthecircleP lies. Thesignsofthesetrigonometricquantitieswithinthefourquadrants oftheplane(thefourpartsseparatedbytheaxes)areasshown inFigure3.2. Thesefollowdirectlyfromthesignsofthex- and y-coordinates inthesequadrants.Certainformulaswhichrelatethesinesandcosinesofanglesmaybederivedby lookingatthegeometryofpointsontheunitcircle. NotefirstthatthepositionofP isunaffected iftheangle is increasedordecreasedbyacompleterevolution. Insymbols,thismaybeexpressedas

    cos(+ 2) = cos and sin(+ 2) = sin ,whichsaysthatthevaluesofbothcosineandsinerepeatthemselvesevery2radians.Considernowtheeffectofreflectingpointsonthecircleacrossthex-axis,asshowninFigure3.3(a). IfthepointP(x,y)correspondstotheangle,andthepointQ isthereflectionofP inthex-axis,thenQhascoordinates(x,y)andcorrespondstotheangle. Hencewehave

    cos() = cos and sin() = sin.

    Figure 3.3 Reflections

    HerethepointQcorrespondstotheangle 1.2

    Notethatwewritecos2 for(cos)2 andsin2 for(sin)2.

    Similarly,thecaseofreflection inthey-axis(seeFigure3.3(b),wherethepointQcorrespondstotheangle) gives

    cos() = cos and sin() = sin .Furtherusefulidentitiesareobtainedbyconsideringreflection inthelinex=y (seeFigure3.3(c)). Theseare

    cos(1) = sin and sin(1) = cos .2 2

    Anotherkeypropertyofsineandcosinefollows fromthefactthatP liesontheunitcircle,soitscoordinatessatisfytheequationx2 +y2 = 1. Hence,foranyvalueof, we have

    cos2

    + sin2

    = 1.34

  • 8/13/2019 Mst121 Chapter a2

    35/60

    SECTION 3 TRIGONOMETRY

    Activity 3.2 More values of cos and sin

    (a) Byapplyingtheformulacos(1

    2) = sin ,1showthatcos = sin 1 . Then use the formula 4 4

    cos2

    + sin2 = 1 tofindthecommonvalueofcos(1

    4)andsin(14).(b) Byconsideringthegeometryofthediagram inFigure3.4, inwhich

    OPQisanequilateraltrianglebisectedbythex-axis,findthevalues Thesymbol isreadasofcos(1

    6)andsin(16). triangle.

    Figure 3.4 TriangleOPQ(c) Whatarethevaluesofcos(1

    3)andsin(13)?Solutionsaregivenonpage56.

    Thevaluesofthesineandcosineofanyangle(expressedineitherdegreesorradians)maybeobtainedrapidlyfromacalculator,butvaluesfortheparticularangles inActivities3.1and3.2cropupoftenenoughtomake itworthcommittingthemtomemory ifpossible. Ifthis istoodauntinga

    prospect,thenthesevaluesImaginenowthatthepointP inFigure3.1rotatesatasteadyratearound

    can be looked up in the thecircle. Thecorrespondingvaluesofcosandsin(thecoordinates Handbook.ofP)oscillateupanddownbetween1and1. Yousaw intheVideoBand inSubsection2.1(fromwhichastill isreproduced inFigure3.5)the You will see more about these wavygraphsthatresult. graphsinChapterA3.

    Figure 3.5 Wavygraphs35

  • 8/13/2019 Mst121 Chapter a2

    36/60

    CHAPTER A2 LINES AND CIRCLES

    Wenowdefineathirdtrigonometricratio,thetangent ofanangle. Itisdefinedby

    sintan= ,

    coswhichmakessenseonly ifcos=0. IntermsofFigure3.1,this isequivalenttotan=y/x(x=0),sotan isundefinedifthepointP liesonthey-axis(that is,for=

    12

    ,

    32

    ,

    52

    ,...). Notethat ifa linemakesananglemeasuredanticlockwisefromthepositivex-axis,thentan istheslope ofthe line,asdefinedinSubsection1.1.Thevalue= 12, for which

    thetangentisundefined,correspondstolinesofinfiniteslope. Activity 3.3 Values of tan

    Findthevalueofeachofthefollowing.(a) tan0 (b) tan (c) tan(1

    4) (d) tan(1

    6) (e) tan( 1

    3)

    Solutionsaregivenonpage56.

    Itfollows fromthecorrespondingformulasforcosandsinthatsintan() = sin() = =tan

    cos() cosand

    sintan() = sin() = =tan.

    cos() cosThetangent ispositivewherebothcosineandsinearepositiveorwheretheyarebothnegative. Figure3.6 indicateswhichofsin,cosandtanare

    Figure 3.6 positiveineachquadrant.Signsinquadrants

    Activity 3.4 Values of sin, cos and tan

    Usetheformulasforsin,cosandtanandthesolutionstoActivities3.2and3.3tofindthevalueofeachofthefollowing.(a) sin(5

    6) (b) cos( 5

    6) (c) tan( 2

    3) (d) tan(1

    3)

    Solutionsaregivenonpage56.

    Toconcludethissubsection,threefurthertrigonometricratios,thesecant,For example, cosecantandcotangentofanangle,aredefinedby

    1 23= 2/ 3 = 3, 1 1 1sec 6

    sec= , cosec= , cot= .sin14 2, tancoscosec = Thesearesometimesusedwhenwewishtoavoidreciprocals.1 1= 1/ 3 = 3.cot 3 3

    3.2 Calculations with triangles

    Figure3.7showsanamendedcopyofthediagram(Figure3.1)referredtowhendefiningcosineandsine. ThelinesegmentOP isextendedtosomepointA,andaperpendicularisdroppedfromAtothex-axisatB. Here it isassumedthat isacute,thatis,between0and/2 radians (90).

    36

  • 8/13/2019 Mst121 Chapter a2

    37/60

    SECTION 3 TRIGONOMETRY

    Figure 3.7 DefiningAandBSinceOABandOPX aresimilar, it followsthat

    OB OX xOA = OP = 1 =x= cos ,

    andsimilarlythatAB/OA= sin ,whateverthesizeoftheright-angledtriangleOAB.NowconsiderOABon itsown(Figure3.8(a)). ThesideOAisthehypotenuseofthetriangle. ThesideOB isadjacent totheangle, and thesideAB isopposite totheangle.

    Figure 3.8 Adjacent,opposite,hypotenuseThisgives,forananglewithinaright-angledtriangle,theformulas Theseformulasareoftenused

    adjacent opposite opposite tointroducethecosineandcos= . sine.

    hypotenuse, sin= hypotenuse, tan= adjacentNotethatbothofthedescriptionsadjacentand oppositearerelativetotheanglecurrentlyunderconsideration. Indeed,ifisthethirdangle inthetriangle,asshowninFigure3.8(b),then Theseareinstancesofgeneral

    adjacent(to)= opposite(to) = sin , rulesfromSubsection3.1,cos= namely

    hypotenuse hypotenusecos(1

    2

    21

    ) = sin ,and,similarly,sin= cos .

    sin( ) = cos ,Theserelationshipsmeanthat, inanyright-angled triangle,thespecificationofeither(a)oneotherangleandthe lengthofanyoneside,or(b)the lengthsofanytwosidesissufficienttoenableustodetermineallanglesandside lengthsofthetriangle. Thisprocess isoftencalledsolving the triangle .

    since= 12.

    37

  • 8/13/2019 Mst121 Chapter a2

    38/60

    CHAPTER A2 LINES AND CIRCLES

    Activity 3.5 Solving triangles

    Findtheunmarkedanglesand lengthsofsides ineachofthetwotrianglesTheinversesineofanumber inFigure3.9below. Inpart(b)youwillneedtoapplythe inversesineorgivesananglewhosesineis inversecosinefacilityonyourcalculator. (Makesurethatyourcalculatorthatnumber(wherethisis issettowork indegrees.)possible),andsimilarlyforthe inversecosine.

    Figure 3.9 TwotrianglesSolutionsaregivenonpage57.

    Theremainderofthis Toconcludethissubsection,therefollowsabrief indicationofhowsubsectionwillnotbe trigonometrycanalsobeappliedtosolvetrianglessuchasthatshown inassessed. Figure3.10(a),whichdonot containarightangle. This illustratesa

    standardconventionforlabellingtheanglesandside lengthsofatriangle,withlengthaoppositeA, length boppositeB,and lengthcoppositeC.

    Infull,thesineruleissinA sinB sinC

    = = .a b c

    Figure 3.10 AlabellingconventionTherules forsolvingsuchtrianglesdependessentiallyuponbeingabletoviewthemasbeingmadeupofright-angledtriangles. Forexample,bydroppingtheperpendicular fromC toAB inABC, we divide this triangle intotwosmalleroneswithrightangles,ADC andCDB, as showninFigure3.10(b). Denotingthe lengthofCDbyh, we have h=bsinA(inADC) and h=asinB (inCDB). Itfollowsthat

    sinA sinB= ,

    a bwhichisknownasthesine rule. Giventhe lengthofonesideforanytrianglewhoseanglesareknown,thisrulepermitsustodeducethelengthsoftheremainingsides.

    38

  • 8/13/2019 Mst121 Chapter a2

    39/60

    SECTION 3 TRIGONOMETRY

    Summar y of Section 3

    Thissectionhasreviewedorintroduced: thedefinitionscos=x, sin =y, where (x,y)arethecoordinatesof

    a point P ontheunitcirclesuchthattheanglefromthepositivex-axistoOP is;

    thefollowingpropertiesofcosandsin:

    cos(+ 2) = cos , sin(+ 2) = sin ,cos() = cos , sin() = sin,cos() = cos, sin() = sin ,cos(1

    2) = sin , sin(1

    2) = cos ,

    cos2 + sin2 = 1; thedefinitiontan= sin /(cos),wherecos=0,togetherwiththe

    propertiestan() = tan, tan() = tan;

    thedefinitionssec= 1/(cos),cosec= 1/(sin) and

    cot= 1/(tan),whereineachcasethedenominatorsarenon-zero; withinaright-angledtrianglehavingacuteangle,theformulasadjacent opposite opposite

    cos= tan=hypotenuse, sin= hypotenuse, adjacent.

    Exercises for Section 3

    Exercise 3.1

    (a) Replacebyintheformulascos() = cos, sin() = sin .

    Hencederiveformulasforcos(+) intermsof cos,sin(+) in terms of sin .

    (b) Usetheseformulastofindthevalueofeachofthefollowing.(i) sin(7

    6) (ii) cos(7

    6) (iii) tan(7

    6)

    Exercise 3.2

    Findtheunmarkedanglesand lengthsofsidesineachofthetwotrianglesinFigure3.11below.

    Figure 3.11 Twotriangles

    39

  • 8/13/2019 Mst121 Chapter a2

    40/60

    4 Parametric equations

    Unlesstisexplicitlylimitedinsomeway,it istobeassumed in such equations thatttakesallrealvalues.NotethattheuseofparameterhereisdifferentfromthatinChapterA1.

    InSections1and2,yousawhowequationswhichrelatethex- and y-coordinatesofapointprovideanalgebraicdescriptionofa lineoracircle. Inthissectionyouwillseeanalternativewayofdoingthis. Inplaceofthesingleequationforalineorcircleemployedpreviously,weusetwoequations,whichexpresseachofxandy intermsofafurthervariable,sayt,calledtheparameter fortheequations.Youcanthinkofthetwoequationsastellingyoutheposition(x,y) of a smallobjectattimet,astheobjectmovesalonga lineorcircle. Theapparentextracomplexityofintroducingathirdvariable,t, is offset by additional information: youknownotonlythepathalongwhichtheobjectmoves,butalso itspositiononthepathatanyparticulartime.We look inSubsection4.1atparametricequationsfor linesand inSubsection4.2atparametricequationsforcircles.

    4.1 Parametric equations of lines

    Considertheequationy= 2x+3,whichdescribesaparticularstraightline. Thissaysthatthey-coordinateofanypointonthe linemustequaltwicethex-coordinateofthatpoint,plus3. Anotherwayofspecifyingthisistosaythatallpointsonthe linehavecoordinatesoftheform(x,2x+ 3), where x isanyrealnumber. Wecouldequallywelluseanotherletterhereinplaceofx,forexample,t. Thenthelineconsistsofallpointsoftheform(t,2t+3),whichinturnsaysthatthelineismadeupofpoints(x,y)suchthat

    x=t, y= 2t+ 3.Theadditionalvariabletwhichhasbeen introducediscalledaparameter,andthetwoequationsarecalledparametric equations.Theprocessofdescribingxandy intermsoft iscalledparametrisationoftheoriginal line.Theequationsx=t,y= 2t+3representjustonewayofparametrisingtheliney= 2x+3. Forexample, ifwereturnedtothecoordinate form(x,2x+3),andthenreplacedxby4t+1,wewouldarriveatanothervalidparametrisation:

    x= 4t+ 1, y = 2(4t+ 1) + 3 = 8t+ 5.Whyshouldwewanttodothis? Onthefaceof it,suchpairsofequationsareamorecomplicateddescriptionofthe linethanthesingleequation,y= 2x+3,fromwhichwestarted. However,wehavealsopotentiallygained informationthatcouldbeuseful inamodellingcontext. Iftrepresentstime,andx= 4t+ 1, y= 8t+5representthecoordinatesofamovingobject,thenwecansaythatwhent=0theobjectisat(1,5),whent= 1

    2 it isat(3,9),andsoon. Foreachchosentime,thereisa

    correspondingpositiononthe line.Figure4.1illustratestheabovetwoparametrisationsoftheliney= 2x+ 3.

    40

  • 8/13/2019 Mst121 Chapter a2

    41/60

    SECTION 4 PARAMETRIC EQUATIONS

    Figure 4.1 Twoparametrisationsofoneline

    InSubsection

    1.1,

    you

    saw

    how

    to

    obtain

    the

    equation

    of

    aline

    specified

    byeitherof(a) theslopeofthe lineandonepointon it;(b)twopointsontheline.Ineachcase,anappropriateparametrisationofthe line isasfollows. Youmayliketocheckthat(a) Ifa line inthe(x, y)-planehasslopemandpassesthroughthepoint thesetwoparametrisations

    work,bysubstitutingthem(x1, y1),then itcanbeparametrisedas intotheappropriateformof

    x=t +x1, y =mt +y1. theequationofa line.Here(x, y) = (x1, y1) when t=0. Theparametertistherunfrom(x1, y1) to (x, y).

    (b)Ifa line inthe(x, y)-planepassesthroughthetwopoints(x1, y1) and (x2, y2),then itcanbeparametrisedas

    x=x1 +t(x2 x1), y =y1 +t(y2 y1).Here(x, y) = (x1, y1) when t= 0, and (x, y) = (x2, y2) when t= 1. The magnitudeoftheparametertgivesthedistancefrom(x1, y1) to (x, y)asaproportionofthedistancefrom(x1, y1) to (x2, y2).Thisparametrisation is illustrated inFigure4.2. Figure 4.2 Case(b)Notethatthemidpointofthe linesegmentfromA(x1, y1) to B(x2, y2)

    1correspondstotheparametervaluet=2

    (seeFigure4.3). Putting1t=2

    intotheparametricequationsabovegivesthemidpointformulastated inSubsection2.2,namely,

    1 1(x, y) = 2

    (x1 +x2),2(y1 +y2) .

    Writedownparametricequationsfor:(a) the linewhichhasslope3andpassesthroughthepoint(1, 2);

    Figure 4.3 Midpoint(b) the linewhichpassesthroughthetwopoints(1, 5)and(4, 7).Solutionsaregivenonpage57.

    Activity 4.1 Parametric equations for specified lines

    41

  • 8/13/2019 Mst121 Chapter a2

    42/60

  • 8/13/2019 Mst121 Chapter a2

    43/60

    SECTION 4 PARAMETRIC EQUATIONS

    Theterm5(t 5)2 nevertakesavalue lessthan0,and itachievesthe Nosquareofarealnumberisvalue 0 when t=5. Atthistime,thevalueofd2 is5. Hencetheclosest negative.approachdistance is 52.24(km),andthisoccurswhent=5(hours).

    Activity 4.3 Closest approach

    Twoaircraftflyalongstraight-linecoursesatthesameheightandatsteadyspeeds. WithreferencetoagivenCartesiancoordinatesystem,thepositionofAircraft1 is(500t + 10, 312t 12)andthepositionofAircraft2 is(496t + 22, 310t 23),both intermsoftimet. Here distanceismeasured inkilometresandtime inhours. What istheclosestthattheaircraftapproacheachother,andatwhattimedoesthisclosestapproachoccur?Asolution isgivenonpage57.Ifwewanttospecifyonlypart ofa line,thenthiscanbeachievedbyrestrictingtheparametertoonlycertainrealvalues. Forexample, itwaspointedoutearlierthatthe linejoiningA(x

    1, y

    1) and B(x

    2, y

    2) can be

    parametrisedasx=x1 +t(x2 x1), y =y1 +t(y2 y1), Notethat iftisreplacedhere

    by1t,thenthenewwhere(x, y) = (x1, y1) at t= 0 and (x, y) = (x2, y2) at t= 1. As they parametrisationdescribesthestand,theseequationsapplyforallrealnumberst,andrepresenta line samelinebuttraversedinthewhichextendsinfinitely farineitherdirection. Todescribejustthe line oppositedirection,witht= 0 segment fromAtoB,wecouldaddtheconditionthattshouldbeno less at(x2, y2) and t= 1 at than0andnogreaterthan1. Insymbols,thiscanbewrittenas0t1, (x1, y1).which is read as 0 less than or equal to t, and tlessthanorequalto1.Theequationsthenread

    x=x1 +t(x2

    x1), y =y1 +t(y2

    y1) (0

    t

    1).

    4.2 Parametric equations of circles

    Inthecaseofcircles,wehaveareadyparametrisationsuggestedbythevideoanimationwhichwas illustrated inFigure3.5. Theequations

    x= cos , y= sin provideaparametrisationoftheunitcircle,withtheangleastheparameter(seeFigure3.1). Theangleherecanbereplacedbyt(time),butequally itcouldbereplacedby2t, 3toranynon-zeromultipleoft.Theseeachdescribeamovingpointwhichtracesoutthesamecircularpath,buttheydiffer intherateatwhichthepointrotates. Tobemorespecific,allparametrisationsoftheform

    x= cos(kt), y = sin(kt),wherek isanon-zeroconstant,representtheunitcircle. Fork=1(thatis,=t),pointsonthecirclearereachedatthetimes indicated inFigure4.4(a). Themotion is intheanticlockwisedirection,sincewehaveassumedthatangles increase inthisdirection. Fork=2(that is,= 2t),

    1 1 1motiontakesplaceattwicetherate,reaching=4

    att=8

    ,= at2

    1 1t= 1,andsoon(seeFigure4.4(b)). Fork=2

    (that is,= t),therate4 2

    ofmotion isonlyahalfthatwith=t(seeFigure4.4(c)). Ineachanticlockwiserevolution, increasesby2(radians),andhencethetimetincreasesby2/k.

    43

  • 8/13/2019 Mst121 Chapter a2

    44/60

    CHAPTER A2 LINES AND CIRCLES

    Figure 4.4 ThreeratesofmotionAsshown,themotion isanticlockwise ifk ispositive. Ifk isnegative(forexample,k=1 and =t),thenthemotionisintheclockwisedirectionaroundthecircle.

    Activity 4.4 Parametrisation for a given rate of motion

    Findaparametrisationoftheunitcirclewhichcorrespondstomotionanticlockwiseattherateofonerevolutionperunittime.Asolution isgivenonpage57.

    Aparametrisationsuchasx= cos t,y= sin tdiffers inan importantrespectfromtheparametrisationsseenearlierforstraight lines. Themotionrepresentedbytheparametrisationhererepeats itselfeveryrevolution(2radians),since

    cos(t+ 2) = cos t, sin(t+ 2) = sin t.Henceanysinglepointonthecirclecorrespondsto infinitelymanyvaluesoft. Ifdesired,thisrepetitioncanbeavoidedbyplacingarestrictiononthevaluesoft. Forexample,theequations

    x= cos t, y= sin t (0t2)representjustonerevolutionaroundtheunitcircle,startingandfinishingat(x,y) = (cos 0,sin0)=(1,0). Forotherratesofmotionaroundthecircle,therestrictionontwillneedtobeadjustedtoachievejustonerevolution. Forexample,theparametrisation

    Eventhought= 0 and t= 2givethesamepoint, itisconventionaltoincludebothvaluesintherangefort.

    x= cos(3t), y = sin(3t) (0 t 23 )representsacompleteturnaroundthecircleatthreetimesthepreviousrate,whichiscompletedinonethirdofthetime.Iflessthanthewholecircle istobedescribed(acirculararc),thenthiscanbeachievedbyspecifyinganevensmallerrangeofvaluesfort. For example,

    x= cos t, y= sin t (0t)istheupperunitsemi-circle(seeFigure4.5(a)),whereas

    x= cos t, y= sin t (

    t

    2)isthelowerunitsemi-circle(Figure4.5(b)).

    Alternatively,therangefortforthe lowersemi-circlecouldbetakenast0.44

  • 8/13/2019 Mst121 Chapter a2

    45/60

  • 8/13/2019 Mst121 Chapter a2

    46/60

    5 Parametric equations by computer

    Tostudythissectionyouwillneedaccesstoyourcomputer,togetherwithComputerBookA.Inthissectionyouare invitedtouseyourcomputertoplot linesandcircleswhicharedescribedbyparametricequations. Youwillseealsothatthesameapproachcanbeadoptedwithothercurves.

    Summar y of Section 5

    Thissectionhasintroduced: theapproachneededtoplot,bycomputer,a line,circleorothercurve

    givenbyparametricequations.

    46

  • 8/13/2019 Mst121 Chapter a2

    47/60

    Summar y of Chapter A2

    Inthischapteryouhavestudiedthealgebraicdescriptionsof linesandcircles. Thesedescriptionspermitthesolutionofvariousproblemsstatedinitially ingeometricratherthanalgebraic form. The linksbetweengeometryandalgebraareofthegreatestmathematical importance.These linksextendtothealgebraicdescriptionofmotion,whichisprovidedbyparametricequationsformovingobjects. Trigonometryprovidesusefulparametrisationsforcircularmotion.

    Lear ning outcomes

    Youhavebeenworkingtowardsthefollowing learningoutcomes.Terms to know and use

    Rectangularor

    Cartesian

    coordinates,

    axis,

    origin,

    rise

    and

    run,

    slopeorgradientofaline, infiniteslope, intercept,centreandradiusofacircle,subtendedangle,distancebetweentwopoints,linesegment,perpendicularbisector,midpoint,completingthesquare,completed-squareform,unitcircle,cosine,sine,degree,radian,quadrant,tangent,adjacent,opposite,hypotenuse,solvingatriangle,parameter,parametrisation,parametricequations.

    Symbols and notation to know and use

    (x1, y1) for first point, (x2, y2)forsecondpoint,A,ABC,sin, cos , tan , cosec , sec , cot , sin2 , etc., 0 t1.

    Mathematical skills

    Obtaintheequationofaline,eitherfromitsslopeandonepointonit,orfromtwopointson it.

    Writedowntheslopeofa linethat isperpendiculartoa linewithgivenslope.

    Evaluatethedistancebetweentwopointswithgivencoordinates. Writedowntheequationofacirclewithgivencentreandradius. Writedownthecoordinatesofthemidpointofthe linesegment

    betweentwogivenpoints. Findtheequationofthecirclewhichpassesthroughthreegivenpoints,notallonthesamestraight line. Completethesquareforagivenexpressionoftheformx2 + 2px. Identifyfeaturesofalineorcirclefrom itsequation. Findthepointof intersectionoftwogivennon-parallel lines,orany

    pointsof intersectionofagivenlineandcircle,bysolvingthecorrespondingequationssimultaneously.

    Usetrigonometricratiostosolveright-angledtriangles. Writedownparametricequationsforagiven lineorcircle,orpart

    thereof. Fromgivenparametricequationsforaline,derivethecorrespondingnon-parametricequation.

    47

  • 8/13/2019 Mst121 Chapter a2

    48/60

    CHAPTER A2 LINES AND CIRCLES

    Mathcad skills

    Plotacurvewhich isspecifiedbyparametricequations.Modelling skills

    Identifythevariables inasituation,andfindsuitableequationstorelatethem.

    Appreciatethat, intheprocessofmathematicalmodelling,doingthemathematicscomesaftercreatingthemodelandis followedbyinterpretingtheresults.

    Ideas to be aware of

    Curves(including linesandcircles)mayberepresentedbyalgebraicequations.

    Theslopeofaline(thequantityriserun) isapropertywhichisindependentofthetwopointsonthe linechosentocalculatetheriseandrun.

    Theequationofastraight line isdeterminedby itsslopeandone

    pointon it,oralternativelybytwopointson it. Theequationofacircle isdeterminedbyitsradiusandthepositionofitscentre.

    Threepoints(notonthesamestraight line)determineauniquecircle. Thepointswhichareequidistantfromtwogivenpoints,AandB,

    formtheperpendicularbisectorofthe linesegmentAB. Sineandcosinecanbeseenasthecomponentsofsteadycircular

    motion. Theslopeofaline isequaltothetangentoftheanglewhichitmakes

    withthepositivex-axis. Anon-parametricequationdescribesapath,whereasparametricequationscandescribethepositionatanygiventimeofanobject

    movingalongthatpath. Completingthesquarepermitstheminimumormaximumvalueofa

    quadraticexpressiontobefound.

    48

  • 8/13/2019 Mst121 Chapter a2

    49/60

    Appendix: Modelling the Earth

    Thisappendixcontainsacoupleof illustrationsofhowthemathematicswhichhasbeenintroducedinthischaptercanbeapplied intherealworld.Ineachcase,mathematicalmodelling is involvedintranslatinga realproblem intomathematicalterms,solving itandtheninterpretingthesolutiononcemore,though it isthemathematical ideaswhichwedwellmostuponhere.Thefirstexampleconcernsthebasisofamajorground-surveyingtechniquewhichpredatedthemoresophisticatedmethodsnowavailable.Currentgroundsurveysmakesubstantialuseofthesatellite-basedglobalpositioningsystemdescribedinthesecondexample.

    Applying trigonometr y

    Considertheproblemofmappingacountry. Abasicrequirementofamapisthat itshouldrepresenttoscale,withreasonableaccuracy,therelativedistancesandorientationsofallplacesofsignificance. Onewayofdoingthisistodividethecountryup intoanetworkoftriangles. Ifthe lengthsofallsidesofeachtrianglearemeasured,thenitsshapeisalsodetermined,sothatwecanrepresentitcorrectlytoscaleonamap.Drawbacksofthisapproacharethe labourofcarryingoutallofthemeasurements,theproblemsposedinplacesbyharshterrain,andthedifficulty,beforethecomingofphotographyandradarechomethods,ofmaking lengthmeasurementsonthisscaleaccurately. Thesedrawbackswereovercomeduringtheeighteenthandearlynineteenthcenturies,byuseofthetheodolite(an instrumentcapableofmeasuringanglesaccurately)combinedwithapplicationofthesinerule,

    sinA sinB= .

    a bIftheanglesofatriangleandoneofitssideshavebeenmeasured,thenthesineruleprovidesasimplewayinwhichtocalculatethelengthsofthetworemainingsides.Supposenowthat, inthenetworkoftriangleswhichcoversthecountry,alltheangleshavebeenaccuratelyrecorded,andthatthelengthofasinglebaseline,which isthesideofoneofthetriangles,hasalsobeenmeasured(theside labelled1 inFigureA.1).

    Thematerial inthisappendixwillnotbeassessed.

    Asasimplifyingassumption,thedeparturesfromflatnessthatoccuronthesurfaceoftheEarthareignoredhere,thoughitis importanttotaketheseintoaccountwhendrawinganaccuratemap.

    The sine rule was introduced attheendofSection3.

    Figure A.1 Networkoftriangles

    49

  • 8/13/2019 Mst121 Chapter a2

    50/60

    ThefirstnationalmaptobebasedupontriangulationwastheAtlas National de France.Theworktookplaceovertheyears17331789. ThismapisalsoknownastheCartedeCassini,becausetheprojectinvolvedfoursuccessivegenerationsoftheCassinifamily.

    CHAPTER A2 LINES AND CIRCLES

    Thenthe lengthsofthesides labelled2and3canbefoundbyapplyingthesinerule. Oncethishasbeendone,wehavetwomoreknownlengthsonthediagram,sothatothertriangleswhich includethesesidescanbesolvedinthesamemanner,byfurtherapplicationsofthesinerule.Continuinginthisway,the lengthsofallsideswithinthenetworkcanbeobtained. Oncetheinitialtriangulationofaregioniscomplete,moredetailcanbeobtainedusingsuccessivelyfinernetworksofsmallertriangles.Thefirst localtriangulationsofthistypetookplace inFrance inthelateseventeenthcentury. ThefirstTrigonometricalSurvey(latercalledOrdnanceSurvey)oftheBritishIsleswascompleted in1873. Itreliedupontheaccuratemeasurement(made in1784)ofabaselineofabout5miles in lengthonHounslowHeath.

    Global positioning

    SinceJuly1995,theGlobalPositioningSystem(GPS)developedandrunbytheUnitedStatesDepartmentofDefensehasbeenfullyoperational.Thissystem isavailable forcivilianaswellasformilitarypurposes,andhasalreadyfoundwideapplicationsforbothcommercialand leisureuse.Itenablesuserstoestablishtheirposition inspace(ontheEarthssurfaceoraboveit)withconsiderableaccuracy. However,thesystem issetupsothatthefullestaccuracy isavailableonlytotheUSmilitary.Thesystemhasthreecomponents.(a)Twenty-foursatellitesaremaintained inhighorbitsabovetheEarth,

    eachwithanorbitalperiodof12hours. Sixseparateplanarorbitsareused,withfoursatellites ineachorbit. Thisconfigurationensuresthat,withanunobstructedviewskywards,aminimumofsixsatellitesarealwaysvisiblefromanypointontheEarth.

    (b)Severalgroundstationsaroundtheworldmonitortheprecisepositionsofthesatellites,andalsotransmit informationtothem. Thesestationsare linkedtothecentreoftheoperationatColoradoSprings.

    (c) Areceiverwithbuilt-inprocessoraccompanieseachuserofthesystem.Receiversvarywidely insophistication: sometypesarehand-heldandrelativelycheap;othersarebuilt intoshipsoraircraft.

    Thesystemworksasfollows. Theusersreceiverlocksontoradiosignalsfromseveralsatellites. Assumingthataclockinthereceiverisaccuratelysynchronisedwiththose inthesatellites,thetime lagbetweenthetransmissionandreceptionofeachsignalcanbemeasured. Sinceradiosignalstravelatthespeedof light(about300000kms1),thetimelagmeasurementscanbetranslated intodistances. Eachsatellitetransmitsanaccurate

    record

    of

    its

    own

    position

    at

    each

    moment,

    relative

    to

    a

    three-dimensionalCartesiancoordinatesystemwhich isfixedrelativetotheEarth.Thereceiverthenhasestimatesofthedistancestoseveralsatellitesofknownpositionataparticulartime,andcancalculate itsownpositionatthattimerelativetothesamecoordinatesystem. Thiscanthenbetranslated,ifdesired, intothelongitude, latitudeandaltitudeofthereceiver. Repeatedcalculationsofthistypecanalsotelltheuserwhattheirspeedanddirectionofmotionare.

    50

  • 8/13/2019 Mst121 Chapter a2

    51/60

    APPENDIX: MODELLING THE EARTH

    Tounderstandhowthepositionofthereceivercanbederivedfromthecalculateddistancesfromthesatellites, letussimplifymattersbyconsideringthecorrespondingsituation intwospacedimensionsratherthantheoriginalthree.FigureA.2showsthepositionoftheuseratapointP relativetotwotransmittingdevices(correspondingtosatellites)atpointsAandB. The coordinatesofAandB areknown,relativetoafixedoriginatOandCartesian(x,y)-axes.

    Figure A.2 Points A,B andPThepointP isattheintersectionoftwocircles,withcentresatAandatB. Thecoordinatesofthesecentresareknown,andsoaretheradii(thedistancesfromthetransmitters),sothat ineachcasewecanwritedownanequationforthecircle. FindingthepositionofP thereforeamountstofindingapointwherethetwocircles intersect. ThemathematicsneededtolocatetheseintersectionpointswasdiscussedattheendofSubsection2.4.Hencemeasurementsfromjusttwotransmittersshouldsufficetofixthepositionoftheuserinoursimplifiedtwo-dimensionalsituation. Thisgeneralises

    in

    a

    straightforward

    manner

    to

    three

    space

    dimensions,

    with

    thecirclesreplacedbyspheres. Measurementsfromthreesatellitesfixthepositionoftheuser. Theequations involvedlookmorecomplicatedthanthoseforcircles,buttheycanbesolvedsimultaneouslyforthe intersectionpoint inaverysimilarway. However,there isasnag!Itwasassumed,atthestartofdescribinghowthesystemworks,thattheclock inthereceiverwasaccuratelysynchronisedwiththose inthesatellites. Thesatellitesdoindeedincorporatehighlyaccurateclocks.Receivers,ontheotherhand,wouldbeprohibitivelyexpensiveiftheyhadclocksofcomparableaccuracy. Thereforetheirtimingdevices,althoughgoodbyeverydaystandards,arenotadequatelyaccurateforthepurposedescribedhere. Toappreciatewhat is involved,notethatwiththetransmittedsignalstravellingatthespeedof light,atimingerrorofamillisecondcorrespondstoadistanceerrorof300km!Luckily,there isasimplewayaroundthisproblem,which istouse data

    from an additional satel lite. Toseehowthisworks intermsofourtwo-dimensionalsituation, lookatFigureA.3.

    Infact,therewillbetwosuchintersectionpoints,butinpractice itwillbepossibletodiscountoneasgivinganabsurdresult.

    51

  • 8/13/2019 Mst121 Chapter a2

    52/60

    CHAPTER A2 LINES AND CIRCLES

    Figure A.3 EffectsoftimeerrorinreceiverAsbefore,therearetransmittersatknownpositionsAandB,butthere isalsoathirdtransmitteratpositionC. Ifthereceiversclockwereaccurate,thenthethreecalculateddistanceswouldbeequaltotheradiiofthreecircleswhichintersectatasinglepoint. Duetotimeerror inthereceiver,thisdoesnotoccur. Instead,thecalculateddistances leadtothecirclesshownsolid inFigureA.3,whichdonot intersectmutuallyatapoint.Thisshowsupthetimeerror inthereceiver. Sincethesecalculationsareclearly inaccurate,thethreedistancesarecalledpseudoranges fromthetransmitters.Thesavinggracehereisthatthetimeerror isthesameforeachofthe

    Thesymbolsandarethe threetimemeasurements. Hencewemayseekavalueof,thetimeerror,Greekletters tauandrho, suchthatremovingadistance=c(wherec isthespeedof light) fromrespectively. eachpseudorangewillproducethreecircleswhichdo intersectinasingle

    point(thebrokencircles inFigureA.3). This intersectionpoint isthepositionP oftheuser. Asaby-product,thevaluefoundfor isthe

    Theuserthenhasa receiverstimeerror,whichcanbeusedtocorrectthetimeregisteredbycalculated

    time

    which

    is

    as

    thereceiver.accurateasthatonthe

    satellites! Hence ittakesthreetransmittersto locateaccuratelyintwospacedimensionsareceiverwithaslightly inaccurateclock. Inthreespacedimensions,asimilarapproachsucceedswithdatafromfoursatellites.

    52

  • 8/13/2019 Mst121 Chapter a2

    53/60

    Solutions to Activities

    Solution 1.1

    (a) Anypointonthe lineparalleltoand3unitstothe leftofthey-axishascoordinatesoftheform(3, y),sothesecoordinatessatisfytheconditionx=3. Thisisthereforetherequiredequationofthe line.

    (b) Ingeneral,anylineparalleltothey-axishasanequationoftheformx=d, where d isaconstant. Thevalueofd isnegativefora linetothe leftofthey-axis,andpositivefora linetotheright.

    (c)

    Figure S.1

    Solution 1.2

    (a) Iftheruniszero,thenx1 =x2. One of the pointsisverticallyabovetheother,sotheline isparalleltothey-axis. Althoughtheslopeisnotthendefinedbytheexpressionriserun,wesaythatsuchalinehasinfinite slope.(AsyoufoundinActivity1.1,suchalinehasanequationoftheformx=d, where d isaconstant. Herex1 =x2 =d.)

    (b) Iftheslopeiszero,thentherisey2 y1 mustbezero,soy2 =y1. Bothpointsareatthesamehorizontallevel,sotheline isparalleltothex-axis. (Aspointedoutearlier,suchalinehasanequationoftheformy=c, where cisacons