mso202assign4

2
Department of Mathematics and Statistics Indian Institute of Technology Kanpur MSO202A/MSO202 Assignment 4 Introduction To Complex Analysis The problems marked (T) need an explicit discussion in the tutorial class. Other problems are for enhanced practice. 1. (T) Give examples for the following: (a)The radius of convergence of Taylor series of a function with center as some point a in the domain of analyticity D of the function is larger than the largest disk z a R contained in D (b) Two Taylor series with different centers represent the same analytic function in the intersection of their disks of convergence. (c) The disk of convergence of Taylor series of a function is strictly contained in the domain of analyticity of a function. 2. Evaluate the following integrals on the indicated curves, all of them being assumed to be oriented in the counterclockwise direction: (T)(a) 4 1 , : 2 1 C dz C z z (b) 3 2 4 2 2 4 , : 2 4. 4 C z z dz C z z z 3. Evaluate the following integrals on the square C, oriented in the counterclockwise direction and having sides along the lines 2 2 x and y : (T)(i) 2 cos ( 8) C z dz zz (T)(ii) 4 cosh C z dz z . 4. Using Liovuille Theorem, show that the functions exp(z), sin z, cos z , sinh z, cosh z are not bounded in the complex plane C. 5. Show that every polynomial P(z) of degree n has exactly n zeros in the complex plane. 6. If f is an entire function and 0 () n f z MR in z R , prove that f is a polynomial of degree at most 0 n . 7. Let () f z be analytic in z R . Prove that, for 0 < r < R, 2 2 2 2 2 0 1 ( ) (Re ) 2 2 cos( ) i i R r f re f d R r Rr (called Poisson Integral Formula). 8. (T) Evaluate 4 1 dz z , where is the part of clockwise oriented ellipse 2 2 ( 3) 1 1 4 x y lying in the upper half‐plane { :Im 0} z z . P.T.O.

Upload: shivamtaji

Post on 12-Dec-2015

1 views

Category:

Documents


1 download

DESCRIPTION

mso 202 a iitk

TRANSCRIPT

Page 1: MSO202Assign4

DepartmentofMathematicsandStatisticsIndianInstituteofTechnologyKanpurMSO202A/MSO202Assignment4IntroductionToComplexAnalysis

Theproblemsmarked(T)needanexplicitdiscussioninthetutorialclass.Otherproblemsareforenhancedpractice.

1. (T)Giveexamplesforthefollowing:

(a)TheradiusofconvergenceofTaylorseriesofafunctionwithcenterassomepoint a inthedomainofanalyticityD ofthefunctionislargerthanthelargestdisk z a R containedinD

(b)TwoTaylorserieswithdifferentcentersrepresentthesameanalyticfunctionintheintersectionoftheirdisksofconvergence.(c) The disk of convergence of Taylor series of a function is strictly contained in the domain ofanalyticityofafunction.

2. Evaluatethefollowingintegralsontheindicatedcurves,allofthembeingassumedtobeorientedinthecounterclockwisedirection:

(T)(a) 4

1, : 2

1C

dz C zz

(b)

3 2

4 2

2 4, : 2 4.

4C

z zdz C z

z z

3. Evaluate the following integrals on the square C, oriented in the counterclockwise direction and

havingsidesalongthelines 2 2x and y :

(T)(i) 2

cos

( 8)C

zdz

z z (T)(ii) 4

cosh

C

zdz

z .

4. UsingLiovuilleTheorem,showthatthefunctionsexp(z),sinz,cosz,sinhz,coshzarenotboundedin

thecomplexplaneC.5. ShowthateverypolynomialP(z)ofdegreenhasexactlynzerosinthecomplexplane.6. If f is an entire function and 0( ) nf z MR in z R , prove that f is a polynomial of degree

atmost 0n .

7. Let ( )f z beanalyticin z R .Provethat,for0<r<R,

2 2 2

2 20

1( ) (Re )

2 2 cos( )i iR r

f re f dR r Rr

(calledPoissonIntegralFormula).

8. (T)Evaluate 4

1dz

z ,where isthepartofclockwiseorientedellipse

2 2( 3)1

1 4

x y lyinginthe

upperhalf‐plane{ : Im 0}z z .

P.T.O.

Page 2: MSO202Assign4

29. Findtheorderofthezeroz=0forthefollowingfunctions:

22( ) ( 1)zi z e (T) 3 3 6( ) 6sin ( 6)ii z z z (T)(iii) sin tanz ze e 10. Findtheorderofallthezerosofthefollowingfunctions:

( ) sini z z (T) 2 3( )(1 )( 4)zii e z (T)3sin

( )z

iiiz

11. (T)Doesthereexistafunctionf(z)(not identically zero )thatisanalyticin 1z andhaszerosatthe

followingindicatedsetofpoints?Whyorwhynot?

(i) 11

{ : }S n is a natural numbern

(ii) 21

{1 : }S n is a natural numbern

(iii) 3 { : 1, Re( ) 0}S z z z 41 1 1

( ) { : }2 2 2

iv S z iy y .