m.sc. thesis mk - november 15, 2011

169
Sterically Demanding Ethylenediamines and Polyamines for the Stabilization of Main Group Elements in Low Coordination Numbers by Michael Krause A Thesis presented to The University of Guelph In partial fulfillment of requirements for the degree of Master of Science in Chemistry Guelph, Ontario, Canada ! Michael Krause, November, 2011

Upload: thaoquyen9999

Post on 28-Dec-2015

13 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: M.sc. Thesis MK - November 15, 2011

Sterically Demanding Ethylenediamines and Polyamines for theStabilization of Main Group Elements in Low Coordination Numbers

by

Michael Krause

A Thesispresented to

The University of Guelph

In partial fulfillment of requirementsfor the degree of

Master of Sciencein

Chemistry

Guelph, Ontario, Canada

! Michael Krause, November, 2011

Page 2: M.sc. Thesis MK - November 15, 2011

ii

ABSTRACT

STERICALLY DEMANDING ETHYLENEDIAMINES AND POLYAMINES FOR THESTABILIZATION OF MAIN GROUP ELEMENTS IN LOW COORDINATION NUMBERS

Michael KrauseUniversity of Guelph, 2011

Advisor:Prof. Dr. Michael K. Denk

This thesis explores the reaction of primary amines with 1,2-dibromoethane and

1,3-dibromopropane as a one step synthesis of N,N"-disubstituted ethylenediamines, R-

NH-CH2CH2-NH-R, N,N"-disubstituted propanediamines, R-NH-CH2CH2CH2-NH-R and

N-substituted azetidines RN[(CH2)3]. Unlike earlier approaches in the literature, this

method circumvents the use of the highly toxic #-haloamines.

The reaction can also be a convenient approach to N,N",N""-trisubstituted

diethylenetriamines which form as byproducts in the synthesis of the ethylenediamines

and are readily separated by distillation. The respective propylenetriamines were

obtained in analogous fashion from 1,3-dibromopropane. The use of N,Nʼ,N”-

trisubstituted triamines for the stabilization of low valent main group compounds was

exemplified through the synthesis and structural characterization of a phosphenium salt.

N,N'-disubstituted ethylenediamines, R-NH-CH2CH2-NH-R" bearing different

substituents R are difficult to obtain and require multi-step protocols. This thesis

describes their one step synthesis from aziridines and primary amines. The analogous

1,3-propandiamines were obtained from primary amines and azetidines.

N- tert-Butylimidazol was obtained through thermolysis of 1,3-di-tert-

butylimidazolium chloride and used as precursor for bis carbenes.

Page 3: M.sc. Thesis MK - November 15, 2011

iii

Acknowledgements

I have been very fortunate to have had the opportunity to study chemistry

under the supervision of Dr. Michael K. Denk during my graduate years at

University of Guelph. My studies explored the art of inert atmosphere chemistry,

synthesis, and distillation of air and moisture sensitive compounds. Through his

inspiration I expanded my enthusiasm and knowledge for chemistry and owe Dr.

Denk my gratitude and highest respect. 

Dr. Kathryn Preuss, Dr. Marcel Schlaf, Dr. Adrian Schwan, Dr. Dmitriy

Soldatov, and Dr. Dan Thomas also deserve a word of thanks for their guidance

and helpful advice throughout my chemistry training.

I want to acknowledge all of my lab mates past and present, who made

every day in the lab a rewarding experience through the many challenging

discussions we held. I especially need to recognize Jeff Hastie and Feng Lan

Zheng for the exciting experiments we conducted, and Dr. Debyani Niyogi for

teaching me the operation of the NMR and GC-MS equipment. 

Case Gielen and Yves Savoret, the most talented machinist and

glassblower I know, respectively, deserve my gratitude for not only keeping our

lab running efficiently, but for expanding my knowledge about their fields.

My family has been amazing; without them I wouldnʼt have made it this far.

My mother and father have been such an inspiration to me; I canʼt thank them

enough for all the support they have shown me. That will be with me for the rest

of my life.

Page 4: M.sc. Thesis MK - November 15, 2011

iv

Table of Contents

Chapter 1 – Introduction and Background … … … … … … … … … … … 1

1.1. Synthetic Overview … … … … … … … … … … … … … … … … … 2

1.2. Motivation … … … … … … … … … … … … … … … … … … … … … 5

1.3. Carbenes … … … … … … … … … … … … … … … … … … … … … 6

1.3.1. Singlet and Triplet Carbenes … … … … … … … … … … … 8

1.3.2. Stabilization of Carbenes … … … … … … … … … … … … … 11

1.3.2.1. Steric Effects … … … … … … … … … … … … … … 11

1.3.2.2. Electronic Effects … … … … … … … … … … … … 14

1.3.3. Synthesis of Diaminocarbenes … … … … … … … … … … … 18

1.3.3.1. Deprotonation of Imidazolium Salts … … … … … … 18

1.3.3.2. Reduction of Thioureas … … … … … … … … … … 22

1.3.3.3. Diaminocarbenes from Thermal Elimination ... ... ... … 23

1.3.4. Reactivity of Diaminocarbenes … … … … … … … … … … … 24

1.3.4.1. Dimerization … … … … … … … … … … … … … … 24

1.3.4.2. Reactions with Common Molecules … … … … … … 28

1.4. Ethylenediamine … … … … … … … … … … … … … … … … … … 29

1.5. Polyamines … … … … … … … … … … … … … … … … … … … … 32

1.5.1. Substituted Ethylenediamines and Polyamines … … … … … 32

1.5.2. Aziridines … … … … … … … … … … … … … … … … … … 43

1.5.3. Piperazines … … … … … … … … … … … … … … … … … 45

1.5.4. Haloamines … … … … … … … … … … … … … … … … … 48

Page 5: M.sc. Thesis MK - November 15, 2011

v

Chapter 2 – Results and Discussion … … … … … … … … … … … … … 52

2.1. Reaction of 1,2-Dibromoethane with Primary Amines … … … … … … 53

2.2. Reaction of 1,3-Dibromopropane with Primary Amines … … … … … 62

2.3. Phosphenium Cation Stabilization with Triamine Ligands ... ... … … … 67

2.4. Synthesis of N,N",N""-tri-tert-butyl-1,4,7-triazaheptane ... ... ... ... … … 72

2.5. Salts as Carbene Precursors … … … … … … … … … … … … … … 78

2.6. Outlook and Future Experiments … … … … … … … … … … … … … 81

Chapter 3 – Experimental Procedures … … … … … … … … … … … … 85

3.1. Reaction of 1,2-Dibromoethane with Primary Amines … … … … … … 87

3.1.1. N,N"-Dimethylethylenediamine (1a) … … … … … … … … … 89

3.1.2. N,N"-Dimethylpiperazine (2a) … … … … … … … … … … … 89

3.1.3. 1,4,7-Trimethyl-1,4,7-triazaheptane (3a) … … … … … … … 89

3.1.4. 1,4,7,10-Tetramethyl-1,4,7,10-tetraazadecane (4a) … … … 90

3.1.5. N,N"-Diethylethylenediamine (1b) … … … … … … … … … … 90

3.1.6. N,N"-Diethylpiperazine (2b) … … … … … … … … … … … … 91

3.1.7. 1,4,7-Triethyl-1,4,7-triazaheptane (3b) … … … … … … … … 91

3.1.8. 1,4,7,10-Tetraethyl-1,4,7,10-tetraazadecane (4b) … … … … 92

3.1.9. N,N"-Di-iso-propylethylenediamine (1c) … … … … … … … … 92

3.1.10. N,N"-Di-iso-propylpiperazine (2c) … … … … … … … … … … 93

3.1.11. 1,4,7-Tri-iso-propyl-1,4,7-triazaheptane (3c) … … … … … … 93

3.1.12. 1,4,7,10-Tetra-iso-propyl-1,4,7,10-tetraazadecane (4c) … … 94

3.1.13. 1,4,7,10,13-Penta-iso-propyl-1,4,7,10,13-pentaazatridecane(5c) … … … … … … … … … … … … … … … … … … … … 94

Page 6: M.sc. Thesis MK - November 15, 2011

vi

3.1.14. N,N"-Di-tert-butylethylenediamine (1d) … … … … … … … … 95

3.1.15. N,N"-Di-tert-butylpiperazine (2d) … … … … … … … … … … 95

3.1.16. 1,4,7-Tri-tert-Butyl-1,4,7-triazaheptane (3d) … … … … … … 96

3.1.17. N,N"-Diphenylethylenediamine (1e) … … … … … … … … … 96

3.1.18. N,N"-Diphenylpiperazine (2e) … … … … … … … … … … … 97

3.1.19. 1,4,7-Triphenyl-1,4,7-triazaheptane (3e) … … … … … … … 97

3.2. Reaction of 1,3-Dibromopropane with Primary Amines … … … … … 98

3.2.1. N,N"-Dimethyl-1,3-propanediamine (7a) … … … … … … … 99

3.2.2. 1,5,9-Trimethyl-1,5,9-triazanonane (9a) … … … … … … … 99

3.2.3. N,N"-Diethyl-1,3-propanediamine (7b) … … … … … … … … 100

3.2.4. 1,5,9-Triethyl-1,5,9-triazanonane (9b) … … … … … … … … 100

3.2.5. N,N"-Di-iso-propyl-1,3-propanediamine (7c) … … … … … … 101

3.2.6. 1,5,9-Tri-iso-propyl-1,5,9-triazanonane (9c) … … … … … … 101

3.2.7. N,N"-Di-tert-butyl-1,3-propanediamine (7d) … … … … … … 102

3.2.8. N,N"-Diphenyl-1,3-propanediamine (7e) … … … … … … … … 102

3.2.9. 1,5,9-Triphenyl-1,5,9-triazanonane (9e) … … … … … … … 103

3.3. Asymmetric Diamines: Ring Opening Reactions of Arizidines andAzetidines … … … … … … … … … … … … … … … … … … … … … 104

3.3.1. N,N"-Disubstituted Ethylenediamines with DifferentSubstituents: N,N"-Diphenylethylenediamine (10) … … … … 104

3.3.2. N-tert-Butyl-azetidine (6d) … … … … … … … … … … … … 105

3.3.3. N-tert-Butyl-N"-phenyl-1,3-propanediamine (11) … … … … … 106

3.4. Triamine Ligand Building Blocks: R-NH2X-CH2CH2-X … … … … … … 108

3.4.1. 2-(tert-Butylamino)ethylchloride hydrochloride (12d) … … … 108

3.4.2. 2-(tert-Butylamino)ethylbromide hydrobromide (13d) … … … 109

Page 7: M.sc. Thesis MK - November 15, 2011

vii

3.4.3. 3-(Methyl)-aza-1,5-dichloropentane hydrochloride (14) … … 110

3.4.4. 3-(Ethyl)-aza-1,5-dichloropentane hydrochloride (15) … … … 111

3.4.5. 3-(tert-Butyl)-aza-1,5-dichloropentane hydrochloride (16) … 112

3.5. Dicarbene Precursors from 1-tert-Butyl-Imidazol … … … … … … … 113

3.5.1. tert-Butylimidazol hydrochloride (19) … … … … … … … … 113

3.5.2. tert-Butylimidazol (20) (source: tert-Butylimidazolhydrochloride) … … … … … … … … … … … … … … … … 114

3.5.3. tert-Butylimidazol (20) (source: 1,3-di-tert-butylimidazol-2-ylidene) … … … … … … … … … … … … … … … … … … 115

3.5.4. 1-tert-Butyl-3-methylimidazol-2-ylidene hydroiodide (21) … … 116

3.5.5. Bis-(1-tert-butylimidazol-2-ylidene)-1,1-methylenedihydrobromide (22) … … … … … … … … … … … … … … 117

3.5.6. Bis-(1-tert-butylimidazol-2-ylidene)-1,2-ethanedihydrobromide (23) … … … … … … … … … … … … … … 118

3.5.7. Bis-(1-tert-butylimidazol-2-ylidene)-1,3-propanedihydrobromide (24) … … … … … … … … … … … … … … 119

3.6. Stabilization of Reactive Centers Using Intramolecular Dative Bonds … 120

3.6.1. [N3P]+Cl- (25) … … … … … … … … … … … … … … … … … 120

References … … … … … … … … … … … … … … … … … … … … … … 122

Appendix … … … … … … … … … … … … … … … … … … … … … … … 130

A.1. NMR Data of Commercially Available Starting Materials … … … … … 131

A.1.1. 1,2-Dibromoethane … … … … … … … … … … … … … … … 131

A.1.2. Methyliodide … … … … … … … … … … … … … … … … … 131

A.1.3. [(CH3CH2-)3NH]+Cl- … … … … … … … … … … … … … … … 131

Page 8: M.sc. Thesis MK - November 15, 2011

viii

A.1.4. tBu-N(-CH2CH2-)2O … … … … … … … … … … … … … … … 132

A.1.5. N,N"-Di-para-tolylethylenediamine (1f) … … … … … … … … 132

A.2. X-Ray Data … … … … … … … … … … … … … … … … … … … … 133

A.2.1. Phosphenium Cation (25) … … … … … … … … … … … … 133

A.2.2. 2-(tert-Butylamino)ethylchloride hydrochloride (12d) … … … 138

A.2.3. 2-(tert-Butylamino)ethylbromide hydrobromide (13d) … … 142

A.2.4. 1,3-Di-tert-butylimidazoliumbromide ... ... ... ... ... ... ... ... ... … 145

A.3. Solubility Data ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... … 149

A.3.1. 3-(Ethyl)-aza-1,5-dichloropentane hydrochloride (15) … … 149

A.3.2. 3-(tert-Butyl)-aza-1,5-dichloropentane hydrochloride (16) … 150

A.3.3. 1,3-Di-tert-butylimidazolium chloride … … … … … … … … … 151

List of Tables

Table 1: Computational bond angles and singlet / triplet energy gaps (Eg, inkcal•mol-1) of selected carbenes.

Table 2: Computational bond angles and singlet / triplet gaps of selectedcarbenes.

Table 3: Carbene substituent combinations.

Table 4: Availability and pricing of selected polyamines. (Aldrich, 2011)

Table 5: Solubility data of 1,4,7-triphenyl-1,4,7-triazaheptane (3e).

Table 6: Batch yields of 2-(tert-butylamino)-ethyl chloride hydrochloride (12d).

Table 7: Product yields from R-NH2 (5 eq) and Br-CH2CH2-Br (1 eq).

Table 8: Product yields (in %) for primary amines (5 eq) + 1,3-dibromopropane (1 eq).

Page 9: M.sc. Thesis MK - November 15, 2011

ix

Table 9: Crystal data and structure refinement for 25.

Table 10: Atomic coordinates ( x 104) and equivalent isotropic displacementparameters (Å2x 103) for 25. U(eq) is defined as one third of the trace of theorthogonalized Uij tensor.

Table 11: Bond lengths [Å] and angles [°] for 25.

Table 12: Anisotropic displacement parameters (Å2x 103) for 2 5. Theanisotropic displacement factor exponent takes the form: -2π2[ h2 a*2U11 + ... + 2h k a* b* U12 ].

Table 13: Hydrogen coordinates ( x 104) and isotropic displacement parameters(Å2x 103) for 25.

Table 14: Crystal data and structure refinement for 12d.

Table 15: Atomic coordinates ( x 104) and equivalent isotropic displacementparameters (Å2x 103) for 12d. U(eq) is defined as one third of the trace of theorthogonalized Uij tensor.

Table 16: Bond lengths [Å] and angles [°] for 12d.

Table 17: Anisotropic displacement parameters (Å2x 103)for 12d . Theanisotropic displacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 hk a* b* U12 ].

Table 18: Hydrogen coordinates ( x 104) and isotropic displacement parameters(Å2x 103) for 12d.

Table 19: Hydrogen bonds for 12d [Å and °].

Table 20: Crystal data and structure refinement for 13d.

Table 21: Atomic coordinates ( x 104) and equivalent isotropic displacementparameters (Å2x 103) for 13d. U(eq) is defined as one third of the trace of theorthogonalized Uij tensor.

Table 22: Bond lengths [Å] and angles [°] for 13d.

Table 23: Anisotropic displacement parameters (Å2x 103)for 13d . Theanisotropic displacement factor exponent takes the form: -2p2[ h2a*2U11 + ... + 2 hk a* b* U12 ].

Page 10: M.sc. Thesis MK - November 15, 2011

x

Table 24: Hydrogen coordinates ( x 104) and isotropic displacement parameters(Å2x 103) for 13d.

Table 25: Hydrogen bonds for 13d [Å and °].

Table 26: Crystal data and structure refinement for 1,3-di-tert-butylimidazoliumbromide.

Table 27: Atomic coordinates (x 104) and equivalent isotropic displacementparameters (Å2x 103)for 1,3-di-tert-butylimidazolium bromide. U(eq) is defined asone third of the trace of the orthogonalized Uij tensor.

Table 28: Bond lengths [Å] and angles [°] for 1,3-di-tert-butylimidazoliumbromide.

Table 29: Anisotropic displacement parameters (Å2x 103) for 1,3-di-tert-butylimidazolium bromide. The anisotropic displacement factor exponent takesthe form: -2p2[ h2 a*2U11 + ... + 2 h k a* b* U12].

Table 30: Hydrogen coordinates (x 104) and isotropic displacement parameters(Å2 x 103) for 1,3-di-tert-butylimidazolium bromide.

Table 31: Solubility of 3-(ethyl)-aza-1,5-dichloropentane hydrochloride (15).

Table 32: Solubility of 3-(tert-butyl)-aza-1,5-dichloropentane hydrochloride (16).

Table 33: 1,3-Di-tert-butylimidazolium chloride solubility organized according tosolubility differences between boiling and room temperature solutions.

List of Figures

Figure 1: Compounds synthesized in this thesis.

Figure 2: Grubbsʼ first and second generation olefin metathesis catalysts.

Figure 3: Mesomeric extremes of a carbene / diradical allene.

Figure 4: Electron configuration order of ground state closed shell singlets.

Figure 5: Frontier orbitals of triplet and singlet carbenes.

Figure 6: Aromatic and non – aromatic carbenes.

Page 11: M.sc. Thesis MK - November 15, 2011

xi

Figure 7: Isodesmic reactions (B3LYP/6-31G(d)//B3LYP/6-31G(d)) of carbenes35 and 36 calculated at 298.15 K.

Figure 8: Tris-carbene complex with M = Ca made from 1-tert-butylimidazol.

Figure 9: Forced dimerization of carbenes by tethering.

Figure 10: Possible modes of interconversion of carbene dimers.

Figure 11: Dimerization of 1,3-bis(iso-propyl)benzimidazol-2-ylidene.

Figure 12: Ethylenediamine dendrimeric polymers for water purification.

Figure 13: Facial and meridial N,N",N""-trimethyl-1,4,7-triazaheptane.

Figure 14: Anti – cancer drug thiotepa.

Figure 15: Nitrogen mustards currently in use as chemotherapy agents.

Figure 16: Isolated polyamine yields from primary amines R-NH2 (R = Me, Et,iPr, tBu, Ph) and 1,2-dibromoethane.

Figure 17: Polyamine yields from R-NH2 and Br-CH2CH2CH2-Br.

Figure 18: N – substituted piperazines and cyclooctanes.

Figure 19: N – substituted aziridines and azetidines.

Figure 20: Purification strategy for [N3P]+Cl- (25).

Figure 21: 13C NMR (C6D6) spectrum of 25.

Figure 22: Bis – carbene ligands in catalytic complexes.

Figure 23: Nitrogen electron withdrawal by tosyl groups.

Figure 24: Silylene precursors.

Figure 25: Phosphorus and silicon multiple bonds.

Figure 26: X-Ray structure of 25.

Figure 27: X-ray structure of 12d.

Page 12: M.sc. Thesis MK - November 15, 2011

xii

Figure 28: X-ray structure of 13d.

Figure 29: X-ray structure of 1,3-Di-tert-butylimidazolium Bromide.

List of Schemes

Scheme 1: Synthetic strategy for stabilizing bonds P$N and Si=O.

Scheme 2: Polymerization of a reactive P$N intermediate.

Scheme 3: Arduengoʼs imidazol-2-ylidene synthesis.

Scheme 4: Synthesis of the first stable open – chain carbene 40.

Scheme 5: Synthesis of 1,3-bis(neopentyl)benzimidazol-2-ylidene 43.

Scheme 6: Synthesis of quinone-based Janus bis-carbenes.

Scheme 7: Benzene-linked Janus bis-carbene synthesis.

Scheme 8: Synthesis of imidazolin-2-ylidenes by reduction of thioureas.

Scheme 9: Imidazolin-2-ylidene synthesis by thermal elimination.

Scheme 10: Nitrogen substitution of CH groups in imidazol-2-ylidenes.

Scheme 11: Synthesis of Wanzlick carbene – metal complexes.

Scheme 12: Deuteration of imidazol-2-ylidenes.

Scheme 13: Products from NH3 and 1,2-dichloroethane.

Scheme 14: CO2 and H2S gas stream purification using amines.

Scheme 15: Synthesis of N,N"-dicyclohexylethylenediamine.

Scheme 16: Synthesis of N,N"-diphenyl-1,3-propanediamine.

Scheme 17: Synthesis of N,N"-diphenyl-1,3-propanediamine using protectinggroups.

Page 13: M.sc. Thesis MK - November 15, 2011

xiii

Scheme 18: Urea synthesis from polyamines and phosgene.

Scheme 19: Synthesis of an aza – macrocycle with organosilyl groups.

Scheme 20: Alkylation products from methylation of ethylenediamine.

Scheme 21: Gelbardʼs strategy for alkylating terminal nitrogens of polyamines.

Scheme 22: Singly substituted ethylenediamine by amination of halo – amines.

Scheme 23: Triamine synthesis from ethylene oxide and a primary amine.

Scheme 24: N,N"-diphenyl-1,3-propanediamine from a cyclic carbamate.

Scheme 25: Substituted diamines from bis – azide compounds.

Scheme 26: Polymerization of Cl-CH2CH2-NH3Cl under basic conditions.

Scheme 27: Aziridine synthesis by ring closure of # halo – amines.

Scheme 28: Alkylation of aziridines by active methylene compounds.

Scheme 29: Synthetic methods for preparing N,N"-dialkyl(aryl)piperazines.

Scheme 30: Ring closure of nitrogen mustards to piperidines and piperazines.

Scheme 31: 1-Methyl-4-phenyl-4-cyanopiperdine synthesis.

Scheme 32: 1-Amino-4-methylpiperazine synthesis.

Scheme 33: Gelbardʼs N – terminal substitution of polyamines.

Scheme 34: Reaction of primary amines with 1,2-dibromoethane.

Scheme 35: Possible reaction paths and intermediates leading to N –substituted piperazines and triamines. A: no acid required, B: acid required, C>> D: 13 is more reactive than aziridines under basic conditions, E >> F: ringclosure is favored.

Scheme 36: Diamines and polyamines from primary amines and 1,3-dibromopropane.

Scheme 37: Ring-opening reactions of N-tert-butyl aziridine and N-tert-butylazetidine with aniline.

Page 14: M.sc. Thesis MK - November 15, 2011

xiv

Scheme 38: Synthesis of 25 from N,N",N""-tri-tert-butyl-1,4,7-triazaheptane.

Scheme 39: Elimination of iso-butene from 25.

Scheme 40: Diminishing yields in tBu-NH2+Br--CH2CH2-Br (13d) synthesis.

Scheme 41: Substituted piperazines from substituted diamines.

Scheme 42: N – Substituted piperazines from N – substituted nitrogenprecursors.

Scheme 43: Thermolysis of a stable carbene and the protonated carbene.

Scheme 44: Synthesis of N – tethered bis-imidazolium salts.

Scheme 45: Protecting strategies using [R-NH+(CH2CH2-X)2][X-].

Scheme 46: Protecting groups to triamines using [R-NH2+-CH2CH2-X][X-].

Scheme 47: Synthesis of N,N"-disubstituted ethylenediamines.

Scheme 48: Synthesis of N-tButyl azetidine.

Scheme 49: Synthesis of N,N"-disubstituted 1,3-propanediamines.

Scheme 50: Synthesis of 12d.

Scheme 51: Synthesis of 13d.

Scheme 52: Synthesis of 14.

Scheme 53: Synthesis of 15.

Scheme 54: Synthesis of 16.

Scheme 55: Synthesis of 19.

Scheme 56: Synthesis of 20.

Scheme 57: Synthesis of 20.

Scheme 58: Synthesis of 21.

Page 15: M.sc. Thesis MK - November 15, 2011

xv

Scheme 59: Synthesis of 22.

Scheme 60: Synthesis of 23.

Scheme 61: Synthesis of 24.

Scheme 62: Synthesis of 25.

Abbreviations

Compound Name Abbreviation

R

1-Adamantyl Ad

R Benzyl Bn

% Cyclic voltammetry CVR Cyclohexyl Cy

Br

Br 1,2-Dibromoethane DBE

Br

Br 1,3-Dibromopropane DBP

H2NHN NH2

1

Diethylenetriamine DETA

O O CH3H3C1,2-Dimethoxyethane DME

NCH3

HCH3CO N,N-Dimethylformamide DMF

Page 16: M.sc. Thesis MK - November 15, 2011

xvi

H3C CH3SO Dimethyl sulfoxide DMSO

% Diffential scanninggravimetry / thermalgravimetry

DSG / TG

(HO2CCH2)2N-CH2CH2-N(CH2CO2H)2

EthylenediaminetetraaceticAcid

EDTA

% Equivalent Eq% Electron spin resonance ESR

H3C CH2R

Ethyl Et

% Gas chromatography –mass spectroscopy

GC-MS

H3C CHCH3

R

iso-Propyl iPr

CH3R

Methyl Me

% Nuclear magneticresonance

NMR

R

Phenyl Ph

CH3

R

para-Tolyl p-Tol

CH3CR

H3C CH3tert-Butyl tBu

3

H2NHN NH2

Tetraethylenepentamine TEPA

Page 17: M.sc. Thesis MK - November 15, 2011

xvii

2

H2NHN

NH2

Triethylenetetramine TETA

O Tetrahydrofuran THF

Si(CH3)4 Tetramethylsilane TMS

H3C S RO

O p-Toluenesulfonyl Ts

R

Triptycyl Trp

Page 18: M.sc. Thesis MK - November 15, 2011

- 1 -

Chapter 1 – Introduction and Background

Page 19: M.sc. Thesis MK - November 15, 2011

- 2 -

1.1. Synthetic Overview

Compounds 1 – 25 (Figure 1) were synthesized to explore their ability of

shielding reactive atoms with steric and electronic stablization.

RNH

NHR

N

N R

R

N R

RNH

NHR

N R

N R

RNH

NHR

N R

RNH

NHR

RN

NR

1 2

3

4

5

NH

NH

R

R

NR

6

7

R

R

N

N

NH

NH

N R

R

R8

9

tBuNH

NH

10

tBuNH

NH

11

tBuNH2Cl

Cl

12d

tBuNH2Br

Br

13d

14

NH+

Cl

Cl

Me

Cl-

15

NH+

Cl

Cl

Et

Cl-

16

NH+

Cl

Cl

tBu

Cl-

17

N

Cl

Cl

Et

Page 20: M.sc. Thesis MK - November 15, 2011

- 3 -

18

N

Cl

Cl

tBu

19

tBu

N+

NC H

H

Cl-

20

tBu

N

NC H

21

tBu

MeN

NC+ H

I-

22

tBuNC+ H

tBuNC+ H

N

N

2Br-

23

tBuNC+ H

tBuNC+ H

N

N

2Br-

24

tBuNC+ H

tBuNC+ H

N

N

2Br-

25

+ Cl-

N P:N

N

tBu

tBu

tBu

Figure 1: Compounds synthesized in this thesis.

This thesis describes simple one – pot procedures for the synthesis of

ethylenediamines 1, piperazines 2, and polyamines 3 – 5. For the corresponding

investigation of 1,3-propane diamines, azetidines 6 were isolated for R = tBu.

Propanediamines 7 were isolated for R = Me, Et, iPr, tBu, and Ph. Cyclooctanes 8 were

Page 21: M.sc. Thesis MK - November 15, 2011

- 4 -

possible reaction products but were never detected or isolated. Triamines 9 were

isolated for R = Me, Et, iPr, and Ph, but not for R = tBu. Ring opening reactions

provided asymmetric diamines 10 and 11. Polyamine building blocks of type R-NH2X-

CH2CH2-X (12d , 13d) and R-NHX(-CH2CH2-X)2 (1 4 – 16) were synthesized.

Compounds 17 and 18 were considered as polyamine building blocks but not

synthesized for safety reasons. Thermal elimination of iso-butene lead to a synthetic

route to tert-butylimidazole hydrochloride (19), as well as 20 – 24. A novel type of

phosphenium cation (25) (Figure 1) was obtained as the PO2Cl2 salt from triamine

ligand 3d.

Page 22: M.sc. Thesis MK - November 15, 2011

- 5 -

1.2. Motivation

A main goal of this thesis was to obtain compounds to synthesize a stable

silicon – oxygen double bond R2Si=O (28) and a stable phosphorus – nitrogen triple

bond R2P!N (30) (Scheme 1).

N SiN

N

tBu

tBu

tBuClCl

N Si:N

N

tBu

tBu

tBu N SiN

N

tBu

tBu

tBu O2 K

- 2 KCl

O=N2

- N2

26 27 28

N PN

N

tBu

tBu

tBu N N+ N- N PN

N

tBu

tBu

tBu NNaN3

- NaCl

!

- N2

+ Cl-

N P:N

N

tBu

tBu

tBu

25 29 30

Scheme 1: Synthetic strategy for stabilizing bonds P!N and Si=O.

To accomplish this, we first needed to develop a reliable synthesis of a ligand

capable of stabilizing these reactive functional groups. We hypothesized that triamine

ligands of the type R1-NH-CH2CH2-N(R2)-CH2CH2-NH-R1 would meet our requirements.

The idea to use triamine ligands for extra stabilization came from previous experiments

in our group (Scheme 2) using tBu-N(-CH2CH2-NH-tBu)2, Ph-N(-CH2CH2-NH-Ph)2, and

Me-N(-CH2CH2-NH-tBu)2. These results indicated that triamine ligands have many

Page 23: M.sc. Thesis MK - November 15, 2011

- 6 -

advantages for isolating and controlling reactive functional groups. Our next step will be

exploring silicon and phosphorus multiple bonds with the ligand synthesis established.

NP

N

tBu

tBu

N3N

PN

tBu

tBu

N! 110 °C

+N

PN

N

tBu

tBu

NN

tBu

tBu

NN

tBu

tBuN

P N

P

- N2

31 32 33

94%

34

4%

Scheme 2: Polymerization of a reactive P!N intermediate.

It was found that N,N"-di-tert-butylethylenediamine was not sufficient to stablize

the phosphorus nitrogen triple bond in 32 (Scheme 2).1

1.3. Carbenes

Diamino ligands are important building blocks for imidazol-2-ylidenes

(Arduengo carbenes), imidazolin-2-ylidenes (Wanzlick carbenes), and benzimidazol-2-

ylidenes (Hahn carbenes). Arduengo, Wanzlick, and Hahn carbenes have become

important compounds in olefin metathesis catalysis and led to the Grubbsʼ 2nd

generation industrial catalysts which are the largest diamino carbene application to date

(Figure 2). Robert H. Grubbs and Richard R. Schrock shared the 2005 Nobel Prize for

Chemistry for “Development of the Metathesis Method in Organic Synthesis”.2

Page 24: M.sc. Thesis MK - November 15, 2011

- 7 -

C

P(Cy)3

P(Cy)3

CCl

Cl

PhH C

C

P(Cy)3

CCl

Cl

PhH

NN

Ru

1st Generation Grubbs' Catalyst 2nd Generation Grubbs' Catalyst

Ru

Figure 2: Grubbsʼ first and second generation olefin metathesis catalysts.

Following initial synthetic work by Wanzlick in the 1970ʼs, who showed that

imidazolium salts are precursors to imidazolin-2-ylidenes (Wanzlick carbenes),3, 4

Arduengo patented the synthesis of imidazolium salts, the precursors to imidazol-2-

ylidenes (Arduengo carbenes) in 1991.5 Wanzlick prepared imidazolium salts from

thioureas by heating with strong acid,3, 4 but Arduengo described a reliable, high yield

process for their synthesis from paraformaldehyde, aqueous glyoxal, HX, and primary

amines in his 1991 patent.5 Imidazolium salts are the most common precursors to

Arduengo carbenes and numerous patents have appeared after Arduengoʼs work, with

only minor procedural variations.6 The following section outlines the synthesis,

principles of stabilization, and physical properties of diamino carbenes. Imidazolin-2-

ylidenes are prepared from N,N"-dialkyl(aryl)ethylenediamines, as are the corresponding

silylenes and germylenes. These important dicoordinate species are the motivation for

the synthesis of N,N"-dialkylethylenediamines. To better understand why N,N"-dialkyl

amines are unique, a brief discussion of carbenes is required.

Page 25: M.sc. Thesis MK - November 15, 2011

- 8 -

1.3.1. Singlet and Triplet Carbenes

Carbenes are neutral compounds featuring a divalent carbon atom with only six

electrons in its valence shell. Closed shell singlet carbenes have a filled and a vacant

orbital, therefore they possess ambiphilic character (Lewis acid and base), while triplet

carbenes have two singly occupied orbitals and are usually considered to be diradicals.7

C:

Carbene Diradical Allene

C

Figure 3: Mesomeric extremes of a carbene / diradical allene.

If a triplet carbene substantially delocalizes unpaired carbene carbon electrons

through its # - system it can be considered a diradical allene.7 This is the case for bis-9-

anthryl carbene (Figure 3) because calculations show the true mesomeric structure is

closer to a diradical allene than a triplet carbene, with approximately 55% of the electron

spin of the carbene carbon delocalized through the # - system.8 An influencing factor is

the formation of four aromatic rings by disruption of the two central rings of the anthryl

groups.8

Carbenes can have four possible arrangements of their valence electrons:

closed shell singlet, triplet, open shell singlet, and the doubly excited state.

Page 26: M.sc. Thesis MK - November 15, 2011

- 9 -

CR1

R2

p!

" CR1

R2

p!

" CR1

R2

p!

"

Closed Shell Singlet(E1)

Open Shell Singlet(E3)

Triplet(E2)

CR1

R2

p!

"

Doubly Excited Singlet(E4)

Carbene Energy: E1 < E2 < E3 < E4

Figure 4: Electron configuration order of ground state closed shell singlets.

A pictorial molecular orbital representation is shown in Figure 4 which applies to

Wanzlick, Arduengo and Hahn carbenes as well as acyclic diaminocarbenes.9, 10 The

doubly excited state (E4) is always the highest energy state, but the order of the other 3

states (E1, E2, E3) differs depending on substituents R1 and R2.

Triplet Carbene!Epy - Epx! " 2 eV

Singlet Carbene!Ep# - E$! > 2 eV

p#

R1 CR2

xy

z

90 - %

$

x$

py

R1 C R2

xy

z

px

Figure 5: Frontier orbitals of triplet and singlet carbenes.

Considering a prototype carbene, the bond angle can be either linear or bent,

and both geometries can be described by different sp hybridization (Figure 5).9 The

linear geometry implies an sp – hybridized carbene center with two nonbonding

degenerate orbitals (px and py). Bending the molecule breaks this degeneracy and the

carbene carbon adopts an sp2 hybridization: the py orbital remains nearly unchanged,

Page 27: M.sc. Thesis MK - November 15, 2011

- 10 -

while the px orbital is stabilized and has $ - character.6 The carbene ground-state

multiplicity can be related to the relative energy of the p# and $ orbitals.6, 9 In 1968,

Roald Hoffmann noted that 2 eV is the minimum value of the energy gap %Ep# - E$% to

impose a singlet ground state, whereas a value equal to or below 1.5 eV leads to a

triplet ground state (Figure 3).9 When the energy gap is intermediate (2 eV > %Ep# -

E$% > 1.5 eV), the ground state is influenced by other factors such as steric properties

of carbene substituents.9

%Ep# - E$% & 2 eV ' Triplet

%Ep# - E$% > 2 eV ' Singlet

If substituents R1 and R2 make the carbene center part of a 5 – membered ring

(forced bending), and as a carbene changes from linear to bent, the singlet – tripet gap

increases and the energy of the $-orbital drops with respect to the energy of the #-

orbital.6, 9 If substituents R1 and R2 are # donors such as alkyl-substituted amino

groups, the same is true (mesomeric effects). For compounds that have substituents R1

and R2 that do not possess geometrical constrainsts, or any special stabilizing

properties, e.g.- methylene (H-C:-H), the lowest energy state is triplet (E2: Figure 4).

The main properties of substituents R1 and R2 that have influence on the electronic and

geometric structure of carbenes are: electronegativity (inductive effects), # donation

from substituent to carbene #-orbital (mesomeric effects), and geometry (ring

constraints, steric effects).6

Page 28: M.sc. Thesis MK - November 15, 2011

- 11 -

As the angle R1-C:-R2 decreases the $-orbital becomes more asymmetric and

reaches farther from the carbon atom (one small lobe, one large lobe), so qualitatively it

is easy to see why placing an electron pair in the $-orbital versus the #-orbital reduces

electron-electron repulsion to the electrons in the bonds, especially when mesomeric

stablization is taking place (Figure 5).6

1.3.2. Stabilization of Carbenes

1.3.2.1. Steric Effects

Steric stabilization of carbenes refers to the shielding of the carbene center by

substituents R1 and R2 (R1-C:-R2). In general, as the substituents become bulkier, the

bond angle (( R1-C:-R2) increases to a maximum of 180°.11 Small substituents allow

the carbene center to come into close proximity of reactants, while large substituents

keep the carbene center isolated12 and stabilize all carbenes kinetically.11 Calculations

show steric effects also influence ground state spin multiplicity in the absense of strong

electronic effects (Table 1).6

For the first five carbenes in Table 1 (methylene,11 bis-methyl carbene,11 bis-

tert-butyl carbene,13 bis-1-adamantyl carbene,14 bis-triptycyl carbene12) the bond angles

generally increase for both the singlet and triplet states with increasing substituent steric

bulk. The same applies to the series of carbenes with aromatic substituents (bis-phenyl

carbene,11 bis-1-naphthyl carbene,11 bis-9-anthryl carbene11) (Table 1).

Page 29: M.sc. Thesis MK - November 15, 2011

- 12 -

Table 1: Computational bond angles and singlet / triplet energy gaps (Eg, in kcal•mol-1) of selected

carbenes.

Carbene Angle[deg]

Singlet

Angle[deg]Triplet

Eg Method Basis Set Ref.

H

HC:

101.6 135.4 -11.8 a B3LYP 6-311+G(d,p) 11

CH3

CH3C:

112.6 133.7 0.2 B3LYP 6-311+G(d,p) 11

C:

125.1 141.9 -5.16 B3LYP TZ2P 12, 13

C:

125 149 -9.3 B3LYP 6-31G(d) 12, 14

C:

129.3 153.3 -14 B3LYP 6-31G(d) 12

C:

119.5 142.9 -2.94 B3LYP 6-311+G(d,p) 11

C:

121.62 173.62 -3.74 B3LYP 6-311+G(d,p) 11

C:

147.28 180.00 -15.70 B3LYP 6-311+G(d,p) 11

a) exp: -9.05

Page 30: M.sc. Thesis MK - November 15, 2011

- 13 -

Aromatically substituted carbenes Ar-C:-R and Ar-C:-Ar have significantly

shorter carbene – aryl bonds in the triplet state compared to the singlet state because of

radical delocalization through the aryl groups leading to partial double bond character.11

As the size of the aryl groupʼs #-system increases, the delocalization increases (Table

1).11 For optimum delocalization, the plane of aryl rings should be perpendicular to the

carbene # orbital, but sterics often prevent this as is the case for bis-phenyl carbene,

bis-1-naphthyl carbene, and bis-9-anthryl carbene which all have a propeller

geometry.11 As substituent bulk increases, forcing a wider carbene angle, the triplet

state generally becomes the ground state for aryl carbenes because aryl # interaction

with the carbene sp2 orbital decreases, raising the energy of that molecular orbital,

therefore making the singlet state unfavorable.8, 11 Most bis-aryl, aryl-alkyl, and bis-alkyl

carbenes have triplet ground states, while most bis-alkyl carbenes capable of

hyperconjugation have singlet ground states.8, 12 Most triplet carbenes with aryl

substituents partially delocalize the unpaired carbene electrons, however the structures

are generally closer to triplet carbenes than diradical allenes.8

Singlet and triplet carbenes are more stabilized by alkyl groups capable of

hyperconjugation than by hydrogen. This stabilization is usually larger for singlets than

for triplets.12 For carbenes with bulky alkyl substituents, steric repulsion forces the

carbene angle to widen, causing the carbene atom to adopt more # character in its sp2

orbital. This geometric constraint destabilizes the singlet state.12 Substituents

incapable of hyperconjugation do not favor a singlet ground state.7 Stable triplet

carbenes have been more elusive than stable singlet carbenes.8

Page 31: M.sc. Thesis MK - November 15, 2011

- 14 -

1.3.2.2. Electronic Effects

There are two distinct mechanisms of electronic stabilization for carbenes:

mesomeric and inductive. Mesomeric stabilization is electron donation from a

substituent into the carbene #-orbital. Inductive stablization is back donation from the

carbene sp2 (sigma) orbital to the substituent through sigma bonds.

NC:

NH

HNC:

NH

H35 36

Figure 6: Aromatic and non – aromatic carbenes.

Mesomeric and inductive stabilization of the carbene center, along with steric

bulk and geometric properties of the substituents, are the variables that combine to

dictate the ground state spin multiplicity of the carbene.6

Calculations of pairwise and isodesmic reactions performed on the unsaturated /

saturated pair 35 and 36 (Figure 6, Figure 7) provide an example for the significance of

aromatic stablization in imidazol-2-ylidenes. Hydrogenation ())G = -14.44 kcal•mol-1),

oxidation with oxygen ())G = -7.30 kcal•mol-1), and oxidation with CO2 ())G = -7.47

kcal•mol-1) is less exothermic for 35 than for 36.15

Imidazol-2-ylidenes, imidazolin-2-ylidenes, benzimidazol-2-ylidenes, and open

chain carbenes (Alder carbenes), and any singlet carbene with substituents more

electronegative than carbon benefit from inductive stabilization.6 Inductive stablization

Page 32: M.sc. Thesis MK - November 15, 2011

- 15 -

of the $ lone pair is caused by the polarization of the substituent – carbene bonds (R1)*-

+C*+,(R2)*- by electronegative elements in R1 and R2, leading to a more positive

carbene carbon, lowering the energy of the $ lone pair.16

Mesomeric, inductive, and steric effects are three independent variables whose

effects combine to produce a triplet or singlet carbene (Table 2).6 For the series of

carbenes F-C:-F, F-C:-Cl, F-C:-Br, F-C:-I the bond angles increase for both the singlet

and triplet state as the size of the halogen substituent increases.17

NC:

NH

H

NC:

NH

H

+

+

H2

H2

N

NH

H

N

NH

H

HC

H

HC

H

NC:

NH

H

NC:

NH

H

+

+

N

NH

H

N

NH

H

C

C

O

O

1/2 O2

1/2 O2

NC:

NH

H

NC:

NH

H

+

+

N

NH

H

N

NH

H

C

C

O

O

CO2

CO2

+

+

CO

CO

!G = -11.35 kcal•mol-1

!!G = -7.47 kcal•mol-1

!G = -18.82 kcal•mol-1

!G = -79.1 kcal•mol-1

!!G = -7.3 kcal•mol-1

!G = -86.4 kcal•mol-1

!G = -16.44 kcal•mol-1

!!G = -14.44 kcal•mol-1

!G = -30.88 kcal•mol-1

Figure 7: Isodesmic reactions of carbenes 35 and 36 calculated at the B3LYP/6-31G(d)//B3LYP/6-

31G(d) level.

Page 33: M.sc. Thesis MK - November 15, 2011

- 16 -

Table 2: Computational bond angles and singlet / triplet gaps of selected carbenes.

Carbene SingletAngle (°)

TripletAngle (°)

S – T Gap(kcal•mol-1)[singlet positive/ t r i p l e tnegative]

Method Ref

F-C:-F 104.0 118.0 56.43 GVB(1/2) 17F-C:-Cl 105.6 121.7 37.09 GVB(1/2) 17F-C:-Br 106.3 122.8 31.89 GVB(1/2) 17F-C:-I 107.2 124.1 25.46 GVB(1/2) 17Cl-C:-Cl 109.0 126.1 20.04 GVB(1/2) 17Cl-C:-Br 110.2 127.6 16.12 GVB(1/2) 17H-C:-F 102.2 120.6 15.83 GVB(1/2) 17Br-C:-Br 111.5 129.2 12.48 GVB(1/2) 17Cl-C:-I 111.5 129.2 11.10 GVB(1/2) 17Br-C:-I 113.0 131.2 7.80 GVB(1/2) 17H-C:-Cl 101.4 123.7 6.39 GVB(1/2) 17H-C:-Br 101.8 125.4 4.03 GVB(1/2) 17I-C:-I 114.6 133.4 3.78 GVB(1/2) 17H-C:-I 102.6 127.7 0.77 GVB(1/2) 17F-C:-SiH3 105.5 126.0 -1.31 GVB(1/2) 17Cl-C:-SiH3 108.1 130.8 -8.45 GVB(1/2) 17H-C:-H 104.8 130.2 -9.71 GVB(1/2) 17Br-C:-SiH3 110.4 133.8 -10.60 GVB(1/2) 17I-C:-SiH3 113.1 137.3 -12.90 GVB(1/2) 17H-C:-SiH3 110.4 141.0 -19.08 GVB(1/2) 17SiH3-C:-SiH3

180.0 180.0 -19.60 GVB(1/2) 17

Li-C:-Li 180 180 (3-g-),

88.1 (3A2)-21.3 ab init io

GVB,SCF, CI

18

Na-C:-Na na 180 (3-g-),

86 (3A2) [7kcal•mol-1morestable than3-g

-]

na ab init ioGVB,SCF, CI

19

The singlet – triplet gaps decrease along this series because inductive and

mesomeric stablization is lower from the heavier halogens than the more

Page 34: M.sc. Thesis MK - November 15, 2011

- 17 -

electronegative lighter halogens that have better #-orbital overlap with the carbene #-

orbital.17 The same trends apply for the stability in the series F2C:, Cl2C:, Br2C:, and

I2C:.17 High substituent steric bulk and low substituent electronegativity generally favor

a triplet carbene ground state, while low substituent steric bulk (or tethered substituents

forcing a low carbene bond angle) and high substituent electronegativity favor a singlet

ground state.6, 20

Li2C: is a highly reactive species that haunts the computational literature but

has yet to be studied experimentally. Low level calculations by Mavridis in 1982

showed a near degeneracy of the lowest singlet and triplet states, but with the

inaccuracies of the calculation methods used, it was impossible at the time to predict

with certainty whether the molecule is a singlet or triplet, though the triplet state was

considered more likely.18 We are currently performing calculations on Li2C:.

Table 3: Carbene substituent combinations.

R2

R1-C:-R2

$-push,#-push

$-push,#-pull

$-pull,#-push

$-pull,#-pull

$-push,#-push

PhosphinosilylcarbenesR2P-C:-SiR3

$-push,#-pull

DiborylcarbenesR2B-C:-BR2

$-pull,#-push

DiaminocarbenesR2N-C:-NR2

R1

$-pull,#-pull

Page 35: M.sc. Thesis MK - November 15, 2011

- 18 -

The ideal substituents to stablilize singlet carbenes should preserve the

electroneutrality of the carbene center.6 Experimentally, there are three ways to do this:

1. two #-donor, $-attractor substituents (push, push mesomeric / pull, pull inductive

substitution pattern), such as diaminocarbenes, 2. two #-attractor $-donor substituents

(pull, pull mesomeric / push, push inductive substitution pattern), such as

diborylcarbenes and 3. a #-donor and a #-acceptor substituent (push, pull mesomeric

substitution pattern), such as phosphinosilylcarbenes (Table 3).6

1.3.3. Synthesis of Diaminocarbenes

Diamino carbenes are at present accessible by three different routes:

deprotonation of imidazolium salts,3, 4, 21, 22 reduction of thioureas,23 and thermal

elimination of methanol or HX (X = CCl3, OR).3, 4, 6, 24

1.3.3.1. Deprotonation of Imidazoium Salts

In 1970, Wanzlick and co-workers reported that the deprotonation of

imidazolium salts with potassium tert-butoxide produced Arduengo carbenes.3, 4, 21

Following the same principle, in 1991, Arduengo et al. obtained “A Stable Crystalline

C a r b e n e ”, 3 8 , in near quantitative yield by deprotonation of 1,3-di-(1-

adamantyl)imidazolium chloride 37 with sodium or potassium hydride in the presence of

catalytic amounts of either potassium tert-butoxide or DMSO anion (scheme 5, R = 1-

adamantyl). The colorless, crystalline imidazol-2-ylidene 38 is thermally stable and

melts at 240-241 °C without decomposition (Scheme 3).22

Page 36: M.sc. Thesis MK - November 15, 2011

- 19 -

N+C

N

1Ad

1Ad

HN

C:N

1Ad

1Ad

NaH

- NaCl- H2(g)

Cl-

3738

Scheme 3: Arduengoʼs imidazol-2-ylidene synthesis.

Alder et al. synthesized 40 (Scheme 4), the first diaminocarbene without the

constraints of ring geometry to help stabilize it.25

(iPr)2NC O

H POCl3

(iPr)2N+C Cl

HCl-

(iPr)2N-H

iPr NC

NiPr

Cl-

iPr

iPr

+ H

iPr NC:

NiPr

iPr

iPr

LDA

39

40

Scheme 4: Synthesis of the first stable open-chain carbene 40.

In 1999, Hahn isolated 4 3, the first benzene annulated carbene 1,3-

bis(neopentyl)benzimidazol-2-ylidene (Scheme 5).26

Page 37: M.sc. Thesis MK - November 15, 2011

- 20 -

NC

NS

NC:

NNa/KTol.

Na/KTHF

NCH2

N

O

NC:

N

O

HHHH

HHH H

H

HH

H

H2 Transfer

NH

NH

Cl2C=S

NH2

NH2XCORLAH

41 42 43

Scheme 5: Synthesis of 1,3-bis(neopentyl)benzimidazol-2-ylidene 43.

In 2006, Bielawski et al. deprotonated bis – imidazolium salts to synthesize

Janus bis – carbenes, a variation of benzimidazol-2-ylidenes with two carbene

functional groups (Scheme 6, Scheme 7).27

O

OBr

BrBr

Br NC:

NN:C

N

Mes

Mes Mes

MesO

ON

NN

N

Mes

Mes Mes

MesO

O

HH

2 Br-

++

HN

N

Mes

Mes

+i ii

i = 4 eq N,N!-dimesitylformamidineii = 2 eq NaN(SiMe3)2

44 45

Scheme 6: Synthesis of quinone-based Janus bis-carbenes.27

Page 38: M.sc. Thesis MK - November 15, 2011

- 21 -

NO2

NO2Cl

Cl NO2

NO2HN

HN

R

RNH2

NH2HN

HN

R

R

N

NN

N

R

R H

HH +

X-

N

NN

N

R

R R!

R!

HH

2 X-

++

NC:

NN:C

N

R

R R!

R!

i ii

iii

vi v

4647

iv

iv = Pd / C / HO2CHv = 2 eq R!-Xvi = 2 eq NaN(SiMe3)2

i = R-NH2 / Pd catii = Pd / C / H2(g)iii = HC(OEt)3 / HX

Scheme 7: Benzene-linked Janus bis-carbene synthesis.

N CN R

MBCNNR

H N(SiMe3)2

N CN R

Figure 8: Tris-carbene complex with M = Ca made from 1-tert-butylimidazole.

In 2009, Hitchcock et al. synthesized tris-carbene complexes of calcium,

strontium, and barium [{HB(tBuIm)3}M{N(SiMe3)2}(tBuIm)n] by combining the tris-

imidazole compound [HB(tBuIm)3]2+•2Br- with MI2 (M = Ca, Sr, Ba) and 4 KN(SiMe3)2 in

a one – pot reaction (Figure 8).28

Page 39: M.sc. Thesis MK - November 15, 2011

- 22 -

1.3.3.2. Reduction of Thioureas

Preparation of imidazolin-2-ylidenes from carbenium salts requires three

synthetic steps: 1. synthesis of the aminal, 2. conversion to the carbenium salt, and 3.

deprotonation to the imidazolin-2-ylidene. Preparation of imidazolin-2-ylidenes from

thioureas only requires two synthetic steps: 1. synthesis of the thiourea, and 2.

reduction to the imidazolin-2-ylidene.

R1

R2N

NC:

NR1

R2N

C SNR1

R2N

CH2

R1

R2NH

NH

Br

Br

R1

Cl

NH2+Cl-

R1

OH

NH ii

R1

NH2C CH2

iii

iv v vi vii

i

i: SOCl2 / CH2Cl2 / r.t. / 24 hrsii: R2-NH2 / H2O / 180 °C / 48 hrsiii: R2-NH2 / 225 °C / 24 hrsiv: R1-NH2 / H2O / r.t. / 168 hrs

v: CH2O / r.t. / 48 hrsvi: S8 / 160 °C / 12 hrsvii: K / THF / 66 °C / 2 hrs

Scheme 8: Synthesis of imidazolin-2-ylidenes by reduction of thioureas.

In 1993, Kuhn and co-workers prepared alkyl-substituted imidazol-2-ylidenes

through a new and versatile approach: reduction of imidazol-2-thiones with potassium

in boiling THF.23 Denk et al. extended this approach to imidazolin-2-ylidenes (Scheme

8).20, 29-31 The first imidazolin-2-ylidene to be prepared in this way was 1,3-di-tert-butyl-

imidazolin-2-ylidene.20

Page 40: M.sc. Thesis MK - November 15, 2011

- 23 -

1.3.3.3. Diaminocarbenes from Thermal Elimination

Wanzlick developed the 1,1 thermal elimination route to imidazolin-2-ylidenes3,

4 affording a third unique synthesis for diaminocarbenes (Scheme 9).

NC

N

HCCl3

NC

N

HO Et

NC:

N150 °C 200 °C- HCCl3 - EtOH

Scheme 9: Imidazolin-2-ylidene synthesis by thermal elimination.

:N

NC

N+

H

[ClO4]-

:N

NC

N OH

MeNaOMeMeOH

80 °C0.1 torr- MeOH

:N

NC:

N

O

NH

H2N CN

H

Cl

N+H

Cl-

O

POCl3

Ac2ONa[ClO4]

+

48

Scheme 10: Nitrogen substitution of CH groups in imidazol-2-ylidenes.

Page 41: M.sc. Thesis MK - November 15, 2011

- 24 -

In 1995, Enders et al. reported that using Wanzlickʼs thermal elimination

method (Scheme 9) 1,2,4-triazol-5-ylidene 48 could be obtained from 5-methoxy-1,3,4-

triphenyl-4,5-dihydro-1H-1,2,4-triazole by thermal elimination (80 °C) of methanol in

vacuum (0.1 mbar) (Scheme 10).24

Compound 48 became the first commercially available stable aminocarbene

(Scheme 10).24

1.3.4. Reactivity of Diaminocarbenes

1.3.4.1. Dimerization

Dimerization to olefins is a fundamental reaction pathway of carbenes. The

weakest carbon – carbon double bonds known are in fact dimers of diaminocarbenes.6

Metal complexes with carbene ligands can be made by adding enetetramines to the

metal starting material because the weak carbene – carbene bond allows the

enetetramines to behave as protected carbene ligands (Scheme 11).32, 33

NC

N

N

NC

Cl

Cl

ClPt

PEt3

Et3P

ClPt+

N

NPt PEt3

Cl

Cl

C

Scheme 11: Synthesis of Wanzlick carbene – metal complexes.

Page 42: M.sc. Thesis MK - November 15, 2011

- 25 -

Lappert et al. prepared transition metal – carbene complexes with platinum,

ruthenium, osmium, and numerous other metals starting from enetetramines (Scheme

11).32, 33

The extremely weak carbon – carbon double bond of enetetramines (10 – 20

kcal•mol-1) manifests itself with easy dissociation. Enetetramines also have a very high

reduction potential (as high as lithium).

Wanzlick observed that imidazolin-2-ylidenes dimerize3, 4 while Arduengo found

that imidazol-2-ylidenes remain monomeric.22, 34, 35 The variables that influence this

fascinating carbene behavior have been investigated experimentally and

computationally.

H.W. Wanzlick showed that imidazolin-2-ylidenes dimerize (1960).3, 4 In order to

do this he needed to distinguish between carbene monomers and dimers

(enetetramines). At the time, Wanzlick did not have the multitude of analytic equipment

available today. As would be expected, 13C NMR shifts are very different for Wanzlick

carbene monomers and enetetramines, but this at that time (1960 – 1970) was

unavailable to Wanzlick. Chemically, carbenes and enetetramines react similary

towards metals, metal complexes, O2, H2O, S8 and many other substrates. Today it is

also possible to calculate the heats of formation of carbene – metal bonds, and run the

experiment in a calorimeter to differentiate. Again, Wanzlick could not do this because

reliable calculations were not available in 1960. MS electron impact experiments are

not directly applicable to differentiate between monomers and dimers because E.I. can

induce dissociation as can the pressure and temperature of the MS system. However,

Page 43: M.sc. Thesis MK - November 15, 2011

- 26 -

chemical ionization experiments work for this class of compounds. Wanzlick was finally

able to show that he had enetetramines through molecular weight determination

(melting point depression / boiling point elevation experiments).

MO arguments suggest that diaminocarbene dimerization follows a non – least

motion pathway of the $ - orbital inserting into the vacant # - orbital.6 Calculations by

Alder et al. estimate diaminocarbene dimerization barriers to be over 25 kcal•mol-1.16

Carbene dimerization is controlled by sterics and electronics. Aromaticity

prevents the dimerization of imidazol-2-ylidenes by adding enough electron density to

the carbene #-orbital, making it unapproachable by the $ - orbital of another carbene

molecule.10, 16 Therefore even imidazol-2-ylidenes with small substituents such as

methyl and ethyl do not dimerize. When a benzene ring is annulated to an imidazol-2-

ylidene, such as in the work of Bielawski or Hahn, the aromaticity of the benzimidazol-2-

ylidene is diluted and the stabilization is reduced. For this reason, the Hahn carbenes

behave like imidazolin-2-ylidenes and do dimerize for small N-substituents (Me, Et, iPr).

Steric effects also play a key role in carbene dimerization. For symmetric

imidazolin-2-ylidenes, Denk et al. have proven the line between dimer and monomer is

iso-propyl / tert-butyl.20 Substituents equal to or smaller than iso-propyl lead to

dimerization, and substituents equal to or larger than tert-butyl remain monomeric.

Denk et al. also demonstrated that for imidazolin-2-ylidenes, just one tert-butyl group

provides enough steric and electronic stabilization to the carbene center to prevent

dimerization.29 tert-Butyl groups create significant steric strain in the dimers, they are

also very good at electronically stabilizing carbenes.29 For the aromatically substituted

Page 44: M.sc. Thesis MK - November 15, 2011

- 27 -

imidazolin-2-ylidenes, the borderline between monomer and dimer is a mixture of 1,3-

diphenyl-imidazolin-2-ylidene and 1,3-dimesityl-imidazolin-2-ylidene which contains A=B

dimer. Bulkier substituents lead to monomeric carbenes. This pair of diamino carbenes

has been established as the line between monomer and dimer for diamino carbenes

bearing aromatic substituents.29

N

MeN

N

MeN

C CN

N

N

NC C

49 50

Figure 9: Forced dimerization of carbenes by tethering.

AB B

A

AB B

A

AB B

A A:B B

A:

AB B

A

A:B:

AB B

A

AB B

A

AB B

A: AB B:

A: AB B

A

B:A:Carbene:

Metathesis:

Mixed:

Figure 10: Possible modes of interconversion of carbene dimers.

The benzimidazol-2-ylidenes 49 and 50 exist as enetetramine dimers because

they have been forced into close proximity by tethering (Figure 9). These Hahn

carbenes would be monomeric if they were not tethered.36

Page 45: M.sc. Thesis MK - November 15, 2011

- 28 -

Wanzlick and co-workers proposed that imidazolin-2-ylidene dimers interconvert

according to Figure 10.37

Denk proved the Wanzlick equilibrium exists with crossover experiments. In

thermal experiments mixtures of A=A and B=B equilibrate to statistical mixtures: [(1

A=A) : (2 A=B) : (1 B=B)] at temperatures of 100 – 200 °C. Wanzlick carbene

monomers were not observed in the NMR spectra.20, 29, 37, 38

NC:

N

NC

N

N

NC

51 (51)2

Figure 11: Dimerization of 1,3-bis(iso-propyl)benzimidazol-2-ylidene.

One year later Hahn synthesized a benzimidazol-2-ylidene that exists in

equilibrium with its dimer in solution, thus directly proving the existence of the Wanzlick

equilbrium by NMR (Figure 11).39

1.3.4.2. Reactions with Common Molecules

Diamino carbenes imidazol-2-ylidenes and imidazolin-2-ylidenes are both inert

towards CO, O2, and H2 in the absence of a catalyst. Both types of carbenes form

aminals with hydrogen in the presence of a platinum catalyst, are hydrolyzed to amides,

and form ureas when oxidized with NO. Hydrolysis of Wanzlick carbenes (imidazolin-2-

ylidenes) proceeds quickly while hydrolysis of Arduengo carbenes (imidazol-2-ylidenes)

Page 46: M.sc. Thesis MK - November 15, 2011

- 29 -

is very slow. Interestingly, the hydrogenation of imidazol-2-ylidenes leads to aminals

rather than saturation of the HC=CH moiety.15 Deuteration of imidazol-2-ylidenes

proceeds according to Scheme 12.40

C:

RN

NR

C:

RN

NR

RN

NR

C+ DH

H

-C

RN

NR

C+ DH

RN

NR

C+ DD

H

+ D+ - H+ + D+ - D+ D

H

H

H

C:

RN

NR

-C

RN

NR

C+ DD

RN

NR

C+ DD

DD

D

- H+

- D+ + D+

Scheme 12: Deuteration of imidazol-2-ylidenes.

In the next section the synthesis and use of 1,2-ethylenediamines, which are

crucial building blocks for the synthesis of imidazolin-2-ylidenes, will be discussed.

1.4. Ethylenediamine

Ethylenediamine is mainly produced by heating ethylene dichloride (Cl-CH2CH2-

Cl) with ammonia at 100 °C in the liquid phase under pressure.41 The product

distribution is controlled by reactant ratio, pH, reactor geometry, temperature, pressure,

and cycling of products back into the reactor.

Page 47: M.sc. Thesis MK - November 15, 2011

- 30 -

Cl

Cl+

NH2

NH2

NH

NH2

NH2

NH

NH2

NH

NH2

NH

NH2

NH

NH

NH2

En

DETA

TETA

TEPA

+ + +NH3

Scheme 13: Products from NH3 and 1,2-dichloroethane.

Byproducts are diethylenetriamine (DETA), triethylenetetramine (TETA), and

tetraethylenepentamine (TEPA) (Scheme 13). The amine hydrochlorides formed in the

process are neutralized with lime, caustic soda, or other bases. Products are separated

by fractional distillation.41 This spectrum of highly useful synthetic building blocks

motivated us to investigate the reaction of 1,2-dibromoethane with primary amines.

Handling amines under a dry inert atmosphere of nitrogen or argon proved to be

necessary to prevent reaction with CO2, and H2O.41, 42 The petrochemical industry uses

this property of amines to separate CO2, H2S, and other acidic gases from gas

mixtures.41, 42

2 R1R2NH + CO2 ! R1R2N-CO2- + R1R2NH2

+

2 R1R2R3N + H2S ! 2 R1R2R3NH+ + S2-

Scheme 14: CO2 and H2S gas stream purification using amines.

The most common amines used for CO2 and H2S removal are ethylenediamine,

diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine

Page 48: M.sc. Thesis MK - November 15, 2011

- 31 -

(TEPA). Both are very effective at capturing these gases and are also corrosion

inhibitors (Scheme 14).41, 42

Ethylenediamine is mainly used in detergents, resins and polymers, crop

protection agents, paper chemicals, lubricants, corrosion inhibitors, surfactants, and

pharmaceuticals.41

NH2NH

OOO

On

NH2NH

OOO

On

H2N NH

O OO

On

H2N NH

O OO

On

N N

Figure 12: Ethylenediamine dendrimeric polymers for water purification.

Ethylenediamine finds use in water purification technology (Figure 12).41, 43

Ethylenediamine dendrimeric polymers bearing quartenary ammonium sites have a

broad range antimicrobial activity.41, 43 Quartenary ammonium functional groups can be

introduced to the polymer in Figure 12 after the polymer is made sufficiently large, or

linked to a stationary phase.43 Unlike free salts, supported quartenary ammonium

functional groups do not leach into the environment and this reduces replacement

costs.41, 43 The antimicrobial properties of these ethylenediamine copolymers come

from quartenary ammonium sites permeating cell walls and killing bacteria.41, 43

Page 49: M.sc. Thesis MK - November 15, 2011

- 32 -

Wanzlickʼs work in the 1970ʼs on imidazol-2-ylidenes and imidazolin-2-ylidenes

showed that ethylenediamine ligands are versatile tools in carbene chemistry.3, 4 Since

then, many discoveries have been made in the carbene field based on manipulation of

substituted ethylenediamine ligands.2, 6, 29

1.5. Polyamines

1.5.1. Substituted Ethylenediamines and Polyamines

The N,N"-disubstituted ethylenediamines 1 and their homologous

diethylenetriamines and tetramines are versatile building blocks for the synthesis of

organic and inorganic compounds.31, 43-48 They find use for the synthesis of aza-crown

ethers,47, 49-56 functionalized polymers,57-61 and, more recently, for the synthesis of

stable carbenes,15, 20, 30, 37, 38, 40, 62, 63 stable silylenes,64-73 and related species.74, 75 Their

complexes with manganese, copper, and silver76-78 have been studied as homogeneous

catalysts and their Pd(II) and Pt(II) complexes have served as model compounds to

study the interaction of cis-platin and related anticancer drugs with DNA.79-82

Polyamines have been used in the treatment of mitochondrial and degenerative

diseases.83 While polyamines R-NH-(CH2CH2-NR)n-H are valuable building blocks, they

are either expensive or unavailable commercially (Table 4).

Page 50: M.sc. Thesis MK - November 15, 2011

- 33 -

Table 4: Availability and pricing of selected polyamines. (Aldrich, 2011)

Aldrich Pricing ($ / Kg ) of Polyamines R-NH-(CH2CH2-NR)n-H

n = 1 n = 2

Me $ 12,000 $ 348,000

Et $ 10,200 naiPr $ 9,520 natBu $ 7,080 na

R G

roup

Ph $ 4,240 na

In 1936, J. Van Alphen reported the reaction of 1,2-dibromoethane with

ammonia. The numerous products isolated include ethylenediamine (En), diethylene

diamine (piperazine), diethylenetriamine (DETA), triethylenetetramine (TETA) and

triethylene diamine (N-(CH2CH2)3-N).84 Van Alphen found that combining

triethylenetetramine (TETA) with benzaldehyde (Ph-CO-H) forms a diheterocyclic

compound with all nitrogen atoms fully substituted. Reaction with sodium metal

followed by treatment with ethanol returns the original polyamine TETA, so the

benzaldehyde reaction introduces a nitrogen protecting group. There are two nitrogen –

protected compounds from TETA and benzaldehyde reported.85 Van Alphen found that

ethylenediamine reacts with 1,3-dibromopropane yielding H2N-CH2CH2-NH-

CH2CH2CH2-NH-CH2CH2-NH2, a compound used to reduce silver salts. This amine

forms colored copper complexes from copper salts, as well as colored nickel complexes

from nickel salts. In the presence of CS2, a bis – thiourea forms from the above

tetramine.86 Longer polyamine chains made from 1,3-dibromopropane and

ethylenediamine form poly – thioureas.87

Page 51: M.sc. Thesis MK - November 15, 2011

- 34 -

Since the work of J. Van Alphen not much research went into polyamines until

Gelbard et al. used nitrogen mustards for the synthesis of triamines, as well as imine

reduction to triamines.88, 89

In 2002, Yoshimi et al. converted amino alcohols R-NH-CH2CH2-OH to [R-NH2+-

CH2CH2-Cl][Cl-] with SOCl2 in chloroform. These nitrogen hemi mustards and primary

amines lead to diamines.90 N-Ethyl-Nʼ-propylethylenediamine was synthesized in 35%

yield from [Et-NH2+-CH2CH2-Cl][Cl-] and iPr-NH2. N-Cyclopropyl-N ʼ-

ethylethylenediamine was synthesized from [Et-NH2+-CH2CH2-Cl][Cl-] and cyclopropyl

amine in 43% yield. Numerous asymmetrically substituted diamines were used to make

diazepines to manipulate dopamine and serotonin levels tested in rat studies.90 Current

pricing and availability of polyamines are shown in Table 4.

Alkyl or aryl substituted diamines and polyamines are prepared by reaction of

primary amines with X-(CH2)n-X,31 by alkylation of ethylenediamines or

polyethylenediamines,91 by nitrogen salt reduction (R1R2N+=CR3R4),88 by reaction of

primary amines with nitrogen mustards or hemi – mustards,92 by halogenation of amino

alcohols followed by reaction with primary amines,89 by ring opening reactions of certain

esters,93 and by reductive deazotization of N3-(CH2)n-N3.94

In 2010, N,N"-dicyclohexyl-ethylenediamine was prepared (Scheme 15) by

reaction of 1,2-dibromoethane with cyclohexylamine (50%).31, 95

Page 52: M.sc. Thesis MK - November 15, 2011

- 35 -

NH2 Br

Br

NH

NH+5

Scheme 15: Synthesis of N,N"-dicyclohexylethylenediamine.

In 1962, Daniels et al. prepared Ph-NH-(CH2)3-NH-Ph using dropwise addition of

1 mole of Br-(CH2)3-Br to 5 moles of aniline.96 In 1960, Fischer et al. found that Br-

(CH2)3-Br forms N-phenyl-azetidine (78%) and Ph-NH-(CH2)3-NH-Ph (22%) when

reacted with aniline (Scheme 16).97 Both products are isolated by fractional

distillation.97 Ph-NH-(CH2)3-NH-Ph is a stabilizer for polyvinyl acetal resins, an

antioxidant for rubber, and a respiratory and vasomotor stimulant.98

Br

Br

NH

NHN

NH2+ +5

Scheme 16: Synthesis of N,N"-diphenyl-1,3-propanediamine.

Page 53: M.sc. Thesis MK - November 15, 2011

- 36 -

NH

NH

N

N

C

C

OCH3

OCH3

NaOHBr

BrN +2COCH3

Na

Scheme 17: Synthesis of N,N"-diphenyl-1,3-propanediamine using protecting groups.

In 1951, Billman et al. prepared Ph-NH-(CH2)3-NH-Ph (20%) from Br-(CH2)3-Br

and Ph-N(Na)-CO-CH3, followed by acetate removal with NaOH (Scheme 17).98 In

1956 (o-CH3-C6H4)-NH-(CH2)3-NH-(C6H4-o-CH3) was prepared from Br-(CH2)3-Br and o-

CH3-C6H4-NH2, preceding work by Daniels et al.99 Diamines have even been produced

from waste glycerol catalyzed by bacteria.100

Cl ClCO

HN N NHR R

R

HN N NHR R

R

CO

N N NHR R

R

HN N NR R

R

+ +

Scheme 18: Urea synthesis from polyamines and phosgene.

In 1947, Boon et al. found that combining phosgene with N,N"-

dialkylethylenediamines or N,N",N""-trialkyl-1,4,7-triazaheptanes led to ureas L-CO-L,

Page 54: M.sc. Thesis MK - November 15, 2011

- 37 -

where L is a polyamine ligand (80%) (Scheme 18).101-103 In the case of diamines,

imidazolidones were also obtained.101 These ureas were investigated as respiratory

stimulants after the discovery that O=C(NEt2)2 has such properties.101 The triamine

ligand MeN(-CH2CH2-N(Me)-CH2C6H4CH2-Cl)2 was prepared in 1994 from MeN(-

CH2CH2-NHMe)2 and ClCH2C6H4CO2Me.50

Si

NH N

N HN

Si

N

Si

NN

Si

N

MeMe Me

Me

Et Et

Et Et

ROHMeMeMe

Me

EtEt

Et Et

Li

Li

Scheme 19: Synthesis of an aza – macrocycle with organosilyl groups.

As shown in Scheme 19 dimethyldivinylsilane, Me2Si(-CH=CH2)2, and N,N"-

diethyl-N-lithio-ethylenediamine react to form aza – macrocycles having organosilyl

groups.104

NH2

NH2 Me-X

NH2

NHMe

NH2

NMe

Me

NH

NHMe

MeNH

NMe

Me

MeN

NMe

Me

MeMe

+ + + +

Scheme 20: Alkylation products from methylation of ethylenediamine.

Page 55: M.sc. Thesis MK - November 15, 2011

- 38 -

In 1966, Roe et al. obtained mixtures of Me-NH-CH2CH2-NH2, Me-NH-CH2CH2-

NH-Me, Me2N-CH2CH2-NH2, Me2N-CH2CH2-NH-Me, and Me2N-CH2CH2-NMe2 when

alkylating ethylenediamine with methylating agents (Scheme 20).91

NH

NH2

NH2

NH

N

N

C R2R1

CR1 R2

OCR1 R2 NH

NH

NH

R2R1

R1 R2

LiAlH4

ROH+

- H2O

Scheme 21: Gelbardʼs strategy for alkylating terminal nitrogens of polyamines.

In 1969, Gelbard et al. found that alkylation of H2N-(CH2CH2-NH)n-H with ketones

or aldehydes followed by reduction led to terminally substituted diamines, triamines, and

polyamines in yields ranging from 80% - 95% (Scheme 21).88 This method converts

H2N-CH2CH2-NH2 to iPr-NH-CH2CH2-NH-iPr using acetone, but is limited to iminium

salts as it cannot introduce tert-butyl or phenyl groups.88 In 1977, Jutz et al. found that

R1R2N+=CR3R4 groups are reduced by NaBH4 to R1R2N-CHR3R4.105, 106

NH3Cl

Cl

NH2

NHEt

Et-NH2

Scheme 22: Singly substituted ethylenediamine by amination of halo – amines.

In 1988, Goldner et al. prepared Et-NH-CH2CH2-NH2 (70% yield) by reaction of

[Cl-CH2CH2-NH3]+Cl- with excess ethylamine (Scheme 22).92 Their product workup was

Page 56: M.sc. Thesis MK - November 15, 2011

- 39 -

similar to the workup used in the synthesis of polyamines from 1,2-dibromoethane and

primary amines.31

In 1966, Gelbard synthesized [iPr-NH(-CH2CH2-Cl)2]+Cl- by reaction of ethylene

oxide with iso-propyl amine, followed by chlorination with SOCl2 (Scheme 23).89

OiPr-NH2

N

OH

OH

iPrSOCl2

NH

Cl

Cl

iPr

+ Cl-

N

NH

NH

iPr

iPr

iPr

iPr-NH2

Scheme 23: Triamine synthesis from ethylene oxide and a primary amine.

Reaction of [iPr-NH(-CH2CH2-Cl)2]+Cl- with two equivalents of iso-propyl amine

yielded 20% iPr-N(-CH2CH2-NH-iPr)2.89 Triamine yields were higher when aromatic

primary amines were used (Scheme 23).89

OCN O

Ph-NH2KOHNH

OC

OH

H2O

O

OHCN O

HN

NH

NH

- CO2

Scheme 24: N,N"-diphenyl-1,3-propanediamine from a cyclic carbamate.

Page 57: M.sc. Thesis MK - November 15, 2011

- 40 -

In 1975, Ph-NH-(CH2)3-NH-Ph was prepared by nucleophilic attack on (-N(Ph)-

(CH2)3-O-CO-) at a CH2 site by aniline, evolving CO2 (52%) (Scheme 24).93 Harder

nucleophiles like OH- attacked at the carbonyl site, producing carbamates.93

R1-BCl2R2HCn(H2C) N

N N+N-

N+N-

R2HCn(H2C) N

NR1

R1

B

B

ClCl

ClCl- N2

R2HCn(H2C) NH

NHR1

R1

- HO-BCl2

H2O

Scheme 25: Substituted diamines from bis – azide compounds.

In 1992, N,N"-disubstituted diamines R1-NH-CHR-(CH2)n-NH-R1 have been

prepared from bis – azides N3-CHR-(CH2)n-N3 and R1-BCl2 followed by aqueous workup

(70%) (Scheme 25).94

Mixtures including polyamines have good adhesion properties to different

materials.107-110 Adhesives made with ethylenediamines, diethylenetriamines, and other

polyamines are used to bind layers of explosion – resistant laminated glass.111

Adhesion between glass layers reduces the quantity of glass projectiles in accidents /

explosions.111 Polyamide adhesives for the lamination of polyethylene and mylar films

are prepared from polyamines and polycarboxylated butadiene polymers.112

Polyethylenimine, (-CH2CH2-NH-)n, as copolymer, is used as wood adhesive in

plywood, giving it excellent shear strength and water resistance.113 Polyamine –

crosslinked epoxy resin adhesives are used for securing optical fibers in bundles.114

Linear or branched polyamides, prepared from polyamines, can be mixed with

Page 58: M.sc. Thesis MK - November 15, 2011

- 41 -

polyisocyanates or epoxides to make heat curable polymers that seal or join metals.115-

117

Cl

NH3Cl+

CH2 CHCH2

nCH2 CH

CH2n

NH2N

HNN

NHN

HN

x

y

z1

z2

z3

H

H

H

HNaOHHeat

Scheme 26: Polymerization of Cl-CH2CH2-NH3Cl under basic conditions.

In 2001, Kuo et al. combined polyallylamine (-CH2CH[CH2NH2]-)n and [Cl-

CH2CH2-NH3]+Cl- to get “comb – burst” polymers in quantitative yields (Scheme 26),

useful in metal – chelating applications.118 The term “comb – burst” refers to the shape

of the polymer resembling a comb backbone with each comb tooth being a highly

branched polyamine.118 N,N"-Diphenyl-ethylenediamine is used in the manufacture of

metal clad polyimide laminates.119 Polyethylenimine polymers are used to deliver

nucleic acids in gene therapy.120 Diamines R-NH-(CH2)n-NH-R, where R = alkyl, aryl, or

H, and n = 1 – 6, are commonly used as copolymers along with piperazines and other

amines.121 Polyamide polymers are used in desalination applications.61, 122

Diamines and polyamines are excellent ligands for coordination chemistry.51, 53,

80, 81, 123 Polyamine complexes with most metals are known, for example rhodium is

complexed by N,N"-diphenyl-ethylenediamine in Rh[(Ph2P-C6H4CO)2(Ph-N-CH2CH2-N-

Ph)].124-126 N,N",N""-Trimethyl-1,4,7-triazaheptane coordinates to [Re(CO)3(H2O)3]+

facially to form [Re(CO)3L]+ (2007) (Figure 13).127

Page 59: M.sc. Thesis MK - November 15, 2011

- 42 -

CN C

NH

CNH

CMe

Me

Me

O

O

O

CN OH2

NH

NH

Me

Me

Me

Re+1 Pt+2

Figure 13: Facial and meridial complexes of N,N",N""-trimethyl-1,4,7-triazaheptane.

Similar complexes Tc(CO)3L made with polyamine ligands L are used as

radiopharmaceuticals.127 The meridial complex [Pt(H2O)L]2+ was synthesized from

N,N",N""-trimethyl-1,4,7-triazaheptane (Figure 13).79 Mondal et al. synthesized nickel

complexes with N,N",N""-trimethyl-1,4,7-triazaheptane.80 Manganese complexes with

Me-NH(-CH2CH2-N(Me))2-H and Me-NH(-CH2CH2-N(Me))3-H are used in catalysis.76

Chiral aza – crown ethers were prepared from chiral 1,2-diphenyl ethylenediamines.47

Aza – crown ethers have also been prepared by the Mannich reaction.49 Aza –

macrocycles are used in ATP binding and coordination to metals,128 and are often

prepared by cyclizing N – substituted polyamines.54, 59 Aza – crown ethers are used in

the treatment of metal – sensitive degenerative diseases such as Parkinson's disease,

Alzheimer's disease, Lou Gehrig's disease, Binswanger's disease, Olivopontine

cerebellar degeneration, Lewy body disease, diabetes, stroke, atherosclerosis,

myocardial ischemia, cardiomyopathy, nephropathy, ischemia, glaucoma, presbycusis,

and cancer because they form stable complexes with most metals including Cu, Co, Fe,

Zn, Cd, Mn, and Cr, all metals of importance in neurological and other diseases.83

Mixed oxygen and nitrogen crown ethers are prepared by cyclizing Cl-CH2CH2-O-

Page 60: M.sc. Thesis MK - November 15, 2011

- 43 -

CH2CH2-NH-R.55 Osmium – diamine complexes are used in the dihydroxylation of

alkenes.45 While nucleophilic substitution of R-Br fragments by amines typically takes

place under mild conditions, nucleophilic substitution of Ar-Br fragments normally

requires a metal – amine catalyst such as copper and forcing conditions.129

Diamines are used in the synthesis of cyclic thioureas.62, 102 N,N"-Diphenyl-

ethylenediamine is used as a component in phosphorescent organic electroluminescent

devices.130 Zirconocenes R2Zr(Ph-N-(CH2)3-N-Ph) have been prepared from Zr(Ph-N-

(CH2)3-N-Ph)Cl2(THF)2 and R = Cp type ligands.126, 131, 132 N-Arylhexahydropyrimidines

were synthesized by condensation of N-aryl-N"-alkyl-(aryl)-1,3-propanediamines with

aldehydes.133 N,N"-disubstituted-ethylenediamines are used in the preparation of anti –

allergenic medicines.134 Bis – aminals have been sythesized by the double

condensation of diamines or triamines with glyoxal.44

1.5.2. Aziridines

Aziridines are important building blocks in the synthesis of polyamines and

polymers that are typically prepared by elimination of a leaving group from haloamines

and similar molecules (Scheme 27).7, 135

X

NHR

- HX RN

Scheme 27: Aziridine synthesis by ring closure of . halo – amines.

Page 61: M.sc. Thesis MK - November 15, 2011

- 44 -

Aziridines are used in organic synthesis,136, 137 as polymers and copolymers,41,

138, 139 and as anti cancer drugs (Figure 14).140

PN

SN N

Figure 14: Anti – cancer drug thiotepa.

As of 2008, they are one of five classes of alkylating agents used as

chemotherapy agents.140 Tris(1-aziridinyl)phosphine sufide, S=P(-N[-CH2CH2-])3, also

known as thiotepa, is used against breast, ovarian, and bladder cancers (Figure 14).140

N-tert-Butyl aziridine undergoes ring opening reactions when attacked by

nucleophiles.7 In 1968, Stamm found that excess CH2(CO2Et)2 ring opens N-tert-butyl

aziridine in the presence of LiH to tBu-NH-CH2CH2-CH(CO2Et)2 (Scheme 28).136

Et O C CH2C O Et

O O tBuN+ Et O C C O Et

O O

NHtBu

Scheme 28: Alkylation of aziridines by active methylene compounds.

The most important application of N-tert-butyl aziridine is in polymer chemistry.

N-tert-Butyl aziridine is a versatile building block and has been used as a copolymer to

prepare block, graft, comb, and star polymers.138 In 1984, Goethals et al. used N-tert-

Page 62: M.sc. Thesis MK - November 15, 2011

- 45 -

butyl aziridine to prepare block copolymers with stryrene, butadiene, N-methyl aziridine,

THF, and ethylene oxide.141 Prior to this in 1981, Munir et al. prepared poly-tert-butyl

aziridine grafted to silica, by reacting silica, N-tert-butyl aziridine and H2N-CH2CH2CH2-

Si(-OEt)3 as a linking agent.139 In 1987, Goethals et al. quarternized poly-N-tert-butyl

aziridine with several alkylating agents resulting in incomplete alkylation. Nitrogen

atoms adjacent to alkylated nitrogen atoms (tBu) were unable to behave as nucleophiles

except toward powerful alkylating agents such as methyl trifluoromethanesulfonate.

Once alkylated, the quarternized poly-N-tert-butyl aziridine gradually decomposed,

releasing iso-butene.142 In 1996, Christova et al. cationically polymerized N-tert-butyl

aziridine using tetracyanoethylene as an electron acceptor.143 Only linear polymers

were detected, without any trace of tetracyanoethylene in the poly-N-tert-butyl aziridine

chains.143 In 1977, Bossaer et al. cationically polymerized N-tert-butyl aziridine with

[Et3O]+[BF4]- and found little cross linking between poly N-tert-butyl aziridine chains.

The steric bulk of the tert-butyl group of an aziridinium cation prevents nucleophilic

attack from the amino functionalities of (-(tBu)N-CH2CH2-)n.144 Goethals et al. found in

1977 that N-tert-butyl aziridine polymerizes more rapidly than N-tert-butyl azetidine

under identical conditions, owing to the differences in steric strain.145

1.5.3. Piperazines

N,N"-Dialkyl(aryl)piperazines are used in organic synthesis,7 pharmaceutical

production,140 petrochemical operations,41 and as components in polymers, plastics,

and adhesives.41, 111

Page 63: M.sc. Thesis MK - November 15, 2011

- 46 -

N

NR

R

Cl

N

Cl

R

Br

Br

OH

OH

N

NH

HR-NH2

R-X

R-NH2Cat.

R-NH2Cat. / No Cat.

PO

OO O Cl

Cl

ClR-NH2

Scheme 29: Synthetic methods for preparing N,N"-dialkyl(aryl)piperazines.

N,N"-Dialkyl(aryl)piperazines are synthesized (Scheme 29) by cyclization of

nitrogen mustards with primary amines,146, 147 by the reaction of 1,2-dibromoethane with

primary amines (catalytic and non - catalytic) (2003),31, 148 by the catalyzed reaction of

ethylene glycol with primary amines,149-151 and by alkylation of piperazine by applicable

alkyl substituents R.152

N

X

X

R1

R2NH2

R3 C CH2C R3

O OR2N

NR1

R3 C C C R3O O

NR1

Scheme 30: Ring closure of nitrogen mustards to piperidines and piperazines.

In 1966, Katritzky synthesized 1-alkyl-4-tert-butylpiperazines from primary alkyl

amines and tBu-N(CH2CH2-Cl)2 in excellent yields.147 Besides producing 1-ethyl-4-tert-

Page 64: M.sc. Thesis MK - November 15, 2011

- 47 -

butylpiperazine, 1-iso-propyl-4-tert-butylpiperazine, and N,N"-di-tert-butylpiperazine in

excellent yields with this method, Katritzky et al. used tBu-N(CH2CH2-Cl)2 to synthesize

numerous piperidines in good yields (Scheme 30).147 Haloamines such as tBu-

N(CH2CH2-Cl)2 are excellent precursors to piperidines and piperazines.7, 147

In 1977, a similar synthesis was developed by Bissell, who obtained good yields

of N,N"-diphenylpiperazine (and other piperazines) from the reaction of aniline (or other

primary aryl amines) with tris(chloroethyl) phosphate, O=P(-O-CH2CH2-Cl)3.146

In 1986, White et al. patented the synthesis of N,N"-dialkylethylenediamines such

as N,N"-di-tert-butylethylenediamine from primary amines, 1,2-dibromoethane, and a

copper catalyst.148 The major side products were N,N"-dialkylpiperazines, and amine

products had to be freed from the copper catalyst by complexing Cu2+ with EDTA.148

In 1991, Marsella synthesized mixtures of N,N"-dialkylethylenediamines, N,N"-

dialkylpiperazines, and N-alkylethanolamines from primary amines and ethyleneglycol in

the presence of RuCl2(PPh3)3 at low temperatures (120 °C),150 and this work led to a

patent (Scheme 29).151 Increasing the ratio of ethylene glycol to primary amine did not

significantly change the yield of N-alkylethanolamine, but it increased the ratio of N,N"-

dialkylpiperazine to N,N"-dialkylethylenediamine (1991).150 In most cases equimolar

amounts of N,N"-dialkylpiperazine and N,N"-dialkylethylenediamine were formed and

conveniently isolated by fractional distillation, so this synthesis is economical for both

products. For the reaction of ethyleneglycol with tert-butyl amine, increasing the ratio of

ethyleneglycol to tert-butyl amine from 2.9 : 1 to 3.0 : 1 increased the ratio of N,N"-di-

tert-butylpiperazine to N,N"-di-tert-butylethylenediamine from 3 : 84 to 14 : 37.150 In both

Page 65: M.sc. Thesis MK - November 15, 2011

- 48 -

cases the dominant product was N,N"-di-tert-butylethylenediamine. The study shows

the f ine balance between N,N"-di-tert-butylpiperazine and N,N"-di-tert-

butylethylenediamine, since a negligible change in reactant ratio leads to a massive

change in the product ratio. Three years prior, in 1988, Su et al. patented a similar

catalytic process for the synthesis of N,N"-di-tert-butylpiperazine from ethylene glycol

and tert-butyl amine.149 Piperazines form from ethylene glycol and primary amines

using Ru2+, Ru3+

, and other metals as catalysts.149-151

In 2005, Ouk et al. synthesized mixtures of N-methylpiperazine and N,N"-

dimethylpiperazine from piperazine and dimethyl carbonate, an environmentally benign

compound, replacing toxic methylating agents like methyl iodide and dimethyl sulfate.152

N,N"-Dimethylpiperazine was the main product, but it was not possible to form only one

product in this system.152 A by – product of this reaction was carbamate formation

caused by carbonylation of piperazine competing with methylation.152

1.5.4. Haloamines

Nitrogen mustards find use as components in polymerization catalysts,153 as

copolymers154 and crosslinking agents,155 in organic synthesis,7 and as chemotherapy

agents.140 They are highly useful precursors to piperadines and piperazines.7

After Ludowieg et al. in 1948, in 1949 Abrams et al. synthesized Me-N(-CH2CH2-

OH)2 from methylamine and ethylene oxide.156, 157 Reaction of Me-N(-CH2CH2-OH)2

with SOCl2 yields [Me-NH(-CH2CH2-Cl)2]+Cl-.157 Numerous others have reported using

a similar method to obtain nitrogen mustards and haloamines from amino alcohols and

Page 66: M.sc. Thesis MK - November 15, 2011

- 49 -

SOCl2 in good yields.156, 158-161 In 1981, [H3N+-CH2CH2-Cl]Cl- was prepared by reaction

of H2N-CH2CH2-OH with HCl, with continuous removal of water.162 Similar methods

yield [H3N+-CH2CH2-X]X- from H2N-CH2CH2-OH and HX (X = F, Cl, Br, I).163, 164

In 2003, Zeng polymerized Me-N(-CH2CH2-Cl)2 and obtained a highly branched

polymer with many quarternary amino groups.154 Nitrogen mustards are widely used

cross linking agents in polymer chemistry.41, 155

Nitrogen mustards are one of five main classes of alkylating agents used as

chemotherapy agents and are one of the oldest types of anticancer drugs (Figure 15).140

The first alkylating agent to be used medicinally (1942) was chlormethine, Me-N(-

CH2CH2-Cl)2, which is still used in the treatment of Hodgkinʼs disease, non – Hodgkinʼs

lymphoma, breast cancer, lung cancer, and melanoma.140

N CH3

Cl

Cl

Chlormethine

N

Cl

ClHO2C

Chlorambucil

N

Cl

ClH2N

HOO

Melphalan

N

Cl

Cl

NHPO O

Cyclophosphamide

NPOCl

OHN Cl

Ifosfamide

Figure 15: Nitrogen mustards currently in use as chemotherapy agents.

Nitrogen mustards readily form aziridinium ions that alkylate bases, including

DNA strands. The anticancer activity of nitrogen mustards results from intrastrand and

Page 67: M.sc. Thesis MK - November 15, 2011

- 50 -

interstrand cross linking of DNA, preventing transcription and the growth of new cells

(Figure 15).140

Substitution is another common reaction with many nucleophiles,7 e.g.- Me-N(-

CH2CH2-Cl)2 forms Me-N(-CH2CH2-SH)2 and Me-N(-CH2CH2-SeH)2 by nucleophilic

substitution.165 In 1987, Golding et al. synthesized Me-N(-CH2CH2-X)2 (X = -S-SO3-, -

NH2, -S-C+(NH2)2Cl-) from Me-N(-CH2CH2-Cl)2 and S2O32-

, ammonia, and thiourea.166

In 2004, Parisel et al. synthesized the novel PN ligand (4-MeO-C6H4)-N(-CH2CH2-P(4-

MeC6H4)2)2 from (4-MeO-C6H4)-N(-CH2CH2-Cl)2 and (4-MeC6H4)2P(O)H.167

N

Cl

Cl

Me + CCH2

NC

N

NMe

Scheme 31: 1-Methyl-4-phenyl-4-cyanopiperdine synthesis.

1-Methyl-4-phenyl-4-cyanopiperdine was synthesized in 1986, by Mueller et al.

168 and in 1996, by Gnecco et al. 169 from Me-N(-CH2CH2-Cl)2 and Ph-CH2-CN (Scheme

31). Piperidines with a wide variety of substituents have been obtained by condensing

nitrogen mustards with various methylene compounds.170 Asymmetrically substituted

N,N"-dialkyl(aryl)piperazines are synthesized from nitrogen mustards and primary

amines.146, 147, 166 Symmetrically substituted piperazines can be synthesized from

nitrogen mustards,146, 147, 171 but this is not economical since there are one step

procedures for these compounds from inexpensive reagents.31, 149-151

Page 68: M.sc. Thesis MK - November 15, 2011

- 51 -

N

Cl

Cl

Me +N

NMe

NH2

H2N NH2

Scheme 32: 1-Amino-4-methylpiperazine synthesis.

In 2004, Kushakova et al. synthesized 1-amino-4-methylpiperazine by

condensing Me-N(-CH2CH2-Cl)2 with hydrazine (Scheme 32).172 In 1973, Hauptmann

showed [H2N+(-CH2CH2-Cl)2]Cl- can be N – acylated by amides, carboxylic acid

anhydrides, and acid chlorides.173 Others have observed similar nucleophilic behavior

of haloamines.174

Page 69: M.sc. Thesis MK - November 15, 2011

- 52 -

Chapter 2 – Results and Discussion

Page 70: M.sc. Thesis MK - November 15, 2011

- 53 -

2.1. Reaction of 1,2-Dibromoethane with Primary Amine

Despite earlier reports in the literature175-179 about the reaction of 1,2-

dibromoethane with primary amines, the synthetic scope of the reaction has remained

unclear. Denk and Krause31 have previously obtained N,N"-di-tert-butylethylenediamine

and N,N"-di-iso-propyl ethylenediamine from the respective primary amines and 1,2-

dibromoethane in the context of research on stable carbenes,15, 20, 30, 37, 38, 62, 63

silylenes,64-73 and related species.74, 75 It was of interest to see if the developed

methodology can be extended to other primary amines as well.

Despite their structural simplicity, the synthesis of N,N"-disubstituted

ethylenediamines 1 and indeed of substituted ethylenediamines in general is not

straightforward because the reaction of ethylenediamine with alkylating agents like

methyl iodide is known to give mixtures of monoalkylated and polyalkylated compounds.

The introduction of N-protective groups can in principle solve this problem but also adds

protection and deprotection as two additional synthetic steps.88, 101, 175, 176, 180, 181

As already mentioned, the reductive alkylation of ethylenediamines with acetone

was used by Gelbhard et al. for the synthesis of the N-iso-propyl derivatives (Scheme

33).88, 180, 181

N

N

NH2

NH2

NH

NHAcetone LiAlH4R-OH

Scheme 33: Gelbardʼs imine approach to polyamines.

Page 71: M.sc. Thesis MK - November 15, 2011

- 54 -

However, this approach only allows the introduction of substituents of the general

type RR"CH- which excludes common substituents R such as tert-butyl or phenyl.

Aldehydes form rather reduction resistant cyclic imidazolidines and are not well suited

for the reductive alkylation of ethylenediamines. Acylation with ketones and subsequent

reduction of the N-acyl amines circumvents the problem of polyalkylation but requires

the use of expensive complex hydrides (LiAlH4) in stoichiometric quantities.

A potentially general route for the synthesis of N,N'-disubstituted

ethylenediamines 1 that does not require multiple steps, special equipment or

expensive reagents is the reaction of primary amines with 1,2-dibromoethane (Scheme

34). Earlier studies in our group showed that 4 equivalents of primary amine and 1

equivalent of 1,2-dibromoethane led to good yields of N,N'-disubstituted

ethylenediamines. The reactions were conducted on a 25 g scale, the polyamine side –

products were identified by GC-MS, but the negligible amount formed initially prevented

isolation. To form a polyamine chain with n amino groups requires a polyamine chain

with n-1 amino groups. For this reason it is expected that longer polyamine chain yields

will be lower than shorter polyamine chain yields. To obtain gram quantities of longer

polyamines, the reaction must be accordingly performed on a bulk scale. To allow the

isolation of previously identified polyamines (GC – MS), and to isolate new polyamines,

the reaction was carried out on a kg scale. Previously, the 4 : 1 ratio led to stirring

problems due to the precipitation of HBr salts. To decrease the amount of undissolved

material, and to facilitate stirring, water was added to the reaction.

Page 72: M.sc. Thesis MK - November 15, 2011

- 55 -

Br

BrRNH

NHR

N

N R

R

N R

RNH

NHR

N R

N R

RNH

NHR

N R

RNH

NHR

RN

NR

+ + + +5 eq R-NH2

20 °C / 1 wk

1 2

3

4

5

Scheme 34: Reaction of primary amines with 1,2-dibromoethane.

The reactions of 1,2-dibromoethane with primary amines RNH2 (R = Me, Et, iPr

and tBu) were carried out at room temperature with identical reaction conditions (section

3.1.). Aniline, which was included as a representative of aromatic amines, was found to

be less reactive, and unlike the alkylamines, required heating.

The reaction of primary amines RNH2 (R: Me, Et, iPr, tBu and Ph) with 1,2-

dibromoethane gave N,N"-disubstituted ethylenediamines R-NH-CH2CH2-NH-R (1) i n

yields ranging from 10 % (1a, R = Me) to 70 % (1d, R = tBu; 1e, R = Ph) (Figure 16).

Piperazines and N-substituted polyethyleneimines were identified (1H NMR, 13C NMR

and EI-MS) as side products of the reaction and isolated by fractional distillation.

Piperazines 2 are formed in yields ranging from 3% to 10% and can be separated from

the diamines 1 by distillation, except for R = Me and Ph, which were separated by

aluminum oxide columns. The polyamine homologues RNH-[CH2CH2NR]n-H (3 – 5)

were isolated in yields ranging from 0.1 % (n = 4, R = iPr) to 14 % (n = 2, R = iPr). The

yields of 1 increase with the size of the substituent R. This trend may reflect decreasing

Page 73: M.sc. Thesis MK - November 15, 2011

- 56 -

solubility of the amines bearing larger organic groups in water. Isolation of amines from

the bulk mixtures first required neutralization (NaOH) and phase separation. The

organic layer was decanted from the aqueous phase. Finally the organic phase was

dried over NaOH pellets numerous times until they were unattacked indicating the

organic mixture was dry and ready for fractional distillation. For the more hygroscopic

amines (R = Me, Et) the drying procedure was repeated more times than for the less

hygroscopic mixtures. Lower ethylenediamines (R = Me, Et) are also more hygroscopic

than the higher ethylenediamines (R = iPr, tBu, Ph). This makes recovery from the

aqueous phases more difficult.

Figure 16: Isolated polyamine yields from primary amines R-NH2 (R = Me, Et, iPr, tBu, Ph) and 1,2-

dibromoethane.

Page 74: M.sc. Thesis MK - November 15, 2011

- 57 -

N

N

Br

NH

Br

Br

NH

NH N

NH

NH

N

NH

N

NH

R

R

R

R

R R

R

R

R

RRN2

13

1 3 4

A

B

C

D

E F

13 13

R

R

Scheme 35: Possible reaction paths and intermediates leading to N – substituted piperazines and

triamines. A: no acid required, B: acid required, C >> D: 13 is more reactive than aziridines under basic

conditions, E >> F: ring closure is favored.

For all R groups, the polyamine yields decrease with increasing chain length.

This result supports the hypothesis that to form a polyamine with n amino groups, a

polyamine with n-1 amino groups must be consumed (Scheme 35). No obvious trend

between substituent groups (R) exists for piperazine and polyamine yields. The

dimerization of aziridines to piperazines occurs in the reaction of N-tert-butyl aziridine

with aniline. Besides forming tBu-NH-CH2CH2-NH-Ph, a significant amount of N,N"-di-

tert-butylpiperazine was obtained that accounts for about 50% of the N-tert-butyl

aziridine in the reaction. Under these reaction conditions N,N"-di-tert-butylpiperazine

could only have come from the dimerization of N-tert-butyl aziridine (Scheme 35).

Page 75: M.sc. Thesis MK - November 15, 2011

- 58 -

The best yields of 1 were obtained by reacting 1,2-dibromoethane (1 eq.) with an

excess of the primary amine (5 eq). Attempts to use the addition of auxiliary bases like

NaOH or Na2CO3 to reduce the amount of primary amine to the theoretically required

amount (2 eq) led to lower yields.

The reactions did not require organic solvents but an adequate amount of water

greatly facilitated stirring by dissolving the voluminous amine hydrobromide salts which

form in the course of the reaction. Methylamine and ethylamine were accordingly used

in form of the readily available aqueous solutions. Apart from facilitating stirring, the

presence of water also accelerates the reactions.31 This effect was first noticed for tert-

butyl amine which gave a 75 – 80 % yield of 1d after only 24 hours at r.t. in water as

solvent whereas the reaction in hexanes (no water) required four days of boiling and the

use of an efficient overhead stirrer to give 1d in 50 % yield.72

Unlike tert-butyl amine, the sterically less hindered amines (R = Me, Et, iPr)

reacted in exothermic fashion and required ice cooling and slow mixing of the

components to prevent losses of the volatile amine. Despite their initial exothermic

nature, completion still required ~ 2 weeks at r.t which exceeded the reaction time

required for R = tBu (3d). This discrepancy may result from solubility effects operating

in the generally biphasic reaction mixtures. While the lipophilic 1,2-dibromoethane will

reside predominantly in the organic phase, the amines will reside in the aqueous phase

for R = Me, Et and iPr but in the organic phase for R = tBu.

The use of water or the sequence of the addition of the reagents did not

significantly influence the product distribution.

Page 76: M.sc. Thesis MK - November 15, 2011

- 59 -

The less reactive aniline required heating, which (contrast to R = alkyl) was also

required to prevent a solidification of the reaction mixture. The mixture solidified upon

cooling and the workup (addition of NaOH) is best done while the reaction mixture is still

warm. With the exception of aniline, the reactions were conveniently carried out in

ordinary screw cap storage bottles connected to a bubbler and inert gas line.

Fractional distillation through a 20 cm Vigreux column separated the homologous

amines 1, 3, 4, and 5 (GC control) but gave mixtures of the ethylenediamines 1 and

piperazines 2 that required redistillation.31 Distillation failed to separate 1a /2a

(azeotrope) and 1e/2e (small boiling point difference). Pure materials (GC) were

obtained by continuous liquid – liquid counter extraction with hexane – water which

leads to enrichment of the more lipophilic piperazines 2 in the organic phase. Complete

separation was also achieved by column filtration of the piperazine / ethylenediamine

mixtures (ca. 1 g of mixture in 10 mL of hexanes) through a 30 cm column of neutral

Al2O3. The piperazines have significantly lower retention times and are thus readily

separated from the diamines which were obtained as second fractions with the more

polar CH2Cl2 as eluent. The former method is better suited for large quantities while the

column filtration is better suited for small amounts.

The generally very hygroscopic alkyl substituted ethylenediamines required

extensive drying over solid NaOH and subsequent distillation from sodium. Distillation

from NaOH or CaH2 was found to be insufficient. 1,4,7-Triphenyl-1,4,7-triazaheptane

has a high boiling point and is best purified by recrystallization (Table 5), however it can

also be distilled.

Page 77: M.sc. Thesis MK - November 15, 2011

- 60 -

Table 5: Solubility data of 1,4,7-triphenyl-1,4,7-triazaheptane (3e).

Solu

tion

Mol

arity

(mol

/ L

Solve

nt)

0.00

0

0.00

2

0.01

5

0.02

3

0.02

7

0.10

0

0.46

9

0.91

6

Solu

tion

Mol

arity

(mol

/ kg

Solve

nt)

0.00

1

0.00

3

0.02

3

0.02

9

0.03

8

0.11

6

0.31

4

0.69

1

Solu

tion

Mol

arity

( mol

/ kg

Solu

tion)

0.00

1

0.00

3

0.02

3

0.02

9

0.03

8

0.11

1

0.28

5

0.56

2

Solu

tion

W/V

%(g

/ L

Solve

nt)

0.2

0.6

5.1

7.6

8.9

33.1

155.

5

303.

6

Solu

tion

W/W

%(g

/ kg

Solve

nt)

0.2

1.0

7.8

9.6

12.7

38.3

104.

2

229.

1

Solu

tion

W/W

%(g

/ kg

Solu

tion)

0.2

1.0

7.7

9.5

12.5

36.9

94.4

186.

4

Solv

ent MeO

H

Pent

ane

Hexa

ne

EtO

H 95

%

Et2O

Tolu

ene

CHCl

3

CH2C

l 2

Page 78: M.sc. Thesis MK - November 15, 2011

- 61 -

Purification of 1,4,7-triphenyl-1,4,7-triazaheptane (3e) (m.p. = 118 – 119 °C, b.p.

= 250 – 252 °C / 0.1 torr) required distillation under dynamic vacuum. This involved

occasionally heating the distillation apparatus with a Bunsen burner to prevent

solidification and over – pressure from blockages. While the resulting product was pure,

recrystallization was explored as an alternative purification method. Of the solvents

tested (Table 5), only methylene chloride and chloroform dissolve significant amounts of

1,4,7-triphenyl-1,4,7-triazaheptane. Methanol and 95% ethanol are the best

recrystallization solvents for 1,4,7-triphenyl-1,4,7-triazaheptane because they have the

largest differences of product solubility between room temperature and boiling solvent.

The multiplicities and relative intensities of the 1H NMR and 13C NMR signals and

the comparison of the shifts in 2 - 5 with those of 1 allowed the assignment of most

signals although the assignment becomes more difficult with increasing chain length.

The methylene protons RNHCH2 attached to the outermost nitrogen were observed as

broad singlets, triplets or with higher multiplicities (e.g.- q). H,D-exchange experiments

with D2O reduced the signals to triplets and confirmed that the higher multiplicities were

caused by coupling with the NH protons.

The EI-MS spectra of the ethylenediamines (1, 3 - 5) showed [M+1] peaks which

presumably result from the formation of stable hydrates (and loss of [OH]•) in the

spectrometer. This also explains why the less hygroscopic piperazines show the usual

[M]+• peaks.

Page 79: M.sc. Thesis MK - November 15, 2011

- 62 -

2.2. Reaction of 1,3-Dibromopropane with Primary Amines

The high yield synthesis for N,N"-dialkyl(phenyl)ethylenediamines from primary

amines and 1,2-dibromoethane suggested the investigation of the reaction of primary

amines with 1,3-dibromopropane, because N,N"-dialkyl(phenyl)-1,3-propanediamines

are important ligands in organic7 and inorganic synthesis (Scheme 36).6

Br

Br

NH

NH

R

R

R

R

N

N

NH

NH

N R

R

R

5 eq R-NH2

20 °C / 1 wk+ +

NR

+

6

7 8

9

Scheme 36: Diamines and polyamines from primary amines and 1,3-dibromopropane.

Figure 17: Polyamine yields from R-NH2 and Br-CH2CH2CH2-Br.

Page 80: M.sc. Thesis MK - November 15, 2011

- 63 -

Identical conditions were used in the reactions of 1,3-dibromopropane with

primary amines and 1,2-dibromoethane with primary amines. The reactions of 1,3-

dibromopropane were scaled down to 50% of the reactions of 1,2-dibromoethane

because of higher reagent cost (Scheme 36).

The reaction of 1,3-dibromopropane with primary amines produces N,N"-

dialkyl(phenyl)-1,3-propanediamines in good yields and N,N",N""-trialkyl(phenyl)-1,5,9-

triazanonanes as valuable side – products that are readily separated by fractional

distillation (Figure 17).

Like the reaction of 1,2-dibromoethane with primary amines, the only obvious

product distribution trend is the higher yield of diamines compared to triamines (Figure

17). There is no obvious trend for the substituents. An apparent anomaly is the

isolation of N-tert-butylazetidine (b.p. = 30 – 32 ºC / 0.1 torr). For R = Me, Et, iPr, and

Ph the reaction mixtures did not contain N-substituted azetidines. One possible

explanation is that N-methyl azetidine, N-ethylazetidine, and N-iso-propylazetidine are

too volatile and boiled off before the crude mixtures were analyzed. However this does

not explain the absence of N-phenylazetidine which would be involatile enough to

remain in its crude reaction mixture. It is possible that Ph-NH-CH2CH2CH2-Br does not

cyclize.

A similarity to the reaction of 1,2-dibromoethane with primary amines is

the generally lower yield observed for N,N"-dialkyl(phenyl)-1,3-propanediamines for

smaller alkyl groups (Me, Et) compared to larger alkyl groups (iPr, tBu, Ph). This may

reflect the more hygroscopic nature of amines with smaller alkyl groups. The crude

Page 81: M.sc. Thesis MK - November 15, 2011

- 64 -

mixtures were initially dried by storing over NaOH pellets, which causes phase

separation into an upper organic phase and a lower aqueous phase. The upper organic

phases were decanted and stored over fresh NaOH pellets, and this procedure was

repeated until no water could be drawn from the mixtures by NaOH. Higher

percentages of material were lost to the lower aqueous phase during the drying

procedure for R = Me and R = Et because those amines are more hydrophilic than for

the respective diamines with R = iPr, tBu, and Ph.

R

R

N

N

RN

NR

Figure 18: N – substituted piperazines and cyclooctanes.

The main products of the reactions of 1,2-dibromoethane and 1,3-

dibromopropane with primary amines were the respective diamines R-NH-(CH2)n-NH-R.

A major difference between the two reactions is that large quantities of piperazines were

formed, but no N,N"-dialkyl(aryl)-1,5-diaza-cyclooctanes were observed even in trace

amounts with (GC-MS) (Figure 18). This is readily understood as formation of six –

membered rings are more stable than eight – membered rings.7

A further difference between the reactions 1,2-dibromoethane and 1,3-

dibromopropane with primary amines is the lack of isolation of aziridines vs. the

isolation of azetidines.

Page 82: M.sc. Thesis MK - November 15, 2011

- 65 -

tBuN

tBuN

RN

RN

6d6

Figure 19: N – substituted aziridines and azetidines.

The highly exothermic but kinetically slow ring opening reaction of aziridine is

well known and catalyzed by copper and other metals.41 The reaction of 1,2-

dibromoethane with primary amines did not yield aziridines for any R group, however

aziridines could have played a role as intermediates, and HBr catalyzed reactions could

have consumed them. N – substituted aziridines are known to be less stable than N –

substituted azetidines if both have the same R group, since 3 – membered rings are

less stable than 4 – membered rings.7 Once formed, an azetidine is also more likely to

persist than an aziridine (Figure 19).

To explore the possibility of synthesizing diamine ligands with different

substituents R1-NH-(CH2)n-NH-R2, and to quantify stability differences between N-tert-

butylaziridine and N-tert-butylazetidine, ring opening reactions of both compounds with

aniline were examined (Scheme 37).

The reactants N-tert-butylaziridine (b.p. = 99 °C / 760 torr) and N-tert-

butylazetidine (b.p. = 30 °C / 1 torr) are volatile, and high temperatures would be

required, so standard pressure reactions in glassware were ruled out. Stainless steel

Swagelok vessels were used. The Swagelok vessels used consist of a stainless steel

body, with two stainless steel caps, one for each end of the vessel.

Page 83: M.sc. Thesis MK - November 15, 2011

- 66 -

24 hrs NH

5 eq C6H5-NH2225 °C

24 hrs NH

5 eq C6H5-NH2350 °C

24 hrs

5 eq C6H5-NH2225 °C

No Reaction

tBuN

tBuN

tBuNH

tBuNH

6d

10

11

Scheme 37: Ring-opening reactions of N-tert-butyl aziridine and N-tert-butyl azetidine with aniline.

N-tert-Butylaziridine was sealed in a Swagelok vessel with five equivalents of

aniline and heated at 225 °C for 24 hours. The major product was 10, N-tert-butyl-N"-

phenylethylenediamine (52%), with N,N"-di-tert-butylpiperazine as the only side –

product (40%). Distillation isolated N-tert-butyl-N"-phenylethylenediamine in 52% yield.

The Swagelok vessel, weighed before and after the experiment, confirmed that no

volatile materials were lost.

The same experiment was performed with N-tert-butylazetidine. Heating at 225

°C for 24 hours had no effect and NMR indicated the presence of only starting

materials. However, at 350 °C, all N-tert-butylazetidine reacted (Scheme 37), but the

yield was low (17%). The Swagelok vessel weighed before and after the experiment

confirmed the loss of volatile materials. To overcome the leakage problem, the

experiment was repeated by flame sealing N-tert-butylazetidine with 5 equivalents of

Page 84: M.sc. Thesis MK - November 15, 2011

- 67 -

aniline in heavy wall glass tubing (10 mm outer diameter) so that 25% of the sealed

volume was occupied by liquid. The sealed glass tube was placed inside a Swagelok

vessel (to catch glass fragments if failure occured) along with 25% by volume water to

equalize the pressure on the glass. After heating at 350 °C for 24 hours, N-tert-butyl-N"-

phenyl-1,3-propanediamine was the only crude product and no material was lost.

Identical results from heating in a glass vessel and heating in a Swagelok vessel also

rule out significant effects of metal catalysis on the reaction from the stainless steel

vessel.

These experiments demonstate the higher reactivity of N-tert-butylaziridine and

the higher stability of N-tert-butylazetidine at least regarding the reaction with aniline.

Asymmetric diamines R1-NH-(CH2)n-NH-R2 can be synthesized in good yields from N-

tert-butylaziridine and N-tert-butylazetidine.

2.3. Phosphenium Cation Stabilization with Triamine Ligands

Previous work by Denk et al. on low coordinate phosphorus has shown that

phoshorus can exist in coordination number 2 as a cation when stabilized by electron

rich ethylenediamine ligands.74, 75 To further explore the stablization of dicoordinate

phosphenium cations, intramolecular # – donation was investigated.

Page 85: M.sc. Thesis MK - November 15, 2011

- 68 -

25

+ Cl-

NH

N

NH

tBu

tBu

tBu

2.5 eq Et3N 5.5 mL Toluene20 °C / 24 hrs

- 2 eq [Et3NH]+Cl-+ PCl3

1 eq0.506 g

1 eq1.000 g

N P:N

N

tBu

tBu

tBu

Crude Yield = 73%Yellow Solid

3d

Scheme 38: Synthesis of 25 from N,N",N""-tri-tert-butyl-1,4,7-triazaheptane.

N,N",N""-Tri-tert-butyl-1,4,7-triazaheptane was selected as the stabilizing ligand

because tert-butyl groups were successful at stabilizing dicoordinate phosphorus in

previous studies,74, 75 and because radially symmetric tert-butyl groups lead to less

complex product NMR spectra than non – symmetric alkyl groups.

One equivalent of PCl3 was added to a mixture of N,N",N""-tri-tert-butyl-1,4,7-

triazaheptane in toluene with triethylamine as auxiliary base (Scheme 38). The

exothermic reaction immediately precipitated triethylamine hydrochoride and the mixture

changed from clear to cloudy. The result was chlorophosphane 25, a dicoordinate

phosphenium cation stabilized by intramolecular # – donation.

The crude mixture was frit filtered and washed with toluene which dissolves the

phosphenium cation and leaves behind triethylamine hydrochloride (Figure 20). NMR

(1H, 13C, 31P) of the filtrate mixture indicated the presense of side – products. The

filtrate was extracted with hexane, separating the side – products from the target

phosphenium cation. The side – products were insoluble in hexane, soluble in toluene,

Page 86: M.sc. Thesis MK - November 15, 2011

- 69 -

had many 13C NMR signals, and were involatile from low temperatures up to 300 °C /

0.1 torr.

Crude Mixture

Filtrate(1.132 g)

Residue 1(1.574 g)[Et3NH]+Cl-

Residue 2(0.166 g)Unknown

Extract(0.909 g)[N3P]+Cl-Yellow Solid

1. Frit Filtration2. Wash 3 ! 5 mL Toluene

Extract 3 ! 5 mL Hexane

ReactionTheoretical Yield [N3P]+Cl-: 1.237 g

Figure 20: Purification strategy for [N3P]+Cl- (25).

Page 87: M.sc. Thesis MK - November 15, 2011

- 70 -

Cl-

(D)H2C

N P+

N

H2(C)C

(D)H2CCH2(C)

N

tBu(B)

tBu(B)

tBu(A)

25

tBu(A)

tBu(B)

?

?tBu(A)

tBu(B)

CH2(C)CH2(D)

Figure 21: 13C NMR (C6D6) spectrum of 25.

The presence of 13C – 31P coupling in 13C NMR is a useful identification tool for

phosphenium cation 25, as it allows it to be distinguished from 3d, a compound with the

Page 88: M.sc. Thesis MK - November 15, 2011

- 71 -

same number and pattern of peaks (Figure 21). All 13C signals of 25 are doublets, while

all 13C signals of 3d are singlets. The presence of two extra signals in the 13C NMR

spectrum of 25 indicates 25 was still contaminated with 3d.

Cl-

N P:N

N

tBu

tBu

tBu N P:N

N

tBu

tBu

+

25

- H2C=C(CH3)2

- HCl

Scheme 39: Elimination of iso-butene from 25.

X – ray analysis of the 0.909 g sample of 25 shows an unexpected counter – ion,

[PO2Cl2]-, instead of Cl-. NMR analysis (1H, 13C, 31P) of the 0.909 g quantity of 25

indicates there is only one compound present. If the counter – ion was [PO2Cl2]-, the

maximum yield could only be 0.800 g. Therefore, the reaction product could not have

been 25•[PO2Cl2]-. NMR analysis of our sample does show the presence of a minor

Page 89: M.sc. Thesis MK - November 15, 2011

- 72 -

impurity. It is possible the X – ray crystallographer analyzed an impurity crystal rather

than a crystal of the major product. We need to examine the 0.909 g sample of 25 by

elemental analysis to confirm our reaction product was 25•Cl-, but regardless of counter

– ion issues, N,N",N""-tri-tert-butyl-1,4,7-triazaheptane has stabilized a dicoordinate

phosphenium cation.

The structure of chlorophosphane 25 (A.2.1.) is similar to boat S4N4. The bond

distance of the central tert-butyl group to the central nitrogen in 25 is 1.567 Å, while in

methylamine the C – N bond distance is 1.47 Å. Steric repulsion contributes to this

lengthened bond, as well as electron depletion of the central nitrogen by the

phosphenium cation. It was suspected that this central C – N bond was weak, and

potentially close to a transition state of a decomposition reaction to eliminate iso-butene

from 25 (Scheme 39). This is not the case considering DFT calculations indicate the C

– N bond of 25 is nearly as strong as the C – N bond in methylamine, and the the X –

ray data indicate no nucleophiles are in close proximity of the central tert-butyl group.

2.4. Synthesis of N,N",N""-tri-tert-butyl-1,4,7-triazaheptane

The ability of N,N",N""-tri-tert-butyl-1,4,7-triazaheptane to stabilize a dicoordinate

phosphenium cation prompted investigation of improved synthetic methods for this

ligand. The reaction of 1,2-dibromoethane with tert-butyl amine produces N,N",N""-tri-

tert-butyl-1,4,7-triazaheptane but only in low yields (2%).31 In the search for an ideal

precursor to N,N",N""-tri-tert-butyl-1,4,7-triazaheptane, the HX salts of tBu-NH-CH2CH2-

Br, and tBu-NH-CH2CH2-Cl, were explored.

Page 90: M.sc. Thesis MK - November 15, 2011

- 73 -

Filtrate Precipitate145 g

Precipitate67 g

Precipitate45 g

Precipitate28 g

Precipitate23 g

Precipitate16 g

Filtrate

Filtrate

Filtrate

Filtrate

Filtrate

1. Reflux2. Cool to 20 °C3. Crystallize Product

Reaction: tBu-NH-CH2CH2-OH + 48% aq. HBrTheoretical Yield tBu-NH2

+Br--CH2CH2-Br: 463 g

Total Precipitate (tBu-NH2+Br--CH2CH2-Br)

Yield: 324 g, 70%

1. Reflux2. Cool to 20 °C3. Crystallize Product

1. Reflux2. Cool to 20 °C3. Crystallize Product

1. Reflux2. Cool to 20 °C3. Crystallize Product

1. Reflux2. Cool to 20 °C3. Crystallize Product

1. Reflux2. Cool to 20 °C3. Crystallize Product

Scheme 40: Diminishing yields in tBu-NH2+Br--CH2CH2-Br (13d) synthesis.

The first precursor tested was [tBu-NH2+-CH2CH2-Br][Br-] because it was an

intermediate in the reaction of 1,2-dibromoethane with tert-butyl amine. The goal was to

obtain N,N",N""-tri-tert-butyl-1,4,7-triazaheptane from [tBu-NH2+-CH2CH2-Br][Br-] and tBu-

Page 91: M.sc. Thesis MK - November 15, 2011

- 74 -

NH-CH2CH2-NH-tBu in one step. In the synthesis of [tBu-NH2+-CH2CH2-Br][Br-] it

appears that diminishing yields after each reflux / precipitate cycle initially follow a

logarithmic decay (Scheme 40). Once 60% of the theoretical 13d has been collected

the yields diminish linearly. Extrapolating from the data: six precipitate collections is

efficient, and a seventh precipitate would be insignificant.

The salt [tBu-NH2+-CH2CH2-Br][Br-] was obtained from 48% HBr and the amino

alcohol tBu-NH-CH2CH2-OH. The synthesis of [tBu-NH2+-CH2CH2-Br][Br-] proceeds in

equilibrium controlled stages (Scheme 40). After refluxing, the reaction mixture was

allowed to cool to room temperature and precipitation of [tBu-NH2+-CH2CH2-Br][Br-] was

induced by scratching the reaction flask with a glass rod. After removal of the filtrate

from the reaction mixture by frit filtration, further heating formed more product. Without

product removal of the salt, further heating of the reaction mixture did not improve

yields. Heating / filtration cycles were performed until the returns were negligible.

The cascade of isolated yields illustrated in Scheme 40 indicates the synthesis of

[tBu-NH2+-CH2CH2-Br][Br-] is an equilibrium reaction. In contrast, the high yield

synthesis of [tBu-NH2+-CH2CH2-Cl][Cl-] from tBu-NH-CH2CH2-OH and SOCl2 (Table 6) is

not controlled by equilibrium because SO2(g) leaves the reaction vessel allowing the

reaction to proceed to completion.

Page 92: M.sc. Thesis MK - November 15, 2011

- 75 -

Table 6: Batch yields of 2-(tert-butylamino)-ethyl chloride hydrochloride (12d).

The synthesis of [tBu-NH2+-CH2CH2-Cl][Cl-] proceeds in one step, and the yields

were substantially higher (Table 6) than for [tBu-NH2+-CH2CH2-Br][Br-]. The first two

batches of crude [tBu-NH2+-CH2CH2-Cl][Cl-] were frit filtered, and were pure by NMR,

but had impurities (increased m.p. after diethyl ether washes). Batches 3 and 4 were

purified by washes of diethyl ether, and after this treatment recrystallization did not raise

the melting point.

Experiments with [tBu-NH2+-CH2CH2-Br][Br-] and [tBu-NH2

+-CH2CH2-Cl][Cl-] did

not provide high yields of N,N",N""-tri-tert-butyl-1,4,7-triazaheptane. Two main

experiments were explored: [tBu-NH2+-CH2CH2-X][X-] plus tert-butyl amine and [tBu-

NH2+-CH2CH2-X][X-] plus tBu-NH-CH2CH2-NH-tBu. In both reactions mole ratio, water

quantity, and addition of NaOH or triethyl amine were varied. The results were either

polymer formation, or the formation of N,N"-di-tert-butylpiperazine, together with traces

(GC-MS) of N,N",N""-tri-tert-butyl-1,4,7-triazaheptane. Some of these experiments had

excellent yields of N,N"-di-tert-butylpiperazine (> 80%). These results are not surprising

since different halo – amines are known to dimerize or polymerize.118

Page 93: M.sc. Thesis MK - November 15, 2011

- 76 -

In both experiments, the formation of N,N"-di-tert-butylpiperazine can be

accounted for by the dimerization of two [tBu-NH2+-CH2CH2-X][X-] molecules, after being

fully or partially deprotonated by tert-butyl amine or tBu-NH-CH2CH2-NH-tBu.

tBuNH2Cl

CltBuN!+

H2C!+H

tBuN

tBuN+

tBuN H

tBuN!+CH2!+

tBuN H

tBuN+ H

tBuN

tBu

tBuN

N

tBuNH

NHtBu

2d

1d

12d

Scheme 41: Substituted piperazines from substituted diamines.

Another possible mechanism of N,N"-di-tert-butylpiperazine formation could have

involved dimerization of N-tert-butylaziridine (Scheme 41), which was observed in our

reaction of aniline with N-tert-butylaziridine. Piperazines have a thermodynamic

advantage (6 – membered ring formation) over other compounds and that is why they

were the major products of these reactions, irrespective of concentration, temperature,

mole ratio, and auxiliary bases.

Compounds structurally similar to 3-(tert-butyl)-aza-1,5-dichloropentane

hydrochloride (16) are widely used to add piperazine and piperidine groups into organic

Page 94: M.sc. Thesis MK - November 15, 2011

- 77 -

molecules containing amino or nucleophilic CH2 functionalities.7 Despite this, under the

correct conditions, it was hypothesized that [tBu-NH+(-CH2CH2-Cl)2][Cl-] would be an

excellent precursor to N,N",N""-tri-tert-butyl-1,4,7-triazaheptane (3d).

N+

Cl

Cl

tBu

HN+

Cl

tBu

H

tBuNH

N

Cl

tBuNH

tBu

tBu

NH

N+

tBu

tBuN

N

tBuNH

tBuNH

tBuN

tBu-NH2

tBu-NH2Cyclize- HCl

Cyclize- H+

- Cl-

Cyclize- 2 HCl

tBu-NH2

tBu- H+

+ H+

2d

3d

16

Scheme 42: N – Substituted piperazines from N – substituted nitrogen precursors.

Experiments on 3-(tert-butyl)-aza-1,5-dichloropentane hydrochloride plus tert-

butyl amine explored variations of mole ratio, temperature, concentration, and auxiliary

bases. As with the experiments on [tBu-NH2+-CH2CH2-X][X-], the major reaction product

was N,N"-di-tert-butylpiperazine. While not the desired product, Scheme 42 shows a

possible mechanism of piperazine formation for the reaction.

In the reactions of the HX salts of tBu-NH-CH2CH2-Br, and tBu-NH-CH2CH2-Cl,

ring closure to N,N"-di-tert-butylpiperazine dominated, even though numerous other

Page 95: M.sc. Thesis MK - November 15, 2011

- 78 -

products could have formed. For these precursors to N,N",N""-tri-tert-butyl-1,4,7-

triazaheptane to be successful, protecting groups on attacking amino groups must be

used to prevent cyclization. This adds protection and deprotection as two additional

synthetic steps, and these steps may have challenges of their own. For this reason the

most convenient synthesis for N,N",N""-tri-tert-butyl-1,4,7-triazaheptane is the reaction of

1,2-dibromoethane with tert-butyl amine.

2.5. Salts as Carbene Precursors

1,3-Di-tert-butylimidazol-2-ylidene hydrochloride is a valuable carbene ligand in

catalyst research. The synthesis of 1,3-di-tert-butylimidazol-2-ylidene hydrochloride

yields brown crude material that is only 95% pure by NMR. It is of interest to purify this

compound because it is the precursor to 1,3-di-tert-butylimidazol-2-ylidene, a valuable

carbene ligand. Crude 1,3-di-tert-butylimidazol-2-ylidene hydrochloride is not well

purified by recrystallization from common solvents because either the compound

solubility is too low to be practical, or the impurities are just as soluble as the

compound. They require multiple recrystallizations typically leading to a low isolated

yield. However, the best recrystallization solvents for this compound are 95% ethanol

and iso-propanol. In an attempt to purify 1,3-di-tert-butylimidazol-2-ylidene

hydrochloride by sublimation, iso-butene was eliminated yielding 1-tert-butylimidazole

hydrochloride (19). Initially it was thought the sublimation worked because yellow

crystals had formed on the condenser, but NMR analysis showed only the presence of

the decomposition product 1-tert-butylimidazole hydrochloride (Scheme 43).

Page 96: M.sc. Thesis MK - November 15, 2011

- 79 -

1.5 eq NaOH- H2O- NaClYield = 82%

tBuN

NC H

tBuN

NC:

- CH2=C(CH3)2Yield = 100%

tBuN

N+

H

C H

Cl-

- CH2=C(CH3)2Yield = 75%

tBuN

NC+ H

Cl-

225 °C12 hrs

225 °C12 hrs

CCH3

H3C

CCH3

H3C CH2

CH2 H

H

20

19

Scheme 43: Thermolysis of a stable carbene and the protonated carbene.

The synthesis of imidazolium salts from primary amines, glyoxal, para-

formaldehyde, water, and an acid catalyst was introduced by A. J. Arduengo. The

synthesis of 1-tert-butylimidazole (20) has been reported in the literature.182 The

thermolysis of 1,3-di-tert-butylimidazol-2-ylidene hydrochloride was conducted, and after

recrystallization, 1-tert-butylimidazole hydrochloride (19) was obtained in good yield, so

the method was extended to the free carbene 1,3-di-tert-butylimidazol-2-ylidene. The

result was quantitative conversion of 1,3-di-tert-butylimidazol-2-ylidene to 1-tert-

butylimidazole. No side – products were detected by NMR. The clean elimination of

tert-butyl groups from 1,3-di-tert-butylimidazol-2-ylidene and related compounds may be

a useful protective group strategy in multistep syntheses.

Page 97: M.sc. Thesis MK - November 15, 2011

- 80 -

Pd

N C

CN

n(H2C)

N

N

X1

X2

tBu

tBu

PdPd

N C

CN

n(H2C)

N

N

X1

X2

tBu

tBu

Pd

Figure 22: Bis – carbene ligands in catalytic complexes.

For example, the synthesis of tethered N – heterocyclic carbenes for use in

catalysis can be accomplished (Figure 22).123, 183, 184

The reaction of 1-tert-butylimidazole with Br-(CH2)n-Br was investigated as a

synthetic route to tethered imidazolium salts, because they are precursors to tethered N

– heterocyclic carbenes. When four equivalents of Br-(CH2)n-Br (n = 1, 2, 3) were

combined with only one equivalent of 1-tert-butylimidazole, only tethered imidazolium

salts (22, 23 , 24) were obtained, and no [tBuIm+Br-]-(CH2)n-Br (52) was observed

(Scheme 44). Yields were: 22 = 25%, 23 = 87%, and 24 = 90%. [tBuIm+Br-]-(CH2)n-Br

(n = 1, 2, 3) is substantially more reactive toward nucleophiles than Br-(CH2)n-Br (n = 1,

2, 3), because all of it was consumed despite the large excess of Br-(CH2)n-Br.

Page 98: M.sc. Thesis MK - November 15, 2011

- 81 -

tBu

N

NC H

tBuN

C+ H

tBuN

C+ HN

n(H2C)N

Br- 2 Br-tBuN

C+ H

Brn(H2C)

N

Br-(CH2)n-Br

20

22 (n = 1)23 (n = 2)24 (n = 3)

20

52

Scheme 44: Synthesis of N – tethered bis-imidazolium salts.

2.6. Outlook and Future Experiments

The formation of N,N",N""-tri-tert-butyl-1,4,7-triazaheptane was hindered by the

competing reactions leading to N,N-di-tert-butylpiperzine. Nitrogen protecting groups

can be used to supress these (Figure 23).

N

Cl

tBu

tBuN S

O

O

Figure 23: Nitrogen electron withdrawal by tosyl groups.

Nitrogen atoms attached to tosyl groups (Figure 23) undergo electronic

deactivation, and become less nucleophilic. The intermediate in Figure 23 is therefore

not likely to ring – close to form a piperazine due to the steric and electronic interference

Page 99: M.sc. Thesis MK - November 15, 2011

- 82 -

from the tosyl group. Protecting group strategies for N,N",N""-tri-tert-butyl-1,4,7-

triazaheptane will initially focus on tosyl groups.

N

Cl

CltBuNH

tBuNH

tBuNtBuNH2

SCl

O O

SO O

tBuNH

N

Cl

tBuN

tBu

tBuN

N+S!+

O!-

O!-

N

N

tBuN

tBu

tBu

tBuN

N

tBu

tBu tBu

Ts

Ts

Ts

TsCl

tBu-NH-Ts

i

ii iii iv

v

vi

3d

2d

18

i = ", NEt3ii = ", NEt3iii = tBu-NH-Tsiv = NaOH / H2Ov = "vi = NaOH / H2O

Scheme 45: Protecting strategies using [R-NH+(CH2CH2-X)2][X-].

The advantage of the protecting group strategy shown in Scheme 45 is the

synthesis of tBu-NH-Ts only involves inexpensive reagents tert-butyl amine and tosyl

chloride and mild reaction conditions. By reacting [tBu-NH+(CH2CH2-Cl)2][Cl-] with an

excess of tBu-NH-Ts, the main product should be tBu-N(CH2CH2-N(Ts)-tBu)2, an

intermediate protected at both NH sites. Detosylation of tBu-N(CH2CH2-N(Ts)-tBu)2 will

provide N,N",N""-tri-tert-butyl-1,4,7-triazaheptane.

Page 100: M.sc. Thesis MK - November 15, 2011

- 83 -

tBuNH

tBuNH

tBuNSCl

O O

TsCl

i

tBuNH2Cl

Cl

tBuNH

NHtBu

tBuN

Cl

Ts

N

NH

tBuN

tBu

tBu

Ts

ii

iii

N+

N+TstBu

Ts tBu

2 Cl-

iv

12d

3d

1d

i = !, NEt3ii = !iii = !, NEt3iv = NaOH / H2O

Scheme 46: Protecting groups to triamines using [R-NH2+-CH2CH2-X][X-].

An alternative protecting group strategy for N,N",N ""-tri-tert-butyl-1,4,7-

triazaheptane is shown in scheme 46. By reacting N – protected tBu-N(Ts)-CH2CH2-Cl

with tBu-NH-CH2CH2-NH-tBu, there should be no opportunity for piperzine formation.

This proposed synthesis should yield N,N",N""-tri-tert-butyl-1,4,7-triazaheptane without

using the chemotherapy agent [R-NH+(CH2CH2-X)2][X-], or its corresponding and highly

toxic nitrogen mustards.

N SiN

N

tBu

tBu

tBu

53 54

N SiN

N

tBu

tBu

tBuH ClH H

Figure 24: Silylene precursors.

Page 101: M.sc. Thesis MK - November 15, 2011

- 84 -

Recently, Jeff Hastie synthesized compounds 53 and 54 (Figure 24), precursors

to silylenes structurally similar to the first stable silylene made by Denk in 1994, a critical

silicon molecule featured in books.123

N SiN

N

tBu

tBu

R N PN

N

tBu

tBu

RO N

55 56

Figure 25: Phosphorus and silicon multiple bonds.

Jeff Hastieʼs work shows the value of R-N(-CH2CH2-NH-tBu)2. The next synthetic

targets will be the first stable silicon-oxygen double bond (55) and the first stable

phosphorus-nitrogen triple bond (56) (Figure 25).

Page 102: M.sc. Thesis MK - November 15, 2011

- 85 -

Chapter 3 – Experimental Procedures

Page 103: M.sc. Thesis MK - November 15, 2011

- 86 -

Melting points were recorded in sealed capillaries and are uncorrected. GC-MS

spectra were obtained with a Varian CP-3800 GC / Saturn 2000 MS combination at an

ionizing voltage of 70 eV and a 30 m x 0.25 mm Varian CP 5860 low bleed phenyl –

dimethylsiloxane column (5 % phenyl). Temperature program: 4 min at 50 °C; 10 min

constant heating rate of 20 °C / min; 6 min at 250 °C. HR-MS data of the previously

unknown amines (3d, 3e) were obtained with a VG ZAB-R instrument at the McMaster

Regional Centre for Mass Spectrometry (Hamilton, Ontario). NMR-spectra (chemical

shifts in *) were recorded with a Bruker 400 MHz spectrometer at normal spectrometer

temperature. The 1H NMR and 13C NMR spectra are referenced vs. TMS (internal). The

31P NMR are referenced vs. H3PO4 (internal pipette). All NMR spectra were obtained

with flame sealed samples. All starting materials were obtained from Aldrich Inc. and

used as received. The products were handled in an atmosphere of nitrogen or argon

(purity 99.994 or better). Yields refer to isolated products unless noted otherwise.

Previously described compounds in the literature are identified by their CAS numbers.

Hexanes, pentane, benzene, toluene, diethyl ether, and triethyl amine were dried by

distillation over Na / K alloy with Ph2C=O, after pre-drying by storing over NaOH pellets.

CHCl3 and CH2Cl2 were dried by storing over CaH2. Alkylating compounds [R-NH2+-

CH2CH2-X][X-] were handled with extra caution. All glassware was flame dried under

vacuum prior to use for air / moisture sensitive compounds. All distillations were

performed under vacuum or in an argon atmosphere. All compounds were handled

under an inert atmosphere of nitrogen or argon. All solubility data were obtained by

taking aliquots of the respective solutions, saturated at room temperature. After

Page 104: M.sc. Thesis MK - November 15, 2011

- 87 -

weighing the saturated solution, the solvent was removed under vacuum and the

amount of dissolved material determined by weighing.

3.1. Reaction of 1,2-Dibromoethane with Primary Amines

Br

BrRNH

NHR

N

N R

R

N R

RNH

NHR

N R

N R

RNH

NHR

N R

RNH

NHR

RN

NR

+ + + +5 eq R-NH2

20 °C / 1 wk

1 2

3

4

5

Scheme 34: Reaction of primary amines with 1,2-dibromoethane.

General procedure for the reaction of primary amines with 1,2-dibromoethane

(Scheme 34): The primary amine (5 eq), and 1,2-dibromoethane (1 eq, 86 mL) were

mixed in a bottle of suitable size and magnetically stirred at room temperature for 2

weeks. For R = iPr, tBu, Ph: 300 mL H2O was added to the mixture to accelerate the

reaction and keep the HBr salts dissolved (Scheme 47). For R = Me, Et the aqueous

solutions (Me: 40% w/w, Et: 70% w/w) were used and no water was added. Initial ice

cooling was required for the sterically lower alkyl amines (R = Me, Et and iPr). For

aniline, the mixture was boiled for 24 h in a round bottom flask equipped with a

magnetic stir bar and reflux condenser. The amine product mixtures are obtained by

Page 105: M.sc. Thesis MK - November 15, 2011

- 88 -

adding NaOH pellets in 20 g portions under ice cooling and constant stirring (caution:

gas evolution of methylamine and ethylamine). The crude amine layer (top) was

separated, stirred with 50 g of NaOH pellets for 24 h and decanted. The procedure was

repeated until the NaOH remained undissolved. The amines 1 – 5 were isolated by

fractional distillation of the crude, predried (NaOH) amine mixture over 5 g of sodium

with the help of a 30-cm Vigreux column. For isolated yields, see Table 7. The

incompletely separated fractions containing 1a / 2a and 1e / 2e were dissolved in the

tenfold volume of hexanes and filtered through a 30 cm column of neutral Al2O3 (10 g / 1

g of amine mixture). The filtrates were collected in 5 mL fractions and the pure (by GC)

fractions combined to give, after evaporation of the solvent in vacuo, the pure amines

1a, 2a, 1e, 2e. Recovery > 90 %.

Table 7: Product yields from R-NH2 (5 eq) and Br-CH2CH2-Br (1 eq).

Page 106: M.sc. Thesis MK - November 15, 2011

- 89 -

3.1.1. N,N"-Dimethylethylenediamine (1a) CAS [110-70-3]

Colorless oil, b.p. = 121 – 123 °C (azeotrope: 10% 2a, 90% 1a), b.p. = 119

– 120 °C (pure 1a). 1H NMR (C6D6): 1.03 [s, 2H, N-H], 2.33 [s, 6H, N-

CH3], 2.55 [s, 4H, N-CH2]. 13C NMR (C6D6): 36.7 [N-CH3], 52.0 [N-CH2].

GC-MS (tr = 3.3 min): 89(75) [(M+1)+], 75(5) [H3C-NH-CH2CH2-N+(H)3],

58(100) [H3C-(H)N+(-CH2CH2-)], 57(50) [H3C-N•+(-CH2CH2-)], 56(25) [H3C-N+(=CH-CH2-

)].

3.1.2. N,N"-Dimethylpiperazine (2a) CAS [106-58-1]

Colorless oil, b.p. = 127 – 130 °C. 1H NMR (C6D6): 2.13 [s, 6H, N-CH3],

2.33 [s, 8H, N-CH2]. 13C NMR (C6D6): 46.2 [N-CH3], 55.5 [N-CH2]. GC-

MS (tr = 5.0 min): 114(100) [M•+], 85(15) [H3C-N+(-CH2CH2-)(-CH2CH2•)],

71(30) [H3C-N+(=CH2)(-CH2CH2• )], 70(35) [H3C-N+(=CH2)(-CH=CH2)],

58(25) [H3C-(H)N+(-CH2CH2-)], 57(20) [H3C-N•+(-CH2CH2-)], 56(30) [H3C-N+(=CH-CH2-

)].

3.1.3. 1,4,7-Trimethyl-1,4,7-triazaheptane (3a) CAS [105-84-0]

Colorless oil, b.p. = 55 – 56 °C / 0.1 torr. 1H NMR (C6D6): 1.05 [s, 2H,

NH], 2.10 [s, 3H, R2N-CH3], 2.32 [s, 6H, R-NH-CH3], 2.36 [t, 4H, 3J(H,H)

= 6 Hz, R-NH-CH2CH2], 2.53 [t, 4H, 3J(H,H) = 6 Hz, R-NH-CH2CH2]. 13C

NMR (C6D6): 36.8 [R-NH-CH3], 42.4 [R2N-CH3], 50.1 [R-NH-CH2CH2],

MeNH

NHMe

MeN

NMe

MeNH

NHMe

N Me

Page 107: M.sc. Thesis MK - November 15, 2011

- 90 -

57.8 [R-NH-CH2CH2]. GC-MS (tr = 8.2 min): 146(20) [(M+1)+], 115(5) [H3C-NH-

CH2CH2-N+(CH3)(-CH2CH2-)], 101(35) [H3C-NH-CH2CH2-N+(H)(-CH2CH2-)], 89(5) [H3C-

NH-CH2CH2-N+(H)2-CH3], 72(15) [H3C-N+(=CH2)(-CH2CH3)], 58(100) [H3C-(H)N+(-

CH2CH2-)].

3.1.4. 1,4,7,10-Tetramethyl-1,4,7,10-tetraazadecane (4a) CAS [105-78-2]

Colorless, viscous oil, b.p. 89 – 90 °C / 0.1 torr. 1H NMR (C6D6): 1.24

[s, 2H, NH], 2.12 [s, 6H, R2N-CH3], 2.13 [s, 6H, R-NH-CH3], 2.39 [s, 4H,

5,6-CH2], 2.40 [t, 4H, 3J(H,H) = 7 Hz, 3,8-CH2], 2.55 [q, 4H, 3J(H,H) = 7

Hz, 2,9-CH2]. 13C NMR (C6D6): 36.8 [R-NH-CH3], 42.8 [R2N-CH3], 50.2

[2,9-CH2], 56.4 [5,6-CH2], 57.8 [3,8-CH2]. EI-MS (direct inlet): 203(100)

[(M+1)+], 129(5) [H3C-NH-CH2CH2-N(CH3)-CH2CH2-N•+], 115(7) [H3C-

NH-CH2CH2-N+(CH3)(-CH2CH2-)], 72(12) [H3C-N+(=CH2)(-CH2CH3)].

3.1.5. N,N"-Diethylethylenediamine (1b) CAS [111-74-0]

Colorless oil, b.p. = 152 – 153 °C. 1H NMR (C6D6): 0.91 [s, 2H, NH], 1.01

[t, 6H, 3J(H,H) = 7 Hz, R-NH-CH2CH3], 2.53 [q, 4H, 3J(H,H) = 7 Hz, R-NH-

CH2CH3], 2.60 [s, 4H, Et-NH-CH2]. 13C NMR (C6D6): 15.8 [R-NH-CH2CH3],

44.5 [R-NH-CH2CH3], 50.0 [Et-NH-CH2]. GC-MS (tr = 6.2 min): 117(20)

[(M+1)+], 72(20) [H3CH2C-N+(H)(-CH2CH2-)], 58(100) [H3CH2C-N+(H)(=CH2)].

MeNH

NHMe

N Me

N Me

EtNH

NHEt

Page 108: M.sc. Thesis MK - November 15, 2011

- 91 -

3.1.6. N,N"-Diethylpiperazine (2b) CAS [102459-01-8]

Colorless oil, b.p. = 171 – 172 °C. 1H NMR (C6D6): 0.99 [t, 6H, 3J(H,H) = 7

Hz, R2N-CH2CH3], 2.25 [q, 4H, 3J(H,H) = 7 Hz, R2N-CH2CH3], 2.40 [s, 8H,

Et-N-CH2]. 13C NMR (C6D6): 12.6 [R2N-CH2CH3], 52.6 [R2N-CH2CH3],

53.4 [Et-N-CH2]. GC-MS (tr = 7.5 min): 142(100) [M•+], 127(30) [H3CH2C-

N(-CH2CH2-)2N+(=CH2)], 113(15) [H3CH2C-N(-CH2CH2-)2N+], 99(30) [H-N(-CH2CH2-

)2N+(=CH2)], 84(75) [•N(-CH2CH2-)2N+], 70(75) [(-CH2CH2-)N+(=C(H)-CH3)], 56(80) [(-

CH2CH2-)N+(=CH2)].

3.1.7. 1,4,7-Triethyl-1,4,7-triazaheptane (3b) CAS [105-93-1]

Colorless viscous oil, b.p. = 66 – 67 °C / 0.1 torr. 1H NMR (C6D6): 0.93

[t, 3H, 3J(H,H) = 7 Hz, R2N-CH2CH3], 1.06 [t, 6H, 3J(H,H) = 7 Hz, R-HN-

CH2CH3], 1.20 [s, 2H, NH], 2.40 [q, 2H, 3J(H,H) = 7 Hz, R2N-CH2CH3],

2.57 [q, 4H, 3J(H,H) = 7 Hz, R-NH-CH2CH3], 2.47 [t, 4H, 3J(H,H) = 5 Hz,

R-NH-CH2CH2], 2.60 [t, 4H, 3J(H,H) = 5 Hz, R-HN-CH2CH2]. 13C NMR

(C6D6): 11.0 [R2N-CH2CH3], 15.0 [R-NH-CH2CH3], 43.3 [R-NH-CH2CH2], 46.9 [R-NH-

CH2CH3], 47.2 [R-NH-CH2CH2], 52.9 [R-NH-CH2CH2]. GC-MS (tr = 9.9 min): 188(10)

[(M+1)+], 129(25) [H3CH2C-NH-CH2CH2-N+(CH2CH3)(=CH2)], 86(75) [H-N(-CH2CH2-

)2N•+(H)], 72(100) [H3CH2C-N+(H)(-CH2CH2-)], 58(40) [(-CH2CH2-)N+(H)(CH3)].

EtN

NEt

EtNH

NHEt

N Et

Page 109: M.sc. Thesis MK - November 15, 2011

- 92 -

3.1.8. 1,4,7,10-Tetraethyl-1,4,7,10-tetraazadecane (4b) CAS [24426-33-3]

Colorless viscous oil, b.p. = 139 – 140 °C / 0.1 torr. 1H NMR (C6D6):

0.97 [t, 6H, 3J(H,H) = 7 Hz, R2N-CH2CH3], 1.09 [t, 6H, 3J(H,H) = 7 Hz, R-

NH-CH2CH3], 1.35 [s, 2H, NH ], 2.50 [s, 4H, 5,6-NCH2], 2.43 [q, 4H,

3J(H,H) = 7 Hz, R2N-CH2CH3], 2.62 [q, 4H, 3J(H,H) = 7 Hz, R-NH-

CH2CH3], 2.52 [t, 4H, 3J(H,H) = 6 Hz, Et-NH-CH2CH2], 2.63 [t, 4H,

3J(H,H) = 6 Hz, Et-NH-CH2CH2]. 13C NMR (C6D6): 12.6 [R2N-CH2CH3],

15.8 [R-NH-CH2CH3], 44.7 [R-NH-CH2CH3], 48.3 [R-NH-CH2CH2], 48.8 [R2N-CH2CH3],

53.0 [5,6-CH2], 54.5 [R-NH-CH2CH2]. GC-MS (tr = 11.5 min): 259(5) [(M+1)+], 143(30)

[H3CH2C-NH-CH2CH2-N+(-CH2CH2-)(CH2CH3) ] , 129(40) [H3CH2C-NH-CH2CH2-

N+(CH2CH3)(=CH2)], 86(100) [H-N(-CH2CH2-)2N•+(H)], 72(90) [H3CH2C-N+(H)(-CH2CH2-

)], 58(45) [(-CH2CH2-)N+(H)(CH3)].

3.1.9. N,N"-Di-iso-propylethylenediamine (1c) CAS [4013-94-9]

Colorless oil, b.p. = 169 – 170 °C. 1H NMR (C6D6): 0.98 [d, 12H, 3J(H,H) =

6 Hz, R-NH-CH(CH3)2], 0.88 [s, 2H, NH], 2.58 [s, 4H, iPr-NH-CH2], 2.66

[sept, 2H, 3J(H,H) = 6 Hz, R-NH-CH(CH3)2]. 13C NMR (C6D6): 23.4 [R-NH-

CH(CH3)2], 48.0 [iPr-NH-CH2], 50.7 [R-NH-CH(CH3)2]. GC-MS (tr = 7.2

min): 145(75) [(M+1)+], 86(25) [(-CH2CH2-)(H)N+(-CH(CH3)2)], 72(100) [(H3C)2HC-

(H)N+(=CH2)], 58(25) [(H3C)2HC-N+-H].

EtNH

NHEt

N Et

N Et

iPrNH

NHiPr

Page 110: M.sc. Thesis MK - November 15, 2011

- 93 -

3.1.10. N,N"-Di-iso-propylpiperazine (2c) [CAS 21943-18-0]

Colorless viscous oil, b.p. = 178 – 180 °C. 1H NMR (C6D6): 0.90 [d, 12H,

3J(H,H) = 6 Hz, R2N-CH(CH3)2], 2.46 [s, 8H, iPr-N-CH2], 2.73 [sept, 2H,

3J(H,H) = 6 Hz, R2N-CH(CH3)2]. 13C NMR (C6D6): 18.7 [R2N-CH(CH3)2],

49.0 [iPr-N-CH2], 54.4 [R2N-CH(CH3)2]. GC-MS (tr = 9.2 min): 170(40)

[M•+], 155(100) [(H3C)2HC-N(-CH2CH2-)2N+(=C(H)-CH3)], 127(15) [(H3C)2HC-N(-

CH2CH2-)2N+], 112(25) [(H3C-(H)C=)N+(-CH2CH2-)2N•], 98(60) [H2C=N+(-CH2CH2-)2N•],

84(75) [•N(-CH2CH2-)2N+], 70(30) [(-CH2CH2-)N+(=C(H)-CH3)], 56(80) [(-CH2CH2-

)N+(=CH2)].

3.1.11. 1,4,7-Tri-iso-propyl-1,4,7-triazaheptane (3c) CAS [10524-50-2]

Colorless viscous oil, b.p. = 79 – 80 °C / 0.1 torr. 1H NMR (C6D6): 0.89

[d, 6H, 3J(H,H) = 7 Hz, R2N-CH(CH3)2], 1.07 [d, 12H, 3J(H,H) = 7 Hz, R-

NH-CH(CH3)2], 1.30 [s, 2H, NH], 2.43 [t, 4H, 3J(H,H) = 6 Hz, 3,5-CH2],

2.57 [t, 4H, 3J(H,H) = 6 Hz, 2,6-CH2], 2.74 [sept, 2H, 3J(H,H) = 7 Hz, R-

NH-CH(CH3)2], 2.80 [sept, 1H, 3J(H,H) = 7 Hz, R2N-CH(CH3)2]. 13C NMR

(C6D6): 18.3 [R2N-CH(CH3)2], 23.7 [R-NH-CH(CH3)2], 46.8 [2,6-CH2], 49.2 [R-NH-

CH(CH3)2], 50.3 [3,5-CH2], 50.5 [R2N-CH(CH3)2]. GC-MS (tr = 10.8 min): 230(80)

[(M+1)+], 157(5) [(H3C)2HC-NH-CH2CH2-N+(-CH(CH3)2)(=CH2)], 100(100) [(H3C)2HC-

NH-CH2CH2-N•+].

iPrN

NiPr

iPrNH

NHiPr

N iPr

Page 111: M.sc. Thesis MK - November 15, 2011

- 94 -

3.1.12. 1,4,7,10-Tetra-iso-propyl-1,4,7,10-tetraazadecane (4c)

Colorless viscous oil, b.p. = 160 – 161 °C / 0.1 torr. 1H NMR (C6D6):

0.96 [d, 12H, 3J(H,H) = 7 Hz, R2N-CH(CH3)2], 1.09 [d, 12H, 3J(H,H) = 7

Hz, R-NH-CH(CH3)2], 1.44 [s, 2H, NH], 2.47 [s, 4H, 5,6-CH2], 2.52 [t, 4H,

3J(H,H) = 7 Hz, 3,8-CH2], 2.62 [s, 4H, 2,9-CH2], 2.76 [sept, 2H, 3J(H,H) =

7 Hz, R2N-CH(CH3)2], 2.85 [sept, 2H, 3J(H,H) = 7 Hz, R-NH-CH(CH3)2].

13C NMR (C6D6): 18.4 [R2N-CH(CH3)2], 23.6 [R-NH-CH(CH3)2], 46.8 [2,9-

CH2], 49.3 [R-NH-CH(CH3)2], 51.1 [5,6-CH2], 51.2 [R2N-CH(CH3)2], 51.5 [3,8-CH2]. GC-

MS (tr = 13.1 min): 315(75) [(M+1)+], 169(25) [(H3C)2HC-N(-CH2CH2-)2N+=C(CH3)2],

100(100) [(H3C)2HC-NH-CH2CH2-N•+]. EI HRMS m/z calculated for 4 c [M+H]+:

315.3488. Found: 315.3479.

3.1.13. 1,4,7,10,13-Penta-iso-propyl-1,4,7,10,13-pentaazatridecane (5c)

Colorless viscous oil, b.p. = 184 – 185 °C / 0.1 torr. 1H NMR (C6D6):

0.96 [d, 12H, 3J(H,H) = 7 Hz, 4,10-R2N-CH(CH3)2], 0.99 [d, 6H, 3J(H,H) =

7 Hz, 7-R2N-CH(CH3)2], 1.09 [d, 12H, 3J(H,H) = 7 Hz, R-NH-CH(CH3)2],

1.48 [s, 2H, NH], 2.53 [s, 12H, 3,5,6,8,9,11-CH2], 2.63 [m, 4H, 2,12-CH2],

2.78 [sept, 2H, 3J(H,H) = 7 Hz, R-NH-CH(CH3)2], 2.87 [sept, 3H, 3J(H,H)

= 7 Hz, 4,7,10-R2N-CH(CH3)2]. 13C NMR (C6D6): 18.3 [4,10-R2N-

CH(CH3)2], 18.5 [7-R2N-CH(CH3)2], 23.4 [R-NH-CH(CH3)2], 46.8 / 49.2 /

iPrNH

NHiPr

N iPr

N iPr

iPrNH

NHiPr

N

N iPr

iPr

N iPr

Page 112: M.sc. Thesis MK - November 15, 2011

- 95 -

51.1 / 51.2 / 51.5 / 52.0 / 52.2 [N-CH2 & N-CH(CH3)2]. GC-MS (tr = 15.3 min): 400(10)

[M•+], 169(100) [(H3C)2HC-N(-CH2CH2-)2N+=C(CH3)2], 100(55) [(H3C)2HC-NH-CH2CH2-

N•+]. EI HRMS m/z calculated for 5c [M+H]+: 400.4379. Found: 400.4379.

3.1.14. N,N"-Di-tert-butylethylenediamine (1d) CAS [4062-60-6]

Colorless oil, b.p. = 196 – 198 °C. 1H NMR (C6D6): 0.75 [s, 2H, NH], 1.04

[s, 18H, R-NH-C(CH3)3], 2.57 [s, 4H, tBu-NH-CH2]. 13C NMR (C6D6): 29.4

[R-NH-C(CH3)3], 43.6 [tBu-NH-CH2], 49.8 [R-NH-C(CH3)3]. GC-MS (tr = 8.2

min): 173(100) [(M+1)+], 157(10) [(H3C)3C-NH-CH2CH2-N+(H)=C(CH3)2],

100(10) [(-CH2CH2-)(H)N+-C(CH3)3].

3.1.15. N,N"-Di-tert-butylpiperazine (2d) CAS [10125-77-6]

Colorless solid, m.p. = 83.5 – 84.5 °C, b.p. 205 – 206 °C. 1H NMR (C6D6):

1.02 [s, 18H, R2N-C(CH3)3], 2.53 [s, 8H, tBu-N-CH2]. 13C NMR (C6D6):

26.1 [R2N-C(CH3)3], 46.8 [tBu-N-CH2], 53.1 [R2N-C(CH3)3]. GC-MS (tr =

10.0 min): 198(15) [M•+], 183(100) [(H3C)3C-N(-CH2CH2-)2N+=C(CH3)2],

157(5) [(H3C)3C-N+(H)(-CH2CH2-)2N-CH3], 141(5) [(H3C)3C-N(-CH2CH2-)2N+], 127(55)

[(H3C)3C-N+(-CH2CH2-)(-CH2CH2•)], 98(10) [(H3C)3C-N+(=CH-CH2-)], 85(20) [(H3C)3C-

N•+=CH2], 70(15) [(H3C)2C=N+=CH2], 57(20) [(H3C)3C+].

tBuNH

NHtBu

tBuN

NtBu

Page 113: M.sc. Thesis MK - November 15, 2011

- 96 -

3.1.16. 1,4,7-Tri-tert-butyl-1,4,7-triazaheptane (3d) CAS [24426-18-4]

Colorless viscous oil, b.p. = 94 – 95 °C / 0.1 torr. 1H NMR (C6D6): 0.75

[s, 2H, NH], 1.03 [s, 9H, R2N-C(CH3)3], 1.11 [s, 18H, R-NH-C(CH3)3],

2.55 – 2.65 [m, 8H, N-CH2]. 13C NMR (C6D6): 27.4 [R2N-C(CH3)3], 29.5

[R-NH-C(CH3)3], 44.1 [tBu-NH-CH2], 49.8 [tBu-NH-CH2CH2], 52.8 [R-NH-

C(CH3)3], 54.6 [R2N-C(CH3)3]. GC-MS (tr = 11.5 min): 272(50) [(M+1)+],

256(5) [(H3C)3C-NH-CH2CH2-N(C(CH3)3)-CH2CH2-N+(H)=C(CH3)2], 185(60) [(H3C)3C-

NH-CH2CH2-N+(C(CH3)3)=CH2] , 173(10) [ (H3C)3C-NH-CH2CH2-N+(H)2-C(CH3)3],

157(10) [(H3C)3C-NH-CH2CH2-N+(H)=C(CH3)2], 129(75) [(H3C)3C-NH-CH2CH2-

N+(H)=CH2], 113(10) [(H3C)3C-N+(=CH2)-CH2CH2• ], 100(100) [(-CH2CH2-)(H)N+-

C(CH3)3], 73(80) [(H3C)3C-N•+ (H)2], 57(20) [(H3C)3C+].

3.1.17. N,N"-Diphenylethylenediamine (1e) CAS [150-61-8]

Colorless solid, m.p. = 68.5 – 69.0 °C, b.p. = 160 – 162 °C / 0.1 torr. 1H

NMR (C6D6): 2.79 [s, 4H, CH2], 3.19 [s, 2H, NH], 6.40 [d, 4H, 3J(H,H) = 7

Hz, ortho-C6H5], 6.76 [t, 2H, 3J(H,H) = 7 Hz, para-C6H5], 7.15 [t, 4H,

3J(H,H) = 7 Hz, meta-C6H5]. 13C NMR (C6D6): 43.0 [CH2], 113.2 [ortho-

C6H5], 117.8 [para-C6H5], 129.5 [meta-C6H5], 148.5 [ipso-C6H5]. GC-MS (tr

= 15.6 min): 212(25) [M•+], 106(100) [C6H5-N+(H)=CH2], 77(35) [(C6H5)+].

tBuNH

NHtBu

N tBu

NH

NH

Page 114: M.sc. Thesis MK - November 15, 2011

- 97 -

3.1.18. N,N"-Diphenylpiperazine (2e) CAS [613-39-8]

Colorless solid, m.p. = 164 – 165 °C. 1H NMR (C6D6): 2.94 [s, 8H, CH2],

6.40 [d, 4H, 3J(H,H) = 7 Hz, ortho-C6H5], 6.85 [t, 2H, 3J(H,H) = 7 Hz, para-

C6H5], 7.22 [t, 4H, 3J(H,H) = 7 Hz, meta-C6H5]. 13C NMR (C6D6): 49.3

[CH2], 116.7 [ortho-C6H5], 120.1 [para-C6H5], 129.3 [meta-C6H5], 151.8

[ipso-C6H5]. GC-MS (tr = 15.6 min): 238(100) [M•+], 225(20) [C6H5-NH-

CH2CH2-N+(C6H5)=CH2], 132(55) [C6H5-N+(=CH2)-CH=CH2], 106(60)

[C6H5-N+(H)=CH2], 104(74) [C6H5-N+!CH], 77(50) [(C6H5)+].

3.1.19. 1,4,7-Triphenyl-1,4,7-triazaheptane (3e) CAS [68360-81-6]

Colorless solid, m.p. = 118 – 119 °C, b.p. = 250 – 252 °C / 0.1 torr.

1H NMR (C6D6): 2.90 [q, 4H, 3J(H,H) = 7 Hz, C6H5-NH-CH2], 3.05 [t,

4H, 3J(H,H) = 7 Hz, C6H5-NH-CH2CH2], 3.17 [s, 2H, NH], 6.36 [d,

4H, 3J(H,H) = 7 Hz, ortho-C6H5-NH-R], 6.61 [d, 2H, 3J(H,H) = 7 Hz,

ortho-C6H5-NR2], 6.74 [t, 2H, 3J(H,H) = 7 Hz, para-C6H5-NH-R],

6.80 [t, 1H, 3J(H,H) = 7 Hz, para-C6H5-NR2], 7.14 [t, 4H, 3J(H,H) = 7

Hz, meta-C6H5-NH-R], 7.22 [t, 2H, 3J(H,H) = 7 Hz, meta-C6H5-NR2].

13C NMR (C6D6): 41.3 [C6H5-NH-CH2], 50.9 [C6H5-NH-CH2CH2], 113.1 [ortho-C6H5-NH-

R], 113.3 [ortho-C6H5-NR2], 117.5 [para-C6H5-NH-R], 117.8 [para-C6H5-NR2], 129.7

[meta-C6H5-NH-R], 129.9 [meta-C6H5-NR2], 148.3 [ipso-C6H5-NH-R], 148.4 [ipso-C6H5-

NR2]. EI -MS (direct inlet): 332(74) [(M+1)+], 225(45) [C6H5-NH-CH2CH2-

N+(C6H5)=CH2], 212(50) [C6H5-NH-CH2CH2-N•+(H)-C6H5], 132(28) [C6H5-N+(=CH2)-

N

N

NH

NH

N

Page 115: M.sc. Thesis MK - November 15, 2011

- 98 -

CH=CH2], 120(100) [C6H5-N+(H)(-CH2CH2-)], 106(46) [C6H5-N+(H)=CH2], 91(26) [C6H5-

N•+], 77(48) [(C6H5)+].

3.2. Reaction of 1,3-Dibromopropane with Primary Amines

Br

Br

NH

NH

R

R

R

R

N

N

NH

NH

N R

R

R

5 eq R-NH2

20 °C / 1 wk+ +

NR

+

6

7 8

9

Scheme 36: Diamines and polyamines from primary amines and 1,3-dibromopropane.

General procedure for the reaction of primary amines with 1,3-dibromopropane

(Scheme 36): The primary amine (5 eq), water (20 mL if primary amine is anhydrous)

and 1,3-dibromopropane (1 eq, 50 mL) were combined. With the exception of scale and

water ratio, the procedure is identical to the procedure for primary amines and 1,2-

dibromoethane (section 3.1.). For R = iPr, tBu, Ph: 20 mL H2O was added to the

mixture to accelerate the reaction and improve solubility of HBr salts. See Table 8 for

isolated yields.

Table 8: Product yields (in %) for primary amines (5 eq) + 1,3-dibromopropane (1 eq).

Page 116: M.sc. Thesis MK - November 15, 2011

- 99 -

3.2.1. N,N"-Dimethyl-1,3-propanediamine (7a) CAS [111-33-1]

Colorless liquid, b.p. = 144 – 145 °C. 1H NMR (C6D6): 0.72 [s, 2H, NH],

1.52 [p, 2H, 3J(H,H) = 7 Hz, CH2CH2CH2], 2.26 [s, 6H, CH3], 2.49 [t, 4H,

3J(H,H) = 7 Hz, CH2CH2CH2]. 13C NMR (C6D6): 30.7 [CH2CH2CH2], 36.8

[CH3], 51.2 [CH2CH2CH2]. 13C NMR (CDCl3): 29.2 [CH2CH2CH2], 35.5

[CH3], 49.9 [CH2CH2CH2]. GC-MS (tr = 5.6 min): 103(100) [H3C-NH-CH2CH2CH2-

N+(H)2-CH3], 72(35) [H3C-(H)N+(-CH2CH2CH2-)], 58(20) [H3C-(H)N+(-CH2CH2-)].

3.2.2. 1,5,9-Trimethyl-1,5,9-triazanonane (9a) CAS [123-70-6]

Colorless liquid, b.p. = 55 – 56 °C / 0.1 torr. 1H NMR (C6D6): 0.78 [s,

2H, NH], 1.56 [p, 4H, 3J(H,H) = 7 Hz, CH2CH2CH2], 2.10 [s, 3H, R2N-

CH3], 2.29 [s, 6H, R-NH-CH 3], 2.30 [t, 4H, 3J (H,H) = 7 Hz,

CH2CH2CH2], 2.51 [t, 4H, 3J(H,H) = 7 Hz, CH2CH2CH2]. 13C NMR

(C6D6): 28.2 [CH2CH2CH2], 36.9 [R2N-CH3], 42.3 [R-NH-CH3], 51.0

[CH2CH2CH2], 56.6 [CH2CH2CH2]. GC-MS (tr = 10.1 min): 174(25) [(M+1)+], 158(5)

[H3C-NH-CH2CH2CH2-N(CH3)-CH2CH2CH2-N+-H] , 143(7) [H3C-NH-CH2CH2CH2-

N+(CH3)(-CH2CH2CH2-)], 129(3) [H3C-NH-CH2CH2CH2-N+(CH3)(-CH2CH2-)], 115(50)

[H3C-NH-CH2CH2CH2-N+(CH3)(=CH2)], 103(30) [H3C-NH-CH2CH2CH2-N+(H)2-CH3],

85(25) [(-CH2CH2-)N+(CH3)(-CH2CH2•)], 72(50) [H3C-(H)N+(-CH2CH2CH2-)], 58(100)

[H3C-(H)N+(-CH2CH2-)].

NH

NH

Me

Me

NH

NH

N Me

Me

Me

Page 117: M.sc. Thesis MK - November 15, 2011

- 100 -

3.2.3. N,N"-Diethyl-1,3-propanediamine (7b) CAS [10061-68-4]

Colorless liquid, b.p. = 160 – 161 °C. 1H NMR (CDCl3): 1.11 [t, 6H,

3J(H,H) = 7 Hz, N-CH2CH3], 1.25 [s, 2H, NH], 1.70 [p, 2H, 3J(H,H) = 7 Hz,

CH2CH2CH2], 2.67 [m, 8H, CH2CH2CH2 & N-CH2CH3]. 13C NMR (CDCl3):

15.2 [N-CH2CH3], 30.2 [CH2CH2CH2], 44.2 [CH2], 48.4 [CH2]. GC-MS (tr

= 7.5 min): 131(5) [(M+1)+], 115(5) [H3CH2C-NH-CH2CH2CH2-N+(H)(=CH2)], 85(50)

[H3CH2C-N•+(-CH2CH2CH2-)], 71(100) [H3CH2C-N•+(-CH2CH2-)], 58(70) [H3CH2C-

N+(H)(=CH2)].

3.2.4. 1,5,9-Triethyl-1,5,9-triazanonane (9b)

Colorless liquid, b.p. = 50 – 51 °C / 0.1 torr. 1H NMR (CDCl3): 1.10 [m,

9H], 1.65 [m, 4H], 2.50 [m, 6H], 2.85 [m, 8H]. 13C NMR (CDCl3): 10.3,

13.9, 26.2, 42.8, 45.9, 47.2, 50.5. GC-MS (tr = 11.5 min): 216(5)

[(M+1)+], 200(3) [H3CH2C-NH-CH2CH2CH2-(H3CH2C)N-CH2CH2CH2-

N+(H)(=CH2) ] , 1 7 1 ( 6 ) [ H3CH2C-NH-CH2CH2CH2-(H3CH2C)N+(-

CH2CH2CH2-)], 143(95) [H3CH2C-NH-CH2CH2CH2-N+(CH2CH3)(=CH2)], 72(100)

[H3CH2C-(H)N+(-CH2CH2-)].

NH

NH

Et

Et

NH

NH

N Et

Et

Et

Page 118: M.sc. Thesis MK - November 15, 2011

- 101 -

3.2.5. N,N"-Di-iso-propyl-1,3-propanediamine (7c) CAS [63737-71-3]

Colorless liquid, b.p. = 60 – 62 °C / 0.1 torr. GC-MS (tr = 6.4 min):

159(30) [(M+1)+], 99(10) [(H3C)2HC-N•+(-CH2CH2CH2-)], 85(100)

[(H3C)2HC-N•+(-CH2CH2-)], 72(50) [(H3C)2HC-N+(H)(=CH2)], 58(45)

[(H3C)2HC-N+-H].

3.2.6. 1,5,9-Tri-iso-propyl-1,5,9-triazanonane (9c)

Colorless liquid, b.p. = 135 – 136 °C / 0.1 torr. 1H NMR (CDCl3): 0.95

[d, 6H, 3J(H,H) = 6 Hz, R2N-CH(CH3)2], 1.05 [d, 12H, 3J(H,H) = 6 Hz, R-

NH-CH(CH3)2], 1.20 [s, 2H, NH ], 1.60 [p, 4H, 3J (H,H) = 7 Hz,

CH2CH2CH2], 2.41 [t, 4H, 3J(H,H) = 7 Hz, N-CH2], 2.61 [t, 4H, 3J(H,H) =

7 Hz, N-CH2], 2.76 [sept, 2H, 3J(H,H) = 6 Hz, R-NH-CH(CH3)2], 2.95

[sept, 1H, 3J(H,H) = 6 Hz, R2N-CH(CH3)2]. 13C NMR (CDCl3): 17.7 [R2N-CH(CH3)2],

23.0 [R-NH-CH(CH3)2], 29.1, 46.6, 48.2, 48.9, 49.3. GC-MS (tr = 10.2 min): 258(60)

[(M+1)+], 214(3) [((H3C)2HC-NH-CH2CH2CH2-)2N+], 199(20) [(H3C)2HC-NH-CH2CH2CH2-

((H3C)2HC)N+(-CH2CH2CH2-)] , 185(5) [(H3C)2HC-NH-CH2CH2CH2-((H3C)2HC)N+(-

CH2CH2-)], 171(20) [(H3C)2HC-NH-CH2CH2CH2-((H3C)2HC)N+(=CH2)], 159(20)

[(H3C)2HC-NH-CH2CH2CH2-N+(H)2-CH(CH3)2], 143(8) [(H3C)2HC-NH-CH2CH2CH2-

(H)N+(=CHCH3)], 127(12) [(H3C)2HC-N+(-CH2CH2-)(-CH2CH2CH2•)], 114(20) [(H3C)2HC-

NH-CH2CH2CH2-N•+], 100(100) [(H3C)2HC-(H)N+(-CH2CH2CH2-)], 86(70) [(H3C)2HC-

(H)N+(-CH2CH2-)], 72(35) [(H3C)2HC-N+(H)(=CH2)], 58(20) [(H3C)2HC-N+-H].

NH

NH

iPr

iPr

NH

NH

N iPr

iPr

iPr

Page 119: M.sc. Thesis MK - November 15, 2011

- 102 -

3.2.7. N,N"-Di-tert-butyl-1,3-propanediamine (7d)

Colorless solid, m.p. = 60 – 62 ºC. 1H NMR (C6D6): 1.04 [s, 18H,

C(CH3)3], 1.53 [p, 2H, 3J(H,H) = 7 Hz, CH2CH2CH2], 2.59 [t, 4H, 3J(H,H) =

7 Hz, CH2CH2CH2]. 13C NMR (C6D6): 29.3 [C(CH3)3], 33.0 [CH2CH2CH2],

41.4 [CH2CH2CH2], 50.0 [C (CH3)3]. GC-MS (tr = 9.1 min): 188(15)

[(M+2)•+], 187(100) [(M+1)+], 171(5) [(H3C)3C-NH-CH2CH2CH2-N+(H)(=C(CH3)2)],

129(20) [(H3C)3C-NH-CH2CH2CH2-N+-H], 113(15) [(H3C)3C-N•+(-CH2CH2CH2-)],

100(25) [(H3C)3C-(H)N+(-CH2CH2-)], 98(45) [(H3C)3C-(H)N+(-CH2=CH2-)], 86(22)

[(H3C)3C-(H)N+(=CH2)], 74(20) [(H3C)3C-N+(H)3], 73(15) [(H3C)3C-N•+(H)2], 72(20)

[(H3C)3C-N+(H)], 58(10) [(H3C)3C+(•H)], 57(20) [(H3C)3C+], 56(20) [(H3C)2C+(-CH2•)].

3.2.8. N,N"-Diphenyl-1,3-propanediamine (7e)

Clear yellow viscous oil, m.p. = -16 – -17 °C, b.p. = 180 – 181 °C / 0.1

torr. 1H NMR (C6D6): 1.30 [p, 2H, 3J(H,H) = 7 Hz, CH2CH2CH2], 2.73 [q,

4H, 3J(H,H) = 7 Hz, CH2CH2CH2], 3.02 [s, 2H, NH], 6.45 [d, 4H, 3J(H,H)

= 7 Hz, ortho-C6H5], 6.77 [t, 2H, 3J(H,H) = 7 Hz, para-C6H5], 7.19 [t, 4H,

3J(H,H) = 7 Hz, meta-C6H5]. 13C NMR (C6D6): 29.1 [CH2CH2CH2], 41.7

[CH2CH2CH2], 113.2 [ortho-C6H5], 117.7 [para-C6H5], 129.5 [meta-C6H5],

148.7 [ipso-C6H5]. GC-MS (tr = 15.2 min): 226(100) [M•+], 132(50) [C6H5-N+(=CH-CH2-

CH2-)], 106(40) [C6H5-N+(H)(=CH2)], 77(15) [(C6H5+)]. FT-IR [CsI, /(cm-1)]: 3407 m,

3050 m, 3019 m, 2934 m, 2863 m, 1575 l, 1505 l, 1474 s, 1430 s, 1317 m, 1259 m,

1179 m, 1131 s, 1028 s, 991 s, 869 s, 749 l, 693 l, 509 m.

NH

NH

tBu

tBu

NH

NH

Page 120: M.sc. Thesis MK - November 15, 2011

- 103 -

3.2.9. 1,5,9-Triphenyl-1,5,9-triazanonane (9e)

Clear orange viscous oil, m.p. = 9 – 10 °C, b.p. = 300 – 301 °C /

0.1 torr. 1H NMR (C6D6): 1.44 [p, 4H, 3J (H,H) = 7 Hz,

CH2CH2CH2], 2.72 [q, 4H, 3J(H,H) = 7 Hz, N-CH2CH2CH2-NH-Ph],

3.00 [t, 4H, 3J(H,H) = 7 Hz, N-CH2CH2CH2-NH-Ph], 3.00 [s, 2H,

NH], 6.46 [d, 4H, 3J(H,H) = 7 Hz, ortho-C6H5-NH-R], 6.64 [d, 2H,

3J(H,H) = 7 Hz, ortho-C6H5-NR2], 6.77 [t, 2H, 3J(H,H) = 7 Hz, para-

C6H5-NH-R], 6.79 [t, 1H, 3J(H,H) = 7 Hz, para-C6H5-NR2], 7.20 [t,

4H, 3J(H,H) = 7 Hz, meta-C6H5-NH-R], 7.24 [t, 2H, 3J(H,H) = 7 Hz, meta-C6H5-NR2]. 13C

NMR (C6D6): 27.2 [CH2CH2CH2], 41.6 [N-CH2CH2CH2-NH-Ph], 49.0 [N-CH2CH2CH2-

NH-Ph], 113.1 [ortho-C6H5-NH-R], 113.3 [ortho-C6H5-NR2], 117.3 [para-C6H5-NH-R],

117.7 [para-C6H5-NR2], 129.5 [meta-C6H5-NH-R], 129.6 [meta-C6H5-NR2], 148.4 [ipso-

C6H5-NH-R], 148.7 [ipso-C6H5-NR2]. FT-IR [CsI, /(cm-1)]: 3404 m, 3050 m, 3021 m,

2947 m, 2868 m, 1575 l, 1505 l, 1476 s, 1320 m, 1260 m, 1178 m, 1072 s, 1036 s, 991

s, 868 s, 747 l, 693 l, 509 m.

NH

NH

N

Page 121: M.sc. Thesis MK - November 15, 2011

- 104 -

3.3. Asymmetric Diamines: Ring Opening Reactions of Arizidines and Azetidines

3.3.1. N,N"-Disubstituted Ethylenediamines with Different Substituents (10)

tBuN

tBuNH

NH225 °C / 24 hrs

Ph-NH2

10

Scheme 47: Synthesis of N,N"-disubstituted ethylenediamines.

Aniline (23.5 g, 23.0 mL, 0.250 mol, 5 eq) and N-tert-butyl aziridine (5.00 g, 0.050

mol, 1 eq) were combined in a 50 mL stainless steel vessel (Swagelok) and heated at

225 °C for 24 hrs (Scheme 47). NMR of the crude reaction mixture indicates a 2 : 1

mole ratio of tBu-NH-CH2CH2-NH-Ph (10) : tBu-N(-CH2CH2-)2N-tBu (2d). Vaccuum

distillation through a Vigreux column gave spectroscopically pure 10 as a yellow oil

(5.07 g, 0.026 mol, b.p. = 150 – 152 oC / 0.1 torr, in 52% yield). tBu-N(-CH2CH2-)2N-tBu

(2d) was isolated as the first fraction (30%) of the crude mixture.

1H NMR (C6D6): 0.92 [s, 9H, C(CH3)3], 2.45 [t, 2H, 3J(H,H) = 5.6 Hz, tBu-NH-CH2], 2.85

[q, 2H, 3J(H,H) = 5.6 Hz, CH2-NH-Ph], 4.05 [s, 1H, tBu-NH-CH2], 6.55 [d, 2H, 3J(H,H) =

7.60 Hz, ortho-C6H5], 6.76 [t, 1H, 3J(H,H) = 7.2 Hz, para-C6H5], 7.18 [t, 2H, 3J(H,H) = 8

Hz, meta-C6H5]. 13C NMR (C6D6): 29.2 [C(CH3)3], 41.5 [tBu-NH-CH2], 44.7 [CH2-NH-

Ph], 49.9 [C(CH3)3], 113.3 [ortho-C6H5], 117.5 [para-C6H5], 129.5 [t, meta-C6H5], 149.3

[ipso-C6H5]. 1H NMR (CDCl3): 1.10 [s, 9H, C(CH3)3], 2.81 [t, 2H, 3J(H,H) = 5.6 Hz, tBu-

Page 122: M.sc. Thesis MK - November 15, 2011

- 105 -

NH-CH2], 3.17 [q, 2H, 3J(H,H) = 5.6 Hz, CH2-NH-Ph], 4.10 [s, 1H, tBu-NH-CH2], 6.63 [d,

2H, 3J(H,H) = 7.6 Hz, ortho-C6H5], 6.69 [t, 1H, 3J(H,H) = 7.2 Hz, para-C6H5], 7.16 [t, 2H,

3J(H,H) = 8 Hz, meta-C6H5]. 13C NMR (CDCl3): 29.2 [C(CH3)3], 41.6 [tBu-NH-CH2], 44.8

[CH2-NH-Ph], 50.2 [C(CH3)3], 113.0 [ortho-C6H5], 117.3 [para-C6H5], 129.2 [t, meta-

C6H5], 148.6 [ipso-C6H5]. GC-MS (tr = 11.6 min): 194(15) [(M + 2)+], 193(100) [(M + 1)+],

192(12) [M+], 177(3) [Ph-NH-CH2CH2-N+(H)=C(CH3)2], 159(2) [Ph-NH-CH=CH-N+!C-

CH3], 137(2) [Ph-NH-CH2CH2-N+(H)3], 120(5) [Ph-N+(H)(-CH2CH2-)], 108(3) [Ph-N+(H)2-

CH3], 107(45) [Ph-N•+(H)-CH3], 106(35) [Ph-N+(H)=CH2], 86(8) [H2C=N+(H)-tBu], 77(10)

[(C6H5)+], 57(8) [C+(CH3)3].

3.3.2. N-tert-Butyl-Azetidine (6d)

tBuN

Br

Br

tBu-NH2

20 °C / 16 hrs

6d

Scheme 48: Synthesis of N-tButyl azetidine.

tert-Butyl amine (180 g, 259 mL, 2.46 mol, 5 eq), 1,3-dibromopropane (99 g, 50

mL, 0.49 mol, 1 eq), and 20 mL water were combined and stirred for 16 hours at

ambient temperature (Scheme 48). An exothermic reaction lasting approximately 15

minutes occurred shortly after combining the starting materials. A large amount of

insoluble white precipitate became visible by the 12th hour. Once the reaction was

complete excess NaOH was added to neutralize the HBr salts, then the NaOH drying

procedure was applied. NMR of the crude reaction mixture indicates the formation of N-

Page 123: M.sc. Thesis MK - November 15, 2011

- 106 -

tert-butyl-azetidine (6d ) and N,N"-di-tert-butyl-1,3-propanediamine (7d). Fractional

distillation through a 30 cm Vigreux column conveniently separates 6d from 7d: 6d (44

g, 52 mL, 0.389 mol, clear liquid: b.p. = 30 – 32 ºC / 0.1 torr, isolated yield = 78%) and

7d (14 g, 0.075 mol, colorless solid: m.p. = 60 – 62 ºC, isolated yield = 15%).

1H NMR (C6D6): 0.95 [s, 9H, C(CH3)3], 1.97 [p, 2H, 3J(H,H) = 8 Hz, CH2CH2CH2], 3.19 [t,

4H, 3J(H,H) = 8 Hz, CH2CH2CH2]. 13C NMR (C6D6): 15.6 [CH2CH2CH2], 23.9 [C(CH3)3],

46.6 [CH2CH2CH2], 51.7 [C(CH3)3]. G C - M S (tr = 4.4 min): 113(30) [tBu-N•+(-

CH2CH2CH2-)], 98(100) [(H3C)2C=N+(-CH2CH2CH2-)], 70(23) [(H3C)2C=N+=CH2].

3.3.3. N-tert-Butyl-N"-phenyl-1,3-propanediamine (11)

tBuN

tBuNH

NH375 °C / 20 hrs

Ph-NH2

11

6d

Scheme 49: Synthesis of N,N"-disubstituted 1,3-propanediamines.

Aniline (1.70 g, 1.70 mL, 19 mmol, 5 eq) and N-tert-butyl azetidine (6d) (0.423 g,

0.5 mL, 4 mmol, 1 eq) were combined in a 50 mL stainless steel vessel (Swagelok) and

heated (Scheme 49). After 90 ºC for 50 hours, NMR shows no reaction. The

temperature was increased to 200 ºC for 48 hours, with no effect. Heating for 20 hours

at 375 ºC cleanly converts starting materials to tBu-NH-CH2CH2CH2-NH-Ph (11).

Sublimation yields 11 as clear, colorless crystals: (0.13 g, 1 mmol, b.p. = 65 – 67 ºC /

Page 124: M.sc. Thesis MK - November 15, 2011

- 107 -

0.1 torr, isolated yield = 17%). There was no other material in the Swagelok vessel so it

is likely the missing material was boiled out through leaks in the thread / teflon tape

seal.

1H NMR (C6D6): 0.92 [s, 9H, C(CH3)3], 1.40 [p, 2H, 3J(H,H) = 6 Hz, CH2CH2CH2], 2.37

[t, 2H, 3J(H,H) = 6 Hz, tBu-NH-CH2], 3.00 [q, 2H, 3J(H,H) = 6 Hz, CH2-NH-Ph], 4.55 [s,

1H, tBu-NH-CH2], 6.58 [d, 2H, 3J(H,H) = 7 Hz, ortho-C6H5], 6.77 [t, 1H, 3J(H,H) = 7 Hz,

para-C6H5], 7.22 [t, 2H, 3J(H,H) = 7 Hz, meta-C6H5]. 13C NMR (C6D6): 29.1 [C(CH3)3],

30.3 [CH2CH2CH2], 41.4 [tBu-NH-CH2], 43.7 [CH2-NH-Ph], 50.0 [C(CH3)3], 112.9 [ortho-

C6H5], 117.1 [para-C6H5], 128.2 [meta-C6H5], 149.5 [ipso-C6H5]. GC-MS (tr = 12.6 min):

208(10) [Ph-N•(H)2-CH2CH2CH2-N+(H)2-tBu], 207(75) [Ph-NH-CH2CH2CH2-N+(H)2-tBu],

206(70) [Ph-NH-CH2CH2CH2-N•+(H)-tBu], 191(15) [Ph-NH-CH2CH2CH2-(H)N+=C(CH3)2],

149(5) [Ph-NH-CH2CH2CH2-N+-H], 134(20) [Ph-(H)N+(-CH2CH2CH2-)], 132(35) [(H)3N•-

CH2CH2CH2-N+(H)2-tBu], 120(30) [Ph-(H)N+(-CH2CH2-)], 114(20) [tBu-(H)N+(-

CH2CH2CH2-)], 106(100) [Ph-(H)N+=CH2], 98(30) [(H3C)2C=N+(-CH2CH2CH2-)], 77(26)

[(C6H5)+], 72(38) [tBu-N+-H], 57(15) [C+(CH3)3].

Page 125: M.sc. Thesis MK - November 15, 2011

- 108 -

3.4. Triamine Ligand Building Blocks: R-NH2X-CH2CH2-X

3.4.1. 2-(tert-Butylamino)ethylchloride hydrochloride (12d)

tBuNH

OH

tBuNH2Cl

Cl

1.2 SOCl2 / CH2Cl2Reflux 48 hrs

12d

Scheme 50: Synthesis of 12d.

In a 2L flask fitted with a dropping funnel above a 30 cm condenser, connected to

an oil bubbler and maintained under an argon atmosphere, thionyl chloride (214.1 g,

131.3 mL, 1.8 mol, 1.5 eq) was added dropwise to a mixture of tBu-NH-CH2CH2-OH

(140.6 g, 1.2 mol, 1 eq) and methylene chloride (750 mL) over an hour (Scheme 50).

The strongly exothermic reaction is controlled well by the condenser and a large gas

evolution (SO2) takes place. The mixture is refluxed for 48 hours or until gas evolution

stops, with aluminum block temperature 65 °C. A large white precipitate (12d) forms

and is isolated by frit filtration as a colorless solid with melting point 203 – 205 °C. Yield

= 198.2 g, 96%.

1H NMR (CDCl3): 1.50 [s, 9H, C(CH3)3], 3.23 [p, 2H, 3J(H,H) = 8 Hz, tBu-NH2+-CH2],

4.08 [t, 2H, 3J(H,H) = 8 Hz, CH2-Cl], 9.61 [s, 2H, NH2]. 13C NMR (CDCl3): 25.9

[C(CH3)3], 37.8 [tBu-NH2+-CH2], 43.0 [CH2-Cl], 57.9 [C(CH3)3].

Page 126: M.sc. Thesis MK - November 15, 2011

- 109 -

Scale up requiring three more batches leads to higher purity at a lower yield.

Batch 1 was purified by frit filtration of the crude product followed by dynamic vacuum

treatment for 48 hours to remove traces of solvent and thionyl chloride. The vacuum

pump was protected from thionyl chloride with two liquid nitrogen traps in series. Batch

2 was purified in the same way as batch 1 plus it received 2 0 100 mL methylene

chloride washes. Batches 3 & 4 were washed with 1 0 100 mL methylene chloride

wash and 2 0 75 mL diethyl ether washes followed by the same vacuum treatment of

the earlier batches. The diethyl ether washes led to a pure white free flowing product

with higher purity than the first two batches. Samples of 12d with melting point 207 –

209 °C were washed with acetone or recrystallized from 95% ethanol, which did not

raise the melting point.

3.4.2. 2-(tert-Butylamino)ethylbromide hydrobromide (13d)

tBuNH

OH

tBuNH2Br

Br

48% w/w aq. HBr

Reflux 24 hrsCollect ppt 13d

Scheme 51: Synthesis of 13d.

In a 2 L flask equipped with a condenser tBu-NH-CH2CH2-OH (207.8 g, 1.773

mol, 1 eq) and 48% w/w aqueous HBr (717.5 gHBr, 1494.7 gSolution, 1003.1 mLSolution,

8.867 mol, 5 eq) were boiled for 24 hours (Scheme 51). The reaction mixture was

cooled to ambient temperature and precipitation of tBu-NH2+Br--CH2CH2-Br (13d) was

Page 127: M.sc. Thesis MK - November 15, 2011

- 110 -

induced by gentle scratching of the inside of the flask with a broken glass pipette. The

precipitated 13d was collected by frit filtration and washed with 1 0 50 mL acetone

wash. The filtrate was refluxed for another 24 hours and more 13d was formed, and

was isolated as above. The procedure was repeated until the additional yields were

insignificant. Product (13d): colorless solid, m.p. = 237 – 240 °C (sublimed m.p. = 244

– 245 °C), yield = 324 g, 70%.

1H NMR (D2O, TMS ref): 0.69 [s, 9H, C(CH3)3], 2.85 [t, 2H, 3J(H,H) = 5 Hz, tBu-NH2+-

CH2], 3.00 [t, 2H, 3J(H,H) = 5 Hz, Br-CH2]. 13C NMR (D2O, TMS ref): 24.8 [C(CH3)3],

26.5 [tBu-NH2+-CH2], 43.1 [Br-CH2], 58.0 [C(CH3)3].

3.4.3. 3-(Methyl)aza-1,5-dichloropentane hydrochloride (14) CAS [1000029-85-5]

14

N

OH

OH

Me NH+

Cl

Cl

2.2 SOCl2 / CH2Cl225 °C / 48 hrs

Me

Cl-

Scheme 52: Synthesis of 14.

Thionyl chloride (109.8 g, 67.3 mL, 0.924 mol, 2.2 eq) was added dropwise to

CH3-N(-CH2CH2-OH)2 (50.0 g, 0.420 mol, 1 eq) in 300 mL CH2Cl2 over a period of one

hour (Scheme 52). During the exothermic reaction gas – evolving (SO2, HCl) reaction a

white precipitate initially forms but later dissolves. The resulting clear mixture is allowed

to stir for an additional 48 hours at 20 °C to ensure completion. The solvent and

Page 128: M.sc. Thesis MK - November 15, 2011

- 111 -

volatiles are removed by vacuum and the product (14) is isolated by frit filtration. 14 is a

colorless solid with m.p. = 99 – 100 °C. Yield is quantitative (80.8 g), and

recrystallization from acetone does not raise the melting point.

1H NMR (CDCl3): 3.01 [3H, s, CH3], 3.56 [4H, t, 3J(H,H) = 8 Hz, N-CH2], 4.07 [4H, s, Cl-

CH2], 13.50 [1H, s, N,H-Cl]. 13C NMR (CDCl3): 36.5 [N-CH2], 41.1 [CH3], 57.3 [Cl-

CH2]. 1H NMR (D2O / TMS ref): 3.03 [3H, s, CH3], 3.70 [4H, s, N-CH2], 4.00 [4H, s, Cl-

CH2]. 13C NMR (D2O / TMS ref): 37.3 [N-CH2], 40.7 [CH3], 56.9 [Cl-CH2].

3.4.4. 3-(Ethyl)aza-1,5-dichloropentane hydrochloride (15) CAS [3590-07-6]

15

N

OH

OH

Et2.1 SOCl2 / CHCl3Reflux / 2 hrs

NH+

Cl

Cl

Et

Cl-

Scheme 53: Synthesis of 15.

Thionyl chloride (16.2 g, 9.9 mL, 0.136 mol, 2.1 eq) was added to a solution of

Et-N(-CH2CH2-OH)2 (8.7 g, 8.5 mL, 0.065 mol, 1 eq) and chloroform (10 mL) (Scheme

53). The mixture was refluxed for 2 hours. The product isolation was done by frit

filtration with Et2O washes (2 0 50 mL) yielding 15 as a colorless solid (11.0 g, 0.053

mol, m.p. = 125 – 130 °C, isolated yield = 82%).

Page 129: M.sc. Thesis MK - November 15, 2011

- 112 -

1H NMR (D2O / TMS ref): 1.28 [t, 3H, 3J(H,H) = 7.5 Hz, CH3CH2-N], 3.36 [q, 2H, 3J(H,H)

= 7 Hz, CH3CH2-N], 3.62 [t, 4H, 3J(H,H) = 6 Hz, N-CH2], 3.91 [t, 4H, 3J(H,H) = 6 Hz, Cl-

CH2].185 13C NMR (D2O / TMS ref): 7.6 [CH3CH2-N], 37.2 [N-CH2], 48.9 [CH3CH2-N],

53.6 [Cl-CH2].185

3.4.5. 3-(tert-Butyl)aza-1,5-dichloropentane hydrochloride (16) CAS [64037-57-6]

16

NH+

Cl

Cl

tBu

Cl-

N

OH

OH

tBu2.1 SOCl2 / CH2Cl2Reflux / 12 hrs

Scheme 54: Synthesis of 16.

Thionyl chloride (SOCl2) (3.49 g, 2.14 mL, 29 mmol, 2.1 eq) was added to a

solution of tBu-N(-CH2CH2-OH)2 (2.25 g, 14 mmol, 1 eq) in methylene chloride (20 mL)

(Scheme 54). The mixture was refluxed for 12 hrs causing gas evolution. The solvent

and all volatiles present were removed by cryogenic distillation, leaving the crude salt.

Crude yield 16 = 92%. Recrystallization from 95% ethanol gave 16 as a colorless solid

(2.79 g, 12 mmol, isolated yield = 70%, m.p. = 166 – 167 °C).185

1H NMR (CDCl3): 1.58 [s, 9H, C(CH3)3], 3.27 [s, 2H, N-CHB-HA], 3.67 [s, 2H, N-CHA-

HB], 4.14 [s, 2H, Cl-CHD-HC], 4.15 [s, 2H, Cl-CHC-HD]. 13C NMR (CDCl3): 24.7

[C(CH3)3], 38.0 [N-CH2], 52.1 [Cl-CH2], 66.4 [C(CH3)3]. 1H NMR (D2O / TMS ref): 1.41

[s, 9H, C(CH3)3], 2.73 [t, 4H, 3J(H,H) = 8 Hz, N-CH2], 3.39 [t, 4H, 3J(H,H) = 8 Hz, Cl-

Page 130: M.sc. Thesis MK - November 15, 2011

- 113 -

CH2].185 13C NMR (D2O / TMS ref): 23.9 [C(CH3)3], 38.7 [N-CH2], 52.9 [Cl-CH2], 67.9

[C(CH3)3].185

3.5. Dicarbene Precursors from 1-tert-Butylimidazole

3.5.1. tert-Butylimidazol hydrochloride (19)

19

225 °C2 hrs

tBu

tBuN

NC+ H

Cl-

- H2C=C(CH3)2

tBu

N+

NC H

H

Cl-

Scheme 55: Synthesis of 19.

Di-tert-butylimidazolium chloride (9.28 g, 43.0 mmol) was heated in a sublimation

apparatus for 2 hours at 225 °C under dynamic vacuum (Scheme 55). This results in

iso-butene elimination yielding tert-butyl imidazol hydrochloride (19), as yellow

sublimate (5.156 g, 32 mmol, 75%). 1 9 is readily purified from acetone: 3

recrystallizations led to colorless crystals with constant melting point 191 – 194 °C

(2.257 g, 14 mmol, 32% isolated yield). Sublimation of the crude product does not

improve the melting point or the appearance. The black sublimation residue was

insoluble in all solvents and has an insignificant mass.

1H NMR (CDCl3): 1.75 [9H, s, C(CH3)3], 7.44 [1H, s, CH=CH or CH=CH], 7.51 [1H, s,

CH=CH or CH=CH], 9.50 [1H, s, N2CH]. 13C NMR (CDCl3): 30.2 [3C, C(CH3)3], 59.6

Page 131: M.sc. Thesis MK - November 15, 2011

- 114 -

[1C, C(CH3)3], 119.0 [1C, CH=CH or CH=CH], 120.0 [1C, CH=CH or CH=CH], 133.1

[1C, N2CH].

3.5.2. tert-Butylimidazol (20) (source: tert-Butylimidazol hydrochloride)

20

20% w/w aq. NaOH

- H2O- NaCl

tBu

N+

NC H

H

Cl-tBu

N

NC H

19

Scheme 56: Synthesis of 20.

tert-Butylimidazol hydrochloride (19) (1.000 g, 6 mmol, 1 eq) was deprotonated by

20% w/w aqueous NaOH (0.373 gNaOH, 1.865 gsoln, 9 mmol, 1.5 eq) in 5 mL diethyl ether

(Scheme 56). On this scale the reaction was not noticeably exothermic. After one hour

of stirring the mixture at ambient termperature, the aqueous layer was removed with a

separatory funnel and extracted with 2 0 5 mL Et2O. Evaporation of the combined ether

fractions yields tert-butylimidazol (20) as a slightly yellow oil (0.63 g, 82%). NMR data

shown below. The imidazolium salt 19 is not deprotonated by CaH2 at 20 °C in CH2Cl2.

However, when CaH2 (0.262 g, 6 mmol) and 19 (1.000 g, 6 mmol) are heated neat to

150 °C under dynamic vacuum, 20 forms and is collected by distillation (0.432 g, 54 %

isolated yield). Reaction of 19 and NaH under identical conditions yields only 30%

(isolated yield) 20 and significant decomposition of the starting material.

Page 132: M.sc. Thesis MK - November 15, 2011

- 115 -

3.5.3. tert-Butylimidazol (20) (source: 1,3-di-tert-Butylimidazol-2-ylidene)

tBu

tBuN

NC:

tBu

N

NC H

225 °C20 hrs

- H2C=C(CH3)220

Scheme 57: Synthesis of 20.

50 mg of 1,3-di-tert-butylimidazol-2-ylidene was heated to 225 °C for 12 hours in

a sealed glass tube (Scheme 57). The clear solid crystals of 1,3-di-tert-butylimidazol-2-

ylidene slowly transformed into a light yellow liquid. Quantitative conversion to tert-

butylimidazol (20) is observed. There was significant gas overpressure when the glass

tube was cut open to retrieve the product, most likely iso-butene. The experiment was

repeated but heating was maintained for 20 hours to test product stability, with the same

result: complete conversion to 20.

1,3-Di-tert-butylimidazol-2-ylidene:

1H NMR (C6D6): 1.51 [18H, s, C(CH3)3], 6.80 [2H, s, CH=CH]. 13C NMR (C6D6): 30.5

[6C, C(CH3)3], 56.0 [2C, C(CH3)3], 114.3 [2C, CH=CH], 212.0 [1C, C:].

tert-Butylimidazole (20):

1H NMR (CDCl3): 1.57 [9H, s, C(CH3)3], 7.11 [2H, s, CH=CH], 7.75 [1H, s, N2CH]. 13C

NMR (CDCl3): 30.1 [3C, C(CH3)3], 53.9 [1C, C(CH3)3], 118.0 [1C, CH=CH or CH=CH],

129.5 [1C, CH=CH or CH=CH], 133.5 [1C, N2CH]. 1H NMR (C6D6): 1.05 [9H, s,

C(CH3)3], 6.74 [1H, s, CH=CH or CH=CH], 7.22 [1H, s, CH=CH or CH=CH], 7.53 [1H, s,

Page 133: M.sc. Thesis MK - November 15, 2011

- 116 -

N2CH]. 13C NMR (C6D6): 30.0 [3C, C(CH3)3], 54.5 [1C, C(CH3)3], 117.0 [1C, CH=CH or

CH=CH], 130.0 [1C, CH=CH or CH=CH], 134.0 [1C, N2CH].

3.5.4. 1-tert-Butyl-3-methylimidazol-2-ylidene hydroiodide (21)

21

tBu

N

NC H

tBu

MeN

NC+ H

I-

H3C-I

20

Scheme 58: Synthesis of 21.

Methyl iodide (0.291 g, 2 mmol, 1 eq) was added to dry tert-butylimidazol (20)

(0.204 g, 2 mmol, 1 eq) (scheme 58). A colorless solid (21) immediately forms in a

highly exothermic reaction (0.408 g, 82 %), m.p. = 160 – 161 °C. Purification by

recrystallization from acetone.

1H NMR (CDCl3): 1.75 [9H, s, C(CH3)3], 4.20 [3H, s, CH3], 7.53 [1H, s, CH=CH or

CH=CH], 7.60 [1H, s, CH=CH or CH=CH], 10.13 [1H, s, N2CH]. 13C NMR (CDCl3):

30.3 [3C, C(CH3)3], 37.2 [1C, CH3], 60.7 [1C, C(CH3)3], 119.8 [1C, CH=CH or CH=CH],

124.3 [1C, CH=CH or CH=CH], 135.5 [1C, N2CH].

Page 134: M.sc. Thesis MK - November 15, 2011

- 117 -

3.5.5. Bis-(1-tert-butylimidazol-2-ylidene)-1,1-methylene dihydrobromide (22)

22

tBu

N

NC H

tBuN

C+ H

tBuN

C+ HN

N

1 CH2Br2Acetone

75 °C / 48 hrs

2Br-

20

2

Scheme 59: Synthesis of 22.

tert-Butylimidazol (20) (0.500 g, 4 mmol, 1 eq) and dibromomethane (0.600 g, 4

mmol, 1 eq) showed no reaction when stirred in 15 mL acetone at ambient temperature

(Scheme 59). Heating the mixture to 75 °C for 2 days yields 22 as a colorless solid

from the clear solution (yield = 25%). M.p. = 230 °C (dec.).

1H NMR (D2O / TMS capillary ref): 1.66 [18H, s, C(CH3)3], 2.23 [2H, s, N2CH2], 6.64

[2H, s, CH=CH or CH=CH], 7.79 [2H, s, CH=CH or CH=CH], 7.84 [2H, s, N2CH]. 13C

NMR (D2O / TMS ref): 28.7 [6C, C(CH3)3], 30.3 [1C, N2CH2], 59.0 [2C, C(CH3)3], 120.0

[2C, CH=CH or CH=CH], 121.6 [2C, CH=CH or CH=CH], 122.2 [2C, N2CH].

Page 135: M.sc. Thesis MK - November 15, 2011

- 118 -

3.5.6. Bis-(1-tert-butylimidazol-2-ylidene)-1,2-ethane dihydrobromide (23)

2

23

tBuN

C+ H

tBuN

C+ HN

N

2Br-tBu

N

NC H

1Br-CH2CH2-BrHexane

150 °C / 5 min20

Scheme 60: Synthesis of 23.

A solution of tert-butylimidazol (20 ) (0.500 g, 5 mmol, 1 eq) and 1,2-

dibromoethane (1.515 g, 10 mmol, 2 eq) in 5 mL hexane was heated to 150 °C for 5

minutes, which lead to the precipitation of a colorless solid (Scheme 60). Heating was

continued for another 12 hours at 100 °C to ensure completion, but no more product

formed. The product of the reaction is 23: crude yield = 87%. M.p. = 280 – 281 °C

after 2 acetone recrystallizations.

1H NMR (D2O / TMS capillary ref): 1.58 [18H, s, C(CH3)3], 4.71 [4H, s, CH2], 7.39 [2H,

s, CH=CH or CH=CH], 7.72 [2H, s, CH=CH or CH=CH], 8.95 [2H, s, N2CH]. 13C NMR

(D2O / TMS capillary ref): 29.9 [6C, C(CH3)3], 49.7 [2C, C(CH3)3], 61.0 [2C, CH2], 121.5

[2C, CH=CH or CH=CH], 122.5 [2C, CH=CH or CH=CH], 135.0 [2C, N2CH].

Page 136: M.sc. Thesis MK - November 15, 2011

- 119 -

3.5.7. Bis-(1-tert-butylimidazol-2-ylidene)-1,3-propane dihydrobromide (24)

2

24

tBuN

C+ H

tBuN

C+ H

N

N

2Br-

tBu

N

NC H

20 °C / 72 hrs

1 Br-(CH2)3-BrAcetone

20

Scheme 61: Synthesis of 24.

A solution of tert-butylimidazol (20 ) (0.500 g, 5 mmol, 1 eq) and 1,3-

dibromopropane (1.515 g, 10 mmol, 2 eq) in 15 mL acetone were stirred at ambient

temperature for 3 days precipitating bis-(1-tert-butylimidazol-2-ylidene)-1,3-propane

dihydrobromide (24) as a colorless solid (m.p. = 205 – 206 °C, 90% yield) (Scheme 61).

The reaction is not noticeably exothermic.

1H NMR (D2O / TMS ref): 1.65 [18H, s, C(CH3)3], 2.56 [2H, q, 3J(H,H) = 7 Hz,

CH2CH2CH2], 4.35 [4H, t, 3J(H,H) = 7 Hz, CH 2CH2CH2], 4.80 [2H, s, CH=CH or

CH=CH], 7.54 [2H, s, CH=CH or CH=CH], 7.71 [2H, s, N2CH]. 13C NMR (D2O / TMS

ref): 28.9 [6C, C(CH3)3], 29.6 [1C, CH2CH2CH2], 30.4 [2C, C (CH3)3], 46.8 [2C,

CH2CH2CH2], 120.0 [2C, CH=CH or CH=CH], 123.0 [2C, CH=CH or CH=CH], 126.0

[2C, N2CH]. 1H NMR (CDCl3): 1.72 [18H, s, C(CH3)3], 3.02 [2H, q, 3J(H,H) = 7 Hz,

CH2CH2CH2], 4.76 [4H, t, 3J(H,H) = 7 Hz, CH 2CH2CH2], 7.32 [2H, s, CH=CH or

Page 137: M.sc. Thesis MK - November 15, 2011

- 120 -

CH=CH], 8.21 [2H, s, CH=CH or CH=CH], 10.30 [2H, s, N2CH]. 13C NMR (CDCl3):

30.1 [6C, C(CH3)3], 31.2 [1C, CH2CH2CH2], 47.0 [2C, C(CH3)3], 60.5 [2C, CH2CH2CH2],

119.0 [2C, CH=CH or CH=CH], 124.0 [2C, CH=CH or CH=CH], 135.0 [2C, N2CH].

3.6. Stabilization of Reactive Centers Using Intramolecular Dative Bonds

3.6.1. [N3P]+Cl- (25)

25

+ Cl-

NH

N

NH

tBu

tBu

tBu

2.5 eq Et3N 5.5 mL Toluene20 °C / 24 hrs

- 2 eq [Et3NH]+Cl-+ PCl3

1 eq0.506 g

1 eq1.000 g

N P:N

N

tBu

tBu

tBu

Crude Yield = 73%Yellow Solid

3d

Scheme 62: Synthesis of 25.

Phosphorus trichloride (0.51 g, 0.32 mL, 4 mmol, 1 eq) was added to a mixture of

triethylamine (0.93 g, 1.28 mL, 10 mmol, 2.5 eq) and 1,4,7-tri-tert-butyl-1,4,7-

triazaheptane (3d) (1.00 g, 4 mmol, 1 eq) in toluene (4.79 g, 5.54 mL) (Scheme 62).

The mixture was stirred at room temperature for 24 hrs leading to the precipitation of

triethylamine hydrochloride. Purification according to figure 19 affords 25 (yellow solid)

in 73% yield.

1H NMR (C6D6): 1.02 [s, 9H, P++N-C(CH3)3], 1.18 [s, 18H, P+-N-C(CH3)3], 3.01 [m, 8H,

CH2]. 13C NMR (C6D6): 28.8 [d, 3J(C,P) = 11 Hz, P++N-C(CH3)3], 30.1 [d, 3J(C,P) = 17

Page 138: M.sc. Thesis MK - November 15, 2011

- 121 -

Hz, P+-N-C(CH3)3], 45.0 [d, 3J(C,P) = 12 Hz, CH2 or C(CH3)3], 49.3 [d, 3J(C,P) = 16 Hz,

CH2 or C(CH3)3], 50.8 [d, 3J(C,P) = 9 Hz, CH2 or C(CH3)3], 53.4 [d, 3J(C,P) = 11 Hz, CH2

or C(CH3)3]. 31P NMR (C6D6, H3PO4 ref): 160.9 [P+], 176.8 [H3PO4].

Page 139: M.sc. Thesis MK - November 15, 2011

- 122 -

References

Page 140: M.sc. Thesis MK - November 15, 2011

- 123 -

1. Zheng, F. L.: M.Sc. Thesis: Testing the steric limits of diamino carbenedimerization and synthesis of polyaza ligands, University of Guelph, Canada,2005.

2. Vougioukalakis, G. C.; Grubbs, R. H.: Chem. Eur. J., 2008, 14, 7545-7556.3. Schoenherr, H. J.; Wanzlick, H. W.: Justus Liebigs Ann. Chem., 1970, 731, 176-

179.4. Schoenherr, H. J.; Wanzlick, H. W.: Chem. Ber., 1970, 103, 1037-1046.5. Arduengo, A. J.: US Patent 9114678, 1991.6. Bourissou, D.; Guerret, O.; Gabbaie, F. P.; Bertrand, G.: Chem. Rev., 2000, 100,

39-91.7. Smith, M.; March, J.: March's Advanced Organic Chemistry: Reactions,

Mechanisms, and Structure. Wiley: New York; Chichester, 2001.8. Trindle, C. J.: Org. Chem., 2003, 68, 9669-9677.9. Hoffmann, R. J.: Am. Chem. Soc., 1968, 90, 1475-1485.10. Alder, R. W.; Blake, M. E.; Oliva, J. M.: J. Phys. Chem. A, 1999, 103, 11200-

11211.11. Woodcock, H. L.; Moran, D.; Brooks, B. R.; Schleyer, P. v. R.; Schaefer, H. F. I.:

J. Am. Chem. Soc., 2007, 129, 3763-3770.12. Iiba, E.; Hirai, K.; Tomioka, H.; Yoshioka, Y.: J. Am. Chem. Soc., 2002, 124,

14308-14309.13. Sulzbach, H. M.; Bolton, E.; Lenoir, D.; Schleyer, P. v. R.; Schaefer, H. F.: J.

Am. Chem. Soc., 1996, 118, 9908-9914.14. Myers, D. R.; Senthilnathan, V. P.; Platz, M. S.; Jones, M.,Jr: J. Am. Chem.

Soc., 1986, 108, 4232-4233.15. Denk, M. K.; Rodezno, J. M.; Gupta, S.; Lough, A. J.: J. Organomet. Chem.,

2001, 617-618, 242-253.16. Alder, R. W.; Blake, M. E.; Chaker, L.; Harvey, J. N.; Paolini, F.; Schuetz, J.:

Angew. Chem. Int. Ed., 2004, 43, 5896-5911.17. Irikura, K. K.; Goddard, W. A.,III; Beauchamp, J. L.: J. Am. Chem. Soc., 1992,

114, 48-51.18. Mavridis, A.; Harrison, J. F.: J. Am. Chem. Soc., 1982, 104, 3827-3833.19. Mavridis, A.; Harrison, J. F.; Liebman, J. F.: J. Phys. Chem., 1984, 88, 4973-

4978.20. Denk, M. K.; Thadani, A.; Hatano, K.; Lough, A. J.: Angew. Chem. Int. Ed. Engl.,

1997, 36, 2607-2609.21. Walentowski, R.; Wanzlick, H. W.: Z. Naturforsch. B, 1970, 25, 1421-1423.22. Arduengo, A. J.; Harlow, R. L.; Kline, M.: J. Am. Chem. Soc., 1991, 113, 361-

363.23. Kuhn, N.; Kratz, T.: Synthesis, 1993, 561-562.24. Enders, D.; Breuer, K.; Raabe, G.; Runsink, J.; Teles, J. H.; Melder, J.; Ebel, K.;

Brode, S.: Angew. Chem. Int. Ed. Engl., 1995, 34, 1021-1023.25. Alder, R. W.; Allen, P. R.; Murray, M.; Orpen, A. G.: Angew. Chem. Int. Ed.

Engl., 1996, 35, 1121-1123.

Page 141: M.sc. Thesis MK - November 15, 2011

- 124 -

26. Hahn, F. E.; Wittenbecher, L.; Boese, R.; Blaser, D.: Chem. Eur. J., 1999, 5,1931-1935.

27. Khramov, D. M.; Boydston, A. J.; Bielawski, C. W.: Angew. Chem. Int. Ed., 2006,45, 6186-6189.

28. Arrowsmith, M.; Heath, A.; Hill, M. S.; Hitchcock, P. B.; Kociok-Kohn, G.:Organometallics, 2009, 28, 4550-4559.

29. Denk, M. K.; Hezarkhani, A.; Zheng, F.: Eur. J. Inorg. Chem., 2007, 3527-3534.30. Zhou, Y.; Denk, M. K.: Tetrahedron Lett., 2003, 44, 1295-1299.31. Denk, M. K.; Krause, M. J.; Niyogi, D. F.; Gill, N. K.: Tetrahedron, 2003, 59,

7565-7570.32. Hitchcock, P. B.; Lappert, M. F.; Pye, P. L.: J. Chem. Soc., Dalton Trans., 1978,

826-836.33. Lappert, M. F.; Cardin, D. J.; Cetinkaya, B.; Manojlovic-Muir, L.; Muir, K. W.: J.

Chem. Soc. D., 1971, 400-401.34. Arduengo, A. J.; Bannenberg, T. P.; Tapu, D.; Marshall, W. J.: Tetrahedron Lett.,

2005, 46, 6847-6850.35. Arduengo, A. J.; Gamper, S. F.; Tamm, M.; Calabrese, J. C.; Davidson, F.; Craig,

H. A.: J. Am. Chem. Soc., 1995, 117, 572-573.36. Shi, Z.; Thummel, R. P.: Tetrahedron Lett., 1994, 35, 33-36.37. Denk, M. K.; Hatano, K.; Ma, M.: Tetrahedron Lett., 1999, 40, 2057-2060.38. Denk, M. K.; Hatano, K.; Lough, A. J.: Eur. J. Inorg. Chem., 2003, 224-231.39. Hahn, F. E.; Wittenbecher, L.; Le Van, D.; Frohlich, R.: Angew. Chem. Int. Ed.,

2000, 39, 541-544.40. Denk, M. K.; Rodezno, J. M.: J. Organomet. Chem., 2001, 617-618, 737-740.41. Ullmann's encyclopedia of industrial chemistry, Wiley, Chichester, 2009.42. Ouimet, M. A.: US Patent 20080159937, 2008.43. Abid, C. K. V. Z.; Chattopadhyay, S.; Mazumdar, N.; Singh, H.: J. Appl. Polym.

Sci., 2010, 116, 1640-1649.44. Claudon, G.; Le Bris, N.; Bernard, H.; Handel, H.: Eur. J. Org. Chem., 2004,

5027-5030.45. Donohoe, T. J.; Harris, R. M.; Butterworth, S.; Burrows, J. N.; Cowley, A.; Parker,

J. S.: J. Org. Chem., 2006, 71, 4481-4489.46. Gussoni, M.; Greco, F.; Ferruti, P.; Ranucci, E.; Ponti, A.; Zetta, L.: New J.

Chem., 2008, 32, 323-332.47. Hu, K.; Krakowiak, K. E.; Bradshaw, J. S.; Dalley, N. K.; Xue, G.; Izatt, R. M.: J.

Heterocycl. Chem., 1999, 36, 347-354.48. v. Braun, J.; Muller, E.: Ber. Dtsch. Chem. Ges., 1918, 51, 737-741.49. Pastushok, V. N.; Bradshaw, J. S.; Bordunov, A. V.; Izatt, R. M.: J. Org. Chem.,

1996, 61, 6888-6892.50. Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Fusi, V.; Giorgi, C.; Micheloni, M.;

Paoletti, P.; Valtancoli, B.: Tetrahedron Lett., 1994, 35, 8469-8472.51. Nagasaki, Y.; Honzawa, E.; Kato, M.; Kataoka, K.; Tsuruta, T.: Chem. Lett.,

1993, 1825-1828.

Page 142: M.sc. Thesis MK - November 15, 2011

- 125 -

52. Krakowiak, K. E.; Huszthy, P.; Bradshaw, J. S.; Izatt, R. M.: Tetrahedron Lett.,1991, 32, 21-22.

53. Bradshaw, J. S.; Krakowiak, K. E.; Izatt, R. M.; Zamecka-Krakowiak, D. J.:Tetrahedron Lett., 1990, 31, 1077-1080.

54. Krakowiak, K. E.; Bradshaw, J. S.; Forsnes, E. V.; Izatt, R. M.: J. Heterocycl.Chem., 1989, 26, 661-665.

55. Krakowiak, K. E.; Bradshaw, J. S.; Izatt, R. M.; Zamecka-Krakowiak, D. J.: J.Org. Chem., 1989, 54, 4061-4067.

56. Pelissard, D.; Louis, R.: Tetrahedron Lett., 1972, 4589-4592.57. Nagasaki, Y.; Honzawa, E.; Kato, M.; Kihara, Y.; Tsuruta, T.: J. Macromol. Sci.,

Pure Appl. Chem., 1992, A29, 457-470.58. Tuladhar, S. M.; D'Silva, C.: Tetrahedron Lett., 1992, 33, 2203-2206.59. Nabeshima, Y.; Maruyama, A.; Tsuruta, T.; Kataoka, K.: Polym. J. (Tokyo),

1987, 19, 593-601.60. Takahashi, K.; Fukuda, H.; Morita, H.: JP Patent 08059772, 1996.61. Buschmann, W. E.: US Patent 20100006495, 2010.62. Denk, M. K.; Gupta, S.; Brownie, J.; Tajammul, S.; Lough, A. J.: Eur. J. Inorg.

Chem., 2001, 7, 4477-4486.63. Denk, M. K.; Rodezno, J. M.: J. Organomet. Chem., 2000, 608, 122-125.64. Hitchcock, A. P.; Ennis, L. E.; Lehmann, J. F.; Denk, M. K.: J. Electron

Spectrosc. Relat. Phenom., 2001, 114-116, 1037-1041.65. Leites, L. A.; Bukalov, S. S.; Denk, M.; West, R.; Haaf, M.: J. Mol. Struct., 2000,

550-551, 329-335.66. Lehmann, J. F.; Urquhart, S. G.; Ennis, L. E.; Hitchcock, A. P.; Hatano, K.;

Gupta, S.; Denk, M. K.: Organometallics, 1999, 18, 1862-1872.67. Denk, M. K.; Hatano, K.; Lough, A. J.: Eur. J. Inorg. Chem., 1998, 1067-1070.68. West, R.; Denk, M.: Pure Appl. Chem., 1996, 68, 785-788.69. Urquhart, S. G.; Hitchcock, A. P.; Lehmann, J. F.; Denk, M.: Organometallics,

1998, 17, 2352-2360.70. Metzler, N.; Denk, M.: Chem. Commun. (Cambridge), 1996, 2657-2658.71. Denk, M.: DE Patent 4316883, 1994.72. Denk, M.; Hayashi, R. K.; West, R.: J. Chem. Soc., Chem. Commun., 1994, 33-

34.73. Denk, M.; Hayashi, R. K.; West, R.: J. Am. Chem. Soc., 1994, 116, 10813-

10814.74. Denk, M. K.; Gupta, S.; Lough, A. J.: Eur. J. Inorg. Chem., 1999, 41-49.75. Denk, M. K.; Gupta, S.; Ramachandran, R.: Tetrahedron Lett., 1996, 37, 9025-

9028.76. Langenbeck, W.; Augustin, M.; Richter, F. H.: Chem. Ber., 1961, 94, 831-833.77. Pagenkopf, G. K.; Margerum, D. W.: J. Am. Chem. Soc., 1970, 92, 2683-2686.78. Yperman, J.; Mullens, J.; Francois, J. P.; Van Poucke, L. C.: Inorg. Chem., 1983,

22, 1361-1365.79. Di Masi, N. G.; Intini, F. P.; Pacifico, C.; Maresca, L.; Natile, G.: Inorg. Chim.

Acta, 2000, 310, 27-33.

Page 143: M.sc. Thesis MK - November 15, 2011

- 126 -

80. Mondal, A.; Das, D.; Chaudhuri, N. R.: J. Therm. Anal. Calorim., 1999, 55, 165-172.

81. Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Fusi, V.; Giorgi, C.; Paoletti, P.; Stefani,A.; Valtancoli, B.: Inorg. Chem., 1995, 34, 552-559.

82. Andres, A.; Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Fusi, V.; Garcia-Espana, E.;Giorgi, C.; Nardi, N.; Paoletti, P.: J. Chem. Soc., Perkin Trans. 2, 1994, 2367-2373.

83. Murphy, M. A.; Malachowski, M. R.: US Patent 20030013772, 2003.84. Van Alphen, J.: Recl. Trav. Chim. Pays-Bas, 1936, 55, 412-418.85. Van Alphen, J.: Recl. Trav. Chim. Pays-Bas, 1936, 55, 669-674.86. Van Alphen, J.: Recl. Trav. Chim. Pays-Bas, 1936, 55, 835-840.87. Van Alphen, J: Recl. Trav. Chim. Pays-Bas, 1937, 56, 343-350.88. Gelbard, G.; Rumpf, P.: Bull. Soc. Chim. Fr. Chem. Ber., 1969, 1161-1170.89. Gelbard, G.; Rumpf, P.: C. R. Seances Acad. Sci., Ser. C, 1966, 262, 1587-

1590.90. Yoshimi, H.: Chem. Pharm. Bull., 2002, 50, 941.91. Roe, A. M.; Reavill, D. R.: J. Chem. Soc. C, 1966, 527-530.92. Goldner, H.; Sauer, W.; Faust, G.; Merkwitz, H.; Lohmann, D.: DD Patent

259846, 1988.93. Le Thi Nhut Hoa; Chu Pham Ngoc Son; Le Khac Huy; Nguyen Huu Tinh: C. R.

Hebd. Seances Acad. Sci., Ser. C, 1975, 280, 1269-1271.94. Vaultier, M.; Carboni, B.; Martinez-Fresneda, P.: Synth. Commun., 1992, 22,

665-671.95. Lechner, B. D.; Merzweiler, K.: Acta Crystallogr., Sect. E: Struct. Rep. Online,

2010, E66, 122.96. Daniels, R.; Martin, B. D.: J. Org. Chem., 1962, 27, 178-180.97. Fischer, A.; Topsom, R. D.; Vaughan, J.: J. Org. Chem., 1960, 25, 463-464.98. Billman, J. H.; Caswell, L. R.: J. Org. Chem., 1951, 16, 1041-1046.99. Sommers, A. H.: J. Am. Chem. Soc., 1956, 78, 2439-2445.100. Liu, S.; Rebros, M.; Stephens, G.; Marr, A. C.: Chem. Commun. (Cambridge, U.

K. ), 2009, 2308-2310.101. Boon, W. R.: J. Chem. Soc., 1947, 307-318.102. Yang, D.; Chen, Y.: US Patent 20050215783, 2005.103. Yang, D.; Chen, Y.; Zhu, N.: Org. Lett., 2004, 6, 1577-1580.104. Nagasaki, Y.; Honzawa, E.; Kato, M.; Kihara, Y.; Tsuruta, T.: J. Macromol. Sci.

Pure Appl. Chem., 1992, A29, 457-470.105. Jutz, C.; Kirschner, A. F.; Wagner, R. M.: Chem. Ber., 1977, 110, 1259-1268.106. Jutz, C.: LU Patent 2135584, 1972.107. Toda, T.; Murayama, Y.: JP Patent 06088017, 1994.108. Stepanski, H.; Colinas-Martinez, J.; Kopp, R.; Hess, H.; Groegler, G.: DE Patent

508259, 1992.109. Rogier, E. R.: GB Patent 904543, 1962.110. Kawashima, K.: JP Patent 07011136, 1995.111. Li, H.; Hu, Y.; Li, S.: CN Patent 201092129, 2008.

Page 144: M.sc. Thesis MK - November 15, 2011

- 127 -

112. De Lia, E.; De Lia, L.; Pepis, W. R.; Carlick, D. J.; Kissel, W. J.: US Patent3207653, 1965.

113. Geng, X.; Li, K.: J. Adhes. Sci. Technol., 2006, 20, 847-858.114. Fujie, S.; Katagiri, Z.; Aozai, F.: JP Patent 04015283, 1992.115. GB Patent 1379974, 1964.116. GB Patent 6400042, 1964.117. US Patent 903977, 1962.118. Kuo, P.; Ghosh, S. K.; Liang, W.; Hsieh, Y.: J. Polym. Sci., Part A: Polym.

Chem., 2001, 39, 3018-3023.119. Sun, D.; Hsu, Y.: TW Patent 20090061243, 2009.120. Kichler, A.; Behr, J.; Erbacher, P.: Nonviral Vectors for Gene Therapy:

Polyethylenimines: a family of potent polymers for nucleic acid delivery, SectionTitle: Pharmaceuticals, 1999, 191-206.

121. Cantatore, G.: IT Patent 45721, 1982.122. Buschmann, W. E.: US Patent 2010042250, 2010.123. Greenwood, N. N.; Earnshaw N. A.: Chemistry of the elements, Butterworth-

Heinemann, Boston, Mass., 1997.124. Yperman, J.; Mullens, J.; Francois, J. P.; Van Poucke, L. C.: Inorg. Chem., 1983,

22, 1361-1365.125. Garralda, M. A.; Hernandez, R.; Pinilla, E.; Torres, M. R.; Zarandona, M.: Dalton

Trans., 2009, 9860-9869.126. LoCoco, M. D.; Jordan, R. F.: Organometallics, 2003, 22, 5498-5503.127. Christoforou, A. M.; Marzilli, P. A.; Fronczek, F. R.; Marzilli, L. G.: Inorg. Chem.,

2007, 46, 11173-11182.128. Andres, A.; Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Fusi, V.; Garcia-Espana, E.;

Giorgi, C.; Nardi, N.; Paoletti, P.: J. Chem. Soc., Perkin Trans. 2, 1994, 2367-2373.

129. Sperotto, E.; van Klink, G. P. M.; de Vries, J. G.; van Koten, G.: Tetrahedron,2010, 66, 3478-3484.

130. Miyazaki, T.; Matsumoto, N.; Ishikawa, S.; Kanbara, T.; Hara: JP Patent2011026289, 2011.

131. LoCoco, M. D.; Zhang, X.; Jordan, R. F.: J. Am. Chem. Soc., 2004, 126, 15231-15244.

132. Jordan, R. F.; Zhang, X.: US Patent 6153777, 2000.133. Perillo, I. A.; Garcia, M. B.; Bisceglia, J. A.; Orelli, L. R.: J. Heterocycl. Chem.,

2002, 39, 655-661.134. Ishiwata, H.; Kabeya, M.; Shiratsuchi, M.; Hattori, Y.; Nakao, H.; Nagoya, T.;

Sato, S.; Oda, S.; Suda, M.: US Patent 9816497, 1998.135. De Kimpe, N.; De Smaele, D.: Tetrahedron Lett., 1994, 35, 8023-8026.136. Stamm, H.: Justus Liebigs Ann. Chem., 1968, 716, 121-126.137. Lu, P.: Tetrahedron, 2010, 66, 2549-2560.138. Goethals, E. J.; Van Caeter, P.; Du Prez, F. E.; Dubreuil, M. F.: Macromol.

Symp., 1995, 98, 185-192.

Page 145: M.sc. Thesis MK - November 15, 2011

- 128 -

139. Munir, A.; Goethals, E. J.: Makromol. Chem., Rapid Commun., 1981, 2, 693-697.

140. Francisco, A. P.; Perry, M. d. J.; Moreira, R.; Mendes, E.: AnticancerTherapeutics: Alkylating agents, Section Title: Pharmacology, 2008, 133-158.

141. Goethals, E. J.; Van de Velde, M.; Munir, A.: In The synthesis of blockcopolymers with polyamine segments using cationic living poly(1-tert-butylaziridine), Section Title: Chemistry of Synthetic High Polymers, 1984, 387-394.

142. Goethals, E. J.; Vandevelde, M.; Dierick, A.: Makromol. Chem., 1987, 188,2293-2300.

143. Christova, D. C.; Velichkova, R. S.; Panayotov, I. M.: Macromol. Chem. Phys.,1996, 197, 2639-2646.

144. Bossaer, P. K.; Goethals, E. J.: Makromol. Chem., 1977, 178, 2983-2988.145. Goethals, E. J.; Schacht, E. H.; Bruggeman, P.; Bossaer, P.: ACS Symp. Ser.,

1977, 59, 1-12.146. Bissell, E. R.: J. Heterocycl. Chem., 1977, 14, 535-536.147. Imbach, J. L.; Katritzky, A. R.; Kolinski, R. A.: J. Chem. Soc. B, 1966, 556-560.148. White, D. M.: US Patent 4595773, 1986.149. Su, W. Y.: US Patent 4774336, 1988.150. Marsella, J. A.: J. Organomet. Chem., 1991, 407, 97-105.151. Marsella, J. A.: US Patent 564225, 1987.152. Ouk, S.; Thiebaud, S.; Borredon, E.; Chabaud, B.: Synth. Commun., 2005, 35,

3021-3026.153. Huebner, H.; Blahak, J.; Meiners, J.: DE Patent 2618280, 1977.154. Zeng, H.; Xing, X.; Wang, X.: CN Patent 1394897, 2003.155. Zgoda, M. M.; Petri, S.: PL Patent 127609, 1985.156. Ludowieg, J.: Bol. Soc. Quim., 1948, 14, 77-86.157. Abrams, J. T.; Barker, R. L.; Jones, W. E.; Vallender, H. W.; Woodard, F. N.: J.

Soc. Chem. Ind., London, Trans. Commun., 1949, 68, 280-284.158. Merkwitz, H.; Goldner, H.; Sauer, W.; Faust, G.: DD Patent 258222, 1988.159. Pauluth, D.; Bardonner, H.; Theysohn, W.: DE Patent 3900865, 1989.160. Scheinert, W.; Mehl, W.; Cramm, G.: DE Patent 4411917, 1995.161. Zhu, Y.; Xu, H.; Wang, Y.; Zhang, H.; Shi, M.: Jingxi Huagong, 1998, 15, 48-50.162. JP Patent 56133247, 1981.163. Kitano, M.; Yagisawa, M.; Morimoto, Y.: JP Patent 63246352, 1988.164. Ozawa, S.; Kitajima, T.; Mita, R.: JP Patent 08151351, 1996.165. Choudhury, S. B.; Allan, C. B.; Maroney, M. J.: Inorg. Synth., 1998, 32, 98-107.166. Golding, B. T.; Kebbell, M. J.; Lockhart, I. M.: J. Chem. Soc., Perkin Trans. 2,

1987, 705-713.167. Parisel, S. L.; Moorcroft, N. D.; Jutand, A.; Aldous, D. J.; Hii, K. K.: Org. Biomol.

Chem., 2004, 2, 301-306.168. Mueller, R.; Trobisch, S.; Guhr, S.; Thiess, R.; Raetzer, R.; Krause, W.; Graetz,

J.: DD Patent 233749, 1986.

Page 146: M.sc. Thesis MK - November 15, 2011

- 129 -

169. Gnecco, D.; Teran, J. L.; Enriquez, R. G.; Reynolds, W. F.; Marazano, C.: Org.Prep. Proced. Int., 1996, 28, 478-480.

170. Ong, H. H.; Profitt, J. A.: US Patent 4198419, 1980.171. Xu, H.; Han, G.; Sha, F.; Xu, J.; Yao, C.: Huagong Shikan, 2007, 21, 29-30.172. Kushakova, P. M.; Chernobroviy, A. N.; Kuznetsov, V. A.; Garabadgiu, A. V.:

Chem. Heterocycl. Compd., 2004, 40, 1546-1549.173. Hauptmann, S.; Poege, A. W.: Pharmazie, 1973, 28, 520-522.174. Morimoto, A.: JP Patent 49041333, 1974.175. Smith, P. A. S.: Chemistry of open-chain organic nitrogen compounds, W.A.

Benjamin: New York, 1965.176. Theodoridis, G.: Tetrahedron, 2000, 56, 2339-2358.177. Kuehne, H.; Hesse, M.: Helv. Chim. Acta, 1982, 65, 1470-1481.178. Shepherd, R. G.; Wilkinson, R. G.: J. Med. Pharm. Chem., 1962, 5, 823-835.179. Donia, R. A.; Shotton, J. A.; Bentz, L. O.; Smith, G. E. P., Jr: J. Org. Chem.,

1949, 14, 946-951.180. Schneider, P.: Ber., 1895, 28, 3072-3078.181. Gelbard, G.; Rumpf, P.: Bull. Soc. Chim. Fr., 1969, 2120-2129.182. Liu, J.; Chen, J.; Zhao, J.; Zhao, Y.; Li, L.; Zhang, H.: Synthesis, 2003, 2661-

2666.183. O'Brien, C. J.; Kantchev, E. A. B.; Chass, G. A.; Hadei, N.; Hopkinson, A. C.;

Organ, M. G.; Setiadi, D. H.; Tang, T.; Fang, D.: Tetrahedron, 2005, 61, 9723-9735.

184. O'Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough,A.; Hopkinson, A. C.; Organ, M. G.: Chem. Eur. J., 2006, 12, 4743-4748.

185. Hastie, J.: M.Sc. Thesis: Donor stabilized amido-complexes, University ofGuelph, Canada, 2009.

Page 147: M.sc. Thesis MK - November 15, 2011

- 130 -

Appendix

Page 148: M.sc. Thesis MK - November 15, 2011

- 131 -

A.1. NMR Data of Commercially Available Starting Materials

A.1.1. 1,2-Dibromoethane CAS [106-93-4]

1H NMR (CDCl3): 3.66 [4H, s, Br-CH2CH2-Br]. 13C NMR (CDCl3): 29.6 [Br-CH2CH2-Br].

1H NMR (C6D6): 2.94 [4H, s, Br-CH2CH2-Br]. 13C NMR (C6D6): 29.6 [Br-CH2CH2-Br].

A.1.2. Methyliodide CAS [74-88-4]

1H NMR (CDCl3): 2.17 [3H, s, I-CH3]. 13C NMR (CDCl3): -23.5 [I-CH3]. 1H NMR

(C6D6): 1.46 [3H, s, I-CH3]. 13C NMR (C6D6): -24.0 [I-CH3].

A.1.3. [(CH3CH2-)3NH]+Cl- CAS [554-68-7]

1H NMR (CDCl3): 1.43 [t, 9H, 3J(H,H) = 8 Hz, CH3], 3.19 [p, 6H, 3J(H,H) = 8 Hz, CH2].

13C NMR (CDCl3): 8.8 [CH3], 46.1 [CH2].

A.1.4. tBu-N(-CH2CH2-)2O CAS [33719-90-3]

In a 50 mL stainless steel (swagelok) vessel tBu-NH-CH2CH2-OH (15.6 g, 0.133

mol, 2.5 eq) and Br-CH2CH2-Br (10.0 g, 4.6 mL, 0.053 mol, 1 eq) were heated at 200 °C

for 24 hrs. The standard base workup outlined in section 3.1. followed by sublimation

isolates tBu-N(-CH2CH2-)2O as colorless crystals (4.2 g, 55%).

1H NMR (CDCl3): 1.12 [s, 9H, R2N-C(CH3)3], 2.68 [t, 4H, 3J(H,H) = 5 Hz, tBu-N-CH2],

3.66 [t, 4H, 3J(H,H) = 5 Hz, O-CH2]. 13C NMR (CDCl3): 28.8 [R2N-C(CH3)3], 44.2 [tBu-

N-CH2], 50.2 [O-CH2], 60.9 [R2N-C(CH3)3].

Page 149: M.sc. Thesis MK - November 15, 2011

- 132 -

A.1.5. N,N"-Di-para-tolylethylenediamine (1f)

Colorless solid, b.p. = 220 – 221 °C / 0.1 torr. 1H NMR (C6D6): 2.23 [s, 6H, CH3], 3.34

[s, 4H, CH2], 3.70 [s, 2H, NH], 6.58 [d, 4H, 3J(H,H) = 18 Hz, ortho-C6H4],

7.00 [d, 4H, 3J(H,H) = 18 Hz, meta-C6H4]. 13C NMR (C6D6): 20.6 [CH3],

43.6 [CH2], 113.4 [ortho-C6H4-CH3], 126.6 [para-C6H4-CH3], 130.0 [meta-

C6H4-CH3], 146.4 [ipso-C6H4-CH3]. GC-MS (tr = 19.2 min): 242(5)

[(M+2)•+], 241(20) [(M+1)+], 240(45) [M•+], 133(5) [H3C-C6H4-N•+(-

CH2CH2-)], 132(5) [H3C-C6H4-N+(=CH-CH2-)], 122(45) [H3C-C6H4-N+(H)2-

CH3], 121(75) [H3C-C6H4-N•+(H)-CH3], 119(52) [H3C-C6H4-N•+=CH2],

118(20) [H3C-C6H4-N+!CH], 105(12) [H3C-C6H4-N•+], 93(10) [C6H5-N•+(H)2], 92(15)

[H3C-(C6H4•+)-H], 91(100) [H3C-C6H4

+], 77(42) [C6H5+].

NH

NH

Page 150: M.sc. Thesis MK - November 15, 2011

- 133 -

A.2. X-Ray Data

A.2.1. Phosphenium Cation (25)

Figure 26: X-Ray structure of 25.

Table 9: Crystal data and structure refinement for 25. Identification code 25Empirical formula C16 H35 Cl2 N3 O2 P2Formula weight 434.31Temperature 150(1) KWavelength 0.71073 ÅCrystal system OrthorhombicSpace group P2(1)2(1)2(1)Unit cell dimensions a = 10.5940(3) Å 1 = 90

b = 12.4220(3) Å . = 90c = 16.8510(5) Å 2 = 90

Volume 2217.57(11) Å3

Z 4Density (calculated) 1.301 Mg/m3

Absorption coefficient 0.452 mm-1F(000) 928Crystal size 0.40 x 0.40 x 0.36 mm3

Theta range for data collection 2.80 to 27.50°.Index ranges -13<=h<=13, -15<=k<=16, -21<=l<=21Reflections collected 12332Independent reflections 5001 [R(int) = 0.0363]Completeness to theta = 27.50° 99.3 %Absorption correction Semi-empirical from equivalentsMax. and min. transmission 0.912 and 0.783Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 5001 / 0 / 227Goodness-of-fit on F2 1.053Final R indices [I>2sigma(I)] R1 = 0.0336, wR2 = 0.0762R indices (all data) R1 = 0.0437, wR2 = 0.0817Absolute structure parameter 0.02(6)Extinction coefficient 0.0103(17)Largest diff. peak and hole 0.193 and -0.289 e.Å-3

Page 151: M.sc. Thesis MK - November 15, 2011

- 134 -

Table 10: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for25. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)

P(1) 2633(1) 4038(1) 4134(1) 26(1)N(1) 1337(2) 4763(2) 3932(1) 32(1)N(2) 3930(2) 4810(2) 4163(1) 31(1)N(3) 2864(1) 3826(1) 3016(1) 24(1)C(1) 4388(2) 5195(2) 3394(1) 31(1)C(2) 4172(2) 4265(2) 2839(1) 30(1)C(3) 1881(2) 4512(2) 2594(1) 31(1)C(4) 1370(2) 5336(2) 3176(1) 35(1)C(5) 520(2) 5199(2) 4578(1) 36(1)C(6) 461(4) 4403(2) 5259(2) 70(1)C(7) 1072(3) 6251(2) 4883(2) 54(1)C(8) -797(3) 5382(4) 4260(2) 99(2)C(9) 4824(2) 4844(2) 4853(1) 32(1)C(10) 4172(3) 4442(3) 5601(1) 49(1)C(11) 5967(2) 4130(2) 4694(2) 48(1)C(12) 5218(3) 6010(2) 4977(2) 57(1)C(13) 2739(2) 2605(2) 2796(1) 28(1)C(14) 3741(2) 1957(2) 3232(2) 40(1)C(15) 1432(2) 2195(2) 3044(1) 35(1)C(16) 2911(2) 2480(2) 1902(1) 38(1)Cl(1) 6693(1) 3198(1) 1400(1) 44(1)Cl(2) 7552(1) 2498(1) 3106(1) 46(1)P(2) 7814(1) 3741(1) 2316(1) 32(1)O(1) 9112(2) 3710(2) 2040(1) 61(1)O(2) 7182(2) 4682(1) 2655(1) 47(1)

Table 11: Bond lengths [Å] and angles [°] for 25.

P(1)-N(1) 1.6765(18)P(1)-N(2) 1.6768(18)P(1)-N(3) 1.9166(16)N(1)-C(4) 1.460(3)N(1)-C(5) 1.492(3)N(2)-C(1) 1.464(3)N(2)-C(9) 1.501(3)N(3)-C(2) 1.520(3)N(3)-C(3) 1.522(2)N(3)-C(13) 1.567(2)C(1)-C(2) 1.504(3)C(3)-C(4) 1.517(3)C(5)-C(8) 1.512(4)C(5)-C(6) 1.517(4)C(5)-C(7) 1.522(3)C(9)-C(10) 1.521(3)C(9)-C(12) 1.522(3)

Page 152: M.sc. Thesis MK - November 15, 2011

- 135 -

C(9)-C(11) 1.524(3)C(13)-C(14) 1.522(3)C(13)-C(16) 1.525(3)C(13)-C(15) 1.533(3)Cl(1)-P(2) 2.0606(8)Cl(2)-P(2) 2.0581(8)P(2)-O(1) 1.4516(17)P(2)-O(2) 1.4634(17)

N(1)-P(1)-N(2) 111.75(9)N(1)-P(1)-N(3) 88.81(8)N(2)-P(1)-N(3) 90.20(8)C(4)-N(1)-C(5) 118.28(17)C(4)-N(1)-P(1) 114.76(14)C(5)-N(1)-P(1) 121.45(15)C(1)-N(2)-C(9) 117.91(17)C(1)-N(2)-P(1) 115.58(14)C(9)-N(2)-P(1) 123.81(14)C(2)-N(3)-C(3) 109.27(15)C(2)-N(3)-C(13) 112.18(15)C(3)-N(3)-C(13) 111.95(15)C(2)-N(3)-P(1) 105.11(11)C(3)-N(3)-P(1) 107.14(12)C(13)-N(3)-P(1) 110.85(11)N(2)-C(1)-C(2) 104.46(17)C(1)-C(2)-N(3) 106.98(16)C(4)-C(3)-N(3) 108.65(17)N(1)-C(4)-C(3) 104.12(16)N(1)-C(5)-C(8) 109.4(2)N(1)-C(5)-C(6) 109.9(2)C(8)-C(5)-C(6) 109.2(3)N(1)-C(5)-C(7) 109.63(19)C(8)-C(5)-C(7) 110.2(3)C(6)-C(5)-C(7) 108.6(2)N(2)-C(9)-C(10) 110.26(18)N(2)-C(9)-C(12) 107.77(18)C(10)-C(9)-C(12) 108.8(2)N(2)-C(9)-C(11) 110.40(18)C(10)-C(9)-C(11) 108.5(2)C(12)-C(9)-C(11) 111.1(2)C(14)-C(13)-C(16) 109.91(18)C(14)-C(13)-C(15) 108.78(18)C(16)-C(13)-C(15) 110.09(18)C(14)-C(13)-N(3) 109.79(16)C(16)-C(13)-N(3) 108.84(16)C(15)-C(13)-N(3) 109.42(15)O(1)-P(2)-O(2) 125.44(13)O(1)-P(2)-Cl(2) 108.32(9)O(2)-P(2)-Cl(2) 106.57(7)O(1)-P(2)-Cl(1) 107.33(9)O(2)-P(2)-Cl(1) 106.87(8)Cl(2)-P(2)-Cl(1) 99.25(3)

Page 153: M.sc. Thesis MK - November 15, 2011

- 136 -

Table 12: Anisotropic displacement parameters (Å2x 103) for 25. The anisotropicdisplacement factor exponent takes the form: -2π2[ h2 a*2U11 + ... + 2 h k a* b* U12 ].

U11 U22 U33 U23 U13 U12

P(1) 31(1) 23(1) 23(1) 1(1) 3(1) -2(1)N(1) 32(1) 33(1) 30(1) -1(1) 7(1) 2(1)N(2) 35(1) 36(1) 22(1) 2(1) 0(1) -5(1)N(3) 25(1) 25(1) 23(1) 0(1) 1(1) -1(1)C(1) 36(1) 32(1) 27(1) 1(1) 1(1) -8(1)C(2) 31(1) 32(1) 27(1) -2(1) 5(1) -7(1)C(3) 34(1) 31(1) 29(1) 2(1) -4(1) 5(1)C(4) 39(1) 30(1) 34(1) 3(1) 2(1) 8(1)C(5) 32(1) 42(1) 34(1) -8(1) 8(1) 3(1)C(6) 94(2) 51(2) 64(2) 6(2) 52(2) 4(2)C(7) 67(2) 41(1) 56(2) -17(1) 22(1) -3(1)C(8) 30(2) 204(5) 63(2) -46(3) 2(1) 23(2)C(9) 33(1) 39(1) 25(1) -2(1) -4(1) -1(1)C(10) 43(1) 78(2) 25(1) 6(1) -2(1) 6(1)C(11) 39(1) 63(2) 42(1) 7(1) -1(1) 9(1)C(12) 80(2) 45(2) 45(1) -8(1) -26(1) -10(1)C(13) 30(1) 25(1) 29(1) -4(1) -2(1) 0(1)C(14) 42(1) 29(1) 48(1) -5(1) -9(1) 6(1)C(15) 34(1) 29(1) 43(1) -3(1) 0(1) -7(1)C(16) 42(1) 38(1) 34(1) -11(1) 1(1) -3(1)Cl(1) 42(1) 52(1) 38(1) -1(1) -10(1) 0(1)Cl(2) 71(1) 34(1) 35(1) 7(1) 3(1) 11(1)P(2) 29(1) 35(1) 31(1) 4(1) -1(1) -1(1)O(1) 27(1) 110(2) 46(1) 10(1) 0(1) -3(1)O(2) 68(1) 27(1) 48(1) 0(1) 2(1) 6(1)

Page 154: M.sc. Thesis MK - November 15, 2011

- 137 -

Table 13: Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 25.

x y z U(eq)

H(1A) 5296 5381 3422 38H(1B) 3909 5837 3220 38H(2A) 4818 3701 2924 36H(2B) 4223 4510 2280 36H(3A) 2270 4882 2134 38H(3B) 1186 4052 2397 38H(4A) 1932 5971 3207 41H(4B) 515 5576 3019 41H(6A) 1313 4284 5469 105H(6B) 113 3719 5070 105H(6C) -80 4692 5680 105H(7A) 1917 6120 5099 82H(7B) 526 6542 5301 82H(7C) 1127 6770 4447 82H(8A) -1149 4698 4075 149H(8B) -764 5894 3818 149H(8C) -1333 5675 4683 149H(10A) 3439 4898 5715 73H(10B) 4763 4473 6048 73H(10C) 3894 3698 5522 73H(11A) 6398 4379 4213 72H(11B) 5689 3385 4620 72H(11C) 6547 4169 5146 72H(12A) 5645 6275 4499 85H(12B) 5794 6056 5431 85H(12C) 4468 6450 5080 85H(14A) 3656 1194 3095 59H(14B) 3631 2048 3806 59H(14C) 4581 2213 3078 59H(15A) 1353 1432 2905 53H(15B) 779 2609 2767 53H(15C) 1330 2282 3618 53H(16A) 2828 1720 1757 57H(16B) 3751 2739 1750 57H(16C) 2265 2902 1625 57

Page 155: M.sc. Thesis MK - November 15, 2011

- 138 -

A.2.2. 2-(tert-Butylamino)ethylchloride hydrochloride (12d)

Figure 27: X-ray structure of 12d.

Table 14: Crystal data and structure refinement for 12d.

Identification code 12dEmpirical formula C6 H15 Cl2 NFormula weight 172.09Temperature 100(2) KWavelength 0.71073 ÅCrystal system MonoclinicSpace group P2(1)/cUnit cell dimensions a = 7.574(4) Å 1 = 90

b = 9.990(5) Å . = 92.769c = 11.916(6) Å 2 = 90

Volume 900.5(8) Å3

Z 4Density (calculated) 1.269 Mg/m3

Absorption coefficient 0.646 mm-1

F(000) 368Crystal size 0.45 x 0.40 x 0.35 mm3

Crystal color/habit colorless/blockTheta range for data collection 2.66 to 28.04°.Index ranges -9<=h<=9, -12<=k<=13, -15<=l<=12Reflections collected 7497Independent reflections 2075 [R(int) = 0.0412]Completeness to theta = 25.00° 99.7 %Absorption correction multi-scan/sadabsMax. and min. transmission 0.8055 and 0.7598Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2075 / 0 / 94Goodness-of-fit on F2 1.076Final R indices [I>2sigma(I)] R1 = 0.0258, wR2 = 0.0694R indices (all data) R1 = 0.0269, wR2 = 0.0703Extinction coefficient 0.033(3)Largest diff. peak and hole 0.360 and -0.214 e.Å-3

Page 156: M.sc. Thesis MK - November 15, 2011

- 139 -

Table 15: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for12d. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)

Cl(1) 3555(1) 3651(1) 4291(1) 22(1)Cl(2) 6457(1) 4549(1) 8098(1) 17(1)N(1) 6461(1) 1831(1) 6769(1) 13(1)C(1) 4064(2) 2777(1) 5577(1) 20(1)C(2) 6010(1) 2434(1) 5642(1) 16(1)C(3) 8305(1) 1227(1) 6939(1) 15(1)C(4) 8369(2) -82(1) 6276(1) 20(1)C(5) 9670(2) 2227(1) 6555(1) 21(1)C(6) 8560(2) 983(1) 8201(1) 20(1)

Table 16: Bond lengths [Å] and angles [°] for 12d.

Cl(1)-C(1) 1.7895(13)N(1)-C(2) 1.4962(14)N(1)-C(3) 1.5255(14)N(1)-H(1C) 0.878(15)N(1)-H(1D) 0.862(16)C(1)-C(2) 1.5109(16)C(1)-H(1B) 0.9900C(1)-H(1A) 0.9900C(2)-H(2A) 0.9900C(2)-H(2B) 0.9900C(3)-C(5) 1.5236(16)C(3)-C(6) 1.5263(17)C(3)-C(4) 1.5298(16)C(4)-H(4A) 0.9800C(4)-H(4B) 0.9800C(4)-H(4C) 0.9800C(5)-H(5A) 0.9800C(5)-H(5B) 0.9800C(5)-H(5C) 0.9800C(6)-H(6A) 0.9800C(6)-H(6B) 0.9800C(6)-H(6C) 0.9800

C(2)-N(1)-C(3) 116.51(8)C(2)-N(1)-H(1C) 108.1(10)C(3)-N(1)-H(1C) 107.4(9)C(2)-N(1)-H(1D) 107.6(10)C(3)-N(1)-H(1D) 107.7(10)H(1C)-N(1)-H(1D) 109.3(14)C(2)-C(1)-Cl(1) 108.90(8)C(2)-C(1)-H(1B) 109.9Cl(1)-C(1)-H(1B) 109.9C(2)-C(1)-H(1A) 109.9

Page 157: M.sc. Thesis MK - November 15, 2011

- 140 -

Cl(1)-C(1)-H(1A) 109.9H(1B)-C(1)-H(1A) 108.3N(1)-C(2)-C(1) 108.52(8)N(1)-C(2)-H(2A) 110.0C(1)-C(2)-H(2A) 110.0N(1)-C(2)-H(2B) 110.0C(1)-C(2)-H(2B) 110.0H(2A)-C(2)-H(2B) 108.4C(5)-C(3)-N(1) 109.33(9)C(5)-C(3)-C(6) 110.15(9)N(1)-C(3)-C(6) 105.40(8)C(5)-C(3)-C(4) 111.49(10)N(1)-C(3)-C(4) 108.75(9)C(6)-C(3)-C(4) 111.51(9)C(3)-C(4)-H(4A) 109.5C(3)-C(4)-H(4B) 109.5H(4A)-C(4)-H(4B) 109.5C(3)-C(4)-H(4C) 109.5H(4A)-C(4)-H(4C) 109.5H(4B)-C(4)-H(4C) 109.5C(3)-C(5)-H(5A) 109.5C(3)-C(5)-H(5B) 109.5H(5A)-C(5)-H(5B) 109.5C(3)-C(5)-H(5C) 109.5H(5A)-C(5)-H(5C) 109.5H(5B)-C(5)-H(5C) 109.5C(3)-C(6)-H(6A) 109.5C(3)-C(6)-H(6B) 109.5H(6A)-C(6)-H(6B) 109.5C(3)-C(6)-H(6C) 109.5H(6A)-C(6)-H(6C) 109.5H(6B)-C(6)-H(6C) 109.5

Table 17: Anisotropic displacement parameters (Å2x 103)for 12d. The anisotropicdisplacement factor exponent takes the form: -2π2[ h2a*2U11 + ... + 2 h k a* b* U12 ].

U11 U22 U33 U23 U13 U12

Cl(1) 24(1) 20(1) 22(1) 4(1) -6(1) 3(1)Cl(2) 19(1) 14(1) 17(1) -1(1) 0(1) 2(1)N(1) 14(1) 13(1) 14(1) -1(1) 1(1) 0(1)C(1) 18(1) 21(1) 19(1) 4(1) -1(1) 3(1)C(2) 17(1) 17(1) 13(1) 2(1) 1(1) 2(1)C(3) 13(1) 15(1) 18(1) -1(1) 0(1) 2(1)C(4) 21(1) 17(1) 22(1) -4(1) -1(1) 5(1)C(5) 15(1) 23(1) 27(1) 2(1) 2(1) -2(1)C(6) 22(1) 20(1) 18(1) 1(1) -3(1) 2(1)

Page 158: M.sc. Thesis MK - November 15, 2011

- 141 -

Table 18: Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 12d.

x y z U(eq)

H(1C) 5695(19) 1192(15) 6886(12) 21(4)H(1D) 6359(19) 2450(17) 7266(12) 23(4)H(1B) 3776 3344 6224 23H(1A) 3352 1947 5603 23H(2A) 6276 1791 5041 19H(2B) 6721 3253 5540 19H(4A) 9555 -471 6368 30H(4B) 8093 98 5478 30H(4C) 7502 -711 6557 30H(5A) 10857 1918 6793 32H(5B) 9452 3103 6891 32H(5C) 9577 2303 5734 32H(6A) 9700 542 8362 30H(6B) 7606 410 8452 30H(6C) 8540 1841 8599 30

Table 19: Hydrogen bonds for 12d [Å and °].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

N(1)-H(1C)...Cl(2)#1 0.878(15) 2.314(15) 3.1839(14) 171.1(13) N(1)-H(1D)...Cl(2) 0.862(16) 2.319(17) 3.1439(15) 160.1(13)

Page 159: M.sc. Thesis MK - November 15, 2011

- 142 -

A.2.3. 2-(tert-Butylamino)ethylbromide hydrobromide (13d)

Figure 28: X-ray structure of 13d.

Table 20: Crystal data and structure refinement for 13d.

Identification code 13dEmpirical formula C6 H15 Br2 NFormula weight 261.01Temperature 100(2) KWavelength 0.71073 ÅCrystal system MonoclinicSpace group P2(1)/cUnit cell dimensions a = 7.7204(17) Å 1 = 90

b = 10.375(2) Å . = 92.051c = 12.243(3) Å 2 = 90

Volume 980.1(4) Å3

Z 4Density (calculated) 1.769 Mg/m3

Absorption coefficient 8.202 mm-1

F(000) 512Crystal size 0.22 x 0.20 x 0.10 mm3

Crystal color/habit colorless/blockTheta range for data collection 2.57 to 28.16°.Index ranges -8<=h<=10, -13<=k<=11, -14<=l<=15Reflections collected 7736Independent reflections 2281 [R(int) = 0.0395]Completeness to theta = 25.00° 99.8 %Absorption correction multi-scan/sadabsMax. and min. transmission 0.4399and 0.2365Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2281 / 0 / 94Goodness-of-fit on F2 1.041Final R indices [I>2sigma(I)] R1 = 0.0275, wR2 = 0.0691R indices (all data) R1 = 0.0336, wR2 = 0.0717Extinction coefficient 0.0025(6)Largest diff. peak and hole 0.894 and -0.552 e.Å-3

Page 160: M.sc. Thesis MK - November 15, 2011

- 143 -

Table 21: Atomic coordinates ( x 104) and equivalent isotropic displacement parameters (Å2x 103) for13d. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

x y z U(eq)

Br(1) 3562(1) 1342(1) 4276(1) 22(1)Br(2) 6568(1) 461(1) 8093(1) 17(1)N(1) 6493(3) 3201(2) 6753(2) 14(1)C(1) 4132(3) 2246(3) 5640(2) 20(1)C(2) 6030(3) 2598(3) 5671(2) 17(1)C(3) 8297(3) 3809(2) 6898(2) 17(1)C(4) 8547(4) 4082(3) 8115(2) 23(1)C(5) 8332(4) 5051(3) 6235(2) 21(1)C(6) 9655(3) 2835(3) 6530(3) 24(1)

Table 22: Bond lengths [Å] and angles [°] for 13d.

Br(1)-C(1) 1.952(3)N(1)-C(2) 1.497(3)N(1)-C(3) 1.534(3)N(1)-H(1C) 0.89(3)N(1)-H(1D) 0.87(3)C(1)-C(2) 1.510(4)C(1)-H(1B) 0.9900C(1)-H(1A) 0.9900C(2)-H(2A) 0.9900C(2)-H(2B) 0.9900C(3)-C(5) 1.524(4)

C(3)-C(4) 1.522(4)C(3)-C(6) 1.535(4)C(4)-H(4A) 0.9800C(4)-H(4B) 0.9800C(4)-H(4C) 0.9800C(5)-H(5A) 0.9800C(5)-H(5B) 0.9800C(5)-H(5C) 0.9800C(6)-H(6A) 0.9800C(6)-H(6B) 0.9800C(6)-H(6C) 0.9800

C(2)-N(1)-C(3) 117.5(2)C(2)-N(1)-H(1C) 111(2)C(3)-N(1)-H(1C) 107.0(19)C(2)-N(1)-H(1D) 109(2)C(3)-N(1)-H(1D) 105.5(19)H(1C)-N(1)-H(1D) 105(3)C(2)-C(1)-Br(1) 109.04(17)C(2)-C(1)-H(1B) 109.9Br(1)-C(1)-H(1B) 109.9C(2)-C(1)-H(1A) 109.9Br(1)-C(1)-H(1A) 109.9H(1B)-C(1)-H(1A) 108.3N(1)-C(2)-C(1) 108.9(2)N(1)-C(2)-H(2A) 109.9C(1)-C(2)-H(2A) 109.9N(1)-C(2)-H(2B) 109.9C(1)-C(2)-H(2B) 109.9H(2A)-C(2)-H(2B) 108.3C(5)-C(3)-C(4) 111.1(2)C(5)-C(3)-N(1) 108.6(2)C(4)-C(3)-N(1) 105.8(2)

C(5)-C(3)-C(6) 112.0(2)C(4)-C(3)-C(6) 110.3(2)N(1)-C(3)-C(6) 108.8(2)C(3)-C(4)-H(4A) 109.5C(3)-C(4)-H(4B) 109.5H(4A)-C(4)-H(4B) 109.5C(3)-C(4)-H(4C) 109.5H(4A)-C(4)-H(4C) 109.5H(4B)-C(4)-H(4C) 109.5C(3)-C(5)-H(5A) 109.5C(3)-C(5)-H(5B) 109.5H(5A)-C(5)-H(5B) 109.5C(3)-C(5)-H(5C) 109.5H(5A)-C(5)-H(5C) 109.5H(5B)-C(5)-H(5C) 109.5C(3)-C(6)-H(6A) 109.5C(3)-C(6)-H(6B) 109.5H(6A)-C(6)-H(6B) 109.5C(3)-C(6)-H(6C) 109.5H(6A)-C(6)-H(6C) 109.5H(6B)-C(6)-H(6C) 109.5

Page 161: M.sc. Thesis MK - November 15, 2011

- 144 -

Table 23: Anisotropic displacement parameters (Å2x 103)for 13d. The anisotropicdisplacement factor exponent takes the form: -2p2[ h2a*2U11 + ... + 2 h k a* b* U12 ].

U11 U22 U33 U23 U13 U12

Br(1) 23(1) 21(1) 21(1) -3(1) -6(1) -3(1)Br(2) 17(1) 16(1) 17(1) 1(1) -1(1) -2(1)N(1) 14(1) 15(1) 14(1) 1(1) -1(1) 0(1)C(1) 18(1) 26(1) 17(1) -4(1) -2(1) -4(1)C(2) 17(1) 20(1) 14(1) -2(1) -1(1) -3(1)C(3) 13(1) 18(1) 20(1) 1(1) -1(1) -2(1)C(4) 22(2) 25(1) 22(2) -1(1) -3(1) -2(1)C(5) 18(1) 21(1) 25(1) 4(1) -3(1) -5(1)C(6) 16(1) 24(2) 31(2) -4(1) 1(1) 0(1)

Table 24: Hydrogen coordinates ( x 104) and isotropic displacement parameters (Å2x 103) for 13d.

x y z U(eq)H(1C) 5730(40) 3800(30) 6930(20) 17(8)H(1D) 6440(40) 2620(30) 7270(30) 19(8)H(1B) 3419 3036 5688 24H(1A) 3880 1686 6270 24H(2A) 6741 1815 5567 21H(2B) 6266 3210 5074 21H(4A) 7591 4620 8358 35H(4B) 9647 4535 8250 35H(4C) 8562 3267 8520 35H(5A) 7450 5645 6495 32H(5B) 8092 4856 5462 32H(5C) 9479 5452 6323 32H(6A) 10815 3135 6759 35H(6B) 9581 2753 5732 35H(6C) 9435 1994 6863 35

Table 25: Hydrogen bonds for 13d [Å and °].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

N(1)-H(1C)...Br(2)#1 0.89(3) 2.47(3) 3.339(2) 165(3) N(1)-H(1D)...Br(2) 0.87(3) 2.46(3) 3.282(2) 158(3)

Page 162: M.sc. Thesis MK - November 15, 2011

- 145 -

A.2.4. 1,3-Di-tert-butylimidazolium bromide

Figure 29: X-ray structure of 1,3-di-tert-butylimidazolium bromide.

Table 26: Crystal data and structure refinement for 1,3-di-tert-butylimidazolium bromide.

Identification code 1,3-di-tert-butylimidazolium bromideEmpirical formula C11 H21 Br N2Formula weight 261.21Temperature 123(2) KWavelength 0.71073 ÅCrystal system MonoclinicSpace group P2(1)/nUnit cell dimensions a = 9.0827(11) Å, 1 = 90

b = 12.4052(15) Å, . = 94.47c = 11.3434(14) Å, 2 = 90

Volume 1274.2(3) Å3

Z 4Density (calculated) 1.362 g/cm3

Absorption coefficient 3.195 mm-1

F(000) 544Crystal size 24.00 x 0.34 x 0.30 mm3

Theta range for data collection 2.44 to 25.45°Index ranges -10<=h<=10, -14<=k<=14, -11<=l<=13Reflections collected 9526Independent reflections 2342 [R(int) = 0.0337]Completeness to theta = 25.00° 99.6 %Absorption correction Multi-scanMax. and min. transmission 0.4474 and 0.0092Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2342 / 0 / 133Goodness-of-fit on F2 1.018Final R indices [I>2sigma(I)] R1 = 0.0236, wR2 = 0.0537R indices (all data) R1 = 0.0313, wR2 = 0.0573Largest diff. peak and hole 0.458 and -0.289 e Å-3

Page 163: M.sc. Thesis MK - November 15, 2011

- 146 -

Table 27: Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å2x 103) for 1,3-di-tert-butylimidazolium bromide. U(eq) is defined as one third of the trace of the orthogonalized Uijtensor.

x y z U(eq)

Br(1) 5636(1) 2662(1) 5766(1) 22(1)N(1) 5951(2) 193(1) 8154(1) 16(1)N(2) 3976(2) -161(1) 7013(1) 15(1)C(1) 7391(2) 236(2) 10073(2) 21(1)C(2) 6623(2) 1953(2) 9060(2) 23(1)C(3) 8521(2) 787(2) 8205(2) 22(1)C(4) 7134(2) 805(2) 8885(2) 17(1)C(5) 5980(2) -890(2) 7894(2) 18(1)C(6) 4751(2) -1111(2) 7182(2) 18(1)C(7) 4738(2) 615(2) 7600(2) 16(1)C(8) 2551(2) 2(2) 6259(2) 17(1)C(9) 2942(2) 163(2) 4982(2) 20(1)C(10) 1795(2) 1003(2) 6708(2) 22(1)C(11) 1598(2) -997(2) 6370(2) 26(1)

Table 28: Bond lengths [Å] and angles [°] for 1,3-di-tert-butylimidazolium bromide.

N(1)-C(7) 1.331(2)N(1)-C(5) 1.376(3)N(1)-C(4) 1.510(2)N(2)-C(7) 1.333(3)N(2)-C(6) 1.379(3)N(2)-C(8) 1.508(2)C(1)-C(4) 1.523(3)C(2)-C(4) 1.516(3)C(3)-C(4) 1.527(3)C(5)-C(6) 1.354(3)C(8)-C(11) 1.522(3)C(8)-C(10) 1.526(3)C(8)-C(9) 1.531(3)

C(7)-N(1)-C(5) 108.16(16)C(7)-N(1)-C(4) 126.11(18)C(5)-N(1)-C(4) 125.66(16)C(7)-N(2)-C(6) 107.89(16)C(7)-N(2)-C(8) 125.21(17)C(6)-N(2)-C(8) 126.85(16)N(1)-C(4)-C(2) 109.36(15)N(1)-C(4)-C(1) 107.85(16)C(2)-C(4)-C(1) 110.28(17)N(1)-C(4)-C(3) 107.19(15)C(2)-C(4)-C(3) 110.68(18)

Page 164: M.sc. Thesis MK - November 15, 2011

- 147 -

C(1)-C(4)-C(3) 111.38(17)C(6)-C(5)-N(1) 107.26(18)C(5)-C(6)-N(2) 107.35(18)N(1)-C(7)-N(2) 109.33(18)N(2)-C(8)-C(11) 108.21(16)N(2)-C(8)-C(10) 107.95(16)C(11)-C(8)-C(10) 111.20(17)N(2)-C(8)-C(9) 107.55(15)C(11)-C(8)-C(9) 111.13(17)C(10)-C(8)-C(9) 110.65(17)

Table 29: Anisotropic displacement parameters (Å2x 103) for 1,3-di-tert-butylimidazolium bromide. Theanisotropic displacement factor exponent takes the form: -2p2[ h2 a*2U11 + ... + 2 h k a* b* U12].

U11 U22 U33 U23 U13 U12

Br(1) 23(1) 19(1) 22(1) 2(1) -6(1) -2(1)N(1) 14(1) 19(1) 13(1) 0(1) 0(1) -1(1)N(2) 13(1) 20(1) 13(1) 2(1) 1(1) -1(1)C(1) 22(1) 28(1) 13(1) 0(1) -3(1) 0(1)C(2) 24(1) 21(1) 22(1) -5(1) -5(1) -2(1)C(3) 18(1) 30(1) 17(1) -3(1) 2(1) -5(1)C(4) 15(1) 21(1) 14(1) -2(1) -2(1) -2(1)C(5) 18(1) 21(1) 17(1) 1(1) 1(1) 3(1)C(6) 19(1) 16(1) 19(1) 0(1) 1(1) 0(1)C(7) 15(1) 17(1) 16(1) 1(1) 2(1) 0(1)C(8) 14(1) 24(1) 14(1) 2(1) -3(1) -2(1)C(9) 19(1) 26(1) 16(1) 0(1) -3(1) 2(1)C(10) 17(1) 33(1) 18(1) 0(1) 0(1) 4(1)C(11) 18(1) 33(1) 25(1) 4(1) -5(1) -6(1)

Page 165: M.sc. Thesis MK - November 15, 2011

- 148 -

Table 30: Hydrogen coordinates (x 104) and isotropic displacement parameters (Å2 x 10 3) for 1,3-di-tert-butylimidazolium bromide.

x y z U(eq)

H(1A) 6481 255 10484 32H(1B) 8183 602 10554 32H(1C) 7673 -515 9945 32H(2A) 5714 1947 9471 34H(2B) 6434 2303 8288 34H(2C) 7391 2352 9533 34H(3A) 8311 1133 7434 33H(3B) 8825 38 8090 33H(3C) 9317 1177 8656 33H(5A) 6725 -1389 8164 22H(6A) 4474 -1795 6859 22H(7A) 4461 1352 7620 19H(9A) 3429 -486 4710 30H(9B) 3609 781 4944 30H(9C) 2038 298 4474 30H(10A) 1673 924 7554 34H(10B) 824 1089 6277 34H(10C) 2402 1639 6580 34H(11A) 1433 -1116 7204 38H(11B) 2101 -1625 6064 38H(11C) 647 -894 5915 38

Page 166: M.sc. Thesis MK - November 15, 2011

- 149 -

A.3. Solubility Data

A.3.1. 3-(Ethyl)aza-1,5-dichloropentane hydrochloride (15)

Table 31: Solubility of 3-(ethyl)aza-1,5-dichloropentane hydrochloride (15).

Solu

tion

Mol

arity

(mol

/ L

Solve

nt)

0.00

0

0.00

0

0.00

1

0.06

6

0.09

4

0.29

3

0.79

6

0.57

6

0.90

5

1.40

4

3.37

5

23.1

71

Solu

tion

Mol

arity

( mol

/ kg

Solve

nt)

0.00

0

0.00

0

0.00

2

0.07

6

0.11

9

0.19

6

0.60

1

0.72

8

1.03

5

1.78

9

4.26

7

23.1

71

Solu

tion

Mol

arity

( mol

/ kg

Solu

tion)

0.00

0

0.00

0

0.00

2

0.07

5

0.11

6

0.18

9

0.53

4

0.63

3

0.85

3

1.30

6

2.26

8

4.00

5

Solu

tion

W/V

%(g

/ L

Solve

nt)

0.0

0.0

0.2

13.6

19.4

60.5

164.

4

118.

9

186.

9

290.

1

697.

1

4785

.7

Solu

tion

W/W

%(g

/ kg

Solve

nt)

0.0

0.0

0.3

15.8

24.5

40.5

124.

1

150.

3

213.

9

369.

5

881.

3

4785

.7

Solu

tion

W/W

%(g

/ kg

Solu

tion)

0.0

0.0

0.3

15.5

24.0

39.0

110.

4

130.

7

176.

2

269.

8

468.

4

827.

2

Solv

ent

Hexa

ne

Pent

ane

Et2O

Tolu

ene

Acet

one

CHCl

3

CH2C

l 2

EtO

H 95

%

Benz

ene

i PrO

H

MeO

H

H 2O

Page 167: M.sc. Thesis MK - November 15, 2011

- 150 -

A.3.2. 3-(tert-Butyl)aza-1,5-dichloropentane hydrochloride (16)

Table 32: Solubility of 3-(tert-butyl)aza-1,5-dichloropentane hydrochloride (16).So

lutio

nM

olar

ity( m

ol /

LSo

lvent)

0.00

5

0.00

9

0.00

7

0.03

6

0.08

9

0.14

7

0.48

5

0.84

5

1.18

8

3.41

1

11.9

65

9.62

3

Solu

tion

Mol

arity

(mol

/ kg

Solve

nt)

0.00

7

0.01

0

0.01

2

0.05

1

0.10

2

0.18

6

0.36

6

1.07

7

1.50

2

2.28

6

11.9

65

12.1

65

Solu

tion

Mol

arity

(mol

/ kg

Solu

tion)

0.00

7

0.01

0

0.01

2

0.05

0

0.10

0

0.17

8

0.33

7

0.86

0

1.11

0

1.48

8

3.14

3

3.15

7

Solu

tion

W/V

%( g

/ L

Solve

nt)

1.1

2.1

1.7

8.4

20.9

34.4

113.

8

198.

3

278.

6

800.

2

2807

.0

2257

.5

Solu

tion

W/W

%(g

/ kg

Solve

nt)

1.6

2.5

2.8

11.9

24.0

43.5

85.9

252.

6

352.

3

536.

3

2807

.0

2853

.9

Solu

tion

W/W

%(g

/ kg

Solu

tion)

1.6

2.4

2.8

11.8

23.4

41.7

79.1

201.

7

260.

5

349.

1

737.

3

740.

5

Solv

ent

Hexa

ne

Tolu

ene

Pent

ane

Et2O

Benz

ene

Acet

one

CH2C

l 2

i PrO

H

EtO

H 95

%

CHCl

3

H 2O

MeO

H

Page 168: M.sc. Thesis MK - November 15, 2011

- 151 -

A.3.3. 1,3-Di-tert-butylimidazolium chloride

Table 33: 1,3-Di-tert-butylimidazolium chloride solubility organized according to solubility differencesbetween boiling and room temperature solutions.

Solvent Temperature(°C)

SolutionW/W%(g / kgsolution)

SolutionW/W%(g / kgsolvent)

SolutionW/V%(g / Lsolvent)

SolutionMolarity(mol / kg

solution)

SolutionMolarity(mol / kg

solvent)

SolutionMolarity(mol / L

solvent)

Diethyl Ether 34.6 0.0 0.0 0.0 0.000 0.000 0.000

Diethyl Ether 25 0.0 0.0 0.0 0.000 0.000 0.000

Benzene 80 9.8 9.9 8.7 0.045 0.046 0.040

Benzene 25 9.0 9.1 8.0 0.042 0.042 0.037

1,4-Dioxane 101 3.4 3.4 3.6 0.016 0.016 0.016

1,4-Dioxane 25 1.2 1.2 1.2 0.006 0.006 0.006

Hexane 69 2.5 2.6 1.7 0.012 0.012 0.008

Hexane 25 0.0 0.0 0.0 0.000 0.000 0.000

Acetone 56 122.7 139.9 110.7 0.566 0.645 0.511

Acetone 25 119.9 136.2 107.7 0.553 0.628 0.497

Triethyl Amine 89 7.4 7.4 5.4 0.034 0.034 0.025

Triethyl Amine 25 0.0 0.0 0.0 0.000 0.000 0.000

Acetone / EthylAcetate 1:1

3 65.4 70.0 3 0.302 0.323 3

Acetone / EthylAcetate 1:1

25 46.4 48.7 3 0.214 0.225 3

Acetone / Hexane1:1

3 44.6 46.7 3 0.206 0.215 3

Acetone / Hexane1:1

25 5.0 5.0 3 0.023 0.023 3

Ethyl Acetate 77 51.4 54.2 48.9 0.237 0.250 0.226

Ethyl Acetate 25 0.0 0.0 0.0 0.000 0.000 0.000

Cyclohexanone 155 327.1 486.1 460.4 1.509 2.243 2.124

Cyclohexanone 25 258.0 347.8 329.3 1.190 1.604 1.519

1,2-Dichloroethane 83 267.4 365.0 458.4 1.234 1.684 2.115

1,2-Dichloroethane 25 150.5 177.2 222.5 0.694 0.817 1.027

Page 169: M.sc. Thesis MK - November 15, 2011

- 152 -

Methyl EthylKetone

80 179.9 219.4 176.6 0.830 1.012 0.815

Methyl EthylKetone

25 37.2 38.7 31.1 0.172 0.178 0.144

Methylene Chloride 40 493.9 975.9 1293.1 2.279 4.502 5.966

Methylene Chloride 25 277.9 384.9 510.0 1.282 1.776 2.353

Chloroform 61 436.3 774.1 1155.0 2.013 3.572 5.329

Chloroform 25 169.2 203.7 303.9 0.781 0.940 1.402

n-Propanol 97 541.2 1179.4 948.2 2.497 5.441 4.375

n-Propanol 25 243.9 322.5 259.3 1.125 1.488 1.196

Ethanol 100% 78 576.0 1358.4 1071.8 2.657 6.267 4.945

Ethanol 100% 25 271.8 373.3 294.5 1.254 1.722 1.359

iso-Propanol 82 547.4 1209.7 949.6 2.526 5.581 4.381

iso-Propanol 25 114.3 129.1 101.4 0.528 0.596 0.468