mr. kotaro$kojima 9! ! development*of*on-boardwater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

12
Mr. Kotaro Kojima 9 Development of OnBoard WaterinDiesel Emulsion (WiDE) Fuel System Utilizing Ultrasonic Cavitation to Realize Ultra LowEmission Diesel Engines Environmental Technology Commercialization Plan Elevator Pitch: The novel onboard emulsion technology overcomes the barriers hindering the marketing of low emission fuels and opens the door for the target customers, diesel engine manufacturers to produce an engine that can meet stringent emission regulations while anticipating a reliable influx of revenue. This system revolutionizes diesel engine architecture by using ultrasonic cavitation for subsecond fuel/water emulsification near the fuel injectors. Subsequent combustion results in unsurpassed emission reduction.

Upload: others

Post on 26-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mr. Kotaro$Kojima 9! ! Development*of*On-BoardWater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

Mr.  Kotaro  Kojima  9    Development  of  On-­‐Board  Water-­‐in-­‐Diesel  Emulsion  (WiDE)  Fuel  System  Utilizing  Ultrasonic  Cavitation  to  Realize  Ultra  Low-­‐Emission  Diesel  Engines  Environmental  Technology  Commercialization  Plan    Elevator  Pitch:  The  novel  on-­‐board  emulsion  technology  overcomes  the  barriers  hindering  the  marketing  of  low-­‐emission  fuels  and  opens  the  door  for  the  target  customers,  diesel  engine  manufacturers  to  produce  an  engine  that  can  meet  stringent  emission  regulations  while  anticipating  a  reliable  influx  of  revenue.  This  system  revolutionizes  diesel  engine  architecture  by  using  ultrasonic  cavitation  for  sub-­‐second  fuel/water  emulsification  near  the  fuel  injectors.  Subsequent  combustion  results  in  unsurpassed  emission  reduction.        

Page 2: Mr. Kotaro$Kojima 9! ! Development*of*On-BoardWater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

  2  

Executive  Summary              Nitrogen  oxides  (NOx)  and  particulate  matter  (PM)  from  diesel  engines  have  generated  much  public  concern,  damaging  the  atmosphere  and  threatening  human  health.  Water-­‐emulsified  fuel  is  a  promising  alternative  fuel  capable  of  simultaneously  reducing  these  emissions  while  maintaining  the  combustion  efficiency.  However,  water  contents  in  the  fuel  have  a  tendency  to  coalesce  if  the  fuel  is  not  agitated  periodically.  This  ingredient  separation  curtails  engine  performance,  therefore  triggering  counter  effects.  Combined  with  excessive  costs  of  production  and  transportation,  emulsion  instability  obstructs  widespread  usage  of  water-­‐emulsified  fuel.  An  on-­‐board  water-­‐in-­‐diesel  emulsion  system  was  developed  as  a  solution  to  this  issue.  Designed  for  engine  implementation,  the  technology  utilizes  ultrasonic  cavitation  to  instantly  emulsify  water  with  diesel  fuel  near  the  injectors,  allowing  for  subsequent  low-­‐emission  combustion.  This  approach  is  economical  as  it  removes  the  concerns  of  emulsion  instability  as  well  as  the  need  for  mass  production  at  chemical  plants  and  transportation.  A  proof-­‐of-­‐concept  study  was  conducted  to  characterize  the  system  with  water-­‐emulsified  fuels,  diesel,  and  biodiesel.  Optical  diagnostics  were  applied  in  combustion  experiments  to  evaluate  PM  emission  levels.  Flame-­‐color  segmentation  analysis  on  acquired  flame  images  gave  strong  evidence  that  water-­‐emulsified  fuels  emit  significantly  less  PM  than  conventional  diesel  fuels.  Fuel  spray  visualized  through  a  laser-­‐scattering  technique  revealed  the  homogeneous  and  atomized  spray  patterns  of  the  water-­‐emulsified  fuels.  The  innovation  can  not  only  overcome  the  barriers  hindering  the  commercialization  of  emulsion  fuels  but  also  solve  one  of  most  serious  air-­‐pollution  challenges  worldwide  through  reductions  of  NOx  and  PM.    Problem  Summary  and  Proposed  Solution              Diesel  engines  emit  hazardous  pollutants,  particularly  NOx  and  PM,  which  not  only  damage  our  environment,  but  also  threaten  human  health  (Nadeem  et  al.,  2006).  Due  to  increasingly  stringent  emission  standards  implemented  by  the  various  agencies  worldwide,  many  hardware-­‐based  technologies  are  being  developed  to  minimize  these  exhaust  gas  emissions.  After-­‐treatment  devices  such  as  selective  catalytic  reduction  (SCR)  and  NOx  absorber  catalysts  (NAC)  are  able  to  reduce  the  formation  of  NOx  considerably.  Diesel  oxidation  catalysts  (DOCs)  and  diesel  particulate  filters  (DPFs)  are  also  devices  commonly  utilized  for  the  reduction  of  PM.  However,  there  is  often  a  trade-­‐off  relationship  since  the  techniques  that  are  used  to  reduce  NOx,  lead  to  an  increase  in  PM  and  black  smoke  and  vice  versa  (Basha,  &  Anand,  2011).  In  addition,  they  tend  to  increase  the  fuel  consumption  of  the  engine  (Subramanian,  &  Ramesh,  2001).  Thus,  it  is  challenging  to  simultaneously  reduce  both  NOx  and  PM  while  maintaining  the  engine  performance.            In  recent  decades,  water-­‐emulsified  fuel  has  emerged  as  a  promising  alternative  fuel  with  capability  to  reduce  PM  and  NOx  emissions  simultaneously  while  at  the  same  time  enhancing  the  combustion  efficiency.  (Basha,  &  Anand,  2011;  Subramanian,  &  Ramesh,  2001).  In  spite  of  its  advantages,  a  major  concern  of  water-­‐emulsified  fuel  is  its  stability.  The  constituent  parts  of  water-­‐emulsified  fuel  have  a  tendency  to  separate  over  time.  Where  the  emulsion  composition  has  altered  due  to  ingredient  separation,  the  engine  performance  and  emissions  is  significantly  diminished.  Additionally,  if  water-­‐emulsified  fuel  were  stored  in  fuel  dispensers  at  gas  stations  like  traditional  fuels,  the  emulsion  would  destabilize;  and  if  pumped  into  a  diesel  engine  and  combusted,  the  exposed  water  would  damage  engine  components.  Lastly,  the  manufacturing  of  water-­‐emulsified  fuel  at  dedicated  factories  with  specialized  equipment,  the  transportation  of  the  aforementioned  fuel  to  desired  locations,  and  the  infrastructure  of  fuel  pumps  and  dispensers  would  incur  large  expenses.  Hence,  there  is  a  pressing  need  for  an  innovation  overcoming  the  barriers  to  the  commercialization  of  water-­‐emulsified  fuel,  while  maintaining  the  superior  low-­‐emission  and  combustion  efficiency  characteristics  of  the  water-­‐emulsified  fuel.          In  an  attempt  to  present  a  solution  to  this  issue,  a  novel  on-­‐board  water-­‐in-­‐diesel  emulsion  (WiDE)  fuel  system  was  designed  and  a  proof-­‐of-­‐concept  prototype  was  constructed.  The  technology  utilizes  ultrasonic  cavitation  to  emulsify  fuel  and  water  directly  before  the  injectors,  so  that  the  resulting  fuel  can  be  injected  immediately  into  the  engine,  essentially  removing  the  concerns  of  emulsion  instability  while  realizing  the  benefit  of  low-­‐emission  combustion  promised  by  the  water-­‐emulsified  fuel.  This  technology  is  economically  advantageous  as  it  eliminates  costly  emulsion  manufacturing  plants,  expenses  for  transportation,  and  the  infrastructure  of  fuel  dispensers.      Summarize  the  STEM  Concepts  and  Principles  Underlying  the  Overall  Plan                      Fascination  with  tiny  oxygen  bubbles  emerging  from  a  platinum  catalyst  in  a  hydrogen  peroxide  contact  lens  solution  led  the  author  to  research  about  the  phenomenon  of  ultrasonic  cavitation  and  the  uses  of  cavitation  in  engineering.  A  curiosity-­‐driven  experiment  to  see  if  an  ultrasonic  jewelry  cleaner  could  help  vegetable  oil  mix  with  

Page 3: Mr. Kotaro$Kojima 9! ! Development*of*On-BoardWater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

  3  

water  through  cavitation  gave  insight  on  cavitation-­‐induced  emulsion.  Further  research  on  the  subject  introduced  the  author  to  the  concept  of  water-­‐emulsified  fuel  and  made  him  aware  about  its  impeded  commercialization.              The  following  three  STEM  concepts  were  used  together  to  develop  the  current  technology.  Ultrasonic  cavitation  is  a  unique  condition  in  liquid  media  induced  by  ultrasound.  Intense  sonic  pressure  waves  from  ultrasonic  transducers  can  cause  the  rapid  formation  of  micron-­‐sized  bubbles  or  “voids.”  The  implosive  collapse  of  these  bubbles  generates  intense  local  heat  and  high  pressures  (up  to  5,000  K  and  1,000  atm)  and  liquid  jet  streams  (Suslick,  1990).  These  extreme  conditions  can  result  in  effective  mixing  of  immiscible  liquids,  creating  an  emulsified  liquid  commonly  known  as  emulsion  (Figure  1).            An  emulsion  is  a  mixture  of  two  or  more  immiscible  liquids  formed  through  mechanical  agitation,  with  one  of  the  liquids  dispersed  as  small  droplets  in  the  other.  Emulsions  have  found  numerous  and  various  applications  in  paint,  food,  cosmetics,  and  pharmaceutical  industries  (Nadeem  et  al.  2006).  In  recent  years,  emulsions  of  water  and  diesel  fuel,  also  known  as  water-­‐emulsified,  have  received  much  attention  in  alternative  fuel  sectors.                Spray  combustion  is  a  complex  principle  of  physical  chemistry.  It  involves  fluid  dynamics,  chemical  reactions,  and  molecular  transport  (Warnatz  et  al.  1996).  When  fuel  is  injected  through  an  orifice  into  a  combustion  environment,  it  breaks  up  into  various  sizes  of  droplets  before  heat  vaporizes  it.  Efficiency  of  subsequent  combustion  heavily  depends  on  the  extent  of  mixing  of  fuel  vapor  and  air.  The  turbulent  nature  of  spray  combustion  makes  it  difficult  to  measure  and  model  the  phenomenon  in  detail.      Commercialization  Assessment  of  the  Overall  Plan    Problem,  pain  point  or  market  opportunity:        Long-­‐term  epidemiologic  studies  have  reported  an  increased  risk  of  cardiopulmonary  mortality,  lung  cancer  mortality,  and  respiratory  mortality  associated  with  increasing  exposures  to  primary  pollutants  in  the  diesel  engine  exhaust.  Despite  the  urgent  need  for  low-­‐emission  diesel  combustion,  an  effective  method  to  minimize  diesel  engine  emissions  has  yet  to  be  developed.  Although  devices  like  SCR,  NAC,  DOCs,  and  DPFs  have  notable  pollutant  mitigation  efficiencies,  none  of  these  can  minimize  both  NOx  and  PM  while  concurrently  maintaining  the  engine  performance.  As  a  promising  method  to  meet  this  predicament,  water-­‐emulsified  fuel  has  emerged  as  an  alternative  fuel  capable  of  reducing  both  NOx  and  PM  while  preserving  combustion  efficiency.  However,  emulsion  instability  and  excessive  production/distribution  costs  prevent  its  commercialization.  Thus,  there  is  a  pressing  need  for  a  breakthrough  technology  able  to  eliminate  the  emulsion  instability  and  high  production/distribution  costs  in  order  to  introduce  water-­‐emulsified  fuel  into  the  market.  

   Proposed  solution:        The  proposed  solution  is  to  generate  water-­‐emulsified  fuel  on-­‐board  diesel  engines.  The  key  to  the  success  of  this  scheme  is  an  engineering  design  that  permits  an  ultrasonic  transducer  and  a  mixing  control  valve  to  effectively  create  cavitation  for  making  water-­‐emulsified  fuel  in  real-­‐time  fashion.  By  integrating  this  on-­‐board  WiDE  fuel  technology  into  diesel  engines,  water-­‐emulsified  fuel  would  be  formed  during  engine  operation  near  the  injector  pump  and  consumed  immediately  for  combustion.  This  approach  essentially  removes  the  concerns  of  emulsion  instability  in  the  fuel  tank  or  fuel  dispensers  as  well  as  the  needs  of  mass  production  at  chemical  plants  and  transportation;  thus,  the  true  economical  benefit  of  the  water-­‐emulsified  fuel  will  be  realized.              For  this  reason,  the  proposed  solution  is  not  only  patentable  but  also  superior  to  the  current  state-­‐of-­‐the-­‐art.  While  three  patents  (Coleman,  &  Sibley,  1997;  Cottell,  2011;  Hendren,  2003)  describe  the  idea  of  an  on-­‐board  fuel  system,  they  fall  short  to  claim  the  use  of  ultrasonic  cavitation  to  mix  water  and  fuel  within  the  engine.  These  patents  also  do  not  claim  an  economical  solution  of  using  a  dual-­‐purpose  water  mixture  for  the  emulsion,  which  saves  an  additional  water  reservoir  and  water  pump.  Furthermore,  the  systems  described  in  these  patents  do  not  find  yet  another  constituent  of  the  novel  technology  that  uses  a  mixing  control  valve,  eliminating  the  necessity  for  a  pair  of  flow  sensors  (for  water  and  fuel).      Target  customers  and  intended  users:        Initially,  the  on-­‐board  WiDE  fuel  system  would  be  licensed  to  diesel  engine  manufacturers  for  implementation  into  existing  and  new  diesel  engines.  These  diesel  engine  manufacturers  are  expected  to  be  widely  international,  ranging  from  American  corporations  Caterpillar  Inc.  and  Cummins  Inc.  to  

 Figure 1. Cavitation-induced emulsion. (Left) Separated fuel and water. (Right) Emulsified fuel with <1 sec. exposure to cavitation. Photo by author.

Page 4: Mr. Kotaro$Kojima 9! ! Development*of*On-BoardWater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

  4  

European  conglomerates  Daimler  AG  and  Volkswagen  AG  to  Japanese  companies  Isuzu  Motors  Ltd.  and  Komastu  Ltd.  The  intended  users  of  the  newly  assembled  diesel  engines  would  be  logistics/trucking  companies,  construction  and  agricultural  machinery  companies,  and  railway  locomotive  companies.  

 Competitors:        SCR,  NAC,  DOCs,  and  DPFs  and  other  emissions  control  devices  are  currently  used  in  diesel  engines;  nevertheless,  they  do  not  possess  the  effectiveness  of  the  novel  technology.  Lubrizol,  Cam  Technologie,  Clean  Fuels  Technologies,  and  Total  S.A.  market  water-­‐emulsified  fuel  blends  at  a  small-­‐scale,  mainly  in  Europe.  Large-­‐scale  commerce  is  stalled,  however,  due  to  high  production/distribution  costs  and  emulsion  instability  issues.                    Berlin-­‐based  German  company  Heilscher  Ultrasonics  suggests  an  on-­‐board  WiDE  fuel  system  concept  in  a  primitive  way  as  a  potential  application  of  the  company’s  high-­‐intensity  ultrasonic  transducer  (Heilscher  Ultrasonics,  2016).  Nevertheless,  Gunther  Benner,  a  sales  manager,  confirmed  in  an  email  correspondence  that  Heilscher  Ultrasonics  does  not  own  any  patent  on  the  idea;  rather,  the  company  is  interested  in  becoming  an  ultrasonic  transducer  supplier  to  customers’  unique  processes  (personal  communication,  February  26,  2016).    Customer  value  proposition  &  competitive  advantage:        A  system  that  creates  water-­‐emulsified  fuel  on-­‐demand  at  the  point  of  use  (i.e.,  on-­‐board  WiDE  fuel  system)  is  a  valuable  and  beneficial  innovation  to  the  target  customers  because  it  lowers  the  cost  of  their  engine.  The  cost  to  install  the  on-­‐board  WiDE  fuel  system  into  a  diesel  engine  is  estimated  to  be  $1,450  (assembly  labor:  $800,  manufacturing:  $300,  parts:  $300,  electrical  control  unit  upgrade:  $50)  per  unit  assuming  a  batch  of  1,000  units  production.  If  an  engine  manufacturer  adds  $1,650  per-­‐unit  profit,  a  sale  price  of  the  engine  would  be  increased  by  $3,000  per  unit  (i.e.,  approximately  10%  of  an  invoice  price  of  a  500  horsepower  diesel  engine).  This  price  increase  is  clearly  justified  considering  the  fact  that  the  novel  technology  will  replace  after-­‐treatment  systems  such  as  DPFs  or  SCRs  currently  used  in  diesel  engines,  which  cost  engine  makers  more  than  $15,000  per  unit  on  average  (U.S.  EPA,  2015).  In  comparison  to  emulsion  fuel  makers,  the  on-­‐board  WiDE  fuel  approach  is  more  feasible  and  robust  because  it  eliminates  the  instability  concerns  associated  with  pre-­‐processed  emulsified  fuel.  This  unique  business  model  is  not  a  classic  wholesale-­‐retail  model.  The  engine  manufacturer  does  not  buy  a  system  from  an  automobile  supplier  such  as  Bosch  and  double  the  engine  price.    Principal  revenue  streams  expected:        The  principal  revenues  are  expected  to  come  from  the  licensing  of  the  WiDE  fuel  technology  to  diesel  engine  manufacturers.  Note  that  the  author  does  not  intend  to  manufacture  or  sell  diesel  engines.  The  author  would  receive  a  yet-­‐to-­‐be-­‐negotiated  upfront  fee  (expected  to  be  around  $90,750),  plus  an  annual  royalty  rate  of  0.25%  of  wholesale  volume,  or  approximately  

Table 1. Financial analysis for 5 years (licensing model)

 

Page 5: Mr. Kotaro$Kojima 9! ! Development*of*On-BoardWater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

  5  

$82,500  to  the  author  for  every  1,000  unit  sold.  The  upfront  fee  was  calculated  by  taking  1%  of  the  engine  company’s  profit  due  to  the  WiDE  fuel  system  (an  estimated  5,500  units  sold  in  3  years,  multiplied  by  $1,650  per-­‐unit  profit).  The  royalty  rate  was  calculated  based  on  a  historically  accepted  term  (1%)  with  a  rather  large  75%  risk  discount  considering  the  WiDE  system  is  one  component  of  a  whole  engine  system.  The  author  has  begun  an  application  process  to  seek  $25,000  seed  funding  for  prototyping  from  Great  Lakes  Innovation  &  Development  Enterprise  (GLIDE)  through  Cleveland-­‐based  JumpStart  entrepreneur  network.  The  author  will  seek  step-­‐up  funding  of  up  to  $65,000  from  GLIDE  to  fund  validation  in  the  second  year.    Principal  startup  and  operating  costs  expected  to  be  incurred:        A  four-­‐year  financial  analysis  from  the  company  startup  is  shown  in  Table  1.  Expansion  to  four  years  indicates  that  profit  can  be  made  after  the  first  three  years  intended  for  prototyping,  validation,  marketing,  and  licensing.  A  provisional  patent  to  protect  the  technology  costs  $300.  Professor  Mounir  Ibrahim  at  the  Cleveland  State  University  (CSU)  Washkewicz  College  of  Engineering  has  agreed  to  fund  the  provisional  patent  fee  (personal  communication,  March  21,  2016).  Registration  as  a  State  of  Ohio  Limited  Liability  Corporation  (LLC)  costs  $125.  Prototyping  in  the  first  year  would  entail  designing  a  three-­‐way  solenoid  valve  and  a  compact  ultrasonic  transducer  (<50  watt,  >20  kHz);  and  prototyping  of  the  entire  on-­‐board  WiDE  fuel  system.  Initial  CAD  designs  are  in  progress,  thus,  an  hourly-­‐paid  design  engineer  should  cost  $150/hour,  multiplied  by  120  hours  of  labor  is  $18,000.  Additional  costs  incurred  for  prototyping  would  include  parts  ($4,500)  and  machining  ($6,000).  In  the  second  year,  emission  validation  of  the  prototype  will  necessitate  an  emission  gas  analyzer  ($3,500),  instrumentation  ($5,000).  A  research  facility  (20  ft.  by  35  ft.)  complete  with  engine  hardware  will  be  available  for  the  prototype  validation  free  of  charge  at  Professor  Ibrahim’s  lab  in  CSU  (personal  communication,  March  21,  2016).  Marketing  would  incorporate  marketing  supplies  such  as  brochures  and  website  ($5,500  over  two  years).  Since  target  customers  are  international,  the  author  will  exhibit  the  technology  at  multinational  tradeshows  POWER-­‐GEN  Asia  (booth  cost:  $208/sq.  ft.  ×  25  sq.  ft.  =  $5,200)  and  POWER-­‐GEN  International  (booth  cost:  $44/sq.  ft.  ×  25  sq.  ft.  =  $1,100).  Each  tradeshow  will  also  incur  costs  (airfare,  hotel,  food,  etc.)  for  a  representative  of  the  company  to  attend.  This  will  allow  for  unique  access  to  the  power  generation  industry  across  world,  product  promotion,  and  face-­‐to-­‐face  meetings  with  customers.  U.S.  patent  filing  and  a  patent  attorney  fees  ($18,000)  will  be  incurred  for  a  U.S.  patent  in  the  third  year.  Concurrently,  during  the  third  year,  a  lawyer  to  draw  up  a  licensing  agreement  between  the  author  and  a  diesel  engine  manufacturer  would  cost  $24,000  ($400/hour  ×  60  hours).  Other  costs  including  salary  to  the  author,  office  rental/utilities,  administrative,  insurance,  and  office  equipment  are  listed  in  Table  1.    Science  and  Technology  Proof  of  Concept  Review  and  assessment  of  the  scientific  literature:        A  number  of  studies  have  been  conducted  on  water-­‐emulsified  fuel  combustion.  Tsue  et  al.  utilized  a  hot  duralumin  surface  to  analyze  the  micro-­‐explosion  phenomenon  of  a  water-­‐in-­‐diesel  emulsion  droplet  within  a  high-­‐pressure  chamber  (Tsue  et  al.  1996).  To  analyze  the  breakup  qualities  of  a  secondary  atomization  of  a  water-­‐in-­‐diesel  emulsion,  Watanabe  et  al.  conducted  experiments  where  a  single  WiDE  droplet  was  suspended  on  a  quartz  fiber  (Watanabe  et  al.  2010).  Literature  can  also  be  found  on  the  occurrence  of  micro-­‐explosion  in  emulsion  fuel  sprays.  Watanabe  and  Okazaki  observed  the  secondary  atomization  of  emulsified  fuel  spray  using  a  high-­‐speed  shadow  imaging  technique,  however  micro-­‐explosion  was  seldom  detected  (Watanabe,  &  Okazaki,  2013).  In  contrast,  Mizutani  et  al.  reported  the  effective  observation  of  micro-­‐explosion  in  oil-­‐in-­‐water  emulsion  spray  flames  created  by  a  ring  pilot  burner  (Mizutani  et  al.  2000).  Other  methods  have  been  used  in  the  study  of  water-­‐emulsified  fuel  apart  from  the  aforementioned  ones.  Various  kinds  of  four  stroke  engines  have  been  employed  to  evaluate  emissions  and  combustion  characteristics  of  water-­‐emulsified  fuel.  Nadeem  et  al.,  for  example,  fuelled  a  Ford  diesel  engine  test  bed  with  diesel  and  emulsified  fuels  stabilized  by  conventional  and  gemini  surfactants  to  study  performance  and  emissions  (Nadeem  et  al.  2006).        Discussion  of  your  findings  with  relevant  cited  references:        In  the  present  research,  a  water-­‐in-­‐diesel  emulsion  was  successfully  engineered  through  low-­‐power  (1.4  W)  ultrasonic  cavitation  in  a  chamber  approximately  0.3  cm3  

in  volume  within  <1  sec  of  residence  time.  Hendren  describes  a  propeller  agitator  up  to  6000  RPM  to  create  an  oil-­‐in-­‐water  emulsion  (Hendren,  2003)  while  Cottell  proposed  a  non-­‐vibrating  anvil  to  emulsify  water  and  fuel  through  cavitation  (Cottell,  2011).  Coleman  and  Sibley  cite  a  mixing  apparatus  upstream  of  the  fuel  injectors  for  creating  fuel-­‐in-­‐water  emulsion  (Coleman,  &  Sibley,  1997).                                                                                                                                                                                                                                          According  to  the  author’s  flame-­‐color  segmentation  analysis  applied  to  open  spray  flames  of  fuel  variations,  PM  

Page 6: Mr. Kotaro$Kojima 9! ! Development*of*On-BoardWater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

  6  

emission  level  of  the  spray  combustion  of  water-­‐emulsified  fuel  (3%  water  content)  was  found  to  be  40%  lower  than  traditional  diesel  fuel.  Nadeem  et  al.  has  reported  up  to  70%  in  PM  emissions  decrease  with  emulsified  fuel  containing  15%  water  content  by  volume  (Nadeem  et  al.  2006).  PuriNOx,  Lubrizol’s  water/diesel  emulsion,  has  been  verified  by  the  California  Air  Resources  Board  (ARB)  as  capable  of  63%  PM  reduction  compared  to  conventional  fuels  (U.S.  EPA,  2002).  Barnes  et  al.  investigated  the  effect  of  10%  water  addition  to  fuel,  reporting  a  20%  lowering  in  PM  from  a  city  bus  engine  (Barnes  et  al.  2000).    Statement  of  a  single,  clear  and  compelling  (1)  testable  hypothesis  or  (2)  engineering  design:        An  energy-­‐efficient,  ultrasonic  water-­‐emulsified  fuel  technology  will  be  designed  for  on-­‐board  diesel  engine  implementation  and  evaluated  with  a  proof-­‐of-­‐concept  combustion  experimentation.      Inquiry  or  design-­‐based  discussion  (Experimental  Materials  and  Methods)  Dual-­‐Purpose  Water  Mixture:        Methyl  alcohol  (Duda  Energy)  and  a  surfactant,  Clear  EX  (Lion  Specialty  Chemicals)  was  mixed  into  the  water  for  emulsion  to  prevent  freezing  and  corrosion:  methyl  alcohol  for  anti-­‐freezing  and  surfactant  for  corrosion-­‐prevention.  The  Clear  EX  contains  polyoxyethylene  (a  nonionic  surfactant)  and  amin  compounds  for  corrosion-­‐prevention  as  well  as  a  chelating  agent  for  anti-­‐bacterial  effect.  Long-­‐term  stability,  rustproof,  and  anti-­‐bacterial  performance  of  the  surfactant  have  been  reported  previously  (Kunio  et  al.  2003).            Because  the  water  for  emulsion  is  mixed  with  surfactant  and  methyl  alcohol,  it  meets  the  specifications  for  windshield  washer  fluid  as  an  anti-­‐freezing  and  hydrophobic  liquid.  Thus,  the  mixture  of  water,  methyl  alcohol,  and  surfactant,  called  dual-­‐purpose  water  mixture,  can  function  as  both  windshield  washer  fluid  and  water  for  emulsion.  This  eliminates  the  need  for  the  installation  of  an  additional  water  reservoir  and  pump  in  the  engine.  Note  that  this  dual-­‐purpose  water  mixture  would  be  a  separate  product  with  proprietary  composition,  manufactured  and  sold  by  another  entity  of  business.  Refilling  of  the  water  mixture  would  come  by  one-­‐gallon  containers  just  as  windshield  washer  fluids  sold  at  gas  stations.      On-­‐Board  WiDE  Fuel  System:        The  on-­‐board  WiDE  fuel  system  concept  was  conceived  for  diesel  engine  implementation.  Figure  2  illustrates  how  the  technology  operates  in  a  standard  diesel  engine  system.  A  single  water  reservoir  supplies  water  for  both  the  water-­‐emulsified  fuel  and  the  windshield  washer  fluid.  It  serves  dual-­‐purposely  and  eliminates  the  need  of  an  extra  water  pump.  When  the  engine  is  started,  the  fuel  and  water  are  pumped  out  of  their  respective  reservoirs  and  converge  at  the  three-­‐way  solenoid  valve  (hereafter  called  “mixing  control  valve”),  which  regulates  the  water-­‐to-­‐fuel  ratio.  In  the  

 Figure 3. Biodiesel made by the author. Photo by author.  

Figure 2. On-board WiDE fuel system integrated into a diesel engine common rail/fuel injection system. Sketched by author.

Page 7: Mr. Kotaro$Kojima 9! ! Development*of*On-BoardWater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

  7  

emulsion  cavity,  the  fuel  and  water  are  emulsified  by  ultrasonic  cavitation  induced  by  a  transducer.  Subsequently,  the  freshly  produced  water-­‐emulsified  fuel  is  fed  into  the  common  rail  where  it  is  injected  into  the  diesel  engine  and  combusted.  The  unused  fuel  is  looped  back  to  the  emulsion  cavity  where  it  is  re-­‐emulsified  with  constituent  fuel  and  water.      

 Proof-­‐of-­‐Concept  Experimentation:        A  prototype  of  the  emulsification  chamber  (see  Figure  5  inset)  was  constructed  for  proof-­‐of-­‐concept  combustion  flame  and  fuel  spray  experiments  on  four  fuel  types:  diesel,  biodiesel  (Figure  3),  water-­‐emulsified  diesel,  and  water-­‐emulsified  biodiesel.  It  was  made  of  a  fitting  nut  welded  to  a  straight  ½  inch  fitting  coupler.  Two  holes  were  drilled  on  either  side  of  the  coupler.  ⅛  inch  tubes  were  welded  into  those  holes:  one  for  fuel  inlet  and  the  other  for  water  inlet.  A  third  tube  was  welded  to  the  remaining  opening  to  create  the  emulsified  fuel  outlet.  An  ultrasonic  transducer  was  inserted  through  the  fitting  nut.  It  was  intruded  into  the  cavity  to  have  direct  contact  with  the  liquids  for  creating  instant  emulsification  as  the  fuel  and  water  converge.              A  photograph  and  a  schematic  of  the  experimental  apparatus  are  pictured  in  Figure  4  and  Figure  5,  respectively.  The  open-­‐air  burner  was  a  suitable  format  to  create  an  open  fuel  spray,  providing  an  excellent  opportunity  for  non-­‐intrusive  optical  diagnostics  of  the  combustion  flame  and  fuel  spray  of  the  various  fuels.      Ultrasonic  Transducer:  Amplitude  to  Watts  Calibration:        The  ultrasonic  transducer  used  in  the  prototype  had  a  variable  power  output  of  10  to  750  watts  (W).  The  ultrasonic  transducer  had  a  ½  inch  piezoelectric  tip  made  with  lead  zirconate  titanate  crystals  (PZT)  material.  Although  the  amplitude  control  on  the  ultrasonic  transducer  could  set  the  ultrasonic  vibrations  at  the  probe  tip  at  any  desired  level  between  the  amplitude  of  10%  to  80%,  the  amount  of  power  required  could  not  be  predetermined.  It  is  the  resistance  to  the  movement  (vibrations)  of  the  probe  that  determines  how  much  power  (wattage)  is  delivered  into  the  sample.  To  determine  the  actual  resistance  of  diesel  fuel/water  mixture,  the  output  power  was  measured  over  the  range  of  possible  amplitudes.  This  test  resulted  in  a  linear  relationship  between  the  amplitude  applied  to  the  transducer  and  the  output  power  of  ultrasound,  which  was  represented  by  an  empirical  equation:  Output  Power  (W)  =  Amplitude  (%)  –  10.      Ultrasonic  Transducer:  Joules  Measurement  for  Complete  Emulsification:        Knowledge  of  energy  requirement  for  complete  emulsification  of  the  diesel  fuel  and  water  is  crucial  for  automobile  electrical  management.  For  this  purpose,  an  ultrasonic  energy  test  was  conducted  on  a  9  to  1  mixture  of  fuel  and  water  (500  mL  in  total).  The  minimum  energy  of  68  joules  was  required  for  complete  emulsification  based  on  visual  observation.  Since  the  total  mixture  volume  was  50  mL,  this  equals  to  the  energy  usage  of  1.4  joules  per  1  mL.  By  multiplying  it  with  the  fuel  flow  rate  of  1  mL/sec  of  the  experimental  system,  the  minimum  power  requirement  of  1.4  W  was  calculated  for  complete  diesel  fuel  and  water  emulsification.  While  the  actual  fuel  flow  rate  in  actual  diesel  engines  is  10-­‐20  times  more  than  the  fuel  flow  rate  of  the  experimental  system,  the  total  wattage  needed  to  keep  the  transducer  running  is  not  a  burden  to  diesel  engines’  electrical  supply.      Anti-­‐Freezing  and  Rustproof  Performance  of  Dual-­‐Purpose  Water  Mixture:        A  lab  experiment  was  conducted  to  test  anti-­‐freezing  and  rustproof  performance  of  the  water  mixture  with  methyl  alcohol  and  the  surfactant.  To  test  anti-­‐freezing  performance,  methyl  alcohol  content  in  water  was  varied  from  5%  to  30%  with  an  increment  of  5%.  The  samples  were  set  in  an  environment  with  an  average  temperature  of  -­‐15°F  for  10  hours.  The  mixtures  crystallized  with  methyl  alcohol  concentrations  below  30%.  The  mixture  with  methyl  alcohol  concentration  of  30%  

 Figure 4. Experimental apparatus with prototype emulsification chamber (inset) constructed by author. Photos by author at combustion facility in Warrensville Heights, OH.  

 

Page 8: Mr. Kotaro$Kojima 9! ! Development*of*On-BoardWater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

  8  

stayed  liquid  without  any  sign  of  crystallization.  This  agrees  with  the  fact  that  a  typical  commercial  windshield  washer  has  30%  to  40%  methyl  alcohol  concentration.            To  test  anti-­‐corrosion  ability,  the  surfactant  content  in  water  was  varied  from  1%  to  10%  with  an  increment  of  2%  to  3%.  A  piece  of  steel  (5  grams)  was  submerged  in  each  of  those  mixtures  for  10  days  and  was  observed  for  an  extent  of  corrosion.  The  pieces  of  steel  showed  signs  of  corrosion  with  a  slight  discoloration  of  the  water  with  surfactant  concentrations  below  7%.  The  steel  in  the  mixtures  with  7%  and  10%  concentrations  of  the  surfactant  did  not  show  any  surface  corrosion.  The  results  suggest  a  minimum  of  30%  methyl  alcohol  and  7%  of  surfactant  for  the  rustproof  and  anti-­‐freezing  ability.  The  dual-­‐purpose  water  mixture,  therefore,  would  consist  of  63%  water,  30%  methyl  alcohol,  and  7%  surfactant.  If  the  water  were  mixed  with  diesel  fuel  by  a  9  to  1  ratio  (90%  diesel  fuel,  10%  dual-­‐purpose  water  mixture)  the  final  water-­‐emulsified  fuel  would  consist  of  90%  diesel,  6%  water,  3%  methanol,  and  1%  surfactant.  Data  Acquisition:  Photographic  Imaging:        Imaging  for  both  combustion  flame  and  fuel  spray  experiments  was  carried  out  using  a  digital  camera  (Nikon  D7000:  16.2  megapixels,  18-­‐105  mm  lens).  Up  to  27  images  were  recorded  for  each  condition.  For  the  fuel  spray  investigation,  a  laser  diagnostic  technique  termed  “fuel  spray  visualizer”  was  constructed.  It  consisted  of  a  green  laser  pointer  (5  mW,  532  nm)  and  a  pair  of  mirrors  (see  Figure  6).  The  one  of  the  mirrors,  located  downstream  of  the  optical  path,  was  attached  to  a  gear  motor.  When  the  laser  pointer  was  turned  on,  the  laser  beam  reflected  on  the  first  mirror  and  the  subsequent  second  mirror.  Since  the  gear  motor  was  energized  simultaneously,  the  second  mirror  spun  continuously  and  thus  rotated  the  laser  beam,  which  then  formed  a  “laser  sheet”  with  1  mm  thickness.  This  laser  sheet  scattered  off  the  fuel  droplets  and  visualized  or  “highlighted”  the  spray  pattern.  The  laser  sheet  was  directed  toward  the  area  of  interest  and  aligned  with  the  burner  axis  at  a  120°  angle  for  enhanced  forward  scattering.  By  synchronizing  the  camera’s  shutter  exposure  and  the  laser-­‐scanning  rate,  high-­‐quality  spray  images  were  obtained.    

   Data  Analysis  Part  I:  Combustion  Flame  Images:        Respective  flame  images  of  biodiesel  and  water-­‐emulsified  biodiesels  are  shown  in  Figure  7a.  PM  emissions,  commonly  known  as  soot,  are  carbon  micro-­‐particles  with  typical  formation  between  C1  and  C3.  When  PM  are  heated  by  combustion,  they  radiate  as  blackbody,  creating  a  yellow-­‐orange  luminous  flame.  Since  there  is  no  other  species  that  is  expected  to  produce  such  a  strong  radiation  over  the  range  of  wavelength,  measuring  yellow  luminescence  in  flames  is  a  valid  scientific  method  to  estimate  the  PM  emission  volume  conveniently.  In  contrast,  the  hue  of  dark  blue  to  emerald  green  indicates  complete  combustion.  The  blue-­‐color  flame  is  

Figure 5. Schematic of the experimental apparatus with instrumentation. Sketched by author.

 Figure 6. Fuel spray visualizer with a spinning mirror used for spray analysis constructed by author. Photo by author.

 

Page 9: Mr. Kotaro$Kojima 9! ! Development*of*On-BoardWater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

  9  

understood  as  chemiluminescence  from  the  reactive  species  in  flames  (Stamatoglou,  2014).  Therefore,  the  use  of  flame  color  is  feasible  for  PM  volume  analysis.  Based  on  this  argument,  a  computer  program  was  developed  in  MATLAB  language  that  masked  a  flame  image  based  on  the  hue  range  that  was  determined  for  the  color  separation  of  interests  (Figure  7b).  This  novel  flame-­‐color  analysis  used  a  hue  spectrum  that  allowed  the  optimizing  of  the  hue  range  and  separation  of  the  original  image  into  two  segments  based  on  the  color.            For  the  purpose  of  PM  volume  estimations  of  each  fuel  variation,  the  hue  range  was  programmed  to  isolate  the  luminous  yellow  flame  (PM  representation)  from  the  area  encompassing  dark  blue  to  emerald  green.  It  is  understood  that  the  blue  color  is  chemiluminescence  from  the  reactive  species  in  flames  and  thus  indicates  the  region  where  the  actual  combustion  reaction  is  taking  place.              The  averages  of  both  colors  over  more  than  20  images  for  each  fuel  variation  were  taken.  The  summation  of  the  yellow  pixel-­‐intensity  was  then  computed  and  normalized  by  the  blue  pixel-­‐intensity  sum.  This  value,  hereafter  called  yellow/blue  ratio  or  Y-­‐B  ratio,  was  an  optical  measure  of  PM  volume,  or  a  PM  emission  level  indicator.  The  mean  pixel  (matrix  element)  value  of  the  averaged  flame  image  was  computed  by  the  following  equation:    

 I  is  the  pixel  intensity  of  each  matrix  element  (x,  y);  X  =  3264,  Y  =  4928  are  the  number  of  pixels  on  each  orientation;  i  is  the  color  type  of  the  image  (yellow  or  blue).  Furthermore,  the  ratio  of  the  mean  pixel  values  of  the  yellow  and  blue  flames  was  computed  by  the  following  equation:    

 Φ  stands  for  the  Y-­‐B  ratio.  A  high  Φ  indicates  the  higher  PM  volume  and  a  low  Φ  indicates  lower  PM  volume.  The  use  of  Y-­‐B  ratio  is  effective  because  it  cancelled  out  the  difference  in  overall  intensities  among  the  fuel  varieties.  Through  this  data  post-­‐processing,  the  PM  volume  was  strictly  defined  even  when  the  mass  flow  rate  was  slightly  varied  among  the  different  fuel  varieties.  

 

Figure 7. (a) Respective flame images of biodiesel and water-emulsified biodiesel. (b) Flame-color segmentation analysis developed by author for PM emission measurements. Photos by author.

(a) (b)

Page 10: Mr. Kotaro$Kojima 9! ! Development*of*On-BoardWater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

  10  

Data  Analysis  Part  II:  Fuel  Spray  Images:        Engine  performance  in  diesel  engines  depends  on  many  different  factors;  one  of  them  is  fuel  spray  quality.  Fuel  spray  quality  has  a  decisive  impact  on  combustion  in  the  diesel  engine,  thus  affecting  engine  starting,  efficiency,  and  emissions.  The  acquired  spray  images  were  analyzed  using  two  image-­‐processing  techniques:  Cutout  (intensity  threshold)  filter  and  GlowEdges  (intensity  gradient)  filter.  The  images  in  Figure  8a  are  two  representative  images  out  of  more  than  25  laser-­‐visualized  fuel  spray  images  obtained  for  each  fuel  variation.  Image  intensity  histograms  for  the  biodiesel  and  the  water-­‐emulsified  biodiesel  are  also  shown.  Two  images  with  the  similar  histograms  were  chosen  in  order  to  conduct  a  non-­‐biased  analysis.            The  intensity  threshold  filter  generated  six  individual  images  with  increasing  intensities  out  of  one  original  spray  image  (see  Figure  8b).  According  to  the  Mie  scattering  theory,  the  initial  fuel  spray  near  the  orifice  of  the  burner  has  higher  scattering  intensity  because  the  fuel  spray  is  much  denser  and  droplets  are  larger  near  the  orifice.  In  contrast,  as  the  droplets  travel  farther  away  from  the  orifice,  the  droplets  break  up  and  create  much  smaller  droplets  (Le  Gal  et  al.  1999).  Because  the  smaller  droplets  do  not  scatter  the  laser  sheet  as  much  as  the  larger  droplets,  the  scattering  intensity  decreases.  This  means  that  the  level  of  image  pixel  intensity  represents  the  spray  formation  development  over  the  spreading  angle  of  the  spray  (number  1  being  the  most  intense  scattering  and  number  6  being  the  least  intense  scattering).  The  water-­‐emulsified  fuel  seemed  to  show  steadier  spray  pattern,  which  should  contribute  positively  to  combustion  performance  and  thus  lower  PM  emission  levels.            Figure  9  illustrates  the  representative  intensity  gradient  filtered  images  of  biodiesel  fuel  spray  and  the  water-­‐emulsified  fuel  spray.  These  images  are  seen  as  enhanced  edges  where  the  pixel  intensity  gradients  are  higher  than  a  certain  threshold.  This  filter  technique  is  especially  useful  to  visualize  individual  droplets  or  clusters  along  

Figure 8. (a) Respective laser-visualized fuel spray images. (b) Intensity threshold filtered fuel spray images indicating spray formation development. Photos by author.

(a) (b)

Figure 9. Intensity gradient filtered fuel spray images. Photos by author.

   

   

 

Page 11: Mr. Kotaro$Kojima 9! ! Development*of*On-BoardWater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

  11  

the  outer  spray  boundaries  as  well  as  the  injection  cone  angles.  Fuel  spray  quality  can  be  defined  as  the  degree  of  atomization  and  uniformity  of  the  droplet  size  distribution.  This  filter  defined  the  atomization  and  the  uniformity  of  the  particular  fuel  variation.  As  seen  in  the  Figure  9,  the  water-­‐emulsified  biodiesel  spray  has  a  smaller  injection  cone  angle  while  having  more  uniform,  atomized  pattern  than  the  biodiesel.  The  biodiesel  has  rather  uneven  spray  formation  with  some  larger  droplet  clusters.  Large  gaps  with  no  droplets  are  also  observed.  Lower  viscosity  due  to  the  water  contents  in  the  fuel  and  changes  in  surface  tension  might  have  helped  water-­‐emulsified  biodiesel  to  exhibit  more  evenly  distributed  spray  formation  with  smaller  droplets.  The  more  evenly  distributed  small  droplets  of  the  water-­‐emulsified  biodiesel  should  positively  affect  engine  starting  and  engine  performance.    Results  and  Discussion              Figure  10  presents  the  results  of  Y-­‐B  ratio  (Φ)  analysis  on  several  combinations  of  the  water-­‐emulsified  fuels  against  the  control  properties  of  the  diesel  and  biodiesel  fuels.  Notice  that  each  bar  graph  has  a  specific  shutter  speed  (1/200,  1/800,  or  1/8,000  sec)  depending  on  the  experimental  condition.  Graph  A  shows  a  promising  trend,  indicating  PM  emission  from  the  biodiesel  combustion  can  be  reduced  by  up  to  40%  with  3%  water  content.  This  observation  is  also  true  according  to  Graph  B,  which  shows  an  even  more  dramatic  reduction  of  50%.  Graph  A  indicates  biodiesel  combustion  generally  produces  higher  amount  of  PM  than  regular  diesel  combustion  unless  water/fuel  emulsion  is  practiced.  This  is  significant  finding  because  the  data  suggests  that  water-­‐emulsion  is  a  necessary  technology  for  biodiesel  to  become  truly  environmentally  friendly  in  applications  to  diesel  engines.  Graph  C  indicates  35%  lowering  of  PM  emissions  from  diesel  combustion  through  water-­‐emulsification.              This  PM  emission  reduction  primarily  owes  to  a  distinct  phenomenon  of  water-­‐emulsified  fuel  combustion  called  micro-­‐explosion  (U.S.  EPA,  2002).  When  an  emulsion  fuel  is  heated,  the  water  droplets  within  the  fuel  are  vaporized  first  because  water  is  more  volatile.  This  vaporization  causes  the  explosion  of  the  whole  droplet,  violently  shattering  the  fuel  droplet  into  very  fine  particles.  Consequently,  an  enhancement  in  the  fuel/air  mixing  process  results  in  improved  burning  efficiency  and  thus  suppresses  the  formation  of  PM.  In  addition,  NOx  emissions  from  the  water-­‐emulsified  fuel  are  likely  reduced  as  well  due  to  the  lower  peak  flame  temperature.  The  reduction  of  the  temperature  is  due  to  the  high  latent  heat  from  the  evaporation  of  water  in  the  emulsion  that  absorbs  the  heat  during  the  combustion.    

Conclusion              Emulsified  fuel  is  a  prime  alternative  fuel  for  both  transport  and  stationary  diesel  engines.  The  increasing  interest  to  this  type  of  fuel  is  driven  by  its  benefits  of  simultaneous  reduction  of  both  NOx  and  PM  in  addition  to  its  impact  on  combustion  efficiency.  Despite  its  attractiveness,  water-­‐emulsified  fuel  has  not  been  widely  used  due  to  its  instability  and  production  costs.  The  present  paper  describes  an  effort  to  develop  a  technology  to  overcome  these  obstacles  impeding  the  commercialization  of  water-­‐emulsified  fuel.  The  low-­‐emission  capability  of  the  technology  has  been  confirmed  through  a  proof-­‐of-­‐concept  study  incorporating  combustion  experiments,  optical  diagnostics,  and  unique  image-­‐processing  techniques.  The  prototyping  stage  shows  strong  potential  and  feasibility  

1   2  

Series1   7.8078   5.0826  

D  D  2%W  

0.0  

2.0  

4.0  

6.0  

8.0  

10.0  Shu]er  speed:  1/800    

1   2  

Series1   7.1387   3.0018  

BD  

BD,2%W  

0.0  1.0  2.0  3.0  4.0  5.0  6.0  7.0  8.0  

Shu]er  speed:  1/200    

1   2   3   4  

Series1   0.8713   0.9874   0.81   0.6036  

D  BD  

BD,3%W    BD,2%W    

0.0  

0.2  

0.4  

0.6  

0.8  

1.0  

1.2  

Shu]er  speed:  1/8,000  

Graph  A  

 

Graph  B  

 

Graph  C  

 Figure 10. Comparison of PM (soot) emissions from various fuel types. D: diesel; BD: biodiesel; W: water volume percentage (water-emulsified fuel). Graphs created by author.

 

Page 12: Mr. Kotaro$Kojima 9! ! Development*of*On-BoardWater-in … · 2019. 10. 4. · ! 9! $,);$ $ $

  12  

for  the  continued  development  of  a  robust  and  reliable  on-­‐board  WiDE  fuel  system  that  will,  when  implemented,  make  a  significant  impact  on  global  emissions  from  the  public  health  and  environmental  points  of  view.    Implications  for  Future  Research,  Design,  and  Analysis            A  numerical  combustion  model  should  be  developed  to  optimize  the  water  content  in  the  emulsion  for  each  engine  operating  condition  (idle  or  low/high  load).  Endurance  testing  of  the  mixing  control  valve  and  the  ultrasonic  transducer  is  necessary  before  prototyping  of  the  WiDE  fuel  system  for  engine  implementation.  The  water-­‐emulsified  fuel  will  be  tested  in  various  types  of  commercial  diesel  engines.  Instrumentation  data  regarding  engine  performance  (horsepower,  fuel  economy)  should  be  collected  to  optimize  engine  parameters  such  as  injection  timing,  injection  pressure,  compression  ratio,  and  exhaust  gas  recirculation  (EGR)  controls.      Acknowledgements              Dr.  Frank  Sun,  a  mechanical  engineer  at  Sun  Valley  Technology  (OH),  provided  a  facility  for  experiments.  Mr.  Jun  Kojima  answered  technical  questions  about  combustion  and  helped  with  MATLAB  programming.      References  Cited        Barnes,  A.,  Duncan,  D.,  Marshall,  J.,  Psaila,  A.,  Chadderton,  J.,  &  Eastlake,  A.  (2000).  Evaluation  of  water-­‐blend  fuels  

in  a  city  bus  and  an  assessment  of  performance  with  emission  control  devices  (No.  2000-­‐01-­‐1915).  SAE  Technical  Paper.  

Basha,  J.  S.,  &  Anand,  R.  B.  (2011).  An  experimental  study  in  a  CI  engine  using  nanoadditive  blended  water–diesel  emulsion  fuel.  International  Journal  of  Green  Energy,  8(3),  332-­‐348.  

Coleman,  G.  N.,  &  Sibley,  J.  E.  (1997).  U.S.  Patent  No.  5,682,842.  Washington,  DC:  U.S.  Patent  and  Trademark  Office.  

Cottell,  E.  W.  (2011).  U.S.  Patent  No.  7,930,998.  Washington,  DC:  U.S.  Patent  and  Trademark  Office.  Heilscher  Ultrasonics.  (2016).  Power  Ultrasound  for  Water-­‐in-­‐Diesel  Emulsions.  Retrieved  February  03,  2016,  from  

https://www.hielscher.com/power-­‐ultrasound-­‐for-­‐water-­‐in-­‐diesel-­‐emulsions.htm  Hendren,  F.  (2003).  U.S.  Patent  Application  No.  10/502,787.  Kunio,  H.,  Shinohara,  H.,  Yamauchi,  M.,  Adachi,  Y.,  Osamu,  K.,  &  Sugawara,  H.  (2003).  Japanese  Patent  No.  P2003-­‐

327979A.  Tokyo:  Japan  Patent  Office.  Le  Gal,  P.,  Farrugia,  N.,  &  Greenhalgh,  D.  A.  (1999).  Laser  sheet  dropsizing  of  dense  sprays.  Optics  &  Laser  

Technology,  31(1),  75-­‐83.  Mizutani,  Y.,  Fuchihata,  M.,  Matsuoka,  Y.,  &  Muraoka,  M.  (2000).  Observation  of  Micro-­‐Explosions  in  Spray  Flames  

of  Light  Oil–Water  Emulsions.  JSME  (B),  66(646),  1544-­‐1549.  Nadeem,  M.,  Rangkuti,  C.,  Anuar,  K.,  Haq,  M.  R.  U.,  Tan,  I.  B.,  &  Shah,  S.  S.  (2006).  Diesel  engine  performance  and  

emission  evaluation  using  emulsified  fuels  stabilized  by  conventional  and  gemini  surfactants.  Fuel,  85(14),  2111-­‐2119.  

Stamatoglou,  P.  (2014).  Spectral  Analysis  of  Flame  Emission  for  Optimization  of  Combustion  Devices  on  Marine  Vessels.  Lund  Reports  on  Combustion  Physics  LRCP-­‐176.  

Subramanian,  K.  A.,  &  Ramesh,  A.  (2001).  Experimental  investigation  on  the  use  of  water  diesel  emulsion  with  oxygen  enriched  air  in  a  DI  diesel  engine  (No.  2001-­‐01-­‐0205).  SAE  Technical  Paper.  

Suslick,  K.  S.  (1990).  Sonochemistry.  Science,  247(4949),  1439-­‐1445.    Tsue,  M.,  Kadota,  T.,  Segawa,  D.,  &  Yamasaki,  H.  (1996).  Statistical  analysis  of  onset  of  microexplosion  for  an  

emulsion  droplet.  InSymposium  (International)  on  Combustion  (Vol.  26,  No.  1,  pp.  1629-­‐1635).  Elsevier.  U.S.  Environmental  Protection  Agency.  (2002).  Impacts  of  Lubrizol’s  PuriNOx  Water/Diesel  Emulsion  on  Exhaust  

Emissions  from  Heavy-­‐Duty  Engines.  EPA420-­‐P-­‐02-­‐007.  U.S.  Environmental  Protection  Agency.  (2015).  Diesel  Technologies  Assessment:  Technologies–Diesel  Retrofit  

Devices.  Retrieved  February  03,  2016,  from  http://www3.epa.gov/otaq/diesel/technologies/retrofits.htm.  Warnatz,  J.,  Maas,  U.,  &  Dibble,  R.  W.  (1996).  Combustion:  Physical  and  chemical  fundamentals,  modeling  and  

simulation,  experiments,  pollutant  formation.  Berlin:  Springer.  Watanabe,  H.,  &  Okazaki,  K.  (2013).  Visualization  of  secondary  atomization  in  emulsified-­‐fuel  spray  flow  by  shadow  

imaging.  Proceedings  of  the  Combustion  Institute,  34(1),  1651-­‐1658.  Watanabe,  H.,  Suzuki,  Y.,  Harada,  T.,  Matsushita,  Y.,  Aoki,  H.,  &  Miura,  T.  (2010).  An  experimental  investigation  of  

the  breakup  characteristics  of  secondary  atomization  of  emulsified  fuel  droplet.  Energy,  35(2),  806-­‐813.