mpi lecture

Upload: agopicha000

Post on 30-May-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Mpi Lecture

    1/40

    Elektron-Paramagnetic Resonance Spectroscopy

    Basics & Applications to Biological Systems

    Basics (What is EPR ?)

    Historical Introduction (NMR/EPR)

    Application Fields

    Basic Principle

    Technical Requirements

    Advanced Methods

    EPR Parameters

    Applications to Proteins (What can we learn from EPR?)

    Organic radicals in proteins

    Semiquinone radicals

    Metal centres in protein complexesMn+II, Cu+II , MoV

    Spin labels

    Mobility, Access, Distances

  • 8/14/2019 Mpi Lecture

    2/40

    Elektron-Paramagnetic Resonance Spectroscopy

    What is EPR ?

    EPR is a spectroscopical technique that detects:

    unpaired electrons (electron spins : ESR)

    identity of the molecule

    and information of the molecular structure

    (structure, dynamics, bounding)

    the molecular environment

    (< 0.8 nm for nuclear spins and up to 50 nm for other electron spins)

    EPR is nondestructive, needs 100 l sample (or less!),concentrations of >100 molar paramagnetic species

  • 8/14/2019 Mpi Lecture

    3/40

    Elektron-Paramagnetic Resonance Spectroscopy

    Application fields

    Physics: Susceptibility, Semiconductors, Quantum Dots, Defect Centres ...

    Chemistry: ET-Reaction Kinetics, Organo-Metallic, Catalysis, Molecular Magnets...

    Ionization Radiation: Alanin radiation dosimetry, Radiation damage, Irradiated food ..

    Material research: Polymers, Glases, Superconductors, Corrosion, Fullerenes, Dating ...

    Biology: Enzyme Reaction, ET-Reaction, Folding&Dynamics, Metal centres ...

    Paramagnetic metal ions (Cu, Mn, Ni, Co, Mo, Fe) and complexes in enzymes

    Hemes and FeS clusters in electron transfer reactions in protein

    Amino acid radicals of the protein backbone (as tyrosine, triptophane and glycil)

    protein bound cofactor radicals (as semiquinones and flavines)

    Transient paramagnetic chormophores in light driven processes

    Nitroxide spin labels attached to cysteines or nucleic acids

  • 8/14/2019 Mpi Lecture

    4/40

  • 8/14/2019 Mpi Lecture

    5/40

    Elektron-Paramagnetic Resonance Spectroscopy

    Instrumentation, Basic Principle

    EPR Experiment

  • 8/14/2019 Mpi Lecture

    6/40

    Elektron-Paramagnetic Resonance Spectroscopy

    Historical introduction

    1897: Pieter Zeeman Line splitting in external magnetic field

    1922: Otto Stern, Walter Gerlach Quantisation in external magnetic field

    1925: Goldsmith, Uhlenbeck Spin of electron

    1945: Zavojski First EPR experiment

    1946: Block, Purcell, Pound First NMR experiment

    1950: Erwin Hahn First pulse NMR experiment

    1958: Bill Mims First pulse EPR experiment

    1965: Richard Ernst First FT-NMR experiment

    1976: Richard Ernst First 2D-NMR experiment

    1986: Jack Freed First FT- & 2D EPR experiment

    1994: Wrachtrup, Khler, Groenen, Borzyskowski

    First single molecule EPR experiment

  • 8/14/2019 Mpi Lecture

    7/40

    Elektron-Paramagnetic Resonance Spectroscopy

    Instrumentation

    Frequency: Factor 1000 larger in EPR ! (GHz instead of MHz)

    Coupling strength: Factor 1 000 000 larger in EPR ! (MHz instead of Hz)

    Relaxation Times: Factor 1000 000 smaller in EPR ! (ns instead of ms)

    amuch higher techniqual requirements !!

    Sensitivity : Factor 1 000 000 better than in NMR !!

    (1nM instead of 1mM )

  • 8/14/2019 Mpi Lecture

    8/40

    Elektron-Paramagnetic Resonance Spectroscopy

    EPR Parameters : G-Tensor

    Sphericalsymmetric orbital

    Cylindersymmetricalorbitalre

    Lower symmetryorbital

    Reflects symmetry of the electronic orbital of unpaired electron

  • 8/14/2019 Mpi Lecture

    9/40

    Elektron-Paramagnetic Resonance Spectroscopy

    EPR Parameters : A-Tensor (HF-Tensor)

    Electron spin density at nucleus: isotropic a

    n

    n

    e

    e

    Dipolare coupling to distant nucleus: anisotropic A

    Spin densityat n

    Distance to n

  • 8/14/2019 Mpi Lecture

    10/40

    Elektron-Paramagnetic Resonance Spectroscopy

    Advanced Methods

    Magnetfeld[T]

    Mikro-wellen-frequenz[GHz]

    Radio--frequenz[MHz]

    3 9 35 95 180 360

    [S] [sub-mm]

    [G][W][Q][X]

    0.1 12.86.43.410.3

    t

    t1

    t2

    14.9

    1.1

    2.0

    2.2

    3.7

    6.0

    1 4

    N1 7

    O1 3

    C3 1

    P1

    H2

    H

    Kern-ZeemanFrequenz(im X-Band)

    Mikro-wellenPulse

    B0

    Puls-abstnde

    M W

    R F

    Multifrequency-EPR

    Pulse-EPR

    ENDOR(Electron Nuclear

    Double Resonance

  • 8/14/2019 Mpi Lecture

    11/40

    Elektron-Paramagnetic Resonance Spectroscopy

    Microwave frequency bands

    0,34 T9,5GHz

    (X-Band)

    0,11 T3GHz

    (S-Band)3,4 T/95GHz

    (W-Band)

    6,4 T/180GHz

    (G-Band)

    1 T/35GHz(Q-Band)

    B 0 m = +1/2S

    m = -1/2S

  • 8/14/2019 Mpi Lecture

    12/40

    O

    O

    CH3

    gxx

    gyy

    gzz

    X-Band G-Band

    gxx

    gzz

    gyy

    mS = +

    mS = -

    High-field EPRSpectral resolution

    Resolution of G-anisotropy: Orientation selection

  • 8/14/2019 Mpi Lecture

    13/40

    Elektron-Paramagnetic Resonance Spectroscopy

    Field dependence of spectra

    Distringuishes field dependent and field independent parameters

    Nitroxid spectra as afunction of magnetic field

  • 8/14/2019 Mpi Lecture

    14/40

    Elektron-Paramagnetic Resonance Spectroscopy

    Instrumentation: 180 GHz Spectrometer

  • 8/14/2019 Mpi Lecture

    15/40

    t0

    t1

    t1

    t2

    t2

    t3

    t3

    time

    microwave /2

    ECHOFID

    t0

    Pulsed EPRHahn Echo sequence

    Refocusing technique eliminatesinhomogeneous linewidth

  • 8/14/2019 Mpi Lecture

    16/40

    ESEEM SpectroscopySmall Hyperfine couplings

    T

    Measure of the echo amplitude as a function of T

    C H 3

    O

    O

    C H 3

    H

    M e O

    M e O

    H

    H

    1

    3

    2

    45

    6

    n

    0 2 4 6 8 1 0 1 2 1 4 1 6 1 8E

    cho

    A

    mp

    litude

    T i m e ( s )

    0 2 4 6 8

    0

    FFT

    Amp

    litude(a.u.

    )

    F r e q u e n c y ( M H z )

    The semiquinone interactswith 14N nitrogen

    FFT

  • 8/14/2019 Mpi Lecture

    17/40

    mS

    mI

    E

    NMR detected by EPR

    Simultaneous irradiation of the samplewith microwave and radio frequencies

    Enhanced spectral resolution

    Simplification of hyperfine spectra

    Electron Nuclear Double Resonance (ENDOR)Anisotropic Hyperfine interactions

  • 8/14/2019 Mpi Lecture

    18/40

    Electron Nuclear Double Resonance (ENDOR)ENDOR spectra

    -100 -80 -60 -40 -20 0 20 40 60 80 100-2

    0

    2

    4

    6 x 10-3

    N H 17O P CH3

    10 20 30 40 50 60 70 80 90 100-0.1

    0

    0.1

    0.2

    0.3

    20 40 60 80 100 120 140 160 180 200-0.1

    0

    0.10.2

    0.3

  • 8/14/2019 Mpi Lecture

    19/40

    0 5 1 0 1 50

    0 . 2

    0 . 4

    0 . 6

    0 . 8

    1

    1 . 2

    F r e q u e n c y [ M H z ]

    Pulsed Electron Double Resonance (PELDOR)Dipolare coupling between paramagnetic molecules

    distances of rAB between 10 - 50

    0 1 2 3 4 50.5

    0 .6

    0 .7

    0 .8

    0 .9

    1

    1.1

    1 .2

    P u m p P u l s e P o s i t i o n [ s ]

    Echoamplitude[a.u.]

    S - B a n d ( 3 . 6 GHz )X - B a n d ( 9 . 7 GHz )

    rAB = 29.1

    rAB = 29.2

    N

    OO

    O

    NOO

    O

    Dip = 2.1 MHz

  • 8/14/2019 Mpi Lecture

    20/40

    Elektron-Paramagnetic Resonance Spectroscopy

    Instrumentation: Pulsed X-band EPR/ENDOR

  • 8/14/2019 Mpi Lecture

    21/40

    The unpaired electron as a local probeThe unpaired electron as a local probe

    cw-ESR

    ENDOR, ESEEM

    Puls-ESR,PELDOR

  • 8/14/2019 Mpi Lecture

    22/40

    Elektron-Paramagnetic Resonance Spectroscopy

    Detection methods

    Microwave transmission detection: sensitivity >1014 spins

    Microwave bridge detection: sensitivity >1011 spins (9 GHz)sensitivity >107 spins (100 GHz)

    Electrical detection: sensitivity >107 spins

    Optical detection: sensitivity >104 spins

    Atomic force microscope sensitivity >103 spinsConfocal microscope fluoreszenz: sensitivity >1 spins

  • 8/14/2019 Mpi Lecture

    23/40

    Elektron-Paramagnetic Resonance Spectroscopy

    Applications to Biological Systems

    G-Protein complex

    Photosynthesis

    Cytochrome coxidase

  • 8/14/2019 Mpi Lecture

    24/40

    (BChl)2 BPh QA QB

    (BChl)2* BPh QA QB

    (BChl)2+ BPh

    -QA QB

    (BChl)2+

    BPh QA-

    QB

    (BChl)2+ BPh QA QB

    -

    4 ps

    200 ps

    100 s

    Photosynthetic bacterial reaction centre of rhodobacter spheroides

  • 8/14/2019 Mpi Lecture

    25/40

    High-Field-EPR measurements on bRCHigh-Field-EPR measurements on bRC

    QB

    9 GHz330 GHz

    95 GHz95 GHz

  • 8/14/2019 Mpi Lecture

    26/40

    Structure of the chormophores in PSI by EPRStructure of the chormophores in PSI by EPR

    2.5 nm

    27

    1.48 nm

    P700

    A1

    Fe/S

    Abstand und Orientierung

    der Chromophore zueinander

    und zur Membranebene

  • 8/14/2019 Mpi Lecture

    27/40

    Semiquinone radical QA in bRC

    Dynamics of protein bound molecules

    0.4

    0.8

    1.2

    1.6

    magnet field B0

    echo detectedspectrum

    relaxationtime

    ]

    2

    e

    cho

    intensity

    190 K

    120 K

    O

    O

    O

    O

  • 8/14/2019 Mpi Lecture

    28/40

    p21:GDP

    GDP

    "active state"

    "inac tive state"

    GTP Pi

    exchange-

    fac tor (GEF)Effector

    / GAPk

    d i s sk

    c a t

    Hydrolysis

    P21rasMnII+ GDP protein complex

    Molecular switch for signal transduction

    Oncogenic mutation at glycin12 position

    strongly reduced catalytic rate constants !

  • 8/14/2019 Mpi Lecture

    29/40

    C

    loop L4

    GppNHpN

    loop L2

    T35

    T35

    C

    loop L2

    loop L4

    GDPN Inactive (GDP) state

    active (GDP) state

    P21rasMnII+ GDP / GTP protein complex

  • 8/14/2019 Mpi Lecture

    30/40

    p21ras - Mn2+ - GTP protein nucleotide complexp21ras - Mn2+ - GTP protein nucleotide complex

    PP PP

    - PiP OO

    OOO

    OH O

    H

    Ser 17Ser 17Thr 35

    Thr 35

    NH

    NH

    NH

    NH

    OOO

    O

    Lys 16Lys 16

    MnMn

    OO

    H O2H O2H O2

    H O2

    H O2H O2

    "Nukleophiler

    Angriff" H O2

    OO

    OO

    GTP

    loop L2loop L2

    loop L4loop L4

    Konformationsnderung bei -> Hydrolyse

  • 8/14/2019 Mpi Lecture

    31/40

    180 GHz

    95 GHz

    9.5 GHz

    2.7 GHz

    5 m T

    x 10

    x 10

    f

    f

    Mulitfrequency EPR of P21rasMnII+ GDP protein complex

    1. Mn

    Hyperfine

    line

    Two states distinguishableby HF-EPR spectroscopy

  • 8/14/2019 Mpi Lecture

    32/40

    GDP

    Thr35 Gly12

    Asp57 Ser17

    Lys16 Mg

    [E. F. Pai et al. 2351 (1990)]EMBO J. 9,

    P21rasMnII+ GDP protein complex

    No differences atactive site for wt &oncogenic mutantby X-ray !

  • 8/14/2019 Mpi Lecture

    33/40

    -50 -25 0 25 50relative magnetic field B [G]

    HF- EPR of P21rasMnII+ GDP protein complex

    4 H2O17 ligands

    3 H2O17 ligands

  • 8/14/2019 Mpi Lecture

    34/40

    1 mT

    wt G12V

    T35S T35A

    n=4

    n=2

    n=2

    n=4

    n=3

    n=3 n=4

    n=4

    n=5

    n=5

    n=3

    n=3

    x 5

    HF- EPR of P21rasMnII+ GDP protein complex

    Differences in ligand sphere determined by EPR spectroscopy !!

  • 8/14/2019 Mpi Lecture

    35/40

    Cytochrom cOxidase of Paraccocus denitrificansCytochrom cOxidase of Paraccocus denitrificans

  • 8/14/2019 Mpi Lecture

    36/40

    Multifrequency-EPR on Cytochrom cOxidaseMultifrequency-EPR on Cytochrom cOxidase

    3 3 8 0 03 3 6 0 03 3 4 0 03 3 2 0 0

    M a g n e t fe l d [ G a u s s ]

    1 2 4 0 01 2 2 0 01 2 0 0 01 1 8 0 0

    3 5 0 03 0 0 0

    X - B a n d

    Q - B a n d

    W - B a n d

  • 8/14/2019 Mpi Lecture

    37/40

    Application on Cytochrome c Oxidase:Application on Cytochrome c Oxidase:

    rAB

    CuA

    Mn His A403H2O

    Glu B218

    Asp A404

    Cys B216

    Ser B217

    Cys B220

    Distance and orientation between binuclearCuA centre and Mn binding site

    H. K, F. MacMillan, B. Ludwig, T. Prisner Biochemistry 104, 5362-5371 (2000)

    S d i i b EPR

  • 8/14/2019 Mpi Lecture

    38/40

    2 4 6 8 10 12 14 16

    -10

    -5

    0

    5

    10

    15

    F [MHz]

    F

    [MHz] HN

    14 1

    1

    2

    2D-ESEEM(HYSCORE)

    Experiment

    a Bestimmung der

    N und HWechselwirkungen

    1 4 1

    Parameters

    Experimental

    Spectra

    Molecular

    Structure

    QM-Simulations

    MO-Calculations

    Structure determination by EPR spectroscopy

  • 8/14/2019 Mpi Lecture

    39/40

    Electron Paramagnetic Resonance (EPR)Electron Paramagnetic Resonance (EPR)

    Structural Information:Structural Information:

    Dynamic Information:Dynamic Information:

    Multifrequency cw-EPR:Identification and Characterisation of Radicals

    Multifrequency cw-EPR:

    Identification and Characterisation of Radicals

    PULSE-EPR and ENDOR:

    Identification of Ligand Sphere (< 0.8 nm)

    PULSE-EPR and ENDOR:

    Identification of Ligand Sphere (< 0.8 nm)

    PELDOR:

    Distance between Paramagnetic Centres (< 6nm)

    PELDOR:

    Distance between Paramagnetic Centres (< 6nm)

    Time Resolved- and FT-EPR:

    Photoinduced Electron-Transfer Kinetics

    Time Resolved- and FT-EPR:

    Photoinduced Electron-Transfer Kinetics

    Pulsed-High-Field-EPR:Librational Dynamics of Protein-Bound Quinones

    Pulsed-High-Field-EPR:

    Librational Dynamics of Protein-Bound Quinones

    PELDOR:

    Conformational Dynamics

    PELDOR:

    Conformational Dynamics

  • 8/14/2019 Mpi Lecture

    40/40

    Literature

    Methods:Carrington, McLauchlan Introduction to Magnetic Resonance

    Schweiger Ang. Chemie (Int. Edit. Engl.) (1991)30:265-92

    Applications to Biology:

    Berliner Biol. Magn. Reson.

    Deligiannakis et al. Coord. Chem. Rev. (2001) 204:1-112

    Prisner et al. Annu. Rev. Phys. Chem. (2001)52:279-313

    Prisner in Essays in Contemporary Chemistry