mp introduction 2010 optimized

120

Upload: schneitzer-wang

Post on 10-Oct-2014

73 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Mp Introduction 2010 Optimized
Page 2: Mp Introduction 2010 Optimized

PDF Files of “Macromolecular Physics”Produced by the Printing Department of the University of Tennessee, Knoxville, in 2005 andupdated to searchable files in 2009. Written permission was granted on 2/10/1998 by thepublisher, Academic Press, Chestnut Hill, MA, a division of Harcourt Brace & Company.

This present file of 120 pages, named INTRODUCTION.pdf, is improved for2010 with new computer searchable Author and Subject Indices. It contains anintroduction entitled “Macromolecular Physics in 2005” by the Author with 23References, followed for each of the three Volumes by their Tables of Contents,List of Tables, Original Preface, and Acknowledgments, all as the new, computer-searchable pfd-files. The Indices are repeated in the three book files, namedVOLUME-1.pdf, VOLUME-2.pdf, and VOLUME-3.pdf, which for the 2010edition are also made computer-searchable.

With this arrangement, all table and index pages listed in the original book textcorrespond to the page numbers of the pdf-files and permit easy search and access.Note that all four pdf-files are also book-marked for easy access of their contents.

INTRODUCTION.pdf: “Macromolecular Physics in 2005” . . . . . . . . . . . . . . 3Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

VOLUME-1.pdf: “Crystal Structure, Morphology, Defects” . . . . . . . . . . . . . 8Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

VOLUME-2.pdf: “Crystal Nucleation, Growth, Annealing” . . . . . . . . . . . . 50Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

VOLUME-3.pdf: “Crystal Melting” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Page 3: Mp Introduction 2010 Optimized

Macromolecular Physics in 2005

This 2005 pdf re-issue of the three volumes of “Macromolecular Physics” marksthe 50th anniversary of my being introduced to Polymer Science. My thesis topic,suggested by Professor Malcolm Dole of Northwestern University in Evanston ILin 1955, was “Thermodynamics of the Copolymer System Poly(ethylene Tereph-thalate – Sebacate)” [1], a topic which led to the observation and study of coldcrystallization (Chapter VI, pg. 181) [2]. It also sparked my life-long interest inlinks between molecular motion and heat capacity [3] which culminated in the book“Thermal Analysis of Polymeric Materials” [4].

The term macromolecule was coined in the 1920s [5] to delineate the thennewly discovered [6] long, flexible, linear molecules which represent the final ofthe three classes of molecules possible (Chapter VIII, pg. 4). The first majorsummary of the evolving macromolecular physics was the four-volume treatiseedited by Stuart [7]. The time period from 1950–80 showed exciting progress inpolymer physics. Especially the limited crystallinity of crystals (Chapter IV, Sect.4.1), the chain-folding principle (Chapter III, pg. 193), and the observation that onlyextended-chain crystals (Chapter III, Sect. 3.3.1) could represent the equilibriummelting temperature (Chapter VIII, Sect. 8.2.3) led to new views of solid-statephysics. In fact, the knowledge of the small dimensions of the polymer crystalsmade them the first extensively studied nanophases, a terminology which has nowgained major importance in cutting-edge research of hard- and soft-matter physics[8]. On my first sabbatical leave in 1967/68 in the laboratory of Prof. Stuart inMainz, I was encouraged to produce a unified treatment of crystals of linearmacromolecules, to collect sufficient experimental evidence to depict the breadthof the field, and to show the special features that arise from the long-chain natureof linear macromolecules (see Preface to Vol. 1). The topic of this sabbatic was theCrystallization During Polymerization (Chapter VI, Sect. 6.4) [9]. For thecrystallization of polymer molecules, it is of importance not only to understand thelocal conformation around the rotatable bond, but also the macroconformation, asdiscussed in Chapter III (pgs. 183–185). This literature study of crystallizationduring polymerization, indeed, provided proof that the chain-folding principle canbe bypassed as long as the random-coil conformation is avoided. On return to myresearch group at Rensselaer Polytechnic Institute, the idea of writing such a booktook hold, especially when we discovered that the crystal growth was not governedonly by the common crystal nucleation, but needed additional molecular nucleation(Chapter V, Sect. 5.3) [10]. The next two sabbaticals were then used to collect thematerial and write the three volumes of “Macromolecular Physics.” Besides unitingthe new concepts, listed above in italics, the collection of the supporting material

Page 4: Mp Introduction 2010 Optimized

allowed the formulation of a much more concise description of the microscopicdefects in polymer crystals (Chapter IV, Sect. 4.3) and emphasized the importanceof irreversible melting (Chapter IX), not only for homopolymers, but also for thevarious forms of copolymers (Chapter X). The usually applied equilibriumformalisms supplied a basic limiting scenario [11], but did not give a quantitativedescription. For such, the non-equilibrium processes must also be understood.

The original plan was to justify the title “Macromolecular Physics” by covering,with the help of experts in related fields, the remaining major topics: the theory ofthermophysics, experimental methods of thermophysics, electric, magnetic, andmechanical properties. Occasionally, a reference to such a non-existing part beyondChapter X points to these intentions. The planned Volume 4 was finally completedin 1999, long after the original volumes were out-of-print [12]. The book on theexperimental methods took even longer and needed an update of Volume 3, so thatit became also a self-contained new book, published in 2005 [4].

Research, however, continues, and a series of 25-year-old books is often onlyof historic value. The physics of macromolecules, however, had a surprising delayof progress after a spirited discussion about chain-folding and chain-extension oncrystallization in 1978 [13]. There was one the key questions: Are there, or arethere not, regular chain folds? Nothing appears in the “Macromolecular Physics”about this question, because the books were largely completed before this debateerupted, and concentrated on the experimental evidence, treating all three macro-conformations of interest, namely: folded chain, extended chain, and fringedmicellar (see Chapter III). Since research funding is based on peer review, withsuccess guaranteed only by unanimous agreement on excellence by all reviewers,it was hard to find support for polymer crystallization and, at least in the US, thisresearch topic declined for many years, to be picked up only in the last decade witha new generation of researchers and new research tools. It turned out, thatultimately, the above question was a non-issue. With quantitative research, it wasfound that not all polymers behave like polyethylene, and examples could be foundfor most hypothetical situations. The progress, which slowly is accelerating again,is documented in the proceedings of more recent discussion meetings [14,15].

When liquid crystalline polymers became a hot research topic [16], we turnedour research to such mesophases and discovered the importance of conformationallydisordered crystals (condis crystals) in polymers [17]. With the better understand-ing of the crystal phase, as described in “Macromoleculea Physics,” it was also ofinterest to us to look for the interaction between crystal and amorphous phase, atopic that was suggested by our earlier discovery of a rigid-amorphous phase [18](nanophase). The interaction between amorphous and crystal nanophases was muchbetter understood by applying temperature-modulated calorimetry, which allowsthe direct study of reversible and irreversible changes. By now, one can character-ize with this new tool the semicrystalline polymers as metastable, strongly couplednanophases, capable of locally reversible melting processes. The strong couplingis produced by the macromolecules crossing the phase boundaries. A review of thisinteresting topic is given in [19]. The subject of coupling seems quite general inpolymer science. It is possible to consider macromolecules not only in terms of thewhole molecule or its repeating units [11], but also by positional points of

Page 5: Mp Introduction 2010 Optimized

decoupling which are forced by phase boundaries, the component boundaries insequences of copolymer repeating units, and even the separation of polymersegments by entanglements [20]. Temporal decoupling is another topic ofimportance. It may occur when two processes which normally occur simulta-neously develop largely different time scales due to the polymeric nature of one orboth of the reactants. A typical example is seen in the melting of copolymers wherethe melting and mixing processes in dissolution may decouple entropically. Twoother research directions of importance to the macromolecular crystals becamepossible when I joined the researchers at Oak Ridge National Laboratory. The firstwas the application of full-pattern (Rietvelt) analysis to semicrystalline polymerfibers, which documented an oriented, non-crystalline phase of higher mobility byNMR than in the crystal [21], the other involved a detailed molecular-mechanicssimulation of crystals which led to a clarification of the microscopic defect modelof crystals with flexible chains, which contrasts the defect structure in crystals ofrigid macromolecules [22].

With the updates of references [4,8,9,15–22], the pdf edition of “Macro-molecular Physics” is offered as a source of basic understanding of the semi-crystalline state of flexible macromolecules and fills the need of easy access to earlyreferences, which are frequently absent from more recent papers. In addition, inreference [23], a detailed autobiography is offered, describing not only my life, butalso the various stages of my professional work consisting of teaching and research,as well as the interplay with the all-important world of politics in the 20th century.

Bernhard Wunderlich, Prof. of Chem., em.,The University of Tennessee in Knoxville, TNand Rensselaer Polytechnic Institute, Troy, NY

Page 6: Mp Introduction 2010 Optimized

AcknowledgementsThe basic knowledge displayed in “Macromolecular Physics” and its laterextensions as collected in the reviews of references [4,8,9,17–22], has gone through50 years of development. At the many stages of the book and the researchdescribed in the reviews, the underlying work was carried out and the ideas wereshaped and improved by the �340 person-year effort of my 144 participatingstudents and postdoctoral research associates from 16 different countries. Inaddition to this effort, the contributions of the numerous reviewers and colleaguesmust be acknowledged who were generous with their criticisms and support. Theresearch from our ATHAS Laboratory described in the books and reviews wasgenerously supported over many years by the Polymers Program of the MaterialsDivision of the National Science Foundation, final Grant (2003–06) DMR-0312233.Several of the instrument companies have helped by supplying information, andalso in the acquisitions of equipment. Since 1988 the ATHAS effort was alsosupported by the Division of Materials Sciences and Engineering, Office of BasicEnergy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory,managed and operated by UT-Battelle, LLC, for the U.S. Department of Energy,under contract number DOE-AC05-00OR22725. Overall about 5M$ of externalsupport was raised during the 50 years of active research. For additional details seealso the Acknowledgments in reference [23] (pages XI, XII, and 7-5).

References[1] B. Wunderlich, “Thermodynamics of the Copolymer System Poly-

(ethylene Terephthalate – Sebacate),” Thesis, Northwestern University,Department of Chemistry, Evanston IL, (1957).

[2] B. Wunderlich, Theory of Cold Crystallization of High Polymers. J.Chem. Phys. 29, 1395–1404 (1958).

[3] B. Wunderlich and H. Baur, Heat Capacities of Linear High Polymers(transl. into Russian by Yu. Godovsky, Publishing House “Mir,” Moscow,1972, 240 pp.) Fortschr. Hochpolymeren Forsch. (Adv. Polymer Sci.) 7,151–368 (1970).

[4] B. Wunderlich, “Thermal Analysis of Polymeric Materials,” 894 + xvipages, 947 figures. Springer, Berlin, 2005.

[5] H. Staudinger and J. Fritschi, pg. 788 in the paper: Über die Hydrierungdes Kautschucks und über seine Konstitution. Helv. Chim. Acta., 5,785–806 (1922).

Page 7: Mp Introduction 2010 Optimized

[6] H. Staudinger, “Arbeitserinnerungen.” Hüthig Verlag, Heidelberg, 1961.[7] H. A. Stuart, Die Physik der Hochpolymeren, Vols. 1–4.” Springer Verlag,

Berlin, 1952–56.[8] W. Chen and B. Wunderlich, Nanophase Separation of Small And Large

Molecules, invited feature article, Macromol. Chem. Phys., 200, 283–311(1999).

[9] B. Wunderlich, Crystallization During Polymerization. Fortschr.Hochpolymeren Forsch. (Adv. Polymer Sci.), 5, 568–619 (1968).

[10] B. Wunderlich and A. Mehta, Macromolecular Nucleation. J. PolymerSci., Polymer Phys. Ed., 12, 255–263 (1974).

[11] P. J. Floy, “Principles of Polymer Chemistry.” Cornell University Press,Ithaca, NY, 1953.

[12] H. Baur, “Thermophysics of Polymers. I. Theory.” Springer, Berlin, 1999.[13] Special issue of the Farad. Disc. Chem. Soc., 68 (1979).[14] M. Dosiére, ed. “Crystallization of Polymers.” NATO ASI Series C,

Volume 405, Kluver, Dordrecht, 1993.[15] Proceedings of the International Symposium on Polymer Crystallization

in Mishima, Japan, June 9–12, 2002; also published in part in a specialissue of the J Macromolecular Science, B42 (2003).

[16] M. Gordon, ed. “Liquid Crystal Polymers, Vols. I–III.” Springer, Berlin,1983/84. (Adv. Polymer Sci., Vols. 59–61).

[17] B. Wunderlich, M. Möller, J. Grebowicz, and H. Baur, “ConformationalMotion and Disorder in Low and High Molecular Mass Crystals.”Springer, Berlin, 1988. (Adv. Polymer Sci., Vol. 87).

[18] H. Suzuki, J. Grebowicz, and B. Wunderlich, The Glass Transition ofPolyoxymethylene. British Polymer Journal, 17, 1–3 (1985).

[19] B. Wunderlich, Reversible Crystallization and the Rigid Amorphous Phasein Semicrystalline Macromolecules, Progress in Polymer Science, 28/3,383–450 (2003).

[20] B. Wunderlich, Evidence for Coupling and Decoupling of Parts ofMacromolecules by Temperature-modulated Calorimetry, J. Polymer Sci.,Part B: Polymer Phys., 42, 1275–1288 (2004).

[21] Y. Fu, B. Annis, A. Boller, Y. Jin, and B. Wunderlich, Analysis ofStructure and Properties of Poly(ethylene terephthalate) Fibers, J. PolymerSci., Part B: Polymer Physics, 32, 2289–2306 (1994).

[22] B. G. Sumpter, D. W. Noid, G. L. Liang and B. Wunderlich, AtomisticDynamics of Macromolecular Crystals. Adv. Polymer Sci., 116, 27–72(1994). (Vol. on “Atomistic Modeling of Physical Properties of Poly-mers” editors: U. Suter and L. Monnerie).

[23] B. Wunderlich, Autobiography of a Professor of Chemistry and Distin-guished Scientist, (Experiences and Accomplishments in 20th CenturyGermany and USA). 708 Pages and 690 Figures, to be published 2010,Springer, Berlin, in print and as an electronic book.

Page 8: Mp Introduction 2010 Optimized

Macromolecular Physics

Bernhard Wunderlich Rensselaer Polytechnic Institute Troy, New York

VOLUME 1 Crystal Structure, Morphology, Defects

ACADEMIC PRESS New York and London 1973

A Subsidiary of Harcourt Brace Jovanovich, Publishers

Page 9: Mp Introduction 2010 Optimized

COPYRIGHT © 1973, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road. London NWI

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 72-82632

PRINTED IN mE UNITED STATES OF AMERICA

Page 10: Mp Introduction 2010 Optimized

Contents

LIST OF TABLES

PREFACE

ACKNOWLEDGMENTS

Chapter I The Structure of Macromolecules

1.1 The Macromolecular Hypothesis 1.2 The Synthesis of Macromolecules 1.3 The Molecular Weight 1.4 The Molecular Conformation 1.5 Isomers and Copolymers

References

Chapter II The Microscopic Structure of Crystals

2.1 Discovery and Proof of the Lattice Theory 2.2 Motif and Repetition Scheme

2.2.1 Translation Lattices 2.2.2 Point Groups 2.2.3 Space Groups 2.2.4 Combination of Motif and Repetition Scheme

2.3 Structures of Minimum Free Energy 2.3.1 Atomic Radii 2.3.2 Close Packing of Spheres 2.3.3 Close Packing of Molecules 2.3.4 Rotational Isomers 2.3.5 Helices 2.3.6 Packing of Macromolecules

ix

xi

xiii

4 7

10 14 19

21 25 25 28 31 36 39 43 48 55 62 69 85

v

Page 11: Mp Introduction 2010 Optimized

VI

2.4 Crystal Structures of Macromolecules 2.4.1 Cla~s 1 Polymers 2.4.2 Vinyl Polymers 2.4.3 Diene Polymers 2.4.4 Polyoxides 2.4.5 Polyesters 2.4.6 Polyamides 2.4.7 Other Polymers 2.4.8 Isomorphism 2.4.9 Other Regular Structures References

Chapter III The Crystal Morphology

3.1 Crystal Morphology 3.1.1 History 3.1.2 Crystal Symmetry and Form

3.2 Macromolecular Crystals 3.2.1 Early Investigations 3.2.2 Chain Folding

3.3 Lamellar Crystals 3.3.1 Extended Chain Lamellae 3.3.2 Folded Chain Lamellae 3.3.3 Multilayer Crystals

3.4 Epitaxy 3.4.1 Epitaxy on Oriented Polymer Related Surfaces 3.4.2 Epitaxy on Nonpolymeric Crystals 3.4.3 Epitaxy on Other Surfaces

3.5 Twinned Crystals 3.6 Dendrites

3.6.1 Formation of Dendrites 3.6.2 Morphology of Dendrites

3.7 Spherulites 3.7.1 General Principles of Spherulite Crystallization 3.7.2 Optical Properties of Spherulites 3.7.3 Extended Chain Spherulites 3.7.4 Folded Chain Spherulites

3.8 Fibrous Crystals 3.8.1 Fibers Grown on Crystallization during Polymerization 3.8.2 Fibers Formed on Deformation 3.8.3 Fibers Formed on Fibrillation 3.8.4 Other Fibers and Needle-like Crystals

3.9 Isometric Crystals References

Chapter IV The Defect Crystal

4.1 Macroscopic Recognition of Defects 4.1.1 Density

Contents

95 96

100 111 117 125 131 140 147 161 167

178 178 180 183 185 193 217 217 232 259 266 267 275 280 283 295 299 304 313 322 325 329 333 339 341 348 357 359 361 366

380 382

Page 12: Mp Introduction 2010 Optimized

Contents VB

4.1.2 X-Ray Diffraction 387 4.1.3 Calorimetric Methods 401 4.1.4 Etching Techniques 408 4.1.5 Infrared Absorption 414 4.1.6 Nuclear Magnetic Resonance 419 4.1.7 Other Methods 425

4.2 Defect Concepts 435 4.2.1 Crystallinity 436 4.2.2 Paracrystallinity 438 4.2.3 The Kink Model 446

4.3 Microscopic Defects 452 4.3.1 Amorphous Defects 454 4.3.2 Surface Defects 457 4.3.3 Dislocations 469 4.3.4 Point Defects 485

4.4 Deformation of Polymer Crystals 489 4.4.1 Slip Planes 491 4.4.2 Kink-Bands 497 4.4.3 Drawing 498 4.4.4 Rolled Polyethylene 507 References 511

A UTHOR INDEX 523

SUBJECT INDEX 536

Page 13: Mp Introduction 2010 Optimized
Page 14: Mp Introduction 2010 Optimized

List of Tables

I. Root mean square end-to-end distance of a 280 OOO-MW poly-ethylene molecule 13

II. 1 Crystal systems and Bravais lattices 27 2 The 230 space groups 34 3 Radii in angstroms for different attractive forces 44 4 Distances to neighboring atoms in crystals 50 5 Molecular volumes 57 6 Space groups for closest and limitingly close packing 60 7 Some barriers to internal rotation 63 8 Parameters for Eqs. (20)-(22) for hydrocarbons 66 9 Crystal structures of class 1 polymers 97

10 Crystal structures of isotactic vinyl polymers with a 2*3/1 helix 103

11 Crystal structures of isotactic vinyl polymers with tetragonal symmetry 106

12 Crystal structures of other vinyl and vinylidene polymers 109 13 Crystal structures of diene polymers 112 14 Crystal structures of polyoxides 118 15 Crystal structures of polyesters 128 16 Crystal structures of polyamides 132 17 Crystal structures of polycyc1oolefines 142 18 Crystal structures of other macromolecules 144 19 Crystals of linear inorganic macromolecules with two elements 148 20 Pairs of repeating units with phenylene groups which form

mixed crystals (probably isodimorphism) 159 21 Crystal structures of some globular macromolecules 163

III. Expressions for l/d;kl and morphological extinction rules 183

ix

Page 15: Mp Introduction 2010 Optimized

x List of Tables

2 Splitting of the bending mode in polyethylene and paraffin mixed crystals with deutero compounds 206

3 Morphology and conditions of growth of some folded chain, solution-grown macromolecular crystals 234

4 Epitaxy of macromolecules on nonpolymeric crystals 278 5 Spherulitically crystallized polymers of folded chain macrocon-

formation 316

6 Crystal parameters of melt-crystallized polyethylene before and after drawing 350

IV. Density change at room temperature and enthalpy change at the melting temperature T m on crystallization 388

2 Density of folded chain single crystals of polyethylene as de-termined by the flotation method using different solvents 389

3 Weight fractions crystallinity of polymers evaluated by the method of Ruland 393

4 Proportionality factor K for crystallinity determinations using Eq. (21) 398

5 Change in cellulose on reaction with ethanol in the presence of H 2S04 409

6 Changes of polyethylene on 24-hour HN03 etching 411 7 Absorption frequencies used for crystal1inity determination by

infrared methods 418

8 Magnetic nuclear properties 420 9 Crystal1inity of polyethylene as measured by nuclear magnetic

resonance 424 10 Size (in angstroms) of mosaic blocks in polyethylene crystals

grown from dilute solution 444 11 Paracrystalline defect parameters g ik of polyethylene crystals

grown from solution 444

12 Characterization of kinks with up to four gauche conformations as proposed by Pechhold (1968) 449

13 Conformations of kinks in 2 * 2/1 and2 * 3/1 helices as proposed by Blasenbrey and Pechhold (1970) 452

14 Results on drawing of folded chain single crystals on a sub-strate 502

15 Effect of 25 % macroscopic deformation on rolled polyethylene samples A, B, and C 509

Page 16: Mp Introduction 2010 Optimized

Preface

Crystals of linear macromolecules have begun to be understood only recently. Their constituent class of molecules was discovered only in 1920, and for many years the nebulous macromolecular crystals were designated as "fringed micelles." During the early I 960's the actual birth of the field of solid-state physical chemistry of macromolecules occurred with the ob­servation and recognition of the overriding fact of chain folding on crystalli­zation from the random state of flexible linear high polymers. The fringed micelle was almost forgotten. Not much later, extended chain crystals were discovered and shown to be the expected equilibrium crystals. Having studied the limiting crystal types, it became obvious that the fringed micelle still holds a central position in the description of crystals of linear macromolecules (as is shown schematically in Fig. III.5). By now, however, a much more precise picture has emerged. This book is a first attempt at a unified treatment of crystals of linear macromolecules. It represents an effort to collect suffi­cient material to depict the breadth of the field and to show the special features arising from the long-chain nature of linear macromolecules.

Frequent references should allow quick access to the original literature. Rather than attempting to list all of the explosively increasing literature in this field, the cited references were reread and critically selected to present a typical and managable body of information. The important ideas were traced back and documented to their origin. The literature was covered through 1971, so that this book can be looked upon as a progress report of the first 10-15 years of research on crystals of linear macromolecules. Sources to the data used are listed in addition in the text in abbreviated form. Wherever possible, tables were collected to present larger bodies of knowledge, as for example crystal structures (Tables II.9 to 11.19), folded chain lamellar crystals (Table II1.3), spherulites (Table III.5), and results on drawing single crystals (Table IV.14). Almost all drawings were newly made to present a uniform style and to permit in many cases the combination of data from several sources.

xi

Page 17: Mp Introduction 2010 Optimized

xii Preface

It must be recognized that linear macromolecules can be found among inorganic, organic, and biological materials. Our knowledge about the crystals of synthetic organic macromolecules is by far larger than that of the other types; still, in this book we attempt to unify the description of crystals of all linear macromolecules. The study of inorganic macromolecules has broadened the information on helices by pointing out the limits of the commonly ac­cepted rules of Natta and Corradini (Sect. 2.3.5) and given an initial insight into crystallization during polymerization (Sect. 3.9). The study of biological macromolecules contributed much to advance conformational analysis of ordered macromolecules by many studies of intramolecular potential energies (Sect. 2.3.5) and represents the group of crystals with globular motifs (Table IL21).

Since knowledge about crystals of linear macromolecules cuts across many disciplines, this book attempts to serve not only the specialist. I have tried to present sufficient introductory material to make the book readable to one not expert in polymers (see Chapter I) as well as one with little prior knowledge in crystallography (see Sect. 2.2), molecular structure (see Sect. 2.3), crystal morphology (see Sect. 3.1), or recognition of polymer crystal defects (see Sect. 4.1). A reader familiar with these topics may well want to skip some or all of these sections. References in these sections are particularly restricted to more comprehensive treatises of the subjects or those of interest to the material of the body of the book. As a result, I hope the book will prove useful to a wide audience.

Obviously in a book on crystals one has many references to questions pertaining to crystallization and melting. To answer these adequately, Volume 2 is in the preparation stage entitled: "Crystallization and Melting of Linear

-Macromolecules," with the following subdivision: Chapter V: Nucleation, Chapter VI: Crystallization, Chapter VII: Annealing, Chapter VIII: Equi­librium Melting, Chapter IX: Irreversible Melting, Chapter X: Copolymer Melting. References to the pertinent chapters are made throughout the present book. I hope that these will prove useful in the future and will not lead to too much frustration during the time it takes to assemble the new book. Post­poning the discussion of these points has enabled us to bring out the present book considerably faster and has kept it to manageable size.

Page 18: Mp Introduction 2010 Optimized

Acknowledgments

An undertaking of this size can never be the work of one person alone. At this point I would like to thank the many colleges and students who have supported this work by contributing discussions, preprints, and photographs. The roots of this book go back to graduate lecture courses on the solid state of linear macromolecules given at Cornell University (1962) and Rensselaer Polytechnic Institute (1964, 1966, and 1970). The bulk of the material could only be assembled by a generous suspension of teaching load during 1970/71 arranged with the strong support of Dr. W. H. Bauer, Dean of the School of Science, and Dr. G. J. Janz, Chairman of the Department of Chemistry. For the task of typing the manuscript and making the many revisions and corrections, I would like to thank my secretary Mrs. Helen Carroll.

Financial support of travel connected with discussions on many topics of importance for this book with colleagues in all parts of the world during 1970 and 1971 was provided by the Owens Illinois Company. Moq of the support for research in my own laboratory which contributed to tht: ~uhJcct matter came from the Office of Naval Research (1962-1971), the l"\atlonal Aero­nautics and Space Administration (1963-1972), and the )\atlnna I Science Foundation (1962-1966, 1968-1969).

Many of the illustrations of this book were possible only h~ the generous contribution of original prints by the authors listed in the legenJ. In ;IJJition, permission was generously granted by the following copyright llOlJcrs:

Akademische Verlagsgesellschaft, Frankfurt (Fig. 11.10). American Chemical Society, Washington (Figs. 111.23, 111.97, and ]\,.I~l. American Elsevier Publishing Company, New York (Fig. IV.24). American Institute of Physics, New York (Figs. 111.46, IIl.51A, IIJ.i'I. 111.111. 111.129,

IV.20, IV.26, IV.56-58). American Scientist, New Haven (Figs. III. 7 and IIJ.l33).

xiii

Page 19: Mp Introduction 2010 Optimized

xiv Acknowledgments

Marcel Dekker Inc., New York (Figs. 111.66, III.74, III.77-7S, III.S0, III.S9-91, 111.93-95, IV.22, IV.30-35, and IV.46).

General Electric Editorial Unit, Schenectady (Fig. IV.42). Hiithig and Wepf Verlag, Basel (Figs. 111.27-29, III.35-36, 111.41, 111.49, 111.53, III.61,

Il1.63, 111.65, 111.75, 1.122-123, 1I1.12S, 111.134, 1I1.13S, IV.3S, and IV.63). IPC Science and Techno logy Press Ltd., Guilford (Figs. Il1.42, 111.44, III.5S, 111.70,

and lII.140). Instituto Geografico de Agnostini, Novara (Figs. IlI.S6 and lIUI5). Scientific American, New York (Fig. IV.74). Society of Polymer Science, Japan, Tokyo (Figs. III.33 and lII.43). Dr. Dietrich Steinkopf Verlag (Figs. 11.65, II I. 20, 111.27, II1.30, 111.46, I1l.73, 111.76,

111.79, lII.l02-103, 111.131, 1I1.136-137, IV.9, IV.2S, IV.39, IV.69). Taylor and Francis, Ltd., London (Figs. 111.54, II1.56-57, 111.59, IV.49, and IV.52). Textile Research Inst., Princeton (Fig. IV.21). U.S. Dept. of Commerce, Natl. Bur. Stand., Washington (Figs. 1II.l 13-114). Verlag Chemie, Weinheim (Fig. llI.l44). Verlag der Zeitschrift fUr Naturforschung, Tiibingen (Fig. IlI.143). Wiley and Sons Inc., New York (Figs. 111.9-10, IIl.14, 1l1.32, III. 37-40, I1l.51 B,

111.62, III.67, 111.69, I1I.S1-S2, III.S4, 111.96, IU.9S-99, I11.104-105, ILI.107-110, 111.116, lILlIS, III.120, 111.124, II1.130, IV.4, IV.19, IV.37, IV.45, IV.62, IV.70).

Page 20: Mp Introduction 2010 Optimized

Author Index of Volume I

Numbers in italics refer to the pages on which the complete references are listed.

A

Abe, A., 78, 170 Abe, K., 482, 518 Abitz, W., 186, 371, 381, 437, 515 Agar, A. W., 285, 366, 475, 478, 480, 511Aggarwal, S. L. 318, 384 Agboatwalla, M. C., 410, 417, 517Aizlewood, J. M., 103, 104, 176 Alcock, T. C., 188, 334, 368 Alexander, L. E., 39, 167, 173, 390, 391,

394, 395, 511 Allegra, G., 81,108,109, 110, 149, 167, 174 Allen, B. J., 319, 366, 368 Alper, E. R., 237 Alpert, N. L., 422, 511 Amano, T. 271, 272, 358, 366 Amelincks, S., 482, 516 Anderson, F. R., 193, 195, 196, 199, 217, 229, 367, 370, 414, 515 Anderson, J. H., 419, 421, 422, 518Andrews, E. H., 274 Andries, J. C., 239, 279 Anoshina, N. P., 339, 377 Arakawa, T., 193, 197, 203, 217, 352, 367,

370, 378, 456, 511 Arimoto, H., 132, 140, 167 Arledter, A. F., 340 Arlie, J. P., 199, 200, 367 Arlman, J. J., 395, 396, 511 Arnott, S., 84, 132, 136, 168 Asado, T., 433, 518 Asai, T., 430, 518 Askadskii, A. A., 56, 88, 175 Atkinson, C. M. L., 406, 511 Azároff, L. V., 464, 511

B

Baer, E., 276, 277, 279, 280, 368, 373, 374,514

Bagchi, S. N., 440, 516 Bailey, G. W., 413, 511 Bair, H. E., 194 Baker, C. H., 153, 154, 168 Baltá-Calleja, F. J., 199, 506, 511 Bamford, C. H., 84, 168 Ban, T., 497, 498, 517 Bank, M. I., 206, 207, 213, 367, 418, 511Barker, T. V., 266, 367 Barlow, M., 119, 123, 168 Barlow, W., 41, 42,168 Barnes, W. J., 237, 475, 511 Barrall, E. M., II, 427, 511 Barrett, C. S., 497, 511 Barriault, R. J., 281, 367 Bartell, L. S., 66, 168 Bassett, D. C., 185, 194, 197, 198, 200, 201,

225, 232, 234, 235, 237, 244, 251,252, 253, 255, 262, 351, 367, 376,475, 478, 481, 482, 511

Bassett, G. A., 203, 237, 244, 265, 374, 457,458, 459, 460, 461, 462, 477, 511,512

Bassi, I. W., 77, 87, 96, 101, 103, 107, 108,113, 116, 119, 123, 141, 142, 144,145, 149, 168, 173, 174

Bates, T. W., 69, 70, 168 Battista, O. A., 188, 344, 345, 367, 408,

410, 512 Baudisch, J., 408, 409, 512 Baughman, R. H., 359, 367

Page 21: Mp Introduction 2010 Optimized

Author Index of Volume I Page 2

Baur, H., 403, 404, 453, 522 Beaman, R. G., 152, 153, 169 Beckett, D. R., 103, 104, 176 Bednowitz, A. L., 273, 368 Bekkedahl, N., 384 Belavtseva, E. M., 238 Benedetti, E., 109, 110, 167 Berestneva, Z. Ya., 165, 171, 351, 374Bergmann, K., 421,423,424,425, 512Bernauer, F., 315, 367 Bessonov, M. I., 386, 512 Billmeyer, F. W., Jr., 129, 246 Binsbergen, F. L., 337, 367, 427, 512 Bird, R. B., 41,171 Birshtein, T. M., 68, 78, 81, 168 Bittiger, H., 242, 243 Bixler, H. J., 430, 517 Blackadder, D. A., 194, 210, 253, 357, 367,

387, 512 Blais, P., 345, 346, 347, 367 Blasenbrey, S., 93, 94, 167, 174, 176, 447,

450, 451, 452, 512, 518, 520, 522 Blout, E. R., 160, 170 Blundell, D. J., 205, 210, 233, 287, 289,

290, 291, 292, 295, 368, 378, 457,458, 459, 460, 461, 462, 512

Bodily, D. M., 153, 154, 168, 203, 368Bodor, G., 273, 368, 398 Bollman, W., 381 Bonart, R., 129, 131, 168, 442, 490, 497,

506, 512 Bondi, A., 45, 51, 100, 168, 426, 512 Booij, H. C., 271, 273, 352, 353, 354, 375 Boon, J., 119, 125,168 Bopp, R. C., 197, 198, 229, 370, 413, 522 Borisova, N. P., 78, 81, 168 Bort, D. N., 341, 372 Bovey, F. A., 419, 420, 512 Branson, H. R., 84, 174 Brant, D. A., 83, 168 Bravais, A., 27, 168 Brenschede, W., 320, 321Brody, H., 504, 519 Brown, A., 317

Brown, A. J., 342, 368 Brown, F. R., III, 160, 170 Brown, L., 84, 168 Bruns, W., 13, 19 Bryant, W. M. D., 188, 327, 334, 368Buchanan, D. R., 399, 400, 401, 481, 512Buchdahl, R., 498, 512 Buckingham, A. D., 45, 168 Buckley, A. E., 308, 368 Buerger, M. J., 25, 168 Bunn, C. W., 37, 68, 70, 75, 91,109,113,

127, 129, 131, 133, 134, 169, 176,188, 192, 193, 217, 316, 334, 368

Burbank, R. D., 285, 288, 368 Burckhardt, J. J., 25, 169 Burke, J. G., 22, 169 Buthenuth, G., 341, 368

C

Cahn, R. W., 285, 368 Campos-Lopez, E., 165, 167, 173 Cannon, C. G., 338, 368 Canterford, J. H., 148 Cantow, H.-J., 97 Caporiccio, G., 108, 149, 174 Carazzolo, G., 117, 118, 128. 144, 169 Carr, S. H., 276, 277, 279. 280, 368, 373Carrano, M. J., 416, 512 Carter, D. R., 474, 519 Caspar, D. L. G., 164, 169, 172 Cerra, P., 351, 368, 512 Cesari, M., 119 Challa, G., 397,512 Chan, K. S., 106 Chanzy, H. D., 347, 368 Chargaff, E., 161 Chatani, Y, 118, 119,1 20, 121, 122, 126,

127, 128, 131, 144, 146, 154, 160,169, 171, 172, 175, 176, 364, 377

Chiang, R., 235 Chioccola, G., 101, 103, 168 Chu, W., 429, 521

Page 22: Mp Introduction 2010 Optimized

Author Index of Volume I Page 3

Chujo, K., 126, 128, 169 Clark, E. S., 97, 98, 169, 281, 282. 368, 504,

514 Clark, G. L., 398 Clark, R. J., 317 Clough, S., 428, 512 Cobbold, A. J., 192, 193, 210, 217, 234,

316, 368, 375, 410, 412, 518 Cochran, W., 72, 169 Coiro, V. M., 133 Cole, E. A., 154, 169 Coleman, J. E., 319, 366, 368 Colvin, J. R., 342, 344, 368 Comer, J. J., 361, 374 Connor, T. M., 210, 368 Coppick, S., 408, 512 Corbridge, D. E. C., 75, 169 Corey, R. B., 84, 174, 400, 512 Cormier, C. M., 194, 379, 406, 522Corneliussen, R., 369, 504, 519 Corradini, P., 71, 75, 77, 79, 80, 81, 82, 87,

101, 103, 105, 107, 108, 112, 113,116, 117, 119, 123, 137, 148, 149,151, 157, 158, 160, 169, 173

Cottrell, A. H., 490, 493, 512 Coughlin, M. C., 331, 332, 333, 369, 468,

512 Cramer, F. B., 152, 153, 169 Crank, J., 430 Crick, F. H. C., 72, 132;135, 136, 164, 169,

172, 175, 176 Crippen, G. M., 94, 136, 173 Cruikshank, D. W. J., 75, 169 Cruz, M. M., 408, 410, 512 Crystal, R. G., 236, 337, 338, 498, 504, 513Curtic, C. F., 41, 171

D

Dahl, L. F., 148 Dall’ Asta, G., 77, 79, 80, 103, 160, 174Dalton, J., 23, 169 Dammont, F. R., 232, 244, 255, 367 Darwin, C. G., 381, 513

Daubeny, R. de P., 129 Davidovits, J., 198, 199, 373 Davidson, J. N., 161 Davidson, T., 197, 203, 369, 379, 456, 513Davis, G. T., 210, 369 Dawson, I. M., 285, 369, 473, 513 Day, A., 347, 368 Debye, P., 438, 513 Dechant, J., 408, 409, 512 Deer, W. A., 361, 369 Dehlinger, U., 381, 513 de Jong, W. F., 181, 369 DeLange, B. G. M., 337, 367 de Michele, V., 21 Dennis, D. T., 342, 368 Déribéré, M., 21 De Santis, P., 111, 169 Desper, C. R., 391, 513 Desreux, V., 4, 17 Dewaelheyns, A., 391,520 Dickerson, R. E., 161, 162, 172 Dietl, J. J., 414, 513 Dismore, P. F., 271, 369 Dlugosz, J., 166, 169 Dole, M., 403, 405, 513, 522 Donnay, J. D. H., 61, 169, 315, 323, 375Doremus, R. H., 190 Dover, S. D., 132, 136, 168 Dows, D. A., 414, 513 Doyle, B. B., 160, 170 Dreyfuss, P., 241

E

Early, R., 384 Eby, R. K., 210, 369, 456, 457, 513 Edgar, O. B., 151, 170 Edsall, J. T., 82, 170 Eichhoff, U., 421, 425, 513 Einstein, F. W. B., 148 Eisenberg, A., 5, 20 Elder, M., 148 Ellar, D., 345, 369 Elliott, A., 84, 132, 136, 168

Page 23: Mp Introduction 2010 Optimized

Author Index of Volume I Page 4

Ellis, J. W., 415, 514 Emirova, I. V., 341, 369 Entelis, S. G., 122, 176 Epel’baum, I. V., 283, 374 Eppe, R., 320, 323, 369 Erkebaeva, E. B., 321 Erlich, V. L., 358, 369 Ermakov, Yu. I., 341, 369 Erpenbeck, J. J., 12, 20 Evans, R. D., 152, 159, 177 Evans, W. C., 414, 521

F

Faddeev, D. K., 33, 170 Fagherazzi, G., 96, 141, 142, 174 Falkai, B. v., 319 Farrow, G., 398, 413, 513 Fasman, G. D., 161, 170, 176 Fatou, J. G., 196, 198, 200, 229, 374 Fava, R. A., 185, 369 Federov, E. S., 25, 170 Ferraro, C. F., 408, 410, 512 Ferry, J. D., 432, 513 Ficker, H. K., 456, 521 Fiedel, J., 381 Field, J. E., 395, 513 Fischer, E. W., 165, 170, 190, 191, 192, 194,

195, 196, 197, 201, 211, 215, 271,272, 275, 279, 280, 302,303, 320,323, 334, 358, 366, 369, 370, 376,398, 400, 401, 402, 425, 465, 475,480, 513, 519

Fisher, D., 113, 115, 170 Fitchmun, D. R., 282, 370 Fitton, B., 217, 370 Flory, P. J., 2, 4, 10, 19, 68, 74, 75, 78, 82,

83, 111, 125, 131, 141, 168, 170,175, 205, 370, 432, 514

Foley, R. L., 504, 519 Frank, F. C., 205, 234, 235, 251, 252, 253,

255, 285, 293, 324, 356, 366, 367,370, 381, 475, 487, 480, 493, 495,511, 514

Frank, W., 167, 170 Fredericks, R. J., 132, 158, 174 Fredrich, W., 24, 170 Frenkel, J., 381, 514 Friedel, J., 493, 495, 514 Fritschi, J., 20 Frosch, C. J., 127, 170 Fugio, R., 317 Fujii, K., 109 Fujishige, S., 321 Fukui, Y., 433, 518 Fuller, C. S., 127, 130, 131, 153, 170 Fuller, W., 164, 170 Fulqui, M. T., 148 Furukawa, J., 119

G

Gabler, R., 307, 370 Gallagher, P. K., 432, 520 Gallegos, E. J., 427, 511 Ganis, P., 77, 82, 105, 107, 108, 144, 145,

160, 168, 169, 173 Garber, C. A., 237, 245, 250, 350, 370, 503,

504, 514 Garner, E. V., 133, 134 Geil, P. H., 167, 177, 185, 193, 195, 196,

215, 217, 234, 235, 237, 238, 241,245, 249, 250, 251, 255, 258, 261,262, 263, 271, 293, 295, 296, 301,304, 310, 315, 316, 317, 318, 319,320, 336, 337, 350, 351, 362, 370,373, 375, 376, 497, 502, 503, 514,518

Geller, S., 97, 98, 99, 172 Georgiadis, T., 275, 370 Gerngross, O.,187, 371, 381, 437, 515Gezovich, D., 507, 519 Giglio, E., 111, 144, 169 Gimblett, R. G. R., 4, 19 Gisolf, J. H., 452, 514 Glatt, L., 415, 514 Glazunov, P. Ya., 275, 378 Glenz, W. 349, 350, 370, 437, 514

Page 24: Mp Introduction 2010 Optimized

Author Index of Volume I Page 5

Goddar, H., 167, 170, 21 1, 370, 401, 402,513

Golemba, F. J., 103, 105, 170 Goodfield,J., 2, 20 Gopalan, M., 196, 198, 200, 229, 374Goppel, J. M., 395, 514 Gould, R. F., 2 Graham, T., 2, 19 Graham, W. A. G., 4, 20 Grell, M., 398 Griffiths, C. H., 217, 370 Griffiths, E., 414, 521 Gronholz, L. F., 281, 367 Groth, P., 22, 170 Gruner, C. L., 197, 198, 229, 343, 370Gütter, E., 430, 515 Guillet, J. E., 103 105, 170, 347, 370, 430,

514 Guth, E., 422, 518 Guttman, J. Y., 347, 370

H

Haas, K., 293, 370 Haberkorn, H., 437, 516 Hachiboshi, M., 239 Hädicke, E., 364, 366, 371 Hägele, P. C, 66, 170,447, 514 Halek, G., 103, 105, 174 Hall, M. B., 415, 518 Haller, M. N., 243 Hamada, F., 209, 210, 371, 387, 389, 405,

514 Hamilton, L. D., 164, 170, 172, 173 Hanby, W. E., 84, 168 Hannon, M. J., 417, 517 Hansen, D., 318, 334, 337, 430, 431, 504,513, 522 Hara, T., 97, 295, 377 Harris, P. H., 339, 368 Harrison, I. R., 432, 514 Hartman, P., 182, 183, 371 Hasegawa, M., 321, 358, 359, 371, 375Hashimoto, T., 429, 514 Haüy, R. J., 22, 170, 179, 180, 371

Havsteen, B. H., 85, 170 Hawkins, W. L., 410, 514 Hay, I. L., 215, 295, 371, 504, 505, 507, 514 Hayashi, S., 209, 210, 235, 371, 387, 389,

405, 514 Heber, I., 318 Hellmuth, E., 407, 515 Hendus, H., 165, 171, 196, 395, 396, 398,

405, 406, 415, 416, 417, 515 Hengstenberg, J., 120, 171, 186, 341, 377,

399, 515 Hermans, P. H., 397, 512, 515 Herring, C, 182, 371 Herrmann, K., 187, 371,381, 437, 515Herzberg, G., 40, 171, 414, 515 Herzog, R. O., 135, 171 Hess, K., 187, 371, 400, 430, 515 Hessel, J. F. C, 30, 171, 180, 371Higginbotham, H. K., 66, 168 HilI, R., 151, 170 Hill, T. L., 435 Himmelfarb, D., 340 Hinrichs, W., 281, 372 Hinrichsen, G., 194, 235, 271, 272, 358, 366 Hirai, N., 243 Hirschfelder, J. O., 41, 45, 171, 174 Hirth, J. P., 380, 381, 515 Hobbs, S. Y., 129, 238, 246 Hock, C W., 411, 515 Höhne, G., 445, 515 Hoffman, J. D., 201, 216, 371, 374Hoffman, M., 165, 171 Holden, G., 164, 173 Holdsworth, P. J., 202, 371, 455, 504, 515 Holland, V. F., 194, 234, 235, 241, 295, 302,

317, 371, 414, 476, 480, 481, 482,484, 486, 515, 516

Holmes, D. K., 68, 132, 154, 169 Holze, W., 398 Homés, G. A., 507, 519 Hooke, R., 23, 171 Hooper, C W., 164, 172 Horio, M., 275, 371 Horoyd, L. V., 422, 518

Page 25: Mp Introduction 2010 Optimized

Author Index of Volume I Page 6

Hosemann, R., 438, 439, 440, 442, 443, 444,445, 446, 516, 521, 522

Howard, G. J., 153, 171 Howie, R. A., 361, 369 Howsmon, J. A., 408, 512 Huggins, M. L., 4, 17, 117, 171, 216, 371Hughes, R. E., 74, 171 Hugo, J. A., 471, 519 Hummel, D. O., 414 Huseby, T. W., 194 Husemann, E., 242, 243 Hutchison, J. D., 234, 504, 519 Huygens, C, 23, 171

I

Iguchi, M., 359, 362, 371 Iitaka, Y., 132, 137, 176 Illers, K. H., 165, 171, 186, 195, 210, 255,

371, 405, 406, 411, 415, 437, 447,515, 516

Imada, K., 121, 171 Inamura, M., 275, 377 Ingram, P., 185, 347, 349, 371, 372, 376,

506, 516 Ingram, V. M., 6, 19 Ingwall, R. T., 94, 136, 173 Ishibashi, M., 159 Ishihara, H., 365, 372, 379 Ishikawa, M., 319 Iwamoto, R., 365, 372, 379 Iwayanagi, S., 112

J

Jaccodine, R., 189, 372 Jackson, W.O., 340 Jaffe, M., 186, 265, 427, 516 James, E. A., 194, 298, 299, 304, 309, 379Jancke, W., 135, 171 Jenckel, E., 281, 321, 372, 398

Johannsen, A., 315, 372 Johner, H., 186, 341, 377 Jones, A. V., 415, 521 Just, K. H., 74, 75, 76, 171 Joynson, C. W., 498, 520 Juijn, J. A., 452, 514

K

Kämpf, G., 165, 171, 319 Kagan, D. F., 413, 516 Kaiser, J., 364, 366, 371 Kaji, K., 119 Kakida, H., 118, 120, 175 Kalashnikova, V. G., 165, 171 Kallo, A., 398 Kanamoto, T., 238, 239 Kanetsuna, H., 362, 371 Kantor, S. W., 341, 372 Kargin, V. A., 165, 171, 236, 283, 317, 341,351, 372, 374, 413, 517 Karplus, M., 64, 175 Kashdan, W. H., 208, 379, 386, 522Kashuba, K. L., 94, 136, 173 Katada, A., 433, 517 Kausch, H. H., 499, 516 Kavesh, S., 97 Kawai, T., 194, 196, 201, 214, 253, 362,

371, 372, 387, 507, 514, 516 Kay, H. F., 208, 214, 372 Kaye, W., 189, 375 Keijzers, A. E. M., 429, 516 Keith, H. D., 235, 239, 240, 253, 257, 258,299, 302, 303, 307, 316, 319, 323, 324, 329,334, 335, 336, 339, 372, 375, 465, 466, 493,494, 497, 516 Keller, A., 165, 166, 169, 172, 185, 188,

189, 190, 194, 199, 202, 203, 205,206, 208, 210, 212, 213, 215, 233,234, 237, 241, 242, 244, 247, 248,249, 251, 252, 253, 254, 255, 257,258, 262, 263, 264, 265, 266, 271,274, 276, 277, 279, 280, 285, 288,289, 290, 291, 292, 293, 294, 295,315, 317, 318, 320, 323, 324, 334,

Page 26: Mp Introduction 2010 Optimized

Author Index of Volume I Page 7

335, 338, 346, 348, 349, 351, 355,356, 366, 367, 368, 370, 371, 372,373, 374, 375, 378, 379, 387, 411,412, 413, 432, 455, 457, 458, 459,460, 461, 462, 464, 465, 475, 478,480, 489, 493, 504, 505, 507, 509,511, 512, 514, 515, 516, 517, 519,520, 521

Kendrew, J. C., 82, 161, 170, 172 Kenney, J. F., 235 Kenyon, A. S., 316 Kepler, J., 22, 172 Kern, C. W., 64, 175 Kern, W., 198, 199, 373 Kestner, N. R., 41, 173 Khoury, F., 285, 310, 312, 313, 336, 373Kiel, A. M., 271, 273, 351, 352, 353, 354,

375, 376 Kiessig, H., 400, 515 Kihara, T., 50, 172 Kiho, H., 293, 295, 349, 370, 373, 376, 502,

506, 516 Kilb, R. W., 317 Kilian, H. G., 398 Kinloch, D. R., 481, 520 Kinoshita, Y., 133, 134, 138, 139, 172 Kiss, K., 279, 280, 373 Kitaigorodskii, A. I., 45, 56, 59, 60, 61, 88,

91, 92, 98, 164, 165, 171, 172, 175,253, 373

Kitamaru, R., 210, 373 Klein, E., 321 Klement, J. J., 235, 503 Kloos, F., 465, 513 Klug, A., 72, 164, 169, 172 Klug, H. P., 218, 361, 374 Knipping, P., 24, 170 Knutton, S., 152, 171 Koba, S., 50, 172 Kobayashi, E., 352, 373 Kobayashi, K., 192, 275, 279, 310, 374Kobayashi, M., 143, 175 Kobayashi, S., 118, 119, 122, 172 Koenig, J. L., 410, 417, 517

Kohlrausch, K. W. F., 68, 172 Komoto, H., 133 Konstantinopol’skaya, M. B., 351, 374Kortleve, G., 153, 154, 172, 401, 521Koster, G. F., 33, 172 Koutsky, J. A., 279, 374 Kovacs, A. J., 203, 233, 237, 244, 257, 259,

265, 288, 292, 293, 294, 368, 374,378, 461, 517

Kovalenko, V. I., 339, 377 Kovalev, O. V., 33, 172 Kratky, O., 187, 374 Krauch, C H., 364, 366, 371 Kretschmer, R., 167, 175 Krimm, S., 206, 207, 213, 367, 395, 399,

414, 418, 511, 517 Kröger, F. A., 485, 517 Krömer, H., 165, 171 Kryszewski, M., 276, 279, 374 Kubo, S., 247, 281, 282, 374 Kubota, K., 413, 517 Kurokawa, M., 497, 498, 517 Kusherev, M. Ya., 122, 176 Kusumoto, N., 318

L

Labaw, L. W., 24 Lambert, S. L., 167, 172 Lando, T. B., 109 Langridge, R., 164, 172 Laue, M., 24, 170 Lauer, J. L., 74, 171 Lauritzen, J. I., Jr., 216, 374 Lebedev, V. B., 398 Lee, C. L., 243, 474, 519 Leeper, H. M., 188, 377 Legrand, C, 144 Lemm, K., 440, 442, 516 Lenz, R. W., 5, 19 Leuchs, O., I, 19 Levine, M., 159 Lewell, P. A., 210, 367, 387, 521 Lewis, D., 295, 374

Page 27: Mp Introduction 2010 Optimized

Author Index of Volume I Page 8

Lewis, P. R., 165, 172 Li, C. H., 495, 497, 521 Li, Li-Sheng, 413, 517 Lieser, G., 246, 311, 465, 513 Lind, M. D., 97, 98, 99, 172 Lindenmeyer, P. H., 194, 216, 251, 302,

371, 374, 482, 484, 486, 493, 494,515, 516, 517, 518

Liquori, A. M., 82, 109, 111, 169, 170Livingston, H. K., 147, 172 Loening, K. L., 4 Lonsdale, K., 24 Lorentz, H. A., 426 Lorenz, L., 426 Lorenz, R., 302, 303, 369, 398, 475, 480,

513 Lorenzi, G. P., 160, 170 Lutan, N., 94, 136, 173 Lothe, J., 380, 381, 515 Lotz, B., 203, 237, 244, 265, 292, 293, 294,

374 Lowe, J. P., 62, 63, 64, 172 Lowry, G. G., 12, 20 Luft, N. W., 65, 74, 172 Lundgren, D. G., 237, 345, 379 Luongo, J. P., 432, 520 Luzzati, V., 164, 172

M

Macchi, E. M., 273, 341, 374 McClellan, A. L., 41, 174 McCullough, R. L., 71, 93, 173, 399, 485,517 McGuire, R. F., 94, 136, 173 Machi, S., 341, 378 Machin, M. J., 271, 274, 351, 373, 379McIntyre, D., 165, 167, 173 McIntyre, J. E., 340 Mackie, J. S., 413, 517 McMahon, P. E., 93, 173, 485, 517Maddams, W. F., 295, 374 Maeda, H., 214, 242, 372 Maeda, T., 93, 174

Magill, J. H., 243, 318, 320, 321, 329, 337, 339, 374, 427, 517

Magré, E. P., 119, 125, 168 Mahl, H., 430, 515 Makalov, L. I., 339, 377 Malinskii, Yu, M., 283, 374 Mammi, M., 117, 118, 144, 169, 398Manabe, S., 433, 517 Mandelkern, L., 153, 154, 168, 196, 198,

200, 210, 229, 373, 374, 417, 518 Manley, R. St. J., 242, 243, 275, 345, 346,

347, 348, 352, 375, 367, 370, 375,378, 410,517

Marchessault, R. H., 237, 243, 345, 347,368, 369, 410, 428, 520

Margenau, H., 41, 173 Mark, H., 3, 4, 17, 20, 399, 515 Mark, J. E., 78, 170 Marker, L., 384 Martin, G. M., 210, 369, 385 Martinez, E., 361, 374 Martuscelli, E., 212, 213, 241, 242, 247,373Marvin, D. A., 164, 172, 173 Maser, M., 218, 361, 374 Mason, C W., 361, 376 Mason, E. A., 40, 45, 173 Masson, E, 164, 172 Masui, R., 489, 517 Mathis, A., 464, 521 Matreyek, W., 410, 432, 514, 517 Matsui, M., 489, 517 Matsumoto, T., 214, 372 Matsuo, T., 433, 434, 521 Matsuoka, S., 197, 374 Mazzanti, G., 77, 79, 80, 119, 123, 160, 173,

174 Mehta, A., 308, 379 Meinel, G., 210, 376, 437, 500, 510, 517,519 Melillo, L., 192, 219, 220, 221, 222, 223,

227, 231,260, 267, 269,2 70, 316,330, 331, 332, 342, 375, 376, 379,465, 467, 495,496, 497, 522

Mencik, M., 104, 173

Page 28: Mp Introduction 2010 Optimized

Author Index of Volume I Page 9

Menter, J. W., 477, 512 Metanomski, W., 4 Metzger, H., 22, 173 Mez, E. C, 364, 366, 371 Michaels, A. S., 430, 517 Mie, G., 186, 341, 377 Mikhailov, N. V., 275, 378 Miller, M. L., 236 Miller, R. L., 95, 135, 147, 173, 234, 295,

371, 389, 398, 399, 400, 416, 481,512, 517, 518

Miller, W. G., 83, 168 Miller, W. H., 27, 173 Mininni, R. M., 363 Minsker, K. S., 341, 372 Mitsuhashi, S., 237, 251, 252, 253, 262,

264, 318, 367, 375 Miyagi, A., 210, 212, 257, 375, 410, 518Miyakawa, T., 121, 171 Miyamoto, Y, 217, 225, 233, 375 Miyazawa, T., 74, 84, 85, 173 Mizushima, S., 74, 175 Mnyukh, Yu. V, 238 Moacanin, J., 164, 173 Mochel, W. E., 415, 518 Momany, F. A., 94, 136, 173 Monfils, A., 40, 171 Morawetz, H., 273, 374, 375 Morehead, F. A., 408, 512 Morero, D., 148, 149, 151, 157, 158, 173Mori, K., 143, 175 Morosoff, N. C, 273, 341, 374, 437, 514Morrow, D. R., 234, 251, 210, 351, 368,

377, 502 Morse, H. W., 315, 323, 375 Moyer, J. D., 430, 518 Mrowca, B. A., 422, 518 Müller, F H., 358, 375 Müller-Buschbaum, B., 279, 280, 375Murahashi, S., 121, 154, 160, 169, 171, 364,

377 Murtazina, I. O., 339, 377 Muus, L. T., 97, 98, 169

N

Nabarro, F. R. N., 380, 518 Nagai, E., 241 Nakafuku, C, 217, 225, 233, 375 Nakagawa, H., 214, 372 Nakajima, A., 209, 210, 235, 371, 387, 389,

514 Nakanishi, H., 358, 359, 371, 375 Nakano, N., 359, 375 Nardi, V., 398 Natta, G., 4, 17, 71, 75, 77, 79, 80, 81, 82,

87, 96, 101, 103, 108, 109, 112, 113,116, 117, 119, 123, 137, 141, 142,148, 149, 151, 157, 158, 160, 173,174, 417, 518

Naumann, A. W., 419, 520 Nawotki, K., 421, 423, 424, 425, 512Némethy, G., 82, 170 Neurath, H., 161, 162 Nev’yantsev, I. A., 341, 369 Newman, B. A., 208, 214, 372 Newman, R., 422, 518 Newman, S., 282, 370 Nicolaieff, A., 164, 172 Niegisch, W. D., 242, 251, 345, 375Nielsen, L. E., 433, 518 Niggli, P., 25, 174, 180, 181, 375 Niinomi, M., 482, 518 Nishijima, Y., 429, 430, 518 Nishimura, Y., 160, 169 Noether, H. D., 88, 103, 105, 106, 107, 108,

174, 504, 519 Nowacki, W., 61, 169 Nyburg, S. C., 103, 105, 170

O

Ochs, R. J., 430, 518 O’Connor, A., 194, 285, 293, 349, 370, 373,

493, 514 Odajima, A., 93, 174 Ogata, N., 275, 377 Ogawa, M. 241

Page 29: Mp Introduction 2010 Optimized

Author Index of Volume I Page 10

Ohlberg, S., 395, 511 Okada, T., 417, 518 Okamura, K., 128, 237, 345, 369 Okamura, S .. 352, 373 Ôkita, Y., 126, 127, 128, 169 Okuda, K., 109, 157, 174, 236 O’Leary, K., 215, 351, 375,497, 518 Onogi, S., 433, 518 Onogi, Y., 430, 518 O’Reilly, D. E., 419, 421, 422, 518 Orowan, E., 381, 497, 518 Orth, H., 235 Oster, G., 382 Osthoff, R. C., 341, 372 Ota, T., 134 Overberger, C. G., 103, 105, 174

P

Padden, F. J., Jr., 239, 240, 241, 285, 299,323, 324, 329, 334, 336, 339, 372,373, 375, 432, 465, 466, 516, 520

Page, D. H., 352, 378 Palihov, N. A., 339, 377 Palmer, R. P., 192, 193, 210,2 17, 234, 316,

334, 368, 375, 410, 412, 518 Pan-Tun, L., 318 Park, G. S., 430 Park, I. K., 504, 519 Pashley, D. W., 266, 375, 477, 512 Pasquon, I., 77, 79, 80, 160, 174 Passaglia, E., 385, 493, 494, 497, 516 Patel, D. W., 233, 375 Patel, R. D., 233, 375 Pauling, L., 41, 46, 47, 51, 54, 74, 84, 174Payue, N., 382 Pearce, E. M., 158, 174 Pechhold, W., 66, 167, 170, 174, 447, 449,

450, 451, 452, 512, 514, 518, 520Peck, V., 189, 375 Pedemonte, E., 165, 166, 169, 172 Pedone, C., 109, 110, 167 Pelzbauer, Z., 320, 375 Pennings, A. J., 271, 273, 351, 352, 353,

354, 375, 376�

Peraldo, M., 81, 174 Perego, G., 113, 116, 119, 174 Peterlin, A., 195, 210, 215, 293, 295, 349,

350, 369, 370, 372, 373, 376, 400,437, 499, 500, 501, 506, 511, 514,516, 517, 519

Petersen, D. R., 144, 243, 474, 519 Petersen, H., 50 Peterson, J. M., 481, 493, 495, 519Petraccone, V., 108, 169 Philipp, B., 408, 409, 512 Phillips, D. C., 161, 172 Phillips, F. C., 25, 174, 181, 376 Phillips, V. A., 471, 519 Pichlmayr, H., 187, 371 Pieper, W., 199 Piesczek, W., 425, 519 Pimentel, G. C., 41, 174 Pitzer, R. M., 64, 174, 175 Point, J. J., 507, 519 Poland, D., 153, 154, 177, 454, 522 Polanyi, M., 381, 519 Pope, D. P., 507, 509, 516 Popoff, B., 323, 336, 376 Popov, A. A., 122, 176 Popova, L. A., 413, 516 Porejko, S., 320 Porod, G., 187, 349, 374, 376, 400, 519Post, B., 273, 368 Powell, W. H., 4 Prandtl, L., 381, 519 Predecki, P., 485, 487, 488, 489, 493, 494,

519 Preedy, J. E., 295, 374 Preston, D., 398 Price, C., 165, 172 Price, F. P., 194, 216, 237, 317, 321, 376,

475, 511 Price J. M., 196, 198, 200, 229, 374 Priest, D. J., 212, 213, 373, 412, 489, 516,

519 Prime, R. B., 200, 224, 228, 230, 376Prince, F. R., 158, 174 Prins, J. A., 50, 438, 522

Page 30: Mp Introduction 2010 Optimized

Author Index of Volume I Page 11

Prins, W., 429, 516 Pritchard, R., 504, 519 Ptitsyn, O. B., 68, 168 Puderbach, H., 196, 197, 369

Q

Quynn, R. G., 504, 519

R

Raatz, F., 181, 376 Rafikov, S. R., 275, 378 Ramachandran, G. N., 82, 85, 135, 170, 174 Ramakrishnan, C, 135, 174 Rånby, B. G., 187, 376 Rassmussen, O., 358 Ratner, I. D., 341, 369 Rauterkus, K. J., 198, 199, 373 Ravens, D. A. S., 413, 513 Read, W. T., Jr., 495, 514 Rebenfeld, L., 340 Reding, F. P., 154; 176, 317, 413, 519 Rees, D. V., 185, 197, 198, 200, 201, 225,

376 Reese, W., 403, 521 Reinhold C, 195, 215, 376, 400, 519Rellensmann, W., 319 Reneker, D. H., 248, 255, 261, 301, 304,

308, 310, 370, 376, 447, 495, 519 Rhodes, F. H., 361, 376 Rhodes, M. B., 316, 428, 429, 512, 519, 521 Ribi, E. D., 187, 376 Rice, R. V., 218, 361, 374 Rice, W. E., 40, 45, 173, 174 Rich, A., 132, 135, 136, 169, 175 Richards, R. B., 274, 376, 415, 519 Richardson, G. C, 234, 251, 310, 377Richardson, M. J., 406, 511 Ripamonti, A., 111, 169 Riveros, J. M., 125, 175 Roberts, B. W., 190 Roberts, T. L., 253, 367 Robertson, R. E., 498, 519, 520

Roe, R. J., 194, 430, 520 Romé de l’Isle, J. B. L., 179, 376 Ropte, E., 165, 171 Rossiter, B. W., 401 Rubin, I. D., 151, 175 Rudin, A., 413, 517 Ruland, W., 91, 175, 390, 391, 392, 393,

394, 397, 398, 437, 520 Rundsack, F. L., 340 Ruscher, C, 408, 409, 512 Rybniká�, F., 317

S

Sadler, D. M., 483, 520 Safford, G. J., 419, 520 Saito, Y, 365, 372 Sakakihara, H., 144 Sakaoku, K., 310, 374, 504, 519 Sakoda, A., 433, 517 Sakurada, I., 119 Salovey, R., 232, 244, 255, 367 Saotome, K., 133 Saratovkin, D. D., 299, 300, 301, 376 Sarko, A., 410, 520 Sasisekharan, V., 82, 84, 135, 174 Sato, H., 317 Sato, T., 433, 518 Sauer, J. A., 234, 251, 310, 351, 368, 377Saunders, F. L., 316 Sauter, E., 187, 377 Sawada, S., 257, 258, 334, 335, 373 Saylor, C P., 317 Schatzki, T. F., 447, 520 Schaufele, R. F., 419, 520 Scheraga, H. A., 82, 94, 136, 170, 173Scherr, H., 447, 451, 520 Scherrer, P., 399, 520 Schimmel, G., 351, 377 Schindler, A., 347, 372 Schlegel, A. A., 93, 173, 485, 517Schleinitz, H. M., 194, 357, 367Schlesinger, W., 188, 377 Schlier, C, 45, 175

Page 31: Mp Introduction 2010 Optimized

Author Index of Volume I Page 12

Schmidt, G. F., 196, 198,199, 201, 211, 369,370, 373, 401, 402, 513

SchnelI, G., 395, 396, 398, 416, 515Schönefeld, A., 222, 377, 445 Schoenflies, A, 25, 175 Scholl, F., 414 Schomaker, V., 47, 175 Schonhorn, H., 281, 282, 377, 432, 520Schoon, T. G. F., 167, 175 Schottky, W., 381, 520 Schröcke, H., 21 Schuhmann, H., 398 Schultz, J. M., 97, 481, 520 Schultz, G. V., 6, 20 Schulze, A. J., 75, 76, 171 Schuur, G., 317 Seeber, L. A., 24, 175 Seeds, W. E., 164, 172 Seeger, A, 381 Seifert, H., 279 Seitz, F., 381, 520 Sella, C, 285, 377 Semlyen, J. A, 74, 75, 175 Seto, T., 97, 295, 377, 498, 520 Shablyagin, M. V., 275, 378 Sharples, A., 185, 377 Shida, M., 456, 521 Shimanouchi, T., 74, 175 Shiozaki, S., 214, 372 Shore, V. C, 161, 172 Shtarkman, B. P., 341, 372 Shu, S.-W., 194, 298, 299, 304, 309, 379 Sianesi, D., 108, 148, 149, 151, 157, 158,

173, 174 Sieminsky, M. A., 504, 519 Signer, R., 186, 341, 352, 362, 373, 377Sisson, W. A., 512 Skoulios, A. E., 199, 200, 367, 464, 521Slichter, W. P., 133, 419, 425, 521Slonimskii, G. L., 56, 88, 165, 171, 175Smekal, A., 380, 521 Smirnova, V. E., 386, 512 Smith, H., 317 Snyder, G., 379

Sobering, S. E., 504, 519 Sobue, H., 319 Sonada, C, 319 Sonoda, S., 214, 372 Sovers, O. J., 64, 175 Speerschneider, C J., 495, 497, 521 Spegt, P. A., 199, 200, 367 Spencer, L. J., 178, 377 Spencer, M., 164, 173 Spit, B. J., 414, 461, 521 Stafford, J. W., 10, 20 Starkweather, H. W., Jr., 281, 368 Statton, W. O., 196, 271, 369, 390, 485, 487,488, 489, 493, 494, 504, 519, 521Staudinger, H., 1, 3, 20, 185, 186, 341, 362,

377 Stein, A. N., 430, 514 Stein, R. S., 316, 391, 428, 429, 504, 512,

513, 514, 519, 521, 522 Steiner, K., 318 Stellman, J. M., 237, 432, 521 Steno, N., 178, 377 Stephenson, C E., 382 Stevenson, D. P., 47, 175 Stewart, J. M., 17, 20 Stock mayer, W. H., 70, 168 Stokton, F. D., 433, 518 Stone, F. G. A., 4, 20 Stone, I. C, 456, 521 Storks, K. H., 187, 377 Strandberg, B. E., 161, 172 Straumanis, M., 97 Stuart, H. A., 4, 20, 39, 45, 167, 170, 175,

185, 320, 323, 369, 377, 417, 522Sturtevant, J. M., 401 Suehiro, K., 114, 125, 128, 169, 175 Sullivan, P., 263, 304, 305, 307, 308, 309,

327, 328, 360, 361, 379 Sumida, T., 209, 210, 371, 387, 389, 405,

514 Sutherland, G. B. B. M., 415, 521 Sutton, W. R., 361, 376 Suzuki, F., 358, 359, 371 Suzuki, Y, 358, 359, 371

Page 32: Mp Introduction 2010 Optimized

Author Index of Volume I Page 13

Swan, P. R., 154, 175 Sweeny, W., 153, 175 Symons, N. K. T., 234, 316 Szwarc, M., 9, 20

T

Tadokoro, H., 117, 118, 119, 120, 121, 122,126, 127, 128, 131, 143, 144, 146,169, 171, 172, 175, 176, 364, 365,372, 377, 379

Tajima, Y., 498, 520 Takahashi, Y., 118, 120, 143, 144, 146, 175Takahashi, T., 275, 279, 374, 377 Takayanagi, M., 114, 175, 237, 318, 433,

434, 482, 517, 518, 521 Takeda, Y., 132, 137, 176 Takemura, T., 217, 225, 233, 375 Takizawa, T., 154, 160, 169 Tanaka, K., 97, 295, 377 Tanford, C, 163, 176 Taniyama, S., 143, 175 Taschek, R., 415, 522 Taylor, G. I., 381, 521 Taylor, G. R., 395, 511 Taylor, W. C, 382 Teege, E., 281, 372 Teichmann, O., 167, 175 Teitel’baum, B. Ya., 339, 377 Temine, S. C, 159 Temussi, P. A., 144, 145, 168 Terford, H. C, 398 Terrisse, J., 464, 521 Tertsch, H., 181, 376 Thomas, J. M., 414, 521 Till, P. H., Jr., 189, 299, 377 Timasheff, S. N., 161, 176 Titova, N. M., 283, 374 Tobin, M. C, 416, 521 Tobolsky, A. V., 5, 20, 395, 399, 517Tokareva, L. G., 275, 378 Torti, E., 108, 149, 174 Toulmin, S., 2, 20 Toyota, N., 341, 378

Tranter, T. C, 152, 159, 176 Traub, W., 160, 170 Trillat, J.-J., 285, 377 Trivedi, R., 482, 516 Trotter, I. F., 84, 168 Tschoegl, N. W., 164, 173 Tsetlin, B. L., 275, 378 Tsuboi, K., 235 Tsuboi, M., 132, 137, 176 Tsujimoto, I., 275, 377 Tsuruta, T., 107 Tsvankin, D. Ya., 401, 521 Tucker, J. E., 403, 521 Tuijnman, C A. F., 153, 154, 172 Tuinstra, F., 279 Tung, L. H., 382 Turley, J. W., 395 Turnbull, D., 190 Turner-Jones, A., 96, 103, 104, 106, 127,

131, 155, 156, 176 Tuttle, R. W., 94, 136, 173

U

Uchida, T., 117, 118, 176 Udagawa, Y., 212, 213, 373, 411, 412, 464,

517, 521 Ueda, A. S., 128, 131, 176 Utsunomiya, H., 235 Utting, B. D., 45, 168

V

Vadimsky, R. G., 465, 466, 516 Vainshtein, B. K., 39, 135, 161, 176Vainshtein, E. F., 122, 176 Valle, G., 144 Vallee, B. L., 319, 366, 368 Valvassori, A., 77, 79, 80, 160, 174 van Aartsen, J. J., 429, 516 van Bueren, H. G., 381 Vand, V., 72, 169, 473,513 van der Heijde, H. B., 352 van der Mark, J. M. A. A., 271, 273,352,

353, 354, 375, 376

Page 33: Mp Introduction 2010 Optimized

Author Index of Volume I Page 14

van Nghi, D., 408, 409, 512 van Vleck, J. H., 421, 521 Vanderkooi, G., 94, 136, 173 Vanzo, E., 165, 176 Vasilerskaya, L. P., 318 Vieth, W. R., 430, 517 Vlasov, A. V., 275, 378 Vogel, W., 439, 443, 444, 521, 522Vogelsong, D. C, 133 Volkenstein, M. V., 11, 20, 64, 68, 176Vonk, C. G., 153, 154, 172, 401, 521

W

Wada, Y., 489, 517 Wagner, C, 381, 520 Wagner, H. L., 504, 519 Wahlstrom, E. E., 325, 426, 522 Wall, F. T., 12, 20 Walter, E. R., 154, 176, 413, 519 Walter, N. M., 336, 372 Walton, A. G., 239, 279, 280, 373, 374 Ward, I. M., 205, 206, 352, 356, 378, 413,

455, 513, 515 Waring, J. R. S., 188, 317, 318, 323, 373Warren, C. H., 315, 375 Watkins, N. C., 318, 334, 430, 431, 522Watson, H. C., 161, 172 Watson, J. D., 164, 176 Watterson, J. G., 10, 20 Weeks, J. J., 201, 371, 378 Wegner, G., 362, 364, 365, 366, 371, 378Weidinger, A., 397, 512, 515 Weiss, C. S., 180, 378 Weissberger, A., 382, 401 Wells, A. F., 61, 148, 176 Wheeler, E. J., 295, 374 Whitby, G. S., 3, 20 Whitney, W., 504, 519 Wiegel, E., 321 Wikjord, A. G., 348, 352, 357, 378 Wiley, R. E., 382 Wilke, W., 349, 350, 370, 443, 444, 445,

515, 516, 522

Wilkins, M. H. F., 164, 170, 172, 173 Willems, I., 275, 279, 378 Willems, J., 267, 275, 279, 280, 370, 378Williams, D., 415, 522 Williams, D. E., 93, 176 Williams, J. O., 414, 521 Williams, T., 205, 206, 352, 356, 378, 455,

515 Willmouth, F. M., 165, 172, 346, 348, 352,

355, 356, 373, 378 Wilson, A. J. C., 399, 522 Wilson, E. B., Jr., 64, 125, 175, 176 Wilson, F. C., 456, 513 Wilson, H. R., 135, 161, 164, 170, 172, 176Winslow, F. H., 410, 432, 514, 517Witenhafer, D. L., 417, 517 Wittman, J. C., 288, 292, 378 Wittmann, H. G., 19 Wittmann-Liebold, B., 19 Wobser, G., 93, 94, 176, 447, 522 Woerner, S., 447, 518 Wonacott, A. J., 84, 132, 136, 168 Woodward, A. E., 234, 237, 432, 502, 521 Wulff, G., 182, 378 Wunderlich, B., 150, 153, 154; 168, 176,

177, 185, 186, 187, 192, 193, 194,195, 196, 197, 198, 200, 201, 203,208, 209, 210, 212, 217, 218, 219,220, 221, 222, 224, 225, 227, 228,229, 230, 231, 246, 247, 257, 260,261, 262, 263, 267, 268, 269, 270,281, 282, 297, 298, 299, 304, 305,307, 308, 309, 311, 315, 316, 327,328, 330, 331, 332, 333, 342, 343,352, 357, 360, 361, 363, 367, 368,369, 370, 371, 374, 375, 376, 378,379, 386, 387, 389, 401, 403, 404,405, 406, 407, 410, 413, 427, 453,454, 456, 457, 468, 473, 495, 496,497, 511 ,512, 513, 514, 515, 516,518, 522

Wyckoff, H. W., 172, 336, 372 Wyckoff, R. W., G., 24, 148, 400, 512

Page 34: Mp Introduction 2010 Optimized

Author Index of Volume I Page 15

Y

Yamadera, R., 319 Yamamoto, M., 382 Yamashita, T., 318 Yamashita, Y., 127, 128, 169, 239, 243Yang, R., 316, 504, 522 Yeh, G. S. Y., 167, 172, 177, 279Yokoyama, M., 365, 379 Yoshihara, T., 364, 377 Yoshioka, N., 317 Young, J. D., 17, 20 Yu, A. J., 152, 159, 177 Yundt, A. P., 188, 379

Z

Zachmann, H. G. 417, 421, 425, 513, 522Zahn, H., 199 Zambelli, A., 77, 79, 80, 160, 174 Zaukelies, D. A., 495, 497, 498, 512, 522Zbinden, R., 414, 522 Zerbi, G., 417, 518 Zernike, F., 438, 522 Zhubanov, B. A., 321 Zimmerman, J., 153, 175 Zugenmaier, R., 97 Zussman, J., 361, 369

Page 35: Mp Introduction 2010 Optimized

Subject Index of Volume I

The index is organized according to macromolecules and subject matter. References to mainlytabulated data are printed in italics. Subjects with more than three to four entries show bold facenumbers if more extensive discussion of the topic is given at this page rather than at the others.Frequently used terms are listed only under the page numbers where definitions can be found.For copolymers, check for both repeating units since only one order of co-monomers is listed.For block and alternating copolymers (block and alt, respectively) check also copolymer (co).

A Acetobacter xylinum; 342–344Adamantane, structure and unit cell of; 52Addition reaction; 5 Albumin, serum, crystal structure of; 163Amber; 1 Amino acid sequence; 18 Amorphous, see also Amorphous defect; 17,

165, 167, 385, 386, 388, 389, 396, 397,401, 403, 435–438, 445–447, 464, 497

Amylose alcohol complexes, folded chaincrystals of; 242

Amylose iodine complexes, folded chaincrystals of; 242

Annealing; 195, 196, 198, 222, 271, 400,433, 443–445, 480, 500, 507

Arsenate; 147 Asphalt; 2 Axialite, see Multilayer crystal

B

Bacillus megaterium KM; 345 Backbonestructure; 19

Barium poly-L-glutamate, spherulite of; 319 Beer-Lambert law; 416 Birefringence; 188, 218, 325–329, 344,

426–428 Bond deformation; 66 Bond length, see Atomic radius

Bonding; 41–42 covalent; 47, 55, 56 hydrogen; 45, 66, 135 ionic; 46 metallic; 45 van der Waals; 45, 55, 56

Bravais lattice; 27, 30 Bravais-Friedel law; 182, 183 Burgers dislocation, see Screw dislocationBurgers circuit; 470 Burgers vector; 470–472 Butane, rotational isomer of; 67

C

Calcite; 23 Calorimetry; 401–407 Carboxypeptidase; 366 spherulite of; 319, 340 Cellulase; 414 Cellulose; 1, 7

crystal size; 399 crystal structure of; 144, 145crystallinity of; 397, 398, 409, 410, 436etching of; 187, 188, 344, 345, 408, 409,

410, 414 fibrous crystals of; 342, 343 folded chain crystal of; 242 infrared absorption of; 418 nitrate; 2

Page 36: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 2

Cellulosestaining; 430 triacetate; 2, 233

folded chain crystal of; 242tribenzoate; 282 tricarbanilate, folded chain crystal of;

242 Chain, defect or disorder; 447–452, 453,

454, 485, 497end; 213, 216, 453–454, 457, 463,

485–489 folding; 184, 187, 189, 193–217, 254,

417, 457 folding principle; 193

Chain extension process; 193, 204, 217, 447 Chain torsion; 452, 454, 485 Chemical reactivity; 380–381, 426, 430Chloroprene, see trans-1,4-poly(2-

chlorobutadiene) Chrysotile; 218, 226, 361 Cilia; 213, 214, 460, 464 Close packing; 41–42, 68 Collagen; 136, 408 Colloids; 2, 3 Conformer, see Rotational isomerCopolyamide; 151–153, 158, 159 Copolyaminoacid, see also Polypeptide and

Protein; 160, 161 Copolycarbonates; 151 Copolyester; 153, 158, 159 Copolymer; 14–19, 202, 453, 504

alternating; 16, 160 block; 16, 149, 164–166, 202, 204

of polystyrene and polybutadiene;164–167

block, of polystyrene andpolyisoprene; 164, 165

graft; 19, 149 of hexamethylene adipamide and

hexamethylene terephthalamide;151, 152

of isobutene and tetrafluoroethylene; 16 of styrene and methyl methacrylate; 16 of tetrafluoroethylene and

hexafluoropropylene; 456

Copolymerof vinylidene chloride and vinyl

chloride; 157 of vinyl fluoride and tetrafluoroethylene;

157 of vinyl fluoride and vinylidene fluoride;

151 random; 16, 17,149, 150, 202, 436triblock; 161, 164–167, 214, 361 two-block, of poly(ethylene oxide) and

polystyrene; 203, 265,457 with 1-butene; 154, 155 with ethylene; 153–154, 160, 202, 430,

455–456 with 4-methyl-1-pentene; 156–157 with styrene; 157–158

Cotton; 2 Crystal; 178

branching of; 259–261, 267, 282,301–303, 305, 322–324, 330, 336

class; 180, 181 description; 95, 97, 103, 106–107, 109,

112–113, 118–119,128–129,132–134, 142, 144, 148, 163

equilibrium form; 182 extended chain; 184–185, 192–193,

217–231, 329–333, 358, 381 fibrous; 339–361 folded-chain; 184, 187–217, 232–266,

295–321, 333–339 fringed micelle; 184–185, 187, 208, 216,

349, 381, 437, 465 fully extended chain; 185, 199, 357isometric; 361–366 multilayer; 258–266, 262–265semicrystalline; 381, 386, 403, 438 size; 349–350, 398–400, 443, 444, 445system; 27, 181

Crystallinity, volume fraction of; 385, 386,416 weight fraction of; 17, 149–158, 203,

208, 281–282, 342, 385–386,390–398, 401, 403–406, 409–413,415–419, 423–425, 427, 433,435–438, 457

Page 37: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 3

Crystallization during polymerization; 217, 272, 275,

340–348, 357, 358, 362–366 methods; 233, 234–243 under pressure; 193, 197, 203, 218–231of oriented melts; 271, 274

Crystalloids; 2 Cubic close pack; 49, 51–54

D

Defectamorphous; 454–457 electronic; 453 concept; 435–452 microscopic; 452–489of the first kind; 439, 453 of the second kind; 392, 440 one-dimensional, see Dislocationthree-dimensional, see Defect,

amorphoustwo-dimensional, see Surface defectzero-dimensional, see Point defect

Deformation; 250, 293, 295–296, 340,348–357, 380–381, 386, 489–511

Dehydrohalogenation; 432 Dendrite; 261, 295–313, 322–324, 340Density, see also Crystal description; 208,

210–212, 380–387, 388–389,436–438

gradient; 210, 382, 383Deuteroparaffins; 206–207 Deuteropolyethylene; 149, 205–207, 214,

465 Diamond; 21 Dichroism; 364, 365 Diffusion; 426, 430 Diisotactic macromolecules; 17, 124Dilatometer; 382, 384 Dislocation; 381, 454, 469–485

climb; 492, 493, 494 glide; 492, 497 glissile; 494 line; 470–472 network; 467, 482–486

Dislocationsessile; 494 vector; 259, 470–472

Disorder function; 390–392 Double repulsion; 53 Draw ratio; 500, 501, 507 Drawing; 350, 358, 442, 499–507 Dyeing, see Staining

E

Edge dislocation; 467, 469–473, 480,487–489, 492–494

Elastomers; 1 Electrolytic conductivity; 380, 381Electronegativity; 47 End-to-end distance; 11, 13, 14, 165Enzyme etching; 414 Epitaxy; 259, 278, 266–283, 308, 312–313,

351 Etching; 187–188, 205, 210–213, 227–230,

255–258, 344–345, 348, 355–357,408–414, 431, 455, 456

Ethane, rotational potential; 62, 63, 65, 66Excluded volume; 11

F

Fiber; 2, 164, 313, 322, 324, 339–361, 503commercial; 340 extended chain; 186, 332, 358–359formation on drawing; 222–229,

250–251, 348–351, 489, 499–507Fiberglass; 1 Fibrillation; 340, 357–359 Fibroin, spherulite of; 319 Flax; 2 Flotation; 210 Fluorescence; 426, 429, 430 Fluorite; 285–286 Fold, buried; 212–213, 454, 463

domain, see Sectorization length, see Lamellar thickness loose; 213–214, 460, 463–464 surface; 204–215

Page 38: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 4

Fractionation on crystallization, seeRejection

Frank-Read source of dislocation; 495

G

Gel permeation; 205, 356 Germanium, edge dislocation in; 469, 471Germanate; 147 Glass; 2, 161, 165, 184, 274, 281–282, 381,

403 Glide plane, see Slip plane

crystal symmetry operation; 33 Globule; 347 Gold decoration; 288, 457–462 Goniometer; 22, 179 Grain boundaries; 218, 454, 457, 464–466Granular structure; 167 Group theory; 25 Growth spiral, see also Screw dislocation;

261–263, 266, 301–302, 457–458,473–475

Gutta percha, see trans-l,4-poly(2-methylbutadiene)

Gypsum; 285,286

H

Habit; 181 Hair; 2, 35 Halogenation; 431, 432 Heat capacity; 62, 401–406, 436, 453 Heat of fusion; 208, 380–381, 388–389,

401–406, 436, 438, 451 Hedgehog dendrite; 308, 309, 322 Hedrite, see Multilayer crystal Helical group; 72 Helix; 69–85

�-; 83–85, 137–138, 161–162 conformation, nomenclature; 79 double stranded; 164 generation of; 80 kink in; 452 parameters; 74 triple stranded; 136

Hexagonal close pack within crystals; 49,51–54, 165

Heisenberg uncertainty principle; 422Hydrogen

bond; 45, 66, 135 electron distribution; 43 interaction energy; 40 nuclear magnetic properties; 420 radius

covalent; 44, 45ionic; 44 van der Waals; 44, 45, 91

I

Indicatrix; 325–329, 339 Infrared

analysis; 62, 205–207, 214, 414–418,436, 465

dichroism; 415, 426 Inorganic polymer; 381

crystal structure of; 147, 148 isometric crystal of; 362

Insulin, zinc salt, crystal structure of; 163 Interaction potential; 40, 50, 64-68, 93–94,

206, 451 Interstitial motifs; 381, 453, 485 Inversion center, 28 Isodimorphism; 150, 153 Isomer; 14–19

cis and trans; 15, 17 conformational, see also Rotational

isomer or kink within a chain;447–452

positional; 14 steric; 16, 17, 76, 80, 116 structural; 14, 15

Isomorphism; 22, 147–161, 266of the chain; 148, 149 of the repeating unit; 108, 148–150

Isotactic macromolecule; 15–16

J

Jog within a chain; 450–452, 454, 485, 495

Page 39: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 5

K

Kink bands; 465–467, 490, 495, 497–498Kink model; 436, 446–452, 453, 454, 456,

485

L

�-Lactoglobulin, crystal structure of; 162,163

Lamellar crystal; 217–266 thickening of; 195, 201–202, 204, 217,

330–331, 495 thickness of; 194–202, 204, 211–213,

225, 228, 267, 280, 349–350,400–401, 444–445

twisting of; 334–336, 481 Lattice; 25–28, 439–440

distortion; 399–400, 443, 445, 481general position on a; 36 helical; 71–73 special position on a; 36, 59 theory; 21–24

Lennard-Jones potential; 50, 65 Light scattering; 426, 428, 429 Linear imperfections, see DislocationsLiving polymers; 6, 8, 9 Loop, loose, see Loose foldsLysozyme, crystal structure of; 163

M

Macroconformation; 184, 340Macromolecular hypothesis; 1–4Macromolecule, configuration; 15

conformation; 10 definition and types; 1 nomenclature; 4, 5, 17 solution of; 13 synthesis of; 4

Maltese cross; 313, 328, 329 Matrix reaction; 7 Mechanical properties; 426, 432–434Melting data; 388, 389 Melting temperature; 388, 389, 407, 451

Micro-shish-kebob; 356 Microwave spectroscopy; 62 Miller index; 27–28, 179 Mirror plane; 29 Mixed crystal; 147, 207 Modulus; 380, 432–434, 438 Moiré pattern; 475–480, 481–482, 493Molecular volume; 55, 56, 57 Molecular weight, distribution; 7–10, 205,

356 number average; 7 polydispersity; 10 mass average; 8 z and (z + 1) averages; 8

Morphology, history of; 178–180 extinction rules of; 183 macromolecular crystals, history of;

185–193 Mosaic; 349, 350, 381, 443–445,454 Motif; 25 Multiplicity; 36 Muscle; 135 Myoglobin; 161–162, 163

crystal structure of; 163

N

Natta, principles for helices by; 71, 75Nearest-neighbor distance; 50 Neck formation; 499–500, 503 Neoprene, see 1,4-poly(2-chlorobutadiene),

transNerve; 135 Neutron scattering; 418–419, 426 Nodular structures; 167 Nuclear magnetic resonance; 419–425, 430,

433, 436 Nucleic acid; 1, 7, 17, 161, 164 Nylon; 1, 3, 6, 80, 153, 199, 394, 400, 427

crystal strucutre of; 131–140, 132–134,160, 251

dislocation glide in; 495, 497 etching of; 408, 410, 413 folded chain crystal of; 189, 241 infrared absorption of; 418

Page 40: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 6

Nylonkink bands in; 498 melting data of; 389 spherutite of; 190, 319–321, 337–339 synthesis of; 6

Nylon 2, see Polyglycine and Polypeptide Nylon 4, crystal structure of; 132, 138Nylon 6; 3, 437

crystallinity of; 392, 393 crystal structure of; 132, 138 dendrite of; 310–311 drawn; 503 epitaxy; 273, 275, 278, 280 etching; 413–414 fibrous crystal of; 341 folded chain crystal of; 241, 246 infrared absorption of; 418 melting data of; 389 spherulite of; 320, 323, 341 staining; 430 twin crystal; 310, 340

Nylon 7, crystallinity of; 393 epitaxy; 278, 280 folded chain crystal of; 241

Nylon 8; 437 crystal structure of; 133, 138 epitaxy of; 278, 280 folded chain crystal of; 241 spherulite of; 320

Nylon 9, crystal structure of; 133, 138 Nylon 10, crystal structure of; 133, 138Nylon 11, crystal structure of; 133, 138

spherulite of; 320 melting data of; 389

Nylon 2.10, spherulite of; 320, 337–338Nylon 5.5, spherulite of; 321 Nylon 5.6, spherulite of; 320 Nylon 5.7, spherulite of; 321 Nylon 6.3, spherulite of; 320 Nylon 6.6; 437

crystal structure of; 133, 134, 138, 139epitaxy of; 275, 278, 280–281 etching; 414 folded chain crystal of; 241 infrared absorption of; 417, 418

Nylon 6.6, melting data of; 389 point defects; 485–489 spherulite of; 320, 337, 338 X-ray diffraction; 390

Nylon 6.8, spherulite of; 320 Nylon 6.10, crystal structure of; 134, 138

epitaxy of; 278, 280 folded chain crystal of; 241 infrared absorption of; 415, 418 melting data of; 389 spherulite of; 320, 337, 338

Nylon 6.12, folded chain crystal of; 241Nylon 7.7, conformation; 81

crystal structure of; 134, 138–140spherulite of; 321

Nylon 9.6, spherulite of; 320 Nylon 9.7, spherulite of; 321 Nylon 9.9, spherulite of; 321 Nylon 10.6, spherulite of; 320, 337–338Nylon 10.10, spherulite of; 320, 337, 338

O

Oligomer; 6 Oxidation, see Etching

P

Packing, averages of macromolecules; 88close, of cylinders; 48, 86

of globular proteins; 164 of helices; 86–88 of macromolecules; 85–95 of molecules; 55–61of spheres; 48–54

density; 49 limitingly close; 59–60 of lamellae; 231

Paracrystal, one-dimensional, 400, 437, 439,506 three-dimensional; 435, 438–446 two-dimensional; 440, 441, 442

Paraffin; 206, 208, 215, 253, 274–275, 285,361, 405, 406, 411, 418, 458, 460,473, 474

Page 41: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 7

Penton, see Poly[3,3-bis(chloromethyl)-oxacyclobutane]

Phenolics; 1, 2 Phonon; 453 Phosphate, see Polyphosphate Plane group permitting close packing; 58–60 Plastics industry; 2 Pleated sheet; 84–85, 84Pleionomer; 6, 364 Point defect; 453–456, 485–489, 495 Point group; 28–31, 180

stereographic projection; 30–31Poisson distribution; 9 Polarity; 59 Polyacetaldehyde, crystal structure of; 119,

123 Polyacetone, crystal structure of; 119, 123 Poly(O-acetyl hydroxyl-L-proline), epitaxy;

278, 280 Polyacetylene; 141 Poly(acrylic acid), folded chain crystal of;

236 Polyacrylonitrile; 202, 233

drawn; 503 epitaxy; 278, 280 folded chain crystals of; 235 spherulite of; 317

Poly-L-alanine; 94 crystal structure of; 132, 136, 137 folded chain crystal of; 239 �-helix of; 82–85, 136, 138 pleated sheet structure; 82–85, 136, 13rotational potential of; 83

Polyallene, crystal structure of; 143, 144Polyamide, see Nylon Poly(6-amino-3-methylcaproic acid)D(–),

crystal structure of; 133, 140Polyanhydrides; 3 Poly-�-D(1�4)anhydroxylose, folded chain

crystal of; 243 Poly(�-benzyl-L-aspartate); 94 Poly(�-benzyl-L-glutamate), epitaxy; 278,

280

Polybutadiene; isomer of; 14, 15 1,2-Polybutadiene, isotactic, crystal

structure of; 111, 112 syndisotactic, crystal structure of; 112,

114 1,4-Polybutadiene, helix structures of; 114 1,4-Polybutadiene, cis, crystal structure of;

112, 116, 117 melting data of; 388

trans, crystal structure of; 112, 115, 143 folded chain crystal of; 237 melting data of; 388 surface structure; 432

Poly-1-butene; 233, 295 crystal structure of; 102, 103, 104, 106drawn; 502 fibrous crystals of; 346 folded chain crystal of; 234 grain boundary; 465 melting data of; 388 spherulite of; 316

Poly(2-butene oxide), cis; 124 trans, crystal structure of; 119, 123, 124

Polybutyraldehyde, crystal structure of; 119,123

Polycaprolactam, see Nylon 6 Poly-�-caprolactone; 275

crystal structure of; 126–127, 128, 160Polycarbonate; 126, 129, 131, 151, 167, 319 Poly-�(p-chlorobenzyl)-L-aspartate, crystal

structure of; 132, 137 1,4-Poly(2-chlorobutadiene), trans; crystal

structure of; 113 infrared absorption of; 415, 418 melting data of; 388

Poly(chloromethylethylene oxide); crystalstructure of; 119, 124

Poly[3,3-bis(chloromethyl)oxacyclo-butane]; 202

epitaxy; 278 folded chain crystal of; 237, 245 infrared absorption of; 418 spherulite of; 318

Polychloroprene, see 1,4-Poly(2-chloro-butadiene), trans

Page 42: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 8

Polychlorotrifluoroethylene, crystallinity of;398

extended chain crystals of; 202, 217, 225folded chain crystal of; 233, 236 infrared absorption of; 418 spherulite of; 317

Polycrystal; 180 Poly(trans-cyclodecene), III and IV, crystal

structure of; 142, 143 folded chain crystal of; 241, 247

Poly(trans-cyclododecene), III and IV,crystal structure of; 142, 143

folded chain crystal of; 242, 247Poly(trans-cycloheptene), I, crystal structure

of; 142, 143 Poly(3-cyclohexyl-1-propene), crystal

structure of; 103, 106 Poly(trans-cyclooctene), III and IV, crystal

structure of; 142, 143 Polycycloolefin; 153

crystal structures of; 141, 142, 143Poly(trans-cyclopentene), I, crystal structure

of; 142 Poly(3-cyclopentyl-1-propene), crystal

structure of; 106 Poly(trans-cyclotetradecene); 143 Poly(decamethylene esters), folded chain

crystal of; 238, 239 Polydiene, crystal structures of; 111–117,

112–113 folded chain crystals of; 237 infrared absorption of; 418 melting data of; 388

1,2-Poly(4,4-dimethylbutadiene), crystalstructure of; 111, 113

Poly(dimethylene oxide), see Poly(ethyleneoxide)

Poly(dimethylene sulfide), crystal structureof; 144, 146

Poly(dimethyl ketene), crystal structure of;144, 145

Poly( 4,4-dimethyl-1-pentene), crystalstructure of; 106

Poly(�,�'-dimethylpropiolactone), crystalstructure of; 128, 130

Polydioxolan, spherulite of; 317 Poly(dipropylsiloxane), crystal structure of;

144, 147 folded chain crystal of; 242 growth spirals of; 473, 474 melting data of; 389

Poly(2,5-distyrylpyrazine), fibrous crystalsof; 359

spherulite of; 321 Polyester; 3, 80, 125, 153

crystal structure of; 125–131, 128–129,160

etching; 410 Polyester

folded chain crystal of; 237–239, 246infrared absorption of; 418 melting data of; 388, 389 spherulite of; 318–319

Polyethyleneconformation; 12, 13 crystal, branching of; 260, 267, 329–331

deformation of; 293, 296, 349pyramidal shape of; 251–253, 267 reentrant face of; 261 size of; 349, 350, 399, 444, 445swelling of; 464

crystallinity of; 211, 392–398, 403–406,411–412, 415–418, 423–424, 433,436

dendrites of; 189, 295–298, 302–309,327–328, 335

density of; 208–210, 388, 389, 396, 411,436–437

diffusion in; 430 dislocation in; 475, 494 dislocation network of; 482–484 drawn; 442, 497, 499, 502 epitaxy of; 260, 267–282 etching of; 205, 210–213, 230, 255–258,

334–335, 348, 355–356, 408,411–413, 411, 455

Page 43: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 9

Polyethylene, extended chain crystals of;193 199, 202, 217–231, 329–330,445, 465, 467, 495–496

fibrous crystals of; 221, 227, 228, 340,345–346, 351–357, 360–361

fold conformation of; 253–255 folded chain crystals of; 189–192,

194–217, 229, 233, 234, 248–249,251–258

grain boundary in; 465–466 growth spiral of; 262–264, 266,

457–458, 473, 475 halogenation of; 432 heat capacity of; 403, 404, 406, 436 heat of fusion of; 388, 404–406, 411,

436 helix structure; 69 infrared analysis of; 415–417, 418, 465kink bands in; 465–467 kink in the chain of; 445, 447–448, 449,

450–451 lattice energy calculation of; 93–95, 284 light scattering of; 428, 429 mechanical properties of; 433, 434melting temperature of; 388, 407 monoclinic close pack, calculated; 90,

92, 493–494 chain packing of; 88–94, 283–284, 292,

306 Moiré pattern of; 476, 493 nuclear magnetic properties of; 420–423,

433 orthorhombic close pack, calculated; 90,

92, 94 orthorhombic crystal structure of;

37–39, 93, 96, 97, 122, 283paracrystalline structure of; 443, 444,

445 ripple-decoration of crystal surfaces;

224, 267–269, 495, 496 rolled; 507–511 self-seeding of crystalization; 233, 280,

288 shish-kebob structure of; 224, 227,

270–274, 346–348, 351–357

Polyethylene, small angle X-ray scatteringof; 401, 402

spherulite; 188–192, 258, 307, 315, 316,329–331, 333–335 deformation of; 504–505

stacking fault of; 470 staining of; 430 synthesis of; 5, 272, 345–348 thickness of lamellar crystals of;

194–198, 201, 211, 213, 228 tie-molecules of; 465–466 triclinic close pack, calculated; 89, 91,

94 triclinic crystal structure of (also called

monoclinic polyethylene II); 96, 97,98, 122, 143, 208, 295

twin crystal of; 283–295, 306, 497Poly(ethylene adipate)

crystal structure of; 129 folded chain crystal of; 238 melting data of; 389 spherulite of; 318, 339

Poly(ethylene azeIate), spherulite of; 339Poly(ethylene isophthalate), spherulite of;

319 Poly(ethylene oxalate), crystal structure of;

128 Poly(ethylene oxide)

crystal structure of; 118, 120, 146 epitaxy of; 278 fibrous crystals of; 352 folded chain crystal of; 203–204, 237,

244, 255–256, 258–259, 265 grain boundary swelling of; 464 growth spiral of; 475 hedrite of; 263, 265 isometric crystals of; 364, 365 lamellar crystal thickness of; 199–200,

202, 213 melting data of; 388 self-decoration of; 461, 463 self-seeding of; 233 spherulite of; 317 twin crystals of; 292, 293, 294

Page 44: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 10

Poly(ethylene sebacate); 202, 275 crystal structure of; 129 folded chain crystal of; 238, 246 infrared absorption of; 418 melting data of; 389 spherulite of; 318

Poly(ethylene suberate)crystal structure of; 129 folded chain crystal of; 238 melting data of; 389

Poly(ethylene succinate); 131 spherulite of; 318

Poly(ethylene terephthalate); 167, 202crystal structure of; 129, 130–131crystallinity of; 398 dislocation glide in; 495 epitaxy of; 275, 278

Poly(ethylene terephthalate)etching of; 210, 212, 255, 257, 408, 410,

413–414 folded chain crystal of; 239 infrared analysis of; 417, 418 melting data of; 389 nuclear magnetic properties of; 421, 425spherulite of; 318 staining of; 430, 431

Poly(ethyl silyl ethylene), crystal structureof; 101, 103

Poly-o-fluorostyrene, crystal structure of;101–102, 103, 105, 151

Polyformaldehyde, see PolyoxymethylenePoly(L-glutamic acid); 233

folded chain crystal of the polymer andits salts; 240

Polyglycine, crystal structure of; 132,135–136

folded chain crystal of; 239 Polyglycolide, crystal structure of; 126–127,

128 melting data of; 388

Polyglycols; 3 1,4-Poly(1,3-heptadiene), trans, isotactic,

crystal structure of; 113 1,4- Poly(1,3-hexadiene), trans, isotactic,

crystal structure of; 113, 116

Poly [2,4-hexadiyne-1,6-bis(phenyl-urethane)] isometric crystal of; 364, 365,366

Poly[2,4-hexadiyne-1,6-bis(p-tolyl-sulfonate)], isometric crystal of; 362,364

Poly(hexamethylene oxide), crystal structureof; 118, 122

Poly(hexamethylene sebacate), folded chaincrystal of; 238

Poly(hexamethylene terephthalate),spherulite of; 319

Poly(�-hydroxybutyrate), see Poly(3-hydroxybutyric acid)

Poly(3-hydroxybutyric acid); 199 crystal structure of; 128, 130 fibrous crystals of; 345 folded chain crystal of; 237

Poly-�-hydroxydecanoate; 127 Poly(isobutene oxide), folded chain crystal

of; 237 Polyisobutylene, crystal structure of; 109,

110–111 melting data of; 388

Poly(isobutylene oxide), crystal structure of;119, 124

spherulite of; 318 Polyisoprene, see 1,4- Poly(2-methyl-

butadiene) Poly(4,4'-isopropylidenediphenylene

carbonate), crystal structure of; 129melting data of; 389 spherulite of; 319

PoIy-L-lysine, folded chain crystal of; 241Poly(malonic anhydride); 3 Polymerization, degree of; 5 1,4-Poly(2-methylbutadiene), cis, 1–3, 15,

274, 436 crystal, size of; 399

structure of; 113, 116–117crystallinity of; 396 fibrous crystal of; 346 helix structure of; 81, 82 infrared analysis of; 415, 418 melting data of; 388 nuclear magnetic properties of; 422spherulite of; 317

Page 45: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 11

1,4-Poly(2-methylbutadiene), trans; 15, 274,282 crystal structure of; 113, 115 folded chain crystals of; 187, 189,

274infrared absorption; 418 melting data of; 388 spherulite of; 317

Poly(3-methyl-1-butene), crystal structureof; 108

elastic; 504 folded chain crystal of; 235helix structure of; 80

Poly(4,4'-methylenediphenylene carbonate),crystal structure of; 129

melting data of; 389 spherulite of; 319

Poly(methylene oxide), see Polyoxy-methylene

Poly(methylene selenide), crystal structureof; 144, 145

Poly(methylene sulfide), crystal structure of;144, 145

Poly(�-methyl-L-glutamate), spherulite of;319, 340

Poly(4-methyl-1-hexene), helix structure of;80

Poly(methyl methacrylate); 167 Poly(4-methyl-1-pentene); 202, 255

crystal structure of; 106 drawn; 502 fibrous crystal of; 346 folded chain crystal of; 232, 235 melting data of; 388 Moiré pattern of; 481 spherulite of; 316, 327

Poly-m-methylstyrene, crystal structure of;107

Poly-o-methylstyrene, crystal structure of;105, 107

Poly(octamethylene oxide), crystal structureof; 119, 122

Polyolefin, see Vinyl polymer Polyoxacyclobutane, see Poly(trimethylene

oxide)

Polyoxides; 153 crystal structures of; 117–125, 118–119,

160 folded chain crystals of; 237, 244–245

545 melting data of; 388 spherulite of; 317–318

Polyoxyethylene, see Poly(ethylene oxide) Polyoxymethylene; 3, 117, 202, 255, 381

crystal, fibrous; 250, 272 structure of; 117, 118, 120, 145–146

dendrite of; 308–310drawn; 503

Polyoxymethyleneepitaxy; 271, 275, 277, 278, 280, 282 etching of; 413 extended chain crystals of; 186, 334,

340, 358,427 Polyoxymethylene

fibrous crystal of; 250–251, 341, 350,352, 358, 427

folded chain crystals of; 215, 237, 244,250–251, 258, 265

growth spiral of; 475 helix structure; 74, 117 isometric crystals of; 362 kink in; 452 melting data of; 388 Moiré pattern of; 475, 477–478,

481–482 row-nucleated; 504 self-seeding; 233 spherulite of; 317, 332, 334, 340

Polymorphism; 22 Polypeptides, see also Proteins; 139, 160

helix structure; 80–85, 135 Poly(4-phenyl-1-butene), crystal structure

of; 103, 105 melting data of; 388

Poly(p-phenylene adipamide), spherulite of;321

Poly(p-phenylene oxide), crystal structureof; 119, 124

Poly(p-phenylene sebacamide), spheruliteof; 321

Page 46: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 12

Polyphosphate; 147 helix structure; 74–76 isometric crystals of; 362, 363

Poly(phosphonitrile chloride), crystalstructure of; 144, 147

melting data of; 389 Poly-L-proline, crystal structure of; 132, 136

folded chain crystal of; 239 Polypropionaldehyde, isotactic, crystal

structure of; 119, 123 Polypropylene; 202, 233, 251 Polypropylene, atactic; 16, 17

isotactic; 16, 17 crystal structure of; 103, 104crystallinity of; 392, 393, 397, 398dendrite of; 310, 312, 313, 336 diffusion in; 430 drawn; 499, 502

Polypropylene, isotacticelastic; 504 epitaxy of; 278, 282, 312, 336–337etching; 411, 413–414 fibrous crystals of; 346, 352 folded chain crystal of; 234 helix structure of; 77–79 infrared absorption of; 418 light scattering of; 429 melting data of; 388 spherulite of; 316, 336–337, 431 staining of; 431 X-ray diffraction of; 390–391, 395

syndiotactic; 16, 17 crystal structure of; 109, 110–111,

121 helix structure of; 81–82 infrared absorption of; 418 melting data of; 388

Poly(propylene oxide), crystal structure of;119, 123, 146–147

epitaxy; 278 melting data of; 388 spherulite of; 318

Poly(propylene sulfide), crystal structure of;144, 146–147

Polyps; 347

Poly[1,4 bis(�-pyridy1-{2}-vinyl) benzene],fibrous crystals of; 359

Polystyrene; 3, 167 crystal, size of; 399–400

structure of; 103, 105, 151 crystallinity of; 397 epitaxy; 278, 282 etching of; 414 fibrous crystals of; 346–348, 352 folded chain crystal of; 235, 258 isomers of; 14 lattice distortion; 481 light scattering of; 429 melting data of; 388 spherulite of; 316 staining; 431

Polytetrafluoroethylene, crystal structure of;97, 98

crystallinity of; 398 epitaxy; 266–267, 270, 281 extended chain crystals; 192–193, 217,

222, 495 fibrous crystal of; 341–342, 351 folded chain crystal of; 234 helix structure of; 69–70, 72–73 infrared absorption of; 418 kink bands in; 497 light scattering of; 428 melting data of; 388 spherulite of; 316, 330, 332

Polytetrahydrofuran, seePoly(tetramethylene oxide)

Poly(tetramethylene oxide); 56, 202 crystal structure of; 118, 121, 122melting data of; 388

Poly[(tetramethyl-p-silphenylene) siloxane],folded chain crystal of; 242

spherulite of; 321 Poly(4,4'-thiodiphenylene carbonate),

crystal structure of; 129 melting data of; 389 spherulite of; 319

Poly(trimethylene glutaric acid), spheruliteof; 318

Page 47: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 13

Poly(trimethylene oxide); 87 crystal structure of; 118, 120–121

Poly-L-tyrosine, folded chain crystal of; 240Polyurea; 135 Polyurethane; 135, 198–199, 213

epitaxy of; 278 spherulite of; 321

Poly(vinyl alcohol); 151 crystal structure of; 108, 109, 110 folded chain crystal of; 235 infrared absorption of; 418 melting data of; 388 staining of; 430

Poly(vinyl tert-butyl ether), crystal structureof; 107

Poly(vinyl butyl ether), crystal structure of;103

melting data of; 388 Poly(N-vinylcarbazole), extended chain

crystals of; 498 folded chain crystal of; 236 kink bands in; 498

Poly(vinyl chloride); 3 crystal structure of; 109, 110 crystallinity of; 398 fibrous crystal of; 341 folded chain crystal of; 235 infrared absorption of; 418 kink in; 452 melting data of; 388 spherulite of; 317

Poly(vinylcycloheptane), crystal structureof; 107

Poly(vinyl cyclohexane), crystal structureof; 107

folded chain crystal of: 234 Poly(vinyl cyclopentane), crystal structure

of; 107 Poly(vinyl cyclopropane), crystal structure

of; 103, 105, 106 Poly(vinyl fluoride); 149, 151

crystal structure of; 108, 109 melting data of; 388

Poly(vinylidene chloride), crystal structureof; 108, 109

dehydrohalogenation; 432 melting data of; 388

Poly(vinylidene fluoride); 149 crystal structure of; 109, 110–111 folded chain crystal of; 236

Poly(vinyl methyl ether), crystal structureof; 103

Poly(vinyl methyl ketone), crystal structureof; 107

spherulite of; 317 Poly(1-vinyl naphthalene), crystal structure

of; 107 Poly-p-xylylene, folded chain crystal of;

242, 247 Poly(m-xylylene adipamide), crystal

structure of; 134, 140 Protease; 414 Protein; 1,7,17, 319, 366

fibrous; 85, 135 globular; 85, 161–164, 163, 186, 366�-helix of; 83–85 pleated sheet of; 82–85, 137, 161tobacco mosaic virus; 18

Pycnometer; 210, 382, 384–385

R

Radius, atomic; 43, 44, 45–47 Raman spectroscopy; 62, 68, 418 , 426Random coil; 14, 62, 447 Random walk; 10–11 Rational indices, law of; 179–180 Refractive index; 380–381,426, 438Refractivity; 426 Rejection on crystallization; 204, 216, 303,

430 Reorganization on melting; 407 Repeating unit; 5 Resins; 1–2 Ribonuclease; 7 crystal structure of; 163 Ripple decoration; 224, 260, 267–269 RNA; 164

Page 48: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 14

Rotation axis, definition; 28 Rotation, hindered; 11, 61, 62–68, 70, 77,

83, 117, 125 Rotational isomer, see also Rotation,

hindered; 11–13, 62–68, 447–448 Row nucleus; 274, 351, 504 Rubber elasticity; 433 Rubber, natural see 1,4-Poly(2-methyl-

butadiene), cis

S

Screw axis; 33, 72 Screw dislocation; 259, 267, 381, 469–473,

481–482, 485, 487–489, 492, 495Sectorization; 233, 249, 481 Selenium, crystal structure of; 97, 100

extended chain crystals of; 217, 223,331, 333

grain boundaries; 464, 466, 468 helix structure of; 74 kink bands in; 498 melting data of; 388 spherulite of; 330–333, 340

Self-seeding; 233, 280 Sericin, spherulite of; 319 Shear; 490 Shish-kebob structure; 224, 227, 263,

270–273, 346–348, 351–357 Siamese twin; 292, 295 Silicate; 147, 361, 408 Silk; 1–2, 135, 137, 160 Single crystal; 180 Skeletalization; 299–302, 310, 324 Slip; 131, 251, 349, 490–497, 501, 507, 510Sodium chloride; 42, 53, 274–279, 457Solid core approximation; 41 Steric hindrance; 62, 64 Stirrer-crystallization, see Shish-kebob

structure Space group; 25, 32

example; 37, 38 permitting close packing; 60 table of; 34, 35

Spherulite; 187–188, 282, 307, 313–339,316–321, 340, 366, 428–429

deformation; 504, 505 extended chain; 329–333, 340 folded chain; 333–339 ringed; 315, 329, 334–335, 337, 481

Stacking fault; 454, 457, 467–468, 470Staggered bond rule; 70, 71, 75 Staining; 349, 426, 430–431 Starch, spherulite of; 321 Staurolite; 285, 286 Step reaction; 5, 6 Strain hardening; 501, 506 Stress-strain behavior; 500–501, 511 Striations of extended chain crystals; 192,

218, 222 Structure insensitive properties; 380–382,

435, 437 Structure sensitive properties; 380–382, 425 Subgrain boundary; 457, 466–468 Sulfur, crystal structure of; 97, 98–99

helix structure of; 74 melting data of; 388 synthesis of; 4

Superheating on melting; 407 Surface area, specific; 387 Surface decoration, see Gold decoration and

Ripple decoration Surface defect; 208–214, 454, 457–469Surface free energy; 182, 457 Switchboard model; 205, 208 Symmetry operation; 25

symbols of; 38 Syndiotactic macromolecules; 16

T

Taylor-Orowan dislocation, see Edgedislocation

Taylor vortex; 352 Tellurium, helix structure of; 74 �-Temperature; 14 Textiles; 1 Tie-molecules; 208, 214, 263, 464–466,

504–509

Page 49: Mp Introduction 2010 Optimized

Subject Index of Volume I, Page 15

Topaz close pack; 51 Topotactic polymerization; 362 Tracht; 179, 181 Transcrystallization; 281, 282 Transition due to torsional oscillation; 98,

115 Trimethylcellulose; 188 Tritium; 430 Twin crystal; 180, 248, 283–295, 306, 310,

339–340. 358, 454, 501

U

Unit cell; 26–27, 27

V

Vacancy; 381, 446, 453, 485, 493 Valence angle deformation; 66 Vinyl polymers, crystal descriptions of; 96,

97, 98, 100–102, 103, 104–105,106–107, 108, 109, 110-111

etching of; 410 fibrous crystals of; 345–348 folded chain crystals of; 232–233,

234–236 helix structure of; 76-81, 101 infrared absorption of; 418 kinks in; 452 melting data of; 388 packing of helices of; 87, 101 spherulites of; 316–317

Virus; 18, 161, 186, 366 tobacco mosaic; 164 tobacco necrosis, crystal structure of; 24,

163, 164 tomato bushy stunt, crystal structure of;

163

W

Wavellite; 314, 315 Wool; 2 Wulff construction; 182 Wurtzite structure; 54

X

X-ray diffraction; 211, 387–401, 436–437,440, 443, 464

low angle; 195, 400–402, 438, 455, 510

Y

Yield; 499

Z

Ziegler process; 272, 345–348 Zinc blende; 54

Page 50: Mp Introduction 2010 Optimized

Macromolecular Physics

Bernhard Wunderlich Rensselaer Polytechnic Institute Troy, New York

VOLUME 2 Crystal Nucleation, Growth, Annealing

ACADEMIC PRESS New York. San Francisco London 1976

A Subsidiary of Harcourt Brace Jovanovich, Publishers

Page 51: Mp Introduction 2010 Optimized

COPYRIGHT © 1976, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road. London NW1

Library of Congress Cataloging in Publication Data

Wunderlich, Bernhard, (date) Macromolecular physics.

Includes bibliographies. CONTENTS: v. 1. Crystal structure, morphology,

defects.--v. 2. Crystal nucleation, growth, annealling. 1. Macromolecules. 2. Crystals. I. Title.

QD381.W86 548 72-82632 ISBN 0-12-765602-2 (v. 2)

PRINTED IN THE UNITED STATES OF AMERICA

Page 52: Mp Introduction 2010 Optimized

Contents

LIST OF TABLES

PREFACE

ACKNOWLEDGEMENTS

CONTENTS OF VOLUME 1

Chapter V The Nucleation Step

5.1 Primary Nucleation of Crystals

vii

ix

xi

xii

5.1.1 Nucleation Theory Concept 7 5.1.2 Homogeneous Nucleation 16 5.1.3 Heterogeneous Nucleation 35 5.1.4 Self-Nucleation 52 5.1.5 General Conclusions about Primary Nucleation 70

5.2 Secondary and Tertiary Nucleation on Crystal Surfaces 72 5.2.1 Nucleation Control of Crystal Growth 72 5.2.2 Secondary and Tertiary Nucleation Concepts 79 5.2.3 General Conclusions about Secondary and Tertiary Nucleation 87

5.3 Molecular Nucleation 88 5.3.1 Some Qualitative Experimental Evidence for Molecular Nucleation 89 5.3.2 Segregation on Crystallization from Solution 91 5.3.3 Segregation on Crystallization from the Melt 94 5.3.4 Concepts of Molecular Nucleation 98 5.3.5 General Conclusions about Molecular Nucleation 104

References 105

Chapter VI The Growth of Crystals

6.1 General Description of Crystal Growth 6.1.1 History 6.1.2 Linear Growth

115 115 119

v

Page 53: Mp Introduction 2010 Optimized

vi Contents

6.1.3 Overall Crystallization 132 6.1.4 Crystal Growth and Chain Folding 147 6.1.5 Molecular Weight and Structure Dependence of Crystal Growth 160 6.1.6 Secondary Crystallization and Crystal Perfection 168 6.1.7 Crystal Growth without Chain Folding 178 6.1.8 Crystallization during Polymerization 189

6.2 Solution Crystallization of Macromolecules 197 6.2.1 Normal Crystal Growth 198 6.2.2 Effect of Stirring 207 6.2.3 Effect of Pressure 210

6.3 Melt Crystallization of Macromolecules 212 6.3.1 Normal Growth 212 6.3.2 Effect of Deformation 247 6.3.3 Effect of Pressure 252 6.3.4 Effect of Copolymerization 259

6.4 Crystallization during Polymerization 271 6.4.1 Gaseous Monomer Crystallization 272 6.4.2 Liquid or Dissolved Monomer Crystallization 282 6.4.3 Solid Monomer Crystallization 313

References 328

Chapter VII The Annealing of Crystals

7.1 General Description of Annealing 348 7.1.1 Definitions and Processes of Annealing 348 7.1.2 Changes in Crystal Shape 350 7.1.3 Changes in Macroconformation 354 7.1.4 Changes in Defect Concentration 357 7.1.5 Polymorphic Changes 360 7.1.6 Relief of Internal Stresses 362 7.1.7 Transport of Matter 365 7.1.8 Recrystallization 368 7.1.9 General Summary of Annealing Processes 370

7.2 Crystals from Solution 373 7.2.1 Dry Crystal Annealing 375 7.2.2 Annealing of Crystals in Contact with the Solvent 389 7.2.3 Shish-Kebob Annealing 391

7.3 Crystals from the Melt 393 7.3.1 Annealing of Normal Crystals 393 7.3.2 Annealing of Deformed Materials 401 7.3.3 Annealing under Elevated Pressure 418 7.3.4 Annealing with Changes in the Backbone 425

References 429

AUTHOR INDEX 437

SUBJECT INDEX 450

Page 54: Mp Introduction 2010 Optimized

List of Tables

V. 1 Critical equilibrium nucleus dimensions 13 2 Critical temperature of solidification in droplet experiments 24 3 Crystallization temperatures of seeded polypropylene 46 4 Maximum temperatures for self-nucleation 55 5 Average molecular weights of polyethylene left dissolved after

crystallization from xylene 93 6 Critical molecular weights of polyethylene left molten after

crystallization from the melt 96 7 Equilibrium critical molecular weight of polyethylene melts as

a function of temperature 101

VI. 1 A vrami parameters for a two-stage crystallization 145 2 Exponents of time in the A vrami equation 147 3 Maximum crystal growth rates of macromolecules 163 4 Critical temperatures eC) in crystallization of poly( ethylene

oxide) 168 5 Conditions when the initial metastable crystal perfection is

reached 174 6 Ceiling temperatures of crystalline macromolecules 194 7 Crystallization of poly[3, 3-bis( chloromethyl)oxacyclo butane] 202 8 Crystallization of macromolecular melts 216 9 Crystallization parameters of isotactic polypropylene 236

10 Linear crystallization rate of polypropylene of varying tacticity 239 11 Crystallization of poly(ethylene terephthalate) 243 12 Avrami exponents (n) of nylon 6 245 13 Values of the Avrami exponent n for different elongation ratios

rx of cis-1,4-poly(2-methylbutadiene) 252

vii

Page 55: Mp Introduction 2010 Optimized

viii List of Tables

14 Thermodynamic data per mole of monomer 274 15 Reactivity of diynes of structure R1-C==C-C==C-R2 326

VII. 1 Temperature of initial thickening on annealing of single crystals 378 2 Annealing behavior of some folded chain single crystals 383 3 Annealing behavior of some melt crystallized samples 396 4 Annealing behavior of some drawn macromolecular samples 412 5 Annealing of polyethylene at 5.1 kb pressure 420

Page 56: Mp Introduction 2010 Optimized

Preface

This volume is the continuation of the discussion of crystals of linear macromolecules. It deals with the transformation of matter into the crystalline state. Volume 1 dealt with" Crystal Structure, Morphology, Defects," a sub­ject area that was beginning to be understood by 1971, the closing date for literature treated in Volume 1. At the time of this writing, little additional work except for more examples could be added in this area, a sign of the maturity of our knowledge about crystalline macromolecules. When the material for the present volume was assembled, making use of the literature up to mid-1974, a different picture arose. "Crystal Nucleation, Growth, and Annealing" are subjects that are still, in many cases, in flux. The clas­sical treatments of crystallization as found for example in Stuart's "Die Physik der Hochpolymeren " or Mandelkern's "Crystallization of Polymers" do present a firm base for the discussion, but, in the light of the research of the last ten years, are inadequate to describe the known phenomena.

This book is a first attempt at a unified treatment of the processes involved in crystallization of linear macromolecules. It represents an effort to collect sufficient material to show that crystallization of macromolecules cannot be treated as a simple extension of small-molecule crystallization. The long-chain nature leads to a special nucleation process, molecular nucleation, not found in small-molecule crystals. Another new aspect is the possibility of crystal­lization during polymerization, which leads to a series of previously unknown effects of nucleation, crystallization, and annealing. Both topics are treated for the first time in a comprehensive fashion (Sections 5.3, 5.1.2, 6.4, and 7.3.4).

The documentation is done, as in the first volume, by frequent references to the original literature and other sections of the two volumes. For the more rapidly developing areas an attempt was made to cover all present literature. Well-established areas were documented with a critically selected series of

ix

Page 57: Mp Introduction 2010 Optimized

x Preface

references. An attempt was made to trace the basic ideas to their origin. Whenever possible, tables or footnotes are used to present larger bodies of information or larger numbers of references in abbreviated form. In particular, crystallization of many macromolecular melts are collected in Table VI.8, and annealing data are presented in Tables VII.2-VII.4. Almost all drawings were newly made to present a uniform style and to permit, in many cases, the combination of data from several sources.

Since the subject of crystals of macromolecules cuts across many dis­ciplines, several introductory sections were included in Volume 1 (Polymer Science, Chapter I; Crystallography, Section 2.2; Molecular Structure, Section 2.3; Crystal Morphology, Section 3.1 ; Crystal Defects, Section 4.1). The present book builds on the material of Volume 1. Each chapter consists of a general section describing history ~nd theory of the subject, followed by specific examples.

Volumes 1 and 2 parallel the graduate lecture courses at Rensselaer, and have also been presented as audio courses.t

Volume 2 concludes the description of crystals and their formation. Because of time and space limitations, it was not possible to include (as promised in the preface of Volume 1) the subject of melting; this will be treated in detail in Volume 3, subtitled" Thermal Properties." Volume 3 will also deal with heat capacities, thermal conductivity, and related topics. An early extensive summary of this topic was presented in a review [Adv. Polymer Sci. 7, 151-368 (1970)], and a third audio coursei treats some basic material of this topic.

The author hopes that still more volumes will be forthcoming to allow for a truly comprehensive treatment of the subject.

t Crystals of Linear Macromolecules, Rensselaer Audio Course 72.668 and Crystallization of Linear Macromolecules, Rensselaer Audio Course 72.669; Division of Continuing Studies, Rensselaer Polytechnic Institute, Troy, New York 12181.

t Thermal Analysis of Linear Macromolecules, Rensselaer Audio Course 72.666; Division of Continuing Studies, Rensselaer Polytechnic Institute, Troy, New York 12181.

Page 58: Mp Introduction 2010 Optimized

Acknowledgements

As in the first volume, I should like to thank colleagues and students who have supported this work by contributing discussions, preprints, and photo­graphs. The basis of Volume 2 was a lecture course of the same title given to students at Rensselaer in 1972. The bulk of the material was assembled during a sabbatic leave in 1973-1974. Initial testing was possible in a second lecture course in 1974. Many of the illustrations in this book were possible only by the contribution of original prints by the authors listed in the legends. In addition, permission for reproduction was generously granted by the following copyright holders:

American Chemical Society, Washington (Figs. VI.26 and VI.73c). American Institute of Physics, New York (Figs. VI.29, VI.30, VI.86, and VI.87A,B). Marcel Dekker, Inc., New York (Figs. V.26, V.34, V.38, VI.24a,b, VI.25, VI. 34, VI.35,

VI.36, VI.37, VI.83, and VI.84). Hiithig and Wepf Verlag, Heidelberg (Figs. VI.62, VII.12, and VII.22). North-Holland Publishing Co., Amsterdam (Figs. V.19 and VI.2). Springer Verlag, Heidelberg (Fig. VI.38). Dr. Dietrich Steinkopff Verlag, Darmstadt (Figs. VI.27, VI.46, VI.80 A and B). Wiley and Sons, Inc., New York (Figs. V.18, V.23, V.25, V.48, V.49, VI.70, VI.71, VI.72,

VI.73a,b, VI.74a-c, VI.75, VI.76, VI.79, VI.81, VI.82, VII.6, VII.7, VII.8, VII.13, VII.14, VII.21, VII.26, VII.27, and VII.28).

xi

Page 59: Mp Introduction 2010 Optimized

Author Index of Volume II

Numbers in italics refer to the pages on which the complete references are listed.

AAbe, K., 358Abitz, W., 17, 108 Abkin, A. D., 313 Adler, G., 313, 314, 315, 319, 328, 332 Agnew, N. H., 313 Akaishi, T., 303, 338 Alfonso, G. C, 39, 52, 58, 105, 113 Allegra, G., 28, 112 Allen, G., 91, 105 Allen, P. W., 229 Allou, A. L., Jr., 394, 433 Aloiso, C J., 425, 435 Amano, T., 170, 341 Amrhein, E. M., 3, 105 Ander, P., 313, 314, 340 Anderson, F. R., 8, 9, 94, 105, 108 Andrews, E. H., 66, 67, 89, 106, 219, 241,

247, 249, 257, 328, 342 Anokhin, V. V., 241 Arai, H., 283, 328 Arakawa, T., 94, 101, 104, 106, 108, 257,

346, 378, 390, 393, 435 Asaubekov, M. A., 205, 213, 214, 328Asbach, G. I., 99, 106 Asmussen, F., 257, 328 Avrami, M., 132, 146, 328 Azcue, J. M., 207

B

Baccaredda, M., 295, 328 Baer, E., 24, 25, 26, 27, 42, 44, 45, 58, 59,

107, 110, 113, 236, 257, 336 Baeyer, A., 325, 328

Bair, H. E., 383 Bakeyev, N. F., 423, 435 Ballantine, D. S., 313, 314, 340 Ballard, D. G. H., 3, 106 Baltá-Calleja, F. J., 375, 382, 385, 402, 411,

412,429 Balwit, J. S., 318, 339 Bamford, CA., 192, 328 Bank, M. I., 94, 106, 367, 429 Banks, W., 53, 106, 171, 214, 234, 239, 328Baranov, V. G., 19, 106, 243, 328 Bares, V., 358, 429 Barnes, W. J., 75, 106, 121, 239, 328Barrales-Rienda, J. M., 233, 332 Barskii, Yu, P., 214Bassett, D. C, 253, 255, 256, 319, 328, 342,

375, 382, 389,4 19, 423, 424, 429,430, 434

Baughman, R. H., 194, 195, 196, 327, 328,329

Baumber, M. W., 296, 297, 299, 339Baumgärtner, A., 185, 342 Baur, H., 144, 197, 262, 263, 264, 266, 329Bawn, C E. H., 284, 284, 329 Beck, H. N., 46, 106 Becker, R., 122, 329 Beech, D. R., 203, 240, 329 Bekkedahl, N., 214, 329 Belavtseva, Ye. M., 386 Bell, J. B., 398 Belov, G. P., 423, 435 Belyi, V. A., 51, 112 Benoit, H., 3, 106 Bensasson, R., 314, 343 Bentley, W. A., 117, 329

Page 60: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 2

Berens, A. R., 318, 338 Beresford, D. R., 402, 430 Berghmans, H., 51, 108 Berlin, A. A., 274, 329 Bevan, H., 402,430 Binsbergen, F. L., 14, 15, 27, 36, 37, 38, 44,

47, 48, 49, 50, 51, 81, 87, 106, 137,138, 139, 329

Bittiger, H., 22, 106 Blackadder, D. A., 380, 390, 391, 394,430Blais, J. J. B. P., 396, 397, 400, 430Blasenbrey, S., 2, 111,112 Block, S., 256, 328 Blundell, D. J., 52, 54, 55, 56, 58, 107, 199,

200, 329 Boder, G., 315, 334 Boehkle, K., 211, 280, 281, 321, 336, 345Bogdanova, K. A., 297 Bohlmann, F., 325, 329 Bonart, R., 402, 430 Bonjour, E., 293, 331 Booij, H. C., 70, 111 Boon, J., 55, 61, 62, 107, 162, 163, 207, 329Boor, J., Jr., 361, 430 Booth, A., 142, 143, 171, 225, 234,329, 334 Booth, C., 91, 105, 107, 203, 221, 240, 329Bopp, R. C., 280, 235, 424, 435, 419, 420,

421, 425, 431 Borri, C., 227 Bort, D. N., 292, 329, 336Bourland, L., 201, 331 Boyer, R. F., 362, 430 Boyles, J. G., 275, 276, 330 Bradley, R. S., 129 Brandrup, J., 194, 330 Brasch, J. W., 253, 255, 336 Brenschede, W., 119, 330 Briegleb, G., 304, 330 Brown, J. F., Jr., 316, 317, 330 Brown, M. E., 313 Brown, N., 31, 32, 107, 294, 295, 330Brown, R. G., 418, 430 Bruk, M. A., 313 Brumberger, H., 371, 434

Buchanan, D. R., 416 Buchdahl, R., 214 Buckser, S., 214 Buls, V. W., 287, 330 Bunn, C. W., 94, 107 Burfield, D. R., 292, 344 Burke, J. G., 116, 330 Burmester, A. F., 354, 386, 387, 389, 430Burnett, B. B., 77, 244, 330 Burns, J. R., 24, 27, 107 Burton, R. L., 241 Burton, W. K., 122, 123, 125, 127, 330Busfield, W. K., 312, 333 Butlerov, A. M., 294 Butta, E., 295, 328

C

Cabrera, N., 122, 123, 125, 127, 330 �a�kovi�, H., 357, 366, 367, 403, 404, 405,

406, 408, 409, 430 Callis, C. F., 31, 113 Calvert, P. D., 180, 330 Cantow, M. J. R., 91, 109 Carazzolo, G., 318, 319, 330, 340 Carder, D. R., 423, 424, 429, 430 Carion, F. E., 279 Carr, S. H., 42, 58, 59, 107 Carrano, A., 390, 432 Carslaw, H. S., 131, 330 Cecchorulli, G., 228 Cemel, A., 315, 330 Challa, G., 55, 61, 62, 107, 162, 163,205,

329, 335 Chanzy, H. D., 292, 293, 330, 331, 340Chapiro, A., 313 Charlesby, A., 192, 313, 331 Chatani, Y., 317, 318, 321, 331 Chernov, A. A., 73, 107 Chiu, J., 236 Christiansen, A. W., 257, 336 Cobbold, A. J., 94, 107 Cobbs, W. H., Jr., 241 Collier, J. R., 222

Page 61: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 3

Colson, J. P., 319, 321, 323, 331, 352, 353,354, 397, 434

Cooper, M., 201, 331 Cormia, R. L., 23, 24, 27, 107, 113 Cormier, C. M., 55, 76, 77, 78, 101, 104,

107, 113, 114, 172, 173, 174, 175,176, 346, 392, 435

Corneliussen, R., 407, 434 Corradini, P., 28, 112 Correri, G., 236 Cossee, P., 288 Cotton, J. P., 3, 106 Coughlin, M. C., 304, 307, 331 Cowell, G. W., 284 Crabtree, J. R., 292, 331 Credali, L., 318, 343 Crystal, R. G., 216, 258, 344, 426, 430 Cser, F., 315, 316, 334

D

Davidson, T., 77, 78, 114, 172, 173, 174,175, 176, 346, 418, 430

Davies, A. G., 284 Davis, G. T., 375, 430 Dawkins, J. V., 351, 430 Day, A., 293, 330 DeCandia, F., 245, 331 DeChecchi, C., 318, 343 Decker, D., 3, 106 Dehlinger, U., 360, 431 DeLange, B. G. M., 48, 49, 50, 106, 138,

139, 329 Dent Glasser, L. S., 192, 331 Dettenmaier, M., 3, 107 Devoy, C., 37, 107, 165, 201, 331 DiCyan, A. B., 378, 390, 393, 435 Dienes, G. J., 313, 314, 340 DiMarzio, E. A., 153, 158, 159, 165, 201,

339, 343 Dimonie, M., 312, 331 Dismore, P. F., 416, 431 Dobos, J., 313

Dodgson, D. V., 240, 329 Dole, M., 22, 107, 181, 331 Doll, W. W., 258, 331 Donald, H. J., 236 Dörffurt, H., 168, 331 Döring, W., 122, 329 Dreyfuss, P., 150, 354, 355, 386, 389, 430,

431 Driemeyer, M., 400, 431 Drury, T., 129 Dumbleton, J., 415, 416 Duval, X., 313, 339

E

Early, R. M., 235, 340 Eastmond, G. C., 192, 313, 319, 328, 331Eby, R. K., 266, 343, 352, 353, 354, 375,

397, 418, 430, 434 Eckart, R., 42. 110 Egorova, Yu, V., 40, 41,114 Ehinger, H., 273, 331 Eisenberg, A., 304, 332 Era, V., 214 Ergoz, E., 214, 215, 232, 233, 332 Errede, L. A., 278, 311, 332 Evanc, M. A., 282, 342 Evans, U. R., 132, 332 Evko, E. I.,40, 41, 114 Ewers, W. M., 182, 183, 184, 332 Eyring, H., 7, 11, 108, 171, 335

F

Fankuchen, I., 302, 340 Farnoux, B., 3, 106 Fatou, J. G., 214, 215, 232, 233, 332, 394,

433 Faucitano, A., 314, 332 Fernandez-Bermudez, S., 219 Ferry, J. D., 9, 113, 362, 431 Fielding-Russell, G. S., 241 Fisa, B., 292, 340

Page 62: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 4

Fischer E. W., 3, 107, 179, 194, 195, 219,313, 332, 336, 368, 371, 381, 382,385, 393, 394, 402, 403, 404, 405,406, 407, 408, 409, 410, 411, 419,423, 431

Fischmeister, H., 367, 431 Fisher, J. C., 8, 11, 113 Fitchmun, D. R., 45, 107 Flood, J., 378, 390, 393, 435 Flory, P. J., 2, 17, 19, 91, 107, 179, 198,

212, 226, 239, 259, 261, 265, 332,340, 343

Folt, V. L., 318, 338 Forsman, W. C., 43, 109 Fort, T., Jr., 315, 330, 342 Fowkes, F. M., 38, 107 Frank, F. C., 18, 28, 67, 68, 73, 85, 108,

127, 150, 151, 153, 157, 213, 330,332, 384

Frayer, P., 318, 338 Fredericks, R. J., 282, 342 Frenkel, J., 122, 125, 332 Frenkel, S. Ya., 19, 106 Friedel, J., 362, 431 Frisch, H. L., 65, 108 Frischkorn, H., 3, 105 Fritzsche, C., 385 Frolen, L. J., 24, 25, 26, 53, 84, 108, 109, 118, 148, 151, 213, 234, 235, 335 Frolova, A. A., 66, 108 Fuhrmann, J., 400, 431 Fujie, A., 303, 332 Fujimoto, S., 316, 332 Fujisaki, H., 273, 332 Fujita, Y., 314, 344 Funt, J., 429, 433 Furukawa, J., 294, 295, 332 Furuta, N., 273, 332

G

Gabant, J. A., 287, 289, 343 Galeski, A., 220 Gandica, A., 162, 332, 339

Garbar, N. M., 240, 333 Garber, C. A., 380, 385, 431 Gav�t, I., 312, 331 Geil, P. H., 56, 94, 108, 186, 187, 188, 189,

190, 250, 332, 337, 346, 354, 368,371, 374, 376, 379, 380, 381, 382,385, 386, 387, 389, 393, 395, 396,411, 415, 430, 431, 433, 434

Gent, A. N., 168, 219, 250, 251, 332, 333Gerasimov, G. N., 313 Georgiadis, T., 283, 333 Gerngross, O., 17, 108 Gibbs, J. W., 4, 5, 7, 108, 116, 333Gieniewski, C., 376, 377, 378, 379, 419, 434 Gilbert, M., 224, 225 Girolamo, M., 150, 366 Giusti, P., 295, 328 Glasser, F. P., 192, 331 Glasstone, S., 7, 11, 108 Gleiter, H., 3, 112 Glück, M., 363, 435 Go, S., 427, 428, 432 Goddar, H., 402, 403, 404, 405, 406, 407,

408, 409, 410, 411, 431 Godovskii, Yu. K., 44, 48, 112, 163, 214,

238, 240, 333 Gogolewski, S., 245, 257, 270, 333, 345Gogos, C. C., 247, 346 Goldfarb, L., 220 Göler, V., 135, 333 Gonthier, A., 166, 167, 168, 177, 178, 240,

241, 338 Gopalan, M., 394, 433 Gordon, M., 171, 214, 234, 328, 333Gorham, W. F., 278, 333 Gornick F., 24, 25, 84, 85, 86, 108, 266,

267, 333 Graff, R. J. L., 291, 293, 333 Greear, G. R., 44 Gregorian, R. S., 311, 332 Grewer, Th., 363, 431 Griffith, J. H., 235, 333 Grimsby, F. N., 292, 331 Grimvall, G., 367, 431

Page 63: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 5

Groeninckx, G., 51, 108 Grubb, W. T., 318, 339 Gruner, C. L., 419, 420, 521, 425, 431Grunze, H., 30, 113 Gruver, J. T., 252, 338 Guillet, J. E., 289, 292, 333 Gumargaliyeva, K. Z., 386 Guttman, J. Y., 289, 292, 333

H

Haas, T. W., 247, 333 Ham, G. E., 302, 333 Hammel, J. J., 63, 108 Hara, K., 418, 433 Hardin, I. R., 250, 334 Hardy, Gy., 313, 315, 316, 334 Harget, P. J., 257, 344 Harland, W. G., 394, 431 Harrison, I. R., 282, 346 Hartley, F. D., 53, 55, 108, 168, 242, 243,

334 Hartman, P., 129, 334 Hartmann, G., 363, 435 Harvey, E. D., 270, 333 Hasegawa, M., 257, 258, 324, 333, 341Hasegawa, R., 424, 431 Hashimoto, T., 253, 255, 334, 418, 431Hatakeyama, T., 253, 255, 334, 418, 431Hatano, M., 222 Hauber, M. E. T., 2, 111 Hawkins, S. W., 53, 91, 108 Hawkins, W. L., 425, 435 Hay, J. N., 142, 143, 171, 217, 225, 234,

239, 329, 334 Hayashi, K., 295, 318, 321, 331, 334, 341,

346 Hayashi, S., 382, 433 Heber, I., 214 Helfand, E., 266, 334 Hellmuth, E., 190, 346 Helms, J. B., 205, 335 Henderson, J. F., 219 Hengstenberg, J., 190, 344 Hermann, K., 17, 108

Herring, C, 5, 108 Herz, J. E., 313 Hess, K., 401, 402, 431, 432 Heyer, H., 128, 335 Heyez, S., 236 Heyns, H., 236 Higashimura, T., 316, 318, 337, 340, 341Higgins, J. S., 3, 106 Higgins, T. L., 287, 330 Hikasa, J., 418, 433 Hikosaka, M., 396 Hill, M. J., 68, 69, 108 Hillier, I. H., 144, 145, 171, 214, 239, 240,

329, 333, 335 Hillig, W. B., 159, 335 Hine, J., 194, 335 Hinrichsen, G., 399, 404, 409, 414, 416, 431 Hirai, N., 171, 335, 355, 356, 418, 432, 433 Hirami, M., 399, 416 Hirth, J. P., 128, 335 Hobbs, S. Y, 45, 109 Hoeve, C A. J., 43, 109 Hoffman, J. D., 12, 22, 26, 53, 55, 84, 85,

86, 101, 102, 108, 109, 110, 118,148, 150, 151, 153, 154, 159, 165,213, 218, 234, 235, 335, 338

Hoffman, R. F., 43, 109 Holdsworth, P. J., 351, 430 Holland, V. F., 53, 109, 120, 121, 164, 166,

198, 214, 335, 339, 358, 360, 375,389, 432

Holm, M. J., 324 Hosemann, R., 357, 366, 367, 402, 403, 404,

405, 406, 408, 409, 429, 430, 433Hoshino, S., 144, 236, 237, 238, 335 Hosoi, M., 99, 110 Hoyt, J. M., 311, 332 Hsu, T. S., 253, 255, 336 Huber, A., 137, 335 Huckshold, K. A., 94, 109 Huggins, M. L., 19, 109 Humphreys, W. J., 117, 329 Husemann, E., 22, 106 Hybart, F. J., 224, 225, 270, 334, 335 Hyon, S.-H., 258, 337

Page 64: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 6

I

Iguchi, M., 144, 253, 255, 282, 285, 297,299, 301, 302, 311, 312, 324, 334,335, 338

Ikeda, M., 241 Ikushima, K., 236 Illers, K.-H., 362, 364, 405, 432 Imada, K., 375, 381, 432 Immergut, E. H., 194, 330 Imoto, M., 284 Inhoffen, E., 325, 329 Inoue, M., 44, 109, 220, 222 Iohara, K., 375, 381, 432 Ishibashi, T., 245, 335 Ishida, K., 324, 334 Ishigure, K., 314, 344 Ishikawa, K., 252, 341, 406, 416, 434 Ito, A., 318, 346 Itoga, M., 416 Iwai, T., 318, 346 Iwakura, Y., 324 Iwamoto, R., 280, 335, 361, 432 Iwanami, T., 214, 236 Izard, E. F., 241

J

Jaacks, V., 275, 296, 297, 321, 335, 336,337

Jackson, F., 253, 255, 336 Jackson, J. B., 265, 269, 336, 343Jackson,�J. F., 258, 340, 377, 378, 433Jackson, K. A., 25, 109 Jaeger, J. C., 131, 330 Jaffe, M., 190, 273, 336, 346 Jain, N. L., 213, 214, 239, 335, 340Jakabhazy, S. Z., 315, 336 Jannink, G., 3, 106 Jastrzebski, Z. D., 349, 432 Jenckel, E., 118, 257, 336 Johner, H., 190, 344 Johnsen, U., 42, 48, 55, 109, 202, 203, 236,

268, 269, 336

Johnson, J. F., 91, 109 Johnson, W. A., 132, 336 Jones, D. H., 150, 336 Jones, M. N., 91, 105 Joppien, G. R., 42, 109

K

Kabanov, V. A., 314, 314, 336 Kahle, B., 228 Kaischew, R., 14, 112 Kaiser, J., 194, 195, 336, 337 Kajikawa, N., 374, 375, 379, 433 Ka1ló, A., 315, 334 Kambara, S., 222 Kamide, K., 99, 110 Kaneda, H., 253, 255, 334 Kanetsuna, H., 253, 255, 282, 297, 299, 301,

302, 334, 335, 338, 418, 431 Kapur, S., 401, 432 Kardos, J. L., 94, 109, 257, 336 Kargin, V. A., 2, 3, 44, 52, 66, 108, 109,

111, 205, 213, 214, 292, 313, 314,328, 329, 336, 424, 435

Katayama, K., 170, 341 Katchalski, E., 302, 336 Katz, T., 216 Kawai, N., 394, 424, 431, 432 Kawai, T., 92, 99, 110, 282, 297, 299, 301,

303, 304, 332, 335, 336, 337, 338Keggenhoff, B., 318, 336 Keii, T., 282, 337 Keith, H. D., 169, 170, 207, 214, 235, 238,

239, 337, 341 Keller, A., 42, 52, 54, 55, 56, 57, 58, 59, 68,

69, 92, 107, 108, 110, 120, 150, 191,199, 200, 201, 242, 248, 329, 336,337, 339, 351, 354, 355, 371, 375,382, 385, 386, 389, 392, 402, 429,430, 431, 432, 435

Kenarov, A. V., 243, 328 Keniry, J. S., 394, 430 Kercha, Yu. Yu., 231 Kern, W., 206, 275, 296, 297, 321, 335, 336,

337

Page 65: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 7

Khadr, M. M., 394, 431 Kiel, A. M., 208, 210, 342 Kiessig, H., 401, 402, 431, 432 Kiji, J., 337 Kilb, R. W., 121,342 Kilian, H. G., 99, 106, 110, 266, 337Killmann, E., 42, 110 Kim, H.-G., 213, 266, 337, 340 Kim, K. Y., 304, 338 Kirsch, G., 252, 339 Kirste, R. G., 3, 110 Kitahama, K., 321, 331 Kitaigorodskii, A. I., 2, 109 Kitamaru, R., 258, 337 Kitanishi, Y., 318, 341 Klement, J. J., 250, 337 Kobayashi, E., 318, 337, 341 Kabayashi, K., 249,337 Kobayashi, M., 257, 258, 334, 424, 431 Koenig, J. L., 380, 385, 390, 398, 400, 416,

432 Kohlschütter, H. W., 192, 318, 337 Kojima, M., 165, 339, 383 Kolb, H. J., 241 Kolmogoroff, A. N., 132, 337 Komaki, A., 319, 337 Komoto, T., 301, 303, 304, 332, 335, 336,

337, 338 Konigsveld, R., 91, 92, 93, 103, 110Konrad, G., 243, 338 Konstantinopol’skaja, M. B., 423, 424, 435Kooistra, M., 313, 344 Korobko, A. P., 424, 435 Kortleve, G., 291, 293, 333 Kosmyinin, B. P., 413 Kossel, W., 7, 14, 110, 122, 338 Koszterszitz, Gy., 316, 334 Koutsky, J. A., 24, 25, 26, 27, 44, 45, 110 Kovacs, A. J., 52, 53, 54, 55, 59, 60, 66,

107, 110, 112, 113, 134, 166, 167,168, 177, 178, 204, 214, 218, 234,240, 241, 302, 338, 342, 345

Kovacs, E., 302, 338 Kovacs, G., 338

Kovács, G., 316, 334 Kozlov, P. V., 66, 108 Kozlowski, W., 245, 338 Králí�ek, J., 299, 300, 346 Krasnikova, N. P., 205, 213, 214, 328Kraus, G., 252, 338 Krimm, S., 94, 106, 318, 338, 367, 402Kriyama, I., 283, 328 Kruse, W. A., 3, 110 Kryukov, A. V., 423, 424, 435 Kubb, S., 278, 280, 338, 361 Kuczynski, G. C., 367, 432 Kurbanova, I. I.,44, 52, 109 Kusomoto, N., 223 Kyotani, M., 253, 255, 334

L

Lacmann, R., 37, 110 Lageveen, R., 208, 342 Lahti, L. E., 205, 343 Laidler, K. J., 7, 11, 108 Lamandé, A., 293, 330 Lambert, S. L., 207, 218, 250, 346 Lamm, O., 31, 111 Lanceley, H. A., 41, 53, 110, 205, 338Landel, R. F., 9, 113 Lando, J. B., 258, 315, 318, 330, 331, 338,

342 Landsberg, L., 325, 328 Last, A. G. M., 44, 110 Latham, A. J., 150, 336 Laudise, R. A., 73, 110 Lauritzen, J. I., Jr., 26, 53, 84, 109, 110,

118, 148, 151, 153, 154, 155, 156,157, 158, 159, 213, 234, 235, 266,334, 335, 338, 339

Lawton, E. J., 318, 339 Ledbetter, H. D., 46, 106 Ledwith, A., 284, 284, 329 Lee, T. D., 123, 124, 339 443 Leese, L., 296, 297, 299, 339 Leghissa, S., 319, 330

Page 66: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 8

Lehmann, J., 42, 55, 109, 202, 203, 336Lengyel, M., 315, 334 Lenz, R. W., 34, 110, 427, 428, 429, 432,

433 Lester, G. R., 242, 337 Letort, M., 313, 339 Leugering, H. J., 252, 339 Leuteritz, R., 363, 435 Lévy, D., 55, 59, 60, 113, 204, 234, 240,

302, 338, 345 LewelI, P. A., 380, 430 Li, H.-M., 94, 109, 162, 165, 339 Liberti, F., 190, 300, 339, 346 Lieser, G., 3, 107, 297, 298, 340, 361, 433Lim, D., 276, 341 Limbert, F. J., 236 Lindegren, C. R., 230 Lindenmeyer, P. H., 2, 53, 104, 109, 110,

111, 120, 121, 164, 166, 198, 214,335, 339

Lipatov, Yu. S., 163, 342 Liska, E., 2, 111, 185, 342 Loboda-�a�kovi�, J., 403, 405, 406, 408,

409, 412, 433 Loeb, W. E., 279 Longman, G. W., 269, 336 Lontz, J. F., 349, 433 Lord, F. W., 53, 55, 108, 168, 242, 243, 334Lorenz, R., 179, 332 Lovering, E. G., 165, 166, 220, 339 Luch, D., 250, 339 Luetzel, W. G., 121, 328 Luk’yanovich, V. M., 40, 41, 114

M

Macchi, E. M., 276, 277, 339 Machin, M. J., 392, 435 Mackley, M. R., 68, 108, 248, 339 Maeda, Y., 253, 255, 334 Magat, M., 192, 339 Magill, J. H., 53, 55, 77, 111, 150, 161, 162,

163, 164, 165, 166, 213, 229, 230,231, 236, 287, 332, 339, 399, 417

Majer, J. M., 169, 170, 235, 339 Malinskii, Yu, M., 236 Malmgreen, H., 31, 111 Mammi, M., 318, 319, 330, 340Mandelkern, L., 17, 37, 107, 111, 118, 165,

201, 206, 212, 214, 215, 226, 231,232, 233, 239, 250, 251, 257, 266,267, 268, 331, 332, 333, 337, 340,368, 377, 378, 394, 433

Manescalchi, F., 228, 229 Manley, R. St. J., 201, 283, 331, 333, 392,

396, 397, 400, 430, 433 Manson, J. A., 55, 110, 204, 302, 338Marchessault, R. H., 292, 293, 330, 331, 340 Marchetti, A., 383 Marder, M., 75, 113 Mark, H., 302, 340 Marker, L., 235, 340 Markova, G. S., 3, 111 Martin, E., 429, 433 Martin, G. M., 257, 340, 375, 430Martuscelli, E., 383, 387 Mateva, R., 297, 298, 340 Matreyek, W., 425, 435 Matsuda, T., 316, 340 Matsumoto, T., 319, 337 Matsuoka, S., 214, 425, 435 Matthies, P., 284, 329 Maxwell, B., 247, 333 Maxwell, I. C, 362 Mayhan, K. G., 241 McAndrew, F. B., 296, 342 McCrackin, F. L., 353, 434 McDevit, W. F., 77, 244, 330 McEwen, I. J., 312, 330 McGarvey, B., 315, 341 McHugh, A. J., 210, 340, 395, 433McIntyre, A. D., 226 McKenzie, I. D., 292, 344 McLaren, J. V., 53, 111, 229 Mehl, R. T., 132, 336 Mehta, A., 27, 39, 96, 97, 98, 99, 101, 103,

111, 114, 157, 253, 340 Mehta, R. E., 398

Page 67: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 9

Meinecke, E., 144, 236, 237, 238, 335Meinel, G., 92, 111, 390, 404, 405, 434Meleskaya, T. K., 44, 109 Melillo, L., 75, 77, 78, 111, 114, 172, 173,

174, 175, 176, 211, 253, 256, 276,280, 281, 340, 345, 346, 369, 371,435

Mesrobian, R. B., 313, 314, 340 Michaels, A. S., 7, 111 Mihajlov, M., 220 Miki, T., 297 Mie, G., 190, 344 Miller, E., 302, 340 Miller, P., 258, 340 Miller, R. L., 360, 432 Minoshima, Y., 304, 338 Minsker, K. S., 292, 329, 336 Misra, A., 241 Mitchell, J. C, 66, 111, 361, 430 Mitsuhashi, S., 253, 255, 334 Mitsuhata, T., 355, 356, 432 Mitsuisha, Y., 241 Miyagi, A., 398, 426, 428, 433 Miyake, Y., 321, 331 Miyamoto, Y., 257, 340 Miyasaka, K., 252, 341, 406, 416, 434Monroe, G. C, Jr., 44 Morawetz, H., 2, 111,192, 276, 302, 315,

336, 338, 339, 340, 341 Morgan, L. B., 53, 55, 108, 141, 142, 143,

242, 243, 334, 237, 341 Mori, N., 200, 201, 203, 343 Morosoff, N., 276, 315, 336, 339, 341, 412Morrow, D. R., 384 Mortillaro, L., 318, 343 Moyer, J. D., 94, 111 Mucha, M., 283, 285, 287, 341 Müller, F. H., 99, 106, 220 Mullins, W. W., 152, 341 Muñoz-Escalona, A., 319, 324, 341 Murphy, W. M., 55, 109

N

Nachtrab, G., 268, 269, 336, 341 Nadkarni, V. M., 318, 341 Nagai, H., 374, 375, 379, 433 Nagasawa, T., 210, 249, 337, 341 Nagatoshi, F., 374, 382, 435 Nakafuku, C, 256, 257, 340, 346 Nakamura, K., 170, 341 Nakanishi, F., 324, 334 Nakanishi, H., 324, 334, 341 Nakatani, S., 317, 331 Nakaya, T., 284 Nakajima, A., 382, 433 Nanbu, K., 317, 343 Natta, G., 91, 111 Nauta, H., 319, 345 Nedkov, E., 220 Newman, S., 45, 107, 144, 236, 237, 238,

335 Newton, Sir Isaac, 116, 341 Niegisch, W. D., 278, 333, 361, 433Niinomi, M., 358, 360, 375, 433 Nishii, M., 321, 331 Nishimura, H., 382, 433 Nitta, I., 315, 343 Nummelin, A. J., 292, 331 Nyitrai, K., 315, 316, 334

O

Ober, R., 3, 106 Ochi, H., 318, 334 Ochs, R. J., 94, 111 O’Connor, A., 371, 402, 432 Oda, T., 404, 433 O’Donnell, J. H., 315, 341 Ogata, N., 43, 113 Ohata, K., 429, 433 Ohnishi, S. I., 315, 343 Ohno, T., 321, 331 Okamura, S., 295, 313, 316, 318, 321, 331,

334, 337, 340, 341, 346 Okazaki, H., 43, 113

Page 68: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 10

Okladnov, N. A., 292, 329 O’Leary, K., 411, 433 Oleinik, E. F., 274, 329 Olf, H. G., 404, 434 Olivero, L., 39, 52, 105, 113 Onsager, L., 123, 341 Oono, R., 252, 341 Oshima, K., 314, 344 Osugi, J., 313, 418, 433 Oswald, J. H., 282, 346 Ovchinnikov, Yu. K., 3, 111 Overbergh, N., 51, 108 Owen, P. J., 219, 247, 249, 328 Oya, M., 303, 304, 332, 338 Ozawa, T., 241

P

Packter, A., 52, 111 Padden, F. J., Jr., 207, 214, 235, 238, 239,

337, 341 Palmer, R. P., 94, 107 Papissov, I. M., 314 Park, J. B., 363, 433 Parker, R. L., 117, 124, 127, 128, 131, 341Parrini, P., 236 Passaglia, E., 26, 53,84, 109,118,148, 151,

153, 154, 155, 156, 157, 158, 213,266, 335, 339

Patel, R. D., 217 Pechhold, W., 2, 3, 111, 112, 185, 342 Pedemonte, E., 39, 52, 58, 105, 113, 120,

199, 200, 201, 337 Pegoraro, M., 91, 111 Pelzbauer, Z., 220, 392, 433 Pennings, A. J., 70, 92, 93, 103, 110, 111,

208, 209, 210, 257, 333, 342 Pepper, B., 270, 335 Peraldo, M., 91, 111 Perdok, W. G., 129, 334 Perret, R., 271, 342 Peterlin, A., 92, 111, 169, 171, 182, 183,

184, 332, 342, 353, 356, 390, 394,395, 402, 404, 405, 407, 408, 411,412, 429, 433, 434

Petermann, J., 3, 112 Peters, R. H., 394, 431 Peterson, J. M., 104, 111 Petraccone, V., 28, 112 Petropoulos, J. M., 315, 328 Phillips, P. J., 257, 342 Pickles, C. J., 240, 329 Picot, C., 3, 106 Piermarini, G. J., 256, 328 Piesczek, W., 402,405, 408,409, 431 Pijpers, M. F. J., 208, 209, 342 Pillai, P. S., 241 Poisson, S. D., 132, 342 Poland, D., 302, 342 Pollack, S. S., 150, 287, 339, 399, 417Pollin, J., 313, 339 Porter, R. S., 91, 109, 258, 340, 344 Post, B., 315, 341 Pound, G. M., 128, 335 Powers, J., 137, 138, 144, 217, 236, 237,

238, 335, 344 Price, C., 91, 107 Price, F. P., 7, 22, 23, 24, 56, 75, 80, 83, 84,

106, 107, 112,118, 121, 139, 140,141, 142, 144, 148, 150, 151, 153,155, 214, 218, 328, 342

Price, J. M., 394, 433 Price, M. B., 296, 342 Priest, D. J., 354, 432 Prigogine, I., 19, 112 Prime, R. B., 89, 90, 92, 93, 95, 96, 99, 100,

103, 112 Privalko, V. P., 163, 342 Przygocki, W., 150, 241 Puderbach, H., 419, 423, 431 Puterman, M., 315, 342

Q

Quinn, F. A., Jr., 212, 239, 340

R

Rabesiaka, J., 53, 66, 112, 134, 342

Page 69: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 11

Rahl, F. J., 282, 342 Rånby, B. G., 235, 333, 371, 434 Rankin, J., 190, 346 Rapoport, N. Ya., 44, 52, 109 Reams, W., 314, 328 Rees, D. V., 253, 342, 419, 434 Rehage, G., 400, 431 Reich, L., 33, 112 Reimschuessel, A. C., 282, 342Rellensmann, W., 227 Remi, R., 222 Reneker, D. H., 319, 321, 323, 331, 354,

434 Revol, J. F., 293, 330 Reynolds, G. F., 272, 343 Richards, R. B., 53, 91, 108, 112, 179, 180,

343 Richardson, M. J., 265, 343, 394, 430Robertson, R. E., 3, 112 Robeson, L. M., 207, 343 Robinet, J. B., 116, 343 Rodchenko, D. A., 51, 112 Rodriguez, L. A. M., 287, 289, 343 Roe, R.-J., 171, 214, 328, 376, 377, 378,

379, 419, 434 Roeckl, E., 169, 171, 342 Rogers, C. E., 401, 432 Rohleder, J., 140, 168, 231, 343 Ross, G. S., 24, 25, 26, 53, 84, 108, 109,

118, 148, 151, 213, 234, 235, 335 Russo, M., 318, 343 Rybnikar, F., 42, 113, 214, 218, 220, 343

S

Saccone, A., 58, 105 Sachs, Frh. v., 135, 333 Sachs, G., 135, 333 Sadler, D. M., 57, 59, 92, 93, 99, 103, 110,

112 Saegusa, T., 294, 295, 332 St. Pierre, L. E., 52, 114 Sakaoku, K., 408, 434 Sakurada, I., 317, 343

Sakurai, K., 406, 416, 434 Salovey, R., 383 Sanchez, I. C., 118, 148, 158, 159, 165, 201,

266, 343, 352, 353, 354, 397, 434Sasada, Y., 324, 341 Sastry, K. S., 217 Sawaoka, A., 424, 431 Schelten, J., 3, 106, 110 Scheraga, H. A., 302, 342 Scherr, H., 2, 112 Schick, M. J., 43, 112 Schindler, A., 33, 112 Schleinitz, H. M., 390, 391, 430 Schmidt, G. F., 371, 381, 382, 393, 394,

402, 404, 405, 406, 407, 431Schonhorn, H., 45, 46, 51, 112 Schreiber, H. P., 390, 434 Schuler, A. N., 429, 433 Schulken, R. M., Jr., 44 Schultz, J. M., 65, 66, 112, 170, 210, 318,

340, 341, 343, 379, 395, 433, 434Schulz, R. C., 337 Schwinon, W., 257, 328 Scott, R. D., 170, 343 Šebenda, J., 246, 270, 299, 300, 345, 346Seher, A., 325, 343 Sela, M., 302, 336 Selikhova, V. I.,423, 424, 435 Sella, C., 314, 343 Seto, T., 200, 201, 203, 343, 396 Shah, J. K., 205, 343 Shaposhinkova, T. K., 44, 109 Sharif, K. A., 52, 111 Sharma, R. K., 377, 378, 433 Sharples, A., 23, 41, 53, 106, 110, 112, 171,

205, 214, 226, 234, 239, 328, 338Shimomura, Y, 210, 341 Shioji, Y, 31 5, 343 Shipman, J. J., 318, 338 Shtarkman, B. P., 292, 329, 336 Siegmann, A., 257, 344, 415 Sifleet, W. L., 222 Signer, R.,.190, 344 Simek, I., 220

Page 70: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 12

Singh, A., 219, 247, 249, 328 Sketchley, J. M., 292, 331 SkouIious, A., 222, 271, 342 Slonimskii, G. L., 2, 44, 48, 109, 112, 240,

333 Slovokhotova, N. A., 423, 435 Slyterman, L. A. Ae., 313, 344 Smets, G., 51, 108 Smith, H., 91, 108 Smith-Johannsen, R., 281, 344 Snyder, G., 77, 78, 114, 172, 173, 174, 175,

176, 346 Sogolova, T. I., 44, 52, 109 Sokol’ski (Sokolskii), V. A., 423, 424, 435Southern, J. H., 258, 344 Spegt, P., 397, 401, 434 Sperati, C. A., 34, 112 Spilgies, G., 48, 109, 236 Sprenger, L., 318, 337 Spruiell, J. E., 415 Stafford, J. W., 214 Stannett, V., 313, 318, 338 Starkweather, H. W., Jr., 34, 112 Statton, W.O., 371, 374, 379, 380, 381, 389,

402, 415, 416, 431, 434 Staudinger, H., 190, 344 Stefan, J., 130, 344 Stein, R. S., 137, 138, 144, 236, 237, 238,

241, 335, 344, 404, 433 Steiner, K., 223 Stejny, J., 308, 309, 310, 311, 344 Steno, N., 116, 344 Stranski, I. N., 14, 112, 122, 344Straumanis, M., 128, 273, 344 Strickland-Constable, R. F., 73, 113 Stuart, H. A., 2, 113, 140, 168, 169, 170,

171, 179, 231, 235, 236, 242, 343,344, 345, 347, 349,3 68, 398, 434

Sukhov, F. F., 423, 435 Sullivan, P., 39, 40, 114, 378, 390, 393, 435

447 Suzuki, Y, 324, 334 Sweeting, O. J., 235, 340 Swinton, F. L., 226, 239 Szwarc, M., 278, 302, 332, 344

T

Tabata, Y, 192, 314, 344 Tabb, D. L., 380, 400, 432 Tadokoro, H., 257, 258, 317, 318, 321, 331,

334, 424, 431 Taglialatela, A., 245, 331 Tait, P. J. T., 292, 344 Takahashi, T., 43, 113 Takayanagi, M., 77, 223, 224, 358, 360,

374, 375, 381, 382, 432, 433, 435Takayanagi, T., 220 Takeda, K., 318, 341 Takemura, T., 256, 257, 340, 346 Tammann, G., 5, 113, 122, 344 Tamura, Y, 355, 432 Tanabe, Y, 257, 258, 334, 424, 431 Tani, Y., 245, 335 Tatsumi, T., 384 Taubmann, A. B., 40,41, 114 Tautz, H., 363, 435 Taylor, H. F. W., 192, 331 Terifonov, V. A., 424, 435 Thilo, E., 30, 31, 113 Thomas, J. M., 194, 345, 361, 435 Thornton, J. M., 142, 342 Tickner, A. W., 273, 332 Tilley, G. P., 235, 340 Tobin, M. C., 134, 140, 345 Tobolsky, A. V., 304, 332 Toby, S., 275, 276, 330 Tomikawa, K., 318, 341 Tomka, J., 246, 270, 345 Tosi, M., 28, 85, 108, 150, 151, 153, 157,

332 Toy, M. S., 276, 345 Treiber, G., 211, 250, 281, 345 Treolar, L. R. G., 250, 345 Trillat, J. J., 314, 343 Tsuboi, K., 384 Tsujimoto, I.,43, 113

Page 71: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 13

Tung, L. H., 214 Turnbull, D., 8, 11, 23, 24, 27, 38, 52, 63,

107, 113 Turner, B., 255, 256, 328 Turska, E., 227, 241, 245, 270, 333, 345Turturro, A., 39, 52, 105, 113

U

Überreiter, K., 17, 113, 223, 257, 328Uchida, T., 321, 331 Uhlmann, D. R., 180, 330, 363, 433

V

Vadimsky, R. G., 376, 377, 378, 379, 419,434

Valenti, B., 58, 105 Valle, G., 318, 330, 340 Valley, D. J., 279 van Antwerpen, F., 166, 242, 345 van der Heijde, H. B., 319, 345 van der Mark, J. M. A. A., 70, 111, 208,

210, 342 van Kasteren, P. H. G., 319, 345 van Krevelen, D. W., 55, 61, 62, 107, 162,

163, 242, 329, 345 van Looy, H. M., 287, 289, 343 van Wazer, J. R., 31, 113 Vaughan, D. J., 44 Veenendaal, H. J., 313, 344 Venäläinen, H., 214 Vidotto, G., 55, 59, 60, 113, 234, 240, 345Vittoria, V., 245, 331, 387 Voigt-Martin, I., 3, 107, 319, 321, 323, 345Vol’fson, S. A., 274; 329 Volkov, T. I., 243, 328 Volmer, M., 7, 75, 113, 122, 345 von Falkai, B., 53, 113, 227, 235, 236, 345Vonk, C. G., 291, 293, 333 V onnegut, B., 23, 113

W

Wada, T., 283, 328 Wales, M., 44 Walker, J. F., 294, 345 Walton, A. G., 24, 25, 26, 27, 44, 45, 110Weeks, J. J., 12, 22, 26, 53,�55, 84, 109, 118,

148, 151, 165, 213, 218, 335Weeks, N., 258, 344 Wegner, G., 194, 195, 297, 298, 318, 319

324, 325, 326, 327, 336, 337, 340,341, 345

Weir, C. E., 258, 346 Weitz, A., 211, 274, 280, 281, 345, 346,

363, 364, 365, 435 Wellinghoff, S., 42, 113 Wells, A. F., 117, 346 Wendorff, J. H., 3, 107 Wereta, A., Jr., 247, 346 Wessling, R. A., 282, 346 Westmore, J. B., 273, 332 White, D. M., 316, 317, 330, 346 Wichterle, O., 246, 299, 300, 345, 346Wignall, G. D., 3, 106 Wijga, P. O. W., 44 Wilke, W., 402, 403, 408, 429, 433 Wilkes, G. L., 258, 344 Williams, J. L., 404 Williams, J. O., 194, 345, 361,435 Williams, M. L., 9, 113 Willmouth, F. M., 56, 57, 110, 191, 337Wilski, H., 363, 431 Winkler, A., 31, 113 Winslow, F. H., 425, 435 Winter, U., 417 Witenhafer, D. E., 385, 398 Wlochowicz, A., 150 Wolpert, S. M., 274, 346 Woodward, A. E., 383 Wristers, J., 291, 294, 346

Page 72: Mp Introduction 2010 Optimized

Author Index of Volume II, Page 14

Wunderlich, B., 17, 27, 30, 34, 39, 40, 55,75, 76, 77, 78, 89, 90, 92, 93, 94, 95,96, 97, 98, 99, 100, 101, 103, 104,106, 107, 108, 111, 112, 113, 114,115, 157, 172, 173, 174, 175, 176,181, 182, 190, 192, 211, 253, 256,257, 266, 272, 273, 274, 276, 280,281, 283, 285, 287, 292, 300, 304,307, 331, 335, 336, 338, 339,340,341, 345, 346, 358, 361, 363, 364,365, 369, 371, 378, 390,392, 393,398, 418, 419, 420, 421, 424, 425,426, 428, 429, 430, 431, 432, 433,435

Wyman, D. P., 287, 339

Y

Yakhnin, E. D., 40,41, 114 Yamaoka, H., 295, 346 Yamashita, T., 224 Yamashita, Y., 355, 356, 432 Yamauchi, T., 321, 331 Yamazawa, Y., 318, 346

Yang, C. N., 123, 124, 339 Yasuniva, M., 256, 257, 346 Yee, K. C, 327; 329 Yeh, G. S. Y., 2, 114, 186, 187, 188, 189,

207, 218, 250, 334, 339, 346Yenikolopyan, N. S., 274, 329 Yim, A., 52, 114 Yurugi, T., 324, 334

Z

Zachmann, H. G., 19, 20, 21, 27, 28, 48, 64,101, 109, 114, 118, 120, 169, 170,171, 182, 183, 184, 242, 243, 268,269, 332, 336, 338, 341, 347, 368,398, 435

Zahn, H., 417 Zettlemoyer, A. C, 7, 114 Ziabicki, A., 250, 347 Zienty, F. M., 324 Zubov, K. P., 314,`336 `Zubov, Yu. A., 423, 424, 435 Zurabyan, R. S., 19, 106 Zwijnenburg, A., 208, 342

Page 73: Mp Introduction 2010 Optimized

Subject Index of Volume II

The index is organized according to macromolecules and subject matter. Subjects with severalentries show boldface page numbers to indicate more extensive discussion. Frequently usedterms are listed only under the page numbers where definitions can be found. For copolymerscheck for both repeating units since only one order of co-monomers is listed. For block andalternating copolymers (block and alt, respectively) check also copolymer (co).

A

Adatom; 125 Adsorption, macromolecule; 42, 43Annealing; 348–429

backbone change on; 425–429chemical reaction on; 367 copolymer sequence change on;

427–429 definition; 348–350 deformed materials; 401–418 density change on; 410–411 etching on; 426 fold connection on; 426fold-length change

increase on; 172, 381 irreversible; 375 reversible; 411, 418

hole formation on; 376 isomerization by; 428 melt grown crystal; 393–429 molecular weight change on; 31,

425–427 multilayer crystal; 380 nucleation control; 355, 356pressure; 379, 418–425process of; 370–373 shish-kebob crystal; 391, 392single molecule crystal; 58, 379 solution grown crystal; 371–392 solvent effect on; 389–391 temperature regions of; 374–375,

375–382, 388–389, 393, 403–405

Archimedes’ spiral; 127 Avrami equation, 48, 132–125

branching crystals; 142–144complications; 139–146 correlation between parameters; 138,

146, 247 crystal perfection, 146 deformation, change on; 252 exponents; 147 fibrillar growth; 141 lamellar crystallization; 142 partial crystallization, effect of; 137three-dimensional; 135 transport control, effect of; 141 two-dimensional; 133 two stage crystallization; 144–146volume change, effect of; 139–141

B

Bravais-Friedel law; 128 Bundle model; 2

C

Ceiling temperature; 193, 274 Chain

end; 156, 179, 181, 354, 402 effect on segregation; 104 extended; 351 extension under pressure; 253 folding; 22–28, 83–87, 147–160, see

also Fold length folding principle; 22, 197, 350

Page 74: Mp Introduction 2010 Optimized

Subject Index of Volume II, Page 2

Chemicrystallization; 425, 426 Clathrate polymerization; 316–318 Cobweb texture; 292, 293 Cold crystallization; 22, 181, 266, 267Copolymer crystallization; 259–271

block; 271 random; 260-267

Crystalas-polymerized; 189 branching; 142 defect; 350 drawn, model; 402, 403 growth; 115–197

art of; 117 new phase; 360 truncated; 138

impingement; 350 liquid, polymerization; 314 nascent; 189 perfection; 146, 168–178, 211, 237, 238,

349 picture frame; 379, 388, 390 pyramidal; 379 screw dislocation, governed; 73–75, 127,

128 shape

change; 350–354 equilibrium; 351,411

single molecule; 22, 57, 60, 379 surface energetics; 14, 123–128 surface roughness; 124, 155–157

Crystallization and polymerization

separate; 33, 79, 190, 192simultaneous; 29, 32, 33, 190, 273,

277, 280, 281, 294, 295, 312 successive; 33, 190, 191, 273, 277,280, 283, 286, 295, 300, 312

concentration dependence; 197–203copolymer; 259–271 cross-linked molecules; 248, 250deformation, effect on; 247–252diffusion control; 130, 131 during polymerization; 16, 17, 29–35,

43, 74, 79, 189–198, 270–327

Crystallizationfluctuation theory; 150–155 folded chain; 147–160 free growth approximation; 135 fringed micellar; 178–186gaseous monomer; 272–281 history of; 115–118 limiting cases; 131 liquid monomer; 282–313 measured by light depolarization; 137melt; 212–271 melt-solution comparison; 213, 214mixing effect; 144 molecular weight dependence; 160–162,

164–168, 233, 243, 244 morphology, influence on; 117nucleation controlled; 75–78, 121, 122,

127, 132, 158, 179 overall; 132–147 pressure and orientation effect; 258pressure effect; 210–212, 251–259 rate, constancy; 120

fold-length dependence; 166, 167linear; 72–78, 119–133, 157

concentration dependence; 200 maximum; 162, 163, 248

regime I; 159, 203, 234 regime II, 159, 161, 165, 234 secondary; 144–146, 168–178, 237, 238,

349 diffusion controlled; 170

sequence; 175 sheaf-like; 245 size dependence; 158 solid monomer; 313–327 solution; 197–212

concentrated; 206, 207macromolecular; 207

steps; 122 stirring effect; 70, 93, 207–210 surface kinetics governed; 122–129tacticity influence; 238thermodynamics; 4 three-dimensional; 135 transport controlled; 130, 131

Page 75: Mp Introduction 2010 Optimized

Subject Index of Volume II, Page 3

Crystallizationtwo-dimensional; 133 two stage; 144–146, 255 viscosity effect; 205 volume change, effect on; 139–141without chain folding; 178–189

D

Defect concentration change; 357–360nonequilibrium; 357 paracrystalline; 357

Deformation, effect on crystallization;247–252

Dendrite, dissolution; 390 Density, change on annealing; 406–411Diffusion, free enthalpy of activation; 9

drawn sample; 404 sliding; 356 surface; 122, 125

Disentanglement; 3 Dislocation; 358, 359, 362

climb; 355 density; 358 fold; 355 fractional; 97

Diyne reactivity; 326 Drawn polymer, X-ray diffraction; 405–411

E

Edge dislocation; 358, 359 Energy, free (Gibbs free energy), see Free

enthalpy Entanglement; 170, 180, 181 Enthalpy, free; see Free enthalpy Entropy, conformational; 19–21

restriction; 20, 21 transport; 163

Epitaxy; 38,42–44,48, 58, 59, 92, 277 Ester interchange on copolymer annealing;

427 Etching; 426 Evaporation; 122, 123

F

Faces, vicinal; 128 Fibrillation; 361, 402 Flow

extensional; 67, 208, 248 turbulent; 70

Flux equation; 85, 153, 157 Fold-length

average; 86, 149, 154 change, reversible; 411

with temperature; 83, 148–155,354–356, 381, 406

decrease; 351, 370, 375, 411distribution; 83, 152 doubling; 354, 355, 388 extension, chemical; 298, 299, 305, 354,

367, 426, 429 high supercooling; 86, 87, 148–151, 155increase; 171, 176,351,355

drawn sample; 406 kinetics; 382

stepwise; 388 Free energy (Gibbs); see Free enthalpyFree enthalpy

activation for diffusion; 8–10 critical; 8, 11–15 crystallization; 4, 5, 12, 261heterogeneous nucleation; 36, 37homogeneous nucleation; 8–15, 19, 27,

32 molecular nucleation; 101, 102nucleation; 5, 6 secondary nucleation; 79–81, 84, 87,

102 tertiary nucleation; 81

Fringed micelle; 17 annealing; 354 size restriction; 16, 17 surface free energy; 19

G

Glass transition; 363 Globular texture; 290–293

Page 76: Mp Introduction 2010 Optimized

Subject Index of Volume II, Page 4

Globule; 314 Grain boundary; 362 Growth spiral, effect on crystal growth; 205

H

Hardening; 349 Hauptkristallisation; 169 Heat

conduction; 130 flow; 130

Hole formation on annealing; 376, 377, 379,380, 388, 395

I

Ice crystal; 117 crystallization; 130, 131

Induction time; 65, 71, 139 Interpenetration of macromolecules; 2, 3Ising model; 123 Isomorphism; 259, 266

J

Jets, opposing; 67, 248

K

Kossel crystal; 14

L

Lattice gas; 123, 124 model; 19

Ledge growth; 124–127 Leuchs’ anhydride; 299, 302 Light, polarized for measurement of

crystallization; 137 Liquid crystal polymerization; 314 Loop; 156, 170, 180–184, 402

surface free energy of; 28

M

Macroconformation, amorphous; 2, 3, 185,186changes in, 354–357

Macromolecule, adsorption 42, 43 Markov chain; 152 Mass transport through the crystal; 356Matrix polymerization; 314 Matter transport; 365–367 Meander model; 185 Melt, macromolecular; 2, 3, 185, 186Memory effect; 66 Micelle, fringed, see Fringed micelle

polymerization; 314 Moiré pattern; 358, 359, 362 Molding, injection; 131 Molecular ray method of polymerization;

314 Molecular weight

critical; 96, 97, 100 crystal growth dependence on; 160–162,

164–168 Monolayer polymerization; 314, 315Morphology

determined by crystal growth; 117, 128determined by nucleation; 33, 35equilibrium; 11, 14–15

Mosaic size change; 366

N

Nachkristallisation; 169 Nascent crystal; 189 NMR; 405–409 Nodular melt structure; 185, 186Nucleation; 1–105

athermal; 70 cavities for; 38, 52, 63–64 computer simulation; 15, 87 control

annealing; 355, 356 crystal growth; 72–79

copolymer, rate of; 266 crystal size dependence; 158, 159

Page 77: Mp Introduction 2010 Optimized

Subject Index of Volume II, Page 5

Nucleation, droplet experiment; 23–26, 44 epitaxy; 38, 42–44, 48, 58, 59 four temperature regions of; 23 glasses; 63 heterogeneous; 6, 35–52, 71

irregular surfaces; 37 limit of; 23 melt; 43–52 theory; 36–39

heterogeneous solution; 39–43homogeneous; 5, 16–35 influence on morphology; 33, 35limitations; 13–15 lines; 66 molecular; 7, 76, 79, 88–105, 201

concept of; 98–104 effect of the substrate on; 105 effect on chain folding; 150qualitative evidence; 89–91

multiple; 159of new phases; 360 oligomer; 276 orientation-caused; see Self-nucleationprimary 1–72; 88

rate; 8–11, 25, 26, 75, 76 rate; 8 secondary; 6, 72–88

computer simulation; 87 concept; 79–87 experimental evidence; 76–79fictitious; 81 on large substrates; 103, 104 rate; 75, 76

tertiary; 6, 72, 79, 81, 84, 87 concept; 81

theory; 7–16 chain-folded growth; 148–150

thermal; 70 Nucleus

chain folded; 17, 22–28, 33, 71, 82, 88 of growing molecule; 17, 33–35

critical; 5 critical dimensions; 79 fringed micellar; 17–22, 29, 32, 33, 62,

71, 81, 82, 88

Nucleusheterogeneous

number; 48, 59–63 removal; 41, 42, 62, 63

molecular; 88, 89, 98–104 multiple; 157

oligomer; 17, 29–33, 71, 297, 303, 319one molecule; 22, 57 secondary; 82 size

annealing; 356 critical; 11, 12

size and shape molecular; 101, 102 primary 11–16, 28, 31, 35–37,

56–58, 62, 64, 71 secondary; 79–87

stable; 5 subcritical; 5, 63–66, 80 supercritical; 5

Nylon 2, crystallization from the monomer;303

Nylon 3, crystallization from the monomer;303

Nylon 4, crystallization from the monomer;301

Nylon 5.6, melt crystallization; 229 Nylon 6

annealing; 386, 388 of drawn material; 416 of melt grown crystal; 399

crystallization from gaseous monomer; 276, 277from liquid caprolactam; 299, 300

drawn, annealing; 401 heterogeneous nucleation; 44 high pressure cystallization; 257homogeneous nucleation; 24 linear crystal growth rate; 77 melt crystallization; 228, 244–246reversible long period change; 411 self-nucleation; 53, 55

Nylon 6-co-6.6, crystallization; 270 Nylon 6-co-piperazine adipate,

crystallization; 270

Page 78: Mp Introduction 2010 Optimized

Subject Index of Volume II, Page 6

Nylon 6-co-piperazine terephthalate,crystallization; 270

Nylon 6.6 annealing; 386, 388

of drawn material; 416 of melt grown crystals; 399

fold length invariance; 150heterogeneous nucleation; 45 linear crystal growth rate; 77 maximum crystal growth rate; 163 melt crystallization; 229, 230 self-nucleation; 53

Nylon 6.10 annealing; 386, 388 melt crystallization; 230

Nylon 6.12, annealing; 386, 388 Nylon 8, melt crystallization; 228 Nylon 9.6, melt crystallization, 230 Nylon 11

heterogeneous nucleation; 44 linear crystal growth rate; 77 melt crystallization; 228

Nylon 11-co-6, crystallization; 270 Nylon 12, melt crystallization; 229

O

Occlusion; 43, 285, 312 Oligomer concentration; 29 Order, before crystallization; 116, 185–187 Ostwald ripening; 367, 391 Ostwald’s law of successive states; 360

P

Packing density; 163 Panpsychism; 116 Penton, see Poly[3,3-bis(chloromethyl)-

oxyacyclobutane] Perdeuteropolyethylene; 367Photopolymerization; 324 Poisson distribution; 132 Poisson’s raindrop problem; 132, 133Polyacenaphthylene, topotactic

polymerization; 316

Polyacetaldehyde, solid statepolymerization; 313

Polyacrylamide, solid state polymerization;314 Poly(acrylic acid), topotactic control ofpolymerization; 315

Polyacrylonitrile annealing of drawn material; 414 solid state polymerization; 314

Polyalanine, crystallization from theLeuchs’ anhydride; 301–303

Polyamide annealing by chemical reaction; 367crystallization from liquid monomer;

299–304 fold opening; 426 heterogeneous nucleation from solution;

40, 41 Polyarsenate, oligomer nucleation; 31Poly-p-benzamidostyrene, solid-state

polymerization; 315, 316 trans-l,4-Polybutadiene

annealing; 384, 385, 388 clathrate polymerization; 318crystallization; 268 deformation; 66 isomerization by annealing; 429 melt crystallization; 219

Poly-1-butene, isotactic annealing; 383, 388 crystal forms of; 60, 61, 360, 361crystallization from the monomer; 293homogeneous nucleation; 24 melt crystallization; 217

kinetics; 59, 60 polymorphic changes; 360, 361 self-nucleation; 55, 58–60

Poly-�-caprolactone crystallization from poly(vinyl chloride);

207 melt crystallization; 222

Poly-�-caprolactone/poly(ethyleneoxide)/poly-�-caprolactone,crystallization; 271

Polycarbonate, crystallization ondeformation; 66, 250

Page 79: Mp Introduction 2010 Optimized

Subject Index of Volume II, Page 7

Polychloral, ceiling temperature; 194 trans-l,4-Poly(2-chlorobutadiene)

crystallization on deformation; 251 melt crystallization; 220

Poly[3,3-bis(chloromethyl)oxyacyclo-butane], (Penton)

annealing; 385, 386, 388, 398, 401 concentration dependence of crystal

growth; 202, 203 crystal growth rate; 202 homogeneous nucleation; 24 melt crystallization; 222 self-nucleation; 55 solution crystalIization; 202, 203 surface free energy; 203

Polychlorotrifluoroethylene crystalIization under pressure; 253, 257heterogeneous nucleation; 45, 51maximum crystal growth rate; 162, 163melt crystallization; 218 primary nucleation; 22, 23 self-nucleation; 55 thickening after crystallization; 357

Poly(trans-cyclododecane) annealing; 387 crystallization, deformation, 252

Poly(1,4-cyc1ohexylenedimethyleneterephthalate), annealing with cis-transisomerism; 427

Poly(decamethylene adipate) concentrated solution crystallization;

206 melt crystallization; 226

Poly(decamethylene sebacate) linear crystal growth rate; 77 melt crystallization; 226

Poly(decamethylene terephthalate)heterogeneous nucleation; 23 melt crystallization: 266 self-nucleation; 53 solution crystallization; 205

Poly(2,3-dichlorobutadiene), clathratepolymerization; 317

Poly(2,3-dimethylbutadiene), clathratepolymerization; 317

Poly(2,6-dimethylphenylene oxide),heterogeneous nucleation; 51, 52

Poly(2,5-distyrylpyrazine), topotacticcrystallization; 324

Polydimethylsiloxane, heterogeneousnucleation; 52

Polydiyne, topotactic crystallization;324–327

Polyepichlorohydrin, crystallization fromthe liquid monomer; 312

Poly(1,4-epoxyclohexane), crystallizationduring polymerization; 308, 319, 311

Polyester adsorption; 42 annealing; 386

by chemical reaction; 367 fold opening; 426

Polyethylene annealing, 351–371

drawn samples, 403–412, 423 high-temperature; 378 intermediate temperature; 377–379 low temperature; 376, 377 melt grown crystals; 368, 372, 373,393–396 pressure; 418–424shish-kebob; 391, 392 solution grown crystals; 368, 369,

371–383, 388 solvent contact; 389–391 unit cell change on; 375, 380, 381

chemicrystallization; 425, 426compressibility; 418 crystal growth

molecular weight dependence;164–166

concentration dependence; 200, 201linear; 77, 120, 121, 199 maximum; 162, 163

crystal perfection; 168, 172–176 crystal size increase; 119 crystallization

from concentrated solution; 206from diazomethane; 283–287 from ethylene; 283, 288–293

Page 80: Mp Introduction 2010 Optimized

Subject Index of Volume II, Page 8

Polyethylenecrystallization

from the melt; 213–216, 232–235 kinetics of; 59

regimes; 234 secondary; 169–171 shear; 68 solution; 198–202

under pressure; 211 stirred solution; 208–210 thickening after; 357 two stage; 234 under pressure; 253–256

defects in; 357 deformation; 66 density, change on annealing; 404

in drawn samples; 406–409dissolution; 389, 400 epitaxy; 58, 93 equilibrium segregation; 99 extended chain crystal; 76–78, 89,

94–96, 369, 370, 372, 373, 423fold extension; 367 fold length; 77

decrease; 375 on crystallizationwith

deformation; 249 increase; 381, 382, 406

free enthalpy of fusion; 12heterogeneous nucleation

from solution; 39 from the melt; 44–47, 52

high pressure phase; 256 hole formation; 374, 376, 377, 378homogeneous nucleation; 23

from solution; 27 meander model; 185, 186 melting temperature; 89, 90

change with pressure; 418 molecular weight segregation; 89–98monoclinic; 358, 361, 423 mosaic increase; 366 neutron scattering of amorphous; 3nucleation

droplet experiment; 23, 24, 44

Polyethylenenucleation

epitaxy; 42 molecular; 201 secondary; 76-79

nucleus size, molecular; 102polymorphic change; 361 pressure and orientation effects; 258

on recrystallization; 368, 369, 382,390, 391, 421,422

screw dislocation; 75 segregation of branched; 91 self-nucleation; 53–61, 199 shish-kebob; 208 stress relief; 375 surface free energy, 25, 28, 45, 46, 200,

235 surface melting; 394 surface roughness; 155–157

Poly(ethylene adipate) linear crystal growth rate; 77 melt crystallization; 224

Poly(ethylene-co-vinyl acetate),crystallization; 268

Poly(ethylene oxide) adsorption of; 42 annealing; 385, 388

melt grown crystals, 397, 398, 401copolymer, block, self-nucleation; 55crystal growth

fold-length dependence; 167 molecular weight dependence;166–167 rate; 121

linear; 167 crystal perfection; 177, 178, 241 crystallizati on

concentrated solution; 206 melt; 213, 221, 239–241 solution; 203, 204

nucleation, homogeneous; 24 screw dislocation; 74, 75 segregation; 91 self-nucleation; 53, 55, 59–61 terrace; 74

Page 81: Mp Introduction 2010 Optimized

Subject Index of Volume II, Page 9

Poly(ethylene oxide-co-styrene),crystallization; 204, 205

Poly(ethylene sebacate) melt crystallization; 213 viscosity effect on crystallization; 205

Poly(ethylene succinate), meltcrystallization; 223

Poly( ethylene terephthalate) annealing

chemical reaction; 426–428 drawn material; 415 melt grown crystals; 398

crystal growth molecular weight dependence; 166,

242, 243 rate; 242, 243

linear; 77 maximum; 163

crystal perfection; 168 crystallization

glassy state; 186–189 high temperature; 257 melt; 224, 241–244 secondary; 169, 171

deformation; 66 fold length change, reversible; 411, 418fold length invariance; 150 glass transition; 364 heterogeneous nucleation; 51 nodular structure; 186, 187 self-nucleation; 53, 55

Poly( ethy lene terephthalate-co-azelate),crystallization; 269

Poly(ethylene terephthalate-co-methylsuccinate), change of sequence length onannealing; 247, 428

Poly(ethylene terephthalate-co-sebacate)crystallization; 136, 269, 230 glass transition; 365

Polyfluoral, crystallization duringpolymerization; 312

Polygermanate, oligomer nucleation; 31Polyglycine, solid state polymerization; 313 Poly(hexadiyne), homogeneous conversion;

195

Poly[2,4-hexadiyne-1,6-bis(phenyl-urethane)], topotactic polymerization;321, 327

Poly [2,4-hexadiyne-1,6- bis(stearyl-urethane)], topotactic polymerization;327

Poly[2,4-hexadiyne-1,6-bis(p-tolyl-sulfonate)] topotactic polymerization;327

Poly(2,4-hexadiyne-1,6-diol), topotacticpolymerization; 327

Poly(hexamethylene adipate), meltcrystallization; 225

Poly(hexamethylene succinate, highpressure cyrstallization; 257

Poly(hexamethylene terephthalate), meltcrystallization; 225

Poly(�-hydroxyundecanoic acid), drawn,annealing; 401

Polyisoprene; see 1,4-Poly(2-methyl-butadiene)

Poly(4,4'-isopropylidenediphenylenecarbonate)

crystal growth rate, maximum; 163crystallization, melt; 227

Polymerizationthiourea; 316–318 urea; 316–318 solid state, see Crystallization, solid

monomer cis-1,4-Poly(2-methylbutadiene)

crystal growth rate, linear; 249crystallization

deformation; 247–252 high pressure; 257 melt; 214, 219 secondary; 168

deformation; 66 trans-1,4-Poly(2-methylbutadiene)

crystal growth, molecular weightdependence; 166

crystallization deformation; 250, 251 melt; 219

Poly(4-methyl-1-butene), crystallizationfrom the monomer; 293

Page 82: Mp Introduction 2010 Optimized

Subject Index of Volume II, Page 10

Poly(methyl-2-cyanoacrylate), amorphous;281

Poly(methyl methacrylate)atactic, neutron scattering; 3 isotactic, crystallization on deformation;

250 Poly(4-methyl-1-pentene), isotactic

annealing; 384, 388 pressure; 425

crystallization, high pressure; 258nucleation, heterogeneous; 47

Polymorphic change; 360, 361, 388Polyolefin

crystallization during polymerization;282–293

nucleation, heterogeneous; 47 Polyoxymethylene

annealing; 385,388 drawn material; 415 fold expansion, 297–299, 429 melt grown crystals; 397 pressure; 424

ceiling temperature; 194, 274 crystal extended chain; 298

fibrous; 319 crystallization

gaseous formaldehyde; 273–276 liquid monomer; 294–299 melt; 220 trioxane in solution; 297–299

fold-length change, reversible; 411nucleation

epitaxy; 42, 43 homogeneous; 24 oligomer; 30,31, 43, 297

screw dislocation; 75 topotaxy; 318–323

Poly(pentamethylene terephthalate), meltcrystallization; 225

Polyphosphate, oligomer nucleation; 30Polypivalolactone, melt crystallization; 227Polypropylene, isotactic

annealing; 383, 388 drawn material; 412, 413

Polypropylene, isotactic annealing

low temperature; 401 melt grown crystals; 396, 401pressure; 424

crystal branching; 75 crystal growth rate; 236

linear; 77 maximum; 163

crystallization deformation; 252 high pressure; 257 melt; 213, 217, 235–239 out of propylene; 287–293 rate, tacticity effect; 238 solution; 205

nucleation heterogeneous; 44–51 homogeneous; 24

segregation; 91–93 self-nucleation; 53

Polypropylene, syndiotactic annealing pressure; 425 crystallization, high pressure; 258

Poly(propylene oxide) crystal growth rate, linear; 77crystallization, melt; 221 glass tansition; 364 polymerization, solid state; 314segregation of different stereo isomers ;

91 Poly(N,N'-sebacoylpiperazine), melt

crystallization, 231 Polysilicate, oligomer nucleation; 31Polystyrene, atactic

glass transition; 362–365 neutron scattering; 3

Polystyrene, isotatic crystal growth rate linear; 77

maximum; 162, 163 crystallization

from atactic polystyrene; 207deformation; 250 melt; 217 solution; 205

Page 83: Mp Introduction 2010 Optimized

Subject Index of Volume II, Page 11

Polystyrene, isotatic deformation; 66 fold-length invariance; 150 glass transition; 364 nucleation

heterogeneous; 47, 52 homogeneous; 24

self-nucleation; 55, 62 shish-kebob annealing; 392

Polytetrafluoroethylene ceiling temperature; 194 crystal

branching; 75 extended chain; 94

crystallization during polymerization; 34 from gaseous tetrafluoroethylene;

276 from liquid monomer; 282 high pressure; 258 melt; 216 during polymerization; 34

recrystallization; 368 segregation; 94 thickening; 357

Poly(tetrafluoroethylene-co-hexafluoro-propylene), annealing, 397

Polytetrahydrofuran, crystallization duringpolymerization; 308, 309

Poly(tetramethylene isoterephthalate), meltcrystallization; 225

Poly(tetramethylene terephthalate), meltcrystallization; 224

Poly(tetramethyl-p-silphenylene siloxane)annealing

drawn material; 417 melt grown cystal; 399

crystal growth molecular weight dependence; 161,

162, 164–166 rate

linear; 77 maximum; 162, 163

crystallization, melt; 231 fold-length invariance; 150

Polytriyene; 327 Polyurea, fold opening; 426 Polyurethane

annealing, drawn material; 417 crystallization, melt; 231 fold opening; 426 secondary crystallization; 168

Poly(vinyl alcohol) annealing, 384, 388 nucleation, heterogeneous; 44

Poly(vinyl chloride), syndiotactic clathrate polymerization; 317crystallization, melt; 218

Poly(vinyl stearate), solid statepolymerization; 315

Poly(vinylidene chloride), crystallizationfrom monomer; 282–283

Poly(vinylidene fluoride) annealing

drawn material; 413 pressure; 425

crystallization, high pressure; 258 Poly-p-xylylene

crystallization from gaseous monomer; 278–281 from liquid monomer; 311

polymorphic changes; 361 Pore volume; 367 Principle of least motion; 194

R

Radiation initiation; 313 Random coil; 2, 3, 66, 67, 198 Random walk; 125 Reaction

addition; 34 insertion; 33 step; 29, 32

Recrystallization; 349, 362, 368, 369, 403 from solution; 390, 391

Rejection; see Segregation Relaxation of semicrystalline sample; 364Reorganization; 171 Rubber, natural; see cis-1,4-Poly(2-methyl-

butadiene),

Page 84: Mp Introduction 2010 Optimized

Subject Index of Volume II, Page 12

S

Screw dislocation, critical radius ofcurvature; 75

Sectorization; 158 Segregation; 89–105

annealing caused; 394 chemical structure caused; 91, 204, 205on crystallization; 169

melt; 94–98 solution; 91–94

equilibrium; 99 liquid-liquid separation; 91

Selenium annealing; 426

by chemical reaction; 367 ceiling temperature; 194 crystal, extended chain; 304 crystal tracht; 128 crystallization

melt; 216, 304–308 vapor; 272–274

equilibrium, ring-chain; 304 fold opening; 426

Self-nucleation; 6, 52–70, 72, 349 above the melting temperature; , 63–66 at low temperature; 61–63 from the melt; 59–61molecular weight dependence; 56, 59 several molecules; 58 solution; 53–59 through orientation; 63, 66–70

Self-nucleus, size; 56, 64–66 Self-seeding; see Self-nucleation Shish-kebob; 66–70, 191, 208, 249

annealing; 391, 392 Shrinkage of drawn fiber; 411 Silicon disulfide, fibrous crystals; 129Sintering; 349, 350, 354, 367, 388 Site symmetry; 196 Solid state polymerization; see also

Crystallization, solid monomerheterogeneous; 194–196 homogeneous; 194–195

Stefan problem; 130, 131

Stirring, effect on crystallization; 207–210Stress

interlamellar; 389 internal; 362 relief; 349, 361, 362–365, 375, 404, 426

Structure, amorphous; see Melt,macromolecular

Sulfur trioxide, ceiling temperature; 194Supercooling; 4 Surface

definition; 4 fold; 350 free energy; 4, 36–38

from droplet experiment; 25, 45effective, 154 fringed micelle, 19–21 of loops, 38 molecular weight dependence; 165temperature dependence; 149 values of; 21, 24–28, 45, 46, 51, 83,

200, 203, 235 melting; 394 roughness; 124, 155–157

Switchboard model; 179

T

Taylor vortex, 70, 208 Tellurium, crystal tracht; 128 Temperature, critical (lattice gas); 123Tempering; 349 Terrace; 74 Texture; 288 Tie molecule; 156, 179, 183,403Topochemical reaction; 31, 192, 313, 327,

361 Topotactic reaction; 192, 313, 315–318,

324, 327 Tracht; 128 Transamidation; 426 Transcrystallization; 131Transesterification; 426 Transmission coefficient; 9 Transport processes, effect on the Avrami

equation; 141

Page 85: Mp Introduction 2010 Optimized

Subject Index of Volume II, Page 13

Trouton’s rule; 123, 125 Twin, multiple; 360

V

Vinyl polymer, crystal nucleation; 32Viscoelasticity; 362 Volterra integral equation; 134

W

WLF equation; 9, 162 Wormlike texture; 291–293

Z

Ziegler catalyst; 287 Ziegler-Natta catalyst; 32, 33, 283 Zone polymerization and crystallization;

300

Page 86: Mp Introduction 2010 Optimized

Macromolecular Physics Bernhard Wunderlich Rensselaer Polytechnic Institute Troy, New York

VOLUME 3

Crystal Melting

ACADEMIC PRESS 1980 A Subsidiary of Harcourt Brace Jovanovich, Publishers

New York London Toronto Sydney San Francisco

Page 87: Mp Introduction 2010 Optimized

COPYRIGHT © 1980, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC. 111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWt 7DX

Library of Congress Cataloging in Publication Data

Wunderlich, Bernhard, Date Macromolecular physics.

Includes bibliographies and indexes. CONTENTS: v. 1. Crystal structure, morphology,

defects.--v. 2. Crystal nucleation, growth, annealing.-­v. 3. Crystal melting.

1. Macromolecules. 2. Crystals. 1. Title. QD381.W86 547.7 72-82632 ISBN 0-12-765603-0 (v. 3)

PRINTED IN THE UNITED STATES OF AMERICA

80 81 82 83 9 8 7 6 5 4 3 2 1

Page 88: Mp Introduction 2010 Optimized

Contents

LIST OF TABLES

PREFACE

ACKNOWLEDGMENTS

CONTENTS OF VOLUMES 1 AND 2

Chapter VIII Equilibrium Melting

8.1 Characterization of Matter through Its Equilibrium Melting Behavior 8.1.1 Equilibrium Melting of Linear Macromolecules 8.1.2 Equilibrium Melting to Characterize Matter

8.2 The Equilibrium Melting Process 8.2.1 General Statements about Melting 8.2.2 The Melting Process 8.2.3 The Equilibrium Melting Process of Flexible Linear

Macromolecules 8.3 Extrapolation to Equilibrium

8.3.1 Volume and Heat Capacity Changes on Melting 8.3.2 Melting Temperatures 8.3.3 Heats of Fusion

8.4 Experimental Data 8.4.1 Polyethylene 8.4.2 Polypropylene 8.4.3 Polyoxymethylene 8.4.4 Poly(ethylene oxide) 8.4.5 Poly(ethylene terephthalate) 8.4.6 Nylon 6 8.4.7 General Conclusions

8.5 Changes in the Equilibrium Melting Temperature 8.5.1 Molecular Weight Effects 8.5.2 Pressure Effects

v

vii

ix

xi

xiii

1 2 4 5 6

12

14 23 23 24 39 45 46 61 64 66 67 70 71 79 79 91

Page 89: Mp Introduction 2010 Optimized

vi

8.5.3 Deformation Effects 8.5.4 Diluent Effects

References

Chapter IX Irreversible Melting

9.1 Observation of Irreversible Melting 9.1.1 Recognition of Irreversible Melting 9.1.2 Early Observation and Interpretation of Irreversible Melting

9.2 Experimental Methods 9.2.1 Time-Dependent Melting 9.2.2 Cross Linking 9.2.3 Chemical Reaction and Etching

9.3 Experimental Data 9.3.1 Melting of Crystals Grown from Solution 9.3.2 Melting of Crystals Grown from the Melt 9.3.3 Melting of Deformed Crystals

9.4 Superheating 9.4.1 Equilibrium Crystals 9.4.2 Nonequilibrium Crystals

9.5 Changes in the Temperature of Melting 9.6 Surface Melting 9.7 Single-Phase Systems

References

Chapter X Copolymer and Isomer Melting

10.1 Structure and Macroconformation 10.1.1 Chemical Structure 10.1.2 Physical Structure

10.2 Equilibrium Melting 10.2.1 Phase Diagrams 10.2.2 Experimental Approximations

10.3 Nonequilibrium Melting 10.3.1 Random Copolymers 10.3.2 Regular Copolymers 10.3.3 Block Copolymers 10.3.4 Side Chain Crystallization

References

AUTHOR INDEX

SUBJECT INDEX

Contents

96 103 115

128 129 134 138 138 142 144 146 147 162 191 214 215 222 224 234 236 240

254 255 261 264 265 270 275 275 309 317 325 331

341

l354

Page 90: Mp Introduction 2010 Optimized

List of Tables

VIII. Melting temperatures and entropies of fusion of crystals of spherical motifs 9

2 Melting temperatures and entropies of fusion of crystals of nonspherical motifs 11

3 Melting temperatures and entropies of fusion of crystals of linear hydrocarbons 11

4 Melting temperatures of paraffins Cx H2x+2 and polyeth-ylene 27

5 Heats of fusion of solution grown polyethylene 41 6 Melting data of linear macromolecules 48 7 Conformational entropies of polyethylene calculated for

the isolated chain using various approximations 59 8 Summary of equilibrium melting data 72 9 Calculated conformational entropies of fusion 75

10 Measured values for the change in melting temperature with pressure 95

11 Eutectic temperatures and compositions of poly(ethylene adipate )-diluent systems 113

12 Eutectic temperatures and compositions of poly-ester-dioxane systems 113

13 Equilibrium dissolution temperatures of polyethylene for various solvents 114

IX. Free enthalpy of fusion of metastable polyethylene sin-gle crystals 151

2 Melting temperatures of poly(ethylene oxides) of dif-ferent molecular weights and number of folds 160

3 Melting data of carefully melt crystallized polyethylene of various molecular weights 165

Vll

Page 91: Mp Introduction 2010 Optimized

viii List of Tables

4 Melting temperatures and crystal sizes of drawn poly-ethylene after irradiation to avoid crystal perfection 195

5 Thermal and structural data of drawn polypropylene 205 6 Changes in crystal lamellar thickness and interlamellar

separation of polyethylene crystallized from the melt at 110°C 237

X. 1 Typical monomer reactivity ratios 260 2 Copolymer data of equilibrium crystals of trioxane and

cyclic ethers 274 3 Properties of differently crystallized chlorinated poly-

ethylene 283 4 Melting temperatures and crystallinities of mixtures of

amorphous and isotactic polypropylene 293 5 Melting temperatures of homopolymers and copolymers

near the minimum melting concentration of terephthalic and sebacic acid with linear diols of varying chain length 302

6 Melting temperatures of homologous series of aliphatic polyamides and polyesters 314

7 Melting temperatures of terephthalate macromolecules with linear diols of varying chain length 316

8 Structural and melting characteristics of AxBy poly(ethylene oxide-black-propylene oxide) copolymers 320

9 Structural and melting characteristics of ByAxBy poly(ethylene oxide-black-propylene oxide) copolymers 321

10 Melting temperatures of isotactic poly(1-alkenes) 326

Page 92: Mp Introduction 2010 Optimized

Preface

This third volume completes the first part of the project' 'Macromo­lecular Physics." The first volume dealt with the description of macro­molecular crystals; the second volume dealt with crystal growth; and the third volume summarizes our knowledge of the melting of linear, flexible macromolecules. The discussion in the three volumes goes from reason­ably well-established topics, such as the structure, morphology, and de­fects in crystals, to topics still in flux, such as crystal nucleation, detailed growth mechanisms, and annealing processes, to arrive at the present topics of equilibrium, nonequilibrium, and copolymer melting. Our knowl­edge is quite limited on many aspects of these latter topics.

For the second part of the project it is planned to discuss topics such as thermodynamics and heat capacities (with H. Baur and A. Mehta) and mechanical properties. Topics such as optical properties and electrical properties are planned in a parallel multivolume treatise edited by R. S. Stein. t

One of the main conclusions reached in writing this part of "Macro­molecular Physics" is that equilibrium melting of flexible, linear macro­molecules discussed in Chapter VIII is of great general interest (Sect. 8.1) and that the melting parameters can give insight into the nature of mol­ecules and phase structure (Sect. 8.4.7). Only a relatively small group of macromolecules, however, has been analyzed in sufficient detail (see Table VIII.6). The unique properties of flexible, linear macromolecules became apparent in the treatment of changes in the equilibrium melting temperature (Sect. 8.5). Most of the experimental work deals with irre­versible melting, described in Chapter IX. New experimental methods

t R. S. Stein (ed.), "Polymer Physics." Vol. 2 (1977); other volumes in preparation. Academic Press, New York.

IX

Page 93: Mp Introduction 2010 Optimized

x Preface

that fix metastable structures long enough for analysis are reviewed for the first time in Sect. 9.2. The present uncertainty about many aspects of melting and melting temperatures rests with our ignorance about in­ternal parameters determining the irreversible processes. Much of the confusion in the field comes from treating results from irreversible melting experiments as equilibrium data. An effort is made to sort experiments by careful examination of condition. The copolymer melting discussion in Chapter X reveals that here the difficulties are compounded, and prac­tically none of the developed copolymer melting theories can be applied to the experimental data. The wide variety of data collected in this chapter should help dispel some common misconceptions about the melting of copolymers. The major effect in copolymer melting turns out to be most often a crystal size restriction, and much less frequently a mixing effect. Eutectic phase diagrams that are usually used in the description of co­polymers are found to be less frequently appropriate than assumed. Partial solubility, comonomer concentration enrichment at interfaces, and vary­ing limiting crystal sizes are often neglected variables. Mixed crystal sys­tems are easier to treat, but to date only one reasonably complete phase diagram has been published (Fig. X.19). Finally, the multidimensional nature of copolymer melting is revealed in the discussion of regular co­polymers, block copolymers, and side chain copolymers.

The documentation was done, as in the earlier volumes, by a broad search of the literature, assisted for this volume by a computer search of Chemical Abstracts on melting of macromolecules (and polymers), to the end of 1978. Still, many key references were found by checking cross references and by checking journals at random. Thus, the quoted refer­ences, although not all-inclusive, should represent a typical cross section.

As was true for the first two volumes, Volume 3 represents an attempt to reach a new level of summary of "Macromolecular Physics," on the basis of which further progress can be achieved.

Page 94: Mp Introduction 2010 Optimized

Acknowledgments

My thanks go to the colleagues and students who have contributed by discussion, preprints, and reading of earlier versions of the various chapters. Especial recognition must be given to my secretary, Ms. McGraw, who typed, retyped, and changed the many versions of the more controversial topics of this book.

Inclusion of several of the illustrations was made possible only by the contribution of original prints by the authors listed in the legends. In addition, permission for reproduction was generously granted by the fol­lowing copyright holders:

American Chemical Society, Washington (Figs. IX. 13 and IX.14). American Institute of Physics, New York (Figs. VIII. 1 , VIII.2, and IX.39). Associated Book Publishers Ltd, London (Figs. VIII.31, IX.41, and IX.50). IPC Business Press Ltd, (Figs. VIII.32, VII!.33, and IX.47). Marcel Dekker Inc., New York (Fig. VIII.I0. Springer Verlag, Berlin (Fig. IX.53). Dr. Dietrich Steinkopf Verlag, Darmstadt (Fig. IX.46). John Wiley and Sons, Inc. New York (Figs. VIII. 13, VIII.34, IX.3, IX.5, IX.6, IX.12, IX.36,

IX.38a, b, c, d, IX.40, IX.42, IX.48, IX.51, IX.52, and X.7a, b).

xi

Page 95: Mp Introduction 2010 Optimized

Author Index of Volume III

Numbers in italics refer to the pages on which the complete references are listed.

A

Abbaschian, G. J., 22, 115, 123Abu-Isa, I., 50Adam, G. A., 55Ahr, D. L., 115, 127, 234, 251Ainslie, N. G., 214 Alcock, T. C, 135, 241Alfonso, G. C., 182, 241, 261, 287, 331Alfrey, T., 99, 115, 327, 328, 333Allegra, G., 66, 107, 115, 123, 294, 336Allen, E. T., 12, 118, 214 Allou, A. L., Jr., 150, 247 Amano, T., 65, 115 Anderson, T., 91, 92, 125 Andrews, E. H., 51,99, 115 Arai, N., 144, 145, 209, 240 Arakawa, T., 16, 31, 32, 44, 115, 116, 127,

135, 137, 144, 145, 186, 209, 235,238, 240, 252, 272, 273, 331

Arlie, J. P., 66, 116 Armeniades, C. D., 95Armitage, D., 136, 240Artymyshyn, B., 329, 330, 334Arvin, J. A., 134, 241 Asai, K., 94, 127 Asbach, G. I.,70, 116, 225, 240Ashman, P. C., 319, 320, 321, 322, 331Askadskii, A. A., 36, 37, 116Asmussen, F., 233, 234, 245 Atkinson, C M. L., 40, 41,43, 44, 116, 150,

151, 152, 153, 166, 199, 240 Atkinson, E. B., 115, 116Aubin, M., 248 Aubrey, D. W., 327, 328, 331Austin, J. B., 26

B

Baer, E., 93, 95, 168, 178, 245, 318, 334Bair, H. E., 41, 142, 143, 144, 149, 153,

154, 199, 240, 244 Baker, C H., 270, 271 Bakeyev, N. F., 195, 196, 249 Ballard, D. G. H., 225, 249 Balta, Y. I., 101, 121 Balta-Calleja, F. J., 70, 116, 276, 277, 278,

279, 279, 280, 281, 331, 335Baltenas, R. A., 93 Bamford, C. H., 257, 331 Baranov, V. G., 235, 243 Bares, V., 16, 43, 116 Barham, P., 192, 193, 198, 240 Barnatt, A., 327, 328, 331 Barnes, W. J., 66, 116 Bartenev, G. M., 173, 174, 240 Barth, T. F. W., 214 Bassett, D. C., 92, 93, 94, 116, 142, 249Bassi, I. W., 107, 123, 294, 336Bastien, I. J., 279 Baumgärtner, A., 69, 116 Baur, H., 44, 45, 58, 61, 127, 236, 252, 267,

268, 272, 331, 332 Beaman, R. G., 306Beech, D. R., 159,240Beecroft, R. I, 2, 116 Bekkedahl, N., 33, 103, 116, 127, 134, 135,

240,252 Bell, J. P., 169, 171, 181, 181, 189, 208,

208, 209, 209, 241 Belov, G. P., 195, 196, 249 Bene, N. P., 14, 121, 214

Page 96: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 2

Berghmans, H., 106, 110, 116, 119, 169,171, 229, 230, 241, 243, 248

Bermudez, S. F., 51 Bhateja, S. K., 91, 117 Bianchi, E., 233, 241, 251 Billmeyer, F. W., Jr., 43, 44, 54, 117, 185,

244 Black, J., 2, 117 Black, W. B., 193, 241 Blackadder, D. A., 114 B1asenbrey, S., 16, 69, 116, 123, 237, 241Blum, K., 264, 325, 326, 338 Blundell, D. J., 203, 241 Bodily, D., 272, 278, 280, 281, 284, 285,

332 Bohlin, L., 96, 117 Bohn, C. R., 238, 241 Bollinger, J. C. L., 261, 332 Boon, J.,169, 241 Boor, J., Jr., 190, 241 Booth, C., 66, 119, 159, 180, 240, 241, 319,

320, 321, 322, 331, 332 Bopp; R. C., 190, 245 Borokhonovskii, V. A., 235, 243 Borri, C., 54, 54, 75, 117, 184, 241, 242Boyd, R. H., 60, 66, 125 Boyle, F. P., 23, 117 Bowman, I. J. W., 52 Braun, W., 67, 117 Braver, G. M., 327 Bridgman, P. W., 91, 117 Broadhurst, M. G., 26, 29,43, 44, 117Brown, C. J., 68, 118 Brown, D. S., 236, 243 Brown, D. W., 311, 332 Brown, R. G., 31, 32, 117 Brückner, S., 184, 241 Bryant, W. M. D., 278, 332 Buckley, C. P., 26, 66, 67, 81, 117, 159,

160, 241 Buckley, G. D., 277, 278, 332 Bueche, A. M., 42, 117 Bunn, C. W., 37, 68, 72, 117, 118, 135, 241

C

�a�kovi�, H., 279, 332Calderon, N., 296, 332Callaghan, L., 137, 241 Calligaris, M., 66, 115 Calzolari, G., 54, 75, 117, 184, 242 Capizzi, A., 173, 243, 296, 333 Caporiccio, G., 107, 123, 259, 294, 336, 337 Carbonaro, A., 295, 336 Carbonnel, L., 111, 113, 117, 119 Carothers, W. H., 134, 241 Carrano, A. J., 114, 121 Carriere, F., 186 Carter, D. R., 1I5, 127, 178, 234, 251 Casey, K., 134, 243, 279 Catlin, W. E., 304, 332 Cavallo, P., 288, 289, 332 Ceccorulli, G., 56, 188, 241 Celotti, G., 168, 253 Challa, G., 105, 124, 145, 154, 155, 169,

170, 241, 246 Chandler, L. A., 175, 241 Chandrasekaran, S., 287, 337 Chapman, R. N., 311, 332 Charlesby, A., 137, 241 Chatani, Y., 310, 311, 332 Chiang, R., 42, 117 Chichakli, 85, 117 Christiansen, A. W., 168, 245 Chua, J. O., 167, 246 Ciampelli, F., 261, 338 Ciana, A., 56, 75, 122Ciceri, L., 56, 75, 122 Ciferri, A., 102, 125, 233, 241, 251 Clampitt, B. H., 163, 241, 277, 279 Clark, K. J., 325, 326, 332 Clough, S. B., 103, 117, 202, 241 Cluff, E. F., 277, 279 Clusius, F., 10 Cogswell, F. N., 203, 241 Coleman, D., 325, 332 Coleman, B. D., 291, 332 Collins, E. A., 175, 241

Page 97: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 3

Colombo, P., 311, 332 Colson, J. P., 47, 64, 118, 124, 268, 290,

332 Contois, L. E., 316, 339 Cooper, D. R., 66, 74, 119, 331 Cooper, S. L., 286, 336 Cooper, W., 179, 241 Cooper, W. C., 48 Coppola, G., 182, 241 Cormia, R. L., 13, 117, 214 Cormier, C. M., 35, 40, 58, 114, 127, 198,

252 Corradini, P., 74, 295, 336 Cox, W. W., 167 Cramer, F. B., 306 Crescenzi, V., 54, 56, 75, 117, 122, 184,

241, 242 Crespi, G., 106, 123, 166, 248, 263, 293Crompton, H., 6, 117 Cser, F., 232, 244 Czerwin, E. P., 304, 332 Czornyj, G., 29,4 4, 58,61, 80, 127, 201,

271, 222, 223, 242

D

Dall’Asta, G., 312, 333 Danusso, F., 49, 62, 63, 118 Davidson, T., 35, 92, 93, 118, 127 Davis, G. T., 47, 118 Day, A. L., 12, 118, 214 Daubeny, R. de P., 68, 118 Dawkins, J. Vo, 99, 101, 122 de Boer, J., 8, 118 Delf, B. W., 286, 334 Della Fortuna, G., 56, 75, 122, 184, 241Dension, R., 163, 247 Deopura, B. L., 208 Devonshire, A. F., 8, 122 Devoy, C. J., 180, 241 DiCyan, A. B., 31, 32, 127, 135, 137,235,

252 DiSilvestro, G., 233, 242

Dodgson, D. V., 159, 180, 240, 241, 319,320, 332

Doelter, C., 12, 118, 214Dole, M., 37, 50, 63, 118, 127, 142, 164,

181, 208, 209, 242, 250, 252, 254,278, 300, 301, 332, 333, 339

Dollhopf, W., 69, 96, 116, 122 Dondero, G., 182, 241 Dosiere, M., 197, 243, 248 Dostal, H., 134, 242 Dow, R. B., 95 Drain, L. E., 135, 136, 247 Drexhage, K. H., 70, 116 Dröscher, M., 68, 69, 118, 183, 242, 273,

274, 333 Dubovik, I. I., 303, 333 Dumbleton, J. H., 169, 189, 209, 241Dunkel, W., 70, 124 Dusek, K., 99 Duswalt, A. A., 167 Dutt, P. K., 4, 120 Duus, H. C., 91, 92, 95, 122

E

Eaves, D. E., 179, 241 Ebara, K., 199, 245 Eby, R. K., 31, 32, 47, 91, 137, 117, 118,

122, 242, 268, 269, 290, 332, 333,337

Edgar, O. B., 300, 301, 302, 306, 316, 333Edwards, B. C., 175, 242 Eichhorn, R. M., 277 Eisenberg, A., 286, 333 Ellery, E., 300, 301, 302, 316, 333 Emerson, F. A., 286, 337 Enoshita, R., 92, 93, 94, 122, 127 Era, V. A., 283, 333 Ergos, E., 106, 125 Etessam, A. H., 99 Evans, R. D., 42, 118, 305, 306, 306, 339Ewers, W. M., 235, 242 Eyring, H., 8, 91, 92, 120, 125

Page 98: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 4

F

Fabbri, P., 182, 241 Fakirov, S., 69, 118, 183, 208, 242 Farina, M., 233, 242 Farrow, G., 62, 118, 167 Fatou, J. G., 51, 62, 63, 118, 163, 164, 165,

167, 242, 247 Feldeisen, D. W., 327, 328, 329, 334Ferguson, R. C., 40, 118 Fichera, A., 168, 242, 253 Ficker, H. F., 276 Field, J. E., 103, 118 Fiorina, L., 261, 287, 331 Fischer, E. W., 26, 28, 40, 41, 65, 69, 115,

118, 120, 149, 158, 183, 193, 194,208, 235, 242, 248, 277, 279, 296,297, 298, 299, 323, 333, 334

Fisher, C. H., 327 Flack, H. D., 91, 118 Flanagan, R. D., 51, 200, 207, 249Flaningan, O. T., 190, 246 Flood, J. F., 31, 32, 127, 135, 137, 235Flory, P. J., 15, 26, 29, 32, 42, 46, 56, 66,

75, 98, 99, 100, 102, 103, 117, 118,119, 123, 124, 136, 166, 242, 255,265, 266, 267, 270, 272, 333, 337

Fontana, J., 311, 332 Ford, R. W., 281, 333 Forrest, E. H., 198, 247 Fortune, L. R., 95 Foster, G. N., 280, 281, 333 Fox, T. G, 83, 103, 119 Francesconi, R., 168 , 253 Frank, F. C., 203, 247 Franta, W. A., 278, 338 Fraser, M. J., 66, 119 Frasci, A., 233, 243 Frith, E. M., 136, 243 Frolen, L. J., 29, 120 Frunze, T., 303, 333 Fujii, T., 325, 338 Fujiwara, Y., 31 Fukahori, Y., 142, 144, 149, 164, 195, 250

Fukuda, T., 300, 301, 303, 333 Fulcher, K. U., 236, 243 Furukawa, J., 310, 333

G

Gallot, Y., 318, 337 Gal’perin, E., 290, 294, 295, 311, 336Gal’perin, Ye. L., 172, 173, 243, 246Garbuglio, C., 311, 336 Gardner, K. H., 324, 336 Garner, W. E., 25, 119 Gasparyan, K. A., 235, 243 Gaur, U., 48, 69, 123 Gaylord, R. J., 103, 119 Geacintov, C., 153, 154, 243 Gee, D. R., 168, 243 Gent, A. N., 99, 103, 119 Ghiglia, W., 63, 118Gianotti, G., 49, 49, 62, 63, 118, 173, 243,

296, 312, 333 Gieniewsky, C., 282, 283, 337 Gilg, B., 86, 119 Gilliot, M., 197,243,248 Glenz, W., 70, 116, 195, 243, 268, 277, 279,

282, 283, 333 Godovskii, Yu. K., 179, 243, 303, 333Goffin, A., 197, 243, 248 Gogolewski, S., 70, 95, 119, 188, 243Gogos, C. G., 203, 250 Gohil, R. M., 153, 190, 243 Golemba, F. J., 49, 74 Gonthier, A., 17, 30, 66, 121, 220, 221, 246Goodman, I., 314, 315, 316, 333 Gopalan, M., 34, 119, 164, 165, 247 Göritz, D., 99, 102, 119 Görlitz, M., 172, 243 Grassi, M., 233, 242 Gray, A. P., 134, 243 Greenberg, S. A., 327, 328, 333 Greene, A., 102, 125 Greig, J. W., 214 Greppi, G., 233, 251Grewer, T., 49

Page 99: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 5

Griskey, R. G., 280, 281, 333 Grossmann, H. P., 23, 123 Grubb, D. T., 203, 206, 243 Gruver, J. T., 101, 121 Gryte, C. C., 110, 119, 167, 229, 230, 243,

246 Gubler, M. G., 137, 139, 243 Guerrero, S. J., 218, 247 Guieu, R., 111, 113, 119 Gupta, R. N., 93

H

Haas, T. W., 203, 243 Haberkorn, H., 56, 57,70,71,120, 145, 186,

187, 245 Hachiboshi, M., 300, 301, 303, 333 Hagege, R., 208 Hägele, P. C., 23, 123 Hager, N. E., 142, 243 Hahn, P., 190, 246 Halboth, H., 69, 70, 119, 121, 181 Ham, G. E., 259, 334 Hamada, F., 41, 65, 87, 119, 121, 123. 146,

153, 244 Hammel, R., 105, 119 Hammer, C. F., 178 Hanszen, K. J., 135 Hara, K., 58 Hardy, G. Y., 232, 244 Harland, W. G., 163, 244 Harrison, I. R., 150, 244, 318, 334 Hartley, F. D., 68, 119 Harvey, E. D., 303, 305, 334 Hasegawa, R., 172, 173, 244 Hashimoto, H., 188, 244 Hashimoto, T., 96, 120, 319, 334 Hata, T., 52, 60, 61, 67, 93, 95,126Hatakeyama, T., 96, 120 Hauser, E. A., 98, 120 Hay, J. N., 30, 66, 120 Hayashi, S., 41, 115, 119, 123, 146, 153,

155, 156, 244, 248 Heidemann, G., 70, 116

Heitz, W., 26, 28, 120 Helfand, E., 268, 334 Hellmuth, E., 13, 17, 22, 31, 120, 141, 142,

164, 214, 216, 218, 244, 277 Hellwege, K.-H., 67, 93, 117, 263 Hendus, H., 31,32, 39, 120,142,143,144,

145, 199, 245 Hengstenberg, J., 239, 244 Hertwig, K., 273, 274, 333 Hespe, H., 277, 279 Hidalgo, A., 279, 331 Hildebrand, D., 70, 127 Hill, M. J., 99 Hill, R., 306, 312, 313, 333, 334 Hillier, I. H., 180, 241 Hinrichsen, G., 40, 41, 53, 65, 115, 118,

161, 193, 194, 209, 238, 239, 242,244, 298, 323, 334

Hirata, E., 319, 334 Hirakawa, S., 92, 120, 188, 244 Hirschfelder, J., 8, 120 Hirte, R., 186, 188, 209, 251 Hoashi, K., 163, 244 Hobbs, S. Y., 54, 183, 184, 185, 244 Hoehn, H. H., 40, 118 Hoffman, J. D., 29, 33, 120, 122, 137, 246Hoffmann, R., 183, 208, 242 Hoffrichter, S., 181 Hoftyzer, P. J., 37, 73, 74, 126 Holden, H. W., 163, 244 Holdsworth, P. J., 183, 203, 241, 244Holliday, L., 286, 334 Holland, V. F., 114 Hopfinger, A. J., 23, 117 Hosemann, R., 238, 246, 279, 332 Hosoi, M., 149, 246 Howard, G. J., 136, 244 Howard, W. H., 142, 164, 242 Huggins, M. L., 26, 120 Hughes, R. H., 277, 279 Hummel, D., 264, 325, 326, 338 Hunter, J. T., 200, 207, 249 Hurley, S. A., 4, 120 Huseby, T. W., 143, 199, 240, 244 Hybart, F. J., 161, 189, 244, 303, 305, 334

Page 100: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 6

I

Ide, T., 92, 122 Igonin, L. A., 93Iguchi, M., 64, 65, 120, 178 Ijitsu, T., 319, 334 Ikeda, M., 68, 120, 181 Illers, K.-H., 31, 32, 39, 56, 57, 57,70, 71,

80, 120, 142, 143, 144, 145, 146,164, 186, 187, 189, 194, 199, 209,209, 216, 238, 239, 245

Imanaka, A., 70, 121, 186 lonoue, M., 178, 186, 296, 297, 334 Ishida, Y., 50, 172, 173, 174, 248 Ishit, T., 304, 338 Ishikawa, K., 103, 123, 193, 194, 197, 204,

209, 247, 249, 250 Itoh, T., 71, 186 Itoh, Y., 235, 248 Ivanova, S. L., 303, 333 Iwamoto, R., 190, 245 Izard, E. F., 300, 301, 304, 315, 316, 334

J

Jackson, J. B., 46,124, 270, 272, 337Jackson, J. F., 114 Jaffe, M., 64, 120, 132, 133, 140, 156, 157,

158, 178, 179, 218, 219, 222, 245Jain, P. C., 49, 95 Janeczek, H., 112, 120 Jenckel, E., 69, 95, 96, 98, 120, 121, 135,

136, 181, 238, 245 Jessen, F. W., 85, 117 Johannson, O. K., 190, 246 Johnsen, V., 284 Johnson, R. G. L., 286, 334 Jones, L. D., 42, 55, 93, 95, 121, 234, 245 Jordan, E. F., Jr., 327, 327, 328, 329, 329,

330, 334 Judge, J., 99 Justin, J., 163, 247

K

Kagawa, I., 239, 250 Kajiyama, T., 286, 313, 334 Kamath, P. M., 284 Kamide, K., 35, 36, 48, 62, 63, 70, 80, 121,

149, 167, 186, 245, 246Kanetsuna, H., 96, 120, 186, 204 Kapizzi, A., 49 Karasz, F. E., 42, 55, 93, 95, 95, 105, 106,

119, 121, 126, 234, 245 Kardos, J. L., 93, 95, 168, 245 Kargin, V. A., 327, 328, 329, 337 Karl, V.-H., 93, 95, 233, 234, 245 Karr, P. H., 142, 178, 249 Kashdan, W. H., 131, 252 Katz, J. R., 98, 121 Kaufman, H. S., 327 Kavesh, S., 236, 237, 245 Kawai, H., 319, 334 Kawai, T., 36, 80, 99, 121, 149, 199, 245,

246, 262, 277, 284, 336 Kawaguchi, T., 144, 186, 208, 209, 210,

211, 212, 251 Kawasoe, M., 284, 285, 336 Ke, B., 111, 121, 167, 226, 246, 280, 304,

312, 318, 334 Keller, A., 70, 99, 116, 146, 192, 193, 197,

198, 199, 200, 201, 203, 204, 206,240, 243, 246, 247, 249, 252, 262,275, 336

Keller, F., 263, 284, 285, 334 Kellman, R., 4, 121 Kenyon, A. S., 284, 285, 337 Kercha, Yu. Ya., 316, 335 Keskkula, H., 167, 204 Kevorkian, H. K., 63, 64, 123 Khadr, M. M., 163, 244 Khaikin, S. E., 14, 121 Khev, T., 283, 290, 337 Kiel, A. M., 198, 248 Kijima, T., 95 Kilian, H. G., 69, 70, 116, 121, 181, 225,

240, 263, 267, 268, 277, 277, 279,282, 333, 335

Page 101: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 7

Kim, H.-G., 175, 176, 246 King, A. M., 25, 119 King, M., 286, 333 Kirichenko, V. I., 186 Kirshenbaum, I., 37, 38, 69, 72, 75, 121Kissin, Yu. V., 261, 335 Kita, S. I., 277, 279, 337 Kitaigorodskii, A. I., 36, 116 Klattenhoff, D., 268, 277, 279, 282, 333Kleinman, L., 155, 247 Knappe, W., 67, 117 Knox, J. R., 281, 335 Kobayashi, M., 172, 173, 244 Kobayashi, S., 300, 301, 303, 333 Koch, R., 264, 325, 326, 328, 338 Kockott, D., 293, 335 Koenig, J. L., 114, 121 Komoto, H., 306 Kooistra, T., 154, 155, 169, 170, 246Korenaga, T., 65, 121 Korshak, V. V., 36, 37, 116, 301 Kortleve, G., 284, 285, 335 Kosmynin, B. P., 173, 246 Kotov, N. M., 195, 196, 249 Kovacs, A. J., 17, 26, 30, 66, 67, 81, 117,

121, 126, 137, 139, 159, 160, 220,221, 241, 243, 246, 317, 335

Kowasch, E., 263, 284, 285, 334 Krafchik, S. S., 316, 335 Kraikin, S. E., 214 Kraus, G., 101, 121 Krause, S., 270, 335 Krigbaum, W. R., 63, 99, 101, 102, 103,

121, 122, 124 Kubát, J., 96, 117 Kukacka, L. E., 311, 332 Kuleshov, I. V., 173, 174, 240 Kurashev, V. V., 303, 333 Kuriyama, I., 219, 248 Kusy, R. P., 143 Kwei, T. K., 285, 286, 336 Kyotani, M., 186 Kuz’mina, V. A., 316, 335

L

Laakso, T. M., 316, 339 Lal, J., 315, 335 Lambert, S. L., 106, 127 Lando, J. B., 294, 335 Lanzetta, N., 189, 246 Larkin, J. A., 43, 116, 199, 240 Lauritzen, J. I., Jr., 29, 33, 120, 122, 137,

246, 268, 334 Lebedev, B. V., 53 Lee, C.-L., 190, 246 Lee, W. A., 35, 122 Legras, R., 55 Lemstra, P. J., 50, 145, 154, 155, 169, 170,

246 Lengyel, M., 112, 120 Lennard-Jones, J. E., 8, 122 Lety, A., 169, 170, 171, 172, 246 Levine, M., 306 Lévy, D., 66, 126 Leugering, H. J., 167 Leute, U., 95, 96, 122 Li, H. M., 324, 325, 335 Liberti, F. M., 160, 161, 186, 187, 221, 246Lieser, G., 65, 122, 325, 338 Lindemann, F. A., 7, 122 Lindenmeyer, P. H., 84, 122, 238, 246Lipatov, Ya. S., 316, 335 Liska, E., 23, 69, 96, 116, 122, 123 Lits, N. P., 306 Lityagov, V. Ya., 53 Loboda-�a�kovi�, J., 279, 332 Lohse, D. J., 103, 119 Loisy, R., 135 Longman, G. W., 225, 249 Loshaek, S., 83, 119 Lotichius, J., 134, 251 Lotz, B., 317, 335 Lovell, C. M., 277 Lovering, E. G., 177, 178, 246 Lovinger, A. J., 167, 246 Lowry, R. E., 311, 332 Luca, D. J., 173, 174, 249

Page 102: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 8

Ludwig, B. A., 327 Luetzel, W. G., 66, 116 Lugli, G., 295, 336 Lutz, D. A., 327 Lyngaae-Jørgensen, J., 239, 247

M

McCoy, S., 207, 249 McCullough, C. R., 111, 112, 124, 125McGeer, P. L., 91, 92, 95, 122 Machi, S., 189, 250 Machin, M. J., 198, 252 McHugh, A. J., 198, 247 McKenna, L. W., 286, 335 Mackenzie, J. D., 13, 117 Mackley, M. R., 203, 247 MacKnight, W. J., 105, 106, 119, 126, 286,

313, 334, 335, 337 Madden, F. C., 25, 119 Maeda, H., 199, 245 Maeda, K., 204 Maeda, M., 197, 247 Maglio, G., 189, 246 Magill, J. H., 82, 122, 324, 325, 335, 336Makarevich, V. I., 263, 335 Malcolm, G. N., 67, 95, 122 Mancarella, C., 288, 335 Mandelkern, L., 22, 25, 34, 37, 42, 50, 50,

51, 60, 103, 106, 114, 119, 122, 124,125, 134, 138, 144, 150, 163, 164,165, 175, 176, 185, 199, 200, 226,242, 246, 247, 249, 270, 271, 251,255, 270, 295, 324, 331, 335, 338

Manescalchi, F., 188, 241 Mangaraj, 95 Manley, R. St. J., 85, 89, 126, 169, 206, 207,

230, 231, 248, 251 Manzini, G., 54, 56, 75, 117, 122, 184, 242Marchessault, R. H., 184, 208, 249Marchetta, C., 189, 246 Marchetti, A., 156, 247 Marco, C., 53 Mariano, A., 184, 241

Mark, H., 98, 99, 115, 120, 136, 247Marshall, R. E., 103, 119 Masuko, T., 206, 250 Marvel, C. S., 4, 120, 121 Martin, G. M., 47, 91, 118, 122 Martinez de Salazar, J., 276, 277, 335 Martuscelli, E., 156, 233, 243, 247, 261,

262, 272, 279, 287, 288, 289, 331,332, 335, 336

Martynov, M. A., 173, 174, 240 Marx, C. L., 286, 336 Marx, P., 186, 209 Mateva, R., 65, 122 Matsumoto, T., 284, 285, 336 Matsuo, M., 278, 339 Matsuoka, S., 93 Matsushige, K., 92, 94, 95, 122 Matveev, Yu. I., 36, 37, 116 Maxwell, B., 203, 243 Mazzanti, G., 106, 123, 166, 248, 263, 293Menczel, J., 163, 251 Mehta, A., 3, 22, 69, 123 Meinel, G., 41, 193, 196, 204, 247, 248Meissner, F., 135, 247 Melia, T. P., 168, 243 Melillo, L., 17, 18, 35, 89, 124, 127 Mercier, J. P., 55 Messerly, J. F., 43 Mever. W., 325, 338 Meyer, K. H., 26, 80 Mighton, H. R., 42, 118 Miles, R. B., 153, 154, 243 Miller, G. W., 181 Miller, R. L., 5, 46, 50, 66, 123, 263, 315,

336 Mills, E. J., 26 Minke, R., 172, 243 Mirzoyev, R. G., 235, 243 Mitchell, J. C., 50, 190, 241 Mitsuishi, Y., 181 Miyagi, A., 68, 123, 131, 202, 207, 247 Miyagi, H., 94, 127 Miyasaka, K., 103, 123, 193, 194, 197, 209,

247, 249, 250

Page 103: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 9

Miyata, S., 93, 123, 234, 247 Mlenik, M. P., 172, 243 Mochel, V. D., 261, 336 Mochizuki, T., 163, 244 Modena, M., 311, 336 Monobe, K .. 233, 247 Moraglio, G., 50, 63, 106, 118, 123, 166,

248, 263, 291, 293, 336 Morero, D., 295, 336 Mori, S., 203, 251 Morris, M. C., 296, 332 Morrison, J. A., 135, 136, 247 Morrow, D. R., 155, 247 Motta, L., 63, 118 Müller, F. H., 99, 102, 119, 225, 240 Muñoz-Escalona, A., 218, 247 Münster, A., 136, 238, 247 Murayama, T., 171, 181, 189, 208, 209, 241 Murahashi, S., 310, 311, 332

N

Naberezhnykh, R. A., 290, 294, 295, 311,336

Nachtrab, G., 284 Nagata, K., 94, 122 Nagatoshi, F., 144, 145, 186, 209, 238, 240Nakagawa, K., 50 172, 174, 248 Nakajima, A., 41, 65, 87, 114, 115, 119,

121, 123, 146, 153, 155, 156, 244,248, 306

Nakamae, K., 284, 285, 336 Nakamura, K., 48, 63, 121, 167, 245Nakamura, T., 239, 250 Nakase, Y., 219, 248 Natta, G., 50, 106, 107, 123, 166, 248, 263,

293, 294, 295, 336 Nealy, D. L., 181 Nechitailo, N. A., 85 Negulescu, I., 190, 248, 251, 331 Newman, S., 63, 123, 167, 248, 291, 292,

336 Nielsen, L. E., 284, 336 Nishi, T., 104, 105, 123

Nishijima, H., 219, 248 Nishimura, Y., 310, 332 Noel, C., 169, 170, 171, 172, 246 Normand, Y., 248 Nose, T., 52, 60, 61, 67, 93, 95, 126Nukushima, Y., 235, 248

O

Oda, T., 286, 334 Odajima, A., 219, 248 Odell, J. A., 203, 206, 243 Ohno, A., 92, 93, 96, 125, 149, 234, 250Ohno, K., 36, 80, 121 Oka, H., 284, 285, 336 Okajima, S., 206, 250 Okuda, K., 293, 336 Okui, N., 284, 324, 336 O’Leary, K. J., 250 O’Malley, J. J., 324, 336 Oono, R., 103, 123 Orth, H., 239, 244 Orthmann, H. J., 107, 123, 136, 235, 251Osaki, S., 173, 248 Ososhi, N., 284, 285, 336 Oth, J. F. M., 98, 123 Ottocka, E. P., 285, 286, 336 Overberger, C. G., 327 Overbergh, N., 106, 116, 169, 171, 241, 248Ovenall, D. W., 284, 339 Owen, P. J., 51, 115

P

Pae, K. D., 91, 117, 167, 168, 248 Pallesi, B., 182, 241 Palumbo, R., 189, 246 Parks, W., 96, 123 Partington, J. R., 26 Passaglia, E., 63, 64, 123 Patel, G. N., 262, 275, 336 Patel, R. D., 153, 190, 243 Paul, D. R., 239, 248 Pavan, A., 291, 336

Page 104: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 10

Peading, F. P., 277 Pechhold, W., 16, 23, 69, 116, 123, 237, 241 Pedemonte, E., 182, 208, 241, 261, 287, 331 Pelzbauer, Z., 169, 206, 207, 248 Pennings, A. J., 70, 95, 103, 107, 108, 109,

110, 111, 119, 125, 198, 202, 226,227, 229, 230, 231, 232, 248, 250

Pennington, P. R., 22, 123 Pénnison, R., 68, 124 Perkins, W. G., 203 Perret, R., 54, 322, 337 Peters, C. G., 135, 252 Peters, R., 26, 28, 120 Peters, R. H., 163, 244 Peterlin, A., 41, 193, 195, 196, 204, 235,

242, 243, 247, 248, 252Petrukhin, B. S., 327, 328, 329, 337 Pickles, C. J., 320, 321, 322, 332 Pirozzi, M., 287, 336 Pirsch, J., 10 Pistorious, C. W. F. T., 92, 124 Pivan, A. N., 186 Pizzoli, M., 188, 241 Phillips, P. J., 286, 337 Platé, N. A., 283, 290, 327, 328, 329, 337Platt, J. D., 161, 189, 244 Point, J. J., 197, 243, 248 Poland, D., 272, 278, 280, 281, 287, 339Polo Fritz, L., 167, 181, 186, 204, 208, 209Ponge, C., 111, 113, 117, 119 Pope, D. P., 197, 249 Pordi, L., 295, 336 Port, W. S., 327, 329 Porter, R. S., 203, 251 Powers, J., 49 Pracella, M., 272, 279, 287, 288, 289, 332,

335, 336 Pratt, C. F., 183, 184, 244 Predecki, P., 142, 179, 249 Prest, W. M., Jr., 173, 174, 249 Price, C., 331 Price, F. P., 66, 116, 135, 136, 240, 249Price, J. A., 49 Price, J. M., 164, 165, 247

Prime, R. B., 17, 18, 88, 89, 90, 124 Prins, W., 99 Privalko, V. P., 55, 316, 335 Provasoli, Ao, 291, 336 Prud’homme, R. E., 180, 184, 208, 248, 249Przygocki, W., 68, 127

Q

Quinn, F. A., Jr., 42, 60, 124, 295, 335

R

Raine, H. C., 135, 249 Randaccio, L., 66, 115 Rankin, J. M., Jr., 141, 218, 244 Rasazzini, M., 311, 336 Ravitz, S. Fo, 22, 115, 123 Ray, N. H., 277, 278, 332 Read, B. E., 286, 335 Reddy, S. S., 284, 339 Rehberg, C. E., 327 Reimann, H., 273, 274, 333 Reimschuessel, H. K., 185, 249 Remizova, A. A., 173, 174, 240 Reneker, D. H., 64, 124 Renwanz, B., 283, 333 Richards, J. W., 6, 124 Richards, R. B., 96, 123, 135, 136, 249, 277 Richardson, G. C., 155, 247 Richardson, M. J., 40, 41, 43, 44, 46, 116,

124, 150, 151, 152, 153, 166, 199,240, 270, 272, 337

Richardson, R. J., 314, 315, 337 Rie, E., 135 Rijke, A. M., 51, 144, 199, 200, 207, 249 Ring, W., 263 Rinkens, H., 95, 96, 121 Ritchie, G. L. D., 67, 122 Roberts, R. C., 25, 43, 50, 69, 124, 181Robertson, R. E., 60, 61, 124 Roe, R.-J., 99, 102, 103, 121, 124, 235, 249,

282, 283, 337 Roerdink, E., 105, 124

Page 105: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 11

Rohleder, J., 137, 139, 248 Roldan, L. J., 287, 337 Ross, G. S., 29, 120 Rosso, J.-C., 111, 113, 117, 119 Rothe, M., 30, 70, 124 Rueda, D. R., 278, 280, 281, 331 Ruscher, C., 186, 186, 188, 209, 251Rushbrooke, J. E., 25, 119 Russo, S., 261, 287, 331 Rutherford, J. M., Jr., 66, 125, 297, 337Rutherford, R. A., 36, 122 Rybnikar, F., 65, 124 Ryder, H., 135, 249

S

Sakaoku, K., 93, 123, 234, 247 Sakata, Y., 310, 332 Sakurai, K., 194, 209, 249 Salovey, R., 142, 143, 144, 149, 153, 154,

240, 249 Salyer, I. O., 284, 285, 337 Samuels, R. J., 48, 167, 168, 204, 205, 249 Samuels, S. L., 325, 337 Sanchez, I. C., 268, 269, 337 Sandiford, D. J. H., 325, 326, 332Sarminskaya, T. N., 173, 174, 240 Sausen, E., 326, 338 Sawyer, M. F., 99 Scarazzato, P., 184, 241 Schaefgen, J. R., 238, 241 Schelten, J., 225, 249 Schleinitz, H. M., 114 Schmidt, G. F., 69, 118, 182, 183, 208, 235,

242, 252 Schmidt, O., 14, 126, 214 Schmitt, J. A., 204 Schönfeld, A., 46, 124, 279 Schonhorn, H., 58 Schouten, A. J., 145, 169, 246 Schuch, E., 239, 244 Schultz. J. M., 236, 237, 245 Schwenker, R. F., 204, 209 Scott, R. A., 281, 333

Scott, R. L., 104, 124 Sears, G. W., 214 See, B., 225, 249 Seguchi, T., 189, 250 Sekiguchi, H., 186 Selikhova, V. I., 195, 196, 249 Seow, P. K., 318, 337 Sevast’yanov, L. K., 235, 243 Sharpe, R. R., 159, 240 Shchierets, V. S., 195, 196, 249 Shibayev, V. P., 283, 290, 327, 328, 329,

337 Shida, M., 276 Shih, C. K., 277, 279 Shii, H., 204 Shirayama, K., 277, 279, 337 Shu, H.-C., 218, 249 Shultz, A. R., 111, 112, 124, 125Shuurmans, H. J. L., 153, 154, 243Sianesi, D., 107, 123, 259, 294, 295, 336,

337 Sibilia, J. P., 287, 337 Sieglaff, C. L., 250 Simak, P., 71, 120 Simakina, A. I., 290, 294, 295, 311, 336Simon, F. T., 66, 125, 297, 337 Simov, D., 208 Singh, A., 51, 115 Sisko, A. W., 304, 312, 334 Skapski, A. S., 135 Skoulios, A., 54, 66, 86, 116, 119, 318, 322,

330, 337, 338 Slade, P. E., 189, 209, 241, 293, 337 Slonimskii, G. L., 36, 37, 116, 179, 243,

303, 333 Smets, G., 110, 119, 169, 229, 230, 243, 248 Smirnova, O. I., 177, 250 Smith, C. W., 181, 208, 250 Smith, D. C., 277 Smith, K. J., Jr., 99, 102, 124, 125 Smith, P., 85, 89, 103, 107, 108, 109, 110,

111, 125, 226 ,227, 228, 229, 230,231, 232, 250

Smith, R. K., 74

Page 106: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 12

Smith, R. P., 59, 125 Smith, T. G., 225, 249 Smolders, C. A., 112, 126 Sneider, V. E., 314, 315, 337 Snyder, G., 35, 127 Sobottka, J., 263, 284, 285, 334 Sochava, I. V., 177. 178, 189, 250 Soem, T., 319, 334 Solti, A., 163, 251 Sönnerskog, S., 304, 338 Sorokin, A. D., 290, 294, 295, 311, 336Southern, J. H., 193, 203, 250 Speca, A., 329, 330, 334 Spegt, P., 66, 116 Sperati, C. A., 48, 278, 338 Stamhuis, J. E., 95 Starkweather, H. W., Jr., 48, 57, 60, 66, 125,

278, 310, 311, 338, 339 Starr, J., 330, 338 Statton, W. O., 238, 241 Stehling, F. C., 106, 125 Stein, R. S., 99, 286, 334 Steinberg, M., 311, 332 Steiner, N., 301, 302, 316, 338 Sterzel, H. J., 298, 299, 300, 333Stevenson, D., 8, 120 Stracke, F. R., 268, 277, 279, 282, 333Straupe, C., 17, 30, 121, 220, 221, 246Strobl, G., 26, 28, 120 Strogalin, Yu. V., 172, 243 Stuart, H. A., 2, 3, 125, 134, 137, 139, 181,

182, 250, 252 Suchko, N. I.,263, 335 Sukhov, T. F., 195, 196, 249 Sullivan, P., 31, 32, 87, 125, 127, 135, 137,

235, 252 Sumida, T., 41, 119, 146, 153, 244Sumita, M., 193, 250 Sundarajan, P. J., 37, 72, 75, 125 Suwa, T., 189, 250 Swan, P. R., 47, 125 Sweeny, W., 304, 338 Sweet, G. E., 181, 208, 209 Swenson, C. A., 92, 116 Szekely, T., 112, 120

T

Tadokoro, H., 172, 173, 244, 315, 338Taka, T., 115, 123, 155, 156, 248 Takacs, E., 232, 244 Takahashi, A., 239, 250, 285, 338Takahashi, Y., 51 Takamizawa, K., 27, 92, 93, 93, 96, 125,

142, 144, 149, 164, 195, 234, 250Takayama, H., 93, 123, 234, 247 Takehisa, M., 189, 250 Takemura, T., 92, 93, 94, 95, 96, 120, 122,

127 Taki, S., 92, 122 Takizawa, T., 310, 311, 332 Takugi, N., 206, 250 Talamini, G., 63, 118 Tamayama, M., 91, 92, 125 Tammann, G., 7, 12, 125, 135, 214, 250Tan, V., 203, 250 Tanaka, H., 206, 250 Tanaka, K., 278, 279, 338 Tanaka, N., 304, 306, 338 Tanaka, S., 234, 250 Taylor, G. W., 68, 125 Taylor, P. L., 23, 117 Tealdi, A., 233, 241, 251 Teitel’baum, B. Ya., 185, 251 Temin, S. C., 306 Temperley, H. N. V., 59, 125 Theil, M. H., 185, 251, 324, 338 Theissen, P. A., 103, 125, 126 Thierry, A., 330, 338 Thomson, W., 2, 126 Till, F., 112, 120 Timmermans, J., 25, 126 Tipper, C. F. H., 257, 331 Todoki, M., 144, 186, 208, 209, 210, 211,

212, 251 Tolchinskit, I. M., 167 Tonelli, A. E., 59, 64, 66, 67, 72, 75, 75,

126 Torre, R., 233, 241 Torti, E., 107, 123, 294, 336

Page 107: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 13

Tosi, C., 261, 338 Toyama, K., 62, 121 Trafara, G., 264, 325, 326, 338 Tranter, T. C., 306 Trautvetter, W., 172, 243 Treolar, L. R. G., 103, 126 Trick, G. S., 315, 335 Trouton, F., 6, 126 Tryon, M., 295, 335 Tsereteli, G. I., 169, 178, 250, 251 Tsujita, Y., 52, 60, 61, 67, 93, 95, 126Tsvankin, D. Ya., 173, 246 Tubbs, R. K., 293, 338 Tuckett, R. F., 136, 243 Tuijnman, C. A. F., 284, 285, 335 Turley, S. C., 167 Turnbull, D., 13, 117 Turner, B., 92, 93, 94, 116 Turner, D. T., 143 Turner-Jones, A., 183, 244, 325, 326, 332,

338 Turska, E., 112, 120 Tuzova, L. I., 185, 251

U

Ubbelohde, A. R., 2, 4, 7, 10, 11, 126Uchida, T., 66 Udagawa, Y., 146, 246 Ueberreiter, K., 107, 123, 136, 233, 234,

235, 245, 251, 301, 302, 316, 338Uematsu, I., 63, 121 Uhlmann, D. R., 126 Urabe, Y., 92, 93, 96, 125, 142, 144, 149,

164, 167, 195, 250 Urabi, Y., 234, 250 Utsumi, N., 115, 123

V

Valenti, B., 233, 241, 251 Valvassori, A., 312, 333Van Bibber, K., 25, 119 Van Brederode, H., 306

Van der Mark, J. M. A. A., 198, 248 Van der Wyk, A., 26, 80 Van Emmerik, P. T., 112, 126 Van Krevelen, D. W., 37, 73, 74, 126, 169,

241 Van Nes, K., 26 Van Rossem, A., 134, 251 Varga, J., 163, 251 Vaughan, G., 179, 241 Vergano, P. J., 126 Via, G. H., 99, 101, 122 Vidotto, G., 66, 126 Vinogradov, Ye., 284 Vittoria, V., 233, 243 Vogl, O., 190, 248, 251, 330, 331, 338Volkova, L., 290, 294, 295, 311, 336Volmer, M., 14, 126, 214 Vonk, C. S., 284, 285, 335 Voter, R. C., 278, 332Vrij, A., 26, 29, 32, 66, 119

W

Wakefield, R. W., 284 Wakelyn, N. T., 208 Walden, P., 10, 126 Walker, E. E., 312, 313, 334 Wall, L. A., 311, 332 Wang, T. T., 104, 105, 123 Waring, J. R. S., 159, 240 Watabe, H., 277, 279, 337 Weeks, J. J., 31, 33, 34, 47,118, 120, 126Weeks, N. E., 203, 251 Wegner, G., 53, 65, 68, 67, 118, 122, 183,

242, 273, 274, 298, 299, 300, 323,333, 334, 338

Weigand, K., 10 Weigel, P., 71, 186, 186, 188, 209, 251 Weir, C. E., 91, 92, 126 Weisgerber, G., 172, 243 Welch, G. J., 50 Welck, D., 279, 332 Wenig, W., 106, 126 Wessling, R. A., 115, 127, 234, 251

Page 108: Mp Introduction 2010 Optimized

Author Index of Volume III, Page 14

Weston, H. A., 26 Wetton, R. E., 236, 243 White, J. L., 103, 127 White, T. R., 208, 251 Wiemers, S. N., 53, 323, 338 Wiesner, E., 181 Wignall, G. D., 225, 249 Wildschut, A. J., 103, 127 Wiley, R. H., 327 Wilhoit, R. C., 209 Wilke, W., 46, 124, 195, 243, 283, 333Wilkes, G. L., 325, 337 Wilkinson, R. W., 63, 127 Willbourn, A. H., 277, 278, 279, 338Willey, R. H., 304, 332 Williams, A. D., 75 Williams, H. L., 316 Williams, J. L. R., 316, 339 Williams, T. F., 278, 339 Willmouth, F. M., 198, 199, 200, 201, 203,

204, 241, 246 Wilsing, H., 135, 245 Wilski, H., 46, 49, 63, 65, 127, 296, 297,

339 Wilson, F. C., 311, 339 Wirth, Th., 26, 28, 120 Wisniewska, W., 186 Wissbrun, K. F., 178, 298, 339 Witnauer, L. P., 327 Wittmann, J. C., 230, 231, 251 Wittstadt, W., 103, 125, 126 Wlochowicz, A., 68, 127 Wood, J. S., 190, 251 Wood, L. A., 33, 95, 103, 116, 127, 134,

135, 240, 252 Wooden, D. C., 177, 178, 246 Woodward, A. E., 155, 247 Wrasidlo, W., 139, 252 Wrisley, A. N., 327, 328, 329, 330, 334 Wu, T. K., 284, 339 Wunderlich, B., 3, 13, 16, 17, 18, 22, 29, 31,

32, 35, 40, 41, 43, 44, 45, 58, 61, 64,68, 80, 88, 89, 90, 91, 92, 93, 114,116, 118, 119, 120, 123, 124, 127,

131, 132, 133, 135, 137, 139, 140,141, 142, 146, 150, 151, 153, 156,157, 158, 160, 161, 178, 179, 186,187, 190, 198, 201, 202, 207, 214,216, 217, 218, 219, 221, 222, 223,225, 235, 236, 242, 244, 245, 246,247, 249, 252, 263, 272, 273, 278,280, 281, 284, 285, 287, 300, 301,331, 332, 333, 339

Wyckoff, H. W., 204

Y

Yabayashi, T., 208 Yagfarov, M. Sh., 185, 252 Yamaguchi, K., 167, 245 Yamamoto, M., 103, 127 Yamamoto, T., 94, 127 Yamauchi, N., 92, 122 Yasuniwa, M., 92, 93, 94, 96, 127 Yeh, G. S. Y., 106, 127 Yip, H. K., 316 Yokoyama, F., 233, 247 Yoshida, S., 52, 53 Yoshida, T., 31 Young, L. J., 259, 260, 339 Young, P. R., 208 Yu, A. J., 305, 306, 339

Z

Zachmann, H. G., 134, 137, 138, 139, 181,182, 183, 222, 224, 225, 235, 240,242, 252

Zahn, H., 68, 70, 124, 127 Zambelli, A., 291, 336 Zamboni, V., 173, 243, 312, 333 Zannetti, R., 168, 242, 253 Zaukelies, D. A., 238, 253 Zimmerman, J., 304, 338 Zingaro, R. A., 48 Zotteri, L., 56, 75, 122 Zubov, Yu. A., 195, 196, 249, 328, 337Zuccarello, R. K., 204, 209 Zwijnenburg, A., 198, 202, 248

Page 109: Mp Introduction 2010 Optimized

Subject Index of Volume III

The index is organized according to macromolecules and subject matter. Subjects with severalentries show boldface page numbers to indicate more extensive discussion. Frequently usedterms are listed only under the page numbers where definitions can be found. For copolymers,check for both repeating units since only one order of co-monomers is listed. For block andalternating copolymers (block and alt, respectively) check also copolymer (co).

A

Agar, gel melting; 239Albite, superheating; 214Annealing peak; 191

B

Boron nitride; 4 Boundary melting; 234–236

C

Cellulose trinitrate; 5 Copolymer

alternating; 310–312 analysis; 261 block

alternating; 321–325compatibility; 263, 317melting; 317–325 nomenclature; 256, 317

compatibility; 306–308, 317 crystal size restriction; 263, 307crystallization, side chain; 263, 264,

325–328, 329–330, 331 definition; 256-257 gel; 285 graft; 325, 330 isodimorphism; 261, 262, 307, 308isomorphism; 307, 308

Copolymer, melting crystal size effect; 254, 261, 263,307 equilibrium; 264–274 irreversible; 275–331 repeating unit length effect; 307 theory

eutectic; 265–268, 281, 282, 309mixed crystal; 268–270, 281, 309

with change in backbone structure;255–256

phase diagram; 265–270, 308, 309, 315,327–330 types of; 264, 265 with compound formation; 270, 310

random melting; 275–309structure; 256, 261–263

regular melting; 309–317 nomenclature; 256, 309 structure; 256, 263

structure; 261–264 chemical, 255–261 physical; 261–264two phase; 262

Copolymerizationazeotropic; 258 kinetics and statistics; 257–259penultimate effect; 259 reactivity ratio; 259–260

Page 110: Mp Introduction 2010 Optimized

Subject Index of Volume III, Page 2

Copolymerizationsegregation; 261–263, 317

Cross linking, 142–144 Crystal

chemical reaction; 144–146 copolymer, size limit; 263, 307 cross linking; 142–144 equilibrium; 2,3

small; 3 etching; 144–146 eutectic separation; 83, 84 irradiation; 142–144 macroscopic; 2 mechanical instability; 7 melting

fast; 139–142 slow; 138, 139

reorganization on melting; 30, 31, 34,132, 133, 138–146, 192

single molecule; 3 solid solution; 83 strained; 192 vibrational instability; 7

Crystallization eutectic; 228–231 rate; 12, 13, 21, 22, 217 side chain; 325–331

D

Diluent dilute solution; 112, 114, 115, 233 low molecular weight; 107–115,

226–234 macromolecular; 104–107, 225, 226

atactic; 106, 292–293 Disordering

conformational; 10, 11, 12, 14orientational; 10, 11, 14 positional; 8, 11, 14

E

Entropycommunal; 8

Entropyconformational; 10, 14, 15, 22, 37,

58–61, 74–76, 222–224 production, zero; 129–130

Equilibrium, extrapolation to; 23–45

F

Flory-Huggins equation; 42, 87, 88, 104,107

Fusion, see Melting

G

Gallium, superheating; 14, 214 Gel

copolymer; 285 formation; 3, 239 melting; 239

Gelatin, gel melting; 239 Germanium dioxide, melting and

crystallization rates; 13 Glucose, superheating; 12, 13, 214 Graphite; 4 Gutta percha; see trans-1,4-Poly(2-

methylbutadiene)

H

Heat capacity, change on melting; 15, 24Heating

fast; 139–142 slow; 138, 139

I

Incompatibility, copolymer; 307, 308Interpenetration, molecular; 5 Ionomer, melting; 286, 298 Isodimorphism, copolymer; 307, 308, 330Isomorphism

diluent; 104, 106, 107 copolymer; 307, 308

Page 111: Mp Introduction 2010 Optimized

Subject Index of Volume III, Page 3

M

Macroconformation; 1 Macromolecule; 4

flexible; 4,5 Macromolecule, rigid; 4

two-dimensional; 4 Matter, characterization of; 4 Melt

anticrystalline; 7, 16, 38 quasi-crystalline; 7, 8, 16, 38

Melting annealing during; 132–133annealing peak; 191 block copolymer; 317–325 boundary; 17, 234–236 copolymer

equation; 266, 268–270 equilibrium; 270–274 heat; 43, 309 irreversible; 275–331

crystal size dependence; 30–33, 135–137deformation dependence; 96–103,

130–132, 191–214, 222–224 diluent effect; 103–115, 225–234

at various pressures; 234 entropy; 6,8–12, J4, 15,72–76

conformational; see Entropy, conformational

deformation dependence; 97, 192,213, 223, 224

per flexible unit; 14, 15, 74 molecular weight dependence; 25, 26

equilibriumcopolymer; 264–275 data; 48–57, 72, 73 experiments; 45–115 temperature extrapolation; 24–39

experiment fast; 139–142 slow; 138, 139

gel; 239 heat; 6, 15, 39–45, 72, 73, 76–77, 78, 79

calculation from diluent effect;41–43, 107, 226

Meltingheat

capacity change; 6, 24 deformed crystals; 41, 193extrapolation; 39–41, 43–45 per interacting unit; 15, 76, 77intramolecular; 15, 77, 78 molecular weight dependence, 25,

26, 43–45, 83 history of; 2, 3 homologous series; 312–317irreversible; 128, 129

copolymer; 275–331 deformed crystal; 191–214 diluent effect; 225–234 history of; 134–138 melt grown crystal; 162–191 recognition; 129–134, 146 solution grown crystal; 147–162

kinetics; 12–14, 20–22, 215–222multiple; 133–134, J62, 190–191, 306 nucleation; 12 pressure effect; 91–96 process, 5–23 range of; 2, 15, 135–136, 308–309recrystallization during; 133 reversibility of; 12, 21, 22 shrinkage on; 97, 192, 193, 213 single phase; 3, 7, 16, 136, 236–240 small crystal; 30–33 steps of; 8 superheating on; 12, 13, 130–132, 213,

214–224 temperature; 4–7, 77–79

alternation; 313–315 change with

annealing temperature; 35–36,38, 39, 132, 192

crystallization temperature;33–35, 38, 39

irradiation; 142–144 lamellar thickness; 30–32, 39molecular weight; 25–30; 79–91

correlation with cohesive energy; 37, 38

Page 112: Mp Introduction 2010 Optimized

Subject Index of Volume III, Page 4

Meltingtemperature

correlation withentropy of fusion; 37, 38 glass transition temperature;36–38

gel; 239 maximum; 138–139, 266, 270 minimum of homologous series; 315

theory of; 7,8 time-dependent; 138–142 two phase; 3, 130

volume change; 6, 15, 23–24, 76molecular weight dependence; 82–83

zero-entropy; 129, 130, 139 Mesophase; 15 Methylcellulose, gel melting; 239 Mica; 4 Miscibility of macromolecules; 104Molecular nucleation; 21–23 Molecule

classes; 4 small; 4 tie; 3

Molybdenum disulfide; 4

N

Niobium disulfide; 4 Nitrocellulose, gel melting; 239 Nylon, salt, effect on melting; 233 Nylon 6

copolymerized by methoxymethylation;304

drawn, melting after irradiation; 144 melting

boundary; 236 conformational entropy; 75 deformation effect; 208–213 entropy; 56, 71, 73, 75 heat; 56, 71, 73 irradiated sample; 209, 210 irreversible; 160–161, 186–188 packing fraction change; 73 pressure effect; 95

Nylon 6melting

single phase; 238 temperature; 56, 70, 73 volume change; 56, 71

methoxymethylation; 144–145, 209�-polymorph data; 71 polymorphism; 186–188, 209superheating; 186, 187, 211, 221 surface free energy; 161

Nylon 6-co-12 isomorphism; 304 melting; 303, 304

Nylon 8 melting, irreversible; 188, 189 melting data; 56, 73

Nylon 11melting

deformation effect; 208 pressure effect; 95

Nylon 12melting

pressure effect; 95 Nylon 6.6

lamellar thickening; 161, 162 melting

conformational entropy; 75 data; 57, 73 deformation effect: 208, 209

after irradiation; 143 irreversible; 161, 162, 189

surface free energy; 162 Nylon 6.6-co-6

phase diagram; 304 Nylon 6.6-co-6.10

phase diagram; 304 Nylon 6.6-co-terephthalamide

phase diagram; 304, 305 Nylon 7.6-co-terephthalamide

phase diagram; 304, 305Nylon 8.6-co-terephthalamide

phase diagram; 304, 305 Nylon 9.6-co-terephthalamide

phase diagram; 304, 305

Page 113: Mp Introduction 2010 Optimized

Subject Index of Volume III, Page 5

Nylon 10.6-co-terephthalamidephase diagram; 304, 305

Nylon 11.6-co-terephthalamidephase diagram; 304, 305

Nylon 12.6-co-terephthalamidephase diagram; 304, 305

P

Paraffin amorphous heat capacity; 43 melting

heat; 11, 25, 26 process; 29 temperature; 11, 26–30, 326

phase diagram; 84–86 Penton; see Poly[3,3-bis(chloromethyl)-

oxacyclobutane] Phase diagram

(�/T); 99–101 (f/T); 98(l/T); 98 (P/T); 91–93 (V/T); 98 compound formation; 233, 270, 310copolymer; 265–270, 307–310, 315,

327–330diluent; 107–113, 226–233 dilute solution; 112, 114–115, 233, 234eutectic; 83–90, 104, 107–113, 226–233,

265–268, 307–309, 329, 330 glass transition interference; 232, 317,

319 isomorphism in; 104, 261, 262, 307, 308monomer-polymer; 232–233, 329multicomponent; 84 paraffins; 84–86 side chain; 329, 330 solid solution; 84–86, 89, 225, 261, 262,

268–270, 307, 308, 317, 329, 330ternary; 112

Phosphorus pentoxide melting and crystallization rates; 13superheating; 214

Polyacrylonitrile gel melting; 239 melting, single phase; 238, 239

Poly(acrylonitrile-co-vinyl acetate)melting; 293

Polyaldehyde melting, irreversible; 190 side chain crystallization; 330, 331

Poly(1-alkene); 325–327melting temperature; 326 side chain crystallization; 326–328structure; 326

Poly(N-n-alkyl acrylamide)side chain crystallization; 327–329

Poly(n-alkyl acrylate)side chain crystallization; 327–329

Poly(n-alkyl methacrylate)side chain crystallization, 327, 328

Poly(n-alkyl styrene)side chain crystallization; 327

Polyamidemelting of homologous series; 312–316

Poly(p-aminobenzoic acid); 5 Poly(4,4'-biphenylene terephthalimide); 5cis-1,4-Polybutadiene

conformational entropy of fusion; 75melting

data; 5, 50, 72 irreversible; 175

trans-1,4-Polybutadienemelting data; 51, 72pressure effect; 95

1,4-Poly(butadiene, trans-co-cis)melting; 295

Poly(1,4-butadiene-co-1,2-butadiene), transmelting; 295

trans-1,4-Poly(butadiene-co-pentadiene)isomorphism; 295 melting; 295

Poly-1-butene copolymer melting; 290 melting

after irradiation; 154 data; 49, 72 entropy, conformational; 75

Page 114: Mp Introduction 2010 Optimized

Subject Index of Volume III, Page 6

Poly-1-butene melting

irreversible; 153, 154, 190 pressure effect; 95

polymorphism; 153, 154, 190 Poly(butylene adipate)

melting, irreversible; 185 Poly(�-caprolactam)-poly(vinyl chloride)

solution; 105Poly(�-caprolactone)

melting data; 54, 73 irreversible; 184

phase diagram, trioxane; 231, 232 Poly(�-caprolactone-block-ethylene oxide)

melting; 322, 323 trans-1,4-Poly(2-chlorobutadiene)

crystallization on deformation; 99, 102,103

melting on deformation; 101 irreversible; 178

statistical chain segment; 100 Poly[3,3-bis(chloromethyl)oxacyclobutane],

copolymer by phenoxylationmelting; 298

data; 53, 73, 323pressure effect; 95

Poly[3,3-bis(chloromethyl)oxacyclobutane-co-�-propiolactone], blocky; 323

Polychloroprene; see1,4-Poly(2-chlorobutadiene)

Polychlorotrifluoroethylene heat of fusion; 42 melting temperature dependence on

crystallization; 33, 34 Poly(cyclododecene, trans-co-cis)

melting; 296 Poly(cyclooctene, trans-co-cis)

melting; 296 Poly(decamethylene sebacate)

heat of fusion; 42 Poly(decamethylene terephthalate-co-

sebacate)melting; 301, 302.

Polydeuteroethylene-polyethylenesolution; 106, 107

Poly( �,�'-diethylpropiolactone)melting, irreversible; 184, 185

Polydiethylsiloxanemelting, irreversible; 190

Poly(4,4-dimethylheptamethyleneadipamide-co-terephthalamide)amorphous; 305

Poly(2,6-dimethyl-1,4-phenylene oxide)diluent phase diagram; 111, 112 melting, pressure effect; 95 polystyrene, solution; 105–106

Poly(�,�'-dimethylpropiolactone) melting

data; 54, 73 deformation effect; 207-208irreversible; 184

polymorphism; 184, 208 Polydioxolan, melting, irreversible; 180Polydimethylsiloxane

melting, irreversible; 190 Polydipropylsiloxane

melting, irreversible; 190 Polyester, aliphatic

melting data; 54, 55, 73 homologous series; 312–316irreversible; 134

Polyesteramide, aromaticmelting data; 56, 73 entropy, conformational; 75

Polyester-dioxanephase diagram; 111, 113

Polyethylene amorphous, heat capacity; 43 branched

crystallinity; 277–279 melting; 275–282 phase diagram; 279–281 structure; 276, 277

brominatedblock copolymer; 318

chlorinated block copolymer; 318

melting; 282–283

Page 115: Mp Introduction 2010 Optimized

Subject Index of Volume III, Page 7

Polyethylenechlorosulfonated; 283 copolymer

limit of crystallization; 262, 263 diluent phase diagram; 108–113dissolution temperature; 114, 115 free enthalpy distribution; 130high pressure phase; 93, 94irradiation; 164 melting

boundary; 235–237 crystallization rates, 22deformation effect; 193–204 diluent and pressure effect; 234entropy; 48, 58–61, 72

conformational; 75 equilibrium; 15–21, 48, 58, 72 etched samples; 196, 198, 199, 200,

201 after etching; 146

free enthalpy; 150, 151 heat; 42, 44, 45, 48, 58, 72

extrapolation; 39–41 intramolecular; 77 irradiated samples; 195, 197, 199

after irradiation; 142–144,149, 150

irreversible melt grown crystals; 163–166solution grown crystals; 147–153

lamellae; 31–32 mechanism; 17–22 peaks, multiple; 163, 164 pressure effect, 92–95 range; 135 temperature

dependence on annealing; 36 dependence on crystallization;

34–35extrapolation with molecular

weight; 25–30, 80–81 phase diagram; 85–90

perhydrotriphenylene; 233 1,2,4,5-tetrachlorobenzene; 226–230urea; 233

Polyethylenepolydeuteroethylene solution; 106, 107polymorphism; 202 premelting; 16 reorganization; 164 segregation; 225 specific volume; 46–48 superheating; 17, 195, 197, 198, 201,

202, 203, 215–217, 222–223 surface free energy; 31, 32, 153 volume change on melting; 15

Poly(ethylene-co-acrylic acid)melting; 285, 286

Poly(ethylene adipate) conformational entropy of fusion; 75 diluent phase diagram; 110–111, 113melting

irreversible; 185 pressure effect; 95

Poly(4,4'-ethylene biphenylene); 5Poly(ethylene-co-butadiene)

melting; 287, 288 Poly(ethylene-co-1-butene)

crystallinity; 277, 278 melting; 272, 273, 280, 281

multiple; 134 reactivity ratio; 260

Poly(ethylene-alt-carbon monoxide)melting; 310-311

Poly(ethylene-co-carbon monoxide) mixed crystal; 311 phase diagram; 310, 311 reactivity ratio; 260 segregation; 261, 262 structure; 287, 310

Poly(ethylene-co-chlorotrifluoroethylene)melting; 287 reactivity ratio; 260

Poly(ethylene-co-methacrylic acid) melting; 286 reactivity ratio; 260

Poly(ethylene-block-methyl methacrylate);317

Poly(ethylene-co-methyl methacrylate), reactivity ratio; 260

Page 116: Mp Introduction 2010 Optimized

Subject Index of Volume III, Page 8

Poly(ethylene oxide) adsorption; 136 melting

boundary; 236 deformation effect; 207 entropy; 52, 67, 73

conformational; 75 heat; 52, 66, 67, 73

after irradiation; 143 irreversible; 157–160 mechanism; 17 molecular weight dependence; 81,

320 pressure effect; 95 temperature; 52, 66, 73

extrapolation; 30, 66 volume change; 52, 66, 67 packing fraction, change on melting;

73 phase diagram diluent; 110, 112 glutaric acid; 229–231 low molecular weight; 86

superheating; 220, 221 surface free energy; 159

Poly(ethylene oxide-co-1,2-butylene oxide)melting; 297

Poly(ethylene oxide-block-ethylmethacrylate); 318, 319

Poly(ethylene oxide-block-1,4-2-methylbutadiene) melting; 319 structure, 319

Poly(ethylene oxide-block-propylene oxide)melting; 319–322 phase separation; 322 structure; 319, 320

Poly(ethylene oxide-block-styrene);317–319

Poly(ethylene oxide-co-styrene oxide)melting; 297

Poly( ethylene-co-1-pentene) crystallinity; 277, 278 melting; 270, 271 reactivity ratio; 260

Poly(ethylene-co-propylene) crystallinity; 277–278 isodimorphism; 262 melting; 270–273, 280, 281 phase diagram, idealized; 266–269 reactivity ratio; 260 regular copolymer; 312 segregation; 262

Poly(ethylene-block-propylene)melting; 317, 318

Poly(ethylene sebacate)melting data; 54, 55

irreversible; 185 Poly(ethylene sebacate-block-adipate)

melting; 323, 324 Poly(ethylene suberate)

entropy, conformational; 75 melting data; 54, 55

Poly(ethylene terephthalate)irradiation; 143 melting

deformation effect; 131, 207–208entropy; 55, 69, 73

conformational; 75 heat; 43, 55, 69, 73 irreversible; 181–183 packing fraction change; 73 temperature; 55, 68, 73

superheating; 68, 131, 207, 208, 223,224

unit cell; 68 volume change on melting; 55, 68, 69

Poly(ethylene terephthalate-co-adipate)phase diagram; 300, 301

Poly(ethylene terephthalate-block-ethyleneoxide); 325

Poly(ethylene terephthalate-co-isophthalate)phase diagram; 301–303

Poly(ethylene terephthalate-co-o-phthalate);300

Poly(ethylene terephthalate-co-sebacate)phase diagram; 300–302

Poly(ethylene-alt-tetrafluoroethylene)melting; 311 structure; 311

Page 117: Mp Introduction 2010 Optimized

Subject Index of Volume III, Page 9

Poly(ethylene-co-tetrafluoroethylene)melting; 311 reactivity ratio; 260

Poly(ethylene-co-vinyl acetate) melting; 283–285 reactivity ratio; 260

Poly(ethylene-co-vinyl alcohol)melting; 285

Poly(ethylene-co-vinylphosphonate)melting; 286

Poly(fluoro-n-alkyl acrylate)side chain crystallization; 327

Poly-p-fluorostyrenemelting, irreversible; 172

Polyglycolidemelting data; 53, 73

Poly(heptamethylene terephthalate-co-sebacate)melting; 301, 302

Poly(hexamethylene oxide)melting data; 53,73

Poly(hexamethylene-alt-propylene)melting; 312

Poly(hexamethylene sebacate-block-2-methyl-2-ethyl-1,3-propylene sebacate)melting; 324

Poly(hexamethylene succinate)pressure effect on melting; 95

Poly(hexamethylene terephthalate-co-sebacate)melting; 301, 302

Poly[bis-1,2-(�-hydroxymethoxy)phenyleneadipate]melting, irreversible; 185

Polyisoprene, see1,4-Poly(2-methylbutadiene)

Poly(4,4'-isopropylidenediphenylene-carbonate)melting

data; 55, 73 entropy, conformational; 75pressure effect; 95

Polylactidecopolymer of stereoisomers; 298–300

cis-1,4-Poly(2-methylbutadiene)crystallization on deformation; 99melting

data; 51, 72 entropy, conformational; 75 irreversible; 134, 135, 175, 176 pressure effect; 95temperature

crystallization dependence; 33 force effect; 97, 98

statistical chain segment; 100surface free energy; 176

trans-1,4-Poly(2-methylbutadiene)isomorphism; 176–178 melting

data; 51, 73 entropy, conformational; 75

after irradiation; 143 irreversible; 176–178

Poly(4-methyl-1-butene)melting, copolymer; 290

Poly(methyl methacrylate)gel melting; 239 melting after irradiation; 143 poly(vinylidene fluoride) solution; 105

Poly(4-methyl-1-pentene)dissolution temperature; 115 melt, structure, anticrystalline; 38melting

data; 49, 72 entropy, conformational; 75

after irradiation; 156irreversible; 155, 156pressure effect; 95 polymorphism; 155

Polymorphism, stress induced; 191Poly(octadecyl acrylate)

copolymers with long side chains; 329,330

Poly(octamethylene oxide)melting data; 53, 73

Polyoxymethylene melting

boundary; 236 entropy; 52, 65, 66, 73

Page 118: Mp Introduction 2010 Optimized

Subject Index of Volume III, Page 10

Polyoxymethylenemelting, conformational; 75

heat of; 52, 65, 73 homologous series; 313, 315, 316

after irradiation; 143, 219, 220irreversible; 156–158, 178–179packing fraction change; 73pressure effect; 95recrystallization; 133temperature; 52, 64, 65, 73 time dependent; 140 volume change; 52, 65

superheating; 132, 215, 218Poly(oxymethylene-co-dioxane)

melting; 296Poly(oxymethylene-co-dioxepane)

melting; 297 Poly(oxymethylene-co-dioxolane)

melting; 274 Poly(oxymethylene-co-epichlorohydrin)

ionomer; 298 melting; 296

Poly(oxymethylene-co-ethylene oxide)melting; 274 phase diagram; 296, 297

Poly(oxymethylene-co-tetramethyleneoxide), melting; 274

Poly(oxymethylene-co-trimethylene oxide)melting; 274

Poly(pentamethylene terephthalate-co-sebacate)melting; 301, 302

Poly-1-pentenemelting data; 49, 72 melting entropy, conformational; 75

Poly(4-phenyl-1-butene)melting data; 49, 72

Poly-p-phenylene; 5 Poly(p-phenylene terephthalamide); 5Polypivalolactone, see Poly(�,�'-dimethyl-

propiolactone) Poly-�-propiolactone

melting, data; 54, 73entropy, conformational; 75irreversible; 184

Polypropylene, isotactic chlorinated lattice dimension; 290melting

atactic diluent; 292–293 biaxially drawn film; 206 boundary; 236 deformation effect; 204–206entropy; 48, 63, 64, 72

conformational; 75 heat; 48, 63, 72 irreversible; 166–169packing fraction change; 72 pressure effect; 95 single phase; 238 tacticity dependence; 291–292temperature; 48, 62, 72volume change; 48, 63

phase diagram diluent; 108–110 pentaerythritylbromide; 226–231

polymorphism; 167, 168 shrinkage of drawn sample; 206tacticity effects; 290–293

Polypropylene, syndiotacticmelting

irreversible; 156 volume change; 63

Poly(propylene-co-l-butene); 288–290dissolution temperature; 289 phase diagram; 289, 290 reactivity ratio; 260

Poly(propylene oxide), copolymer ofstereoisomers; 298melting, irreversible; 179, 180

Polystyrene, isotacticbenzoylation; 145 melting

after chemical reaction; 154data; 50, 72 deformation effect; 206-207 entropy, conformational; 75irreversible; 154, 155, 169–172

phase diagram, diluent; 112poly(2,6-dimethyl phenylene oxide),

solution; 105–106

Page 119: Mp Introduction 2010 Optimized

Subject Index of Volume III, Page 11

Polystyrene, isotacticsolution atactic; 106superheating; 171surface free energy; 155

Poly(styrene-co-o-fluorostyrene)isomorphism; 295 melting; 295 reactivity ratio; 260

Poly(styrene-co-p- fluorostyrene)melting; 295 reactivity ratio; 260

Polysulfidemelting of homologous series; 313, 315

Polytetrafluoroethylenemelting

data; 48, 72 entropy, conformational; 75

after irradiation; 143irreversible; 189 pressure effect; 91–92, 95superheating; 189,217,218

Poly(tetrafluoroethylene-co-hexafluoro-propylene)

melting; 290 Poly(tetrafluoroethylene-alt -isobutylene)

melting; 311 Poly( tetrafluoroethylene-co-isobutylene)

reactivity ratio; 260Poly(tetraflyoroethylene-alt-propylene); 311

reactivity ratio; 260 Poly(tetrafluoroethylene-co- trifluorochloro-

ethylene)melting; 294

Poly(tetrafluoroethylene-co-trifluoro-ethylene)melting; 295

Poly(tetramethyl-p-silphenylene-block-dimethylsiloxane)melting; 324, 325

Poly(tetramethyl-p-silphenylene siloxane)melting

dependence on the molecularweight; 82

Poly(tetramethylene oxide)melting

boundary; 236 data; 52, 73 pressure effect; 95

Poly(tetramethylene terephthalate)melting, irreversible; 183, 184

Poly(tetramethylene terephthalate-co-sebacate), melting; 301, 302

Poly(trimethylene terephthalate-co-sebacate), melting; 301, 302

Polyundecanal, side chain crystallization;330, 331

Polyurethane block copolymer; 325melting

deformation effect; 208 homologous series; 312, 313, 315,316irreversible; 189, 190

segmented; 325 Poly(vinyl alcohol)

gel melting; 239Poly(vinyl alcohol-co-vinyl acetate)

melting; 293 Poly(vinyl chloride)

gel melting; 239 poly(�-caprolactam), solution; 105

Poly(vinyl ester)side chain crystallization; 327–329

Poly(vinyl fluoride)poly(vinylidene fluoride), solution; 107

Poly(vinyl fluoride-co-tetrafluoroethylene)melting; 294 polydimorphism; 294 reactivity ratio; 260

Poly(vinylidene chloride)dissolution temperature; 115 phase diagram, dilute solution; 234

Poly(vinylidene chloride-co-methylacrylate), melting; 293

Poly(vinylidene chloride-co-octyl acrylate),melting; 293

Poly(vinylidene chloride-co-vinyl chloride),isomorphism; 293, 294

Page 120: Mp Introduction 2010 Optimized

Subject Index of Volume III, Page 12

Poly(vinylidene fluoride) melting

data; 50, 72gel; 239 irreversible; 172–175 pressure effect; 95

poly(methyl methacrylate) solution; 105polymorphism; 172–174 poly(vinyl fluoride), solution; 107surface free energy; 172

Poly(vinylidene fluoride-co-vinylfluoride)Isomorphism; 294 melting; 294 reactivity ratio; 260

Poly(vinyl stearate)copolymers with long side chains; 330

Poly-p-xylylene melting

irreversible; 190 polymorphism; 190

Poly(m- xylylene-adipamide-co-terephthalamide)melting; 305

Q

Quartzsuperheating; 214

R

Reorganization, methods to minimize; 30Richards’s rule; 6, 7, 8, 12 Rubber

elasticity, thermodynamics of; 99–103elasticity experiments; 103 natural; see cis-1,4-Poly(2-methyl

butadiene)

S

Salt, effect on polymer melting; 233Selenium

melting data; 48, 72superheating; 217

Silicate, superheating; 12, 214 Silicon disulfide; 4 Solution

dilute; 112, 114, 115solid; 83–84

Sugar, superheating; 12 Superheating; 7, 12–14, 17, 25, 34, 131,

139, 214-224 Surface

free energy; 30, 162 melting; 234–236

Temperaturedistribution; 140, 141 gradients within crystal; 141, 142

T

Thomson-Gibbs equation; 30, 135, 137Tin, superheating; 14, 214 p-Toluidine, superheating; 214Trouton’s rule; 6

V

Volumeadditivity; 23 change on melting; 15, 23, 24

Z

Zero-entropy production; 129–130Zirconium disulfide; 4