mould_ejectors.pdf

18
CAE DS – Mould Design Ejector pins and sleeves 1 Ejector pins and sleeves School of Technology and Management, Polytechnic Institute of Leiria At the most basic level, moulds consist of two main parts: the cavity and core. The core forms the main internal surfaces of the part. The cavity forms the major external surfaces. Typically, the core and cavity separate as the mould opens, so that the part can be removed. This mould separation occurs along the interface known as the parting line. The parting line can lie in one plane corresponding to a major geometric feature such as the part top, bottom or centerline, or it can be stepped or angled to accommodate irregular part features. Choose the partingline location to minimize undercuts that would hinder or prevent easy part removal. Undercuts that cannot be avoided via reasonable adjustments in the parting line require mechanisms (Slide Mechanisms) in the mould to disengage the undercut prior to ejection. The mould base comprises the majority of the bulk of an injection mould. Standard offtheshelf mould bases are available for most moulding needs. Typical moulds bases are outfitted with a locating ring and provisions for a sprue bushing in the stationary half (cavity) of the mould and an ejector assembly in the moving half. Both halves come with clamp slots to affix the mould in the press. The moving half has holes to accommodate bars that connect the press ejection mechanism to the ejector plate in the mould. Leader pins (guide pins) projecting from corners of the stationary half align the mould halves. Return pins connected to the ejector plate corners project from the mould face when the ejection mechanism is in the forward (eject) position. As the mould closes, the return pins retract the ejector plate (if not retracted already) in preparation for the next cycle. When plastics products and their respective moulds are designed, the location of ejectors is important to ensure proper stripping from the core. By selecting suitable ejector components the visual appearance of the products can be considerably influenced, but it is even more important that the mould performance becomes more reliable and production improves. Usually ejectors are standard parts included in the CAD Standard Elements Software (CAD Library). Those items already suitable can be selected easily during the product design stage. This document is focused on the design, material, assembling and operation of ejection systems. Introduction

Upload: anshul-gupta

Post on 15-Sep-2015

8 views

Category:

Documents


2 download

TRANSCRIPT

  • CAEDSMouldDesign

    Ejectorpinsandsleeves1

    EjectorpinsandsleevesSchoolofTechnologyandManagement,PolytechnicInstituteofLeiria

    At themostbasic level,mouldsconsistof twomainparts: thecavityandcore.Thecoreformsthemaininternalsurfacesofthepart.Thecavityformsthemajorexternalsurfaces.Typically,thecoreandcavityseparateasthemouldopens,sothatthepartcan be removed. This mould separation occurs along the interface known as thepartingline.Thepartinglinecanlieinoneplanecorrespondingtoamajorgeometricfeaturesuchas thepart top,bottomorcenterline,or itcanbesteppedorangled toaccommodate irregular part features.Choose the partingline location tominimizeundercutsthatwouldhinderorpreventeasypartremoval.Undercutsthatcannotbeavoided via reasonable adjustments in the parting line require mechanisms (SlideMechanisms)inthemouldtodisengagetheundercutpriortoejection.

    Themouldbasecomprises themajorityof thebulkofan injectionmould.Standardofftheshelf mould bases are available for most moulding needs. Typical mouldsbases are outfittedwith a locating ring and provisions for a sprue bushing in thestationaryhalf(cavity)ofthemouldandanejectorassemblyinthemovinghalf.Bothhalves comewith clamp slots to affix themould in thepress.Themovinghalfhasholes toaccommodatebars thatconnect thepressejectionmechanism to theejectorplateinthemould.Leaderpins(guidepins)projectingfromcornersofthestationaryhalfalignthemouldhalves.Returnpinsconnectedtotheejectorplatecornersprojectfrom themould facewhen theejectionmechanism is in the forward (eject)position.Asthemouldcloses,thereturnpinsretracttheejectorplate(ifnotretractedalready)inpreparationforthenextcycle.

    When plastics products and their respective moulds are designed, the location ofejectors is important toensureproper stripping from the core.By selecting suitableejectorcomponents thevisualappearanceof theproductscanbeconsiderably influenced, but it is even more important that the mould performance becomes morereliableandproductionimproves.UsuallyejectorsarestandardpartsincludedintheCADStandardElementsSoftware(CADLibrary).Thoseitemsalreadysuitablecanbeselectedeasilyduringtheproductdesignstage.

    Thisdocument is focusedon thedesign,material,assemblingandoperationofejectionsystems.

    Introduction

  • CAEDSMouldDesign

    Ejectorpinsandsleeves2

    Typically, moulds have ejector systems built into the moving half (see followingfigure).Ejectortravelmustbesufficienttoclearthemouldingfromfixedmembersinthemould.Undercuts or pickup ribsmay bemachined intomouldmembers toinsurethatthemouldedpartremainsontheejectionsideofthemould.Pickupsizesaredeterminedforthetypeofthematerialbeingused.Partsmayberemovedfromamouldusingthecommontypeofejectororknockoutsystem.Ejectorsactuatedbyanejectorbarmustcontainpushbacksorsafetyreturnpinstorepositiontheejectorpinspriortothestartoftheinjectionormouldfillingcycle.

    Figure1 Componentsofastandardtwoplatemouldbaseejectionsystemsmountedonstatichalfofthemould

    The ejection unit of the moulding press activates these systems. Rods linking thepressejectormechanismtoanejectorplateinthemouldenablethepresscontrollertocontrolthetiming,speed,andlengthoftheejectionstroke.Reverseinjectionmouldsejectpartsfromthestationarysideofthemouldviaindependentejectionmechanismsoperatedbyspringsorhydrauliccylinders.Thisconfigurationfacilitatesdirect injectionontotheinsideorbacksurfaceofcosmeticparts.Theaddedcomplexityofreverseinjectionmoulds adds to themould cost. Specialized ejection components, such asknockout (KO) pins,KO sleeves, or stripper plates, project from themould ejectorplatetothepartsurfacewheretheypushthepartoutofthemould.

    Manyfactorsdeterminetheamountofejectorareaneeded,includingthepartgeometry,mouldfinish,materialreleasecharacteristics,andparttemperatureatthetimeofejection.Topreventdamageduringejection,thinwalledpartsgenerallyrequirelargerejectorsandgreaterejectorareathancomparablepartswiththickerwalls.

    Drawpolishing themould steel in thedirectionofejectiongenerallyhelpsejection.Thermoplasticpolyurethanes,exceptions to this rule,usuallyejectmoreeasily frommouldswithfrostedfinishesthatlimitplastictometalcontacttopeaksinthemouldtexture.

    Ejectionsystems

  • CAEDSMouldDesign

    Ejectorpinsandsleeves3

    Careful consideration is essential to decisions concerning the number and area ofejectors tobeusedand the typeof system tobe employed for thevarious typesofmaterials. Itmustbeunderstood that, inmost cases, thepartbeing ejectedmay, tosomedegree,besoftduetothehightemperatureattimeofejection.Forlowestcost,mouldingpartsareejectedwhentheyare justsufficientlyhardtopreventdistortionandinmanycases,themoulditselfisheatedtoachievemaximumfeasibletemperatureatejection.The following figure illustratesdesirableknockoutpin locations forsoftmaterialssuchaspolyethylene.

    Figure2 Knockoutpinlocations.Basedoncalculationtogiveminimumbendingshadedareasarepreferableejectorpinlocationsforsoftflexibleplastics.

    Ejectionmarksmaybestyledintothepartwhendesirablebyaddingdesignconfiguration in these areas. This is accomplished by decorating or adding a series ofconcentricringsontheejectorpinsurface.

    A summaryof standardised ejectorpins and sleeves is shown in the table onnextpage.Theyareavailable in twosteelgrades: (1) toolsteel, throughhardenedwithahardnessof ~60HRc, and (2)hotwork steel,with a core strengthof ~45HRc and anitridedsurfaceof~950HV0.3.Allejectorsmadeoftoolsteelhaveabrightappearanceontheshaft,andonlytheforgedheadisdark,fromtheannealingtreatment.Dependingonthenitridingtreatment,thepinsurfacelookseitherbrightordullgray.Ejectorsthatundergothebathnitridingprocess(Tenifertreatment)showthetypicaldullgraysurface.Forcertainapplications,e.g.,indiecastingmolds,thistypeofsurfaceismostsuitable,becausethe lubricatingfilmadheresbettertothesurface.Gasnitridedejectorshaveabrightsurfacebecauseregrindingisrequiredafternitriding.Insomecasesthesepinsare subsequently treatedbya special sulfatingprocess toobtainavisualappearancesimilartothatofbathnitridedpins.Plasmanitridedejectorsalsohaveabrightsurface,but thesamemechanicalpropertiesapplyas forTenifertreatedejectors.Becauseacertainamountofwearonejectorscanneverbeavoided, foranewmoldthedesignershouldconsiderselectingarelativelysmallerpindiameter.Ifworn,thispincanthenbereplacedbya largerone.Forthispurposethesuppliersofstandardsofferoversizeejectors.Remachiningofnitridedpinsandsleeves in the radialdirectionisnotrecommended,becausethiswouldremovethe~0.1mmthicknitridedlayer.Repeatingthenitridingtreatmentisnotadvisable.

    Ejectorpins

    Square partCircularpart Rectangular part

  • CAEDSMouldDesign

    Ejectorpinsandsleeves4

    Ejectorsleevesareofexcellenthelp inejectingcomplexareasofmouldingswithouttheneedtoreinforcetheproductwithspecialbossesorribs.Theyareavailableinthesame steel grades as ejectorpins. For special applications, stepped sleeves are alsoavailable as standards. For long ejectors, extension rods (Figure) can be applied toprovidestability to thinpinsandsleeves.They fitstandardejectorcomponentsandeliminatetheneedforexpensivecustommadeoversizeitems.

    Figure3 Extensionforinjectorpinsandsleeves:1)screwcap;2)extension;3)lookingtab;4)groove;5)ejectorsleeve

    Onthebasisofresistancetobuckling,acertainmaximumdiametertolengthratiohasbeenestablished forallejectors; therefore,suitableejectorpinswithsmalldiametersforlargemouldsarenotavailable.Whenextensionrodsareused,andwhenejectorsareworn,only the standard ejector,which ismounted to the sturdy rod (2)withascrew cap (1), needs to be replaced.A locking tab (3) pressed into the groove (4)preventslooseningofthescrewcap(1).Forusewithejectorsleeves(5),theextensionmustbedrilledthroughtosuitthecorepindiameterd.Ineverycase,theboreinthescrewcapmustbemachinedtosuittheshaftdiameterdofthepinorsleeve.

    Forspecialejectionapplicationsunderthinribsorextremelynarrowcontours,bladeejectorsareavailable.

  • CAEDSMouldDesign

    Table1. Summaryofstandardejectorpinsandsleeves

    Drawing

    2D 3D

    DesignationStandard

    Material Hardness

    HotWorkSteel1.2343

    Nitrided950HV0.3Corestrength1400n/mm2

    EjectorpinwithcylindricalheadDIN1530AISO6751

    Toolsteel1.2516

    Throughhardened602HRc

    HotWorkSteel1.2343

    Nitrided950HV0.3Corestrength1400n/mm2

    ShoulderedejectorpinwithcylindricalheadDIN1530CISO8694

    Toolsteel1.2516

    Throughhardened602HRc

    HotWorkSteel1.2343

    Nitrided950HV0.3Corestrength1400n/mm2

    EjectorpinwithconicalheadDIN1530D Toolsteel

    1.2516Throughhardened602HRc

    HotWorkSteel1.2343

    Nitrided950HV0.3Corestrength1400n/mm2

    BladeejectorDIN1530FISO8693

    Toolsteel Through

    Ejectorpinsdesignandmaterial

    Ejectorpinsandsleeves5

    1.2516 hardened602HRc

    HotWorkSteel1.2343

    Nitrided950HV0.3Corestrength1400n/mm2

    EjectorsleeveDIN16756ISO8405

    Toolsteel1.2516

    Throughhardened602HRc

  • CAEDSMouldDesign

    Ejectorpinsandsleeves6

    Figure4 Specialbladeejectorexample:1)ejectorblade;2)guidebushing;3)guideshellhalves;4)splitguide

    Thevery thinejectorblade (1) is solidlyheldby theguidebushing (2)and is supported along its entire length by the guide shell halves (3). This design preventsbucklingandensuresreliableejection.Tofacilitateassembly,asplitguidebushingisavailable,whichcanbemountedinaborejustbelowthecavity.Difficultmachiningofthebladeslotthroughthecavityblockcanthusbeeliminated.

    Figure5 Assemblyexampleofejectorpins.

    Undercuts, part features that prevent straight ejection at the parting line, tend toincreasemouldcomplexityand lead tohighermouldconstructionandmaintenancecosts.Wheneverfeasible,redesigntheparttoavoidundercuts.

    Minorpartdesignchangescanofteneliminateproblematicundercuts in themould.Forexample,adding throughholes cangiveaccess to theundersideof features thatwould otherwise be undercuts.Undercut features that cannot be avoided throughredesign require mechanisms in the mould to facilitate ejection. These types ofmechanisms include sideaction slides, lifter rails, jigglerpins, collapsible coresandunscrewingmechanisms.Theremainderofthissectiondiscussestheseoptions.

    Sideactionslidesusecampinsorhydraulic (orpneumatic)cylinders toretractportionsofthemouldpriortoejection.Campindrivenslidesretractasthemouldopens(see following figure).As themould closes, the campins return the slides to theiroriginalpositionforthenextinjectioncycle.Slidesdrivenbyhydraulicorpneumaticcylinderscanactivateatanytimeduringthemouldingcycle,anadvantageinapplicationsrequiringtheslidestoactuatepriortomouldopeningorclosing.

    Ejectionmovement

    Mouldingandejectingpartswithundercutsslidemechanisms

  • CAEDSMouldDesign

    Ejectorpinsandsleeves7

    Figure6 Slidemechanisms:a)andb)motionactivatedbyguidedpillarsc)motionactivatedbynoncirculargeometriesd)e)motionactivatedbyspringsf)interiorslidemechanismg)motionactivatedbyhydraulicorpneumaticsystems.

    Shallowundercutscanoftenbeformedbyspringloadedliftersorlifterrailsattachedto the ejector system. These liftersmovewith the part on an angle duringmouldopening (see following figurea)orejectionuntil the lifterclears theundercut in thepart.Avariationon this idea, the jigglerpin (see following figure b),has angledsurfacestoguidethepinawayfromtheundercutduringejection,thenreturnittothemouldingpositionastheejectorsystemretracts.

    Figure7 Lifterrailsattachedtotheejectorsystem:a)angledlifters;b)lifterrailwithangledsurfaces.

    Slidemechanisms

    a) b) c) d)

    e) f) g)

    Lifterrails

    Afterejection

    Beforeejection

    BeforeejectionAfterejection

    a) b)

  • CAEDSMouldDesign

    Ejectorpinsandsleeves8

    Figure8 Realexampleoflifterrailsattachedtotheejectorsystem:a)angledlifters;b)lifterrailwithangledsurfaces.(CourtesyofaPortuguesemouldmakingcompany)

    Featuressuchasinternalthreads,dimples,slots,orgroovesontheinsideofholesorcapsmayrequirecollapsiblecores.

    Figure9 Plasticfeaturesthatmayrequirecollapsiblecores.

    These complex cores aremade in segments that collapse toward the centre as theyretractduringmould opening (see following figure). As soon as the inner core isretracted, the segmentsmove inward, thereby releasing the product. Setting up ofmoulds is easy, because adjusting the collapsible cores isdoneduringmould constructionandmountingofadditionaldevicesisnotrequired.Thecollapsiblecoresarehardenedandreadytouse,exceptforthegrindingoftherequiredthreadsorundercuts.

    LifterrailsExampleCollapsiblecores

    a) b)

  • CAEDSMouldDesign

    Ejectorpinsandsleeves9

    Beforeejection

    Figure10 Collapsiblecoresforexternalmouldingofpartsurfaces.

    Figure11 Collapsiblecoresforinteriormouldingofpartsurfaces:a)schemeofassemblingandoperationofananteriorcollapsiblecore;b)collapsiblecore.

    Expanded Collapsed

    a)

    b)

    Cavity

    CoreplatealignmentEjectionplate

    b)a)

    Afterejection

    Beforeejection

    Afterejection

  • CAEDSMouldDesign

    Ejectorpinsandsleeves10

    Smallsizecoresaresuppliedwithsegmentsseparatedfromeachotherbyfixedribs.Consequently,undercutsonthemoulding,e.g.,threads,alsoshowaninterruptiononthecircumference.Duringejectiontheremightbeadangerthatproductswillsticktothecore,anditissuggestedthatanairblowoffbeused;inaddition,infraredsafetydevicesorweightcheckscalescanensurethatallproductshavebeenejected.Available in avariety of standard sizes fromvariousmouldcomponent suppliers, thesespecialty cores are typicallymodified to produce the desired undercut shape. Thenumber and complexity of individual core components limit theminimum size ofcollapsible cores.Collapsible coresare rarelyused for insidediameters less than16mm.

    Using the same operation principle of both, lifters and collapsible cores, with theflexiblecoreconceptsmallundercutscanbeeasilyreleased.

    Figure12 Flexiblecores:a)operating;b)examplesofseveraldifferentgeometries

    Forproductswithinternalthreads,specialconsiderationsarerequiredwhendesigning the unscrewingmechanism.A variety of devices can drive the rotation of thethreaded cores, including rackandpiniondevices actuated bymouldopening (followingfigurea),motors,orhydrauliccylinders(followingfiguresbandc);ormotordrivengearandchainmechanisms.

    Flexiblecores

    a) b)

    Unscrewingmechanisms

  • CAEDSMouldDesign

    Ejectorpinsandsleeves11

    Figure13 Applicationofunscrewingdrivecomponents:a)activationcomponentsusinghydraulicor,pneumaticactivatedpistons;b)activationofrotationusingthemouldmovement;c)actuationofrotationusingthehydraulicmachineejector.

    Themoulddesignshouldincludeprovisionstolubricatethevariousmovingpartsoftheunscrewingmechanism.Slides, cams, collapsible cores, andunscrewingmechanismsaddtothecostandcomplexityofthemould,aswellasthemouldmaintenancecost. It would be of advantage to integrate the unscrewing drive into the mould,wheretherotationisinitiatedbyaleadscrewdrivenbythemouldopeningmotion.

    Whenthemouldisinstalled,onlyaspecifiedopeningstrokeneedstobeset;therefore,suchunscrewingmouldsarealsoverysuitableforautomaticmouldchanging.

    Activatedbypiston

    a)

    b)

    c)

  • CAEDSMouldDesign

    Ejectorpinsandsleeves12

    Insome injectedparts theejectionmustbedoneusing,acceleratedejectorpins.Thepplicationof these systems turnspossible,both the ejectionof someundercut fea

    andtheejectioninoneorientateddirection.

    followingfiguresshowstandardssystemsthathaveaveryeasyoperation.Internally the system has a rack and rotates the wheel that gives an advance to theextractorpinassembled(followingfigurea).Theaccelerationofthecentralejectorpinisusefulinordertopreventhangingoftheinjectedpartintheejectorpins.Theapplicationof thesekindsof systems canavoid the interventionofahumanor robot to

    eatures

    The

    removethepartfromthemould.

    a)

    b)

    c)

    Acc leratedejectorpins

  • CAEDSMouldDesign

    Figure14 Standardejectionaccelerators(onleft)andexampleofapplicationandperation(onright)

    he following figureshowsasystemforacceleratingejectiondevelopedbyaPortuuesemouldmakingcompany.

    Figure15 Customisedsystemforacceleratingtheejection.

    Thereleaseoflargeboxtypeshapesorsimilarproductsissubstantiallyassistedwiththeuseofairpoppetvalvesorejectionpinspressurizedwithair..Ejectiondifficultiescanarise ifavacuum formsbetween thepartandmouldduringejection.Typically,thisdifficultydevelopsindeeplycored,closedbottomparts.Mouldcomponentssuchasairpoppetvalves(seefigure)canalleviatetheproblems.Airpoppetvalvesrelievethevacuumanddeliverpressurizedairbetween thepartandmouldsurfaceduringejection.Theairpoppetvalves arebuilt into the coresof the injectionmoulds.Thespringloadedconicalseatispushedforwardbytheapplicationofcompressedairatthesame timeasejectionstarts. Insomecases it isevensufficient for thepoppet toopenby itselfduringejection tobreak thevacuum.Airpoppetvalvesaremountedithpressfitintothemoldingsurface.Tofacilitatemachining,auxiliarytoolssuchasounter bores and reamers are available. Appropriate devices and fittings for air

    Airassistedejection

    o

    Tg

    d)wcEjectorpinsandsleeves13

    supplyareofferedbythesuppliersofthesestandardcomponents.

  • CAEDSMouldDesign

    Ejectorpinsandsleeves14

    Figure16 Ejectionsystemsassistedbyairpressure:a)Airpuppetvalves(left)andoperation(right);b)Ejectionpinsassistedbyairpressure(left)andoperation(right);c)exampleofamouldwithanairpuppetvalve.

    c)

    b)

    a)

    Airpressure

  • CAEDSMouldDesign

    Ejectorpinsandsleeves15

    Designsrequiringthinwallsorareaswhichhaveundercutsontheinteriorrequireoneta

    turedesignand the second stage to remove thepart from themould.Thisouble system permits the part to be freely ejected from the mould. This designaybeused for allmaterials. It is illustrated by the following figures.The ejection

    of the machine is automatically subdivided into two stepless adjustabletrok performed with either the hydraulic machine ejectorr/and,incaseofmechanicaloperation,thereturnpinsofthemould.

    igure17 le(right).

    stage ejection can be supported by the application of latchesdevices (see lastgure) however, latches are often used on injectionmoldswith twomold partingvels.Atleasttwolatchassembliesaresymmetricallymounted ofthe

    Duringmouldopening,onepartinglevelopensfirst;aftertravelingapredermined distance, the locking mechanism of the latch is released and the secondarting levelopens.Thiskindofstandard latchpuller isusedpreferablywiththreetemoldsinwhichonepartinglevelmustopenforthesprueandrunnersandthe

    therpartinglevelmustopentoallowtheproductstofalldown.Theclassicdesignof latch unit is shown in the following figure a).A hinged latch bar remains in itsngagedpositionoveracertaindistanceandthenopensbytheactionofacam.When

    sprin

    wostageejection

    sinner

    geofejection to remove theparts from thecamsor themould force forming the fea

    dmmotions es. The return travel iso

    F TwoStageejection:concept(left)andapplicationexamp

    Twofile ontheoutsidemould.tepplaoaethemouldisclosed,aleafspringholdsthehookinthelockedposition.Properfunctionofthis gmustbecheckedwhenassemblingthisunit.

    T

    Latchesdevices

    Core

    EjectorpinSlidingsleeve

    EjectorpinSlidingsleeve

    Core

    Ejectionmotionofthehydraulicsystems of the machine

    Ejectionmotionof

    mould

    opening

    Latchlockingdevice

  • CAEDSMouldDesign

    Ejectorpinsandsleeves16

    Anotherdesignofa latchingunit isshown in following figureb).Both thehousingandthebaseplatearemountedonthepulledplate.It isrecommendedtoscrewthelatchbaron themovablemouldhalf and the controlbaron the fixedhalf.Duringmould opening,partingplane I opens first,until the slope S of the control bar (2)disengagestheslidinglock(3).PartingplaneIInowstartstoopen.Thestrokeofthepulledplateistobelimitedinthisposition,e.g.,withshoulderscrews.Thelengthofthe slopecorresponds to theminimum strokeof the latchlockingunit. In thisarea,onlylow

    Duringmouldopeningmovement,ifthereisanothermotionwithinthemouldbefore

    . In this case the latch stroke H tualookingstarts.

    igure18 Standardlatchpullers:a)latchpullerwithslidehingedlatchbar;b)Latchevice;c)Latchlickingunitandoperatingsequence:I,II,IIIMouldpartinglines1Latchbar2Controlbar3SlidingboltSSlopeHvLostmotion

    thquiredeopeningofpartingplane I starts,a thirdpartingplanemustbeprovidedas re

    bar travels the delayed v before the ach

    Fd

    a)

    c)

    b)

  • CAEDSMouldDesign

    Ejectorpinsandsleeves17

    Althoughtheabovementionedlatchingunitsaremountedfromtheoutside,therearealsoroundlatchingunitsavailablethatareassembledinboresinsidethemould.Socalledfrictionpullersmaybeusedtoadvantageformediumpullingforcesandwherepositioning accuracy is not important. They transmit axial forces through frictionbetweenaplasticsleeveand theborewall.The friction force is infinitelyadjustablewithatapered,selflockingscrew.Thesestandarditemscanalsobeusedeffectivelyinthreeplatemolds;theycanalsobeusedasa braketoslowdownamotionorasadampertopreventshockswhenplatescollide.Thestrokeofthefloatingplatemust

    rictionpuller

    be limited in thedirectionofpulling, e.g.,by shoulder screws.Note thatwhen themouldisbeingclosed,themouldprotectionmechanismofthemachineisaffectedbythesefrictionalpullers.Lubricationofthepullersisnotpermissible.

    Figure19 Frictionpuller

    F

  • CAEDSMouldDesign

    Ejectorpinsandsleeves18

    CAEDSMouldDesign

    Ejectorpinsandsleeves18

    ReferencesMoldmakinghandbook,edit.GunterMennig,2ndedition,Hanser/GardnerPublishing,Inc.,ISBN1569902615,1998

    Moldengineering,HerbertRees,Hanser/GardnerPublications,Inc.,ISBN1569901317,1995

    UnderstandinginjectionMoldDesign,HerbertRees,HanserPublishers,ISBN1569903115,2001

    Injectionmolds:108provendesigns,HansGastrow,edits.E.LindnerandP.Unger,2ndeditionrevisedwithnewmolddesigns,HanserPublishers,ISBN3446156828,1993

    Howtomakeinjectionmolds,GeorgMenges,WalterMichaeliePaulMohren,3rded.,Munich:Hanser,ISBN3446212566,2001

    Plasticsmoldengineeringhandbook,JohnHarryDubois(Author),WayneI.Pribble(Editor),KluwerAcademicPub;4thedition,ISBN0442218974,1987

    ngineeringPolymers,partandmolddesignadesignguide,BayerCorporation,,2000

    HASCO,DMEandCUMSAelectroniccatalogues

    EPittsburgh

    Ejector pins and sleevesReferences