motion encoding - university of california, san diego · 2013-02-11 · •one image with velocity...

8
E. Wong, BE278, UCSD Winter 2013 Bioengineering 278 Magnetic Resonance Imaging Winter 2013 Lecture 6 •Phase Contrast and Diffusion Imaging •Motion Encoding •Phase Contrast MRA •Elastography •Diffusion in a Gradient Field •Anisotropic Diffusion •Fiber Tract Mapping E. Wong, BE278, UCSD Winter 2013 Motion Encoding RF G z G Y G x Modify M xy Phase Contrast MRA Elastography Diffusion Imaging Excitation M z ->M xy Image Acquisition Modify M Z Time of Flight MRA Arterial Spin Labeling Myocardial Tagging

Upload: others

Post on 14-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Motion Encoding - University of California, San Diego · 2013-02-11 · •One image with velocity encoding negative! •Vector sum of gradients determines direction of encoding!

E. Wong, BE278, UCSD Winter 2013!

Bioengineering 278"Magnetic Resonance Imaging"

"Winter 2013"

Lecture 6!

• Phase Contrast and Diffusion Imaging!• Motion Encoding!• Phase Contrast MRA!• Elastography!• Diffusion in a Gradient Field!• Anisotropic Diffusion!• Fiber Tract Mapping!

!

E. Wong, BE278, UCSD Winter 2013!

Motion Encoding!

RF!Gz!

GY!

Gx!

Modify Mxy!• Phase Contrast MRA!• Elastography!• Diffusion Imaging !

Excitation!Mz->Mxy!!

Image!Acquisition!

Modify MZ!• Time of Flight MRA!• Arterial Spin Labeling!• Myocardial Tagging!

Page 2: Motion Encoding - University of California, San Diego · 2013-02-11 · •One image with velocity encoding negative! •Vector sum of gradients determines direction of encoding!

E. Wong, BE278, UCSD Winter 2013!

Phase from Motion:!

φ(t) = γB(t)dt∫= γ

G (t) •

r (t)dt∫= γ

G (t)( r 0 +

V t + ...)dt∫

= r 0 • γ

G (t)dt∫ +

V • γ

G (t)tdt∫ + ...

Zeroth!Moment (m0)!

=k!

First (flow)!Moment (m1)!

m0=1!m1=1!

m0=0!m1=-2!

m0=0!m1=0!

2 +1( ) :1

m0=!m1=0!

2

G!

Bipolar Gradient:!

δ"

Δ"

m1 = γGδΔ

Encoding MXY for Motion: Phase Contrast!

How Big can m1 be?!For: !G=4G/cm!

!δ=Δ=50ms!•  π per 6µm!•  VENC=velocity for φ=π"•  =6µm/50ms=0.12mm/s !

E. Wong, BE278, UCSD Winter 2013!

Phase Contrast MRA!RF!

GZ!

GY!

GX!

• One image with velocity encoding positive!• One image with velocity encoding negative!• Vector sum of gradients determines direction of encoding!• Display phase difference between images!• Phase difference subtracts out off-resonance and other phase effects!

Page 3: Motion Encoding - University of California, San Diego · 2013-02-11 · •One image with velocity encoding negative! •Vector sum of gradients determines direction of encoding!

E. Wong, BE278, UCSD Winter 2013!

Phase Contrast MRA!• Phase is proportional to velocity!• Quantitate velocity from phase images and/or:!• Construct angiograms by MIP of velocity maps!

MIP!

Bushberg: The Essential Physics of Medical Imaging, 2002.!

E. Wong, BE278, UCSD Winter 2013!

Muthupillai et al, Nature Medicine 2 (5) 1996!

MR Elastography!

Taouli et al, AJR 2009; 193:14–27!

Anatomy! Acoustic Waves!

Stiffness!Velocity!

Gradient!

Page 4: Motion Encoding - University of California, San Diego · 2013-02-11 · •One image with velocity encoding negative! •Vector sum of gradients determines direction of encoding!

E. Wong, BE278, UCSD Winter 2013!

Signal Attenuation by Diffusion!

RF!Excitation!

Diffusion Weighting Gradients!

t!x!

A!

B!

C!

D!

A! B! C! D!t!

Diffusion:!• Random walk!• No net displacement -> No net phase shift!

E. Wong, BE278, UCSD Winter 2013!

Image Space K-space !

Flow @1mm/s ~100µm!

Diffusion!@10-3mm2/s!

~15µm!Δx!

Encoding MXY for Motion: Diffusion!

In 100ms:!

Diffusion:!• RMS displacement in time dt !• Convolution with Gaussian in image space!• Multiplication by Gaussian in K-space!

= 2Ddt

FT!

S /S0 = e−D k 2dt∫ = e−bD

G!

Bipolar Gradient:!

δ"

Δ"

e−x2 /Ddt

e−k2Ddt

Total Attenuation:!

b ≡ k 2dt∫where:!

Page 5: Motion Encoding - University of California, San Diego · 2013-02-11 · •One image with velocity encoding negative! •Vector sum of gradients determines direction of encoding!

E. Wong, BE278, UCSD Winter 2013!

Diffusion Imaging!• Quantitative measure of local self diffusion coefficient!• Measurement in multiple directions gives information on

diffusion anisotropy and fiber orientation!

• Uses:!• Clinical applications in

stroke and white matter disease!

• White matter fiber tract mapping (anatomical connectivity)!

E. Wong, BE278, UCSD Winter 2013!

Diffusion Imaging in Stroke!Na+ H2O ATP

ADP Cell

Na+ H2O ATP

ADP Cell

Page 6: Motion Encoding - University of California, San Diego · 2013-02-11 · •One image with velocity encoding negative! •Vector sum of gradients determines direction of encoding!

E. Wong, BE278, UCSD Winter 2013!

Anisotropic Diffusion!

Slide credit: L. Frank!

E. Wong, BE278, UCSD Winter 2013!

Anisotropic Diffusion!

Slide credit: L. Frank!

Page 7: Motion Encoding - University of California, San Diego · 2013-02-11 · •One image with velocity encoding negative! •Vector sum of gradients determines direction of encoding!

E. Wong, BE278, UCSD Winter 2013!

Comparison with anatomical preparation!

S. Mori - JHU!

E. Wong, BE278, UCSD Winter 2013!

Detail fiber structures !

S. Mori - JHU!

Page 8: Motion Encoding - University of California, San Diego · 2013-02-11 · •One image with velocity encoding negative! •Vector sum of gradients determines direction of encoding!

E. Wong, BE278, UCSD Winter 2013!

Anatomical guidance:!Example: Anatomical deformation due to tumor growth "

S. Mori - JHU!

E. Wong, BE278, UCSD Winter 2013!

Diffusion - Fiber Crossings!

Relative Anisotropy! Directional Variance!

Corpus Callosum! Corona Radiata!

Slide credit: L. Frank!