mosfets dosimetry

38
MOSFETS dosimetry Miguel Ángel Carvajal Rodríguez [email protected] ECsens, CITIC-UGR, Department of Electronics University of Granada, E-18071 Granada, Spain

Upload: others

Post on 08-May-2022

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MOSFETS dosimetry

MOSFETS dosimetryMiguel Ángel Carvajal Rodríguez

[email protected]

ECsens, CITIC-UGR, Department of ElectronicsUniversity of Granada, E-18071 Granada, Spain

Page 2: MOSFETS dosimetry

OUTLINE

Introduction Radiation effects Constant current measurements Linear range improvement: Two currents method Thermal dependence:

• Thermal model for lateral transistors• Thermal compensation: Three currents method

Sensor module: Biased and unbiased modes Readout process: deferred mode Results and discussion

Online ELICSIR Summer School (Sept. 2020)

Page 3: MOSFETS dosimetry

Introduction

Why MOSFET dosimeters for in-vivo dosimetry?• Small size and low cost• Immediately readout• Linearity• Easy calibration• Reproducibility

SiO2

n

p+ p+

Puerta

GSD

B

Online ELICSIR Summer School (Sept. 2020)

Page 4: MOSFETS dosimetry

Radiation effects

par e--huecohuecoelectrónhuecoatrapadotrampa

SiO2

Si

VGB>0

Puerta

(a)

SiO2

Si

VGB>0

Puerta

(b)

SiO2

Si

VGB>0

Puerta

(c)

SiO2

Si

VGB>0

Puerta

(d)

SiO2

Si

VGB>0

Puerta

(e)

SiO2

Si

VGB>0

Puerta

(f)

SiO2

Si

VGB>0

Puerta

(g)

E

GATE

GATE GATEGATE

GATE GATE GATE

Electron-hole pairHoleElectronTrapped holeTrap

Online ELICSIR Summer School (Sept. 2020)

Page 5: MOSFETS dosimetry

Unbiased mode:• No external voltage.• Low sensitivity

Biased mode:• External VGB during irradiation• Higher sensitivity and linearity.

Online ELICSIR Summer School (Sept. 2020)

M1VGB

M2

Radiation effects

Page 6: MOSFETS dosimetry

Ionizing radiation createscharge in the oxide and traps inthe Si-SiO2 interface.

Charge in oxide and positivetraps produce an increment inthe threshold voltage, |Vt|.

Interface traps degrade thecarriers mobility and then, the βparameter is reduced.

( )22 tGSD VVI −−=β

Radiation effects

SiO2

n

p+

Gate

GSD

B

+ + + + ++ + + + + + +++ + +p+

SiO2

Gate

+ + + + ++ + + + + + +++ + +

+ ++- -

+ ++- -

Online ELICSIR Summer School (Sept. 2020)

Page 7: MOSFETS dosimetry

Simplified measurement of Vt : VS at constantdrain current (VGD = 0).

00

<∆>∆

β|V| t

ID

VS

VDD

S

G B

D

⇒≈ constant β St VV ∆≈∆

( )22 tGSD VVI −−=β

Constant current measurements

βIVV St

2−=

Ionizing radiation creates charge in the oxide: Thresholdvoltage, Vt ,is the dosimetric parameter

Online ELICSIR Summer School (Sept. 2020)

Page 8: MOSFETS dosimetry

Radiation effects in electrical parameters

|Vt| increases and β reduces with absorbed dose

y = 0.0297x + 0.0037R2 = 0.9999

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0 10 20 30 40 50 60Dose (Gy)

∆|V T

| (V)

5.65E-04

5.70E-04

5.75E-04

5.80E-04

5.85E-04

5.90E-04

5.95E-04

6.00E-04

6.05E-04

∆β (A

/V2 )∆|Vt|

∆β

• 60Co Source

• Semicondcutor analyser HP-4145B

• Unbiased mode

3N163, Vishay-Siliconix (USA)

Online ELICSIR Summer School (Sept. 2020)

Page 9: MOSFETS dosimetry

Linear range improvement:Two currents method (2CM)

Accounting for ∆β effect in ∆Vt

Pre- and post-irradiation parameters at constant current I:

⇒−=βIVV St

2

prepre

Spre

tIVV

β2

−=

postpost

Spost

tIVV

β2

−={

−−∆=∆ prepostSt IVV

ββ112}

( )22 tS VVI −=β

Online ELICSIR Summer School (Sept. 2020)

Page 10: MOSFETS dosimetry

Using two drain currents during read-out phase:

Threshold voltage shift without neglecting β degradation

Problem: Thermal compensated source voltage at twodifferent currents are needed, thus the thermal compensationmust be made using the thermal coefficient of Vt.

−−∆=∆ prepostSt IVV

ββ112 11

−−∆=∆ prepostSt IVV

ββ112 22

1

2

121

1II

VVVV SSSt

∆−∆+∆=∆

Linear range improvement:Two currents method (2CM)

Online ELICSIR Summer School (Sept. 2020)

Page 11: MOSFETS dosimetry

Both |Vt| and β decrease withtemperature.

Therefore, at constant current:• If T ↑ |Vt| ↓ VS ↓• If T ↑ β ↓ VS ↑

( )

tD

S

tGSD

VI

V

VVI

+=

−−=

β

β

2

22

Thermal dependence

Online ELICSIR Summer School (Sept. 2020)

Page 12: MOSFETS dosimetry

Di

SGv

ZTC

321 TTT <<3T2T

1T

ID

VS

VDD

S

G B

D

Thermal dependence

Both effects are compensated at IZTC current (ZeroTemperature Coefficient)

The thermal dependence of VS is minimized at IZTC current

Online ELICSIR Summer School (Sept. 2020)

Page 13: MOSFETS dosimetry

Thermal model for lateral transistors

Thermal compensation: Model• Starting hypothesis: linear thermal trend of voltages

1

2

121

1II

VVVV SSSt

∆−∆+∆=∆

TVVTVV

SS

SS

∆+∆=∆

∆+∆=∆

2022

1011

α

α

TVV Vttt ∆+∆=∆ α0

} ⇒

−=

ZTCi

Vti II1αα

Online ELICSIR Summer School (Sept. 2020)

Page 14: MOSFETS dosimetry

Thermal compensation: Three currents method (3CM)

ΔVS Thermal compensation: Adding a new current

1

11

01

1ααC

SSCSS

VVVV−

∆−∆+∆=∆TVTV

TVTV

CSCSC

SS

∆+∆=∆

∆+∆=∆

α

α0

1011

)()(

001 SCS VV ∆≈∆:radiationnoIf

C

SCS VVTαα −∆−∆

≈∆1

1}

( )C

ZTCSSCSS II

IIVVVV

−∆−∆+∆=∆

1

111

01

−=

ZTCVt I

I1αα

Online ELICSIR Summer School (Sept. 2020)

Page 15: MOSFETS dosimetry

PROCEDURES OF MEASUREMENTThree currents method (3CM)

Thermal compensation• ∆|Vt| thermal compensated

• Simplification I1 = IZTC

• Additional current: IC

1

2

01

020

1

1II

VVVV SSSt

∆−∆+∆=∆

( )C

ZTCSSCSS II

IIVVVV

−−

∆−∆+∆=∆2

222

02

ZTC

ZTCSSZTCSt

IIVV

VV2

,02

,

1−

∆−∆+∆=∆

Online ELICSIR Summer School (Sept. 2020)

Page 16: MOSFETS dosimetry

Thermal model: Experimental validation (I)

−=

ZTCi

Vti II1αα

3N163#1

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

2 2.5 3 3.5 4 4.5|VDS| (V)

I (A)

-40.4 ºC

-40.4 ºC

85.0 ºC

85.0 ºC

y = -0.0021x + 2.7181R2 = 0.9983

y = 0.0027x + 4.0762R2 = 0.9958

2.45

2.55

2.65

2.75

2.85

-50 -30 -10 10 30 50 70 90T (ºC)

Vs[I D

=20 µ

A] (V

)

3.85

3.95

4.05

4.15

4.25

4.35

2.00E-051.00E-03

Vs [I

D=1

mA]

(V)

Thermal compensation: Three currents method (3CM)

Online ELICSIR Summer School (Sept. 2020)

Page 17: MOSFETS dosimetry

3N163#1

-4.0

-2.0

0.0

2.0

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035ID

1/2 (A1/2)

α (m

V/ºC

)

20µA

−=

ZTCi

Vti II1αα

ID

VS

VDD

SG

B

D

Thermal model: Experimental verification (II)

Thermal compensation: Three currents method (3CM)

Online ELICSIR Summer School (Sept. 2020)

Page 18: MOSFETS dosimetry

Thermal model: Experimental verification (III)

Thermal compensation: Three currents method (3CM)

CD4007#1

-4.0

-2.0

0.0

2.0

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035ID

1/2 (A1/2)

α (m

V/ºC

)

10µA

ZTCI

TVα−

Online ELICSIR Summer School (Sept. 2020)

Page 19: MOSFETS dosimetry

Thermal model: Experimental verification (IV)

Thermal compensation: Three currents method (3CM)

RADFET 400nm#1

-6.0

-3.0

0.0

3.0

6.0

9.0

12.0

0 0.01 0.02 0.03 0.04

ID1/2 (A1/2)

a (m

V/ºC

)

20 μA

700 μA

TVα−

ZTCI

Online ELICSIR Summer School (Sept. 2020)

Page 20: MOSFETS dosimetry

Thermal model: IZTC summary

Thermal compensation: Three currents method (3CM)

Online ELICSIR Summer School (Sept. 2020)

Page 21: MOSFETS dosimetry

One current:• To thermal compensation ID=IZTC. (usual mode)

Two currents:• To increase the linear range use

• To thermal compensation (without using IZTC)

Three currents:• Increasing the linear range and thermal compensation

( )C

ZTCSSCSS II

IIVVVV

−−

∆−∆+∆=∆2

222

02

ZTC

ZTCSSZTCSt

IIVV

VV2

,02

,

1−

∆−∆+∆=∆

( )C

ZTCSSCSS II

IIVVVV

−∆−∆+∆=∆

1

111

01

1

2

121

1II

VVVV SSSt

∆−∆+∆=∆

Thermal compensation: Three currents method (3CM)

Online ELICSIR Summer School (Sept. 2020)

Page 22: MOSFETS dosimetry

Thermal compensation with two identical devices

M1 M2

During irradiation

Read-out configuration

∆VD

+ -

M1 M2

Sensing: Two identical pMOS with different sensibilities. Readout: Differential measurement.

Online ELICSIR Summer School (Sept. 2020)

Page 23: MOSFETS dosimetry

Thermal compesation using two identical devices

During irradiation: Two different bias voltage, thereforedifferent sensitivity to radiation

The readout is carried out with the same conditionsminimizing the interference of the temperature.

( )DSSVDSVDSV

DS

S21

22

11 −=∆⇒

=∆=∆

M1 M2

During irradiation

Read-out configuration

∆VD

+ -

M1 M2

Online ELICSIR Summer School (Sept. 2020)

Page 24: MOSFETS dosimetry

Thermal compensation techniques: Summary

ONE TRANSISTOR (Lateral MOSFET): One current: IZTC. Two currents: Out of IZTC zone. Three currents: IZTC and two currents for thermal

compensation and linear range improvement.

TWO TRANSISTORS: Different bias voltages during irradiation and differential

measurements.

Online ELICSIR Summer School (Sept. 2020)

Page 25: MOSFETS dosimetry

PROCEDURES OF MEASUREMENTPulsed biasing (PB)

SNR improvement• Read-time instabilities caused by low frequency noise (LFN)

(due to near-interface and interface traps)• How can LFN be reduced? Chopping the drain current as in

other experimental techniques (i.e. spectroscopy) and averaging

pMOS Switch

Online ELICSIR Summer School (Sept. 2020)

Page 26: MOSFETS dosimetry

Sensor module

Unbiased mode• JFET as a switch (shortcircuited during irradiation and storage and

open during read-out)

pMOS

JFETRG

Irradiation and storage During readout

Online ELICSIR Summer School (Sept. 2020)

Page 27: MOSFETS dosimetry

Sensor module

Biased mode: Two JFET as switches CD4007

RADFET

Irradiation Readout

Storage

VGB

Page 28: MOSFETS dosimetry

Readout process: deferred mode

Dose measurement process• Zeroing:

• Measurement and storage of pre-irradiation VS at the two (three) draincurrents

• Irradiation• Timeout for short-term fading (2-3

minutes)• Dose measurement

• Recovery of the pre-irradiation values from the memory.• Measurement and storage of the post-irradiation VS at the two

(three) currents• Dose calculation (calibration is required)

Online ELICSIR Summer School (Sept. 2020)

Page 29: MOSFETS dosimetry

Results for 3N163 (unbiased and deferred mode): (PB+2CM)

Linearity improvement• Irradiation source: Siemens KDS-6MV.

y = -3.35E-03x + 1.01E+00R2 = 9.17E-01

y = -1.06E-03x + 1.01E+00R2 = 5.20E-01

0.92

0.94

0.96

0.98

1.00

1.02

0 5 10 15 20 25Dose (Gy)

Nor

mliz

ed S

ensi

tivity

Sen VS (IZTC)Sen Vt , 2 Ids

MOSFET P2

Page 30: MOSFETS dosimetry

Results for 3N163 (unbiased and deferred mode): (PB+2CM)

Linearity improvement• Sensitivity decay coefficient, mean sensitivity and the

linear limit (up to 5%).

DC modes PB

IZTC 2CM IZTC 2CM

m (mV/Gy2) -0.153 -0.095 -0.113 -0.057

Mean Sensitivity

(mV/Gy)20.6 19.7 20.0 19.2

Linear Range (Gy) 6.8 10.3 8.8 16.8

V

VPBVs

DCVs

µσ

µσ

4.36

8.45

=

=

20 % reduction of SD

Page 31: MOSFETS dosimetry

Experimental results for 3N163 (3CM)

Thermal compensation:• Reduction in a factor of 50 in the thermal drift

• Compensated

AIAI

AI

ZTC µµµ

24712030

3

2

===

-20

-15

-10

-5

0

5

10

15

20

17 19 21 23 25 27 29 31T (ºC)

∆|V

t| (m

V)

∆|Vt| not compensated

∆|Vt| comp. Method (i)

∆|Vt| comp. Method (ii)CV

TVt /º70µ<∆∆

Online ELICSIR Summer School (Sept. 2020)

Page 32: MOSFETS dosimetry

Unbiased and deferred mode (3CM+PB): 3N163

Radiation response of 3N163 Dpre=30 Gy (60Co)

y = 0.0233xR2 = 1.0000

y = 0.0240xR2 = 1.0000

y = 0.0240xR2 = 1.0000

y = 0.0243xR2 = 1.0000

y = 0.0232xR2 = 1.0000

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30 40 50 60D-Dpre (Gy)

∆V t

(V)

12345Li l (5)

Online ELICSIR Summer School (Sept. 2020)

Page 33: MOSFETS dosimetry

Temperature range 10 – 40 ºC Resolution 1 cGy Accuracy ± 3 %

Linear range 15 Gy > 80 Gy*

Thermal drift < 3mGy/ºC Delay after irradiation 2 – 3 minutes * with recalibrations every 15 Gy

Note: For 3N163 transistor

Unbiased and deferred mode (3CM+PB): 3N163

Online ELICSIR Summer School (Sept. 2020)

Page 34: MOSFETS dosimetry

Dosimetry characterization, resultsRADFET 400nm

No improvement with 3CM respect one current method.

y = -0.2862x2 + 55.918x

y = -0.2876x2 + 56.072x

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

D (Gy)

?VT (

mV)

3I_400nm

Iztc_400nm

∆VT

(mV)

LINAC 6MV

Online ELICSIR Summer School (Sept. 2020)

Page 35: MOSFETS dosimetry

Sensitivity vs. dose

y = -3.1198x + 79.988R2 = 0.1846

y = -9.0124x + 68.031R2 = 0.6893

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5D (Gy)

Sen

(mV/

Gy)

3N163 Biased 12.5VRADFET 400nm 0V

Deferred mode (3CM+PB): Summary

Online ELICSIR Summer School (Sept. 2020)

Page 36: MOSFETS dosimetry

Thermal model has been applied to RADFETs andlateral commercial transistors

For RADFETs 3CM and IZTC method are equivalent 3N163 biased at 10 V presents a sensitivity similar to

RADFETs of 400 nm in unbiased model, but showingmuch more fading.

CD4007 5.24 ± 0.17 021.5 ± 1.1 048 ± 3 555 ± 3 10

RADFET 55.4 ± 1.2 0

3N163

Bias (V)Sensitivity (mV/Gy)

Deferred mode (3CM+PB): Summary

Online ELICSIR Summer School (Sept. 2020)

Page 37: MOSFETS dosimetry

Future talks

Internal topology of the reader unit will be described Programmable current source Hardware for zeroing and resolution improvement

Real-time measurements DMOS transistor:

Thermal compensation Additional hardware required Radiation response

Etc.

Online ELICSIR Summer School (Sept. 2020)

Page 38: MOSFETS dosimetry

AKNOWLEDGEMENTS

MMND 2014, Port Douglas (Australia)