mos-ak group spring'05, strasbourgapril 8, 2005 b. diagne, f. prégaldiny, f. krummenacher, f....

31
MOS-AK Group Spring'05, Strasbourg April 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6 Design Oriented Model Design Oriented Model for Symmetric DG MOSFET for Symmetric DG MOSFET

Upload: doreen-ford

Post on 31-Dec-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

MOS-AK Group Spring'05, StrasbourgApril 8, 2005

B. Diagne, F. Prégaldiny, F. Krummenacher,F. Pêcheux, J.-M. Sallese and C. Lallement

InESS / EPFL / LIP6

Design Oriented Model for Design Oriented Model for

Symmetric DG MOSFETSymmetric DG MOSFET

Page 2: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

2 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

OutlineOutline

Scaling limits in BULK MOSFET

The Double-Gate (DG) MOSFET

Compact model for symmetric DG MOSFET

Model validation vs. 2D simulations

Model implementation in VHDL-AMS

Conclusion

Page 3: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

3 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

OutlineOutline

Scaling limits in BULK MOSFET

The Double-Gate (DG) MOSFET

Compact model for symmetric DG MOSFET

Model validation vs. 2D simulations

Model implementation in VHDL-AMS

Conclusion

Page 4: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

4 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Scaling limits of BULK MOSFETScaling limits of BULK MOSFET

Limit for supply voltage (<0.6V)

Limit for further scaling of tox (<2nm)

Minimum channel length Lg=50nm

Discrete dopant fluctuations

Dramatic short-channels effects (SCE)

Page 5: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

5 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

OutlineOutline

Scaling limits in BULK MOSFET

The Double-Gate (DG) MOSFET

Compact model for symmetric DG MOSFET

Model validation vs. 2D simulations

Model implementation in VHDL-AMS

Conclusion

Page 6: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

6 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

How can we follow Moore’s lawHow can we follow Moore’s law ??

By moving to DG MOSFETs

DG might be the unique viable alternative to build nano MOSFETs when Lg<50nm

Because:

- Better control of the channel from the gates

- Reduced short-channel effects

- Better Ion/Ioff

- Improved sub-threshold slope (60mV/decade)

- No discrete dopant fluctuations

Page 7: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

7 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

DG MOSFET structureDG MOSFET structure

Page 8: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

8 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Typical values for DG MOSFETTypical values for DG MOSFET

tox=1nm – tsi=10nm – Lg=25nm

Is the behavior still “classical”  ?

Can we still use 3D DOS, drift-diffusion approach, surface potential concept ?

Yes and No…

Page 9: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

9 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Electrostatic considerationsElectrostatic considerations

Depending on tsi , 2D discrete levels cannot be ignored … in principle.

For very thin films (<5nm), 2D states are so confined that electrostatic correction can be ignored (FD-Baccarani).

For relatively thick films, 2D levels can be ignored, reverting to the more classical

description (3D+Boltz.-Taur).

For intermediate thicknesses, 2D states should be coupled to electrostatic (Ge &

Fossum).

Page 10: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

10 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

OutlineOutline

Scaling limits in BULK MOSFET

The Double-Gate (DG) MOSFET

Compact model for symmetric DG MOSFET

Model validation vs. 2D simulations

Model implementation in VHDL-AMS

Conclusion

Page 11: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

11 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Model: Taur’s approachModel: Taur’s approach [1][1]

3D but with volume inversion

No more charge sheet approximation concept

Analytical solution of charges and current

However,

not a truly analytical model (iteration needed)

NO ANALYTICAL solution for Vds ≠ 0 … hence no solution for transcapacitances

[1] Y. Taur, X. Liang, W. Wang and H. Lu, IEEE Electron Device Letters, vol. 25, no. 2, pp. 107-109, 2004.

Page 12: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

12 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

In the original approach, the mobile charges are evaluated through complex functions

No insight into “electrical” quantities…

For instance, the drain current is given by

2 22 2si si

ox

24 tan tan

2

S

D

oxD

si si

TW kTI

L T q T

Page 13: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

13 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Our new approachOur new approach

An EKV-like formulation [2] !

Normalization of charges and current as in EKV… but we have 2 gates:

0 4 ox TQ C U 24 /s ox TI C U W L

int 0/i siq e n t Q

[2] J.-M. Sallese, F. Krummenacher, F. Prégaldiny, C. Lallement, A. Roy and C. Enz, “A design oriented charge-based current model for symmetric DG MOSFET and its correlation with the EKV formalism”, Solid-State Electronics, vol. 49, pp. 485-489, 2005.

Page 14: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

14 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Our new approachOur new approach

Mobile charge density vs. potentials

And we still use the drift-diffusion concept

For tsi »1nm, we get the EKV relations(very interesting for the transcapacitances…)

Page 15: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

15 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Our new approachOur new approach

Formulation of DG reverts to the classicalcharge sheet approximation for bulk and SOI MOSFETs

This implies that the transcapacitances can be obtained in the same way as in bulk MOSFETs [3]

In addition, the new model accurately describes important central characteristics such as gm /Id

[3] F. Prégaldiny, F. Krummenacher, D. Birahim, F. Pêcheux, J.-M. Sallese and C. Lallement, “A fully analytical compact model for symmetric DG MOSFETs”, submitted to ESSDERC.

Page 16: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

16 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

OutlineOutline

Scaling limits in BULK MOSFET

The Double-Gate (DG) MOSFET

Compact model for symmetric DG MOSFET

Model validation vs. 2D simulations

Model implementation in VHDL-AMS

Conclusion

Page 17: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

17 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

The 2D simulationsThe 2D simulations

Structures developed under Atlas (Silvaco)

tox=2nm – tsi=550nm – Lg=Wg=1µm

Page 18: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

18 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Model vs. exact Taur’s formulationModel vs. exact Taur’s formulation

Normalized inversion charge density as a function of Vgs

Symbols: Taur’s model ; lines: our analytical model

Page 19: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

19 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Model vs. 2D simulationsModel vs. 2D simulations

Drain current Ids as a function of Vgs at different Vds

Symbols: 2D results ; lines: our analytical model

Page 20: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

20 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Model vs. 2D simulationsModel vs. 2D simulations

Drain current Ids as a function of Vgs at different tsi

Page 21: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

21 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Model vs. 2D simulationsModel vs. 2D simulations

Transcapacitances as a function of Vgs at different Vds

Symbols: 2D results ; lines: our analytical model

Page 22: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

22 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

The The ggmm //IIdd concept in DG MOSFETconcept in DG MOSFET

0

0.2

0.4

0.6

0.8

1

0.001 0.01 0.1 1 10 100 1000Normalized current

Tox

=2 nm

saturation

TSI

=50nm

TSI

=20nm

TSI

=5nm

bulk MOSFET

TSI

=200nm

TSI

=1 m

J.-M. Sallese, F. Krummenacher, F. Prégaldiny, C. Lallement, A. Roy and C. Enz, “A design oriented charge-based current model for symmetric DG MOSFET and its correlation with the EKV formalism”, Solid-State Electronics, vol. 49, pp. 485-489, 2005.

Page 23: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

23 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

OutlineOutline

Scaling limits in BULK MOSFET

The Double-Gate (DG) MOSFET

Compact model for symmetric DG MOSFET

Model validation vs. 2D simulations

Model implementation in VHDL-AMS

Conclusion

Page 24: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

24 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

VHDL-AMS code: the VHDL-AMS code: the structurestructure

ENTITY mos_dg IS

generic (L:real:=1.0e-6; -- Gate length… / ...

port (terminal D,G1,G2,S:electrical);

end;

ARCHITECTURE equ OF mos_dg IS

. . .

BEGIN-- Drain current of the SOI DG MOSFET

ids == . . . qqi(Vg1n,Vsn)**2 . . . + . . qqi(Vg1n,Vdn)**2 ;-- Capacitances

Cgg == . . . ; . . . ; END;

-- Function definition (qqi)

pure function qqi(Vg1n,V:real) return real is … / ... end ;

ENTITY: parameters, terminals,...

ARCHITECTURE: charges, current and capacitances calculations

The structure

Page 25: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

25 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

VHDL-AMS code: the VHDL-AMS code: the entityentity

library ieee;use disciplines.electromagnetic_system.all;use ieee.math_real.all;

ENTITY mos_dg IS

generic (W :real :=1.0e-6; -- Gate width

L :real :=1.0e-6; -- Gate length

tox1 :real :=2.0e-9; -- Gate 1 oxide thickness

tox2 :real :=2.0e-9; -- Gate 2 oxide thickness

tsi :real :=25e-9; -- Silicon film thickness

mu0 :real :=0.1; -- Low-field mobility

port (terminal D,G1,G2,S:electrical);

end;

d

g1 g2

s

Page 26: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

26 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

VHDL-AMS code: the VHDL-AMS code: the function function qqiqqi

-- Function definition

pure function qqi(Vg1n,V:real) return real is variable alpha, delta, …, vt, vto, q0, . . . . :real;

- Precomputed parameters alpha := . . . ; -- Form factor vt := . . . ; vto := . . . .; -- Threshold voltage

begin if ((vg1n – vto – v) > vt) then . . . . . return –q0*(1.0+delta+(1.0 + 0.1*delta));

else . . . return –q0*(1.0+delta+(1.0 + 0.48*delta)); end if;

END ;

Definition of the function

To determine the normalized charge for both source and drain sides

Computed with no iteration !

Page 27: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

27 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

VHDL-AMS code: the VHDL-AMS code: the architecturearchitecture ARCHITECTURE equ OF mos_dg IS

. . .quantity vg1n, vg2n, vsn, vdn :real;quantity Inf, Inr, Xf, Xr :real;quantity Csg, Cdg, Cds, Csd, Cgd, Cgs, Css, Cdd, Cgg :real;. . .

quantity Vd across D to electrical_ground; quantity Vg1 across S to electrical_ground; quantity Vg1 across G1 to electrical_ground;

quantity Vg2 across G2 to electrical_ground; quantity Ids through D to S;

. . .

-- Function definition pure function qqi(Vg1n,V:real) return real is

. . .

BEGIN-- Normalized voltages

vg1n == Vg1/UT; vg2n == Vg2/UT; vsn == Vsn/UT; vdn == Vg1/UT;

-- Drain current of the SOI DG MOSFET

ids == IDO*(-4.0*qqi(vg1n, vdn)**2.0 + 4.0* qqi(vg1n, vsn)**2.0 + …);

-- Capacitances Inf == … ; Inr == … ; Xr == … ; Xf == … ; Csg == … ; Cdg == … ; … / … ;

END;

Page 28: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

28 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Simulation resultsSimulation resultsperformed with performed with

the AMS software 4.0.2.1 from Mentor Graphicsthe AMS software 4.0.2.1 from Mentor Graphics

IDS(VGS) at VDS = 0.25, 0.5, 0.75, 1V

IDS

VGS

Page 29: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

29 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

Simulation resultsSimulation resultsIDS(VDS) at VGS = 0.5, 0.75, 1V

IDS

VDS

Page 30: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

30 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

OutlineOutline

Scaling limits in BULK MOSFET

The Double-Gate (DG) MOSFET

Compact model for symmetric DG MOSFET

Model validation vs. 2D simulations

Model implementation in VHDL-AMS

Conclusion

Page 31: MOS-AK Group Spring'05, StrasbourgApril 8, 2005 B. Diagne, F. Prégaldiny, F. Krummenacher, F. Pêcheux, J.-M. Sallese and C. Lallement InESS / EPFL / LIP6

31 MOS-AK Group Spring'05, StrasbourgApril 8, 2005

ConclusionConclusion

Undoped DG MOSFETs are promising candidatesfor ultra deep-submicron VLSI technology

The 2D simulations of different DG MOSFET structures have been carried out

A truly analytical compact model has been developed

All quantities in the model are expressed in terms of normalized variables helpful for developing efficient design methodologies

This long-channel core model would need to be augmented with second-order effects (mobility reduction, SCE, quantum effects…)