morphogenetic systems and their impact on the …reviste.ulbsibiu.ro/actaoc/aocii2009papers.pdf ·...

210
Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape - Sebeş River basin; 1/18 pp. -1- MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE LANDSCAPE, A CASE STUDY: SEBEŞ RIVER BASIN (MERIDIONAL CARPATHIANS, ROMANIA) Marioara COSTEA 1 KEYWORDS: Southern Carpathians, Romania, Sebeş Basin, geomorphologic processes, morphogenetic system, altitudinal zonation. ABSTRACT This paper presents the relations which are established between the present geomorphological processes and the altitudinal levelling. Assessment and analysis of modelling are made by two categories of processes different as dimension or development in time and space: permanent processes such as fluviatile modelling and seasonal processes induced by climatic conditions like torrential erosion, splash erosion, soilfluxion, crionival and gravitational processes with immediate and more visible effects. Following the case study of Sebeş Basin, we analyze the morphodynamic of the relief through morphogenetic system - the totality of the complex processes associated in the relief modelling, through erosion and accumulation concomitantly. In their structure, morphogenetic systems include geological conditions, climatic conditions, vegetation covering conditions and the anthropic ones. The morphogenethic system reflect the altitudinal zonation induced by relief morphometry and correspond to the three Carpathian altitudinal level: upper Carpathian level; the versant level dominated by torrentially, gulling, with associations of the surface washing, torrents and of the gravitational processes, and valley corridors level dominated by the fluviatile modelling, associated with the torrential and lacustrine modelling. The paper is based on the direct observations and data processing. The morphogenetic and morphoevolutive features were mapped through longitudinal and transverse profile and trough geomorphologic maps made on representative sectors. REZUMAT: Sistemele morfogenetice şi impactul lor asupra peisajului. Studiu de caz: bazinul Sebeşului (Carpaţii Meridionali, România). Lucrarea prezintă relaţiile care se stabilesc între procesele geomorfologice actuale şi etajarea geografică. Evaluarea şi analiza modelării se fac pe două categorii de procese, diferite ca dimensiune sau dezvoltare în timp şi spaţiu: procese permanente, cum sunt cele fluviatile şi sezoniere - procesele induse de condiţiile climatice, cum ar fi torenţialitate, eroziune în suprafaţă, solifluxiune, procese crionivale şi procesele gravitaţionale, cu efecte imediate şi mult mai vizibile. Urmărind ca studiu de caz bazinul Sebeşului, vom analiza morfodinamica reliefului prin intermediul sistemelor morfogenetice - totalitatea proceselor complexe asociate în modelarea reliefului, prin manifestarea concomitentă a eroziunii şi a acumulării. În structura lor, sistemele morfogenetice includ condiţiile geologice, condiţiile climatice, care reglementează condiţiile de vegetaţie, precum şi cele antropice. Sistemul morfogenetic reflectă etajarea altitudinală indusă de morfometria reliefului şi corespunde celor trei etaje: etajul carpatic superior, etajul carpatic de versant şi etajul culoarelor de vale. Caracteristicile morfogenetice şi morfoevolutive au fost identificate şi cartografiate prin intermediul profilelor longitudinale şi transversale şi a hărţilor geomorfologice realizate pe sectoare reprezentative.

Upload: phamque

Post on 17-Aug-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Morphogenetic systems and their impact on the landscape - Sebeş River basin; 1/18 pp. - 1 -

MORPHOGENETIC SYSTEMS AND THEIR IMPACTON THE LANDSCAPE, A CASE STUDY: SEBEŞ RIVER BASIN

(MERIDIONAL CARPATHIANS, ROMANIA)

Marioara COSTEA 1

KEYWORDS: Southern Carpathians, Romania, Sebeş Basin, geomorphologic processes,morphogenetic system, altitudinal zonation.

ABSTRACTThis paper presents the relations

which are established between the presentgeomorphological processes and thealtitudinal levelling. Assessment andanalysis of modelling are made by twocategories of processes different asdimension or development in time andspace: permanent processes such asfluviatile modelling and seasonal processesinduced by climatic conditions like torrentialerosion, splash erosion, soilfluxion,crionival and gravitational processes withimmediate and more visible effects.Following the case study of Sebeş Basin, weanalyze the morphodynamic of the reliefthrough morphogenetic system - the totalityof the complex processes associated in therelief modelling, through erosion andaccumulation concomitantly. In theirstructure, morphogenetic systems include

geological conditions, climatic conditions,vegetation covering conditions and theanthropic ones. The morphogenethic systemreflect the altitudinal zonation induced byrelief morphometry and correspond to thethree Carpathian altitudinal level: upperCarpathian level; the versant leveldominated by torrentially, gulling, withassociations of the surface washing, torrentsand of the gravitational processes, andvalley corridors level dominated by thefluviatile modelling, associated with thetorrential and lacustrine modelling.

The paper is based on the directobservations and data processing. Themorphogenetic and morphoevolutivefeatures were mapped through longitudinaland transverse profile and troughgeomorphologic maps made onrepresentative sectors.

REZUMAT: Sistemele morfogenetice şi impactul lor asupra peisajului. Studiu de caz:bazinul Sebeşului (Carpaţii Meridionali, România).

Lucrarea prezintă relaţiile care sestabilesc între procesele geomorfologiceactuale şi etajarea geografică. Evaluarea şianaliza modelării se fac pe două categorii deprocese, diferite ca dimensiune saudezvoltare în timp şi spaţiu: procesepermanente, cum sunt cele fluviatile şisezoniere - procesele induse de condiţiileclimatice, cum ar fi torenţialitate, eroziuneîn suprafaţă, solifluxiune, procese crionivaleşi procesele gravitaţionale, cu efecteimediate şi mult mai vizibile. Urmărind castudiu de caz bazinul Sebeşului, vom analizamorfodinamica reliefului prin intermediulsistemelor morfogenetice - totalitateaproceselor complexe asociate în modelarea

reliefului, prin manifestarea concomitentă aeroziunii şi a acumulării. În structura lor,sistemele morfogenetice includ condiţiilegeologice, condiţiile climatice, carereglementează condiţiile de vegetaţie,precum şi cele antropice. Sistemulmorfogenetic reflectă etajarea altitudinalăindusă de morfometria reliefului şicorespunde celor trei etaje: etajul carpaticsuperior, etajul carpatic de versant şi etajulculoarelor de vale. Caracteristicilemorfogenetice şi morfoevolutive au fostidentificate şi cartografiate prin intermediulprofilelor longitudinale şi transversale şi ahărţilor geomorfologice realizate pe sectoarereprezentative.

Page 2: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Costea- 2 -

RÉSUMÉ: Systèmes morphogénétiques et leur impact sur le paysage. Étude de cas:bassin de Sebeş (Carpates Méridionales, Roumanie).

Ce document présente les rapportsqui sont établis entre les processusgéomorphologique et le niveau d'altitude.L'évaluation et l'analyse de la modélisationsont effectuées par deux catégories deprocédés différents que la dimension ou dedéveloppement dans le temps et l'espace:permanent fluviatile des processus tels quela modélisation des processus et saisonnièreinduit par les conditions climatiques tellesque l'érosion torrentielle, arroser l'érosion,solifluxion, crionival et gravitationnelleprocédés avec immédiates et plus visibles.

Après l'étude de cas du bassin Sebeş,nous analysons les morphodynamiquesmorphogénétiques de secours par le biais dusystème - l'ensemble des processuscomplexes liés aux opérations de secours demodélisation, par le biais de l'érosion etl'accumulation concomitante. Dans leurstructure, des systèmes morphogénétiquesconditions géologiques (structure et

pétrographie influence), les conditionsclimatiques, la végétation couvrantconditions (type, densité, poids) etanthropiques proches. Il peut être remarquéque le système morphogénétique reflète lazonation altitudinale induite par lamorphométrie du relief et correspondent auxtrois niveaux d'altitude des Carpates: leniveau supérieur des Carpates, le niveauversant dominé par torrentialité, ravins, avecles associations de la surface de lavage, detorrents et de la gravitation des processus etdes couloirs de la vallée dominée par leniveau de modélisation fluviatile, associée àla modélisation torrentielles et lacustres. Ledocument est basé sur les observationsdirectes et le traitement des données. Lescaractéristiques morphogénétiques etmorphoévolutives ont été cartographiés parle profil longitudinal et transversal et descartes géomorphologiques en secteursreprésentatives.

SEBEŞ RIVER BASIN - POTENTIAL FACTORS OF MORPHODYNAMICSSebeş Basin develops on a surface of

1,289 km2, having a northern exposure bythe orohydrographic axis of the SouthernCarpathians, and, within the limits of thewatershed, it includes both mountain unitsof Parâng Group and depression and plateauunits which belong to the TransylvanianDepression.

Carpathian Basin, the subject of thisstudy, has a surface of 674 km2 and crossesentirely Parâng Group, extending in theŞureanu Mountains westwards, in theCindrel Mountains eastwards and in theParâng and Lotru mountains southwards.

The altitudinal difference betweenmore than 1,700 m where the Sebeş leavesthe mountain, at Săsciori and around 500 m,and the maximum altitudes of the springarea (Cindrel Peak, 2,244 m; Ştefleşti Peak,2,242 m, Pătru Peak, 2,130 m) generates alevelling of the relief and of the presentmodelling processes and, at the same time,an altimetric association of all elements ofthe landscape.

Geological, geomorphologic and bio-pedo-climatic conditions, differentiated fromthe altitude point of view, are reflected inthe water flow of the river and of itstributary, in the exploitation way of the land,and not the least, in the distribution of thehuman settlements. From this point of view,levels and sub-levels with differentmorphodynamic potential can be separated:upper Carpathian level, slope level, and thelevel of the Carpathian valley corridor(Cojocariu, 2001; Costea, 2005). They arenot strictly limited, they interfere, butobviously the slope level has a prevalentweight (Tab. 1, Fig. 1).

Carpathian basin of Sebeş River ischaracterized by a petrographichomogeneity (epimetamorphic andmesometamorphic crystalline schistsbelonging to the Getic Nappe). Thislithology, besides the absence of the hugetectonic accidents, gives the relief a greatstability, although relief energy exceeds 700m in some sections of the gorge.

Page 3: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Morphogenetic systems and their impact on the landscape - Sebeş River basin; 1/18 pp. - 3 -

Table 1: Leveling of morphogenetic conditions in the Sebeş Basin Indicators, limits andvertical gradients features. Source: direct observations and data processing; R = relief; C =climate; V = vegetation; C. A. = anthropogenic conditions.

Factors Indicators, limits andgradients

Quantitative assessment Observations

I. Carpathian upper altitudinal level S = 40.2 km2

a. alpine (> 1,950 m) b. subalpine (1,750 - 2,000 m)Altitudinal development 1750 m - 2,244 mMinor relief energy 10 - 200 mRDeclivity Variable, frequently platous

with 3o - 7o - 15o declivityAverage annual isothermicof 0oC

Just over 2,000 m altitude

Upper limit of maximumdays number with frost

230 - 350 days at 2,200 m

Upper limit of pluviometricoptimum

1,100 mm/year at about1,800 m

Upper limit ofanemometrics maximum

about 2,000 m8 - 10 m/s

Upper limit of the durationof snow

about 1950 - 2,000 m200 - 324 zile

C

Upper limit of snowy dayspossible the whole year

At about 1,850 - 1,900 m150 - 210 days

Upper limit of isolated trees 1,800 - 1,900 mVariable on the valleys and

on the slopesUpper limit of forest ± 1,800 m variable -

ascends the valleys (1,850m) and descends on

interfluves (1,750 m)

V

Duration of vegetationseason about 180 zile

C. A.Upper limit of thetemporary and seasonalsettlements

± 1,800 m, sheepfolds,stables, shelters

high altitude; severe climate; intensemechanical weathering nival and niveo-pluvial supply forrivers; disorganisedleakage and temporaryflow; glacial andperiglacial fossil reliefforms; periglacialprocesses, cryo-nival,processes, rill erosion,torrential action,solifluxion; soils rich in rocks slow pedogeneticprocesses; growing resistantto climatic stress -alpine and subalpinegrassland, shrubs; pastoral economy; touristic activity;

Carpathian altitudinal level of versant S = 535.33 km2

a. superior (1,750 - 1,500 m altitude) b. middle (1,500 - 800 m altitude)Altitudinal development 800 - 1,750 mMinor relief energy 200 - 500 mRDeclivity 30o- 45o-70o

Average annual isothermicof 2oC

1,650 m

Average annual isothermicof 4oC

1,500 moptimum thermic from

Păltiniş

C

Thermic gradient 0.3o/1,00 m at 700 - 1,500m and 0.8o/100 m over

1,500 m

coniferous forestsand mixed forests; secondarymeadows; spodosol, acidicsoils (cambisol); niveo-pluvialsupply for rivers; organizedtemporary andpermanent drainage;

Page 4: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Costea- 4 -

Maximum number of dayswith frost

221 days at 1,450 m altitude

Precipitations amount 896.6 mm/year - optimumpluviometric from Păltiniş

Precipitations gradient 30 mm/100 m till 1,400 mand

57 mm/100 m over thisaltitude

Anemometric conditions 2.0 - 2.3 m/sDuration of snow 160 - 200 daysPossible snowy days 150 -190 daysLower limit of forest 900 mUpper limit of secondarygrassland

1,700 mV

Duration of vegetationseason

about 6 - 8 month/year

Upper limit of permanentsummit’s settlements

1,000 mJina, PoianaC. A. Lower limit of temporary

settlements800 m

altering, gullying,torrential erosion,surface landslides,fluvial erosion; forestry andpastoral land use;

Altitudinal level of valley corridors S = 98.46 km2

Altitudinal development 500 - 1,200 mReleief energy 50 - 500 m

R Declivity 7o - 15o in depressionaryspace

45o - 70o in the gorgesector

Average annualisothermic of 6oC

700 - 800 m

Days number with frost 150 - 210 daysThermic inversions frequentlyPrecipitations amount 700 - 900 mm/yearAnemometric conditions 2 - 4 m/sDuration of snow layer about 150 days variable

in different sectors

C

Possible snowy days 130 - 150 daysUpper limit of forest 600 mUpper limit ofsecondary grassland

1,100 mV

Duration of vegetationseason

7 - 8 month/year

C. A.Upper limit ofpermanent valley’ssettlements

800 mTău Bistra

alternate of gorgesector with mountainsmall depression; vegetationinversions; spodosol, alluvialsoils; alluvialaccumulation şideluvium, colluvium -proluvium; linear erosion inthe riverbed; splash erosion, rillerosion and torrentialerosion; pluvial supply; organisedpermanent lakeage; activităţiforestiere; hydropowerexploitation;

Page 5: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Morphogenetic systems and their impact on the landscape - Sebeş River basin; 1/18 pp. - 5 -

Central location within Romanianterritory, on the northern slope of Parânggroup, favours the presence of a temperate-continental climate, above all a mountainclimate characterized by climate levellingwith differences imposed by the slopeexposition and presence of föehnmanifestations, which occur on the northernslope of Cindrel Mountains. Theseconditions influence the hydrologic regimeof the rivers and, implicitly, the modellingof slopes and riverbeds. Supplying regime ofthe rivers is of a Southern Carpathian type,with spring-summer floods, a regimeinfluenced by the prevalent nival and nival-pluvial supplying of the hydrographical net.

Coniferous and deciduous forests,which cover almost the entire CarpathianBasin, give the Carpathian basin of Sebeş abalanced morpho-dynamics (71% of thesurface is covered by forests), too, besidesthe remarkable floral diversity. Also, thedistribution at the level of the levellingsurface Gornoviţa (800 - 1,250 m) of thehuman permanent settlements is anotherreference element for moulding.

Temporary and seasonal settlements(animal shelters, sheepfolds) have a higherdensity at the level of the other surfaces,their upper limit being at about 1,800 maltitude, as a result of a mountain economybased on the forest exploitation, shepherdingand the hydro-power exploitation of SebeşRiver and its tributaries (Costea, 2008 a).

Figure 1: The vertical zonation of Sebeş Basin.Longitudinal profile between Cindrel - Vf. Lui Pătru summit and Săsciori.

400

600800

1000

1200140016001800

2000

2200

H (m)

+/- 1400 m

+/- 1200 m+/- 1000 m

+/- 800 m

+/- 2200 m

2000 - 1800 m

+/- 1650 mS

S

NNV

N SE

CoastaPorumbelului

Guga Mare 1388 m

Muncelu 1372 m Dl. Stroe

1200 m Dl. Popii 1030 m Dl. Cacului

1037 m

Sebesla confluenta cu Dobra

Sebesla Sasciori

Vf. Cindrel 2244 m Vf. lui Patru

2130 m Vf. Foltea 1962 m

Vf. Stramba Mare 1830 m

Paltinei1680 m

1 2 3 4 km

Pătru Peak

Frumoasei Valley - StefleştiPeak

Tărtărău pastureSălanele Peak - Smida

Peak

Râu Şes surface - MunceluPeak

Gornoviţa surface -Poiana level

Oaşa Basin

Sebeşului Pass

Page 6: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Costea- 6 -

MATERIALS AND METHODSPresent relief of the hydrographic

basin of Sebeş is the result of a longevolution within the geological time of theco-operation of some endogenous andexogenous agents and of combination ofsome modeling processes. Moulding type,the mechanisms and their results were andare influenced, for the time being, by thefrequency, manifestation and intensityperiod with which the moulding agentsaction, as well as by the regional and localconditions and factors specific to eachmoment of the basin evolution whichgenerates the relief transformation(Chardon, 1984). Morphogenetic processeswhich develop in the Sebeş Basin give therelief an active dynamics. This can beexplained by accumulation and interactionwithin the watershed limits of some naturalfactors (lithology, geological structure,climate, relief morphometry) to which theanthropic pressure is added by habitation,forest exploitation, animal breeding andhydro-power arrangement of the basin. Morethan often these processes cannot beseparated; they co-operate and actsimultaneously by erosion, transport andaccumulation, forming distinctmorphogenetic systems. It is about theassociation, accumulation, superposition, intime and space, by agents and processeswhich create relief forms by their actionmechanisms (Velcea, 1961; Ielenicz, 1984;Mac, 1996). In their structure,morphogenetic systems include geologicalconditions (structure and petrographyinfluence), climatic conditions, vegetationcovering conditions (type, density, weight)and the anthropic ones.

Morphometric systems workeddifferently from a moment to another andfrom a place to another, on the Sebeş Basin.Palaeogeographical evolution of the basin,different action in course of time of themorphogenetic systems and feedbackmechanisms, generated by the plaeo-climatic conditions, differentiated itsmorphology in time and space. It issufficient to mention that on the northernside of the Cindrel Mountains the modelling

of Gornoviţa sculptural complex, whichbegan at the end of Sarmatian and continuedin Pontian (Posea, 2002) was made bymarine abrasion within the conditions of thepresence of the Sarmatian Sea and finishedin Meotian - Pontian along Sebeş Valley andon its tributaries by fluvial erosion, withinthe conditions of climate.

“Inferior Carpathian Surface”, as thiscomplex is also named, can be easilyidentified now on the gentle summits and onthe interfluvial surfaces slightly slopedbetween 800 - 1,000 - 1,100 m altitude, towhose level the highly placed localities(Poiana, Jina and Bârsana) are situated, butalso in the Sebeş Valley, where it penetratesup to altitudes of 1,100 - 1,200 m, as valleylevels, with a suspended position incomparison with the gorge between Laz andŞugag. Also, I am pointing out that inQuaternary, at altitudes of 1,800 - 2,000 mthe glacial and periglacial moulding systemwas prevalent, whose proofs are still presentat the base of the Cindrel-Frumoasalevelling surfaces, in the glacier cirquesfrom Obârşia Cibanului which give anoriginal aspect to the present alpinelandscape, now being remoulded by thecryonival processes.

Present modelling of the basin reliefis subjected to the orographic regionalcondition of the Southern Carpathians,respectively, the local ones of the mountainmassifs of Parâng Group, as well as to theregional climate with particularitiesintroduced by the altitudinal development ofthe climatic levels, generally northernexposure of the basin and local direction ofthe slopes. Within the Sebeş Basin,geomorphologic processes can be groupedinto two large categories: permanentprocesses, which develop slowly, beingconnected to the evolution of thehydrographic net and which is in a dynamicbalance in comparison with the general baselevel given by Mureş at Alba Iulia and at thelocal levels represented by the dam lakes ofSebeş; and fast evolution processes, whoseperiodicity and seasonal regime ofmanifestation become obvious within the

Page 7: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Morphogenetic systems and their impact on the landscape - Sebeş River basin; 1/18 pp. - 7 -

landscape by their lack of balance effectsand weathering of the terrains. They dependon the climatic regime and take over astructural and lithologic fund previouslymoulded by a deepening of the valley netand by activities specific to the mountaineconomy. The intensity and rhythmicity ofthe manifestation of the presentgeomorphologic processes, as well as theirdiversity lead to the appearance of a veryvaried range of terrain weathering by thewithdrawing of the valley sources, formationof some torrential organisms with anaccelerated dynamics and the release of thegravitational processes. Because of themarked relief fragmentation, differentiatedinclination and exposition of the slopes, thediversity and importance of the previouslymentioned factors and the specificityimposed by the action way and theirdifferent weight from case to case on ahomogeneous geologic fund, I consideropportune the differentiation of thegeomorphologic processes in space and their

grouping in representative morphogeneticsystems, characterized by the followingassociation types:

1. Morphogenetic systemdominated by the crionival processes withassociations of pluvial denudations andsurface erosions. This process association isspecific to the alpine and subalpine level,altimetrically extended from 1,750 to 2,244m. Present relief is made of cvasi-horizontalsurfaces of the Borăscu polyciclic complex(Carpathian pediplain; Posea, 2002,sculptured mainly in Danian - Eocen tillOligocen) with the greatest activity under thepeaks Cindrel (2,244 m) and Şerbota Mare(2007 m) in the summit Şerbota, withnorthward prolongations in GăujoareiHeights, developed up to Foltea Peak (1,962m), in the southern interfluve towards LotruBasin, in Cristeşti Piatra Albă Heights,between the peaks Ştefleşti (2,242 m) andPiatra Albă (2,178 m), as well aswestwardss, under Vârful lui Pătru (2,130 m)(Fig. 2).

Figure 2: Alpine and subalpine morphogenetic level - upper carpathian zone of Sebeş Basin;1. Borăscu erosion surface; 2. Erosion outlier; 3. Peak; 4. Cirque glacier; 5. Glacier summit; 6. Nival -glacier cirque; 7. Periglacial deposits; 8. Needles, towers relief; 9. Ravine; 10. Gully; 11. Regressiveerosion; 12. Principal watershed; 13. Sprigs; 14. Glacial lake; 15. Temporary hydrographic network;

16. Permanent hydrographic network; 17. Upper limit of forest; 18. Coniferous forest; 19. Sheepfolds.

Page 8: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Costea- 8 -

Absolute altitude andmorphoclimatic conditions of this surfacefavoured the formation of the Quartenaryglaciers and the fossil glacial and periglacialmoulding as well as the present cryonival.

Quaternary glaciation traces can beremarked at the base of the Cindrel -Frumoasa levelling surfaces, being placedon its north-western side, represented by theglacier cirques from Cibanul source(Marginea) in the Sebeş Basin: GroapaLungă and Groapa Scurtă.

Semicircular aspect, surfaceextension and relief energy of the cirquesindicate us the presence of some small sizedglaciers, in Pleistocene, formed in smallexcavations of Cindrel surface, in the sourcebasins of the two streamlets.

The preservation of these proofs waspossible due to the hard rocks -mesometamorphic crystalline schists ofSebeş - Lotru series, in which the glacialforms were sculptured.

Present cryonival processes are theresult of some freezing cycles which have aregular periodicity of the persistence of thesnow layer for a period of about 6months/year, within the conditions of anorthern slopes exposure and of theprevalence of the solid precipitations.

They are preserved by the geologicsubstratum made of crystalline rocks (mica-schists, quartz-feldspathic gneisses, micas,paragneiss with biotite and muscovite,amphibolites, quartzites and migmaticrocks) (Savu, 1998) and the vegetal layerwith a weak consistency (alpine pasture andsubalpine shrubs).

Eluvial-deluvial deposits aresubjected to some mechanical actions(setting, avalanche) but also to chemicalones (moistening, water crystallization,feldspar altering, etc.) whose effect is theforming of a specific relief: avalanchecorridors, sliding blocks, residual relief,stone torrents, nival microdepressions,soilfluction terraces, etc.

Nival microdepressions can be easilyobserved on the Cindrel and Ştefleştisummits because of the snow persistence tillthe late spring and of the poor vegetation on

them. They can become the future extensionareas of the torrential reception basins, bythe regressive erosion of their sources.

Supplying torrents basins occurrednear the high summits, represent the mostfavoured relief for snow accumulation, andthe torrential valleys, with their not too deepdrains but with marked slopes, are placesfavourable to avalanches.

Immediate effects of thesephenomena are the attraction of theunconsolidated material on slopes (rocks,stone blocks, mobile and semi mobiledetritus) and destruction of vegetation andsoil layer, thus being created the premises ofsome new geomorphological processdeveloping.

2. Morphogenetic systemdominated by torrentially, gulling, withassociations of the surface washing,torrents and of the gravitationalprocesses. It includes the largest part of theSebeş Carpathian basin and it is specific tothe versant level. Geologic substratum isrepresented by the upper complex of thewater layer Sebeş-Lotru prevalently made ofmica-schists with insertions of amphibolites,paragneisses, quartz-feldspathic gneissesand schists with manganese and ironsilicates (Savu, 1998).

This morphogenetic system greatestdevelopment is remarked in the northernside of the Carpathian Basin, in the basinsNedeiu, Mărtinie, Dobra, being favoured bythe geologic substratum, made of crystallineepizone schists, less resistant to erosion(sericite, chlorite schists, insertions ofcrystalline limestone, quartzite).

At the interfluve level mainly theerosion processes of ranges action withan intensity from moderate to strong,associated with the diffuse torrent processes,distributed especially at the level ofthe erosion platforms (Gornoviţa surface),where the pastoral activity favouredand favours the intense altering andsurface erosion processes (Costea, 2008 a)(Fig. 3).

Page 9: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Morphogenetic systems and their impact on the landscape - Sebeş River basin; 1/18 pp. - 9 -

Streaming and gulling are the highestfrequency processes, specific to all basins of1, 2 and 3 order, on slopes which exceed 10o

inclination and generate more evolved forms(Costea, 2004), with linear development (rill,gully) or branched (ravine), developed in theslope deposits or even in the base rock.

Its effects are numerous: ravines andgully settlement, their deepening, sourceswithdrawing beyond the upper line of theslopes, more active where the slope wassubjected to an intensive grazing or clearingand where animal paths or access roadsoccur, transit taking over of a large quantityof fine material which are carried andunloaded in the streamlet and torrent beds.Slope dynamics is very active in theCarpathian Basin where the fragmentationdensity is maxim.

Source steeps, trenches, ravines andgullies are standing out, and have a largedevelopment in the Bistra Basin, on the rightslope (with a southern displaying) and in theDobra Basin, on the right slope of Dobraand on the left slope of Şugag, in GroseştiBasin, at the source of the valleys Nedeiu adPoiana (Costea, 2008 b).

Weathering sectors superpose to thedistribution area of the crystalline epizone,on which a patch-like sedimentary coverletis displayed, that can be easily modified,being made of gravel and sand, inserted withclay. When they come into contact it isremarked the presence of some springswhich supply and maintain the weatheringphenomena with superficial drifts(Ghergheleu Spring at Poiana Sibiului,spring alignment South to Măgura Jinarilorin Bistra Basin, etc.).

The slopes are subjected to thetorrential modelling with the development ofthe elementary thalwegs along the slope. Apart of the materials deposited in the alluvialand alluvial-delluvial deposits are drawn inthe displacement by the slope drifting onelementary thalwegs or by gravitationalprocesses as collapses and superficiallandslides towards the closest valleycorridors. In the versant level, although theaforestation degree of the slopes is veryhigh, torrential actions is intensely enough

by the couple of present geomorphologicalprocesses formed of the intense erosion ofsurface, in the receiving basins of thetorrents, deep erosion in the elementarythalwegs with steep slopes and by theaccumulation of the alluvial materials at theslope bases as very large alluvial fans,whose stability is relative, in time and space.Accumulation forms generated by spasmodicmanifestations within the erosion basins andconfluences: tiered alluvial fans, isles,lateral sands have short life, their dynamicsbeing controlled by the climatic regime andthe hydrographic artery competence.

Aiming at the establishing of thetorrential erosion degree, within theCarpathian basin of Sebeş, I made theinventory of 130 torrential basins whichtotally cover 42,451 ha (Tab. 2). From thissurface, the forests cover over 80%, thisgiving a great stability to the slopes and aslowing down of the presentgeomorphologic processes. It is remarkedthat over 90% of the torrential basins belongto the receiving basins of the accumulationsTău Bistra and Nedeiu. This distribution cangenerate great problems in exploiting thedam lakes within extreme climatic conditions.

In comparison with torrentialactions, gravitational processes are reducedin surface. Yet, they intensely act in certainsectors, mainly as collapses and drifts, theirmanifestation depending on the intensity andperiodicity of the frost cycles. The action ofthe couple freezing-thaw creates deep cleftsin the body of the crystalline schists and ahigh potential of slope collapses devoid ofvegetation.

Those develop mainly in the gorgeareas and its tributaries, where the slopes aresteep, the sides being even vertical. Rocknature favours these processes; crystallineschists are gelive enough (froze subject) dueto schistosity plans and tectonic clefts whichaccompany nappe plans, and amphibolitesand gneisses have an important gelivity,especially when they are strongly inclined(Niculescu, 1997). The frozen is followed bygelifraction in the winter which generatesand deepens the clefts in the rock mass.

Page 10: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Costea- 10 -

Figure 3: Slope zone in Dobra - Jina - Poiana sector. Fluvio - torrential sub-zone1. Upper level of Gornoviţa erosion surface (950 - 1,200 m) with active dynamic of fluvial

torrential processes; 2. Lower level - Poiana Level (750 - 900 m) with very active dynamic oftorrential processes associated with superficial landslides; 3. Piedmont; 4. Erosion outlier;

5. Peak; 6. Col; 7. Regressive erosion; 8. Ravine; 9. Gully; 10. Principal watershed;11. Spring; 12. Hydrographic network.

Page 11: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Morphogenetic systems and their impact on the landscape - Sebeş River basin; 1/18 pp. - 11 -

Due to gravitation, large rock blockstear away from the slope and roll along thesteepest slope, forming detritus. Theystagnate in an unstable equilibrium onslopes or they roll in the river bedcontributing to its weathering by a superagglomeration as it occurs in Şugagului,Bistrei or Dobra valleys. Land slides aresuperficial and affect the soil coverlet orweathering crust in reduced thickness.

They are distributed mainly assoilfluction in the interfluves where pastoralactivities are present. Medium depth slides(2-5 m) are specific to the slopes and coverabout 10 ha on the South-east of MărtinieValley, on the eastern side of the Titiana Hill- Groseşti Basin, on the northern - North-eastern side of the Mida Summit, near theaccumulation Tău Bistra, and on the easternside of the Balele Summit (Costea, 2005).

Yet, in spite of the high degree ofaforestation, because of an inappropriateusage of the terrains, lack of

balances appear, year by year, due to theprecipitation excess from the transitionseasons. In this respect, the Sebeş Rivergorges distinguishes, covering the distancebetween the confluence of Sebeş withBistra rivers and its confluence with Nedeiwater course.

Lack of balance is maintained by:clearing and pastoral use of the interfluvesPorumbelu - Fântânele and Bârfor, developedon crystalline epizone schists, numerouserosion forms occurred on animal paths towhich the hydro-power arrangement worksare added, this works aiming at the waterpumping of the Dobra Basin towards TăuBistra lake by underground pipes are the mostimportant factors in this lack of balance.

Within these ranges there arenecessary stabilization works by slopecorrections, building of some supportingwalls and the avoidance of the excavations atthe slope bases, interdiction of clearings.

Table 2: Inventory of torrents in the Carpathian Sebeş Basin Source; direct fieldobservations.

offorest fund surface

Part of theSebeş

River basinbelongto damlakes

No. % Surface(ha) % (ha) %

Oaşa 9 6.9 8 277 79.6

Tău Bistra 41 31.56 10 399 24.6 11 896 80.2

Nedeiu 80 61.54 14 020 33.0 13 953 77.38

Total 130 100 18 032 42.4 34 126 80.39

Page 12: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Costea- 12 -

3. Morphogenetic systemdominated by the fluviatile modelling,associated with the torrential andlacustrine modelling. This morphogeneticsystem is specific to the valley corridors andthe intramontane depressions.Geomorphologic landscape of the gorges isin contract with that of the depression basinsFrumoasa, Oaşa, Prigoana, Curpăt, Tărtărău,Sălane. Located at altitudes of over 1,200 m,these depressions form real longitudinalcorridors along the tributaries of Sebeş,upstream suspended by the gorge narrowsectors, dug by these rivers for reaching thelower level of Sebeş. In erosionbasins, valleys have a mature aspect;here occur the entire range of relief formsspecific to depression areas: glacis, terracefragments, well developed floodplains.Great river beds are large and the flowsstrongly meandered, because of the lowslope.

In the middle and lower riversector, the tributaries as well as the Sebeşdeepened strongly in the meso-zonalcrystalline schists of the series Sebeş-Lotru,inserted due to the epirogenetic movementsfrom Pliocene-Quaternary and to theclose and low base level offered by Sebeşfor its tributaries and by Mureş River forSebeş.

Thus, the gorge sectors on Sebeş,Frumoasa, Sălane, Prigoana, Bistra,Dobra, Şugag, Nedeiu were created,with very steep slopes and with a reliefenergy which exceeds 300 - 600 m.Transversal sector of Sebeş, between thedepression from Oaşa and Săsciori, is a verynarrow gorge which covers a length ofalmost 40 km, interrupted bysome widenings - small depression ofconfluence: Tău-Bistra, Dobra-Şugag,Căpâlna and Laz. Metablastic migmatite,paragneisses and ocular gneisses, mainlydistributed west-eastwardly, East to Mărtinia

Valley like a wide strip, conditioned areorganization of the hydrographic net, on amore complicate tectonic fund, whichpresents numerous flow contortions in thesource areas and strong deepening in themedium and lower sectors of the Sebeştributaries.

High values of the deepeningfragmentation, close development ofthe narrow corridors of the main valleyand the gorge alternations withthe depression small basins, limited byvery steep slopes, generate temperatureinversions, a power regime of the slopes andvalleys which transforms in the driftingregime and which influence a high mobilityin the structure and functioning of theriver beds.

Sebeş Valley is strongly fettered(sinuosity value of the valley is of 1.74),and the river bed has a very steep slope(100 - 250 m/km), which give to thisgorge sector a very high power potential,exploited and materialized by thehydro-power constructions Oaşa, Tău Bistraand Nedeiu and by power stations fromŞugag and Gâlceag. Downstream Nedeiulake, the Sebeş deepens in theepimetamorphic rocks of the Geticcrystalline and then, upstream Căpâlna, itdigs in the crystalline limy bar whichbelongs to the epizonal series, thus forminga typical gorge sector, with very steep slopes(over 75o).

Downstream the small depresionaryareas from Căpâlna, Sebeş digs the gorgefrom Laz, which distinguishes within thelandscape by steep slopes and incisedmeanders, by the penetration of a strip ofmetablastic migmatite, paragneisses, quartz-feldspathic gneisses (Mutihac, 1990)(Fig. 4).

Page 13: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Morphogenetic systems and their impact on the landscape - Sebeş River basin; 1/18 pp. - 13 -

Figure 4: The Sebeş Gorge in the Căpâlna - Laz sector.

The fluviatile moulding is favouredby the inversely proportional ratiobetween the river slope and the flow. Alongthe entire hydrographic basin of Sebeş,declivity of the river beds has variablevalues (30 - 250 m/km) according to thegeological substratum which is occurred.Therefore, the high values of the declivityfavour the erosion and the materialtransport, and the lower ones, from theintramontane depressions, favour thealluvial depositing which originates inthe deluvial and coluvial materials (Costea,2004, 2008 b).

Sebeş River and most of itstributaries have hydro-power plants,therefore the fluviatile shaping issubordinated to the exploitation regimeof the dam lakes. Lake's water evacuationgenerates the shore erosion downstreamthe sectors of curve of the fettered meander.Solid flow is kept in the retention basins,which leads to their clogging. Yet,downstream these basins an aggradationof the river bed is remarked, because ofthe material which rolled from the slopes(Fig. 5). For instance, within more than

100 m in the gorge sector of ŞugaguluiValley, thalweg profile has a steep slope,the bed has large quantities of alluviawith unrolled deposits from the slope,and the water disappears in alluvia andreappears downstream deposit (Fig. 6). Thusburying phenomenon of the flow ismaintained by the material contributionfrom the slope and the reduced competenceof the river which is obstructed in theupstream sector.

The Sebeş Valley and its tributaries(Frumoasa, Tărtărăul, Sălanele, Ciban,Prigoana, Bistra, Dobra and Mărtinia) arereal penetration axes of the mountainmass. The access to the upper basin is madeeasier by the county road DN 67 C,and from here, by a dense net of forestroads and paths, which are very importantin assuring the transit during the warmseason but which are taken over andstrongly degraded by the associatedprocesses to the pluvial denudation,especially by the concentrated rill erosionand torrents, during transition seasons torich precipitations and snow melting(Costea, 2006).

Page 14: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Costea- 14 -

Figure 5: Fluvial processes in the Sebeş Valley.

Figure 6: Aggradation of riverbed on Şugag Valley.

Page 15: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Morphogenetic systems and their impact on the landscape - Sebeş River basin; 1/18 pp. - 15 -

Lacustrine modelling in the SebeşRiver basin is relatively recent, after the year1975, when the construction works began,for the hydro-power evaluation. The changeof the slope angle generates accumulationprocesses (alluvial and clogging), especiallyat the tail of the dam lakes, where thematerial sorting is made according to thesize and competence of the tributaries ofSebeş.

Alluvial contribution by the slopedrifting obviously influences the clogging ofthe retention basins (accumulations), as itcan be remarked in the Dobra Valley (wherethe basin is almost completely cloggedwith fine mica sands) and at the tail of OaşaLake (where fine alluvia, with aconsiderable thickness form a real deltaicfield at the mouth of Frumoasa in the lake)(Fig. 7).

Figure 7a: Lacustrine modelling through erosion and sediment accumulationat Tău Lake.

Page 16: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Costea- 16 -

Figure 7b: Lacustrine modelling through erosion and sediment accumulation at Oaşa Lake.

Figure 7c: Lacustrine modelling through erosion and sediment accumulationat Dobra retention.

Page 17: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Morphogenetic systems and their impact on the landscape - Sebeş River basin; 1/18 pp. - 17 -

CONCLUSIONSPresent geomorphologic processes,

which influence the Carpathian basin ofSebeş, has different forms, according to thedisposal of the climatic conditions with thealtitude, to the association of the natural andanthropic factors and to the prevalence of theshaping process. Slope displaying,morphometric characteristics of the relief,geologic substratum, the vegetation coveringdegree and anthropic pressure represented byactivities specific to the mountain economyare variables which associate themselvesattitudinally, differently in the Sebeş Basin.Slope processes are responsible both for theslopes and the beds degradation, especiallyin the sector upstream Şugag. Mountain areais practically inaccessible in winter, becauseof snow, and difficultly accessible in spring -summer, because of the seasonal activities ofthe slope drifting (snow melting, heavyrains) which block with alluvial fans theriver beds and communication lines. Forestroads are difficultly accessible and stronglyaffected by rill and torrential erosion. Yearby year the forms are reactivated and formnew generations of fans whit material in anunstable equilibrium. There is the permanentrisk of the material reactivation from the

slopes and from alluvial fans, of the blockingof county road DN 67 C and of the minorbed of Sebeş, generating some leniticsurfaces which flood adjacent areas. Theattraction of the large sized solid materialfrom the upper side of the slopes to the baseleads to the forest degradation which coversthem in the gorge sections. Wrongexploitation of the geographical space by thetentacular urban expansion on the Sebeşslopes, fragmented using of the lands foragriculture, intensive grazing and thesheepfold construction on interfluves andslopes, and not the least, the exploitation ofthe material within the quarry, but more thanthe forest clearing, disturb themorphodynamic equilibrium and intensifythe present geomorphological processes,endangering even the human habitat (Şugag -Dobra - Mărtinie). Morphogenetic compleximpact results from the generateddegradation forms and reflects in theeconomic revaluation of the mountain area.Under these circumstances some measuresmust be taken of diminishing the degradationprocesses by land reclamation and theintegrated rehabilitation of the geographicspace.

Page 18: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Costea- 18 -

REFERENCESChardon M., 1984 – L’etagement des

paysages et les processusgéomorphologiques actuels dans lesAlpes occidentales, in StudiaGeomorphologica Carpatho-Balcanica, vol. 17, Bucureşti. (inFrench)

Cojocariu M., 2001 – Etajarea şi expoziţia,elemente de diversificare geografică,Privire specială asupra GrupeiParâng, Ed. Univ. „Lucian Blaga”din Sibiu. (in Romanian)

Costea M., 2004 – Analiza cantitativă areliefului din bazinul hidrograficSebeş, folosind corelaţia pantă -energie de relief, in RevistaGeografică, X, Institutul deGeografie, Bucureşti. (in Romanian)

Costea M., 2005 – Bazinul Sebeşului. Studiude peisaj, Ed. Universităţii „LucianBlaga” din Sibiu. (in Romanian)

Costea M., 2006 – Riscul la inundaţii.Impactul în peisaj, in Ştef V. andCostea M. (eds.), Hidrologieaplicată, Ed. Univ. „Lucian Blaga”din Sibiu. (in Romanian)

Costea M., 2008a – Potenţialul de habitat alcondiţiilor de mediu din bazinulSebeşului, in Geo-Valachica, II - III,Târgovişte. (in Romanian)

Costea M., 2008b – Proceselegeomorfologice actuale din bazinulSebeşului, in Revista Geografică,XIV - XV, Bucureşti. (in Romanian)

Ielenicz M., 1984 – Munţii Ciucaş-Buzău.Studiu geomorfologic, Ed.Academiei Române, Bucureşti. (inRomanian)

Mac I., 1996 – Geomorfosfera şigeomorfosistemele, Ed. PresaUniversitară Clujeană, Cluj-Napoca.(in Romanian)

Mutihac V., 1990 – Structura geologică ateritoriului României, Ed. Tehică,Bucureşti. (in Romanian)

Niculescu G., 1997 – Relieful glaciar şicrionival, în Revue DeGeomorfologie, tom. I, Bucureşti. (inRomanian)

Posea G., 2002 – Geomorfologia României,Ed. Fundaţiei „România de Mâine”,Bucureşti. (in Romanian)

Savu H., 1998 – Origin and evolution of aCarpathian triple jonction, AUB,Geol., XLVII. (in Romanian)

Velcea V., 1961 – Munţii Bucegi. Studiugeomorfologic, Ed. Academiei,Bucureşti. (in Romanian)

AUTHOR:

1 Marioara [email protected]

“Lucian Blaga” University of Sibiu,Faculty of Sciences,

Department of Ecology and Environment Protection,Raţiu Street 5-7,

Sibiu, Sibiu County,Romania,

RO-550012.

Page 19: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Soil-vegetations relations simulation; 19/28 pp. - 19 -

THE SIMULATION OF THE SOIL-VEGETATION RELATIONS,USING QUALITATIVE REASONING AND MODELLING SOFTWARE

(GARP3)

Valentin PANAIT 1

KEYWORDS: Dobrogea, steppes areas, qualitative reasoning model, entity, quantity,GARP3 v1.0.

ABSTRACTIn this paper is exposed a new

approach of a few aspects regarding themonitoring of the soils, crops andspontaneous vegetation evolution, in theframe of the Dobrogea plateau. In thispurpose, the Qualitative Reasoning andModelling (Q.R.M.) software is very usefulin order to understand the evolution of thesoil and vegetation of the steppe areas.

Qualitative reasoning providesexplicit representation of the soil-

vegetations relations conceptual model and agood support for mathematical modelbuilding on the information systems.

Within this study, there was used aQRM software tool (GARP3), in order tounderstand and simulate, the evolution ofthe areas changed by the improvementworks, as well as of the natural areas.

That application is very useful, inorder to obtain a non-numerical descriptionsof the natural systems and their behaviour.

REZUMAT: Simularea relaţiilor sol-vegetaţie, utilizând raţionamentul calitativ şiprograme de modelare (GARP3).

Pentru a analiza interacţiunea sol-vegetaţie, în condiţiile zonei de stepă dinDobrogea, a fost utilizată o aplicaţiedestinată analizei calitative şi modelăriisistemelor (Qualitative Reasoning andModelling - QRM).

Analiza calitativă oferă oreprezentare explicită a modelului conceptualal relaţiei dintre sol şi vegetaţie, precum şiun suport eficient pentru crearea unui modelmatematic pe sisteme informatice.

În cadrul prezentului studiu, pentru aînţelege şi simula atât evoluţia terenurilorsupuse lucrărilor de îmbunătăţiri funciare,cât şi a celor aflate în regim natural, a fostutilizată aplicaţia de modelare calitativă(GARP3).

Acestă aplicaţie este foarte utilăpentru realizarea unei descrieri non-numerice a sistemelor naturale şi acomportamentului acestora.

RÉSUMÉ: Simuler les relations sol-végétation à l’aide du raisonnement qualitatif et deslogiciels de modélisation (GARP3).

Les caractéristiques de l’habitatsteppes présentent une majeure opportunitépour la modélisation mathématique del’interaction entre le sol et les plants.

Pour que ce souhait fera réalisé, nousutilise le programme de modélisation

mathématique et de raisonnement qualitativeet modélisation nome Garp3.

Cette application est très utile afin deréaliser une description non-numérique dessystèmes naturels et de leur comportement.

Page 20: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

V. Panait- 20 -

INTRODUCTIONThe goal of this study is to present

sever aspects regarding the way in which thesoil’s fertility may influence the plantsevolution. In this purpose, the mathematicalmodels are very useful in order tounderstand the evolution of the soil-plantsinteraction and offer a good platform forsimulation of the soil, vegetation and cropsevolution, as well as an analyzing tool of thedifferent processes within the steppe areas.

In this study, the soil-vegetationrelations were analysed using a QualitativeReasoning and Modelling (QRM) software,in order to obtain a non-numericaldescriptions of the evolution of the areaschanged by the improvement works, as wellas of the natural areas.

MATERIALS AND METHODSThe necessary stages for the

achievement of the work are:- documents concerning the

evolution of the steppe areas on Dobrogea,shown in the data offered by specialistsfrom: I. C. P. A. Bucureşti and O. J. S. P. A.Tulcea, in the scientific literature, as well asin reports and/or the technical projectselaborated with the different occasion;

- data concerning the climaticfactors, soil and plants evolution (Blaga etal., 1996; Lupaşcu et al., 1998);

- performing land observation, in thedifferent point of the Dobrogea, as follows:Somova area, Enisala area, Baia area,

Casimcea plateau, Peceneaga area, Ostrovarea, Bugeag Lake area etc.;

- the GARP3 qualitative reasoningapplication and the Prolog programmeenvironment (SWI-Prolog), these weredownloads from the following addresses:http://hcs.science.uva.nl/QRM/software/(GARP3) and http://www.swi-prolog.org/(SWI-Prolog), of the producers websites;

- results centralization, evolutionanalysis and comparison between obtaineddata with those found in the functionalmathematical models presented on theGARP3 producers website, in the scientificliterature, as well as in other previouspublished papers.

RESULTS AND DISCUSSIONSWithin implementation of the

mathematical models, one of the commonsolutions consists in the choosing of thesuitable model. In order to elaborate a studyof soil-vegetation relations, the symbiosisrelations could be the suitable model forthese. On the personal computers, that canbe done using the qualitative reasoningmethods and the mathematical tools likeGARP3.

The first step is represented by somechanges, in that mathematical model,imposed by the relation between soil and

plants. In each terrestrial ecosystem, anychange occurred in the soil can modify thevegetal biomass and productivity, and vice-versa. It is a very important stage of thisstudy because it offers useful informationabout the factors that could be used in orderto establish the input and output values, aswell as the feedback loop, in the case of thespontaneous vegetation as well as the crop(Figs. 1 and 2).

That model is useful for us because itexposes the relation between soils and plantsas a symbiosis relation.

Page 21: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Soil-vegetations relations simulation; 19/28 pp. - 21 -

Figure 1: The interaction between soil and spontaneous vegetation, were “P” representsthe proportionality proprieties (+ - direct proportionality, - - inverse proportionality).

Figure 2: The interaction between soil and crops, were “P” represents the proportionalityproprieties (+ - direct proportionality, - - inverse proportionality).

Page 22: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

V. Panait- 22 -

On the frame of that qualitativereasoning model, build with GARP3, onlythe following proprieties (calls entities onthe model) and parameters (calls quantities

on the model) of the soil and vegetation,exposed in the table number 1 and the tablenumber 2 were selected, in order to bepresented on this paper.

Table 1: The entities among all which were used on frame of that qualitative reasoningmodel presented on this paper those.

Entity in model Observation

Soil It is represented by Calcaro-calcic ChernozemsSpontaneous vegetation That is represented by Festuca vallesiacaCrops That is represented by Triticum vulgareNatural system It is represented by the system defined through the symbiosis

relation between Calcaro-calcic Chernozems and Festuca vallesiacaAgroecosystem It is represented by the system defined through the symbiosis

relation between Calcaro-calcic Chernozems and Triticum vulgare

Table 2: The quantities among all which were used on frame of that qualitativereasoning model presented on this paper those.

Quantity in model Observation

Biomass Vegetation biomassProductivity In the case of the spontaneous vegetation that represents the vegetal

biomass on hectare, in one year;In the case of crops that represent the agriculture productivity onhectare, in one year.

Mortality The outflow of the vegetal biomass from the systemGrowing rate The plants biomass grow rateResource available The global soil’s resources (water, humus, N, K, P, Ca, etc.)Fertility The soil fertility degree (the soil’s resource accessible for plants)Build up rate The soil’s resources grow rateOutflow The resource loused by soilLand development The land improvement measures

In the first case (Fig. 1), theinteraction between soil and vegetation wasinquired on the frame of a model fragment.In that specific model fragment, the linksbetween soil and vegetation wererepresented using the entity called “Naturalsystem” and two conditions, as follows: theNatural system sustains the Spontaneousvegetation and the Natural system maintainsthe Soil.

In the next case (Fig. 2), theinteraction between the soil and thecrops was inquired on the frame ofanother model fragment. In that modelfragment, the links between soil and cropswere represented using the entity called“Agroecosystem” and two conditions,as follows: the Agroecosystem sustainsthe Crops and the Agroecosystem maintainsthe Soil.

Page 23: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Soil-vegetations relations simulation; 19/28 pp. - 23 -

The symbiosis relation between soilsand plants was inquired on the frame ofthose model fragments, and that was madein two stages.

In the first stage we used the directproportionality proprieties established, in thecase of the soils, between Resourceavailable and Fertility, and in the case of thespontaneous vegetation and crops betweenBiomass and Productivity. At these aspectswere added the direct correspondences (Q)and for the inequality was assigned “=” sign.

In the last stage we used both type ofproportionality, as follows: the direct one -between the soil’s Fertility and the plant’s

Growing rate, as well as between plant’sProductivity and the soil’s Build up rate, andthe inverse one - between soil’s Fertility andthe plant’s Mortality, as well as between theplant’s Productivity and the soil Outflow.

Within the frame of that qualitativemodel (Figs. 3, 4 and 5), the humaninfluence was implemented as “Agent” thatwas called “Anthropic factor”. The attachingquantity of that was “Land development”.

Other agents, used in the frame ofthat model, were implemented as conditions,as follows: Climatic condition (Ariditydegree), Flood, Hydrographical density,Parental matters, Underground water.

Figure 3: Within the steppes environment’s conditions the natural system(that was defined from the interaction between soil and spontaneous vegetation)

is affect by the human intervention(that was established to the zero point - human intervention none existing).

Page 24: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

V. Panait- 24 -

Figure 4: Within the steppes environment’s conditions the natural system(that was defined from the interaction between soil and spontaneous vegetation)

is affect by the human intervention(that was established to the low point with increase evolution).

In these two cases, the evolution ofsoil-vegetation system was shown ongraphical figures (Figs. 5 and 6).

Those graphics offered avisualization of the evolution on differentpoints are named states. Each staterepresents a particular situation that resulted

from another state and those are describedby two parameters, as follows: a white circle(with a particular position on a scale) and asign (point, arrow up and arrow down). Thatsign represent the evolution trend of thesystem on one point.

Page 25: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Soil-vegetations relations simulation; 19/28 pp. - 25 -

Figure 5: The interaction between soil and vegetation when human intervention doesn’texist.

Page 26: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

V. Panait- 26 -

Figure 6: The interaction between soil and vegetation when human intervention exists.

Page 27: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Soil-vegetations relations simulation; 19/28 pp. - 27 -

CONCLUSIONSStudying the interaction between soil

and vegetation, on the area of Dobrogea, thefollowing results occurred: a highcorrelation between fertility and resourceavailable on the soil; a high correlationbetween biomass and productivity of thevegetation; a phase difference between the

soil (fertility and resource available) and thevegetation (biomass and productivity)characteristics; an good correlation betweenthe soil and the vegetation scale (zero-high).

In the case of crops (Triticumvulgare) the human intervention is veryimportant (Fig. 7).

Figure 7: The interaction between soil and crops when human intervention exists.

Page 28: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

V. Panait- 28 -

The confining at the average level ofthe land development, the soil and cropcharacteristics were given by the influenceof the climatic change on the steppesenvironment condition.

That happened because the climaticchanges consumed the most part of

resources used for agricultural works. Thatmodel can be useful, in order to obtain aquick interpretation of the interactionbetween vegetation and soil fertility,especially in the case of the steppes area.

REFERENCESBlaga G., Rusu I., Udrescu S. and Vasile D.,

1996 – Pedologie, Ed. Didactică şiPedagogică, Bucureşti, 298. (inRomanian)

Lupaşcu G., Parichi M. and Florea N., 1998– Dicţionar de ştiinţa şi ecologiasolului, Ed. Universităţii „Al. I.Cuza”, Iaşi, 404. (in Romanian)

AUTHOR:

1 Valentin [email protected]

Eco-Museum Research Institute - Tulcea,14 Noiembrie Street 3, Tulcea,

Romania,RO-820009.

Page 29: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Phytoplankton diversity in the Prut River (Moldavia); 29/34 pp. - 29 -

PHYTOPLANKTON DIVERSITY IN THE PRUT RIVER(MOLDAVIA)

Laurenţia UNGUREANU 1

KEYWORDS: Phytoplankton, diversity, number, biomass.

ABSTRACTIn this paper the results of the

phytoplankton research during 2001/2005 inthe middle sector (Branişte st., Sculeni st.)and the lower sector (Leuşeni st., Leova st.,Cahul st., Câşliţa-Prut st., Giurgiuleşti st.) ofthe Prut River are presented.

125 species and varieties of algaehave been identified in the specificcomponent of the phytoplanktoncommunities of the Prut River, mainlybacillariophyte, chlorococcophycean andeuglenophyte algae. The summerphytoplankton registered a greater diversity,being represented mainly by chlorophyteand bacilariophyte algae. A considerabledevelopment was registered by species fromthe Scenedesmus, Monoraphydium,Nitzschia and Navicula genera. The speciesdiversity increases from the middle sectortowards the lower sector. Only 10% of thetotal number of the identified species waspresent in the composition of thephytoplankton on the entire vegetativeperiod.

Considerable differences of thequantitative parameters were established indifferent sectors of the Prut River. Thephytoplankton’s abundance and biomass inthe middle sector of the Prut River wererising continuously starting with the year2001 (0.49 million cells/l; 1.24 g/m3). In the

lower sector, the abundance of thephytoplankton cells increased from 3.25million cells/l (2001) to 5.65 million cells/l(2003), while the biomass increased from1.74 g/m3 to 3.43g/m3. In the Prut River, thephytoplankton’s seasonal successions arewell highlighted, manifested in the intensedevelopment of the bacillariophytes duringspring and autumn period, registering highvalues of the biomass, and in the enhanceddevelopment of the chlorococcophyceans,cyanophytes and euglenophytes componentsof the phytoplankton during the summer.

The average abundance and biomassvalues for the surveyed period are 2.18million cells/l and 2.22 g/m3 for the middlesector and 3.27 million cells/l and 3.27 g/m3

respectively for the lower sector, beingmuch inferior to the abundance and biomassaverage values registered in 1993-1998research period, of 6.39 million cells/l and5.21 g/mg3 respectively.

The primary production’s seasonaland spatial fluctuations in the Prut River areusually accompanied by phytoplanktonbiomass fluctuations, successions of theplanktonic algae community structure,modifications in the nutrient concentrationsand variations of the water transparencyvalues, under the influence of the suspendedmatter contents.

REZUMAT: Diversitatea fitoplanctonului în râul Prut (Moldova).Sunt prezentate rezultatele

cercetărilor fitoplanctonului în perioadaanilor 2001-2005, în sectorul mijlociu (st.Branişte, st. Sculeni) şi sectorul inferior (st.Leuşeni, st. Leova, st. Cahul, st. Câşliţa -Prut, st. Giurgiuleşti) al râului Prut.

În componenţa specifică acomunităţilor fitoplanctonice ale râului Prutau fost identificate 125 specii şi varietăţi de

alge cu ponderea algelor bacilariofite,clorococoficee şi euglenofite. Mai divers afost fitoplanctonul în perioada estivală,reprezentat în majoritate de algele clorofiteşi bacilariofite. O dezvoltare considerabilăau înregistrat unele specii din genurileScenedesmus, Monoraphydium, Nitzschia,Navicula. Diversitatea speciilor creşte dinsectorul mijlociu spre cel inferior. Numai

Page 30: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

L. Ungureanu- 30 -

10% din numărul total de specii identificateau fost prezente în componenţafitoplanctonului pe întreg parcursulperioadei de vegetaţie.

Au fost stabilite diferenţeconsiderabile ale valorilor parametrilorcantitativi în diferite sectoare ale râuluiPrut. Efectivul numeric şi biomasafitoplanctonului sectorului mijlociu al râuluiPrut au fost în continuă creştere, începând cuanul 2001 (0,49 mln cel./l; 1,24 g/m3)majorându-se considerabil până în anul 2005(5,95 mln cel./l; 4,25 g/m3). În sectorulinferior, efectivul numeric al fitoplanctonuluia crescut de la 3,25 mln cel./l (a. 2001) pânăla 5,65 mln cel./l (a. 2003), iar biomasa de la1,74 g/m3 până la 3,43 g/m3. În râul Prutsunt bine pronunţate succesiunile sezoniereale fitoplanctonului, care se manifestă prindezvoltarea intensă a bacilariofitelor înperioada hiemală şi autumnală înregistrândvalori ridicate ale biomasei, iar în perioada

estivală prin dezvoltarea mai pronunţată încomponenţa fitoplanctonului a algelorclorococoficee, cianofite şi euglenofite.

Valorile medii ale efectivuluinumeric şi ale biomasei, pentru perioada decercetare, alcătuiesc în sectorul mijlociu2,18 mln cel./l şi 2,22 g/m3, iar în sectorulinferior 3,27 mln cel./l şi 3,27 g/m3, fiindmult mai scăzute în comparaţie cu valorileefectivului numeric (6,39 mln cel./l) şi alebiomasei (5,21 g/m3) înregistrate în perioadade cercetare 1993-1998.

Fluctuaţiile sezoniere şi spaţiale aleproducţiei primare în râul Prut, de regulăsunt însoţite de fluctuaţiile biomaseifitoplanctonului, succesiunile structuriicomunităţilor de alge planctonice,schimbările concentraţiilor elementelornutritive şi variaţiile valorilor transparenţeiapei, condiţionată de conţinutul substanţelorîn suspensie.

RÉSUMÉ: La diversité du phytoplancton dans la rivière Prut (Moldavie).Sont présentées les résultats de la

recherche sur le phytoplancton pendant lesannées 2001-2005 dans le secteur moyen (st.Branişte, st. Sculeni) et dans le secteurinferieur (st. Leuşeni, st. Leova, st. Cahul,st. Câşliţa-Prut, st. Giurgiuleşti) de la rivièrePrut.

Dans la composition spécifique descommunautés phytoplanctoniques de larivière Prut ont été identifiées 125 espèces etvariétés d’algues, en majorité desbacillariophytes, des chlorococophycées etdes euglenophytes. Plus diversifié a été lephytoplancton de la période estivale,représenté en majorité par des algueschlorophytes et bacillariophytes. Undéveloppement considérable a été atteint pardes espèces des genres Scenedesmus,Monoraphydium, Nitzschia, Navicula. Ladiversité des espèces croit du secteur moyenvers le secteur inferieur. Seulement 10% dunombre total des espèces identifiées ont étéprésentes dans la composition duphytoplancton pendant toute la période devégétation.

Des différences considérables desvaleurs de paramètres quantitatifs dans desdifférents secteurs de la rivière Prut ont étéétablies. L’abondance et la biomasse duphytoplancton du secteur moyen de larivière ont augmenté continuellement depuis2001 (0,49 mil. cell./l; 1,24 g/m3), atteignantdes valeurs considérables en 2005 (5,95 mil.cell./l; 4,25 g/m3). Dans le secteur inferieur,l’abondance du phytoplancton a augmentéde 3,25 mil. cell./l (2001) jusqu’à 5,65 mil.cell./l (2003), pendant que la biomasse aaugmenté de 1,74 g/m3 à 3,43 g/m3. Dans larivière Prut les successions saisonnières duphytoplancton sont bine prononcées et semanifestent par le développement intensifdes bacillariophytes dans la période hiémaleet automnale, qui enregistrent des valeursélevées de la biomasse, pendant que, dans lapériode estivale, se manifestent par ledéveloppement plus prononce des algueschlorococophycées, cyanophytes eteuglenophytes dans la composition duphytoplancton.

Page 31: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Phytoplankton diversity in the Prut River (Moldavia); 29/34 pp. - 31 -

Les valeurs moyennes del'abondance et de la biomasse pour lapériode investiguée sont, dans le secteurmoyen, de 2,18 mil. cell./l et respectivement2,22 g/m3 et, dans le secteur inferieur, ellessont de 3,27 mil. cell./l et 3,27 g/m3, étantbeaucoup plus basses que les valeurs del’abondance (6,39 mil. cell./l) et de labiomasse (5,21 g/m3) enregistrées pendantles années 1993-1998.

Les fluctuations saisonnières etspatiales de la production primaire dans larivière Prut sont accompagnées d’habitudepar des fluctuations de la biomassephytoplanctonique, par les successions destructure des communautés d’alguesplanctoniques, les changements desconcentrations des nutriments et par lavariation des valeurs de la transparence del’eau, conditionnée par le contenu desmatières en suspension.

INTRODUCTIONThe Freshwater ecosystems of Prut

River are continously undergoing anincreased anthropogenic pressure, which isreflected firstly on autotrophic organisms.Diversity and quantitative structure ofphytoplankton studies has a particularimportance for prediction of the potentialchanges in freshwater ecosystems andelaboration of scientific basis formaintainance of stable hydrobiocenosis andgood water quality.

Development patterns ofphytoplankton in the Prut River underdifferent functional conditions werereflected in different research papers, whichmentioned the considerable changes ofanthropogenic factors on biohydrochimicregime of freshwater ecosystems andecological conditions of phytoplankton(Grimalskii, 1970; Shalari, 1984; Shalaruand Ungureanu, 1995; Shalari, 1996;Ungureanu, 2003; Ungureanu and Zubcov2005).

EXPERIMENTALDuring 2001-2005, 42 phytoplankton

samples from middle sectors (Branişte andSculeni stations) and 52 from inferior sector(Leuşeni, Leova, Cahul, Câşliţa-Prut andGiurgiuleşti stations) of Prut River werecollected and analysed microscopically.

Colection and processing of phytoplanktonsamples were carried out according tounified methods of collection and analysingof field and experimental hydrobiologicalsamples (***, 1983; Kuzmin, 1975).

RESULTS AND DICUSSIONSPhytoplankton composition of middle

and inferior sectors of Prut River during2001-2005 included 125 species andvarieties of phytoplankton algae (middlesector - 85, inferior sector - 98) whichbelonged to the following taxonomic group:Cyanophyta - 13, Bacillariophyta - 46,Pyrrophyta - 2, Euglenophyta - 20,Chlorophyta - 44. The highest diversity wasduring summer with highest dominance ofchlorophytae şi bacilariophytae algae.Pyrrophyta algae were found, which werenot identified during other seasons. Aconsiderable development was registered forScenedesmus, Monoraphydium, Nitzschiaand Navicula genera.

Considerable differences ofquantitative parameters of phytoplanktonwere established in different sectors of thePrut River. The density and biomassof phytoplankton in the middle sector of thePrut River was increasing continously from2001 (0.49 mln cel./l; 1.24 g/m3) with amajor peak in 2005 (5.95 mln cel./l; 4.25g/m3). In inferior sector the density ofphytoplankton increased from 3.25 mln cel./l(a. 2001) to 5.65 mln cel./l (a. 2003) and thebiomass from 1.74 g/m3 to 3.43 g/m3,respectively.

Page 32: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

L. Ungureanu- 32 -

The average values of density andbiomass of phytoplankton during 2001-2005were the highest in research stations Branişteand Leuşeni, with the dominance ofBachilariophyta (Tab. 1). Cyanophytashowed a decreased diversity and abundance,with similar biomass values in middle andinferior river sectors.

Pyrrophyta, reprezented by Ceratiumhirundinella and Glenodinium gymnodiniumwere identified only in Branişte station,which influenced the phytoplankton structurein the inferior sector of accumulationreservoir Costeşti-Stânca.

The Desmidiales algae were equallydeveloped in the middle and inferior sectorsof Prut River, being represented byClosterium acerosum and Staurastrumgracile species.

Table 1: Density of phytoplankton (nominator-million cell/dm3) and biomass(denominator-g/m3) in the Prut River during 2001-2005.

Groups of algae Branişte Sculeni Leuşeni Cahul Caşliţa-Prut

Cyanophyta1.1

0.190.840.11

3.230.08

1.010.09

0.710.07

Bacillariophyta0.582.49

0.681.48

0.722.43

0.451.03

0.410.79

Pyrrophyta0.0150.39 - - - -

Euglenophyta0.040.3

0.060.34

0.150.73

0.080.38

0.050.21

Volvocophyceae - 0.020.11

0.010.05 - 0.01

0.07

Chlorococcophyceae1.860.86

0.710.23

2.130.65

2.71.08

1.380.53

Desmidiales0.010.06 - - 0.01

0.07 -

Total3.614.29

2.312.27

6.243.94

4.252.65

2.561.67

In the Prut River seasonalsuccessions of phytoplankton were revealed,which were manifested through an intensedevelopment of Baccilariophyta duringhyemal and autumnal periods with increasedvalues of their biomass and a higherdevelopment of Chlorococophyceae,Cyanophyta and Eugelnophyta duringsummer period. Density and biomass valuesof phytoplankton showed variations withinlarge limits both in the middle and inferiorsectors.

During spring the density andbiomass values of phytoplankton werehigher in the inferior river sector, whileduring summer the maximal quantitativevalues were registered in the middle sector(Figs. 1 and 2).

During autumn the density ofphytoplankton was increasing from Leuşenito Câşliţa-Prut stations, while the biomassvalues were higher at Cahul station.

Page 33: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Phytoplankton diversity in the Prut River (Moldavia); 29/34 pp. - 33 -

0123456789

Braniş te Sculeni Leuşeni Cahul Câşliţa-Prut

springsummerautumn

Figure 1: Prut phytoplankton density seasonal dynamics (mln. cell/dm3) (2001-2005).

0

1

2

3

4

5

6

7

Braniş te Sculeni Leuşeni Cahul Câşliţa-Prut

springsummerautumn

Figure 2: Seasonal dynamics of phytoplankton biomass (g/m3) in Prut (2001-2005).

The average values of phytoplanktonbiomass during 2001-2005 in the middlesector were 2.18 mln cel./l and 2.22 g/m3,while in inferior sector - 3.27 mln cel./l and3.27 g/m3, which was lower than the density(6.39 mln cel./l) and biomass values (5.21g/m3) registered during 1993-1998.

The seasonal and spatial fluctuationsof primary production of Prut River wereoccurring along with biomass fluctuations ofphytoplankton, successions in the structureof community of planktonic algae, thechange in the concentration of nutrients andvariation in water transparency, as a resultsof increased content of suspended matter.

Page 34: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

L. Ungureanu- 34 -

CONCLUSIONSThe research revealed a multianual

succession of species diversity andquantitative indices of phytoplankton of PrutRiver, in particular with the dominance ofCyanophyta, Bachilariophyta andCholococophycea

The average values of density andbiomass during research period 2001-2005in the middle sector of Prut River were 2.18mln cel./l and 2.22 g/m3, while in the

inferior sector 3.27 mln cel./l and 3.27 g/m3,which were much lower in comparison tothe density (6.39 mln cel./l) şi and biomassvalues (5.21 g/m3) during 1993-1998.

The succession of quantitativeindices of different planktonic groups ofalgae are closely linked to the changes in theecological conditions, caused by natural andanthropogenic factors.

REFERENCESGrimalskii V. L., 1970 – Biology of the

water basins of Prut Riverhydrobiological and fish industryresearches of the water basins ofMoldova, 1: 3-78. (in Russian)

Kuzmin G. V., 1975 – Methodology ofbiocenosis of internal water basinstudy, 73-87, Moscow. (in Russian)

Shalari V. M., 1984 – Phytoplankton ofMoldova rivers, 114-144, Chişinău.(in Russian)

Shalari V. M., 1996 – Phytoplankton of Prutriver and predictions on itsdevelopment in Costeşti reservoir,Limnological research of Danuberiver, Kiev., t 11. (in Russian)

Shalaru V. and Ungureanu L., 1995 –Taxonomic diversity of thephytoplankton of Nistru and Prutrivers and its multiannualsuccessions, International Scientificpractical Conference, 1995 European

year of nature conservation inRepublic of Moldova, Problems,realizations and perspectives, 15-16.(in Romanian)

Ungureanu L., 2003 – Research on the Prutriver phytoplankton, Analeleştiinţifice ale USM, Seria Ştiinţechimico-biologice, Chişinău, 298-301.

Ungureanu L. and Zubcov E., 2005 –Relationship between the levels ofnutrient elements and the structure ofphytoplankton in the Prut River. Thethird International Conference“Ecological Chemistry” Chişinău,May 20-21, 137.

***, 1983 – Guide on the hydrobiologicalanalysis methods of surface watersand bottom sediments, 78-87,Leningrad. (in Russian)

AUTHOR:

1 Laurenţia [email protected], [email protected]

Academy of Sciences of Moldova,Institute of Zoology,

Laboratory of Hydrobiology and Ecotoxicology,Academiei Street 1,

Chişinău,Republic of Moldavia.

Page 35: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Macromycetes from Ţegheş Forest; 35/40 pp. - 35 -

CONTRIBUTIONS TO THE KNOWLEDGE OF THE MACROMYCETESFROM ŢEGHEŞ FOREST - ILFOV COUNTY (ROMANIA)

Mihai Iulian RADU 1

KEYWORDS: macromycetes, mushrooms, Ţegheş forest, Bucureşti, Romania.

ABSTRACTThe paper contains the results of a

two years (2004-2006) study concerningthe macromycetes within Ţegheş forestnear the town of Bucharest. The researchobjective was to create an inventoryof existent species since the forest isnearly unknown to the study ofmacromycetes.

There have been identified 57species of macromycetes (46 genera)belonging to 3 classes of the regnum Fungi,3 of Myxomycetes, 12 of Ascomycetes and42 of the Basidiomycetes. All the taxonsrepresent a novelty for the studied area, dueto the absence of such studies in theliterature.

REZUMAT: Contribuţii la cunoaşterea macromicetelor din pădurea Ţegheş - judeţulIlfov (România).

Lucrarea conţine rezultatele a doi anide studiu (2004-2006) asupra macromicetelordin pădurea Ţegheş de lângă municipiulBucureşti. Obiectivul studiului a fostinventarierea speciilor existente, întrucâtpădurea, luată în studiu, este practicnecunoscută în domeniul de studiu almacromicetelor.

Au fost identificate 57 de specii demacromicete (46 de genuri), aparţinând la 3clase din regnul Fungi astfel: 3 dinMyxomycetes, 12 din Ascomycetes şi 42 dinBasidiomycetes. Toţi taxonii determinaţireprezintă o noutate absolută pentru zona destudiu, datorită absenţei acesteia în studiilede specialitate.

ZUSAMMENFASSUNG: Makromyceten des Ţegheş Waldes - Kreis Ilfov (Rumänien).Die Arbeit umfasst die Ergebnisse

zweijähriger Forschungen (2004-2006)über die Großpilze des Ţegheş-Waldesneben Bukarest. Ziel der Untersuchungenwar die Erfassung der dort vorkommendenArten, da der Wald vom Standpunkt derMakromyzetenuntersuchungen praktischunbekannt war.

Es wurden 57 Arten vonMakromyzeten (in 46 Gattungen)festgestellt, die zu 3 Klassen des Pilzreichsgehören und zwar: 3 zu den Myxomyceten,12 zu den Ascomyceten und 42 zuden Basidiomyceten. Alle bestimmtenPilze sind vollkommen neu für dasUntersuchungsgebiet, da dieses inFachstudien bisher nicht behandelt wurde.

INTRODUCTIONThe Ţegheş Forest is located in the

south-west of the town Bucharest, on theeastern bank of the river Argeş, the north endof the Mihăileşti reservoir.

The geographic coordinates are north44°23'34.59"N; south 44°23'3.97"N; east25°52'5.08"E; west 25°51'31.67"E. Thealtitude is 93-103 meters.

From a geographical point of viewthe area is part of the Câmpia Vlăsiei, whichis a climatic and hydro-geographicallyinterference area belonging to the PlatformaValahă.

The link-up of the atmosphericmasses from the NE and W-SW reflects acharacteristic vegetation and soil structure.

Page 36: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. I. Radu- 36 -

The forest Ţegheş is part of thegeographic subunit named Argeş-SabarMeadow, area where the water meadows ofthe two rivers merge, forming one singlemeadow. The climate is temperate with someslight inmoderate changes.

The soils of the studied area aretypical brown and brown-auburn forestsoils. Along the river Argeş there arealluvial deposits, with different structures,presenting different stages of evolutiontowards regular soil type. In the west sideof the forest there is a sandy alluvialhill generated by Argeş’ folds. Theflooding is frequent in this area, thus soilswith clear hidromorphic characters haveformed. During the year 2005, the areaof study has suffered from severe floodingdue to the river Argeş, especially thewest side of the forest but also in theeast side, due to an affluent of the riverSabar.

Vegetation is typical to the forest-steppe area and consists of trees (mainlyQuercus genus) and small herbs (mainlyfrom the Poaceae family).

The native flora consists mainly oftrees and bushes belonging to the followingspecies: Quercus pedunculiflora L., Quercuscerris L., Tilia platyphyllos Scop., Tiliatomentosa Moench., Ulmus sp., Carpinusbetulus L., Cornus mas L., Crataegusmonogyna Jacq. On the eastern side, nearthe water there are Salix sp. and Populusalba. Also on each edge of the forest thereare species of Sambucus nigra L. andPrunus cerasifera Ehrh. var. cerasifera(cultivated). The herbs consists of earlyspecies, that blossoms before the trees candevelop their crowns such as: Corydaliscava (L.) Schweigg. et Koerte, Ficariaverna Hudson, Anemone ranunculoides L.,Anemone nemorosa L., Scilla bifolia L.,Viola hirta L. etc. Also species of Arummaculatum L. and Pulmonaria officinalis L.are frequent.

MATERIALS AND METHODSThe mycological material was

gathered during many trips to the specifiedarea in different seasons of the years 2004,2005 and 2006. Some of the easiestidentifications were made in the field andnoted.

The material collected was broughtto analysis in the laboratory. Theexaminations included macroscopic as wellas microscopic aspects. The macroscopicconsisted in the analysis of the color (cap,

gills, spore-print, stalk), consistency,morphology, taste, odor, presence andcharacteristics of the latex and so on. Themicroscopic features that were pursued arereferring to the morphology of the sporesand other structures (cystidia, cap cuticle,etc.).

The observations made were notedand used in the process of identification thespecies. The material was dried and is in theauthor’s possession.

RESULTS AND DISCUSSIONSThe study has identified 57 species of

macromycetes (46 genera) belonging to 3classes of the regnum Fungi, 3 ofMyxomycetes, 12 of Ascomycetes and 42 ofthe Basidiomycetes (Fig. 1).

All the taxons represent a novelty forthe studied area.

The list of species is presented, insistematic order, each class is arranged inalphabetical order of the species, withindication of substratum and herbariumnumber.

Page 37: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Macromycetes from Ţegheş Forest; 35/40 pp. - 37 -

74%

21% 5%

Myxomycetes Ascomycetes BasidiomycetesFigure 1: The Fungi regnumidentified clases percentage.

Mixomycetes1. Lycogala epidendrum (J. C. Buxb.

ex L.) Fr., in lignos - Com. Domneşti (Ilfov):Forest Ţegheş, 16.04.2005, in Carpino-Quercetum, alt. 90 m, [M-IR 2005: 86]

2. Stemonitis axifera (Bull.) T.Macbr., in lignos - Com. Domneşti (Ilfov):Forest Ţegheş, 16.10.2005, in Carpino-Quercetum, alt. 90 m [M-IR 2005: 119]

3. Trichia varia (Pers.) Pers., inlignos putridos - Com. Domneşti (Ilfov):Forest Ţegheş, 25.09.2005, in Carpino-Quercetum, alt. 100 m [M-IR 2005: 113]

Ascomycetes4. Daldinia concentrica (Bolton) Ces.

and De Not., in lignos - Com. Domneşti(Ilfov): Forest Ţegheş, 16.04.2005 înQuercetum, alt 90 m [M-IR 2005: 92]

5. Xylaria hypoxylon (L.) Grev., inlignos - Com. Domneşti (Ilfov): ForestŢegheş, 05.11.2005 în Quercetum, alt 90 m[M-IR 2005: 90]

6. Tarzetta catinus (Holmsk.) Korfand J. K. Rogers, ad solum - Com. Domneşti(Ilfov): Forest Ţegheş, 01.04.2005, inCarpino-Quercetum, alt. 100 m [M-IR 2005:133]

7. Peziza vesiculosa Bull., ad solum -Com. Domneşti (Ilfov): Forest Ţegheş,27.11.2005, in Carpino-Quercetum, alt. 100m [M-IR 2005: 127]

8. Discina ancilis (Pers.) Sacc., adsolum - Com. Domneşti (Ilfov): ForestŢegheş, 02.07.2005, in Carpino-Quercetum,alt. 100 m [M-IR 2005: 101]

Sinonimie:9. Sarcoscypha coccinea (Jacq.)

Sacc., ad ramulos decidous - Com. Domneşti(Ilfov): Forest Ţegheş, 19.02.2006, inCarpino-Quercetum, alt. 100 m [M-IR 2006:129]

10. Helvella elastica Bull., ad solum- Com. Domneşti (Ilfov): Forest Ţegheş,22.05.2005, in Quercetum, alt. 110 m [M-IR2005: 95]

11. Helvella ephippium Lév., adsolum - Com. Domneşti (Ilfov): ForestŢegheş, 22.05.2005, in Carpino-Quercetum,alt. 100 m [M-IR 2005: 96]

Page 38: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. I. Radu- 38 -

12. Helvella queletii Bres., ad solum- Com. Domneşti (Ilfov): Forest Ţegheş,02.07.2005, in Carpino-Quercetum, alt. 100m [M-IR 2005: 100]

13. Morchella vulgaris (Pers.) Boud.ad solum - Com. Domneşti (Ilfov): ForestŢegheş, 11.03.2006, in Carpino-Quercetum,alt. 100 m [M-IR 2006: 131]

14. Morchella esculenta (L.) Pers., adsolum - Com. Domneşti (Ilfov): ForestŢegheş, 01.04.2006, in Carpino-Quercetum,alt. 100 m [M-IR 2006: 134]

15. Ptychoverpa bohemica(Krombh.) Boud.?, ad solum - Com.Domneşti (Ilfov): Forest Ţegheş, 30.04.2005,in Carpino-Quercetum, alt. 90 m [M-IR2006: 136]

BasidiomycetesDacrymycetales16. Dacrymyces capitatus Schwein.,

ad ramulos decidous - Com. Domneşti(Ilfov): Forest Ţegheş, 26.03.2005, inQuercetum, alt 100 m [M-IR 2005: 91]

Tremellalles17. Tremella mesenterica Retz., ad

cortex ad - Com. Domneşti (Ilfov): ForestŢegheş, 30.04.2006, in Carpino-Quercetum,alt. 100 m [M-IR 2005: 137]

Auriculariales18. Auricularia auricula-judae (Fr.)

Quél., ad cortex sambuci - Com. Domneşti(Ilfov): Forest Ţegheş, 16.11.2005, inCarpino-Quercetum, alt. 90 m [M-IR 2005:126]

19. Auricularia mesenterica (Dicks.)Pers., ad lignos amputatus - Com. Domneşti(Ilfov): Forest Ţegheş, 25.09.2005, inCarpino-Quercetum, alt. 100 m [M-IR 2005:114]

20. Trametes hirsuta (Wulfen) Pilát,in lignos amputatus - Com. Domneşti (Ilfov):Forest Ţegheş, 23.07.2005, in Quercetum,alt. 100 m [M-IR 2005: 103]

21. Trametes versicolor (L.) Lloyd,in lignos amputatus - Com. Domneşti (Ilfov):Forest Ţegheş, 22.05.2005, in Quercetum,alt. 100 m [M-IR 2005: 97]

22. Daedalea quercina (L.) Pers., adcortex - Com. Domneşti (Ilfov): ForestŢegheş, 05.11.2005, in Quercetum, alt. 100m [M-IR 2005: 123]

23. Fistulina hepatica (Schaeff.)With., ad cortex Quercus - Com. Domneşti(Ilfov): Forest Ţegheş, 11.03.2005, inQuercetum, alt. 100 m [M-IR 2006: 132]

24. Fomes fomentarius (L.) J. J.Kickx, ad cortex Tilia - Com. Domneşti(Ilfov): Forest Ţegheş, 06.03.2005, in Tilio -Quercetum, alt. 100 m [M-IR 2005: 89]

25. Ganoderma applanatum (Pers.)Pat., in lignos amputatus - Com. Domneşti(Ilfov): Forest Ţegheş, 30.04.2006, inQuercetum, alt. 100 m [M-IR 2006: 138]

26. Bjerkandera adusta (Willd.) P.Karst., in lignos amputatus - Com. Domneşti(Ilfov): Forest Ţegheş, 22.05.2005, inQuercetum, alt. 100 m [M-IR 2005: 98]

27. Hymenochaete rubiginosa(Dicks.) Lév., in lignos amputatus - Com.Domneşti (Ilfov): Forest Ţegheş, 04.09.2005,in Quercetum, alt. 100 m [M-IR 2003: 28]

28. Meripilus giganteus (Pers.) P.Karst., ad solum - Com. Domneşti (Ilfov):Forest Ţegheş, 14.08.2005, in Carpino -Quercetum, alt. 90 m [M-IR 2005: 106]

29. Polyporus tuberaster (Jacq.) Fr.,in lignos amputatus - Com. Domneşti (Ilfov):Forest Ţegheş, 30.04.2006, in Quercetum,alt. 100 m [M-IR 2006: 139]

30. Stereum hirsutum (Willd.) Pers.,ad cortex lignos amputatus - Com. Domneşti(Ilfov): Forest Ţegheş, 19.02.2005, inQuercetum, alt. 100 m [M-IR 2005: 87]

31. Phylloporia ribis (Schumach.)Ryvarden, ad cortex Salix - Com. Domneşti(Ilfov): Forest Ţegheş, 30.04.2006, inQuercetum, alt. 100 m [M-IR 2005: 87]

32. Phellinus pomaceus (Pers.)Maire, ad cortex Prunus - Com. Domneşti(Ilfov): Forest Ţegheş, 30.04.2006, inQuercetum, alt. 93 m [M-IR 2006: 130]

Agaricales33. Agaricus arvensis Schaeff., ad

solum - Com. Domneşti (Ilfov): ForestŢegheş, 14.08.2005, in Carpino - Quercetum,alt. 100 m [M-IR 2005: 107]

34. Agaricus urinascens (Jul. Schäff.and F. H. Møller) Singer var. urinascens, adsolum - Com. Domneşti (Ilfov): ForestŢegheş, 14.08.2005, in Carpino - Quercetum,alt. 100 m [M-IR 2005: 108]

Page 39: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Macromycetes from Ţegheş Forest; 35/40 pp. - 39 -

35. Agaricus silvicola (Vittad.) Peck,ad solum - Com. Domneşti (Ilfov): ForestŢegheş, 16.10.2005, in Carpino - Quercetum,alt. 100 m [M-IR 2005: 120]

36. Armillaria mellea (Vahl) P.Kumm. s. l., ad ramulos deciduos - Com.Domneşti (Ilfov): Forest Ţegheş, 27.11.2005,in Carpino - Quercetum, alt. 100 m [M-IR2005: 128]

37. Gymnopus dryophilus (Bull.)Murrill, ad solum - Com. Domneşti (Ilfov):Forest Ţegheş, 02.07.2005, in Carpino -Quercetum, alt. 100 m [M-IR 2003: 102]

38. Gymnopus fusipes (Bull.) Gray,ad solum - Com. Domneşti (Ilfov): ForestŢegheş, 27.07.2005, in Carpino - Quercetum,alt. 100 m [M-IR 2005: 104]

39. Coprinus micaceus (Bull.) Fr., adsolum - Com. Domneşti (Ilfov): ForestŢegheş, 01.04.2006, in Carpino - Quercetum,alt. 100 m [M-IR 2006: 135]

40. Coprinus disseminatus (Pers.)Gray, ad solum - Com. Domneşti (Ilfov):Forest Ţegheş, 30.04.2006, in Quercetum,alt. 100 m

41. Crepidotus mollis (Schaeff.)Staude, ad cortex lignos amputatus - Com.Domneşti (Ilfov): Forest Ţegheş, 25.09.2005,in Carpino - Quercetum, alt. 100 m [M-IR2005: 115]

42. Flammulina velutipes (Curtis)Singer, ad cortex Quercus - Com. Domneşti(Ilfov): 43. Lepiota clypeolaria (Bull.) Quél.,ad solum - Com. Domneşti (Ilfov): PădureaŢegheş, 25.09.2005, in Carpino-Quercetum,alt. 90 m [M-IR 2005: 116]

43. Macrolepiota procera (Scop.)Singer var. procera, ad solum - Com.Domneşti (Ilfov): Forest Ţegheş, 14.08.2005,in Carpino - Quercetum, alt. 90 m [M-IR2003: 109]

44. Marasmius prasiosmus (Fr.) Fr.,ad folium putridos - Com. Domneşti (Ilfov):Forest Ţegheş, 22.05.2005, in Carpino -Quercetum, alt. 100 m [M-IR 2005: 125]

45. Marasmius rotula (Scop.) Fr.,ad lignos putridos - Com. Domneşti(Ilfov): Forest Ţegheş, 25.09.2005, inCarpino - Quercetum, alt. 90 m [M-IR 2005:99]

46. Pluteus cervinus P. Kumm. var.cervinus, in lignos putridos - Com. Domneşti(Ilfov): Forest Ţegheş, 05.11.2005, inCarpino - Quercetum, alt. 90 m [M-IR 2005:124]

47. Pleurotus cornucopiae (Paulet)Rolland, ad cortex Fagus - Com. Domneşti(Ilfov): Forest Ţegheş, 14.08.2005,propinquus silva, alt. 90 m [M-IR 2005: 110]

48. Russula pseudointegra Arnouldand Goris, ad solum - Com. Domneşti(Ilfov): Forest Ţegheş, 14.08.2005, inQuercetum, alt. 100 m [M-IR 2005: 111]

49. Schizophyllum commune Fr. [ca'Schizophyllus communis'], ad cortex - Com.Domneşti (Ilfov): Forest Ţegheş, 01.05.2005,in Carpino - Quercetum, alt. 90 m [M-IR2005: 93]

50. Volvariella bombycina (Schaeff.)Singer, in lignos amputatus - Com. Domneşti(Ilfov): Forest Ţegheş, 01.05.2005, inCarpino-Quercetum, alt. 90 m [M-IR 2005:94]

51. Xerula radicata (Relhan) Dörfelt,in lignos putridos - Com. Domneşti (Ilfov):Forest Ţegheş, 25.09.2005, in Carpino -Quercetum, alt. 90 m [M-IR 2005: 117]

Boletales52. Leccinum quercinum (Pilát) E. E.

Green and Watling, ad solum - Com.Domneşti (Ilfov): Forest Ţegheş, 13.05.2005,in Quercetum, alt. 100 m [M-IR 2006: 142]

Gasteromycetales53. Cyathus olla (Batsch) Pers., ad

lignos putridos - Com. Domneşti (Ilfov):Forest Ţegheş, 23.07.2005, in Carpino -Quercetum, alt. 90 m [M-IR 2005: 105]

54. Cyathus striatus (Huds.) Willd.,in lignos putridos - Com. Domneşti (Ilfov):Forest Ţegheş, 06.03.2005, in Quercetum,alt. 90 m [M-IR 2005: 90]

55. Geastrum lageniforme Vittad. [ca'Geaster'], ad solum - Com. Domneşti(Ilfov): Forest Ţegheş, 13.10.2005, inCarpino - Quercetum, alt. 90 m [M-IR 2005:118]

56. Scleroderma citrinum Pers., adsolum - Com. Domneşti (Ilfov): ForestŢegheş, 05.11.2005, in Carpino - Quercetum,alt. 90 m [M-IR 2005: 125].

Page 40: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. I. Radu- 40 -

CONCLUSIONSThe macromycetes biodiversity study

in Ţegheş forest is the first one in this area,and since there are no bibliographicreferences, the whole study brings newmycological data regarding the surroundingforests of Bucharest that have been part ofthe Câmpia Vlăsiei/Vlăsiei Plain.

Determination of 57 taxons in 2004-2005 indicated a probable large biodiversityin an area that is virtually unknown. Sincethe year 2005 has been a extreme yearregarding

climatic conditions for Romania, the forestŢegheş registering too low temperatures inMay-June period, it is safe to assume that theforest’s potential may be even greaterregarding the biodiversity of macromycetes.

Importance of the study resides in thenew information of an area far too littlestudied, keeping open a perspective of amore larger study of the forests nearBucharest with the purpose to know, protectand conserve their large biodiversity.

ACKNOWLEDGEMENTSThe author would like to thank for all the support given, to Mr. G. Negrean, who

provided most of the bibliography consulted and for all the good advices. Also the author wouldlike to show gratitude for all the good advices to Mrs. T. Şesan and Mr. I. Cristurean. For all thepictures made in situ acknowledgements belong to Mr. L. Burlacu.

SELECTIVE REFERENCESBreitenbach J. and Kraänzlin F., 1986 –

Champignons de Suisse, t. 2,Heterobasidiomycetes, Aphyllopho-rales, Gasteromycetes, Lucerne, Ed.Mykologia, Suisse. 412, 528. (inFrench)

Holmgren P. K., Holmgren N. H. and BarnetL. C., 1990 – Index Herbariorum,Part I: The herbaria of the world, 8th

Ed. Regnum Veg. 120: 1-693.Kirk P. M. and Ansell A. E., 1992 – Authors

of fungal names - a list of scientificnames of fungi, with recommendedstandard forms of their names,including abbreviations, Index of

Fungi Supplement, Plymouth,Latimer and Co. Ltd. 94.

Posea G. and Ştefănescu I., 1983 – Judeţelepatriei: Municipiul Bucureşti cusectorul agricol Ilfov, Bucureşti,Ed. Acad. R. P. R., 291. (inRomanian)

Sălăgeanu G. and Sălăgeanu A., 1985 –Determinator pentru recunoaştereaciupercilor comestibile şi otrăvitoaredin România, Bucureşti, Ed. Ceres,330, 145 figures, 28 color plates. (inRomanian)

AUTHOR:

1 Mihai Iulian [email protected]

University of Bucharest,Faculty of Biology,

Aleea Portocalelor 1-3, Bucharest,Romania.

Page 41: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Particularities of Birch and Poplar in Răşinari District; 41/48 pp. - 41 -

ECOLOGICAL AND BIOMETRICAL PARTICULARITIESOF BIRCH AND POPLARIN RĂŞINARI DISTRICT

(TRANSYLVANIA, ROMANIA)

Iulian BRATU 1

KEYWORDS: Romania, Transylvania, Răşinari, birch, poplar, ecological particularities,biometrical particularities.

ABSTRACTIn this study were monitored,

throught data obtained by specializedinstitutions or by author’s field studies,the ecological and biometrical particularitiesof the birch (Betula pendula) and thepoplar (Populus tremula).

Were analyzed data concerning theclimatic particularities: climatic sector,

temperatures, number of days withtemperatures below 0°C, vegetationperiod, monthly average precipitations,evapotranspiration, hydrologic regime, windregime, aridity indexes. Also were analyzedfield measurements regarding: diameter,height, quality classes, with conclusionsconcerning biometric indicators.

REZUMAT: Particularităţi ecologice şi biometrice ale mesteacănului şi plopuluitremurător în districtul Răşinari (Transilvania, România).

În acest studiu, s-au monitorizat, prinprelevarea datelor obţinute atât de lainstituţii specializate, cât şi prin inventarieriîn teren, particularităţile ecologice şibiometrice ale mesteacănului (Betulapendula) şi plopului tremurător (Populustremula).

S-au analizat date referitoare laparticularităţile climatice: încadrare însector climatic, temperaturi, număr zile

cu îngheţ, perioada de vegetaţie, repartiţiaprecipitaţiilor pe medii lunare, regimulhidric, evapotranspiraţia, regimul eolian.S-au calculat indicii de ariditate; dinmăsurătorile efectuate în teren asupracaracteristicilor biometrice: diametru,înălţime, clase de calitate; se potdesprinde concluzii asupra volumelor, acreşterilor, precum şi a altor indicatoribiometrici.

ZUSAMMENFASSUNG: Ökologische und biometrische Kennzeichen der Birke undder Espe in der Gegend von Răşinari (Transilvanien, Rumänien).

Anhand der Erfassung von Dateneinschlägiger Fachinstitutionen sowie vonErhebungen im Gelände werden invorliegender Arbeit die Ergebnisse desMonitorings der ökologischen undbiometrischen Kennzeichen der Birke(Betula pendula) und der Espe (Populustremula) vorgestellt.

Es wurden Daten betreffendklimatische Gegebenheiten bearbeitetund zwar: Eingliederung in einenbestimmten Klimasektor, Temperaturwerte,

Zahl der Frosttage, Vegetationsperiode,Verteilung der Niederschläge nachMonatsmitteln,Verdunstung,Wasserhaushalt,Windverhältnisse, wobei auch derAriditätsindex errechnet wurde. Aus denim Gelände durchgeführten Messungenzu biometrischen Kennzeichen wieDurchmesser der Bäume, Höhe,Qualitätsklassen, können Schlüssegezogen werden über Holzvolumen,Wachstum und andere biometrischeIndikatoren.

Page 42: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

I. Bratu- 42 -

INTRODUCTIONThere where the forester vegetation

is at the beginning of installation (like in thecase of fields witch are naturalafforestationed, vistas, space foresters,where the forester vegetation is missing fordifferent reasons) in hill and mountain areas,first of all species that are extending theirareal are birch and poplar. Because of theirhigher adaptability, birch and poplar areconsidered to be pioneer foresters species,usually funded disseminated or like clumps,

sometimes forming derivate trees, replacingthe natural fundamental species (Sofleteaand Curtu, 2001).

In the Răşinari District conditions,the birch and poplar are disseminated inoakery, beech wood and resinous woods,and are also overrunning in Răşinarimarchland fields. The following will analyzethe ecological particularities of RăşinariDistrict R. A., as well as the biometricalparticularities of birch and poplar too.

MATERIALS AND METHODSIn order to establish ecological

conditions, data was used from PăltinişWeather Station, correlated with informationfound in technical literature (Marcu,1983; ***, 1961); on this support wasestablished the annual mean temperature,vegetation period, pluviometrical system,evapotranspiration repartition, wind system,and the De Martonne (1926) aridity index,and it have been also made analyses on soilsand rocks substrata. For the documentation,it has been used the facilities studies from

Ocolul Silvic Răşinari R. A.: UB V Onceşti,UB VI Răşinari, Studiul General alamenajamentelor silvice (***, 2003).Concerning biometrical conditions, therewere statistically inventoried differentbatches of five tree species, from variedrelief forms, by measuring their diameters,height and evaluating the quality classes,guided by the methodology and the practiceapproved by the Romanian Agriculture andRural Development/Ministerul Agriculturiişi Dezvoltării Rurale.

RESULTSThe high rusticity of birch and

poplar, as a result of low requirement ofground and climate, as well as the localclimate conditions, are making from this twostudied species veritable natural fortresses.

The climatical particularities ofRăşinari District are situated in: the moderate temperate zone,

through the climate of hill area (IB); mountain climate zone (IVC), witch

includes areas higher than 900 m.

The annual mean temperature isbetween 6-9oC, varying between 6-7oC oneminent ground, and 9-10 oC on downsidearea. (Tab. 1)

The vegetation period lasts for 175days, with temperatures over 10 oC.

The first frost is somewhere between21 September and 11 October, and can lastuntil 21 April and first of May. Those limitsare variable in a very wide range in term ofaltitude and position on the flanks.

Table 1: The division of monthly mean temperature (Fig. 3).

Month I II III IV V VI VII VIII IX X XI XIIMonthlyaverage

temperature

-1-(-2) -2-1 4-5 10-

1114-15 19-20 20-21 20-21 17-

1811-12 3-4 -4-

(-2)

Page 43: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Particularities of Birch and Poplar in Răşinari District; 41/48 pp. - 43 -

Pluviometrical regime

The regime of precipitation is characterized by an annual rainfall somewhere around 850mm, varying between 650-900 mm. (Tab. 2)

Table 2: The division of monthly mean rainfall.

Month I II III IV V VI VII VIII IX X XI XIIMonthly

meanrainfall

50-60

40-50

50-60

80-100

70-80

12-140

100-120

80-100

50-60

50-60

50-60

50-60

The mean duration of snow cover is 130 days.

Potentially evapotranspiration (Tab. 3).

Table 3: The division of monthly mean evapotranspiration.

Month I II III IV V VI VII VIII IX X XI XIIETP 0 0 17 51 92 114 129 112 74 4 12 0

Like it can be seen, in this region wewill not find periods of time with shortfall ofprecipitations, De Martoine aridity indexshowing a humid climate with an surplus ofwater from the rain.

De Martonne aridity index (1926)has been calculated by the followingformula:

7,62105,4

91010

T

PIa

where, P - annual mean rainfall and T - annual mean temperature

The water exchange advantages theforest vegetation, but the temperaturebecomes a restricting factor concerningoptimum exploitation of the station: highaltitude reflects in lower temperature,

causing a slow growth, explaining the lowproductivity of marchland trees fromsub alpine zone. Generally, climatic factorsare propitious for developing forestvegetation.

The aeolian regime (Tab. 4).

Table 4: The frequency and the speed of the wind on directions (Figs. 1 and 2).

Direction N NE E SE S SV V NV CalmFrequency 7.9 3.2 9.5 21.4 5.2 4 6.1 18.5 24.2Speed 2.2 1.4 2.2 2.8 2.6 1.4 2.2 3.1

There are 18 days with wind speed higher then 11 m/s, and 0.6 days with wind speedhigher then 16 m/s.

Page 44: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

I. Bratu- 44 -

2.2

1.4

2.2

2.8

2.6

1.4

2.2

3.1

00.5

11.5

22.5

33.5

N

NE

E

SE

S

SV

V

NV

Figure 1: The wind speedon the primary and secondary directions.

7.9

3.2

9.5

5.24

6.1

18.5

21.4

0

5

10

15

20

25N

NE

E

SE

S

SV

V

NV

Figure 2: The frequency of the windon the primary and secondary directions.

Page 45: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Particularities of Birch and Poplar in Răşinari District; 41/48 pp. - 45 -

Figure 3: Walter-Lieth climatic diagram: a - monthly mean temperature (oC);b - monthly rainfall (mm) P1/5 scale; c - monthly potentially evapotranspiration 1/5 scale;

d - subtraction between depth of rainfall and ETP;e - the period with monthly mean negative temperature; f - overplus of rain comparing with ETP.

Climatic synthesis (Tab. 5).

Table 5: The values of aridity index.

The aridity index is 62.7, this valueindicating a humid climate with an surplusof water from the rain. The value of aridityindex is growing with the altitude. Thearidity index from the vegetation period isshowing that it is not confronting with asurplus of water. The autumn is the mostarid season, the aridity index for Septemberbeing 45.

From geologically point of view, ithas been identified the following strata:

- crystalinne schist’s of getic sheet -mica-schist’s, micaceous, paragneisses,gneisses. On this geological underlayerspecific soils were formed and developed:typical luvic brown, typical white ramieand lithium luvisoil, typical browneumesobasic, lithium and typical brown

Monthly mean valuesI II III IV V VI VII VIII IX X XI XII

Annualmean

Aridity index 19 76 36 37 40 39 30 29 28.3 33 67 70 62.7

Page 46: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

I. Bratu- 46 -

acid, typical brown ferriluvial, lithiumand typical podsols;

- gravel, sand, chalk, sandstone,marl. As soils we can find: lithium luvic andtypical brown soil;

- colour - muscovite schist’s, whitegneisses, graphitic schist’s, carbon rocks.

On this geological underlayerspecific soils were formed: lithium andtypical brown acid, brown eumesobasic,podsols.

Soil formation rock is represented ofa majority of mica schist’s (crystalline

schist’s), that’s why the majority of theformed soils are acidic soils.

The majority of rocks are tough,causing a thin soil with a high level offramework.

Concerning the specific biometricalparticularities of birch and poplar (Giurgiuet al., 1972; Târziu, 1997), it have beenmade statistical measurements on the 70years old mature trees from the growingstock.

The table number 6 presents thenumbers from the measurements of birch.

Table 6: The measured values of the diameter and the height and the calculate values ofthe volume of the birch. (Figs. 4 şi 5)

No. crt. Diameter Height Volume1 18 14 0.1452 20 16 0.2023 20 16.5 0.2024 20 17 0.2025 22 16 0.246 22 16 0.247 24 16.5 0.2988 26 19 0.3779 26 17.5 0.377

10 26 16 0.36111 26 23 0.36112 28 18.5 0.44313 28 20 0.44314 28 15 0.34815 28 25 0.43116 30 16.5 0.40917 30 20 0.50718 30 20.5 0.50719 32 16.5 0.47620 34 20 0.66321 34 18 0.66322 38 14 0.53923 38 18 0.83724 40 17 0.6125 42 18.5 0.83726 42 14.5 0.68627 42 19 1.0328 48 16.5 0.93629 48 18 0.93630 50 19 1.012

Page 47: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Particularities of Birch and Poplar in Răşinari District; 41/48 pp. - 47 -

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Diameter Height Volume 10*V

Figure 4: The correlation between the diameter, the height and the volume on the birch (Tab. 7).

Table 7: The measured values of the diameter and the height and the calculate values ofthe volume of the poplar.

No. crt. Diameter Height Volume1 18 17 0.1662 20 16.5 0.1933 20 16 0.2184 24 17 0.3415 26 16.5 0.4176 26 20 0.4177 28 21 0.4878 28 18 0.4879 28 18 0.502

10 36 20 0.81511 36 18.5 0.81512 40 17 1.01213 42 23 1.34114 44 17.5 1.43815 44 24 1.47216 44 24 1.472

Page 48: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

I. Bratu- 48 -

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Diameter height Volume 10*V

Figure 5: The correlation between the diameter, the height and the volume on the poplar (Tab. 7).

CONCLUSIONSIt can be concluded that the birch and

the poplar are high rusticity species, withhigh adaptability, with low requirement ofsoil and climate, characterized by a lightnature that confers a vantage of highecological adaptability.

The results of the measurements areindicating an obvious active growing of thetwo species, both being considered as fastgrowing species.

REFERENCESGiurgiu V., Decei I. and Armăşescu S.,

1972 – Biometria arborilor şiarboretelor din România. (inRomanian)

Marcu M., 1983 – Meteorologie şiclimatologie forestieră. (inRomanian)

Martonne E., 1926 – Une nouvelle fonctionclimatologique: L’indice d’aridité.

La Meteorologie, 449-458. (inFrench)

Sofletea N. and Curtu L., 2001 –Dendrologie.

Târziu D., 1997 – Pedologie şi staţiuniforestiere. (in Romanian)

***, 1961 – Clima României, vol. II, Dateclimatologice. (in Romanian)

***, 2003 – Amenajamentele OcoluluiSilvic Răşinari. (in Romanian)

AUTHOR:

1 Iulian [email protected]

“Transylvania” University, Eroilor Boulevard 29,Braşov, Romania, RO-500036.

Page 49: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Fraxinus ornus on hills of the southern part of Transylvanian Tableland; 49/60 pp. - 49 -

THE FLOWER ASH (FRAXINUS ORNUS)ON HILLS OF THE SOUTHERN PART

OF TRANSYLVANIAN TABLELAND (ROMANIA)

Erika SCHNEIDER-BINDER 1

KEYWORDS: Flower Ash (Fraxinus ornus), distribution, thermophilous Flower Ashforest communities, contact communities.

ABSTRACTThe Flower Ash (Fraxinus ornus) is

a rare species of the TransylvanianTableland (Romania). It occurs in thoseareas where the oak Quercus pubescens maybe found as well. The species occurs alongthe borders of the Transylvanian Basin onsteep south-facing slopes and mainly onlimestone. In the hill country it is bound tosteep and warm Southern slopes and occursrarely, which is why poor data are availableon its assemblage in the hill country.

The present paper describes theforest stands of Flower Ash in the area ofŞeica Mare (Sibiu County) and its closeinterdependence with the neighboring plantcommunities. What may be observed is aclose relation and assemblage of rather Sub-

Mediterranean species with species showinga more Pontic respectively Eurasian-Continental distribution. The steep, highlyinsolated south-facing slopes that arecovered by a substrate consisting ofsandstone and calciferous marl layers thatheats up easily, offers adequateedaphic/climatic-conditioned sites to thexerothermous species of the two above-mentioned groups of species. SouthernEuropean, Sub-Mediterranean species aremore likely to be found in Flower Ash-forests whereas Pontic and Eurasian-Continental species of the Eastern forest-steppe do rather occur in the thermophilefringe communities and mesophilegrasslands of the slopes’ front faces.

REZUMAT: Mojdreanul (Fraxinus ornus) pe coline din sudul Podişului Transilvaniei(România).

În Podişul Transilvaniei mojdreanul(Fraxinus ornus) este o specie destul derară. Răspândirea lui se conturează deobicei în acele locuri, unde se dezvoltă şistejarul pufos (Quercus pubescens). Înzonele marginale ale Bazinului Transilvaniei,specia este răspândită de obicei pe stânci decalcar, ocupând pante sudice, puternicînclinate. Şi în Podişul Transilvaniei, speciaapare sporadic în locuri calde, pe pantesudice puternic înclinate. Datorită rarităţiimojdreanului în zona colinară, se cunoscdoar puţine date asupra asocierii lui.

În lucrarea prezentă, este descrisă opădurice de mojdrean de lângă Şeica Mare(Judeţul Sibiu), împreună cu comunităţile decontact, existând o strânsă legătură şiîntrepătrundere între ele. Se constată relaţii

strânse şi de asociere între specii curăspândire preponderent submediteraneană,având o răspândire pontică sau eurasiatic-continentală. Pe pantele sudice puternicînclinate şi constituite din straturi degresie şi marne, pante care înmagazineazăcăldura, există condiţii edafo-climaticecorespunzătoare pentru existenţa speciilorxeroterme, atât din grupa speciilorsubmediteraneene, cât şi pontice, respectiveurasiatic-continentale. Se constată faptul căspeciile sudeuropene, submediteraneene suntcantonate mai mult în pădurea de mojdrean,pe când speciile pontice şi eurasiatic-continentale, caracteristice zonelor desilvostepă se găsesc mai mult în borduriletermofile de pădure şi în pajiştile deschisedin partea frontală a pantelor.

Page 50: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

E. Schneider-Binder- 50 -

ZUSAMMENFASSUNG: Die Blumen- oder Mannaesche (Fraxinus ornus) auf Hügelnim südlichen Teil des Hochlandes von Transilvanien (Rumanien).

Im Transilvanien/SiebenbürgischenHügelland gehört die Blumenesche(Fraxinus ornus) zu den seltenen Arten.Ihre Verbreitung zeichnet sich dort ab,wo auch die Flaumeiche (Quercuspubescens) anzutreffen ist. Am Rande desSiebenbürgischen Beckens kommt die Artmeist an steilen Südhängen, vorwiegend aufKalkstein, vor. Auch im Hügelland ist sieauf steile, warme Südhanglagen begrenztund nur sporadisch anzutreffen. Daher gibtes über ihre Vergesellschaftung imHügelland auch kaum Angaben.

In vorliegender Arbeit wird einBlumeneschen-Waldbestand aus der Gegendvon Şeica Mare/Marktschelken (KreisSibiu) und seine enge Verzahnung mitden benachbarten Pflanzengesellschaftenbeschrieben. Dabei ist eine enge Beziehungund Vergesellschaftung von Arten mehr

submediterraner Verbreitung mit solchenfestzustellen, die eine pontische, bzw.eurasiatisch-kontinentale Verbreitung haben.Auf den südlich ausgerichteten Steilhängenmit hoher Sonneneinstrahlung und demsich leicht erwärmenden Substrat ausSchichten von Sandstein und kalkhaltigemMergel, sind entsprechende edaphisch-klimatisch bedingte Standorte fürxerotherme Arten beider oben erwähnterArtengruppen gegeben. Dabei sind diesüdeuropäischen, submediterranen Arteneher im Blumeneschenwald anzutreffen,während sich die pontischen undeurasiatisch-kontinentalen Arten deröstlichen Waldsteppe eher in denthermophilen Saumgesellschaften und denTrockenrasen der Stirnflächen des Hangesfinden.

INTRODUCTIONThe Flower Ash (Fraxinus ornus

L.) is a mediterranean-submediterraneanspecies of the Fraxinus-species which isattributed to the Sect. Ornus and itcomprises flamboyantly flowering,entomophile species (Meusel et al., 1978).The Sect. Ornus reaches from exclavesin the subtropical mountains up to thesubmeridional zone and prospers inEurope, as do numerous more demandinghardwoods, mainly in the suberidional-suboceanic South-Eastern highlands. It isrepresented by the Flower Ash (Fraxinusornus), chorologically comparable toQuercus cerris, Quercus pubescens, Sorbusdomestica and Coronilla emerus thatextend altogether further into theSubmediterranean, though frequentlyadvancing into the Southern, Subatlanticarea (Meusel et al., 1978).

All in all, the thermophile FlowerAsh occurs in the Eastern part of theMediterranean and Submediterranean area,it forms however small enclaves in theWestern-Mediterranean area as well, e.g. inthe East of Spain (Fig. 1), as is shown on thespecies distribution map (Meusel et al.,

1978). In the Illyric-Balkan-SouthernCarpathian area the Flower Ash frequentlyoccurs conjointly with Silver Linden (Tiliatomentosa), Common Lilac (Syringavulgaris) and Bladdernut (Staphyleapinnata), the distribution of which is mainlyfocussed on this area. The Flower Ash’ssites are mainly areas with sunny slopeswhere they grow especially on calcareousand mainly rocky soils. North of the Danubethe Flower Ash is a major constituent ofshrubs and loose shrub forests growing onsouth-facing calcareous rocks, rocky soilsand loess faces.

It may be found e.g. in the area of thecalcareous rocks in Southwestern Romania,more precisely on the Danube Valley rocks(Cazane-Iron Gate), the Cerna Mountains(Munţii Cernei), Semenic Mountains(Munţii Semenic), Mehedinţi Mountains(Munţii Mehedinţi), etc. It occurs as well inthe area of the Comana forest North ofGiurgiu, in the valleys of the SouthernCarpathians outer border as well as in theDobrogea and expands North up to the Iaşiarea (Morariu, 1961).

Page 51: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Fraxinus ornus on hills of the southern part of Transylvanian Tableland; 49/60 pp. - 51 -

Figure 1: General distribution of Flower Ash (Fraxinus ornus) according to Meusel et al., 1978,completed with two big black points on the distribution border in Transylvania (Romania);

sa = sinantropic distribution points.In the Carpathian Basin the species

occurs only sporadically. Its distribution inTransylvania shows distinctly that it occursin areas with a milder climate, for e.g. alongthe slopes of the Mieresch Valley, on thecalcareous rocks along the borders of theWestern Mountains, on the Tâmpa nearBraşov, the Tipei Mountain near Racoşu deJos (here not on lime but rather on basalt)where it forms shrub-like communities. Italso occurs on warm, south-facing slopes ofthe “Red Tower” Pass (Pasul Turnu Roşu)(Ciurchea, 1969), its distribution areareaching up to the hills situated north of the“Red Tower” Pass. Various authorsmentioned this species to occur in the areaof Boiţa, Tălmaciu and Tălmăcel (Schur,1866; Simonkai, 1886; Fekete and Blattny;1913, Sanda et al. 1998; Morariu, 1961;

Morariu and Ciucă, 1956; Drăgulescu, 2003;Schneider, 1994).

In the Transylvanian Tableland theFlower Ash occurs rarely in altitudes of 370-523 m (Drăgulescu, 2003), its distributionusually becoming apparent in spots wherethe oak Quercus pubescens may be found aswell. This is why the Flower Ash occurspredominantly on steep south-facing slopeswith tertiary marl and sandstone layerssubstrate that heats up rapidly and offersfavorable site conditions to this species. Inthe studied area Fraxinus ornus occurrenceshave been recorded in the Hodoş forest(Wodesch) between Dupuş, Şaroş and Aţel(Täuber and Weber, 1976), at Bazna/Baaßen(Römer, 1913), at Şeica-Mare (herbariumproves by Schneider, 1974; Drăgulescu,2003) and in the Roşia region /Sibiu County(Fig. 2) (Schneider, 1984 mscr., foto 2007).

Page 52: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

E. Schneider-Binder- 52 -

Figure 2: Small Flower Ash forest, southern exposition on “Burgberg” at Roşia(Sibiu County).

In its main natural range, the FlowerAsh is known as a species of the Quercuspubescens-shrub forests and farther south ofthe so-called Sibliak-formations (Fraxinoorni-Cotinetalia Jakucs 1960/ Syringo-Cotinion orientalis Jakucs and Vida 1959)(Horvat et al., 1974, Jakucs 1961, Sanda etal., 1998). They coexist here with WildLilac (Syringa vulgaris), CommonSmoketree (Cotinus coggygria), Dyer’sBuckthorn (Rhamnus tinctoria) and others.On the steep slopes of the conglomeratemountains of Tălmaciu-Podu Olt andMăgura Boiţei, Fraxinus ornus - shrubscoexist with fringe communities of Trifolio-

Geranietea on steep south-facing slopes andwith mesophilous grasslands of Epipactisatropurpurea-Stipa pulcherrima (Schneider,1984 mscr. 1994).

In the Transylvanian Tableland theFlower Ash has not been studiedcoenologically, given that its poordistribution in the tableland and its generallyrare occurrence in this area did not allowany more precise studies of itsphytocoenological bond. A Flower Ashforest stand discovered near Şeica Mareprovided us the possibility to study theassemblage of the Flower Ash and to relateit to its neighbouring communities.

INVESTIGATION AREA/ BACKROUND, MATERIALS AND METHODSIn the course of studies effected over

several years on the vegetation successionon the steep slopes of a number of hillsidessituated between Şeica-Mare, Agârbiciu andAxente Sever in the Visa / WeissbachValley (1995, 1999, 2007), a larger stand ofFlower Ash has been established in 1995 on

the castle hill (in saxon dialect “Burprich”)and studied in closer detail. Subsequent tocheck studies effected later on in the area ithas been established that this stand hadcontinued to exist with the same speciescomposition and had not been subject tohuman interferences. Besides the Flower

Page 53: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Fraxinus ornus on hills of the southern part of Transylvanian Tableland; 49/60 pp. - 53 -

Ash forest, further contact communitieshave been determined and recorded all thesame to provide proves for the closeinterdependence of the communities on therelatively small surfaces of the arid slopesand to measure the stability of theirassemblage. Samplings taken according tothe Braun-Blanquet method (1964) havebeen effected along ecological gradientsreaching from the forests to the open arid

slopes. The forest stands of the lower slopesemering as a result of scrub encroachmenton abandoned vineyards have been recordedall the same. The individual samplings havebeen outlined in phyto-sociological tables.The forest stands have been representedaccording to escarpments, respectivelylayers and drawn as such in the table: treelayer, bush layer, regeneration, herbaceouslayer.

RESULTS AND DISCUSSIONThe Flower Ash stand occurs on the

upper edge of a steep slope with southwardorientation and a distribution towards theSoutheast and Southwest. It is closelyintertwined with a stand which ispredominated by Field Maple (Acercampestre) and further stands that may beattributed to various forms of the oak-hornbeam forest (Tab. 1, columns 1-5).

The first two samplings (Tab. 1,column 1, 2) are characteristic of a foreststand that is predominated by Field Maple(Acer campestre), whereas the Flower Ash(Fraxinus ornus) occurs merely in the shrublayer, with a high frequency even thoughwith a low dominance. Flower Ash(Fraxinus ornus) and Wayfaring Tree(Viburnum lantana) are characteristic ofwarmer and dryer sites of both the shrublayer and the succession. Typical species ofthe herbaceous layer are first of all theContinental-Eurasian Sedge Carex montanaoccurring on xero-mesophilous sites and theWeed Polygonatum latifolium, a Pontic-Pannonian-Balkan species of moderatelyxerophilous to mesophilous sites (Ciocârlan,2000). The stand is predominated by FieldMaple and expands up into a small sandstone gorge, where the site is changing andwhere species of dryer sites become lessimportant (Tab. 1, column 3). The speciesfound here are those of more mesophiloussites such as Dryopteris filix mas, Primulaelatior, Listera ovata, Aposoeris foetida,Carex sylvatica, Lysimachia nummularia,Moheringia trinervia. The Western andEastern slopes are covered by an oak-hornbeam forest (Tab. 1, column 4, 5)with xero-mesophilous characteristics and

closely intertwined with the stands of theFlower Ash forest. Xero-thermophilouscharacteristics are emphasized by theoccurrence of Wayfaring Tree (Viburnumlantana), Dyer’s Buckthorn (Rhamnustinctoria) and the Weed Polygonatumlatifolium.

The forest stands of Fraxinus ornus(Tab. 2, columns 1-6) are characterized by adistinct tree layer presenting a crown coverranging between 0.6 and 0.8, with Quercuspubescens, Quercus robur and Pinussylvestris occurring alongside with theFlower Ash in some spots. Few interspersedBlack Locusts (Robinia pseudacacia) mayalso be seen; they originate from abandonedvineyards on the castle hill and havepropagated thanks to the fact that thesegrounds are no longer used. The shrub layeris also characterized by the Flower Ash,along with an abundant Wayfaring Tree(Viburnum lantana). Interspersed specimenof Dyer’s Buckthorn (Rhamnus tinctoria), athermophilic species occurring in theMediterranean-Central European area(Ciocârlan, 2000) may be found as well. TheFlower Ash succession is abundant and theherbaceous layer is characterized by theWeed Polygonatum latifolium. In thetransition zone to the open, dry slope onemay find xerothermous shrub species andspecies of the forest fringes such as e.g.,in some spots, the Dwarf Almond Tree(Amygdalus nana) (Eua-Ct), the asterAster villosus = A. oleifolius (Eua-Ct),Peucedanum tauricum (Pont) as well asspecies of xerothermous, mesophilousgrasslands that are characteristic ofsteppe slopes with an edaphic/climatic-

1

Page 54: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

E. Schneider-Binder- 54 -

conditioned steppe vegetation. Amongthese species are Carex humilis (Eua-Ct),Astragalus onobrychis (Eua/Ct), Verbascumphoeniceum (Eua-Ct), Agropyron cristatum(Pont-Ec), Brassica elongata (Pont), Irispumila (Pont/Pan/Balc), Salvia nutans(Pont), Scorzonera hispanica (Pont-med)and others (Tab. 2, columns 7-9).

The close interdependence of theFraxinus ornus forest with surroundingshrubs consisting of xerothermous species,the fringe community of Aster villosus andthe open steppe grasslands become distinctlyapparent on the slope’s front faces.Phytocoenoses that are influenced bySubmediterranean elements, such as thoseof Fraxinus ornus, concur with elementsthat are characteristic of xerophilouscommunities of the forest steppe and Ponticsteppe. One may however also encounterthermophilous species of Submediterranean-European as well as Pannonian-Balkandistribution on the edaphic/climatic-conditioned tertiary hills’ steppe slopes.Among those may be named Teucriumchamaedrys (submed-Eur) or Jurinea mollis(Pan-Balc.).

When trying to classify thephytocoenoses of Fraxinus ornus occurringon the hills of the Southern Transylvaniantableland near the locality Şeica Mare /Marktschelken, it becomes clear first of allthat they differ from the communitiesknown from the Southwestern Romania(Danube Valley, Banat Mountains, CernaMountains and Mehedinţi Mountains) by alow share of Quercetalia pubescenti-petraeaand Orno-Cotinetalia species (Sanda et al.,1972; Sanda et al., 1997; Sanda et al., 2008).They differ distinctly as well from thespecies found in the closer Mureş Rivervalley near Deva (Sanda et al., 1972) andmay only be considered as poor formsoccurring along on the borders of thespecies’ natural range.

However, Fraxinus ornus forests areknown to exist in the Mureş Valley, on thecalcareous rocks bordering the WesternMountains between Godineşti and Zam, inaltitudes of 450 through 640 m. Theirstructure and species composition are closely

comparable to that occurring near Şeica-Mare locality. These Flower Ash forestshave been described as Corno (sanguinei)-Fraxinetum orni (Pop and Hodişan, 1964)and differ from other noted Flower Ashcommunities, especially from those situatedin the South and Southwest of thecountry, showing a much greater abundanceof xerothermic species as compared tothose of the Transylvanian Basin’s boundingranges.

On the calcareous rocks borderingthe Western mountains, the Flower Ash(Fraxinus ornus) also represents aconstituting element of xerophile Oak-Hornbeam forests (Querceto petraeae-Carpinetum), Dyer’s Greenweed-Oakforests (Genisto tinctoriae-Quercetumdalechampii), Beech-Hornbeam forests(Fageto-Carpinetum) and Beech forests(Fagetum sylvaticae transsilvanicum) (Popand Hodişan, 1964). The occurrence ofthe Flower Ash in Oak-Hornbeam foreststands has also been proven for theinvestigation area near Şeica-Mare locality(Tab. 1). However, for this specific area anumber of species that are bound tocalcareous rocks are lacking.

As for the Flower Ash forest ofŞeica Mare, there are analogies with regardto the Corno-Fraxinetum orni that have beendescribed for the Western Mountains, giventheir comparable shrub layer and herbaceouslayer structures. There are, however, somedifferences as well that mainly regardthose species that are bound to calcareousrocks. Moreover, the Flower Ash forest ofthe Şeica Mare locality area is characterizedby a whole range of xero-thermophilousspecies that provide a very specificimpression. It regards species that becomemore abundant in the bush and tallherbaceous forest fringe and expand furtherinto open xerophilous slopes. The FlowerAsh is also considered as a companion inthe Pubescent Oak forests near Dumbrăvenilocality area on the hills between theTârnava/Kokel rivers, even though itsstands have almost completely disappearedas a result of sylvicultural use (oralinformation by C. Drăgulescu, 2009).

Page 55: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Fraxinus ornus on hills of the southern part of Transylvanian Tableland; 49/60 pp. - 55 -

Table 1: Field Maple-Hornbeam forest with elements of the Flower Ash forest; Speciesnoted with + in one sample: 1. Robinia pseudacacia (shrubs layer), Peucedanum tauricum,Physalis alkekengi, Lapsana communis, Hierochloa odorata, Tragopogon dubius, Valerianaofficinalis; 2. Rosa canina (shrubs layer), Agropyron cristatum, Aster villosus, Euphorbiacyparissias, Falcaria sioides, Fragaria viridis, Inula conyza, Iris pumila, Leonurus cardiaca,Melandrium album, Nonea pulla, Salvia nutans, Taraxacum officinale, Teucrium chamaedrys;3. Sambucus nigra (shrubs layer), Acer campestre (regeneration layer), Anthriscus sylvestris,Aposoeris foetida, Campanula urticifolia, Carex brizoides, Cephalanthera alba, Dryopteris filix-mas, Galium vernum, Galium sylvaticum, Listera ovata, Lysimachia nummularia, Mycelismuralis, Sanicula europaea, Vincetoxicum hirundinaria; 4. Cerasus avium (regeneration layer),Cornus sanguinea (regeneration layer), Aconitum vulparia, Aegopodium podagraria, Corydalissolida, Galeopsis speciosa, Hepatica nobilis, Heracleum sphondylium, Ranunculus auricomus,Ranunculus ficaria, Symphytum tuberosum, Veronica chamaedrys; 5. Allium scorodoprasum,Muscari comosum, Ornithogalum umbellatum. All samples are from the “Burprich” hill at ŞeicaMare, Sibiu County (31.05.1995).Number of sample 1 2 3 4 5Inclination 10° 10° 30° - 25°Exposition S SSE SE - SCovering degree of crowns 0.7 0.7 0.8 0.8 0.8Species number 31 35 48 44 22

FTree layer (10-12 m)Acer campestre 4.5 4.5 4.5 + + VCarpinus betulus . . + 4.5 4.5 IIICerasus avium . . 2.5 . . IFraxinus ornus . . . . + IQuercus robur . . . + . IQuercus pubescens . . . + . IPinus sylvestris . . . + . IRobinia pseudacacia . 1.5 . . . IShrubs layerFraxinus ornus + + + . + IVViburnum lantana . . + . 2.5 IIRhamnus tinctoria . . . . + IAcer campestre . . . . + ILigustrum vulgare + . + + . IIIUlmus minor . + + + + IVCarpinus betulus . . + + + IIICornus sanguinea . . + + + IIICorylus avellana . . + 3.5 . IIViburnum opulus + . + . . IICrataegus monogyna + . . + + IIIEvonymus europaeus . . + + . IIRosa canina . + + . . II

Page 56: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

E. Schneider-Binder- 56 -

Number of sample 1 2 3 4 5Inclination 10° 10° 30° - 25°Exposition S SSE SE - SCovering degree of crowns 0.7 0.7 0.8 0.8 0.8Species number 31 35 48 44 22

FForest regeneration layerFraxinus ornus + + . + . IIIViburnum lantana + . + . 2.3 IIICrataegus monogyna + + + . + IVQuercus robur + + + . . IIIUlmus minor . + + . . IILigustrum vulgare . 1.3 + . . IICarpinus betulus . . . . 3.5 ILianaClematis vitalba + + + 2.3 . IVHerbaceous layerCarex montana 2.2 1.2 . . . IIMajanthemum bifolium . . 3.4 + . IIViola mirabilis . . 1.5 . . IStachy sylvatica . . + + . IIAsperula odorata . . + 2.3 . IIAsarum europaeum . . . 1.5 . IEpipactis helleborine . . + + . IIBrachypodium sylvaticum + + + + . IVPolygonatum latifolium 2.5 2.3 . . 1.5 IIIGeranium robertianum 1.4 1.2 + + . IVVerbascum phoeniceum + + + . . IIIPulmonaria officinalis . . + + . IIPrimula elatior . . + + . IIHelleborus purpurascens . . + + . IICampanula cervicaria . . + + . IICarex sylvatica . . + + . IIMoehringia trinervia + . + . . IIGalium aparine 1.4 + . + . IIAlliaria petiolata 2.5 1.3 . + . IIIGeum urbanum + . . + + IIIFagopyrum convolvulus 1.5 1.2 . + . IIIFumaria schleicheri 1.5 . . + + IIIOrnithogalum pyramidale + + . . + IIIViola hirta +3 + . . + IIIPoa nemoralis + . . + . II

Page 57: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Fraxinus ornus on hills of the southern part of Transylvanian Tableland; 49/60 pp. - 57 -

Table 2: Flower Ash community Fraxinetum orni (Querceto pubescenti-Fraxinetum orni)(1-6) Ass. Agropyron cristatum - Carex humilis (7, 8) and fringe of Aster villosus (9); Speciesnoted with + in one sampling area: 1. Viburnum lantana (regeneration); 2. Agrimoniaeupatoria, Lapsana communis; 4. Cornus sanguinea (regeneration), Evonymus europaeus(regeneration), Anthriscus sylvestris, Corydalis solida, Helleborus purpurascens, Poa nemoralis;5. Dictamnus albus, Inula conyza; 6. Bupleurum falcatum, Hypochoeris radicata, Dorycniumherbaceum, Thalictrum flexuosum, Vinca herbacea; 7. Adonis flammea (r), Mellitismelisophyllum; 8. Artemisia campestris, Lactuca serriola, Tragopogon dubius. All samples arefrom the “Burprich” hill at Şeica Mare, Sibiu County.Number of sampling 1 2 3 4 5 6 7 8 9Inclination 10° 10° 5° 5° 45° 15° 50° 50° 50°Exposition S S S S S S S S SCovering degree % 75 55 60Covering of tree crowns 0.7 0.7 0.6 0.8 0.6 0.6 - - -Species number 22 18 20 23 36 29 30 25 41

F%Tree layer (10-12 m)Acer campestre . . + 2.5 . . . . .Fraxinus ornus 4.5 4.5 3.5 4.5 + 2.5 100 2.2 . .Quercus robur . . . . 2.4 . 16.6 . . .Quercus pubescens . . . . + . 16.6 . . .Pinus sylvestris 1.5 + 3.5 . 2.3 2.2 83.3 . . +Robinia pseudacacia . . + . + + 50.0 2.5 . .Juglans regia . . . . + . 16.6 . . .Shrub layerFraxinus ornus 1.5 + + 1.5 3.5 . 83.3 + + +Viburnum lantana + + . . 2.5 2.5 66.6 . . +Rhamnus tinctoria . . . . + . 16.6 . + +Acer campestre . + + + . . 50.0 . . .Ligustrum vulgare . + . + . 3.5 50.0 . . +Ulmus minor + . . . + . 33.3 . . .Crataegus monogyna . + . + + 2.3 66.6 . . .Evonymus europaeus + . . . . . 16.6 . . .Rosa canina . . + . . + 33.3 1.3 . .Pyrus piraster . . . . . + 16.6 + . .Prunus spinosa . . . . . . - + . +Quercus robur . . . . . + 16.6 . . .Rubus caesius . . . . . + 16.6 . . .Amygdalus nana . . . . . . - . . +RegenerationFraxinus ornus . + 1.5 3.5 . . 50 . . .Acer campestre + . . 1.5 . . 33.3 . . .Ligustrum vulgare . . . . . 1.5 16.6 . . +Crataegus monogyna . + . + + . 50.0 . . .Quercus robur . . . + + . 33.3 . . .LianaClematis vitalba + + . + + + 83.3 . . .

Page 58: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

E. Schneider-Binder- 58 -

Number of sampling 1 2 3 4 5 6 7 8 9Inclination 10° 10° 5° 5° 45° 15° 50° 50° 50°Exposition S S S S S S S S SCovering degree % 75 55 60Covering of tree crowns 0.7 0.7 0.6 0.8 0.6 0.6 - - -Species number 22 18 20 23 36 29 30 25 41

F%Herbaceous layerAsarum europaeum . . . 1.2 . . 16.6 . . .Euphorbia cyparissias . . + . . . 16.6 . . +Dactylis polygama . + . + + . 50.0 . . .Brachypodium sylvaticum . + + + 1.3 + 83.3 . . .Polygonatum latifolium 2.5 1.5 2.4 3.5 2.3 1.4 100 . . .Geranium robertianum + . . 1.5 + . 50.0 . . .Pulmonaria officinalis + . + . . . 33.3 . . .Primula elatior + . . + . . 33.3 . . .Moehringia trinervia + . + . + . 50.0 . . .Galium aparine + + . + 2.2 . 66.6 . . .Geum urbanum + + + 1.4 + . 83.3 . . .Alliaria petiolata + . . + + . 50.0 . . .Galeopsis speciosa + . . + . . 33.3 . . .Fagopyrum convolvulus + . 1.5 1.5 + . 66.6 . . .Fumaria schleicheri + 2.5 + . . . 50.0 . . .Hypericum perforatum + . . . + . 33.3 . . .Chelidonium majus + . 1.4 . + . 50.0 . . .Taraxacum officinale . . + . + . 33.3 . . .Ornithogalum pyramidale . . + . + . 33.3 . . .Physalis alkekengi . . + . 1.5 . 33.3 . . .Viola hirta . . . + . + 33.3 . + +Carex humilis . . . . . 2.5 16.6 . 2.5 2.5Agropyron cristatum . . . . . + 16.6 3.5 3.5 .Aster oleifolius (villosus) . . . . . 1.3 16.6 + + 3.5Stipa pulcherrima . . . . + + 33.3 . . 2.5Verbascum phoeniceum . . . . + . 16.6 + . +Peucedanum tauricum . . . . . 1.5 16.6 . . +Teucrium chamaedrys . . . . . 2.4 16.6 + 2.5 +Salvia nutans . . . . . + 16.6 + + .Falcaria sioides . . . . . + 16.6 + . +Nonea pulla . . . . + . 16.6 + 1.5 .Iris pumila . . . . . . - + . +Euphorbia cyparissias . . . . . . - + + +Lithospermum arvense . . . . . . - + + +Brassica elongata . . . . . . - + + +Centaurea micranthos . . . . . . - + + +Agropyron intermedium . . . . . + 16.6 . . 2.3Fragaria viridis . . . . . 1.5 16.6 2.2 . .Jurinea mollis . . . . . . - + . .

Page 59: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Fraxinus ornus on hills of the southern part of Transylvanian Tableland; 49/60 pp. - 59 -

Number of sampling 1 2 3 4 5 6 7 8 9Inclination 10° 10° 5° 5° 45° 15° 50° 50° 50°Exposition S S S S S S S S SCovering degree % 75 55 60Covering of tree crowns 0.7 0.7 0.6 0.8 0.6 0.6 - - -Species number 22 18 20 23 36 29 30 25 41

F%Scorzonera hispanica . . . . . + 16.6 + . +Astragalus onobrychis . . . . + + 33.3 . + .Festuca valesiaca . . . . . . - + 2.5 .Koeleria macrantha . . . . . . - . 1.5 +Caucalis daucoides . . . . . . - 1.5 + .Stachys recta . . . . . . - + + .Melica transsilvanica . . . . . . - + + .Asparagus officinalis . . . . + + 33.3 . . +Arenaria serpyllifolia . . . . . . - . + +Achillea setacea . . . . . . - . + +Hypericum elegans . . . . . . - . + .Eryngium campestre . . . . . + 16.6 . . +Neslia paniculata . . . . + . 16.6 + . .Calamintha acinos . . . . . . - + . .Stipa capillata . . . . . . - + . .Allium flavum . . . . . . - . . +Salvia austriaca . . . . . . - . . +Astragalus austriacus . . . . . . - . . +Aster amellus . . . . . . - . . +Echinops ruthenicus . . . . . . - . . +Adonis vernalis . . . . . . - . . +Thesium linophyllum . . . . . . - . . +Isatis tinctoria . . . . . . - . . +Cephalaria uralensis . . . . . . - . . +Aster linosyris . . . . . . - . . +Scorzonera austriaca . . . . . . - . . +Onosma pseudoarenaria . . . . . . - . . +

CONCLUSIONSAltogether it has to be noted that the

Mediterranean-SubmediterraneanFlowerAshis in few spots of Transylvanian Tableland,that its stands as pure Flower Ash forests areclosely related to the occurrence of PubescentOak, as well as xerophilous Oak-Hornbeamforests. As for its phytocoenological bond itdifferentiates from the stands occurring in itsmain natural range.

Induced by the poor Fraxinus ornusoccurrence in the tertiary Transylvanianhills, the delimitation of a phytocoenologicalunit reveals difficult. One may act on the

assumption that it is a question of remaindersthat comprised Pubescent Oak (Quercuspubescens) and Flower Ash (Fraxinusornus) to the same degree and occurred onthe upper edge of the south-faced slopes,with a further expansion towardsSouthwestern and Southeastern orientedslopes. They have been pushed towards theupper edge of the slopes where they couldsubsist as relicts. Given that its occurrencesare of phytogeographic importance, theyshould be duly considered as from a natureconservation point of view.

Page 60: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

E. Schneider-Binder- 60 -

REFERENCESBraun-Blanquet J., 1964 – Pflanzensoziologie.

Grundlagen der Vegetationskunde, 3,Aufl., Wien, New York, 865. (inGerman)

Ciocârlan V., 2000 – Flora ilustrată aRomâniei, Pteridophyta etSpermatophyta, Ed. Ceres, Bucureşti,1139. (in Romanian)

Ciurchea M., 1969 – Bemerkungen über dietermophilen Elemente aus dem Olttalzwischen der Cozia und der TurnuRoşu-Talenge, Revue Roumaine deBiologie, Ser. Bot., Bucureşti, XVI, 3,199-204. (in German)

Drăgulescu C., 2003 – Cormoflora judeţuluiSibiu, 533, Ed. Pelecanus Braşov. (inRomanian)

Fekete L. and Blattny T., 1913 – Az erdészetijelentöségü fák és cserjek elterjedése aMagyar állam területén, I-II,Selmecbánya. (in Hungarian)

Horvat I., Glavac V. and Ellenberg H., 1974 –Vegetation Südosteuropas, VEBGustav Fischer Verlag Jena, 768. (inGerman)

Jakucs P., 1961 – Die phytozönologischenVerhältnisse der Flaumeichen-Buschwälder Südostmitteleuropas,Budapest, 314. (in German)

Meusel H., Jäger E., Rauschert S. and WeinertE., 1978 – Vergleichende Chorologieder zentraleuropäischen Flora, Bd. II,VEB Gustav Fischer Verlag, Jena, 78.(in German)

Morariu I., 1961 – Familia Oleaceae, Flora R.S. R., VIII, Ed. Academiei RepubliciiPopulare Române, 496-524, Bucureşti.(in Romanian)

Morariu I. and Ciucă M., 1956 – Fraxinusornus L. Sistematica, răspândirea înR. P. R. şi întrebuinţările lui, Bul.St. Sect. Biol. şi şt. Agric., Bucureşti,VIII, 1, 209-215. (in Romanian)

Pop I. and Hodişan I., 1964 – Contribution tothe vegetation of the limestone hills

from Godineşti-Zam (raion Ilia, Reg.Hunedoara) / Contribuţii lacunoaşterea vegetaţiei calcarelor de laGodineşti-Zam (raion Ilia, Reg.Hunedoara), Contribuţii BotaniceCluj-Napoca, 229-239.

Römer J., 1913 – Beiträge zur Flora des BadesBaaßen, MBL, XII, 8-9, 250-267. (inGerman)

Sanda V., Popescu A. and Barabaş N., 1998 –Cenotaxonomia şi caracterizareagrupărilor vegetale din România,Studii şi Comunicări 1997, Biologievegetală, 14, Bacău 365. (inRomanian)

Sanda V., Popescu A. and Peicea I., 1972 –Contribuţii la cunoaşterea vegetaţieidin judeţul Hunedoara, Studii şiCercetări de Biologie, Seria Botanică,24, 4: 295-317, Ed. AcademieiRepublicii Socialiste România. (inRomanian)

Sanda V., Öllerer K. and Burescu P., 2008 –Fitocenozele din România,Sintaxonomie, structură, dinamică şievoluţie, Ars Docendi, Universitateadin Bucureşti, 570. (in Romanian)

Schneider E., 1994 – Die Blaugras-Gesellschaften im HügellandSiebenbürgens, Naturwissenschaft-liche Forschungen über Siebenbürgen,V. Beiträge zur Flora, Vegetation undFauna von Siebenbürgen, 107-131,Böhlau Verlag Köln, Weimar, Wien.(in German)

Schur F., 1866 – Enumeratio plantarumTranssilvaniae. Vindobonae.

Simonkai L., 1886 – Enumeratio floraetranssilvanicae vasculosae critica.

Täuber F. and Weber P., 1976 – Dealulcu bulbuci (Trollius europaeus L.)Mediaş, Ocrot. Nat. şi a med.înconj., Bucureşti, 20, 1, 23-33. (inRomanian)

AUTHOR:1 Erka SCHNEIDER-BINDER

[email protected] University, Institute for Waters and River Basin Management,

Division WWF- Institute for Floodplain Ecology,Josefstr. 1, 76437 Rastatt, Germany.

Page 61: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Şuvara Saşilor-Tălmaciu Natural Reservation flora and vegetation; 61/78 pp. - 61 -

THE FLORA AND VEGETATIONOF ŞUVARA SAŞILOR-TĂLMACIU NATURAL RESERVATION

(TRANSYLVANIA, ROMANIA)

Constantin DRĂGULESCU 1

KEYWORDS: Romania, Transylvania, Sibiu County, natural protected area, ŞuvaraSaşilor-Tălmaciu, flora and vegetation.

ABSTRACTThe natural reservation Şuvara

Saşilor is settled on the Sadu River terrace,between Tălmaciu and Sadu, at 18 km S-SEfrom Sibiu and its surface is of 20 ha. It wasdeclared a natural protected area by theDecision/Hotărârea no./nr. 12/28.09.1994 ofthe Sibiu County Council and by theLaw/Legea no./nr. 5/06.03.2000. The valueof this natural reservation consists in therelict Molinietum (Peucedano rocheliani-Molinietum coeruleae) which belong to

habitat of the European Community 6410-Molinia meadows on calcareos, peatyor clayey-silt-laden soils (Molinietumcaeruleae). It preserves many rare speciesin the flora of the Sibiu County andof Romania. There are in this naturalprotected area and its tampon zone (itssurroundings) 362 cormophytes and 18vegetal associations. The vegetal speciesand associations of the first category werewriten with bold, the others with italics..

REZUMAT: Flora şi vegetaţia Rezervaţiei Naturale Şuvara Saşilor-Tălmaciu(Transilvania, România).

Rezervaţia Şuvara-Saşilor estelocalizată pe terasa din partea dreaptă arâului Sadu, între localităţile Tălmaciu şiSadu, la 18 km S-SE de Sibiu şi are osuprafaţă de 20 ha. A fost declarată arienaturală protejată prin Hotărârea nr.12/28.09.1994 a Consiliului Judeţean Sibiuşi confirmată prin Legea nr. 5/06.03.2000.Valoarea rezervaţiei constă în molinietulrelictar (Peucedano rocheliani-Molinietum

coeruleae) care se încadrează în habitatul deinteres comunitar 6410-Pajişti cu Molinia pesoluri calcaroase, turboase sau argiloase. Elconservă multe specii rare în flora judeţuluiSibiu şi a României. Au fost identificate înaria naturală şi în zona ei tampon, un numărde 362 de specii de cormofite şi 18 asociaţiivegetale. Speciile şi asociaţiile vegetale dinprima categorie sunt scrise cu bold, celelaltecu italic.

RÉSUMÉ: La flore et la végétation de la réserve naturelle Şuvara Saşilor-Tălmaciu(Département de Sibiu).

La réserve Şuvara-Saşilor est situéesur la terrasse droite de la rivière deSadu, entre les communes de Tălmaciuet de Sadu, a 18 km S-SE de Sibiu etelle occupe une surface de 20 ha. Elle aété déclarée aire naturelle protégéepar l’Arrête no. 12/28.09.1994 duConseil Départemental de Sibiu etconfirmée par la Loi no 5/06.03.2000. Laréserve est particulièrement valeureuseà cause de son Molinietum relictaire(Peucedanorocheliani-Molinietumcoeruleae)

qui s’encadre dans l’habitat d’intérêtcommunautaire 6410 - Prairies à Molinia surdes sols calcareux, tourbeux ou argileux.Celui-ci conserve nombreuses espèces raresde la flore du département de Sibiu et de laRoumanie. Dans le périmètre de l’airenaturelle ainsi que dans sa région tamponont été identifiées 362 des espèces decormophytes et 18 associations végétales.Les espèces et les associations végétales dela première catégorie sont écrites en gras, lesautres en italiques.

Page 62: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Drăgulescu- 62 -

INTRODUCTIONThe natural reservation Şuvara

Saşilor is settled on the Sadu Riverterrace, between Tălmaciu and Sadu, at18 km S-SE by Sibiu and its surface is of20 ha. It was declareted a natural protectedarea by the Decision/Hotărârea no./nr.12/28.09.1994 of Sibiu County Counciland by the Law/Legea no./nr. 5/06.03.2000.The value of this natural reservationconsists in the relict Molinietum (Peucedanorocheliani-Molinietum coeruleae) whichbelongs to the habitat of the EuropeanCommunity 6410-Molinia meadows oncalcareous, peaty or clayey-silt-laden soils(Molinietum caeruleae). This area preservesmany rare species in the flora of theSibiu County and Romania: Peucedanumrochelianum, Narcissus radiiflorus, Iris

sibirica, Gladiolus imbricatus, Callunavulgaris, Salix rosmarinifolia, Selinumcarvifolia, Dactylorhiza maculata withssp. transsilvanica, Dactylorhiza majalis,Orchis incarnata, Spiranthes spiralis,Cephalanthera rubra a. o. There are inthis natural protected area and its tamponzone (surroundings) 362 cormophytes and18 vegetal associations. The first groupspecies are written with bold letters andthe second with italics.

This present protected area wasidentified by the undersigned botanist and itwas researched under botanical aspectespecially în the period 1976-1983.

A part of the investigations resultswere published (Drăgulescu, 1978, 1980,1986, 1987, 1995, 1996, 2003).

SPECIES CONSPECTUSEquisetaceaeEquisetum arvense L.: G, Cosm;

U3T3R0, Filipendulo-Petasition, Nt: (!, 872);Equisetum hyemale L.: G, Cp; U3,

5T2,5R4, Alno-Padion, Nt: (!, 872, HDRG,HF); f moorei Aschers.: (!, 872, HDRG);

Equisetum palustre L.: G, Cp;U5T2R0, Molinietalia, Nt: (!, 524, 872); fcorymbosum Milde: (!, 872); f fallax Milde:(!, 872);

Equisetum sylvaticum L.: G, Cp;U3,5T2R0, Alno-Padion, Nt: (!, 872); frobustum Milde: (!, 872, HDRG);

Equisetum telmateia Ehrh.: G, Cp;U3,5T2R0, Alno-Padion, Eriophorionlatifolii, Filipendulo-Petasition, Nt: (!, 872,HF); f comosum (Milde) Aschers.: (!, 872);

Equisetum variegatum Schleich.: G,Cp; U4T2R4,5, Scheuchzerio-Caricetalianigrae, E: f leve Milde: (1, 200, 524, 722);

OphioglossaceaeOphioglossum vulgatum L.: G, Cp;

U4T3R0, Molinion coeruleae, R: (200, 524,722, 854, 872, HSB);

DennstaedtiaceaePteridium aquilinum (L.) Kuhn: G,

Cosm; U3T3R0, Quercetea robori-petraeae,Nt: (!)

AthyriaceaeAthyrium filix-femina (L.) Roth: H,

Cosm; U4T2,5R0, Alno-Padion, Nt: (!, 1,524, 872, HB, HF);

Dryoperis filix-mas (L.) Schott: H,Cosm; U4T3R0, Querco-Fagetea, Nt: (!, 1,349, 363, 391, 524, 872, HB, HF);

Matteuccia struthiopteris (L.)Todaro: H, Cp; U4T2R0, Alno-Padion, Nt:(!, 872, HDRG);

SalicaceaePopulus tremula L.: Mph-mPh, Eua;

U3T2R2, Querco-Fagetea, Nt: (!, 854, 872);Salix alba L.: Mph-mPh, Eua;

U5T3R4, Alno-Padion, Salicion albae, Nt:(!, 739, 872, HF, HKA);

Salix caprea L: mPh, Eua; U3T3R3,Nt: (!, 119, 523, 872, HKA); f ellipticaKern.: (!, 872);

Salix cinerea L: mPh, Eua; U5T3R3,Alnetea glutinosae, Alno-Padion, Nt: (!,854, 872, 920, HSB);

Salix fragilis L.: mPh-MPh, Eua;U4,5T3R4, Alno-Padion, Salicion albae,Salicion triandrae, Nt: (!, 200, 872, HKA,HSB);

Salix purpurea L.: mPh, Eua;U5T3R4,5, Salicetalia purpureae, Nt: (!,872, HSB); f angustifolia Kern.: (872);

Page 63: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Şuvara Saşilor-Tălmaciu Natural Reservation flora and vegetation; 61/78 pp. - 63 -

Salix rosmarinifolia L.: nPh-mPh,Eua; U4T0R0, Molinion coeruleae, R: (!,200, 722, 854, 872, 889, HDRG, HSB); fangustifolia (Wulf.) Beck: (!, 872);

Salix triandra L.: mPh, Eua;U5T3R0, Salicion triandrae, Nt: (!, 119,200, 523, 739, 872, HDRG, HF, HSB);

BetulaceaeAlnus glutinosa (L.) Gaertn.: Mph-

mPh, Eua; U5T3R3, Alnion glutinosae,Alno-Padion, Nt.: (!, 640, 854, 872);

Alnus incana (L.) Mnch.: Mph-mPh,Eua; U4T2R4, Alno-Padion, Salicion albae,Nt: (!, 640, 738, 872, HF, HU); varsubrotunda Callier: (!, 872);

Betula pendula Roth: Mph-mPh,Eua; U3T2R2, Carpinion betuli, Nt: (!, 391,640, 739, 854, 872, 920);

CorylaceaeCarpinus betulus L.: Mph-mPh, E;

U3T3R3, Carpinion betuli, Nt: (!, 391, 660,872);

Corylus avellana L.: mPh, E;U3T3R3, Querco-Fagetea, Nt: (!, 640, 714,872, 920, HF);

FagaceaeQuercus robur L.: MPh, E;

U3,5T3R0, Alno-Padion, Quercetea robori-petraeae, Nt: (!, 660, 739, 854, 872, HKA,HSB); var glabra (Godr.) Schwz.: (!, 872);

UlmaceaeUlmus glabra Huds.: mPh-MPh,

Eua; U4T3R3, Alno-Padion, Nt: Tălmaciu(!, 523, 739, HF);

CannabaceaeHumulus lupulus L.: H, Eua;

U3,5T3R4, Alno-Padion, Nt: (!, 872);

UrticaceaeUrtica dioica L. ssp dioica: H(G),

Cosm; U3T3R4, Alno-Padion, Salicionalbae, Nt: (!, 872, 920);

PolygonaceaePolygonum aviculare L.: Th, Cosm;

U2,5T0R3, Polygonion avicularis, Nt: (!,312, 872, 920);

Polygonum bistorta L.: H, Eua;U4T2,5R3, Calthion palustris, Molinietalia,Nt: (!, 1, 119, 523, 722, 739, 854, 872,HDRG, HF);

Polygonum hydropiper L.: Th, Eua;U4,5T3R4, Alnetea glutinosae, Salicionalbae, Nt: (!, 872, HSB);

Polygonum persicaria L.: Th, Eua;U4,5T3R0, Phragmitetea, Salicetaliapurpureae, Nt: (!, 872);

Rumex acetosa L.: H, Cosm;U3T0R0, Molinio-Arrhenatheretea, Nt: (!,854, 872, 920); f porrectus Nyar.: (!, 872);

Rumex conglomeratus Murray: H,Cp; U4T3R4, Agropyro-Rumicion, Nt: (!,872, HF);

Rumex crispus L.: H, Eua; U4T3R0,Agropyro-Rumicion, Nt: (!, 854, 872, 920);f irramosum Peterm.: (!, 872);

CaryophyllaceaeCerastium holosteoides Fries ssp

holosteoides: Ch-H, Cosm; U3T0R0,Molinio-Arrhenatheretea, Nt: (!, 854, 872,HSB);

Cucubalus baccifer L.: H, Eua;U3,5T3R4, Calystegion, Senecionfluviatilis, Nt: (!, 872, 889, 891);

Dianthus carthusianorum L. sspcarthusianorum: H, E; U2T4R4,5, Festuco-Brometea, Nt: (!, 640, 722, 738, 872, 892,HF, HSB);

Dianthus giganteus D' Urv.: H, B;U2,5T3R4, Quercetea pubescenti-petraeae,Nt: (!, 1, 200, 714, 722, 872, HF, HFA,HSB, HU); f semigiganteus Prod.: (!, 872);

Gypsophila muralis L.: Th, Eua-C;U2T3R4,5, Nanocyperetalia, Nt: (!, 714,872);

Lychnis flos- cuculi L.: H, Eua;U3,5T2,5R0, Magnocaricion elatae,Molinietalia, Nt: (!, 854, 872, HF);

Moehringia trinervia (L.) Claierv.:Th-TH, Eua; U2,5T3R3, Querco-Fagetea,Nt: (!, 722, 872, HB, HF, HU);

Page 64: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Drăgulescu- 64 -

Sagina procumbens L.: H-Ch, Cp;U4T3R3, Arrhenatheretalia, Plantagineteamajoris, Nt: (!, 872, HSB);

Saponaria officinalis L.: H, Eua-M;U3T3R0, Calystegion, Senecion fluviatilis,Nt: (!, 739, 872, 894, HF);

Silene alba (Mill.) E. H. L. Krause:Th-TH, Eua; U3,5T2R3, Origanetalia, Nt: (!,872, HK);

Silene vulgaris (Mnch.) Garke sspvulgaris: H-Ch, Eua; U3T3R4, Molinio-Arrhenatheretea, Nt: (!, 739, 872);

Stellaria graminea L.: H, Eua;U2,5T3R3, Arrhenatheretalia, Molinio-Arrhenatheretea, Nt: (!, 854, 872, HBZ,HSB);

Stellaria media (L.) Cyr.: Th-TH,Cosm; U3T0R0, Alno-Padion, Nt: (!, 872,920, HKA);

Stellaria nemorum L. ssp nemorum:H, E; U3,5T3R3, Alno-Padion, Nt: (!, 872,HU);

RanunculaceaeAconitum anthora L.: H, E; U2T3R5,

Quercetea robori-petraeae, V: (!);Anemone nemorosa L.: G, E;

U3,5T3R0, Querco-Fagetea, Nt: (!, 119,141, 872, 920, HD, HDRG); f purpurea(DC.) Graebn.: (!, 872, HDRG);

Anemone ranunculoides L.: G, E;U3,5T3R4, Querco-Fagetea, Nt: (!, 872,920, HD, HF, HK, HU);

Caltha palustris L.: H, Cp;U4,5T0R0, Calthion palustris, Molinietalia,Nt: ssp laeta (Sch., N. et Ky) Hegi: (!, 872);

Isopyrum thalictroides L.: G, Ec;U3T3,5R3, Fagion, Nt: (!, 872, 920, HF,HU);

Ranunculus acris L.: H, Eua;U3,5T0R0, Molinio-Arrhenatheretea, Nt: (!,854, 872, HD, HSB);

Ranunculus flammula L.: H, Eua;U4,5T3R0, Agrostion stoloniferae, Caricioncanescenti-nigrae, Magnocaricion elatae, Nt:(!, 854, 872, HD, HDRG, HSB); f altissimusSchur: (!, 872, HDRG); f serratus (DC.)Prod.: (!, 872); f tenuifolius (Wallr.) A.Nyar.: (!, 872);

Ranunculus polyanthemos L.: H,Eua-C; U2,5T3R3, Geranion sanguinei, Nt:(!, 854, 872, 920, HDRG, HSB);

Ranunculus repens L.: H, Eua;U4T0R0, Alno-Padion, Calystegion,Molinio-Arrhenatheretea, Phragmitetea,Plantaginetea majoris, Salicetea purpureae,Nt: (!, 854, 872); f prostratus (Gaud.) A.Nyar.: (!, 872);

Ranunculus sardous Cr.: Th-TH,Eua; U3T3R4, Agrostion stoloniferae,Nanocyperion flavescentis, Nt: (!, 872);

Ranunculus strigulosus Schur sspstrigulosus: H(G), P-M; U3,5T3R3,Molinio-Arrhenatheretea, Nt: (!, 872, HF);

Thalictrum lucidum L.: H, Ec;U4,5T3R5, Alnetea glutinosae, Alno-Padion, Filipendulo-Petasition, Molinietalia,Salicetea purpureae, Nt: (!, 872); varangustifolium (Jacq.) Nyar.: (!, 872); varheterophyllum (Wimm. et Grab.) Hay.: (!,872); f peucedanifolium (Gris. et Sch.) A.Nyar.: (HF);

BrassicaceaeAlliaria petiolata (M. B.) Cavara et

Grande: Th-TH, Eua-M; U3T3R4, Alliarionpetiolatae, Querco-Fagetea, Nt: (!, 894,920);

Capsella bursa-pastoris (L.) Medik.:Th, Cosm; U3T0R0, Chenopodietea,Chenopodio-Scleranthetea, Nt: (!, 312, 872);var. integrifolia DC. (!, 872)

Cardamine amara L. ssp amara: H,Eua; U5T0R0, Alno-Padion, Nt: (!, 872);

Cardamine hirsuta L.: Th-TH, Eua;U3T0R2,5, Calystegion, Alno-Padion, Nt:(!, 824, 872);

Cardamine impatiens L.: Th-TH,Eua; U4T3R3, Alno-Padion, Nt: (!, 872);

Cardamine pratensis L. ssp pratensis:H, Cp; U5T3R0, Molinio-Arrhenatheretea,Nt: (!, 1, 722, 872);

Rorippa austriaca (Cr.) Bess.: H(G),Ec; U4T3,5R4, Agropyro-Rumicion,Plantaginetea majoris, Senecion fluviatilis,Nt: (!, 872, HK);

Rorippa pyrenaica (L.) Rchb.: H, M;U2,5T3R3, Arrhenatheretalia, Nt: (!, 1, 722,739, 872, HB, HD, HF, HK);

Page 65: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Şuvara Saşilor-Tălmaciu Natural Reservation flora and vegetation; 61/78 pp. - 65 -

Rorippa sylvestris (L.) Bess. sspsylvestris: H(G), E; U4T3R4, Agropyro-Rumicion, Nt: (!, 872, 920, HSB); fdensiflora Borb.: (!, 872);

SaxifragaceaeChrysosplenium alternifolium L.: H,

Cp; U4T2R4, Alno-Padion, Nt: (!, 872, HD,HDRG, HF, HFA, HU);

RosaceaeAlchemilla vulgaris L.: H, Ec;

U3,5T2R2, Cynosurion cristati, Nt: (!, 872);Filipendula ulmaria (L.) Maxim. ssp

ulmaria: H, Eua; U4,5T2R0, Alno-Padion,Filipendulo-Petasition, Molinietalia, Nt: (!,872); ssp denudata (J. et C. Presl.) Hay.:(HDRG);

Filipendula vulgaris Mnch.: H, Eua;U2,5T3R0, Festuco-Brometea, Nt.: (!, 640,660, 854, 872);

Fragaria vesca L.: H, Eua;U3T2,5R0, Cynosurion cristati, Querco-Fagetea, Nt: (!, 391, 640, 872);

Geum urbanum L.: H, Eua-M;U3T3R4, Alno-Padion, Nt: (!, 391, 739,872, HSB);

Malus sylvestris (L.) Mill.: mPh, E;U3,5T3R4, Alno-Padion, Carpinion betuli,Nt: (!, 872);

Potentilla alba L.: H, E(C);U2,5T3,5R3, Veronico officinalis-Quercion,Nt: (!, 824, 854, 872, HK, HSB); fplatyphylla Th. Wolf: (!, 872, HDRG);

Potentilla anserina L.: H, Cosm;U4T3R4, Molinietalia, Nanocyperetalia,Plantaginetalia majoris, Nt: (!, 872, 920);

Potentilla argentea L.: H, Eua;U2T4R2, Quercetea pubescenti-petraeae,Sedo-Scleranthetea, Nt: (!, 640, 714, 872,HD, HSB); f cinerascens Th. Wolf: (!,872);

Potentilla erecta (L.) Rauschel: H,Eua; U0T0R0, Molinio-Arrhenatheretea, Nt:(!, 391, 854, 872);

Potentilla reptans L.: H, Cosm;U3,5T0R4, Molinio-Arrhenatheretea,Plantaginetea majoris, Nt: (!, 872);

Pyrus pyraster (L.) Burgsd.: mPh-MPh, E; U2T3R4, Quercetea robori-

petraeae, Nt: (!, 1, 640, 739, 872); f elongata(Nyar.) Buia: (!, 872);

Rosa canina L.: nPh, E; U2T3R3,Querco-Fagetea, Nt: (!, 391, 640, 872, HF,HU);

Rubus caesius L.: H(nPh), Eua;U4T3R4, Alno-Padion, Convolvuletalia,Salicetea purpureae, Nt: (!, 872, HSB);

Rubus plicatus Whe. et Nees sspplicatus: nPh, Atl-M; U3,5T3,5R2, Querco-Fagetea, Nt: (!, 872);

Sanguisorba officinalis L.: H, Eua;U3T3R0, Molinietalia, Nt: (!, 854, 872);

Sorbus torminalis (L.) Cr.: MPh, E-M; U2,5T3R4, Quercetea pubescenti-petraeae, Nt: (!, 1, 722, 851, 872, HF);

FabaceaeAnthyllis vulneraria L. ssp

vulneraria: H, E; U2T0R4, Cynosurioncristati, Nt: (!, 640);

Chamaecytisus hirsutus (L.) Link.:nPh, Ec-M; U2T3,5R4, Querceteapubescenti-petraeae, Nt: (!, 1, 200, 391, 640,660, 739, 851, 872, 920, HBZ, HF, HK,HSB, HU);

Chamaespartium sagittale (L.) P.Gibbs.: H, Atl-Ec; U3T3R3, Nardetalia, Nt:(!, 391, 640, 660, 739, 872, 920, HF); flatifolia (Rouy) Morariu: (!, 872);

Coronilla varia L.: H, Ec-M;U2T3R4, Quercetea robori-petraeae, Nt: (!,640, 660, 872, HSB);

Genista tinctoria L. ssp tinctoria:Ch-nPh, Eua; U2,5T3R2, Molinioncoeruleae, Quercetea pubescenti-petraeae,Nt: (!, 391, 854, 872, HBZ, HK, HSB);

Lathyrus pratensis L.: H, Eua;U3,5T3R4, Molinio-Arrhenatheretea,Trifolion medii, Nt: (!, 854, 872);

Lembotropis nigricans (L.) Griseb.:nPh, Ec; U2,5T3,5R2, Querceteapubescenti-petraeae, Nt: (!, 640, 714, 851,872, HK, HSB);

Lotus corniculatus L.: H, Eua;U2,5T0R0, Molinio-Arrhenatheretea, Nt: (!,640, 714, 854, 872, 893, HF);

Medicago lupulina L.: Th-TH, Eua;U2,5T3R4, Molinio-Arrhenatheretea,Plantaginetea majoris, Nt: (!, 714, 872);

Page 66: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Drăgulescu- 66 -

Medicago sativa L.: H, M; U2T3R5,Festuco-Brometea, Secalietea, Nt: (!, 872);

Onobrychis viciifolia Scop.: H, M;U2T4R4,5, Mesobromion, Nt: (!, 872, HF);f glabrescens Beck: (!, 872);

Ononis arvensis L.: Ch-H, Eua-C;U3T4R0, Molinio-Arrhenatheretea, Nt: (!,722, 738, 854, 872, HSB, HU);

Trifolium alpestre L.: H, E-M;U2,5T3R4, Geranion sanguinei, Nt: (!, 391,640, 722, 851, 854, 872, 920, HF, HK, HU);

Trifolium campestre Schreb.: Th-TH,E; U3T3R0, Arrhenatheretalia, Nt: (!, 714,739, 872, HF, HSB);

Trifolium dubium Sibth.: Th-TH, E;U3,5T2,5R0, Arrhenatheretalia, Molinion,Nt: (!, 854, 872, HDRG);

Trifolium hybridum L. ssp hybridum:H, E; U3,5T3R4, Agrostion stoloniferae,Calthion palustris, Nt: (!, 824, 872, 893,HDRG, HSB); ssp elegans (Savi) A. et G.:(!, 872);

Trifolium pannonicum Jacq.: H, P-M; U2T35R0, Quercetalia pubescentis, Nt:(!);

Trifolium pratense L. ssp pratense:TH-H, Eua; U3T0R0, Molinio-Arrhenatheretea, Plantaginetea majoris, Nt:(!, 854, 872, 893); f biceps (E. Pop) A.Nyar.: (!, 872, HDRG);

Trifolium repens L. ssp repens: H,Eua; U3,5T0R0, Cynosurion cristati,Molinio-Arrhenatheretea, Plantagineteamajoris, Nt (!, 854, 872, 893, 920, HSB);

Vicia angustifolia Grugf. sspangustifolia: Th, Eua; U0T3R0,Origanetalia, Secalietea, Nt: (!, 872, 920,HSB);

Vicia cracca L.: H, Eua; U3T0R3,Molinio-Arrhenatheretea, Nt: (!, 872, 918,HDRG);

Vicia hirsuta (L.) S. F. Gray.: Th,Eua; U2,5T3,5R4, Festucion rupicolae,Cynosurion, Nt: (!, 872);

Vicia sepium L.: H, Eua; U3T3R3,Quercetea robori-petraeae, Trifolion medii,Nt: (!, 872);

GeraniaceaeGeranium palustre Torn.: H, Eua;

U4T3R4,5, Filipendulo-Petasition, Nt: (!,872);

Geranium robertianum L. ssprobertianum: Th, Cosm; U3,5T3R3, Alno-Padion, Nt: (!, 322, 391, 660, 872, HF);

LinaceaeLinum catharticum L.: Th-TH, E;

U3T2R4, Molinio-Arrhenatheretea, Nt: (!,872);

EuphorbiaceaeEuphorbia amygdaloides L.: Ch, E-

M; U3T3,5R4, Querco-Fagetea, Nt.: (!, 872,920, HD, HF, HK);

Euphorbia serrulata Thuill.: Th, E;U4T3R4, Alno-Padion, Calystegion,Senecion fluviatilis, Nt: (!, 391, 872);

Mercurialis perennis L.: H(G), E;U3,5T3R4, Fagetalia silvaticae, Nt: (!, 920,HD, HF, HK);

PolygalaceaePolygala vulgaris L. ssp vulgaris: H-

Ch, Eua; U3T3R3, Arrhenatheretalia,Nardetalia, Nt: (!, 640, 722, 854, 872, HF,HFA, HK, HSB, HU);

AceraceaeAcer campestre L.: Mph-mPh, E;

U2,5T3R3, Querco-Fagetea, Nt: (!, 640,660, 872);

BalsaminaceaeImpatiens noli-tangere L.: Th, Eua;

U4T3R4, Alno-Padion, Nt: (!, 872, HF);

CelastraceaeEuonymus europaea L.: mPh, E;

U3T3R3, Prunetalia, Querco-Fagetea, Nt: (!,739, 872, 918, HF, HU); f intermedia(Gaud.) Borza: (!, 872);

RhamnaceaeFrangula alnus Mill.: mPh, Eua;

U4T3R3, Alno-Padion, Querco-Fagetea, Nt:(!, 119, 523, 640, 722, 854, 872, 891,HDRG, HF);

Page 67: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Şuvara Saşilor-Tălmaciu Natural Reservation flora and vegetation; 61/78 pp. - 67 -

TiliaceaeTilia cordata Mill.: MPh, E;

U3T3R3, Carpinion betuli, Nt: (!, 739, 872);Tilia platyphyllos Scop.: MPh, Ec;

U2,5T3R4, Querco-Fagetea, Nt: (!, 391,739, 872);

Tilia tomentosa Mnch.: MPh, B;U2,5T3,5R3, Quercion ronbori-petraeae,Nt.: (!, 872);

HypericaceaeHypericum maculatum Cr.: H, Eua;

U4T3R2, Molinion coeruleae, Nardetalia,Nt: (!, 640, 722);

Hypericum perforatum L.: H, Eua;U3T3R0, Origanetalia, Nt: (!, 391, 714,854, 872); var angustifolium DC.: (!, 872,HSB);

ViolaceaeViola alba Bess.: H, Ec-M; U3T4R4,

Querco-Fagetea, Nt: (!, 824, 872, HSB);Viola canina L.: H, Eua; U2,5T0R2,

Molinio-Arrhenatheretea, Molinioncoeruleae, Nt: (!, 872, HSB);

Viola persicifolia Schreb.: H, Eua;U4,5T3R3,5, Molinietalia, Molinioncoeruleae, Nt: (!, 1, 722, 739, 854, 872,HSB);

CistaceaeHelianthemum nummularium (L.)

Mill. ssp nummularium: Ch-H, Ec-M;U2T3R4, Festucetalia valesiacae, Nt: (!, 1,640, 722, 851, 872, HF, HK, HSB, HU);

CucurbitaceaeBryonia alba L.: H(G), Eua-C;

U3,5T3,5R0, Calystegion, Nt: (!, HK);Echinocystis lobata (Michx.) Torr. et

Gray: Th, Adv; U4T0R4, Calystegion,Senecion fluviatilis, Nt: (!, 821, 824, 872,920);

LythraceaeLythrum salicaria L.: H-Hh, Cosm;

U4T3R0, Alnetea glutinosae, Filipendulo-Petasition, Molinietalia, Phragmitetea,Salicetea purpureae, Nt: (!, 872, 920); fglabrescens (Neilr.) I. Todor: (!, 872);

Peplis portula L.: Th, Atl-M;U4T3R0, Nanocyperion flavescentis, Nt: (!,872, 920, HDRG, HSB);

OnagraceaeCircaea lutetiana L.: G, Eua;

U3,5T3R4, Alno-Padion, Nt: (!, 391, 739,920, HF, HSB);

Epilobium hirsutum L.: H-Hh, Eua-M; U4T3R3, Filipendulo-Petasition,Phragmitetea, Nt: (!, 738, 739, 872);

Epilobium parviflorum (Schreb.)Wither.: H, Eua; U5T3R4,5, Glycerio-Sparganion, Phragmitetea, Nt: (!, 872); fintermedium Rouy et Camus: (!, 872);

CornaceaeCornus sanguinea L.: mPh, Ec;

U3T3R4, Prunetalia, Querco-Fagetea, Nt: (!,739, HF);

ApiaceaeAegopodium podagraria L.: H(G),

Eua; U3,5T3R3, Alno-Padion, Querco-Fagetea, Nt: (!, 640, 872);

Angelica sylvestris L. ssp sylvestris:H, Eua; U4T3R3, Alno-Padion,Molinietalia, Nt: (!, 872, 892); f stipularis(Schur) Thell.: (!, 200, 872);

Anthriscus silvestris (L.) Hoffm.: H,Eua-M; U3T3R4, Alno-Padion,Arrhenatheretalia, Salicetea purpureae, Nt:(!, 391, 872);

Berula erecta (Huds.) Coville: Hh,Cp; U6T3,5R0, Alno-Padion, Glycerio-Sparganion, Magnocaricion elatae, Nt: (!,872, HB, HU);

Carum carvi L.: TH, Eua;U3,5T3R3, Agrostion stoloniferae,Arrhenatheretalia, Nt: (!, 872, HB);

Chaerophyllum hirsutum L.: H, Ec;U4,5T2R0, Filipendulo-Petasition, Nt: (!,872);

Cnidium dubium (Schkuhr) Thell.:TH-H, Eua; U4,5T4R3,5, Molinioncoeruleae, R: Tălmaciu (HB);

Daucus carota L. ssp carota: TH-H,Eua-M; U2,5T3R0, Arrhenatherion elatioris,Molinio-Arrhenatheretea, Nt: (!, 714, 872);

Page 68: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Drăgulescu- 68 -

Heracleum sphondylium L. sspsphondylium: H, Eua; U3T2,5R0,Arrhenatheretalia, Filipendulo-Petasition,Querco-Fagetea, Nt: (!, 523, 872, 892, HF);

Laserpitium latifolium L.: H, E;U0T0R4, Origanetalia, Querceteapubescenti-petraeae, Nt: (!, 722, 872, HF);var asperum (Cr.) Soy.- Will.: (!, 872,HDRG);

Laserpitium prutenicum L.: H, Ec;U4T3,5R4, Molinion coeruleae, Quercetearobori-petraeae, Nt: (!, 872, HDRG, HSB);var hirtum Wallr.: (!, 872, HDRG);

Peucedanum carvifolia Vill.: H, Ec;U3T3R4, Geranion sanguinei,Mesobromion, Nt (!, 872);

Peucedanum oreoselinum (L.)Mnch.: H, Ec-M; U2,5T3R0, Geranionsanguinei, Quercetea pubescenti-petraeae,Nt: (!, 391, 714, 851, 854, 872, 890, 920,HF, HU);

Peucedanum rochelianum Heuff.:H, D-B; U3T3,5R4, Molinion coeruleae, E:(!, 739, 854, 872, 894, HDRG, HSB);

Selinum carvifolia L.: H, Eua;U3,5T3R3, Molinion coeruleae, Nt: (!, 1,854, 872, 894, 920, HDRG, HSB);

EricaceaeBruckenthalia spiculifolia (Salisb.)

Rchb.: nPh, Carp-B-An; U2,5T2,5R1, 5,Nardetalia, Nt: Tălmaciu (!, 662, 872, HSB);

Calluna vulgaris (L.) Hull.: Ch-nPh,Atl-Ec; U0T0R1, Nardetalia, E: (!, 1, 200,391, 739, 854, 872, 920, HD, HDRG, HF,HS, HSB, HU);

PrimulaceaeLysimachia nummularia L.: Ch, E;

U4T3R0, Alnetea glutinosae, Alno-Padion,Calthion palustris, Filipendulo-Petasition,Molinietalia, Phragmitetea, Plantagineteamajoris, Salicion albae, Nt: (!, 391, 640,854, 872); f longipedunculata (Opiz) Nyar.:(!, 872);

Lysimachia punctata L.: H, P-M;U3,5T3,5R3, Origanetalia, Nt: (!, 738, 739,824, 854, 872, HD);

Lysimachia vulgaris L.: H-Hh, Eua;U5T0R0, Alnetea glutinosae, Molinietalia,Phragmitetea, Salicetea purpureae,

Scheuchzerio-Caricetea nigrae, Nt: (!, 391,640, 739, 854, 872, HF, HSB);

Primula veris L. em. Huds. ssp veris:H, Eua; U3T2R5, Arrhenatheretalia,Querco-Fagetea, Nt: (!, 872, HD);

OleaceaeFraxinus excelsior L.: MPh, E;

U3T3R4, Acerion pseudoplatani, Alno-Padion, Nt: (!, 739);

Ligustrum vulgare L.: mPh, E-M;U2,5T3R3, Carpinion betuli, Quercetaliapubescentis, Querco-Fagetea, Nt: (!, 640,872);

SolanaceaeSolanum dulcamara L.: Ch-nPh,

Eua; U4,5T3R4, Alno-Padion, Phragmition,Nt: (!, 872);

CuscutaceaeCuscuta trifolii Babingt.: Th, Eua;

U0T3R0, Nardetalia, Nt: (!, 854, 872);

GentianaceaeCentaurium erythraea Rafn.: Th,

Eua; U3T3R2, Molinio-Arrhenatheretea, Nt:(!, 391, 714, 739, 872, HBZ, HF, HSB);

Gentiana asclepiadea L.: H, Ec;U4T2R4, Fagion, Origanetalia, Nt: (!, 640,660, 739, 872, 889, 894, HF); f cruciataWartm. et Schlatt.: (!, 872);

Gentiana pneumonanthe L.: H, Eua;U4T3R0, Molinietalia, Molinion coeruleae,Nt: (!, 854, 872, 889, 891, HBZ, HDRG,HU); f latifolia Schaller: (!, 872); f unifloraKuzn.: (!, 872);

MenyanthaceaeMenyanthes trifoliata L.: Hh, Cp;

U5T0R0, Magnocaricion elatae,Scheuchzerio-Caricetalia nigrae, R: (363,722, 824, HF); it was not founded by us.

AsclepiadaceaeVincetoxicum hirundinaria

Medicus: H, E-M; U2T4R4, Geranionsanguinei, Quercetea pubescenti-petraeae,Nt: (!, 391, 640, 872, 920, HSB);

Page 69: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Şuvara Saşilor-Tălmaciu Natural Reservation flora and vegetation; 61/78 pp. - 69 -

RubiaceaeAsperula cynanchica L.: H, P-M;

U2T3,5R4,5, Festuco-Brometea, Nt: (!, 714,738, 739, 851, 872, 920, HK, HSB); varhirtiflora Nyar.: (!, 872);

Cruciata glabra (L.) Ehrend. sspglabra: H, Eua; U3T2R2, Alno-Padion,Quercetea robori-petraeae, Nt: (!, 391, 739,854, 872, HSB);

Cruciata levipes Opiz.: H, Eua;U2,5T3R3, Alno-Padion, Convolvuletalia,Salicion albae, Nt: (!, 739, 872, HF);

Galium aparine L.: Th, Cp;U3T3R3, Convolvuletalia, Nt: (!, 722, 872,892);

Galium boreale L.: H, Eua;U4T2R4, Molinion coeruleae, R: (!, 631,854, 872, HSB); var pseudorubioides Schur:(200, 722, 738);

Galium mollugo L.: H, Eua;U3T0R3, Arrhenatheretalia, Festuco-Brometea, Nt: (!, 854, 872);

Galium palustre L. ssp palustre: H,Cp; U5T3R0, Magnocaricion elatae,Molinietalia, Nt: (!, 854, 872, HSB); fglabrum (Neilr.) Nyar.: (!, 872);

Galium verum L.: H, Eua;U2,5T3,5R0, Origanetalia, Nt: (!, 854, 872,HSB);

ConvolvulaceaeCalystegia sepium (L.) R. Br.: H,

Eua; U4T3R4, Calystegion, Salicion albae,Nt: (!, 739, 872, HF);

Convolvulus arvensis L.: H(G),Cosm; U0T0R0, Chenopodio-Scleranthetea,Nt: (!, 640, 872, 920);

BoraginaceaeMyosotis discolor Pers.: Th, E;

U2T3,5R3, Arrhenatherion, I: (722, HK,HU). It was not founded by us.

Myosotis scorpioides L.: H-Hh, Eua;U5T3R0, Alnetea glutinosae, Calthionpalustris, Molinietalia, Phragmitetea, Nt: (!,854, 872, HSB); var nemorosa (Bess.)Schm.: (!, 872);

Pulmonaria officinalis L. sspofficinalis: H, E; U3,5T3R3, Carpinionbetuli, Nt: (!, 391, 872); f glanduliferaSchur: (!, 872);

Symphytum officinale L. sspofficinale: H, Eua; U4T3R0, Molinietalia,Phragmitetea, Nt: (!, 872);

CallitrichaceaeCallitriche cophocarpa Sendtn.: Hh,

Eua; U6T3R0, Nanocyperion flavescentis,Nt: (!, 872, HDRG); f aquatilis Soo: (!,872);

Callitriche palustris L.: Hh, Cp;U6T3R0, Nanocyperion flavescentis, Nt: (!,824, 872, HSB); f angustifolia (Hoppe)Ţopa: (!, 872, HDRG);

LamiaceaeAjuga genevensis L.: H, Eua-C;

U2,5T3R4, Cynosurion cristati, Festuco-Brometea, Nt: (!, 640, 660, 739, 851, 872,HF); f roseiflora Koch: (!, 872);

Ajuga reptans L.: H-Ch, E;U3,5T0R0, Arrhenatheretalia, Fagetaliasilvaticae, Nt: (!, 391, 872, HSB);

Galeopsis speciosa Mill.: Th, Eua;U3T2R0, Alno-Padion, Nt: (!, 391, 872);

Galeopsis tetrahit L.: Th, Eua;U3T3R0, Chenopodietea, Nt: (!, 872, 920);

Glecoma hederacea L. ssphederacea: H-Ch, Eua; U3T3R0, Alno-Padion, Querco-Fagetea, Trifolion medii,Nt: (!, 872, 920);

Lamium album L.: H, Eua;U3T3R0, Alliarion petiolatae, Arctionlappae, Nt: (!, 872);

Lamium maculatum L. sspmaculatum: H-Ch, E; U3,5T0R4, Alno-Padion, Carpinion betuli, Nt: (!, 872);

Lycopus europaeus L.: Hh, Eua;U5T3R0, Phragmitetea, Salicetea purpureae,Nt: (!, 872);

Melittis melissophyllum L.: H, Ec-M; U2,5T3R5, Quercetea pubescenti-petraeae, Nt: (!, 1, 739, 872, HSB);

Mentha aquatica L.: Hh-H, Eua;U5T3R0, Alnetea glutinosae, Molinietalia,Phragmitetea, Salicion albae, Nt: (!, 872);

Mentha arvensis L. ssp arvensis:H(G), Cp; U4T3R0, Calthion palustris,Molinietalia, Phragmitetea, Nt: (!, 872);

Page 70: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Drăgulescu- 70 -

Mentha longifolia (L.) Nathh. ssplongifolia: H(G), Eua; U4,5T3R0,Filipendulo-Petasition, Glycerio-Sparganion, Molinietalia, Nt: (!, 872, 920);ssp incana (Willd.) Guşul.: (!, 872);

Nepeta nuda L.: H-Ch, Eua-C;U2T3R0, Aceri-Quercion, Festucionrupicolae, Nt: (!, 739, 872, HF);

Origanum vulgare L. ssp vulgare:H, Eua-M; U2,5T3R3, Origanetalia, Nt: (!,HBZ, HF);

Prunella vulgaris L.: H, Cp;U3T3R0, Alnetea glutinosae, Plantagineteamajoris, Querco-Fagetea, Nt: (!, 391, 854,872, HSB);

Scutellaria galericulata L.: H, Cp;U4T3R4, Magnocaricion elatae,Molinietalia, Phragmitetea, Nt: (!, 872,HSB);

Stachys officinalis (L.) Trevisan: H,Eua; U3T3R0, Molinion coeruleae,Nardetalia, Nt: (!, 119, 391, 518, 854, 872);

Stachys palustris L.: H(G), Cp;U4T3R4, Agrostion stoloniferae, Alneteaglutinosae, Filipendulo-Petasition,Phragmitetea, Nt: (!, 872);

Stachys sylvatica L.: H, Eua;U3,5T0R0, Alno-Padion, Fagetaliasilvaticae, Filipendulo-Petasition, Nt: (!,640, 872, HF, HSB);

Thymus pulegioides L. ssppulegioides: Ch, Ec; U2,5T3R3, Festuco-Brometea, Cynosurion, Nt: (!, 391, 714,854, 872, HSB);

ScrophulariaceaeDigitalis grandiflora Mill.: H, E;

U3T3R3, Carpinion betuli, Fagion,Geranion sanguinei, Nt: (!, 640, 660, 739,872, HF, HK, HL, HU);

Euphrasia rostkoviana Hayne ssp.rostkoviana : Th, Ec; U3T3R3, Molinio-Arrhenatrhertea, Nt: (!, 854, 872);

Euphrasia stricta Host ssp stricta:Th, Ec; U3T3R0, Arrhenatheretalia,Festuco-Brometea, Nardetalia, Nt: (!, 714,872, 920);

Gratiola officinalis L.: H, Eua;U4,5T3R4, Magnocaricion elatae, Molinioncoeruleae, Phragmitetea, Nt: (!, 722, 738,854, 872, HD, HDRG);

Melampyrum bihariense Kern.: Th,D-B; U2,5T3R3, Carpinion betuli, Nt: (!,391);

Rhinanthus rumelicus Velen. ssprumelicus: Th, D-B-Ana; U3T4R0,Arrhenatheretalia, Molinion, Nt: (!, 1, 872);

Rhinanthus serotinus (Schonh.)Oborny: Th, Eua; U0T0R0, Molinietalia, Nt:(!, 854);

Verbascum nigrum L. ssp. nigrum:TH-H, Eua; U2T3R4, Quercetea pubescenti-petraeae, Nt: (!, 872);

Veronica anagallis-aquatica L.: H-Hh, Cp; U5T0R4, Glycerio-Sparganion,Phragmitetea, Nt: (!, 872);

Veronica arvensis L.: Th, Eua;U2,5T3R3, Arrhenatheretalia, Nt: (!, 872,HSB);

Veronica beccabunga L.: Hh-H, Eua;U5T3R4, Glycerio-Sparganion, Salicetaliapurpureae, Nt: (!, 872);

Veronica chamaedrys L.: H-Ch,Eua; U3T0R0, Arrhenatheretalia, Trifolionmedii, Nt: (!, 391, 872, HDRG);

Veronica officinalis L.: Ch, Eua;U2T2R2, Nardetalia, Veronico officinalis-Quercion, Nt: (!, 391, 872);

Veronica scutellata L.: H-Hh, Cp;U4T3R4, Agrostion stoloniferae, Caricioncanescenti-nigrae, Magnocaricion elatae, Nt:(!, 1, 722, 738, 872);

Veronica serpyllifolia L. sspserpyllifolia: H, Cosm; U3T3R0, Agrostionstoloniferae, Arrhenatheretalia, Cynosurioncristati, Nt: (!, 872);

Veronica urticifolia Jacq.: H, Ec;U3T2,5R4, Fagion, Nt: (!, 722, 872, HF);

PlantaginaceaePlantago lanceolata L. ssp

lanceolata: H, Eua; U0T0R0, Molinio-Arrhenatheretea, Nt: (!, 640, 714, 854, 872,HDRG, HSB);

Plantago major L. ssp major: H,Eua; U3T0R0, Plantaginetea majoris, Nt: (!,640, 872, 920, HD, HF);

Plantago media L. ssp media: H,Eua; U2,5T0R4, Molinio-Arrhenatheretea,Nt: (!, 872);

Page 71: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Şuvara Saşilor-Tălmaciu Natural Reservation flora and vegetation; 61/78 pp. - 71 -

CaprifoliaceaeSambucus nigra L.: mPh, E;

U3T3R3, Alno-Padion, Nt: (!, 872, HBZ);Viburnum opulus L.: mPh, Cp;

U4T3R4, Alnetea glutinosae, Alno-Padion,Nt: (!, 640, 739, 891);

AdoxaceaeAdoxa moschatellina L.: H, Cp;

U4T3R3,5, Alno-Padion, Nt: (!, 872, HD,HK, HU);

ValerianaceaeValeriana officinalis L.: H, Eua;

U4T3R4, Alnetea glutinosae, Alno-Padion,Filipendulo-Petasition, Magnocaricionelatae, Molinietalia, Nt: (!, 640, 872, HF);

DipsacaceaeKnautia arvensis Coult. ssp

arvensis: H, E; U2,5T3R0,Arrhenatheretalia, Nt: (!, 200, 854, 872, HF,HSB, HU);

Succisa pratensis Mnch.: H, Eua;U4T3R0, Molinietalia, Molinion coeruleae,Nt: (!, 1, 391, 722, 854, 872, 920);

CampanulaceaeCampanula cervicaria L.: H, Eua-C;

U2,5T3R3, Geranion sanguinei, Nt: (!, 854,872, HF, HSB);

Campanula glomerata L. sspglomerata: H, Eua; U2,5T3R4,Arrhenatherion elatioris, Origanetalia,Quercetea robori-petraeae, Nt: (!, 739, 872);f aberrans (Nyar.) Ghişa: (!, 872);

Campanula patula L.: TH, E;U3T2,5R3, Arrhenatheretalia, Nt: (!, 119,391, 523, 640, 714, 872, HF);

AsteraceaeAchillea distans W. et K. ssp

distans: H, Ec; U2,5T3R4, Trifolion medii,Nt: (!, 391, 722, 739, 872, 920, HF, HSB);

Achillea millefolium L. ssp.millefolium: H, Eua; U3T0T0, Molinio-Arrhenatheretea, Cynosurion, Agrostionstoloniferae, Molinion, Nt: (!, 200, 640, 714,739, 854, 872, 920, HF, HSB, HU);

Achillea ptarmica L.: H, Eua;U4,5T0R2,5, Molinietalia, V: (!, 1, 662,722, 738, 854, 872, HB, HF, HSB);

Bellis perennis L.: H, E; U3T2,5R0,Cynosurion cristati, Molinio-Arrhenatheretea, Nt: (!, 640, 872, HK, HU);

Bidens tripartita L.: Th, Eua;U4,5T3R0, Bidentea, Nt: (!, 872, HSB); fminor (Wimm. et Grab.) Nyar.: (!, 872);

Centaurea x erdneri Wagn: (!, 872)Centaurea jacea L. ssp jacea: H,

Eua; U3T0R0, Molinio-Arrhenatheretea, Nt:(!, 391, 739, 854, 872, HF, HSB);

Centaurea phrygia L.: H, Ec;U3T2,5R3, Arrhenatheretalia, Nt: (!, 854,872, HDRG);

Cichorium intybus L.: TH-H, Eua;U2,5T3,5R4,5, Agrostion stoloniferae,Arrhenatheretalia, Polygonion avicularis,Nt: (!, 872, HSB);

Cirsium canum (L.) All.: G, Eua-C;U4,5T3R4,5, Alno-Padion, Magnocaricionelatae, Molinietalia, Nt: (!, 854, 872, 920,HF);

Cirsium oleraceum (L.) Scop.: H,Eua; U4T3R4, Alno-Padion, Calthionpalustris, Filipendulo-Petasition,Molinietalia, Nt: (!, 872);

Cirsium rivulare (Jacq.) Link.: H,Ec; U4T3,5R0, Alnetea glutinosae, Calthionpalustris, Magnocaricion elatae,Molinietalia, Nt: (!, 872, HDRG, HF);

Crepis biennis L.: TH, E; U3T3R4,Agrostion stoloniferae, Arrhenatheretalia,Nt: (!, 872);

Echinops exaltatus Schrader: H, E;U2T0R4, Alliarion petiolatae, Alno-Padion,Nt: (!, 1, 200, 722, 872, HF);

Erigeron annuus (L.) Pers. sspannuus: Th-TH, Adv; U4T0R4, Alno-Padion, Calystegion, Salicetea purpureae,Nt: (!, 714, 821, 854, 872); var caerulescensBorb.: Tălmaciu (!, 872);

Eupatorium cannabinum L.: H, Eua;U4T3R0, Alnion glutinosae, Filipendulo-Petasition, Phragmitetea, Salicetaliapurpureae, Nt: (!, 640, 872, 893, HF);

Gnaphalium uliginosum L.: Th, Eua;U5T3R4, Nanocyperetalia, Nt: (!, 872, 920);

Page 72: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Drăgulescu- 72 -

Hieracium levigatum Willd. ssplevigatum: H, Eua; U3T3R2, Nardetalia,Querco-Fagetea, Nt: (!, 200, 722, 872);

Hieracium pilosella L.: H, E-M;U2,5T0R0, Nardetalia, Nt: (!, 391, 714, 872,HKA, HU);

Hieracium umbellatum L.: H, Cp;U2,5T3R2,5, Nardetalia, Origanetalia, Nt:(!, 200, 391, 854, 872, 920, HF, HSB, HU);

Hypochoeris maculata L.: H, Eua-C;U0T3,5R3,5, Cynosurion cristati,Quercetalia pubescentis, Nt: (!, HF);

Hypochoeris radicata L.: H, E;U3T3R2,5, Cynosurion cristati, Nardetalia,Nt: (!, 872, 892, HDRG, HF, HSB); varhispida Peterm: (!, 872);

Inula britanica L.: TH-H, Eua-M;U3T3R0, Molinietalia, Plantagineteamajoris, Nt: (!, 631, 872); var rupestris Gris.et Schenk.: (1, 200);

Inula hirta L.: H, Eua-C; U2T4R5,Geranion sanguinei, Quercetaliapubescentis, Nt: (!, 739, HF, HSB, HU); varoblongifolia Beck: (!, 739, 872, 920, HSB);

Lapsana communis L.: Th-TH, Eua-M; U2,5T3R3, Alliarion petiolatae, Querco-Fagetea, Nt: (!, 872, HF);

Leontodon autumnalis l. sspautumnalis: H, Eua; U3T0R0, Cynosurioncristati, Molinio-Arrhenatheretea,Plantaginetalia majoris, Nt: (!, 391, 854,920, HSB); f pinnatifidus (Opiz) Csong.: (!,872, HDRG);

Leontodon hispidus L. ssp hispidus:H, Eua; U2,5T0R0, Mesobromion, Molinio-Arrhenatheretea, Nt: (!, 200, 739, 872, HF,HU);

Leucanthemum vulgare Lam. sspvulgare: H, Eua; U3T0R0, Molinio-Arrhenatheretea, Nt: (!, 640, 739, 851, 854,872, HF, HK, HSB, HU); f ramulosumNyar.: (!, 872);

Petasites hybridus (L.) G. M. Sch.:H, Eua; U5T3R3, Alno-Padion, Filipendulo-Petasition, Nt: (!, 739, 872, HF);

Pulicaria dysenterica (L.) Gaertn.:H, E-M; U4T3,5R0, Agropyro-Rumicion,Molinietalia, Nt: (!, 872, 920, HSB);

Rudbeckia laciniata L.: H, Adv;U4,5T3,5R4, Calystegion, Senecionfluviatilis, Nt: (!, 824, 872, 889);

Senecio jacobea L.: H, Eua;U2,5T3R3, Arrhenatheretalia, Querceteapubescenti-petraeae, Nt: (!, 854, 872, HSB);

Senecio nemorensis L. sspnemorensis: H, Eua; U3,5T2,5R3,Epilobietea angustifolii, Nt: (!, 200, 872,HSB); ssp fuchsii (Gmel.) Celak.: (!, 872,HSB);

Serratula tinctoria L.: H, Eua;U3,5T3R0, Molinion coeruleae, Nt: (!, 391,854, 872); var lancifolia S. F. Gray: (!, 872,HDRG);

Taraxacum officinale Weber: H,Eua; U3T0R0, Arrhenatheretalia,Plantaginetea majoris, Nt: (!, 640, 872);

Telekia speciosa (Schreb.) Baumg.:H, Carp-B-Cau; U4T2R0, Alnionglutinosae-incanae, Filipendulo-Petasition,Nt: (!, 119, 523, 872);

Tragopogon orientalis L.: TH-H,Eua; U3T3R4, Agrostion stoloniferae,Arrhenatheretalia, Nt: (!, 739, 872, HF); varrevolutus (Schweigg) Bisch.: (!, 872);

Tussilago farfara L.: G-H, Eua;U3,5T0R4,5, Filipendulo-Petasition,Tussilaginion, Nt: (!, 119, 872, HU);

AlismataceaeAlisma plantago-aquatica L.: Hh,

Cosm; U6T0R0, Phragmitetea, Nt: (!, 872);

LiliaceaeAnthericum ramosum L.: G, Ec-M;

U2,5T3,5R4, Festuco-Brometea, Nt: (!, 1,631, 640, 714, 722, 738, 851, 872, 920, HF,HU);

Colchicum autumnale L.: G, E-M;U3,5T3R4, Molinietalia, Nt: (!, 872);

Erythronium dens-canis L.: G, Eua;U3,5T3,5R4, Carpinion betuli, Quercetearobori-petraeae, Nt: (!, 119, 523, 739, 872,HD, HU); ssp niveum (Baumg.) Buia etPăun: (!, 872); f roseum Baumg.: (!,HDRG);

Gagea lutea (L.) Ker.- Gawl.: G,Eua; U3,5T0R3, Alno-Padion, Nt: (!, 872,HD, HDRG, HF, HK, HU);

Page 73: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Şuvara Saşilor-Tălmaciu Natural Reservation flora and vegetation; 61/78 pp. - 73 -

Polygonatum multiflorum (L.) All.:G, E; U3T3R3, Querco-Fagetea, Nt: (!, 872,893);

Scilla bifolia L.: G, E; U3,5T3R4,Alno-Padion, Carpinion betuli, Querco-Fagetea, Nt: (!, 739, 872, HB, HD, HDRG,HK); var praecox (Willd.) Masters: (!, 1,200, HB, HDRG, HF, HU); f albifloraSchur: (!, HDRG, HU);

Tofieldia calyculata (L.) Wahlbg.:G, Alp-Carp; U5,5T0R4,5, Cariciondavallianae, Tofieldietalia, R: Tălmaciu(200, 722); was not founded by us.

Veratrum album L. ssp album: G,Eua; U4T2,5R4, Molinion coeruleae, Nt: (!,854, 872, 898);

AmaryllidaceaeNarcissus angustifolius Curt.: G,

Ec; U3,5T2,5R0, Molinietalia, V: (!, 1, 722,817, 854, 872, HDRG, HF, HSB);

IridaceaeCrocus banaticus Gay.: G, D-B;

U3T3R0, Carpinion betuli, V: (!, 854, 872,HDRG, HF, HSB);

Gladiolus imbricatus L.: G, Eua;U3,5T3R3, Alno-Padion, Molinion, V: (!,722, 738, 854, 872, HDRG, HF);

Iris ruthenica Ker-Gawl.: G, Eua-C;U2T2,5R0, Festucetalia valesiacae, Nt: (!, 1,722, 739, 851, 872, HDRG, HF, HSB);

Iris sibirica L.: G, Eua-C;U4,5T3,5R4, Molinion coeruleae, R: (!, 854,872, 894, HDRG, HF, HU); f. albiflora n. f.(!).

JuncaceaeJuncus articulatus L.: H, Cp;

U5T2R0, Calthion palustris, Nanocyperionflavescentis, Nt: (!, 872, 920, HD, HDRG,HSB);

Juncus atratus Krock.: H, Eua-C;U4T3R4, Agrostion stoloniferae, Nt: (!, 854,872, HDRG, HSB);

Juncus conglomeratus L.: H, Eua;U4,5T3R3, Calthion palustris, Molinietalia,Molinion coeruleae, Scheuchzerio-Caricetalia nigrae, Nt.: (!, 854, 872);

Juncus x diffusus Hoppe : (1, 152,200, 722);

Juncus effusus L.: H, Cosm;U4,5T3R3, Alnetea glutinosae, Calthionpalustris, Molinietalia, Plantagineteamajoris, Nt: (!, 391, 854, 872, HD, HSB);

Juncus inflexus L.: H, Eua-M;U4T3,5R4, Agropyro-Rumicion, Nt: (!,872);

Juncus subnodulosus Schrank: Hh,E; U4,5T3,5R0, Calthion palustris,Eriophorion latifolii, Molinietalia, R: (1,200, 722);

Juncus tenuis Willd.: H, Adv;U3,5T3R4, Polygonion avicularis, Nt: (!,872, 920, HD, HSB);

Luzula campestris (L.) Lam. et DC.:H, E; U3T0R3, Arrhenatheretalia, Molinio-Arrhenatheretea, Nardetalia, Nt: (!, 854,872, HD, HDRG, HSB, HU);

Luzula luzuloides (Lam.) Dandy etWillm. ssp luzuloides: H, E; U2,5T2,5R2,Fagetalia silvaticae, Nt: (!, 1, 391, 640, 660,739, 872, HF, HK, HSB);

PoaceaeAgropyron repens (L.) P. Beauv.: G,

Eua; U0T0R0, Agropyro-Rumicion,Molinio-Arrhenatheretea, Nt: (!, 714, 872,920);

Agrostis canina L. ssp canina: H,Eua; U3,5T3R3, Caricion canescenti-nigrae,Molinio-Arrhenatheretea, Nt.: (722, 733);ssp transsilvanica (Schur) A. et G.: (1, 200);

Agrostis capillaris L.: H, Cp;U0T0R0, Molinio-Arrhenatheretea, Nt: (!,391, 714, 733, 739, 854, 872, HSB);

Agrostis stolonifera L.: H, Cp;U4T0R0, Agrostion stoloniferae, Alno-Padion, Magnocaricion elatae, Molinioncoeruleae, Nt: (!, 854, 872, 920, HSB);

Alopecurus aequalis Sobol.: H, Cp;U5T3R4, Agrostion stoloniferae,Nanocyperion flavescentis, Nt: (!, 872, 920,HBZ, HSB);

Alopecurus pratensis L. ssppratensis: H, Eua; U4T3R0, Agrostionstoloniferae, Calthion palustris, Filipendulo-Petasition, Molinio-Arrhenatheretea, Nt: (!,872, 893);

Page 74: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Drăgulescu- 74 -

Anthoxanthum odoratum L.: H,Eua; U0T0R0, Molinio-Arrhenatheretea,Nardetalia, Nt: (!, 391, 739, 854, 872, 920,HD, HK, HSB, HU);

Arrhenatherum elatius (L.) J. et C.Presl.: H, E; U3T3R4, Agrostionstoloniferae, Arrhenatherion elatioris, Nt: (!,872, 920, HKA);

Briza media L.: H, Eua; U0T3R0,Arrhenatheretalia, Molinietalia, Nt: (!, 640,854, 872, HK);

Bromus commutatus Schrad.: Th, E;U0T3R0, Agrostion stoloniferae,Arrhenatheretalia, Molinion coeruleae, Nt:(!, 872); var apricorum Simk.: (!, 872);

Bromus hordeaceus L.: Th, Eua;U0T3R0, Arrhenatherion elatioris, Nt: (!,872, HF, HU);

Cynosurus cristatus L.: H, E;U3T3R3, Arrhenatheretalia, Cynosurioncristati, Nt: (!, 854, 872);

Dactylis glomerata L.: H, Eua-M;U3T0R4, Molinio-Arrhenatheretea, Nt: (!,872, HF, HU);

Danthonia decumbens (L.) DC.: H,Eua; U0T3R2, Molinio-Arrhenatheretea,Nardetalia, Nt: (!, 391, 714, 854, 872, HS,HSB);

Deschampsia caespitosa (L.) P.Beauv.: H, Cosm; U4T0R0, Molinietalia,Phragmitetalia, Nt: (!, 854, 872);

Festuca arundinacea Schreb. ssparundinacea: H, Ec; U4T3R4, Agrostionstoloniferae, Molinietalia, Nt: (!, 854, HSB);

Festuca gigantea (L.) Vill.: H, Eua;U4T3R2,5, Alno-Padion, Nt: (!, 391, 872,HSB);

Festuca pratensis Huds. ssppratensis: H, Eua; U3,5T0R0, Agrostionstoloniferae, Molinio-Arrhenatheretea, Nt:(!, 714, 854, 872, 893, HF, HU); varsubspicata (G. F. W. Meyer) A. et G.: (!,872);

Festuca rubra L. ssp rubra: H, Cp;U3T0R0, Cynosurion cristati, Molinio-Arrhenatheretea, Nardetalia, Nt: (!, 391,722, 854, 872, 893, HSB);

Glyceria plicata Fries: Hh, Eua;U6T3R4,5, Glycerio-Sparganion, Nt: (!,872);

Holcus lanatus L.: H, Eua;U3,5T3R0, Molinio-Arrhenatheretea, Nt: (!,391, 714, 854, 872, HSB); var coloratusRchb.: Tălmaciu (!, 872);

Lolium perenne L.: H, Eua-M;U2,5T4R4,5, Cynosurion cristati,Plantaginetalia majoris, Nt: (!, 872, 920);

Molinia coerulea (L.) Mnch. sspcoerulea: H, Eua; U4T3R0, Molinioncoeruleae, Nt: (!, 738, 739, 854, 872, 893,920, HD, HDRG, HF, HSB);

Nardus stricta L.: H, E; U0T0R1,5,Molinio-Arrhenatheretea, Nardetalia, Nt: (!,391, 854, 872, HF, HU);

Phleum pratense L. ssp pratense: H,Eua; U3,5T0R0, Cynosurion cristati,Molinio-Arrhenatheretea, Nt: (!, 739, 872,893, HF);

Phragmites australis (Cav.) Trin. etSteud.: Hh, Cosm; U6T0R4, Phragmitionaustralis, Nt: (!, 872, 920, HF);

Poa annua L.: Th-TH, Cosm;U3,5T0R0, Polygonion avicularis, Nt: (!,312, 872, 920);

Poa nemoralis L.: H, Eua; U3T3R0,Querco-Fagetea, Nt: (!, 200, 322, 391, 739,872, HDRG, HF, HK, HU);

Poa pratensis L. ssp pratensis: H,Cp; U3T0R0, Molinietalia, Nt: (!, 872); sspangustifolia (L.) Hay.: (!, 872);

Poa trivialis L.: H, Eua; U4T0R0,Calthion palustris, Filipendulo-Petasition,Molinio-Arrhenatheretea, Nt: (!, 872);

Trisetum flavescens (L.) P. Beauv.:H, Ec; U0T2R0, Arrhenatherion elatioris,Triseto-Polygonion, Nt: (!, 872);

LemnaceaeLemna minor L.: Hh, Cosm;

U6T0R0, Lemnion minoris, Nt: (!, 872);

CyperaceaeCarex acutiformis Ehrh.: Hh, Eua;

U6T3R4, Caricion gracilis, Magnocaricionelatae, Nt: (!, 872);

Carex brizoides L.: H(G), Ec;U3,5T3R2, Alnetea glutinosae, Alno-Padion, Nt.: (!, 739, 872, HF);

Page 75: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Şuvara Saşilor-Tălmaciu Natural Reservation flora and vegetation; 61/78 pp. - 75 -

Carex caryophyllea Latour.: G, Eua;U2T2,5R0, Arrhenatheretalia, Festuco-Brometea, Nt: (!, 200, 739, 854, 872, HB,HDRG, HF, HSB);

Carex distans L.: H, E; U4T3R4,Agrostion stoloniferae, Eriophorion latifolii,Molinion coeruleae, Nt: (!, 872, 920, HF,HU);

Carex echinata Murray: H, Cp;U5T2R1, Calthion palustris, Caricioncanescenti-nigrae, Magnocaricion elatae, Nt:(!, 1, 854, 872, 920, HDRG, HF, HSB, HU);

Carex flava L.: H, Cp; U4,5T3R0,Calthion palustris, Caricetalia davallianae,Eriophorion latifolii, Tofieldietalia, Nt: (!,854, 872, HF, HSB, HU);

Carex hirta L.: G, E-M; U0T3R0,Agropyro-Rumicion, Magnocaricion elatae,Plantaginetea majoris, Nt: (!, 872, HD);

Carex nigra (L.) Reichard ssp nigra:G, Cp; U4T3R2, Calthion palustris,Caricetalia davallianae, Caricion canescenti-nigrae, Nt: (!, 824, 854, 872, HDRG, HSB);var recta (Fleischer) A. et G.: (!, 872);

Carex ovalis Good.: H, Cp;U4T2,5R3, Caricion canescenti-nigrae,Molinietalia, Nardetalia, Nt: (!, 854, 872,HD, HSB); f longibracteata (Peterm.) Şerb.et Nyar.: (!, 872);

Carex pallescens L.: H, Cp;U3,5T3R3, Molinio-Arrhenatheretea,Nardetalia, Nt: (!, 739, 854, 872, HB, HF,HKA, HSB);

Carex remota Grufb.: H, E;U4,5T3R3, Alno-Padion, Nt: (!, 872, 920,HSB);

Carex riparia Curt.: Hh, Eua-M;U5T4R4, Caricion gracilis, Magnocaricionelatae, Nt: (!, 872, HD);

Carex tomentosa L.: G, Eua-M;U3T3R0, Molinio-Arrhenatheretea,Quercetea pubescenti-petraeae, Nt: (!, 872);

Carex umbrosa Host: H, Ec;U3T3R3, Alnetea glutinosae, Alno-Padion,Nardetalia, Nt: (!, 872, HF, HK, HSB, HU);

Carex vesicaria L.: Hh, Cp;U6T3R4, Caricion gracilis, Magnocaricionelatae, Nt: (!, 872, HDRG);

Carex vulpina L.: H-Hh, Eua-M;U4T3R4, Agropyro-Rumicion, Cariciongracilis, Magnocaricion elatae, Phragmitionaustralis, Nt: (!, 872, HD);

Eleocharis ovata (Roth) Roem. etSchult.: Th, Cp; U4,5T3R0, Nanocyperionflavescentis, V: (!, 824, 872, HDRG, HSB);

Eleocharis palustris (L.) R. Br.:Hh-G, Cosm; U5T0R4, Molinietalia,Nanocyperetalia, Phragmitetea, Nt: (!, 872,HD);

Eriophorum latifolium Hoppe: H,Eua; U5T0R4,5, Eriophorion latifolii,Scheuchzerio-Caricetalia nigrae, Nt: (!, 872,HD);

Pycreus flavescens (L.) Rchb.: Th,Cosm; U4,5T0R4, Nanocyperionflavescentis, Nt: (!, 872, HF, HSB);

Scirpus sylvaticus L.: Hh-G, Cp;U4,5T3R0, Alno-Padion, Calthion palustris,Molinietalia, Phragmitetea, Nt: (!, 872);

OrchidaceaeCephalanthera rubra (L.) L. C.

Rich.: G, E; U2T3R4,5, Querco-Fagetea, R:(!, 824, 854, HDRG, HSB);

Dactylorhiza fuchsii (Druce) Soo: G,Eua; U3T0R0, Molinietalia, R: varhunyadensis Borsos et Soo: (1);

Dactylorhiza maculata (L.) Soo sspmaculata: G, Eua; U0T0R0, Caricioncanescenti-nigrae, Molinietalia, Sphagnionfusci, Nt: (!, 872, HDRG, HF); ssptranssilvanica (Schur) Soo: (!, 1, 200, 304,854, 872, HDRG, HF, HSB, HU);

Dactylorhiza majalis (Rchb.) P. F.Hunt et Summerh.: G, Ec; U4,5T3R4,Molinietalia, R: (HF);

Dactylorhiza sambucina (L.) Soo:G, Ec; U3T2R3, Nardetalia, Querco-Fagetea, Nt: (!, 872);

Epipactis palustris (L.) Cr.: G, Eua;U4,5T3R4,5, Caricetalia davallianae,Eriophorion latifolii, Molinion coeruleae,Nt: (HF, HU);

Gymnadenia conopsea (L.) R. Br.:G, Eua; U4T0R4,5, Molinietalia, Nt: (!, 872,HF, HSB);

Listera ovata (L.) R. Br.: G, Eua;U3,5T0R4, Alno-Padion, Nt: (!, 640, 722,739, 872, HF);

Page 76: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Drăgulescu- 76 -

Orchis coryophora L. sspcoryophora: G, E; U4T0R4,5,Arrhenatherion elatioris, Molinioncoeruleae, Nt: (!, 640, 872, HD, HK);

Orchis incarnata L.: G, Eua;U4,5T0R4, Calthion palustris, Molinioncoeruleae, R: (!, 1, 854, 872); varhaematodes (Rchb.) Paucă et Beldie: (!, 872,HDRG); f macrophylla (Schur) Borza: (!,872);

Orchis laxiflora Lam. ssp elegans(Heuff.) Soo: G, Eua; U4T3R0, Calthionpalustris, Eriophorion latifolii,Magnocaricion elatae, Molinietalia, R: (!,854, 872, HD);

Orchis morio L.: G, Ec; U2,5T3R4,Arrhenatheretalia, Mesobromion, Nt: (!,872, HD, HDRG, HF, HU);

Orchis ustulata L.: G, E; U2,5T3R0,Arrhenatheretalia, Mesobromion, R: (!, 722,739, 872, HF);

Platanthera bifolia (L.) L. C. Rich.:G, Eua; U3,5T0R3, Molinietalia, Querco-Fagetea, Nt: (!, 391, 640, 854, 872, HF,HU);

Spiranthes spiralis (L.) Chevall.: G,Atl-M; U2T3,5R0, Molinion coeruleae, R:(!, 872, 911, HDRG);

VEGETAL ASSOCIATIONSLemnetum minoris Oberd. ex Müller et Görs

1960Scirpo-Phragmitetum Koch 1926 incl.

rudbeckiosum (Schneider-Binder1975) Drg. 1995

Eleocharitetum palustris Ubrizsy 1948Carici remotae-Calthaetum laetae Coldea

(1972) 1978Caricetum echinatae-Sphagnetum (Balázs

1942) Soó 1955 with caricetosumnigrae (Balázs 1942) Soó 1964

Festuco rubrae-Agrostietum capillarisHorvat 1951

Peucedano rocheliani- Molinietumcoeruleae Boşcaiu 1965

Holcetum lanati Issler 1936 em. Passarge1964

Filipendulo-Geranietum palustris Koch1926

Agropyro-Convolvuletum arvensis Felföldy1943

Eupatorietum cannabini Tx. 1937Juncetum tenuis Schwik 1944Poëtum annuae Gams 1927Juncetum effusi (Eggler 1933) Soó 1949Salicetum albae-fragilis Issler 1926 em. Soó

1957Salici cinereae-Sphagnetum recurvi

(Zolyomi 1931) Soó 1954Coryletum avellanae Soó 1927Aegopodio- Alnetum glutinosae

Karpati et Jurko 1961

HERBARIUMSHB Herbarium J. Barth - Natural

History Museum of Sibiu/BrukenthalNational Museum

HBZ Herbarium J. Bielz, E. Krauss,G. Hergotta, V. Klotz - Natural HistoryMuseum of Sibiu

HD Herbarium M. I. Doltu - NaturalHistory Museum of Sibiu

HDRG Herbarium C. Drăgulescu -Natural History Museum of Sibiu andBotanical Garden of Cluj-Napoca

HF Herbarium M. Fuss - NaturalHistory Museum of Sibiu

HK Herbarium E. Kisch - NaturalHistory Museum of Sibiu

HKA Herbarium G. A. Kayser -Natural History Museum of Sibiu

HSB Herbarium Erika Schneider-Binder - Natural History Museum of Sibiu

HU Herbarium K. Ungar - NaturalHistory Museum of Sibiu.

Page 77: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Şuvara Saşilor-Tălmaciu Natural Reservation flora and vegetation; 61/78 pp. - 77 -

SELECTIVE REFERENCES(with codes from the text)

1. Săvulescu T., (coord.), l952-1976 – FloraRepublicii Populare Române/FloraRepublicii Socialiste România, I-XIII, Ed. Acad. Rom., Bucureşti. (inRomanian)

119. Săvulescu T., 1953 – MonografiaUredinalelor din Republica PopularăRomână, Ed. Acad. Rom., Bucureşti.(in Romanian)

141. Schuller R., 1963 – Itinerarii pentruexcursii şcolare în jurul Sibiului,Natura Ser. Biol., Bucureşti, XV, 3,83-84. (in Romanian)

200. Schur F., 1866 – Enumeratio plantarumTranssilvaniae, Vindobonae.

322. Schneider-Binder E., 1969 –Contribuţii la studiul ClaseiAsplenietea rupestris H. Meier etBr.-Bl. 1934, Contr. Bot. Cluj, 145-156. (in Romanian)

391. Schneider-Binder E., 1973 – Păduriledin depresiunea Sibiului şi dealurilemarginale I, St. şi Com. Muz.Brukenthal Sibiu, şt. nat., 18, 71-108. (in Romanian)

523, 524. Fuss M., 1878 – SystematischeAufzahlungen der in Siebenburgenangegebenen Cryptogamen, Archivd. Ver. f. siebenb. Landeskunde, NF,Braşov, XIV, 2, 421-474, 3, 627-708. (in German)

640. Phleps O. and Henrich C., 1894 –Durchforschung des Zibinsgebietesbei Talmatsch nebsteinemVerzeichnisse der dortgesammelten Pflanzen (KleinereMitteilungen), Verh. u. Mitt. d.siebenb. Ver. f. Naturwiss. zuHermannstadt, LIII, 86-87. (inGerman)

714. Schneider-Binder E., 1970 – Aspectedin flora şi vegetaţia conglomeratelorde la Tălmaciu- Podul Olt (Jud.Sibiu), St. şi com. Muz. BrukenthalSibiu, Şt. nat., 15, 161-186. (inRomanian)

722. Simonkai L., 1886 – Enumeratio floraetranssilvanicae vasculosae critica.

738. Baumgarten J. C. G., 1816 –Enumeratio stirpum Magnotranssilvaniae principatui praeprimisindigenarum in usum nostrarumbotaniphilorum conscripta inqueordinem sexuali- naturalemconcinnata, I-III, Vindobonae (incl.V, 1840 Sibiu auct. M. Fuss).

739. Fuss M., 1866 – Flora TranssilvaniaeExcursoria, Sibiu.

817. Drăgulescu C., 1978 – Originea şicorologia speciei Narcissus poeticusL. s. l., St. şi Com. Muz. BrukenthalSibiu, Şt. Nat., 22, 105-128. (inRomanian)

824. Drăgulescu C., 1980 – Note floristicedin bazinul văii Sadului, St. şi Com.Muz. Brukenthal Sibiu, Şt. Nat., 24,119-130. (in Romanian)

852. Drăgulescu C., 1987 – Die Coenologieder Narzisse (Narcissus poeticus L.ssp. stellaris (Haw.) Dost.) in denKarpaten im Vergleich zu ihrerVergesellschaftung in anderen TeilenEuropas, Tuexenia, NS, 7,Gottingen, 233-243. (in German)

854. Drăgulescu C., 1986 – Molinietele cuPeucedanum rochelianum Heuff. însudul Transilvaniei, St. şi Cerc.Biol., Ser. Biol. Veget. Bucureşti,XXXVIII, 1, 28-37. (in Romanian)

963. Drăgulescu C., 2003, Cormoflorajudeţului Sibiu, Ed.. PelecanusBraşov. (in Romanian)

964. Drăgulescu C., (coord.) – 1996, Ariinaturale protejate în judeţul Sibiu.Ed. Constant Sibiu. (in Romanian)

872. Drăgulescu C., 1995 – Flora şivegetaţia din bazinul Văii Sadului,Ed. Constant Sibiu. (in Romanian)

889. x x x, 1978 – Delectus seminum Hort.Bot. Univ. Cluj.

891. x x x, 1979 – Delectus seminum Hort.Bot. Univ. Cluj.

892 x x x, 1980 – Delectus seminum Hort.Bot. Univ. Cluj.

893. x x x, 1981 – Delectus seminum Hort.Bot. Univ. Cluj.

898. x x x, 1986 – Delectus seminum Hort.Bot. Univ. Cluj.

Page 78: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Drăgulescu- 78 -

918. Negrean G. and Drăgulescu C., 2005 –Mycobiota judeţului Sibiu, Ed.Univ. „Lucian Blaga” din Sibiu. (inRomanian)

920. Schneider-Binder E., 1974 – Flora şivegetaţia Depresiunii Sibiului şi adealurilor marginale, Teză doctoratUniv. „Babeş-Bolyai” Cluj. (inRomanian)

AUTHOR:

1 Constantin DRĂ[email protected]

“Lucian Blaga” University of Sibiu,Faculty of Sciences,

Department of Ecology and Environment Protection,Dr. Ioan. Raţiu Street 5-7, Sibiu,

Sibiu County,Romania,

RO-550012.

Page 79: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 79 -

VEGETATION PATTERNS AND LAND USE SYSTEMSIN A TRADITIONAL CULTURAL LANDSCAPE

- A CASE STUDY FROM THE VILLAGE OF GHEŢARI(TRANSYLVANIA, ROMANIA)

Albert REIF 1, Evelyn RUŞDEA 2, Katja BRINKMANN 3,Georg HARTH 1, Barbara MICHLER 4, Florin PĂCURAR 5

and Ioan ROTAR 5

KEYWORDS: Romania, Transylvania, Apuseni Mountains, vegetation, traditional landuse, cultural landscape.

ABSTRACTThe inhabitants of traditionally used

landscapes have had to adapt their practisesto the natural environment and theprevailing site conditions. The variouscombinations of different sites and humanmanagement formed landscapes rich instructures, plant communities and species.

Within the framework of the BMBF-funded ‘PROIECT APUSENI’, a montanelandscape, its land use systems and futureperspectives were analysed with respect tothe period between 2000 and 2003 (Ruşdeaet al., 2005). The village of Gheţari wasselected as the core study area, located on atransect from the Arieş Valley to the ‘PoianaCălineasa’ high pasture.

Eight semi-natural forestcommunities were found in the Gheţari area,differentiated by soil and mesoclimate. Only31.7% of the forests in the surrounding areahave closed canopies. Logging and woodpasture have opened the canopies, and therecent immigration of ruderal, grassland andforest edge species is characteristic of manystands, particularly near settlements.

On the open land, common herbs andgrasses, species of semi-natural, unfertilisedgrassland, nutrient-demanding species,lowland and subalpine species takeadvantage of the improved light conditionscreated by man and his grazing animals.

Floristic elements adapted toincreased disturbance resulting fromdifferent management practises and siteproperties formed ten ruderal plantcommunities, five grassland communities,and seven transitional shrub and fringecommunities along forest edges. Theaverage numbers of vascular species of theruderal vegetation ranged between 13 and26, and was 29 in the successional stagesbetween fallow field and meadow. Thegrassland and forest edge communities withan average of 28 to 48 vascular species wereparticularly species rich. Since 1990,European and global economic change haveresulted in modifications to Romaniansociety and politics, including itslandscapes. The land uses and landscapes ofthe Eastern European mountain regions facecompletely new economic and ecologicalproblems. The increased incorporation of thehousehold economies of Romanian farmersinto the world market will inevitably lead tofuture socio-economic changes. This willinduce processes of increasing farm size, ofspecialisation, mechanisation andintensification on the more fertile soils. Theagricultural use of marginal soils willdecrease, or such sites will becomeabandoned completely and afforested.

Page 80: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 80 -

REZUMAT: Tipuri de vegetaţie şi sisteme de folosinţă a terenurilor în peisajul/landşaftul cultural tradiţional - cazul satului Gheţari din Munţii Apuseni (Transilvania, România).

Locuitorii peisajelor (landşafturilor)culturale tradiţionale au fost nevoiţi să-şiadapteze practicile şi modul de folosire aterenurilor la condiţiile mediului înconjurătorşi la condiţiile staţionale predominante.Combinaţiile variate dintre tipul de staţiuneşi tipul de management antropic au dus laformarea unor landşafturi bogate cu o marediversitate specifică.

În cadrul proiectului „PROIECTAPUSENI”, finanţat de Ministerul Germanpentru Ştiinţă şi Cercetare (BMBF), derulatîntre anii 2000-2003, au fost analizateurmătoarele aspecte: landşaftul montan,sistemele de folosinţă a terenului şiperspectivele viitoare de dezvoltare (Ruşdeaet al., 2005). Satul Gheţari a fost ales cafiind centrul zonei de studiu, localizat pe untransect din Valea Arieşului, până lapăşunea comunală Poiana Călineasa.

În zona satului Gheţari, au fostidentificate opt comunităţi forestiere semi-naturale, diferenţiate prin sol şi mezoclimat.Doar 31,7% dintre pădurile zoneiînconjurătoare a satului au coronamentulînchis. Exploatarea silvică şi păşunatul înpădure au dus la o deschidere acoronamentului şi instalarea unor ierburispecifice zonei, iar mai recent şi a unorspecii ruderale, de obicei în zonele limitrofede la marginea aşezărilor umane.

Pe terenurile neîmpădurite (pajiştilesemi-naturale), poaceele comune şi plantedin alte familii, specii de etaj montan,profită de condiţiile create de om printr-un

management specific (îmbunătăţireacondiţiilor de lumină, troficitate, etc.), dar şide animalele domestice (care păşunează).Fitocenozele formate în urma diferitelorpractici de management şi a condiţiilorstaţionale se pot clasifica în: zece comunităţide plante ruderale, cinci comunităţi depajişti, şapte comunităţi de tranziţie, detufărişuri de-a lungul marginilor de pădure.Numărul mediu de specii vasculare dinvegetaţia ruderală variază între 13 şi 26, iarîn stadiile succesionale între teren înţelenit şipajişte este de 29 de specii. Comunităţile depajişti şi cele de la marginea pădurii au fostdeosebit de bogate în specii, cuprinzând înmedie între 28 şi 48 de specii vasculare.

Începând cu 1990, schimbărileeconomice la nivel european şi global au dusla modificări importante în politica şisocietatea română, care se reflectă şi lanivelul landşaftului. Gestionarea categoriilorde folosinţă a pământului şi a landşafturilordin zonele montane ale Europei de esttrebuie să facă faţă unor problemeeconomice şi ecologice noi, generate dedeschiderea pieţelor româneşti către celeeuropene. Aceasta va determina procesul deextindere a suprafeţelor gospodăriilor, despecializare, de mecanizare şi intensificare asistemelor de cultură în zonele cu soluri maifertile. Intensitatea modului de folosire astaţiunilor din zonele mărginaşe fie se vareduce, fie aceste locuri vor deveni completabandonate şi, implicit, reîmpădurite.

ZUSAMMENFASSUNG: Vegetationstypen undLandnutzungssysteme einer traditionellenKulturlandschaft - das Beispiel des Dorfes Gheţari im Apuseni Gebirge (Transilvanien, Rumänien).

Die Landnutzungssysteme derBewohner traditionell genutzter Kulturland-schaften waren bzw. sind an dienaturräumlichen Gegebenheiten angepasst.Eine Vielfalt an Standorten undLandnutzungen formte eine an Strukturen,Lebensgemeinschaften und Arten reicheKulturlandschaft.

Im Rahmen des vomBundesministerium für Bildung undForschung (BMBF) geförderten ‘PROIECT

APUSENI’ wurde in den Jahren 2000 bis2003 in Rumänien eineMittelgebirgslandschaft, ihre Landnutzungs-systeme und künftigen Perspektivenanalysiert (Ruşdea et al., 2005). Das DorfGheţari (1.150 m NN) wurde als Fallbeispielausgewählt, eingebettet in einen Transektvom Arieş-Tal (730 m NN) bis hin zurSommerhochweide ‘Poiana Călineasa’(1.350 m NN).

Page 81: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 81 -

In den Wäldern um Gheţari konntenacht naturnahe Waldgesellschaftenausgeschieden werden, mit jeweilscharakteristischen Böden und Mesoklima.Nur 31,7% dieser Wälder hatten eingeschlossenes Kronendach. Holznutzungund Waldweide führten zu Auflichtungen,gefolgt von einer Einwanderung vonStörzeigern, Saum- und Offenlandarten indie Bodenvegetation. Insbesondere zubeobachten war dies in Siedlungsnähe.

Das Offenland war geprägt vonnaturnahen, relativ nährstoffarmemGrasland, fünf Grünlandgesellschaftenkonnten unterschieden werden. Um dieStälle führte eine höhereNährstoffkonzentration zu einerAnreicherung von Nitrophyten der Tief- undHochlagen. Je nach Störungsregime konntenzehn Ruderalpflanzengesellschaftenunterschieden werden. An den Waldränderngediehen sieben Saum- undMantelgesellschaften. Die durchschnittlicheZahl an Gefäßpflanzenarten betrug bei derRuderalvegetation zwischen 13 and 26, auf

den Brachäckern 29. Besonders artenreichwaren die Grünland- und Waldrand-vegetation mit durchschnittlich 28 bis 48Gefäßpflanzenarten.

Nach dem Jahr 1990 veränderteneuropaweite und globale wirtschaftlich-politische Umwälzungen auch dierumänische Gesellschaft und Politik, undauch die rumänische Landschaft. Dietraditionellen Landnutzungen undLandschaften der osteuropäischen Gebirgewurden mit neuen ökonomischen undökologischen Problemen konfrontiert. Diezunehmende Integration der bäuerlichenBetriebe in den Weltmarkt wirdunweigerlich zu weiteren Veränderungenführen. Es ist anzunehmen, dass in denkommenden Jahrzehnten die Betriebe größerwerden, sich spezialisieren werden, dieMechanisierung wird voran schreiten, undfruchtbare Böden werden einer intensiverenNutzung unterliegen. Die Grenzertagsbödenjedoch werden zunehmend weniger genutztoder ganz aus der Nutzung entlassen werdenund wieder zu Wald werden.

1. INTRODUCTIONThe European landscapes have been

formed by human activities since Neolithicor earlier (Feurdean et al., 2009; Lang,1994). For centuries highly diversifiedsubsistence production supported thepopulation. Agriculture, silvopastoralism,agroforestry, forest use were intensivelyamalgamated through the householdsactivities (Hasel, 1985; Rackham, 1986;Mantel, 1990). Specialisation was notcarried out between landscapes andhouseholds, but within these. In order tomeet human requirements through localproduction, it was necessary that theactivities being carried out to be highlydiversified. The site's characteristics andproduction potentials were known from longtradition and observation, and were used in asite-adapted manner. The traditional landuses created a large variety of landscapestructures, plant communities and habitatsfor animals. The species compositions andstructural patterns reflect the differenttechniques and intensities of use, as well as

the abiotic site conditions (Ellenberg, 1996;Zonneveld, 1995).

On the community level, land usethrough subsistence production created astable, self-supporting system. The landuses, including the separation of forest andgrazing land, were neither stable norpermanently fixed. Spatial and temporarychanges of land use, landscape structure andhuman activities were commonplace.Periods of forest exploitation, wood pastureand conversion to open grazing land werefollowed by periods of succession and forestregrowth, e.g. after wars or climaticfluctuations.

Most landscape elements servedmore than one function, depending on theseason or long term cyclical uses (Küster,1998). The whole landscape was usedintensively, with specific aims in space andtime. In the case of grasslands, for example,hay production seasons changed withgrazing periods. On the fields several yearsof intensive cultivation were followed by

Page 82: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 82 -

long periods during which the land was leftfallow, and the fields shifted to othersuitable places. The traditional uses werelimited by site restrictions, less developedinfrastructure and technology, and theabsence of electricity.

In a first step the aims of this studywere developed during annual studentproject works to the region over a period ofsix years, and observations of recent landuse changes. They concerned: to relate theflora, vegetation and landscape patterns totraditional subsistence production in amountain region of temperate easternCentral Europe; to provide a ‘referencestudy’ for landscape features under

traditional subsistence production; tocompare traditional landscape patterns withmodernised landscapes in Central Europe.

The main results were obtainedwithin the framework of an interdisciplinaryand transdisciplinary project, known as‘PROIECT APUSENI’ (Ruşdea et al., 2005)and represent the land use situation until2003. In the recent years, the behavior of thepeople was underlying an acceleratedchange, which briefly is described in the lastchapter. The project identified and evaluateddevelopment strategies, and maderecommendations for further sustainableregional development (Reif et al., 2008).

2. SCIENTIFIC APPROACH AND AIMS OF THE ‘PROIECT APUSENI’‘PROIECT APUSENI - a chance for the

Moţi country’ sought to develop regionalstrategies for mountain areas in EasternEurope in participation with the local peopleand the local and regional administration.The central aim of the project, namely the“identification of the social, economic andecological potential for sustainable regionaldevelopment in Eastern Europe, illustratedby the Apuseni Mountains in Romania”,involved the analysis of landscape, land useand regional development perspectives (formore information visit http://www.proiect-apuseni.org).

A nested approach to the researchwas adopted, comprising three ‘nested’study areas, in which data collection wascarried out with decreasing intensity. TheGheţari and the surrounding district (308 ha,28 households, 106 inhabitants in 2000)constituted the central study area. Theinvestigations extended gradationally fromthe village at about 1,150 m a.s.l. towards itsadministrative centre in the valley (Gârda deSus, 730 m a.s.l.) and to the ‘PoianaCălineasa’ mountain pasture (6 000 ha, 65%forest; about 1,350 m a.s.l.). Generalisationsabout the region could be made from studiesof the social and economic characteristics ofthe Moţi country. These studies facilitatedthe analysis of the functional coherence ofthe regional land use system.

The physical and biologicalcharacteristics of the landscape and regionwere analysed; it’s cultural history and thelife of the people; the economy of selectedhouseholds in Gheţari, and the ‘Moţicountry’. Disciplinary approaches were usedin the scientific data collection in relation toclimate, soil, hydrology, hydrochemistry,vegetation and selected animal groups. Themethods and techniques for agricultural andforestry land use were described, and theirecological effects quantified. Twoapproaches were adopted to assess theeconomy at the household level(combination of subsistence and marketproduction; activities, products, costs andprices), and at the regional level. Additionalstudies, related to the specific political-legislative conditions in Romania, reviewedthe history of culture, settlement,architecture and the life of the people.

These interdisciplinary studiesprovided the basis for a sectorial evaluationin relation to nature conservation and theeconomy, which were used as indicators anddescriptors for the creation of a syntheticmodel, describing and explaining thefunctioning of the system. The modelprovided the basis for the creation ofscenarios for the future development of thelandscape, and the social and economicsituation. The scenarios were discussed withthe local people in the form of a ‘role game’.

Page 83: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 83 -

A comparative analysis and evaluation of thescenarios was used to define recommendationsfor sustainable regional development.

From the outset, ‘PROIECT APUSENI’had transdisciplinary components aimed atthe development of concrete applications inthe region. Promising approaches were

implemented as so-called ‘leading projects’in the fields of tourism, agriculture (cropproduction, manure processing, fertilization,hay harvesting), water supply, medicinalplants, and forest use/wood processing(Ruşdea et al., 2005).

3. TRADITIONAL LAND USE IN THE APUSENI MOUNTAINS3.1. Study areaThe main study area was situated in

the “Moţi country” in the ApuseniMountains, in the north-western part ofRomania (Fig. 1). The Apuseni Mountainscover an area of aproximatively 11,000 km2

(Bleahu and Bordea, 1981). They consist ofseveral ranges forming the western border ofthe Transylvanian Basin. The highest peakreaches 1,848 m above sea level. Thepotential natural vegetation is formed byzonal mixed beech (Fagus sylvatica) - fir(Abies alba) - spruce (Picea abies) forests inthe mountain belt, and spruce (Picea abies)forest in mountain frost hollows, e.g. dolinesand the subalpine belt (Şerbănescu et al.,1975).

The study area is situated in theGheţari mountain village, in the central partof the Apuseni. This village was selected fora detailed survey and holistic study (Ruşdeaet al., 2005), including geology, soils,climate, hydrology, vegetation, history,ethnography, economy, land uses and otheraspects (for further information visithttp://www.proiect-apuseni.com).

The geology of the ApuseniMountains is extremely variable (Bleahuand Bordea, 1967; Orăşeanu, 2005). In thestudy area comprising the village of Gheţari,its surroundings (‘Gheţari plateau’) and the‘Poiana Călineasa’ high pasture, limestoneand mudstone predominate (Bleahu et al.,1980; Dumitrescu et al., 1977; Marin andOrăşeanu, 2005). The soils are rendsinas,rendsinic lithosols, slightly acidic, deep parabrown earths, and 'Terra Rossa', a tropicalrelic soil (Parichi and Stănilă, 2005).

The climate in Gheţari is mountain(mean annual temperature of about 5°C,mean annual precipitation of 1,200 mm),and in the “Poiana Călineasa” high pasture

boreal (mean annual temperature of about3.5°C, mean annual precipitation of 1,400mm). The winters are long and cold, withsnow covering the landscape betweenOctober and April (Bogdan and Iliescu,1962; Orăşeanu et al., 2005).

3.2. HistoryThe Apuseni Mountains are

inhabited by the Romanian ‘Moţi’ people.Until the 19th Century the mountains wereinhabited only during the summer months,when the land was used as mountain pasture(Goia and Borlan in Ruşdea et al., 2005).The people lived in small, one roomed‘mutături’ surrounded by stables. Anincreasing population led to the foundationof permanent settlements around 1880.Subsequently, the sizes of the housesincreased to two and three roomed buildingsand some even bigger (Goia in Ruşdea et al.,2005).

It can be assumed that subsistenceproduction was of much higher importancein earlier times. Up until about 1950 severalactivities were practised to a major extent:flax (Linum usitatissimum) was cultivatedfor the local production of textiles. Todayonly a few abandoned retteries near springsprovide a reminder of these times; fieldswere much more expansive than today. Stepbaulks, terraces and stone piles arecharacteristic surrounding settlements.Today most of the fields are abandoned,because cereals and maize are increasinglybought from the lowlands, in exchange forwood products; once weaving was of muchgreater importance, e.g. all sheets wereproduced locally. Today weaving is practisedby several women during winter only.

Page 84: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 84 -

3.3. Land use techniques andactivities

Traditional rural land use techniquesand activities, often considered ‘antiquated’in Central Europe, are still practised in someRomanian mountain villages (Tab. 1), andshaped the cultural landscape (Reif et al.,2003a, 2003b; Fig. 2). We described thevegetation and land uses of the culturallandscape of the Gheţari/Gârda de Sus, Albadepartment (2003). The household incomeswere derived from a variety of activities,

including craftwork, trade, farming, animalrearing and forestry (Ruşdea et al., 2005).The specific performance of each activityformed the species composition andstructure of the habitats, and the landscapeas a whole. The rural economy of thestudied village on the plateau is functionallyconnected to adjacent areas, from the ArieşValley (Gârda de Sus - the communityadministrative centre) to the ‘PoianaCălineasa’ high pasture to the north (Fig.1).

Figure 1: The Apuseni Mountains location in Romania, the study area, ranging along a transectfrom the community centre Gârda de Sus in the Arieş Valley, to the Gheţari Village, and the

‘Poiana Călineasa’ high pasture to the north, (Bleahu and Bordea, 1981 - modified).

Page 85: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 85 -

Table 1: Traditional land use techniques and activities in the study area (reference year 2003).

Tradition,traditional activity

Relevance to vegetationand landscape Comments

High proportion ofsubsistence production

No use of mineral fertiliser,pesticides; use of manyspecies from forests and openland for many purposes;necessity for habitat andspecies diversity

Increasing importance of marketproduction over the last seven years

Land use related to siteconditions

Uses of land adapted to soils:fields, gardens and most haymeadows on deep soils;pastures and forests onshallow soil

Fencing off of fields, gardensand hay meadows to keep theanimals out

Landscape aesthetics

GrasslandRaking and burning of beechleaves (winter)

Increased coverage ofgrasses, increased hayproduction

Burning leaves near tree trunks killsthe trees, extends the grassland area

Fertilisation of the haymeadows with manure inwinter or spring

Maintenance of speciescomposition and fertilitygradients

Absence of mineral fertiliser becauseof high costs

Manual mowing, turning,swathing and forming ofhaystacks; transport ofhaystacks to barns by horsedrawn carts

Mowing period extended byseveral weeks; seed dispersal;diverse grassland structurepatterns; very low sward aftermowing favouring light-demanding species

No mechanisation because of highcosts

Aftermath in September, thengrazing

Low sward; species adaptedto resist trampling andbrowsing by animals(increased frequency of, e.g.rosette species, thistles,gentians)

Collecting of medicinal plants(Arnica montana, Colchicumautumnale)

Increased value of medicinalplants in grassland contributeto its maintenance

Recent increase in sales for cashincome

Fields and gardensFields and gardens ploughedusing horses, maintained byhand

Small scale landscapepatterns

Decreasing in size and importance inrecent years

Fertilising with relativelyhigh quantities of manure, nomineral fertiliser

Nitrophytes only locallyaround settlements, tracks,fallow fields. Relatively latemowing time

No herbicides, insecticides Biocoenoses not influencedby pesticides

Approximately ten years ago thepotato beetle invaded; beetlescollected by hand, killed in petrol

Weeds used for fodder(Stellaria media)

Seeds imported to gardensand fields through manure

Only secondary product

Permanent gardens and fields,occasionally alternatehusbandry (shiftingcultivation)

Fallow fields in succession tograssland

Less frequently practised in recentyears

Page 86: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 86 -

Tradition,traditional activity

Relevance to vegetationand landscape Comments

Extraction of stones by hand Construction of stone walls,creating habitats for animals,fringe plants, light demandingwoody species

Decreasing importance in themountain belt because of decreasingcultivation of fields

Harvesting cereals, crops,spices, herbs

Decreasing importance interms of activities, decreasingnumbers and sizes of fieldsand gardens

Increasingly being replaced throughpurchasing

Collecting medicinal plants(Matricaria chamomilla)

For personal use only

Animal holdingLow fertilisation of pasturesby cattle droppings

Permanent export of nutrientsfrom open and woodedpastures; maintenance of lowfertility grassland (Festuco-Brometea, Nardo-Callunetea)

Herding of animals oncommon grazing land, inwoods

Diet selection: weeds such asthistles, mat grass remain;very local fertilisation

Outdoor grazing in winterwhenever weather permits

Selective browsing of woodyspecies, Rubus spp. in winter.Selective browsing ofregeneration of deciduoustree species (beech, maple),favouring conifers (spruce, fir)

Periodic movement ofanimals and people betweenvillage and high pasture

Optimising the use of naturalresources of the landscape;modifying the understory inforests adjacent to animaltracks

Daily movement of animalsand people between stableand spring: local disturbancethrough trampling andgrazing

Ruderal vegetation oftrampled sites, road tracks

Feeding of animals mostlywith own products

Relatively low nutrition valueof fodder; import of somemaize and cereals inexchange for wood products

Hunger symptoms evident incattle during hard winter;fodder supplemented by treebranches or straw

Persistence of isolated trees inthe open landscape throughutilisation: lopping of Picea,Abies, and of Fraxinus below900 m above sea level

Slowly disappearing

Forests and forest marginsCutting, coppicing to producefirewood as main energysource

Extraction of smaller stemsand branches from forests

Gas and electricity only seldom usedfor cooking

Cutting of constructiontimber (conifers)

Extraction of large diameterstems from forests

Increased importance since about1995 (electricity, circular saws)

Collecting mushrooms,berries

Use of all forest resources Very important on acidic soils

Syrup production from Fagussylvatica and Acerpseudoplatanus

Severe damage to stems,devaluation of timber

Nearly extinct

Page 87: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 87 -

Tradition,traditional activity

Relevance to vegetationand landscape Comments

Resin production from Piceaabies

Severe damage to stems,devaluation of timber

Slowly disappearing

Collecting mosses Sealing of stone house walls Nearly extinctCollecting medicinal plants(Hypericum)

For personal use only

Figure 2: Rural landscape with dispersed settlements in the Apuseni Mountains. Fences along thetracks keep the animals out of the meadows and small fields; - Ocoale, 1,300 m a.s.l.

In Gheţari, the peoples’ incomes,at least until 2003, were still largelybased upon subsistence production.The work carried out consisted of manydifferent activities, revolving aroundgardening, agriculture, forest use, craftworkand trade (Auch in Ruşdea, 2005, Auch2006). Each household ownedapproximately three hectares of farmland.This consisted mostly of grassland, a smallgarden and small fields, where peoplecultivated potatoes (Solanum tuberosum)and occasionally cereals, such as rye (Secalecereale), barley (Hordeum vulgare) and oats(Avena sativa).

The principal income of eachhousehold was dairy farming. Thehouseholds had a few (1 to 3) cattle,originating from a mixture of different races.At night, and during very cold periods,the animals were kept in almost dark stables,often together with one or two horses.A small number (3 to 5) of sheep andpigs were kept separately in other stables.Hay was stored in separate compartmentsin the stables, in barns or outside ashaystacks.

Page 88: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 88 -

The open land was dominatedby different types of mowed andgrazed grassland. Fenced meadowswere located on deeper soils and morefertile sites, and provided the hay forthe winter months. All meadows weresheared using scythes during July andAugust, and underlied an aftermath inSeptember.

The nutrient distribution withinthe cultural landscape was stronglyinfluenced by man. This was reflected inthe occurrence of plant species andvegetation types in the landscape. Nutrientswere removed from the open and woodedpastures through grazing during theday. With time, these ecosystems becameincreasingly depleted. Nutrients werereleased as dung in the stables atnight. Dunghills and the areas aroundstables were nutrient enriched eutrophicsites. Gradually they accumulated aroundthe houses, stables and adjacent farmland,fertilising the gardens, small fields andhay meadows. These nutrient richareas were often correlated with hightrampling. As a result, nutrient demanding,disturbance tolerant species predominatedand formed annual and perennial ‘ruderal’vegetation.

The margins between the forestsand open land were not as fixed as incountries with a strict separation ofagriculture and forestry, e.g. Germany. Untilthese years and still today, the animalsgraze in open and wooded pastureswhenever possible, and even browsein relatively closed forest areas. Thesetraditional silvopastoral forest uses and the- more recent - furtive removal of

trees have lead to a continuous transitionbetween open land, edge vegetation witha mosaic of herbs, grasses and shrubs, andthe forest itself, which in places is quiteopen, depleted of large diameter trees, andgrazed.

From May to July, most of thecattle and sheep were brought to thehigh mountain pastures, e.g. thecommon ‘Poiana Călineasa’ highpasture (about 6000 hectares; about 1,350m above sea level; Fig. 3), consistingof grassland and forest. Poiana Călineasais owned by several communities, andis used in an unregulated manner. Thearea used by the people of Gârda deSus consisted of about 600 unfertilisedand heavily grazed hectares of grasslandand about 400 ha spruce forest (Goia inRuşdea et al., 2005). The womenguarded the animals, and managedthe cheese production, while gossipingand knitting at the same time. The men,on the other hand, were eager to harvestthe valuable timber from the forest. Inmid July the herders and their animalsreturned to the village, because all ofthe townspeople are needed to mow themeadows.

The silvopastoral landscape usewas underscored by the occurrence oflopped spruce and fir trees. In November,the branches of these trees were cut,transported to the farmyard and piled up.During periods of snow, the cattle andhorses received hay and additional fodder inthe form of fresh spruce twigs, the sheep fir,with the main purpose of keeping theirstomachs full and avoiding the sensation ofhunger.

Page 89: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 89 -

Figure 3: ‘Poiana Călineasa’ mountain pasture (about 1,350 m above sea level),with Cucurbăta (1,848 m above sea level) in the background.

4. THE VEGETATION OF THE AREA OF GHEŢARI4.1. Methods of vegetation studyThe complex mosaic of sites and

land use categories in the parish of Gheţariwas stratified into broad categories. 680relevés were recorded preferentially betweenthe years 1996 and 2002. Most of them werelocated in the area around Gheţari, and a fewon the mountain pasture ‘Poiana Călineasa’.The homogeneity criterion was appliedwhenever possible. Along structurallydiverse forest margins and in wood pastures,small scaled mosaics had to be recorded.

Relevé size was 25 m2 in the openland, with a few exceptions around wellsand ruderal sites; 50 m2 along forest edgesand scrubland and 100 m2 in forests(Dierschke, 1994). The vegetation structurewas sampled by defining six height tiers (T1= >10 m; T2 = 5 to 10 m; T3 = 3 to 5 m; S =1 to 3 m; H = herbaceous tier, < 1 m; M =lower plant tier). Species were recordedusing a modified Braun-Blanquet scale, withR = < 1% cover, 1-3 individuals; + = < 1%cover, 4-10 individuals; 1 = <5% cover,11-50 individuals; M = <5% cover, >50individuals; A = 5-15% cover; B = 15-25%

cover; 3 = 25-50% cover; 4 = 50-75% cover;5 = 75-100% cover; V = species occurring(lower plants) (Dierssen, 1990).

The data analysis first step was aclassification into general site categories andplant formations (ruderal vegetation, gardensand fields included, grassland, forest edge,forest). Manual rearrangement of the groupsformed a new table, containing all the relevés.The summarised frequency table (Tab. I)offer the basis for the general description ofthe vegetation of the cultural landscape, i.e.the ‘nearly natural’ plant communities ofinaccessible rocks or bogs were excludedfrom study. The vegetation of the openlandscape was distinguished from the forestedges, and that of the forest interior.

The classification was used to mapthe vegetation of the area of Gheţari (308 ha;Figs. 4 and 16). The often small scaledifferences in sites and vegetation had to bemapped as complexes of vegetation types,with the dominant type mentioned first, andcovering up to 80% of the parcel. Vegetationtypes with linear (width < 2 m) or pointdistribution are not shown on the maps. Two

Page 90: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 90 -

partial data sets were studied in more detail,because they represented characteristicvegetation features resulting from traditionalland use (Tabs. II and III). The specificmethods are presented together with theresults in chapters 4.2.2. and 4.3.3.

The species were named afterCiocârlan (2000). The nomenclature of plantcommunities was based upon Sanda et al.,(1980), Oberdorfer (1977, 1978, 1983,1992) and Coldea (1991).

4.2. Vegetation of the openlandscapes

The vegetation of the open landscapecovered 44% (134 ha) of the study area. Itcould be subdivided into the vegetation ofthe fields, courtyards and track marginscovering 1.9% of the surface area, and intothat of the grasslands, covering 41.7% of thesurface area (Fig. 4).

4.2.1. Courtyards, track margins,gardens and fields ruderal vegetation

The vegetation of the courtyards,track margins, gardens and fields could bedifferentiated by the occurrence of nutrientdemanding species, including Galeopsistetrahit, Stellaria media, Rumex obtusifolius,Rumex alpinus, Ranunculus repens,Anthriscus sylvestris, Capsella bursa-pastoris,Melandrium album, Arctium minus, Rorippasylvestris and Symphytum officinale.

Nutrient intake and release of thedifferent plant communities resulted fromdifferent processes, and form differentvegetation patterns. Adjacent to settlements,animal droppings caused eutrophication ofcourtyards, footpaths, tracks, and areasaround manure deposits. Fields and gardens,and to a lesser extent the hay meadows,were fertilised with farmyard manure.

(a) Vegetation of courtyards andtrack margins

Trampling, browsing andeutrophication caused by animals formed thevegetation within courtyards, on footpathsand on track margins. Diagnostic species ofthese sites are Matricaria matricarioides,Poa annua, Lolium perenne, Polygonumaviculare agg. - P. arenastrum, Plantagomajor, Plantago intermedia and Bellis

perennis. On compacted, loamy sites,wetland species, such as Eleocharis palustrisagg. and Juncus compressus, also occurred.

Trampled vegetation of wet, loamypaths and track margins

- Permanently wet, trampleddepressions in loamy paths and trackmargins were colonised by wetland pioneerspecies, Poa remota and Veronica beccabungabeing the most important (Tab. I/1).

- The ground surrounding wells,small springs and streams used for wateringstock was heavily grazed. Diagnostic speciesof the Mentho longifoliae-Juncetum inflexiLohm. 53 were Mentha longifolia,Epilobium tetragonum and Rorippaaustriaca (Tab. I/2).

- Permanently moist, trampled, mowedsites adjacent to tracks near springs weredominated by Blysmus compressus, Juncuscompressus and Eleocharis palustris (Juncetumcompressi Br.-Bl. ex Libbert 32; Tab. I/3).

Grazed vegetation of track marginsand forest clearings, semi-shaded: onheavily grazed and trampled open to semi-shaded sites, e.g. adjacent to paths andtracks, in forest clearings and scrubland,only a limited number of species survived.On base rich soil, a short Festuca rubra-Cynosurus cristatus-grassland (Festuco-Cynosuretum Tx. in Bük. 42; Tab. I/4) wascommon. The daisy Bellis perennisincreased in frequency where grazingpressure was high, particularly under semi-shaded conditions. Similar vegetation wasdescribed in south-eastern Europe as Festucorubrae-Agrostetum capillaris Horv. 51.

Trampled vegetation of loamy pathsand track margins: the edges of courtyards,loamy paths and wheel ruts were onlyscarcely vegetated. Differential species wereLolium perenne, Polygonum arenastrum,Plantago major and Matricaria discoidea.The vegetation can be related to the Lolio-Polygonetum arenastri Br.-Bl. 30 em. Lohm.75 (Fig. 5). Depending on the degree ofdisturbance and grazing intensity, a ruderaltype (Tab. I/5) can be distinguished from atransitional type on the meadows (Tab. I/6).

Page 91: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 91 -

Figure 4: Plant communities (simplified) of the open landscape (area = 134 ha)within the village of Gheţari.

(b) Nitrophytic tall-herbvegetation around dunghills and stables

The ground surrounding dunghillsand stables was subject to heavyeutrophication. Such sites were colonised bynitrophytic, browse-resistant species, mostlydominated by stinging nettle Urtica dioica.Less frequent were Lamium album, Urticaurens (Fig. 6), Chelidonium majus, Rumexalpinus, R. obtusifolius and Geraniumpusillum. Constant companions wereTaraxacum officinale and Poa trivialis.

On moderately moist to dry edgesaround stables, barns and along fencesChenopodium bonus-henricus was found

(Chenopodietum boni-henrici Klika 48;Tab. I/7).

On moist sites with deep soil,Rumex alpinus was found, together withAnthriscus sylvestris, nitrophytes andwidespread grassland species (Rumicetumalpini Beg. 22; Tab. I/8).

(c) Vegetation of gardens and fieldsGardens and fields cover less than 1% of thesurface of the area of Gheţari, but remain anessential component of subsistenceproduction, mainly in the production ofpotatoes, cereals, vegetables and salad. Mostof them are fenced off to keep grazinganimals out.

Page 92: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 92 -

Figure 5: Matricaria discoidea colonises the trampled edges of a courtyard;- Gheţari, 1,150 m above sea level.

Figure 6: Urtica urens growing below a stable;- Gheţari, 1,150 m above sea level.

Page 93: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 93 -

Fields were established preferentiallyon sites with deep, fertile soils, e.g. thebottom slopes, terraces and colluviums indolines. The cereals cultivated were barley(Hordeum vulgare), rye (Secale cereale) andoats (Avena sativa). The crops were potatoes(Solanum tuberosum) and occasionally rapes(Brassica napus).

Gardens are located near the houses.They supplied leek (Allium porrum), garlic(A. sativum), onions (A. cepa), cabbage(Brassica oleracea), carrots (Daucuscarota), salad (Lactuca sativa), lovage(Levisticum officinale), and rarely hemp(Cannabis sativa).

The gardens and fields weremaintained carefully. They were fertilisedwith manure, ploughed, dug, and weeded.Typical weeds were nutrient-demandingannuals, such as Chenopodium album,Sinapis arvensis, Polygonum lapathifolium,Veronica persica, Myosotis arvensis,Fallopia convolvulus, Veronica agrestis,Matricaria recutita, M. perforata, Lapsanacommunis, Galeopsis tetrahit, G. speciosa,Rumex crispus, Lamium purpureum andPolygonum maculosa (Tabs. I/9, 10).Similar vegetation from crop fields wasdescribed as Galeopsido tetrahit-Stellarietum mediae (Passarge and Jurko,1975). Several weed species were used forfeeding animals, e.g. Stellaria media forfeeding pigs.

Between 1998 and 2003, themajority of the small fields have beenabandoned and converted to grassland - theresult of increasing income from timbersales, and the incorporation of local produceinto the market.

(d) Fallow fieldsSome of the fields were cultivated

permanently; others were only cultivatedperiodically and shifted. Recent fallowswere rapidly colonised by widespreadannual and biennial weeds (Tab. I/11; Reifet al., 2005). They increasingly had tocompete with geophytic rhizome plants,

including thistles (Cirsium arvense), scutch(Elymus repens), and coltsfoot (Tussilagofarfara). All of the fallow fields weremowed in the first year, yielding a largeamount of hay. Due to the high quantity ofweed seeds, hay from recent fallows wasstored separately, to avoid seedtransportation when spreading the manure.

Recent fallow fields: during thefirst fallow period, annual weeds, such asStellaria media and Galeopsis tetrahit,attained dominance (Tab. I/11). Ruderalrhizome plants (Cirsium arvense, Elymusrepens, Tussilago farfara) and nutrientdemanding grassland species, including Poatrivialis, Taraxacum officinale, Festucapratensis, Crepis biennis, Carum carvi,Campanula patula, Trisetum flavescens,Cynosurus cristatus, Vicia cracca andCentaurea pseudophrygia were constant.These fallows represent a transitional stagebetween ruderal vegetation and scutch-thistle stages of succession.

Advanced succession on fallowfields: after one to three years, fallow fieldshad been completely colonised. Ruderalrhizome plants, such as Cirsium arvense andElymus repens, dominated only temporarilyin patches (Convolvulo-Agropyretumrepentis Felf. 43; Tab. I/13), with Rumexalpinus and Carduus personata on moistsites (Tab. I/12; Fig. 7). Other patches werecolonised by meadow grasses. Unlikesuccession in abandoned fields, theperennial ruderal species were replaced bymeadow grass and herb species within twoto four years (Reif et al., 2005). Afterapproximately five years, nearly all ruderalspecies were eliminated as a result of regularmowing (Fig. 8). In their place productivegrassland developed (Centaureapseudophrygia - Polygono - Trisetion -community). Nutrient demanding species,such as Taraxacum officinale, continued tobe more frequent than in ‘older’ meadowson similar sites.

Page 94: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 94 -

Figure 7: Fallow field on a gentle terrace,colonised by Rumex alpinus; - Gheţari, 1,150 m.

Figure 8: Fallow fields were scythed in the first year after conversion to grassland.The perennial ruderal species were replaced by meadow grass and herb species

within two to four years.

Page 95: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 95 -

4.2.2. Successions in alternatehusbandry (shifting cultivation)

Shifting cultivation in the formof alternate husbandry representsa traditional land use in the mountainrural economies of temperate Europe(Gordon and Newman, 1997; Hasel,1985; Mantel, 1990; Pott, 1990; Pottand Hüppe, 1991; Rackham, 1986; Reifet al., 2005). In the mountain rural villagesof Romania it was practised locally until2003, because (1) perennial weeds withrhizomes were suppressed, (2) the humuscontent of the soil increased and (3) allsuccessional stages could be used (for hayproduction).

Methods. A total of 162 relevésfrom fields, recent fallows and advancedsuccessional stages of retired fields wereselected from the overall data set toreconstruct the process of succession (‘spacefor time approach’). The relevés weretransformed towards a more unimodaldistribution of the species covers using ahistogram transformation of the data(Fischer, 1994). The relevé and speciesvectors were normalised (Wildi, 1989;Wildi and Orloci, 1996). For theresemblance matrix of the relevés, van derMaarel´s similarity index was applied.Clustering was based upon Ward (1963).The result was ten relevé groups. Thespecies were grouped using the centredcross product, and clustered accordingto Ward. Using an analysis ofconcentration, the vegetation table wasconstructed (Tab. II), containing twelvespecies groups.

The rapid recovery of the meadowvegetation is noteworthy. In the first yearof fallow, perennial rhizomatousspecies replaced the annual weeds.The grassland species dominated afteronly three years of succession. Afterfive years the species composition couldhardly be distinguished from thatof permanently used meadows, andhad differentiated into the grassland typesof the moderately moist Centaureapseudophrygia-Polygono-Trisetion-community,

and the Astrantio-Trisetetum on moistsites (Tab. II). Trollius europaeus, a speciesregarded as endangered in Western Europe(Bundesamt für Naturschutz, 1996), re-established itself in the early successionalstages.

4.2.3. GrasslandGrassland farming is a basic

constituent of subsistence production inthe mountains. Fertile soils bear meadowsfor the production of hay, with subsequentgrazing in the autumn. Shallow soils tendto accommodate pastures throughout thewhole year, if they are not forested. Slopegradient and associated characteristics,mainly water storage capacity, whichis related to soil depth, and managementfactors, including grazing intensity, hayyield and fertilisation, resulted infloristically different grassland types(Fig. 9).

The relationships between theimportant environmental factors andthe grassland communities were analysedby a canonical correspondence analysiswith 108 samples, for which a full setof environmental data was available. Thesesamples contained 120 species witha frequency of 5% or more. TheBraun-Blanquet scores were transformedto an ordinal scale by code replacement(van der Maarel, 1979). The multivariateanalysis was carried out usingCANOCO 3.12 (ter Braak and Šmilauer2002) with a square root transformationof species data and by down weightingrare species.

Periodically wet to moderatelymoist, fertilised sites tend to bear haymeadows of the class Molinio-Arrhenatheretea. Moderately dry,unfertilised soils on limestone are mostlygrazed and belong to the class Festuco-Brometea. Moderately acidic, unfertilisedsoils are meadows or grazing land of theclass Nardo-Callunetea.

Page 96: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 96 -

-2.5 +3.0

-2.5

+3.

0

yield

soil depth

fertilisation

grazing

slope gradient

altitude

old fallow fields

Calthion

Anthyllido-Festucetum rubraeAnthyllido-Festucetum rubrae in complex with Polygono-TrisetionCentaurea pseudophrygia-Polygono-Trisetion, Thymus typetypical Centaurea pseudophrygia-Polygono-Trisetion-community

Violo declinatae-Nardetum

Astrantio-Trisetetum flavescentis

Figure 9: Canonical correspondence analysis of the grassland communities and site factors.The intrinsic values are 0.438 for the first canonical axis, and 0.182 for the second.

The cumulative variance of the species-environment relationship is 71.4%(Brinkmann and Păcurar in Ruşdea et al., 2005).

Page 97: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 97 -

4.2.3.1. Grassland on wet tomoderately moist fertilised sites (Molinio-Arrhenatheretea)

Meadows occupied the majority ofdeep and sufficiently moist soils, andproduced 25 to 40 t/ha hay (Păcurar et al., inRuşdea et al., 2005). The effects of differentfertilization intensities on yields and on thefloristic composition were studied in thearea (Păcurar, 2005; Brinkmann, 2006).After mowing in July and sometimes againin September, nearly all of the meadowswere grazed whenever the weather allowthis activity. All of the meadows werefenced off to keep the animals out. Duringeither the winter or spring they werefertilised with farmyard manure, which wastransported by horse drawn carts, depositedin heaps, and spread manually.Approximately 90 t/ha fermented manurewere spread on the meadows which werecut twice, and about 20 t/ha on the meadowscut once.

The widespread grassland specieswere clover (Trifolium pratense andTrifolium repens), the grasses like Festucarubra, Agrostis capillaris, Anthoxanthumodoratum, Poa pratensis, and the herbs likeLeontodon hispidus, Veronica chamaedrys,Alchemilla vulgaris, Rhinanthus minor,Chrysanthemum ircutsianum, Hypericummaculatum, Lotus corniculatus, Prunellavulgaris, Achillea millefolium, Ranunculusacris, Plantago lanceolatum ssp.sphaerocephalum, Cerastium holosteoides andTragopogon pratensis.

The species composition of thegrasslands of the Gheţari area reflects themountain climate. Lowland species wereabsent, or restricted to few special sites, e.g.Arrhenatherum elatius to some roadsmargin. Differential species of the lessfertile grasslands were Centaureapseudophrygia, Colchicum autumnale,Stellaria graminea, Pimpinella major,Rumex acetosa, Trisetum flavescens,Cynosurus cristatus and Vicia cracca. Moistto wet places were often colonised by thespecies Cirsium heterophyllum (= C.helenioides).

Based upon differential speciesgroups and reflecting the water supply,meadows were subdivided into communitieson wet, moist and moderately moist sites.

(a) Meadows on wet sites:Meadows on wet sites, around springs,water courses and in valley bottoms werefrequent in mountain landscapes, but rare inthe limestone area of Gheţari. Differentialspecies were Filipendula ulmaria, Geumrivale, Lathyrus pratensis and Calthapalustris (Tab. I/14). They may be groupedwith the Angelico-Cirsietum oleracei Tx. 37em. Tx. in Tx. and Prsg. 51.

(b) Meadows on moist sites:Meadows on deep, moderately moist soilswere encountered on bottom slopes, terracesand near temporary streams of the karsts.During June and July, the differentialspecies Astrantia major and Trolliuseuropaeus characterise the landscape, withChaerophyllum hirsutum locally (Astrantio-Trisetetum Knapp, 1952) (Oberdorfer, 1983;Dierschke, 1997; Tab. I/15).

(c) Meadows on moderately moistsites: On moderately moist sites, productivemeadows with a high grass componentoccurred like Centaurea pseudophrygia(Polygono-Trisetion-community). The flowersof Centaurea pseudophrygia characterisedthese sites in July. These meadows providedmost of the hay for the winter. They can besubdivided into a more fertile ‘typical’ type(Tab. I/16), and a less productive transitionalThymus pulegioides-type (Tab. I/17).

4.2.3.2. Grassland on shallowunfertilised soils on limestone (Festuco-Brometea)

On shallow limestone soils, oftencombined with a high skeleton content,steep upper slopes and southern exposition,drought tolerant species formed grasslands.The water supply is low during the summer,and fertility was low. Therefore, intensivegrazing was the main land use. Hay wasonly produced when the dry grassland wasowned by poor farmers. The sward was verylow in each season. Often, stones have beenremoved from the surface and piled up alongthe forest edges and around the trees.

Page 98: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 98 -

The differential species were Linumcatharticum, Ranunculus bulbosus, Anthyllisvulneraria, Scabiosa columbaria, Euphrasiastricta, Plantago media, Sanguisorba minor,Polygala comosa, Silene nutans and alsoErigeron acris. Species such as Thymusserpyllum agg., Carlina acaulis, Hieraciumpilosella, Gentiana austriaca, Gymnadeniaconopsea, Antennaria dioica, Briza mediaand Achillea distans too were frequentcompanions, occurring also on moderateacidic, unfertilised grasslands. Similarlyvegetation has been described as Anthyllido-Festucetum rubrae Soó 1971.

The mountain climate means thatdrought does not become as extreme as inthe lowlands. Even on shallow soils, mesicspecies of the Molinio-Arrhenatheretea-meadows overlap with the drought stresstolerant species of unfertilised grasslands.Within the Anthyllido-Festucetum rubrae,slight site differences allowed to distinguishthree subunits:

A widespread ‘typical’ subunitcharacterised the landscape of shallowpastures on slopes and rocky limestoneplateaus (Minuartia verna-subunit). Thediagnostic species were Minuartia vernassp. glaucina, Salvia verticillata, Arabishirsuta, Carex caryophyllea, Helianthemumobscurum, Arenaria leptoclados, Hieraciumpiloselloides, Trifolium aureum, Potentillaargentea, Sedum hispanicum, Veronicaofficinalis, Gentiana cruciata and Gentianaciliata (Tab. I/19).

The small fern Ophioglossumvulgatum differentiated heavily grazedpastures on shallow rocky soil. It occurred insmall patches on shallow soil abovebedrock, e.g. in water runoff trails adjacentto boulders (Ophioglossum vulgatum-subunit; Tab. I/18).

Daucus carota, Echium vulgareand Taraxacum erythrosperma wereassociated on coarse stony, dry soil (lithicrendsinas; Tab. I/20).

4.2.3.3. Grassland on the acidicunfertilised soil (Nardo-Callunetea)

Soils on marl clays tend to bemoderately acidic (pH 5.5), and on sandstone

strongly acidic (pH 4.5). In meadows andpastures, acidic grassland species (Nardo-Callunetea) were able to coexist with species oflimestone grasslands (Festuco-Brometea) andfertilised meadows (Molinio-Arrhenatheretea),depending on the base status and fertilisation.

Diagnostic species of the acidicgrasslands were Nardus stricta, Potentillaerecta, Viola declinata, Potentilla aurea,Luzula multiflora, Carex pilulifera andHieracium lactucella. Differential species ofthe high elevations were typical. Similarvegetation has been described and namedViolo declinatae-Nardetum Simon 1966.

Species-rich and species-poor acidicgrassland could be distinguished due todifferences in mowing, grazing frequencyand intensity (Tab. I/21, 22).

Species-rich acidic grassland: nearthe village of Gheţari all grassland on acidicsoils was privately owned and used asmeadow or pasture. During the autumn andwinter, all grassland was grazed wheneverthe weather permitted that. The resultinggrassland community was very rich inspecies (Tab. I/21). The diagnostic plantspecies were Euphrasia rostkoviana,Polygala vulgaris, Arnica montana (Fig. 10),Euphorbia carniolica, Hieracium aurantiacum,Traunsteinera globosa, Danthonia decumbens,Botrychium lunaria, Scorzonera rosea, andin rare cases the orchid Leucorchis albida.The presence of similar meadows withstands of Dactylorrhiza saccifera and Orchissambucina and in nearby villages is alsoworth mentioning. At the end of April, andat increasing elevations, the spring geophyteCrocus vernus dominates the landscape.

Species-poor acidic grassland: thecommunity owned common pasture ‘PoianaCălineasa’ is situated outside of the Gheţariarea, at a higher elevation (about 1,350 mabove sea level). It was severely overgrazedwhenever the weather permitted. BetweenMay and July mixed herds of cattle, horsesand sheep in Poiana Călineasa grazed at adensity of 0.64 livestock units/ha (includingthe forests), and 1.05 livestock units/ha on thegrassland alone. The permanent overgrazingresulted in a very low sward entirely dominatedby mat grass (Nardus stricta) (Tab. I/22).

Page 99: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 99 -

Figure 10: Arnica montana in a moderately acidic grassland.

4.3. Vegetation of forest edgesThe boundary between grassland and

forest is less subject to human impactthrough mowing and/or grazing, andexhibits an increasing cover of shrubs andtrees. Within this ecotone, “intermediate”species form a more or less distinct fringevegetation and wood margin scrubland.

4.3.1. Forb fringes adjacent toforest edges

Typical fringe species are sensitiveto frequent removal, but tolerant to semi-shade conditions. Four different fringecommunities were distinguished, dependingon the water supply.

(a) Telekia speciosa-fringe on moistsites: forest edges with soil characterised bymoving ground water within the roothorizon were colonised by a tall fringevegetation dominated by Telekia speciosa, atall forb species (Tab. I/23). Other differentialspecies were Geum rivale, Crepis paludosa,Stellaria nemorum, Geranium phaeum andCardamine hirsuta. Such vegetation is rareon the well-drained soils of limestone areas.Similar vegetation has been described asTelekio-Filipenduletum ulmariae Coldea1996 (Fig. 11).

(b) Fringe vegetation on moderatelymoist to dry sites: woodland boundaries onmoderately moist to dry sites weredifferentiated by Cirsium erisithales, Melittismelissophyllum, Hypericum perforatum,Campanula persicifolia, Digitalis grandiflora,Calamintha clinopodium, Verbascum nigrum,Epipactis atrorubens, Solidago virgaureaand the species Poa angustifolia. Severalfloristically similar fringe communities weredistinguished, but more detailed floristic andecological studies are still necessary.

(c) Fringe with Laserpitiumlatifolium: thermophilous fringes withLaserpitium latifolium reach the upper limitsof their distribution. Found on stony, sunexposed forest edges and mantle structures,they were very rare (Tab. I/24).

(d) Fringe with Seseli libanotis:fringes found on southerly exposedlimestone slopes with shallow, rocky soilsprovide niches for thermophilous, basegrassland and fringe species (Tab. I/25).Differential species were Seseli libanotis,Teucrium chamaedrys, Trifolium montanum,T. aureum, T. medium, T. ochroleucon,Phleum bertolonii, and rarely Heracleumsphondylium ssp. elegans.

Page 100: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 100 -

Figure 11: Telekia speciosa forb fringe.

Figure 12: Stachys alpina is found along forest edges and in clearings on shallow limestone soils.

Page 101: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 101 -

(e) Fringe with Chaerophyllumaromaticum: This species was found in fewsemi-shaded fringes on southern exposedlimestone slopes (Tab. I/26).

(f) Fringe with Ranunculuspolyanthemos: mesic forest edges onshallow rendsinic soils provided habitats forboth forest floor and grassland species(Ranunculus polyanthemos-Trifolion medii-community, Tab. I/27; Fig. 12).

4.3.2. Forest edgesCompared to Central Europe shrubs,

the wood margins of the area contained veryfew light-demanding shrub species, in lownumbers. This is likely due to the ongoingsuccessional processes in these rather youngand still unbalanced ecosystems. Floristicallythey are related to an association describedas Spiraeo-Coryletum Ujv. 1944. Twocommunities are distinguished, dependingon the water supply.

(a) Hazel (Corylus avellena) woodmargins of moderately moist to dry soils:wood margins on rendsinic soils were oftendominated by hazel (Corylus avellana) (Tab.I/28). Locally, Rosa canina and Rosacorymbifera were associated. On the ground,many species associated with a mild climateoccurred, including Campanula trachelium,Chaerophyllum aromaticum, Stachys alpinaand Cruciata laevipes.

(b) Spiraea chamaedrifolia woodmargins of moist soils: the shrub speciesSpiraea chamaedrifolia, Rosa pendulina,Rosa canina, Lonicera xylosteum, and thepioneer trees Salix caprea, Sorbus aucuparia,and rarely Pyrus pyraster, form the Spiraeachamaedrifolia-community (Tab. I/29, 30). Itwas found on wood margins and in theclearings of depleted forests on loamy, moistsoils (Tab. I/29). The diagnostic herbaceousspecies were Cicerbita alpina, Anthriscusnitida, Senecio nemorensis, and species ofmoist sites, e.g. Crepis paludosa,Chaerophyllum hirsutum, Actaea spicata,Aegopodium podagraria, Urtica dioica andThalictrum aquilegifolium. Naturally openbeech forests on limestone were sites forSpiraea chamaedrifolia, associated withlimestone rock species (Tab. I/30).

4.3.3. The dynamic vegetation ofunstable forest edges

In Central Europe the boundariesbetween the open land and forest are strictlyfixed, mostly as a result of the forest laws ofthe 19th Century (Hasel, 1985; Mantel,1990). Following decades with spatiallyfixed ecotones at forest edges, distinct forbfringe and shrub communities could develop(Dierschke, 1974; Küster, 1998).

In the Romanian mountains, theboundary between grassland and forest isless clear, not fixed spatially, and often ingradual transition. Since about 1995, humanimpacts upon the landscape have increased,including felling or girdling of trees andforest pasture, the mowing of grassy patchesalong forest edges and even between trees.The regrowth and regeneration of woodyplants cannot compensate these losses.Beginning with the forest margins, thegrassland area has been permanentlyextended over the last few years. Many ofthe existing forest edges are, therefore, quiterecent (Figs. 13, 14 and 15).

A complex of abiotic and bioticfactors results in a vegetation pattern fromthe closed forest to the open wood margins.Ninety relevés on limestone rendsina soilswere selected from the complete data setin order to analyse the land use gradient inthe forested parts of Gheţari. The relevéswere classified using a histogramtransformation of the data (Fischer, 1994).They were normalised, classified using vander Maarel´s similarity index, and clusteredby the minimum variance method (MuvaV; Wildi, 1989; Wildi and Orloci, 1996).The result was ten relevé groups. Thespecies were grouped after selecting thediagnostic species using the Monte-Carlo-discriminate analysis (standard error being <1%; 113 species remained). The speciesvector scores were normalised. Twenty-fivespecies groups were formed throughapplying the Ochiai-Index and classificationthrough minimum variance clustering(Ward, 1963). Following an analysis ofconcentration, the vegetation table wasconstructed (Tab. III), containing thediagnostic species.

Page 102: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 102 -

Figure 13: Wood pasture in forb-rich mixed mountain forest contributesto structural and floristic diversity.

Figure 14: Recently felled spruce trees on the edge of mowed and grazed meadows.The grassland area is expanding in the old forested area.

Page 103: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 103 -

Figure 15: Recently cleared forest edge with fern-covered, rotting tree stumps.Regular mowing is the final step in the conversion of forest to grassland.

An unstable and shifting structuralmosaic formed by trees, shrubs and openpatches is characteristic of the forest edgesin Gheţari Village area. The process offloristic differentiation and formation ofdistinct plant communities is still ongoing.Many relevés comprise a mixture of relictforest plant species, grassland species oreven ruderal species, as well as plant speciestypical for the forest edges. It is worthmentioning that only very few of the plantspecies of the wood margins are typical“fringe” (Trifolio-Geranietea or Prunetalia)species according to Ellenberg (1996). In theclearings and along wood margins, the forestspecies are replaced directly by grasslandspecies (Molinio-Arrhenatheretea, Festuco-Brometea).

4.4. Forest vegetationIn the mountain southern and

western parts of the Apuseni Mountains,beech (Fagus sylvatica) was associated withfir (Abies alba), spruce (Picea abies), maple(Acer pseudoplatanus) and a few other trees.

56.4% of the surface was covered byforest (including forest edges), with closed(31.7%) to light (24.7%) canopies (Fig. 16). Asouthern exposition, base soils and slopingtopography favoured the growth of beech.Spruce naturally dominated in frost hollows(dolines), on acidic and wet soils, andoutside Gheţari towards the mountainpasture in the subalpine belt up to the treeline. On the ground were speciescharacteristic of a prealpine-precarpathiandistribution, e.g. Moehringia muscosa,Salvia glutinosa, Adenostyles alliariae,Cicerbita alpina, Senecio hercynicus (= S.nemorensis), Aconitum tauricum and A.paniculatum. Symphytum bulbosum, S.cordatum, Dentaria glandulosa andAconitum callibotrys were thebiogeographically eastern species.

4.4.1. Beech-fir-spruce mixed forestThe forests around Gheţari are

formed by beech, fir and spruce.Unregulated forest use, canopy gaps andclearings favoured the regeneration of thetrees, which develop into structured stands.

Page 104: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 104 -

The high frequency of species with aprealpine to precarpathian distribution isnoteworthy (Fig. 17).

Lonicera xylosteum and Violareichenbachiana were found on limestonesoils. Mycelis muralis, Rubus fruticosus andGeum urbanum were considered nitrogenindicators. Veronica urticifolia, Salviaverticillata, Aposeris foetida, Clematisalpina, Valeriana tripteris reflected themountain climate. Widespread, particularlyon fresh soils, were Lamium galeobdolon

ssp. galeobdolon, Senecio ovatus, Galiumodoratum, Daphne mezereum, Parisquadrifolia, Symphytum bulbosum,Pulmonaria officinalis and also P. rubra.Acer pseudoplatanus, Mercurialis perennis,Euphorbia amygdaloides, Fragaria vesca,Hieracium rotundifolium, Sanicula europaea,Polygonatum verticillatum, Veronica officinalis,Aconitum vulparia, Poa nemoralis andDryopteris filix-mas were found on the basesoils in forests and along the local forestmargins.

Figure 16: Plant communities (simplified) of the forests and forest edges (172 ha area) in Gheţari.

(a) Beech-fir-spruce forest onmoderately dry limestone soils

In this study several floristicallyclosely related forest types were identifiedon limestone: the dominant grass speciesFestuca drymeia, Carex digitata, Galiumschultesii, Epipactis helleborine, Pyrolasecunda, Neottia nidus-avis, Hepaticanobilis and Brachypodium sylvaticum

differentiated beech dominated forests onshallow rendsinic soils with F-mull (Tab.I/31). Carpathian forests with more acidicsoils dominated by Festuca drymeia weredescribed as Festuco drymeae-FagetumMorariu 1967 (Morariu et al., 1968; Coldea,1991).

Page 105: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 105 -

On the boulders and blocky sites,Glechoma hirsuta, Geranium robertianum,Ribes alpinum and Lamium maculatumwere differential (Glechoma hirsuta-Fagussylvatica-community) (Tab. I/32). The deepgaps between the boulders were filled bydecaying leaves (F-mull).

Dentaria glandulosa and alsoHordelymus europaeus increased infrequency with an improved water supply tothe soil. Similar forests have been namedSymphyto cordatae-Fagetum Vida 1963(Coldea, 1991; Doniţă et al., 1992) (Tab.I/33).

Figure 17: Mixed mountain forest; canopy gaps result from the harvesting of selectedconifer trees, which regenerate in the understory.

(b) Beech-fir-spruce forest onmoist sites (Aceri-Fagetum)

Moist forest sites on shady slopes oron loamy soils with slightly acidic topsoilwere differentiated by Rubus idaeus,Athyrium filix-femina, Stellaria nemorum,Petasites albus, Leucanthemum waldsteinii(= Chrysanthemum rotundifolium), Cicerbitaalpina, Milium effusum, Anemone nemorosa,Myosotis sylvatica, Stachys sylvatica, andrarely Aconitum paniculatum (Tab. I/34).Similar beech dominated mixed forests weredescribed in Central Europe as Aceri-Fagetum Rübel 30 ex J. and M. Bartsch 40,and in the south-eastern Carpathians asLeucanthemo waldsteinii-Fagetum Täuber1987 (Coldea, 1991).

4.4.2. Spruce forestForests in frost hollows near the base

of large dolines in valley bottoms areseverely endangered by late frost. Spruce, asthe most frost tolerant species, dominatedthe forests, whereas fir and beech are lesscompetitive, slow growing, and completelyabsent under extreme conditions. The soilstended to be deep, loamy and slightly acidic,even in limestone areas. Depending on thebase saturation, base-dependent specieswere overlapping with or replaced speciesof acidic soils. Two types of spruce forestwere distinguished in the studied area, thefirst with tall forbs on nutrient rich sites, andthe second with species tolerating acidicsoils.

Page 106: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 106 -

(a) Spruce forests on nutrient richsites with tall forbs (Leucanthemowaldsteinii-Piceetum Kraijina 1933): Theground vegetation of spruce forests onnutrient rich loamy soils was similar to theAceri-Fagetum (Tab. I/35, 36). In the treetier, spruce gained absolute dominance,however (Tab. I/35). The name giving daisyLeucanthemum waldsteinii had a mediumfrequency. Differential species of spruceforests on less fertile sites were the tall forbspecies Veratrum album ssp. lobelianum,Doronicum austriacum and Adenostylesalliariae, also as well as Lonicera nigra,Gymnocarpium dryopteris, Vacciniummyrtillus and Dryopteris expansa. Thesespecies were also found in the Aceri-Fagetum. Similar forests in Austria weredescribed as Adenostylo alliariae-Piceetum(Zukrigl, 1973), and in Bavaria area asAdenostylo glabrae-Piceetum (Ewald, 1999).The clearings resulting from timberextraction combined with wood pasturefacilitate the entering of many grassland andfringe species into the forest (Tab. I/36).

(b) Spruce forests on acidic sitesSpruce forests on moderately acidic

loamy sites were differentiated byHomogyne alpina, Soldanella montana,Luzula luzulina, Deschampsia flexuosa,Galium rotundifolium, and rarely Streptopusamplexifolius and Carex brizoides, and themesophytic mosses Hylocomium splendensand Plagiomnium affine (Tab. I/37).

Acidic mosses were infrequent, andincluded Sphagnum quinquefarium, S.girgensohnii, Pleurozium schreberi,Dicranum scoparium and Polytrichumformosum. Similar forests were described asSoldanello majori-Piceetum (Coldea andWagner, 1998).

With decreasing base content, thebase species disappeared, and acidic speciessuch as the Calamagrostis villosa speciesand Lycopodium annotinum species gainedlocal dominance (Calamagrostio villosae-Piceetum) (Tab. I/38). These standsrepresent a transition towards spruce forestson acidic sandstone or on the margins ofmires.

5. THE APUSENI MOUNTAIN VILLAGES - A “REFERENCE” LANDSCAPEOF TRADITIONAL RURAL AREAS?

In traditionally used landscapes theinhabitants have had to adapt their practicesto the natural environment and theprevailing site conditions. The land useactivities of the farmers modified theoriginal forest into a cultural landscape,creating a mosaic of forest structures andtransitional gradients towards the open land.In different parts of Eastern Europe, sometraditionally used landscapes preserved therelated vegetation pattern until today. Theirvarious combinations of different sites andhuman treatments formed landscapes richin structures, species compositions andhabitats, which still can be experienced inthe Apuseni Mountains, including theGheţari Village.

In the studied area surrounding theGheţari Village, eight semi-natural forestcommunities were found, differentiated bysoil and mesoclimate. Only 31.7% of theforests had closed canopies (Fig. 18).Logging and wood pasture have opened the

canopies, and altered the tree speciesproportions. The recent immigration ofruderal, grassland and forest edge species ischaracteristic for many stands, particularlynear settlements. In numerous Europeancountries, similar grazed types of forests,sometimes with park-like structures, areattributed higher nature conservationvalues than the ‘homogenised’ timberproduction forests (Ewald, 2000; Mayer etal., 2003).

Landscapes with similar proportionsof grassland types on unfertilised soils(Festuco-Brometea, Nardo-Callunetea) areranked highly in the Central Europeanhabitats assessments (e.g. Dörpinghaus etal., 2003; Horlitz and Mörschel, 2003). Theyoccupy around 11% of the open land of thearea of the Gheţari Village. The open land ofthe ‘Poiana Călineasa’ high pasture area isnearly completely covered by Nardus-dominated, species-poor Nardo-Calluneteavegetation.

Page 107: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 107 -

Figure 18: Relative frequency of land use types in the study area,the Gheţari Village with a surrounding area of 308 ha.

Different specific floristic elementsare combined in a vegetation mosaicon the open land. Generalist herbsand grasses, species of semi-natural,unfertilised grasslands, nutrient demandingspecies and lowland and subalpinespecies take advantage of the improvedlight conditions created by man andhis grazing animals. Floristic elementsadapted to increased disturbance causedby different management practices andsite properties formed a total of tenruderal plant communities, five grasslandcommunities and also seven transitionalshrub and fringe communities along tothe forest edges. The average numbersof vascular species of the ruderal vegetationranged between 13 and 26, and was 29 inthe successional stages between fallowfield and meadow (Tab. I). The grasslandand forest edge communities were particularlyspecies rich with 28 to 48 vascular specieson average.

Similar land uses like in GheţariVillage area were frequent in temperateEurope in the past (e.g. Küster, 1998), butmost of them were transformed. Changes tothe economy and land use techniques havemodified cultural landscapes throughoutthe time, including their land use types(Fuhr-Bossdorf et al., 1999), the ecosystemsand the structures (Küster, 1998; Pottand Hüppe, 1991; Rackham, 1986) andthe species compositions (Ellenberg,1996; Fry, 1998; Vandvik, 2002).Today, however, the underlying processeschange over shorter time periods. Theinterdiction of wood pasture, coppicingand litter raking resulted in conflictsbetween farmers and foresters lastingcenturies in Germany and Switzerland(Germany: Hasel, 1985; Mantel, 1990;Switzerland: Brockmann-Jerosch, 1936),decades in Italy (Salvi, 1982; 1983) andyears in Greece (Halstead, 1998; Grove andRackham, 2003).

Page 108: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 108 -

6. THE FUTURESince around 1990, changes to

the economies, societies and politics ofEurope, and across the globe, havealso started to impact upon the Romaniannational territory, and its landscapes. Theland uses and the landscapes of the EasternEuropean mountain regions have begunto face completely new economic and alsoecological problems. Up until now, thepartial collapse of the national industriesin the cities, combined with the illegalextraction of forest products and subsequentwood pasture in rural areas (Fig. 13), hasled to a stabilisation for the moment ofthe population density outside the cities.The inevitable coming overexploitation willlead to a collapse of the timber resources,however.

Drastic economic and ecologicalchanges have been predicted for the comingyears (Ruşdea et al., 2005). The increasedincorporation of the household economiesof the Romanian farmers into the worldmarket will inevitably lead to future socio-economic changes, and will also affect thelandscape structure. Differences in familystructures, equipment and capital resulted inan increase in economic and socialdifferences. In particular, the elderly remainbound to their traditional ways of life andfind themselves in increasing poverty. Thepopulation is declining in the face of limitedemployment opportunities and poor services(Abrud and Turnock, 1998; Surd andTurnock, 2000).

Accelerated changes occurred duringthe years between 2004 and 2009, i.e., thetime period of Romania joining theEuropean Union (Tab. 2). For instance inGheţari Village, since the year 2006 thefirst grassland on less fertile soil wasabandoned. As it can be observed in GheţariVillage area at the local scale, it can beexpected on a national scale that land useintensities between productive regions, e.g.lowlands with fertile soils, and regions withmarginal sites, e.g. mountains, will increase.The specialization of whole landscapes willaccelerate at the expense of the diversified

small-scale farming and the related multi-functional landscapes. The economicpressures upon the rural households inmountain areas will increase. The milkprice in Romania, and the related valueof dairy products, has dropped to the worldmarket price of 23-46 cent per litre (23 ondiary, 46 on private market). This willprovoke processes of increasing farm size,specialization, mechanization andintensification of the more fertile soils. Theagricultural use of marginal soils willdecrease, or will be abandoned completelyand the land afforested. All unfertilizedgrassland plant communities and theirrelated fauna will be endangered. Suchprocesses have taken place in Central andWestern Europe over the last decades, withnegative consequences for biodiversity andlandscape patterns (Vos and Stortelder,1992; Groth and Bressi, 1997; Klijn andVos, 2000). The amelioration of productivesites, and the intensification, mechanizationand rationalization of production willform simply structured “checkerboardlandscapes” and also “scattered patchlandscapes” (Forman, 1995; Stachow, 1995;Wrbka et al., 1999). Reducing land useunder less favorable climates, andsuccession and aforestation on marginalsites will change the plants of theselandscapes (e.g. Vandvik, 2002). Thespecies compositions knowledge, landuse techniques and landscape patternscontributes to the appreciation andpreservation of the existing values. Theseinclude the maintenance of unfertilizedgrazing land and their biocoenoses, andof structurally complex wood edges asvaluable landscape elements for natureconservation. For the region development“PROIECT APUSENI” recommends acombination of ecotourism, cattle farmingand forestry (Ruşdea et al., 2005). This willhopefully provide sustainable developmentin these mountainous areas, and at the sametime help to preserve at least some of thesehabitats.

Page 109: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 109 -

Table 2: Recent changes of land use and landscape in the village of Gheţari.

Year Recent change

1990 First private truck (for the timber transport)

1995Public electric power supply and for all families which were able to finance the

connection to their household

2002First private car

2002Continued abandonment of cultivation of cereals

2004Opening of the first ecotouristic pension

2005Fallow grassland on less fertile soil

2006First mowing-machines

2008Public water supply and for all families, which were able to finance the connection

to their household

Page 110: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 110 -

Table I: Frequency table of the vegetation of the cultural landscape of Gheţari, ApuseniMountains.

Page 111: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 111 -

Page 112: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 112 -

Table I (continued)

Page 113: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 113 -

Page 114: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 114 -

Table I (continued)

Page 115: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 115 -

Page 116: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 116 -

Table I (continued)

Page 117: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 117 -

Page 118: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 118 -

Table I (continued)

Page 119: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 119 -

Page 120: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 120 -

Table I (continued)

Page 121: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 121 -

Page 122: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 122 -

Table I (continued)

Page 123: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 123 -

Page 124: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 124 -

Table I (continued)

Page 125: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 125 -

Page 126: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 126 -

Table I (continued)

Page 127: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 127 -

Page 128: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 128 -

Table II: Vegetation patterns of gardens and fields, fallow land and successionalmeadows.

Page 129: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 129 -

Page 130: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 130 -

Table II (continued)

Page 131: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 131 -

Page 132: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 132 -

Table III: Vegetation gradient from closed forest towards overlogged, grazed forest edgesRelevé group no.: 5: Fagus-Abies closed forest; 6: Fagus-Abies closed forest with Picea; 9:Fagus closed forest; 10: Fagus-Picea closed forest; 7: Fagus closed forest on slopes, shallowsoil; 8: Open, grazed Fagus-Picea forest; 4: Wood margins with shrubs; 2: Nitrophytic woodmargins; 1: Forb-rich mesophytic wood margins; 3: Open wood pasture.

|===========================================================================| RELEVE GROUP NO. | | | |111111111111111| | | | | | ||55555|666666666666|9999999999|000000000000000|7777777777|88888888888|44444444|2222222|111111|333333||------------------------------------------------------------------------------------------------------------------------------|| RELEVE NO.|64655|768648877757|5485555556|665664248655867|7575877787|75555555555|21868561|886677|5511 |756622|| |91910|060800066906|0000011110|770290110612189|9089088709|27772223332|27697180|541194|222177|271752|||65506|744333254097|7672853829|434022788391222|3176680717|10217565324|72440176|6765117|831587|031584||===========================================================================| 2 Abies alba B2 8|a3 a3|4abbab1a4b1a| | + + | | | | | | || 1 Abies alba B1 8|bb a3|31bbaa1a31a1| | 1 | | | | | | || 3 Abies alba B3 8|1ba+b|baaa+1113a1a| + | + a | 1 | | a | | | || 5 Abies alba S 8|b33 1|abba++1a1111|ab | 1+ + |1 + 1 | | a | | 1| ||------------------------------------------------------------------------------------------------------------------------------||192 Oxalis acetosella 9|1m1mm|mmm1m++ 11+ |m1ma11 |m1 1mmma+m1111 | |+m1m + | 1| | | || 4 Abies alba K 9|1a1r+|1+1m++mm111 |131 + r+| mb+1 1 1 11+r| 1 + r |++++ + + | 1r | | | | |258 Senecioovatus 9|r+ ++|m1 11 r +rr|11++r1++ r|+ m ++111a1br1 | r |+ + | 1 1 | | | r ||243 Rubus fruticosus agg. K 9|+ +11|11 r ++ | 1 1+rr r| 1+a + 11 + + | r | | 1 | | | || 98 Dryopteris filix-mas 9|+++ar|+1+++ r +r |1+++r++ ++| +1r++ 1+11r++| + + r++| | ++ | ++ | | || 92 Dentaria glandulosa 9|m mr+| +1m1 1 |+1mm+m1m+m|1 ++ 1+11+m1+11| | + rar1| | | | ||234 Ribes alpinum K 9|r |r+ + |1 r++ +| + r | r | | | | | ||------------------------------------------------------------------------------------------------------------------------------||249 Salvia glutinosa 10| |+1+ 1 r ++r| + +r+ + |1m111+1 a+ + | + 111 1++|+m1m1 rr1+|+1a+m++ | | r|++r || 90 Daphne mezereum 10| r|++r rr +| + + +r|11 r ++++ rr++| + + r r |++++ +r ++| r + | | | r+ ||184 Mycelis muralis 10| r|+1r + +rr|r1++ ++ 1 |mm111111 m 111+|1++11+++ |++ ++ +11|1 + m1 | + + | r| ||125 Galium odoratum 10|+ m1|mmmmm mm11m |mmmab1m1+1|mm3m1mm1ammm1m |1111a111m1|mm 1m+11m| ++1 1 |1+ | | || 91 Dentaria bulbifera 10| | +1 +m 1111| r1+ +m|r r+ 1++1+|m+m111 m |++ a11 | + | 1 |+ | ||265 Sorbus aucuparia K 10| rr|11++ +rrrrr+|1+ r+111+r| +1+1+11++++| + + r | +r++r1 +1 | | ++ | r | ||------------------------------------------------------------------------------------------------------------------------------||112 Fagus sylvatica B3 11|a33a+|1bbaaabbabaa|aaaaabab11|aaaaaaba a3+3bb|33abb1ab53|aaaaaaaaa13||bb4433b|b1ab11| ||111 Fagus sylvatica B2 11|bb43a|1bb3a343a434|333ba4b3bb|3aa11abaa31a35|45b434b334|+1aab3b3313| |3334a b|3abb1a| ||110 Fagus sylvatica B1 11|4a443| 1331443a133|3354345545|bab 1+ a41aa1| 534554bb| 1 b4bb341a| |44 a4|3a4333| ||114FagussylvaticaS11|+aa++|baaaa111+a|aa11+1b++|1aaba3a111aa1|a++11+aa|ba1111b11+1|+r1|b144ba1|+1a++|||126 Galium schultesii 13| | 1+ | r | + +1+|11+11mmm++|+111 + | 1m 1|+ m1 | | |

Page 133: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 133 -

| 57 Carex digitata 13| |r+ 1 1m+1+| | + + ++ |11++ +111m|m1mmr 1 m|mm1 + | + | +1|+ ||------------------------------------------------------------------------------------------------------------------------------||198 Picea abies B3 24| |1ba1+1111+1 | + 1 |a +ba3a1+ab1| ++ 1 |aaa3a11aa11| 1 + | +1 | +++|a+aa ||197 Picea abies B2 24| |1abb+b1aaaa1| 1 a |a 1 abb3aa133+| + |aa4311aa3aa| a + | | 11a|a+a1 ||200 Picea abies S 24| + + | a+11111 + 1| 1+ + |11+ ++aab+ a1+| ++ 1 |aba111a1a | + 1 | ++ a | ++b1 |a+aa||196 Picea abies B1 24| |113a a11a1a1|3 1 |a 1 1ba3aa 3b | 1 |a133b aabab| | 1| 1ba1| + ||------------------------------------------------------------------------------------------------------------------------------|| 8 Acer platanoides B3 14| | | | |1 + 11| + | |1+ | | || 7 Acer platanoides B2 14| | | | |1 1 1+| | |++ | | ||103 Epipactis helleborine 14| | + +| ++ 1| +|++++11+1+1| r ++r | + |+r++1+ | | || 89 Dactylis ssp aschersoniana 14| | | | |++ + | r | |+m +1 | | ||------------------------------------------------------------------------------------------------------------------------------||294 Valeriana tripteris 25| | 1+ | + | +1r1 bm |1+ + 1m1m|am11 ++a bm|1a ++ | 1 | + + | 1 || 74 Clematis alpina K 25| | 1+ | | + + ++ | 1 ++ |1111 +1 a1| + | 1 | a | + ||176 Melittis melissophyllum 25|r | ++++1| + | 1 +++r+++|11 + ++ ++|++++m+1+r+1| ++ |11 +++|1m+++| ||------------------------------------------------------------------------------------------------------------------------------||177 Mercurialis perennis 22|+ + |aa1m1 11mmm| 1 + mm+| + 111a amm+mmm|am1m 1 m|1b a1111am|1am1ra +| mmam+|1a1a11| r +||121 Fragaria vesca 22| |1b+1+ ++ | + 111m |1mmm+111+a mm |1m 1 ++|m11m1m1++1m| +m1abmr|mm31++|mm111+|1m+ m || 27 Ajuga reptans 22| |1+++ r 1++|+ + 1+++r|r 111 ++11+ 1+|++ | ++++ + r+|+ m1m1+ |m1 ++| 1 + +|111m1|| 14 Acer pseudoplatanus K 22| + +|+1 +1+++ + |11+1++1 +|+mmm 1a1a+ m1++|++ + |m++++m11m1|+++1+m1+| 1 + 1|++ 11 |1rm ||------------------------------------------------------------------------------------------------------------------------------|| 67 Chaerophyllum aromaticum 15| | | r m | + + | r +| r| a |+1 1b | | || 51 Campanula trachelium 15| | r | +r | r + |+ | + r1| +1 |11 1+ |+ | ||263 Solidago virgaurea 15| r | + | r | r | + |+ r | + |+ +++| | || 82 Corylus avellana S 15| | a ++ | | ++a b++ 1+ |a+ 1 ++ |3aa+ +| + b |a a+44a| |+ ||------------------------------------------------------------------------------------------------------------------------------||127 Gentiana asclepiadea 23| | 1| | + + + | + | ++ 1 | b1a+ b| |r 1 | ++ || 35 Aposeris foetida 23| | | 1 + | m m 1m++a | r | a+ 11 aa|+bm1 m | m |a a1 | mr||199 Picea abies K 23| +++ | 1 1+ | + r rr|11mm ++11 1+ | + |1a+ r+++ +|1+++++ r| + + |++ ++ |1+r++ ||145 Hieracium transsylvanicum 23| | + + r | | 1 1 1 1+ | |+ r1 r+r + |ma + r| |1 +1+1|r ||------------------------------------------------------------------------------------------------------------------------------||229 Ranunculus acris 18| | | |rr r | | | ++++ | + | | || 68 Chaerophyllum hirsutum 18| | | | r | | | a 1+ 1| + | | ||289 Tussilago farfara 18| | | | r | | r| ++ + | | | |

|RELEVE GROUP NO. | | | |111111111111111| | | | | | |||55555|666666666666|9999999999|000000000000000|7777777777|88888888888|44444444|2222222|111111|333333||------------------------------------------------------------------------------------------------------------------------------||RELEVE NO.|64655|768648877757|5485555556|665664248655867|7575877787|75555555555|21868561|886677|5511 |756622|| |91910|060800066906|0000011110|770290110612189|9089088709|27772223332|27697180|541194|222177|271752|||65506|744333254097|7672853829|434022788391222|3176680717|10217565324|72440176|6765117|831587|031584|

Page 134: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 134 -

|===========================================================================|206 Poa angustifolia 16| | | | | | | | 111 +|1 | ||124 Galium album 6| | | |+ + | |1+r |+1 ++mm |11aa 1|11+m+1|m1++m ||119 Festuca rubra agg. 6| | | |+1 ++ + | |aa+ | a1mma |bmaammm|bb3bab|3b3ama||231 Ranunculus polyanthemos 6| | | | r + | |1 + + r | 1 +1| +r 1+| 1+111|+ +1m||285 Trifolium pratense 6| | | | +1 | | | + mm11 | 111+ r|1m11+ |11mmma|| 62 Carlina acaulis 6| | | | |r | + | + r r| +++r|r+ 1aa|rr m1 || 76 Clinopodium vulgare 6| | | | + |+ |11+ | m1 m | m 1+ | ++ +|+++11 ||274 Taraxacum spec. 6| | + | |++rrr r+ | | r + |+ 1 1 1|++ + +r|a+m1 +|1 1 m||------------------------------------------------------------------------------------------------------------------------------||255 Scabiosa columbaria 5| | | | | r |r r r| 1 m | + |+1++1 | + +m1||201 Pimpinella major 5| | | r | r+ r | + | r r1|1a + 1 | +1|+++1 +| r 11m||222 Prunella vulgaris 5| | | |11 1m + | | 1 | 1mmm1m+| a |m1+1+1| mam11|| 32 Anthoxanthum odoratum 5| | + | |1+ 1 + | |+ + | 1+ 1 1+| 1 |1 mm1+|m1mmm ||151 Hypericum maculatum agg. 5| | | | 1 ++ + ++ r | |+ | 1mam+m+| 1 r| +a++|1 1mm+||286 Trifolium repens 5| | | | + | | | 1 a+ | m |11+1 1|++a1 1|| 28 Alchemilla vulgaris agg. 5| | | | r | | | +1 m1 |+r |+r 1r |1m1111|| 87 Cynosurus cristatus 5| | | | | | | ++ + | |+ 1 | + m m||------------------------------------------------------------------------------------------------------------------------------||299 Veronica chamaedrys 4| | | | + + | |+ | 1++1+ |1111+ | r |+1m+1+|| 25 Agrostis capillaris 4| | | |++ 1 | | | m1m m|aa + +| a 1 |m1ammb||189 Ophioglossum vulgatum 4| | | | | | | | + | | 1 1||------------------------------------------------------------------------------------------------------------------------------||245 Rumex acetosa 7| | | | r | | | | r + |++ | 1 1+|| 64 Centaurea pseudophrygia 7| | | | | | | | + ++| ++ |rr 1 m||204 Plantago media 7| | | | | | | + | 1+ +| + +1+|mm1mma|| 48 Campanula patula 7| | | | | |+ | 1 | 1 + | ++| +11a||262 Silene nutans 7| | | | | | + | m | 1111 +|+1+ ++|1+ 1+||159 Leucanthemum vulgare lam 7| | | | | | | + + |+r++ 1 |m+ 1+ |+m m1a||278 Thymus pulegioides 7| | | | | | | am 1| mm 1 |mm11aa|a3aa31||157 Leontodon hispidus 7| | | | | | | 1 m+ | m + +|m1+ m | 1+1m1||17Achilleamillefolium7|||||||+|+m++|mm1m11|mmmmmm|

ACKNOWLEDGEMENTSThis study was supported by the BMBF/Germany (Bundesministerium für Bildung und

Forschung; Förderkennzeichen BMBF; 0339720/5). Our thanks to numerous colleagues withinand outside of the 'Proiect Apuseni' for their support and contributions.

.

Page 135: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 135 -

REFERENCESAbrud I. and D. Turnock, 1998 – A rural

development strategy for theApuseni Mountains, Romania.GeoJournal 46: 319-336.

Auch E., 2005 – Familienwirtschaften imUmfeld eines Transformationslandes,in: Ruşdea E., Reif A., Povară I. andKonold W. (eds.): Perspektiven füreine traditionelle Kulturlandschaft inOsteuropa, Ergebnisse eines inter-und transdisziplinären, partizipativenForschungsprojektes in Osteuropa.Culterra 34: 119-122. (in German)

Auch E., 2006 – Überlebensstrategienwaldnutzender Familienwirtschaftenim Apuseni-Gebirge, Rumänien,Sustainable Livelihood Analyse undHandlungsempfehlungen, SchriftenInstitut f. Forstökonomie, Univ.Freiburg, 27, 256, + addenda 202. (inGerman)

Bleahu M. and Bordea S., 1967 – Apuseni -Bihor - Vlădeasa Mountains. -U.G.F.S. Printing House, Bucureşti.

Bleahu M. and Bordea S., 1981 – MunţiiBihor-Vlădeasa, Ed. Sport-Turism,Bucureşti, 496. (in Romanian)

Bleahu M. Dumitrescu R., Bordea I., BordeaJ. and Mantea G., 1980 – Hartageologică a României, la scara de1:50.000, foaia Poiana Horea. Ed.IGG, Bucureşti. (in Romanian)

Bogdan O. and Iliescu M., 1962 – Climateof the R.P.R., vol. I. MeteorologicalInstitute, Bucureşti.

Braak ter C. J. F. and Šmilauer P., 2002 –CANOCO Reference Manual andCano Draw for Windowss User'sGuide: Software for CanonicalCommunity Ordination (Version4.5), Microcomputer Power, Ithaca,NY., 352.

Brinkmann K and Păcurar F., 2005 –Bewertung der Offenlandnutzungim Grünlandmodul, in: RuşdeaE., Reif A., Povară I. and KonoldW. (eds.): Perspektiven für einetraditionelle Kulturlandschaft inOsteuropa. Ergebnisse eines inter-und transdisziplinären, partizipativen

Forschungsprojektes in Osteuropa. -Culterra 34, 251-264. (in Romanian)

Brinkmann K., 2006 – Auswirkungen vonBewirtschaftungsänderungen auftraditionell genutztes Grünland imApuseni-Gebirge Rumäniens, EineFallstudie anhand des DorfesGheţari. Shaker Verlag, Aachen, 286.(in German)

Brockmann-Jerosch, H., 1936 – Futter-laubbäume und Speiselaubbäume.Ber. Schweiz. Bot. Ges., 46: 594-613. (in German)

Bundesamt für Naturschutz, 1996 – RoteListe gefährdeter PflanzenDeutschlands, Schriftenr. f.Vegetationsk, 28: 744 S. (in German)

Ciocârlan V., 2000 – Flora ilustrată aRomâniei, Ed. Ceres, Bucureşti,1138. (in Romanian)

Coldea G., 1991 – Prodrome desAssociations Vegetales des Carpatesdu Sud-Est (Carpates Roumaines),Documents Phytosociologiques, N.S. 13: 317-539. (in French)

Coldea G., 1996 – Contribuţii la studiulvegetaţiei României (I), ContribuţiiBotanice, Cluj-Napoca, 1-8. (inRomanian)

Coldea G. and Wagner J., 1998 – Beiträgezum Studium der VegetationRumäniens (III), ContribuţiiBotanice 2, Cluj-Napoca, 81-87. (inGerman)

Dierschke H., 1974 – Saumgesellschaftenim Vegetations und Standortgefällevon Waldrändern, ScriptaGeobotanica 6: 1-246. (in German)

Dierschke H., 1994 – Pflanzensoziologie.Grundlagen und Methoden, Ulmer,Stuttgart, 683. (in German)

Dierschke H., 1997 – Molinio-Arrhenatheretea (E1), Kulturgraslandund verwandte Vegetationstypen,Teil 1: Arrhenatheretalia, Wiesenund Weiden frischer Standorte,Synopsis der PflanzengesellschaftenDeutschlands 3, Flor.-Soz,Arbeitsgem., Göttingen, 74 S. (inGerman)

Page 136: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 136 -

Dierssen K., 1990 – Einführung in diePflanzensoziologie, Wissenschaftl.Buchgesellschaft, Darmstadt, 241. (inGerman)

Dörpinghaus A., Verbücheln G., SchröderE., Westhus W., Mast R. andNeukirchen M., 2003 – Empfehl-ungen zur Bewertung des Erhalt-ungszustands der FFH-Lebensraum-typen: Grünland, Natur undLandschaft 78: 337-342. (in German)

Doniţă N., Ivan D., Coldea G., Sanda V.,Popescu A., Chifu T., Păuca-Comănescu M., Mititelu U. andBoşcaiu N., 1992 – VegetaţiaRomâniei. Ed. Technică Agricolă,Bucureşti, 407. (in Romanian)

Dumitrescu R., Bleahu M. and Lupu M.,1977 – Harta geologică a României,scara 1:50.000, foaia Avram Iancu,Ed. IGG, Bucureşti. (in Romanian)

Ellenberg H., 1996 – VegetationMitteleuropas mit den Alpen, 5,Aufl., Ulmer, Stuttgart, 1095. (inGerman)

Ewald J., 1999 – Soziologie undStandortbindung subalpiner Fichten-wälder in den Bayerischen Alpen.Tuexenia 19: 107-125. (in German)

Ewald J., 2000 – Long-term impact of forestpasture on the understory ofmountain forests in the TegernseeAlps (Bavaria), Z. Oekol. u.Naturschutz 9: 161-170.

Feurdean A. N., Willis K. J. and Astaloş C.,2009 – Legacy of the past land-usechanges and management of the“natural” upland forest compositionin the Apuseni Natural Park,Romania. - Holocene 19, 6: 967-981.

Fischer H., 1994 – PPS 97. Daspflanzensoziologische ProgrammSystem. Röttenbach. (in German)

Forman R., 1995 – Land mosaics: theecology of landscapes and regions,The Cambridge University Press,632.

Fry G. L. A., 1998 – Changes in landscapestructure and its impact onbiodiversity and landscape values: ANorwegian perspective, in Dover J.W. and Bunce R. G. H. (eds.), KeyConcepts in Landscape Ecology.Proc. 1998 European Congress of theIALE, 81-92.

Fuhr-Bossdorf K., Waldhardt R. and OtteA., 1999 – Auswirkungen derLandnutzungsdynamik auf dasPotential von Pflanzengemeinschaftenund Pflanzenarten einer peripherenKulturlandschaft (1945-1998), Verh.Ges. f. Ökologie 29: 519-530. (inGerman)

Goia I. A., 2005 – Lebensweise derBewohner des Plateaus von Gheţari,in: Ruşdea E., Reif A., Povară I.and Konold W. (eds.), Perspektivenfür eine traditionelle Kultur-landschaft in Osteuropa, Ergebnisseeines interdisziplinären undtransdisziplinären Forschung-sprojektes in Osteuropa, Culterra 34:115-122. (in German)

Goia I. A. and Borlan Z., 2005 –Siedlungsgeschichte der Dörfer im„Motzenland“ (Ţara Moţilor, inRuşdea E., Reif A., Povară I. andKonold W. (eds.): Perspektivenfür eine traditionelle Kultur-landschaft in Osteuropa, Ergebnisseeines interdisziplinären undtransdisziplinären, partizipativenForschungsprojektes in Osteuropa,Culterra 34: 109-114. (in German)

Gordon A. M. and Newman S. M. (eds.),1997 – Temperate AgroforestrySystems, CAB International,Cambridge, 269.

Groth P. and T. W. Bressi (eds.), 1997 –Understanding Ordinary Landscapes,Yale University Press, New Haven,CT. 272.

Grove A. T. and Rackham O., 2003 – TheNature of Mediterranean Europe: Anecological history, 2nd ed., YaleUniversity Press, New Haven andLondon, 384.

Page 137: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 137 -

Halstead P., 1998 – Ask the Fellows whoLop the Hay: Leaf-Fodder in theMountains of Northwest Greece,Rural History 9: 211-234.

Hasel K., 1985 – Forstgeschichte, Parey,Hamburg-Berlin, 258. (in German)

Horlitz T. and Mörschel F., 2003 – EinVersuch zur Identifikation der fürden Erhalt der biologischen Vielfaltwichtigsten Naturräume inDeutschland, Naturschutz undLandschaftsplanung 35: 302-310. (inGerman)

Klijn J. and W. Vos (eds.), 2000 – FromLandscape Ecology to LandscapeScience, Kluwer AcademicPublishers, WLO, Wageningen, NL.,162.

Küster H., 1998 – Geschichte des Waldes,Beck-Verlag, München, 267. (inGerman)

Lang G., 1994 – Quartäre Vegetations-geschichte Europas, G. Fischer, Jena,Stuttgart, New York, 462. (inGerman)

Maarel van der E., 1979 – Transformation ofcover-abundance values in phyto-sociology and its effects oncommunity similarity, Vegetatio 39:97-114.

Mantel K., 1990 – Wald und Forst in derGeschichte. Hannover, 517. (inGerman)

Marin C. and Orăşeanu I, 2005 –Hydrogeologie und Hydrochemie,in Ruşdea E., Reif A., Povară I.and Konold W. (eds.), Perspektivenfür eine traditionelle Kultur-landschaft in Osteuropa, Ergebnisseeines inter- und transdisziplinären,partizipativen Forschungsprojektesin Osteuropa, Culterra 34: 60-68. (inGerman)

Mayer A. C., Stöckli V., Huovinen C.,Konold W., Estermann B. L. andKreuzer M., 2003 – Herbageselection by cattle on sub-alpinewood pastures, Forest Ecology andManagement, 181, 1-2: 39-50.

Morariu I., Ularu P., Danciu M. andLungescu E., 1968 – Făgetele de peMăgura Codlei, Bul. Inst. Politehnic,Ser. B - Econ. Forest. 10: 43-47. (inRomanian)

Oberdorfer E., (ed.), 1977 – SüddeutschePflanzengesellschaften, Teil I. Stuttgart- New York, 311. (in German)

Oberdorfer E., (ed.), 1978 – SüddeutschePflanzengesellschaften, Teil II. Stuttgart- New York, 355. (in German)

Oberdorfer E. (ed.), 1983 – SüddeutschePflanzengesellschaften, Teil III. Stuttgart- New York, 455. (in German)

Oberdorfer E., 1992 – SüddeutschePflanzengesellschaften, Teil IV,Wälder und Gebüsche, FischerVerlag, Jena, Stuttgart, New York,Tabellenband 580, Textband 282. (inGerman)

Orăşeanu I., 2005 – Geomorphologie undGeologie des Höhenzuges zwischenden Tälern von Gârda Seacă undOrdâncuşa, Ruşdea E., Reif A.,Povară I. and Konold W. (eds.):Perspektiven für eine traditionelleKulturlandschaft in Osteuropa,Ergebnisse eines inter- undtransdisziplinären, partizipativenForschungsprojektes in Osteuropa.Culterra 34: 40-42. (in German)

Orăşeanu I., Povară R., Călinescu G. andSoare E., 2005 – Klima andAgroklima, Ruşdea E., Reif A.,Povară I. and Konold W. (eds.),Perspektiven für eine traditionelleKulturlandschaft in Osteuropa,Ergebnisse eines inter- undtransdisziplinären, partizipativenForschungsprojektes in Osteuropa,Culterra 34: 48-53. (in German)

Păcurar F., 2005 – Cercetări privinddezvoltarea sustenabilă (durabilă) asatului Gheţari, comuna Gârda prinîmbunătăţirea pajiştilor naturale şi aunor culturi agricole - Dissertation,Universitatea de Stiinţe agricole şiMedicină veterinară, Cluj-Napoca,Facultatea de Agricultură, Catedra deCultura pajiştilor şi a plantelorfurajere, 317. (in Romanian)

Page 138: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 138 -

Păcurar F., Brinkmann K., Auch E., GoiaI. A. and Rotar I., 2005 –Bewirtschaftung der Mähwiesenund - weiden, in Ruşdea E., Reif A.,Povară I. and Konold W. (eds.),Perspektiven für eine traditionelleKulturlandschaft in Osteuropa.Ergebnisse eines inter- undtransdisziplinären, partizipativenForschungsprojektes in Osteuropa,Culterra 34: 160-161. (in German)

Parichi M. and Stănilă A.-L., 2005 – Bödender Gemarkung von Gheţari undangrenzender Gebiete, in Ruşdea E.,Reif A., Povară I. and Konold W.(eds.), Perspektiven für einetraditionelle Kulturlandschaft inOsteuropa, Ergebnisse eines inter-und transdisziplinären, partizipativenForschungsprojektes in Osteuropa,Culterra 34: 54-59. (in German)

Passarge H. and Jurko A., 1975 – ÜberAckerunkrautgesellschaften im nord-slowakischen Bergland, FoliaGeobot, 10: 225-264. (in German)

Pott R., 1990 – Die Haubergswirtschaft imSiegerland, Vegetationsgeschichte,extensive Holz- und Landnutzungenim Niederwaldgebiet, Wilhelm-Münker-Stiftung Heft 28: 6-41. (inGerman)

Pott R. and Hüppe J., 1991 – HudelandschaftenNordwest-deutschland-Abh. Westfäl.Mus. f. Naturk. 53, Münster, 313. (inGerman)

Rackham O., 1986 – The History of theCountryside, The classic history ofBritain´s landscape, flora and fauna,Phoenix Press, London, 445.

Reif A., Ruşdea E., Goia A., KesselerB., Knoerzer D., Sayer U. andSetzepfand M., 2003a – Traditionellesilvopastorale Landnutzung imApuseni-Gebrige Rumäniens, Forstund Holz 58: 107-113. (in German)

Reif A., Ruşdea E. and Goia A., 2003b –„Wie bei uns vor 200 Jahren“ -Nutzung einer traditionellen Kultur-landschaft im Apuseni-GebirgeRumäniens, Natur und Museum 133:125-139. (in German)

Reif A, Michler B, Ruşdea E., 2005 –Feldgraswirtschaft im Apuseni-Gebirge, Rumänien, Tuexenia 25:141-150. (in German)

Reif A. E., Ruşdea K., Brinkmann F.,Păcurar E., Auch A., Goia I. andBühler J., 2008 – A TraditionalCultural Landscape in Trans-formation: The Quest for SustainableDevelopment Options in the ApuseniMountains, Romania, MountainResearch and Development 28: 18-22.

Ruşdea E., Reif A., Povară I. and KonoldW., (eds.), 2005 – Perspektiven füreine traditionelle Kulturlandschaft inOsteuropa, Ergebnisse eines inter-und transdisziplinären, partizipativenForschungsprojektes in Osteuropa,Culterra 34, 401. + annexes. (inGerman)

Salvi G., 1982 – La Scalvatura della cerretanell´ alta valle del Trebbia, Notedalle fonti orali, in Moreno D., PiussiP. and Rackham O. (eds.), Boschi:Storia e Archeologia, QuaderniStorici 49: 148-156. (in Italian)

Salvi G., 1983 – Alberi da Foraggio: foglia estalla a Bertassi (1880-1980), inCoveri L. and Moreno D. (eds.),Studi di Etnografia, DialettologiaLigure in Memoria di HugoPlomteux (Genova), 193-209. (inItalian)

Sanda V., Popescu A. and Doltu M. I., 1980– Cenotaxonomia şi corologiagrupărilor vegetale din România.Studii şi Comunicări 24, suplimentMuzeul de Istorie Naturală, Sibiu,124. (in Romanian)

Şerbănescu I., Dragu I. and Băbaca G., 1975– Carte Géobotanique, in R.S.R.:Atlas Géologique 1: 1.000.000, Noteexplicative, 37. (in French)

Stachow U., 1995 – Naturraum- undBiotopausstattung, in Bork, H. R.(ed.): Agrarlandschaftswandel inNordostdeutschland, Ernst and Sohn,Berlin, 286-322. (in German)

Page 139: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Vegetation patterns and land use systems in a traditional cultural landscape; 79/140 pp. - 139 -

Surd V. and D. Turnock, 2000 – Romania´sApuseni Mountains: Safeguarding acultural heritage, GeoJournal 50:385-304.

Täuber F., 1987 – Contribuţii lasintaxonomia făgetelor carpato-dacice, Contribuţii Botanice Cluj-Napoca: 179-191. (in Romanian)

Vandvik V., 2002 – Pattern and process inNorwegian upland grasslands: anintegrated ecological approach,ISBN: 82-7460-011-8, Ph.D thesis,Department of Botany, Univ. ofBergen, Thesis abstract (pdf), Thesisintroduction (pdf).

Vida G., 1963 – Die zonalen Buchenwälderdes ostkarpatischen Florenbezirkes(Transsilvanicum) auf Grund vonUntersuchungen im Parâng-Gebirge,Acta Botanica, 9: 177-196. (inGerman)

Vos W. and Stortelder A. H. F., 1992 –Vanishing Tuscan landscapes,landscape ecology of a sub-mediterran-montane area (SolanoBasin, Tuscany, Italy), Pudoc,Wageningen, 404.

Ward H. J., 1963 – Hierarchical grouping tooptimize an objective function,American Statistical AssociationJournal 58: 236-244.

Wildi O., 1989 – A new numerical solutionto the traditional phytosociologicaltabular classification, Vegetatio 81:95-106.

Wildi O. and Orloci L., 1996 – Numericalexploration of community patterns, 2ed., SPB Academic Press, TheHague, 171.

Wrbka T., Szerencsits E., Reiter K. and KissA., 1999 – Identifying sustainableland-use by describing landscapestructure. A case study in alpine andlowland agricultural landscapes ofAustria, in Brebbia, C. and Uso, J.L.: Ecosystems and SustainableDevelopment II. WITpress, Ashurst,16.

Zonneveld I., 1995 – Land Ecology: anintroduction to landscape ecology asa base for land evaluation, landmanagement and conservation, SPBAcademic Publishing, Amsterdam,199.

Zukrigl K., 1973, – Montane und subalpineWaldgesellschaften am Alpenostrandunter mitteleuropäischem, pannon-ischem und illyrischem Einfluß,Mitt. Forstl. Bundes-versuchsanst,101, Wien: 387. (in German)

Page 140: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Reif, E. Ruşdea, K. Brinkmann, G. Harth, B. Michler, F. Păcurar and I. Rotar- 140 -

AUTHORS:

1 Albert [email protected]

2 Evelyn RUŞ[email protected]

University of Freiburg, Faculty of Forestry and Environmental Sciences,

Tennenbacher Street 4, D-79085 Freiburg,Germany,

3 Katja [email protected]ät Kassel, FB 11,

Institut für Nutzpflanzenkunde,Steinstr. 19, D-37213 Witzenhausen,

Germany,4 Barbara MICHLER

[email protected],

Forchheimer Weg 46, Röttenbach, D-91341,Germany,

5 Florin PĂ[email protected],

University for Agricultural Sciences and Veterinary Medicine Cluj,Faculty of Agricultural Sciences,

Calea Mănăştur 3-5, Cluj-Napoca,Cluj County, RO-400372,

Romania.5 Ioan ROTAR

[email protected] for Agricultural Sciences and Veterinary Medicine Cluj,

Faculty of Agricultural Sciences,Calea Mănăştur 3-5, Cluj-Napoca,

Cluj County, RO-400372,Romania.

Page 141: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Heteroptera from two Transylvanian lake complexes; 141/148 pp. - 141 -

BIODIVERSITY ANALISYSON AQUATIC AND SEMIAQUATIC HETEROPTERA

(HETEROPTERA: NEPOMORPHA - GERROMORPHA)FROM TWO TRANSYLVANIAN (ROMANIA) LAKE COMPLEXES

Horea OLOSUTEAN 1, Daniela Minodora ILIE 2, Suzana AXINTE 3 and Andreea DRĂGOIU 4

KEYWORDS: Romania, Transylvania, aquatic habitats, heteropterans, α-biodiversity, β-biodiversity.

ABSTRACTThe study aims to compare the

biodiversity of two similar aquatic habitatsfrom Transylvania, both used for fishbreeding, with the help of data regardingaquatic and also semiaquatic Heteroptera.Following the analysis of the two samplingsets, both collected in similar conditions,common points and differences wererevealed between the two habitats in study:

values of α-biodiversity indices were higherin the Sânpaul lakes, if we relate toindividual samplings, probably due to lesserhuman intervention, but they became moresimilar if we relate to the entire period. β-biodiversity values lies in favor of the samehabitat, indicating better conditions for thegroup’s species year round (β-biodiversitygradient chosen is the temporal one).

REZUMAT: Analiza de biodiversitate a Heteropterelor acvatice şi semiacvatice(Heteroptera: Nepomorpha-Gerromorpha) din două complexe de lacuri din Transilvania(România).

Studiul intenţionează să comparebiodiversitatea a două complexe de lacurifolosite pentru creşterea peştilor, cuajutorul datelor oferite de heteroptereleacvatice şi semiacvatice. În urma analizeicelor două seturi de probe, prelevateîn condiţii similare, au fost scoase înevidenţă diferenţe şi puncte comune întrecele două habitate, luate în calcul: valorileindicilor de biodiversitate α sunt mai

mari în lacurile de la Sânpaul, raportatla fiecare colectare, probabil datorităintervenţiei antropice mai reduse, dar suntcomparabile între cele două habitate dacăne raportăm la întreaga perioadă.Biodiversitatea β este în favoarea aceluiaşihabitat, indicând condiţii superioare pentruspeciile grupului de-a lungul anului(gradientul de biodiversitate β ales estecel temporal).

ZUSAMMENFASSUNG: Analyse der Artenvielfalt der aquatischen und semiaquatischenHeteropteren (Heteroptera: Nepomorpha-Gerromorpha) aus zwei Seenkomplexen Transylvaniens(Rumänien).

Die Studie hat zum Ziel dieArtenvielfalt von zwei für Fischzuchtgenutzten Seenkomplexen anhand vonaquatischen und semiaquatischenHeteropteren zu vergleichen. Infolge derAnalyse der zwei unter ähnlichenBedingungen erhobenen Reihen vonProben, konnten Unterschede undGemeinsamkeiten zwischen den zweiuntersuchten Habitaten festgestellt werden.Die Werte des α-Biodiversitätsindexessind, wahrscheinlich bedingt durch den

geringeren anthropischen Einfluss, imSeenkomplex von Sânpaul, auf jedeBeprobung bezogen höher, aber dennochim Verhältniss zur gesamten Zeitspannevergleichbar zwischen den beidenHabitaten. Der β-Biodiversitätsindex zeigtsich ebenfalls zugunsten desselbenHabitats, was auf die besserenLebensbedingungen für die Arten imgesamten Verlauf des Jahres hinweist (derausgewählte β-Biodiversitäts-Gradient istder zeitliche).

Page 142: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

H. Olosutean, D. Ilie, S. Axinte and A. Drăgoiu- 142 -

INTRODUCTIONThis specific study compares the

biodiversity of two relatively similar aquatichabitats from Transylvania, both primarilyused for fish breeding, based on samplingsmade on aquatic and semiaquaticHeteroptera.

The Sânpaul habitat is located inthe Mărtiniş commune (in Harghita County),near the city of Odorheiu Secuiesc, atapproximately 46°10’ northern latitude,25°23’ eastern longitude and about 480meters altitude. It consists in a total of 15lakes and a total of around 210 ha, resultof the damming of one of the HomoroduMare affluent. The complex is about 20years old, and it is protected locally asreserve for birds. The sampling stations forthis habitat (named P1, P2 and P3) werechosen on three lakes of 15, 40, respectively55 ha, all with a depth of around one, oneand a half meters.

The sampling stations are shorehabitats, with aquatic vegetation and shallowwater.

The Săcel habitat is located nearthe city of Sibiu (in the Sibiu County), atapproximately 45°47’ northern latitude,23°56’ eastern longitude and roughly 500meters altitude. The present-day complexpreserves only eight of the initial 20lakes from twenty-five years ago, butthe area of the complex is larger, up to300 ha. The sampling stations selectedfor this habitat (named S1, S2 and S3) areon 19, 33, and respectively 39 ha lakes,with a depth of one and a half up to twoand a half meters, higher then the previousstudied habitat. As the other location, thesehabitat stations are shore habitats, withabundant aquatic vegetation and shallowwater.

MATERIALS AND METHODSThe study took place in the spring

and summer of 2008, and its goal was totake quantitative samples. The two areasof this study consist each of three lakes,parts of fish breeding complexes. For eachlake was chosed a single sampling point,that was kept throughout the entire samplingperiod.

The samples were taken in severalsampling expeditions, so that the entireperiod to be covered. There was taken onesample from each station, for each samplingexpedition, of about 100 meters, coveringthe entire habitat (water surface and interior,aquatic vegetation, bottom).

The identification of the species wasmade by the morphological features of theinsects, studying them at the stereobinocular, or, in some cases, by genitalia,using data from other specialists (Paina,1975; Jansson, 1986; Davideanu, 1999, ***).

Data analysis implied calculationof some biodiversity indexes (MargalefIndex, Simpson Index and Lloyd-Ghelardi Index, for α-biodiversity, andWilson-Shmida Index, for β-biodiversity),and a comparative study between the twoareas.

The indices were selected torepresent different aspects of thebiodiversity concept: Margalef for generalaspects, such as species and individualrichness, Simpson for heterogeneity ofhabitats, Lloyd-Ghelardi for evenness,and Wilson-Shmida for the expressionof variation along a gradient, in otherwords of the temporal variation (Gomoiuand Skolka, 2001). In this specific way,we can appreciate the differencesbetween the two habitats from all pointsof view, and we can carry out a propercomparison.

RESULTSFollowing the samplings, there were

gathered 258 imago in seven samplings fromthe Sânpaul habitat (Tab. 1), and 119 imago

in eight samplings from the Săcel habitat(Tab. 2), belonging to 15, respectively 7aquatic and semiaquatic Heteroptera species.

Page 143: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Heteroptera from two Transylvanian lake complexes; 141/148 pp. - 143 -

Table 1: Aquatic and semiaquatic Heteroptera sampled from Sânpaul lakes.

Dat

e

Stat

ion

Hes

pero

corix

alin

naei

Fie

ber 1

848

Siga

ra st

riata

Lin

né 1

758

Siga

ra (V

erm

icor

ixa)

late

ralis

Leac

h18

17

Siga

ra (P

seud

over

mic

orix

a)ni

grol

inea

taFi

eber

1848

Siga

ra (R

etro

corix

a) li

mita

taFi

eber

184

8

Siga

ra (S

ubsig

ara)

iact

ans J

anss

on, 1

983

Ilyoc

oris

cim

icoi

des L

inné

175

8

Nep

a ci

nere

a Fi

eber

186

0

Rana

tra li

near

isLi

nné

1758

Not

onec

ta g

lauc

a Li

nné

1758

Not

onec

ta v

iridi

s Del

cour

t 190

9

Ger

ris a

rgen

tatu

s Sch

umm

el 1

832

Ger

ris o

dont

ogas

ter Z

ette

rste

dt 1

828

Ger

ris la

custr

is L

inné

175

8

Ger

ris g

ibbi

fer S

chum

mel

183

2

P1 - 1 3 - - - - - - - - - - - -

P2 2 3 12 1 - 4 - - - - - - - - -

13.0

4

P3 - - - - - - - - - - 1 2 - - -

P1 - 1 - - - - - - - - - - - 1 -

P2 - 1 11 - 1 - - - - - 2 1 - - -

30.0

4

P3 - - 1 - - - - - - 1 1 1 2 - -

P1 - - - - - - - - 1 - - - - - -

P2 - - 1 - - - - - - - - - - - -

18.0

5

P3 - - - - - - 2 - - - - 1 - - -

P1 - - - - - - 43 - 1 1 1 - - - -

P2 - - - - - - 32 - 2 1 1 - - - -

06.0

7

P3 - - - - - - 20 - - 1 2 1 - - 1

P1 - 1 - - - - 9 - 1 - 2 4 - 1 -

P2 - - - - - - 6 - 2 - - - - - -

14.0

8

P3 - - - - - - 5 - - - - - - - -

P1 - 1 - - - - 9 - 1 - - 14 - - -

P2 - - - - - - - - 1 - - 5 - - -

31.0

8

P3 - - - - - - - - - - - 1 - - -

P1 - - - - - - 10 1 1 2 - 1 - - -

P2 - - - - - - - - - - 1 1 - - -

30.0

9

P3 - - - - - - 6 - 1 - - 1 - - -

P1 - 4 9 - - - 71 1 5 3 3 19 - 2 -

P2 2 4 24 1 1 4 38 - 5 1 4 7 - - -

Tota

l

P3 - - 1 - - - 33 - 1 2 3 7 2 - 1

Page 144: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

H. Olosutean, D. Ilie, S. Axinte and A. Drăgoiu- 144 -

Table 2: Aquatic and semiaquatic Heteroptera sampled from Săcel lakes.

Dat

e

Stat

ion

Siga

ra st

riata

Linn

é17

58

Siga

ra (S

ubsig

ara)

iact

ans

Jans

son,

198

3

Dic

haet

onec

ta sc

holtz

iFi

eber

, 184

6

Ilyoc

oris

cim

icoi

des

Linn

é17

58

Nep

a ci

nere

aFi

eber

186

0

Mes

ovel

ia fu

rcat

aM

ulsa

ntan

d R

ey, 1

852

Mes

ovel

ia v

ittig

era

Hor

váth

, 189

5

S1 - - - - 4 - -S2 - - - - 3 - -

25.0

4

S3 - - - - 5 - -S1 - 2 - - - - -S2 - 1 - - - - -

14.0

5

S3 - 5 - - - - -S1 - 1 - - - - -S2 - - - - - - -

24.0

6

S3 - - - - - - -S1 - 1 17 1 - - 1S2 - 1 7 - - 1 -

08.0

7

S3 - - - - - - -S1 - 1 - - - - -S2 - - 1 - - - -

04.0

8

S3 - 1 1 - - - -S1 - 3 2 - - 1 -S2 - 7 4 - - - -

25.0

8

S3 1 3 - 1 - 1 -S1 - 15 1 - - - -S2 - 7 - - - - -

12.0

9

S3 1 14 - - - - -S1 - 1 - - - - -S2 - 2 - - - - -

02.1

0

S3 - 1 - - - - -S1 - 24 20 1 4 1 1S2 - 18 12 - 3 1 -

Tota

l

S3 2 24 1 1 5 1 -

Page 145: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Heteroptera from two Transylvanian lake complexes; 141/148 pp. - 145 -

Table 3: Values of biodiversity indices for the Sânpaul habitat.

Dominant are Ilyocoris cimicoidesLinné 1758 and Gerris argentatusSchummel 1832, for the Sânpaul habitat,species related to aquatic vegetation (Ilie,2008), abundant in the specified habitat, andSigara (Subsigara) iactans Jansson, 1983,for the Săcel habitat, an eurivalent species(idem), probably better adapted to the ever-changing conditions of a fish farm.

Absence of frequently observedspecies, like Gerris lacustris Linné 1758(the most common aquatic or semiaquaticHeteropteran) or Gerris (Aquarius) paludumFabricius 1794 is related to abundant aquaticvegetation at shores, where the samplingpoints were located, a non-hospitable habitat

for the cited species, which mostly preferopen water (Andersen, 1982).

For each sampling and for eachsampling station were calculated MargaleffIndex, Simpson Index (reverse probabilityDs = 1-l; Sîrbu and Benedek, 2004) andLloyd-Ghelardi Index (pi meaning ni/N),Wilson-Shmida Index being calculated foreach sampling station, using time as agradient, with the formula βT = βc*(βw-1)/S,βc being Cody Index, βW, Witthaker Index,and S the total number of species (idem).For the Simpson Index, we rectified theincorrect results for stations with only oneindividual sampled (0 instead of 1;Olosutean, 2008).

IndexStation DateD1 Ds E βT

13.04 1.661 0.833 0.81130.04 3.322 1 118.05 0 0 006.07 1.804 0.128 0.22614.08 3.983 0.719 0.78531.08 2.146 0.577 0.68530.09 3.401 0.562 0.671

P1

Total 3.868 0.6 0.612

0.783

13.04 2.98 0.671 0.7930.04 3.322 0.588 0.64518.05 0 0 006.07 1.928 0.211 0.33514.08 1.107 0.429 0.52831.08 1.285 0.333 0.6530.09 3.322 1 1

P2

Total 5.105 0.749 0.716

0.424

13.04 2.096 0.667 0.91830.04 5.14 0.933 0.9718.05 2.096 0.667 0.9706.07 2.861 0.363 0.47614.08 0 0 031.08 0 0 030.09 2.215 0.464 0.67

P3

Total 4.12 0.548 0.582

1.234

Page 146: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

H. Olosutean, D. Ilie, S. Axinte and A. Drăgoiu- 146 -

The obtained results of the indicescalculation are depicted in the table number

3, for the Sânpaul lakes, respectively in thetable number 4, for the Săcel lakes.

DISCUSSIONThe results show a clear difference

between habitats, if we compare individualsamplings. The Săcel habitat has at least fivesamplings with 0 values of the α-biodiversity indexes (five in S1 and S3, six

in S2), values meaning that only one or lessspecies was sampled. As opposed, theSânpaul habitat presents higher values, withonly one (P1 and P2) or two (P3) samplingsof such values.

Table 4: Values for biodiversity indices for the Săcel habitat.

IndexStation

Date

D1 Ds E βT

25.04 0 0 014.05 0 0 024.06 0 0 008.07 2.306 0.284 0.42404.08 0 0 025.08 2.57 0.733 0.92112.09 0.83 0.125 0.33702.10 0 0 0

S1

Total 2.928 0.63 0.643

0.386

25.04 0 0 014.05 0 0 024.06 0 0 008.07 2.096 0.417 0.62204.08 0 0 025.08 0.96 0.509 0.94612.09 0 0 002.10 0 0 0

S2

Total 1.959 0.604 0.737

0.525

25.04 0 0 014.05 0 0 024.06 0 0 008.07 0 0 004.08 3.322 1 125.08 3.855 0.8 0.89612.09 0.85 0.133 0.35302.10 0 0 0

S3

Total 3.265 0.488 0.561

0.447

Page 147: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Heteroptera from two Transylvanian lake complexes; 141/148 pp. - 147 -

The difference may occur from ahigher number of fish gatherings madeannually from the Săcel habitat: thetechnique used for fish gathering from thelakes is a non-selective one, other life formsare also collected, including heteropterans,the result being lower values in number ofspecies and individuals in the followingperiod; the disturbance of the aquatic habitatin fish gathering may also having aninfluence on the group, that will need aperiod to establish new populations in thearea. A similarity between the two habitatsis the 0 value of the samplings made in May,only one of the six stations not recordingthat value (P3, the largest lake of the study).A probable explanation lies in the ecologyof the group, many species being found aslarvae in that period, and therefore not beingtaken in account for the study. Anotherexplanation, probably the most valid one, isrelated to the primary function of the lakes -fish breeding, as presented earlier.

As opposed, the higher values arefound in July and August, a period ofmaximum extension for the group ingeneral. Again, P3 station has differentvalues, the cause being probably a fishgathering made in the previous period.

If we look at the total values of eachsampling point, we can observe similaritiesand differences between the two habitats:heterogeneity and evenness of the stations,represented by Simpson and Lloyd-Ghelardivalues, are roughly the same for all the lakes(Fig. 1), varying from 0.488 to 0.749 forSimpson, and from 0.561 to 0.737 forLloyd-Ghelardi, showing a similar way ofexploiting the habitat conditions andecological niches by the group; even more,the values are relatively high, usually morethan 50% of the possible diversity, a positivefact, meaning that the lakes offer goodhabitat conditions for heteropterans,although they are frequently disturbed byanthropic activities regarding the designeduse of the area.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ds E βT

P1P2P3S1S2S3

Figure 1: Comparative analysis between Simpson, Lloyd-Ghelardiand Wilson-Shmida indices from the studied habitats.

On the other hand, Margalef Indexvalues show a clear difference in theadvantage of the Sânpaul habitat, meaninghigher number of individuals and highernumber of species. Wilson-Shmida Indexvalues are in the favor of the same habitat(idem), pointing out higher variation alongthe sampling period. These results can berelated to the lower human intervention inthe Sânpaul lakes (lower number of fish

gatherings), due to the fact that these lakesare in a natural reserve.

A special situation is revealed by theP3 station: it has high values in May, whenall the other stations are scoring 0, it has 0values in August, when all other stations arehaving the highest values, and it has by farthe highest value of β biodiversity, showingthe lowest human intervention in the naturalhabitat.

Page 148: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

H. Olosutean, D. Ilie, S. Axinte and A. Drăgoiu- 148 -

All these facts are in relation withthe surface of the lake (55 ha, the highest ofall sampling stations from this study), thatprobably gives it a different function in thefishing farm: usually one lake is used ashabitat for larger individuals, bred for

competitions, for example, and, in that case,fishing and fish gatherings are restricted formost of the year; it is possible that the P3lake is having this function, leading to thedifferences we observed, related to the othersampling points.

REFERENCESAndersen N. M., 1982 – “The Semiaquatic

Bugs (Hemiptera, Gerromorpha)Phylogeny, Adaptations,Biogeography and Classification”,Scandinavian Science Press Ltd.,Denmark.

Davideanu A., 1999 – „Contribuţii la studiulheteropterelor acvatice dinRomânia”, Ph.D. thesis. (inRomanian)

Gomoiu M. T. and Skolka M, 2001 –„Ecologie - Metodologii pentrustudii ecologice”, Ovidius UniversityPress, ISBN 973-614-001-6,Constanţa. (in Romanian)

Ilie D. M., 2008 – „Studiul heteroptereloramfibiocorize şi hidrocorize (Insecta:Heteroptera) din bazinul mijlociu alOltului”, Ph.D. thesis. (in Romanian)

Jansson A., 1986 – „The Corixidae(Heteroptera) of Europe and someadjacent regions”, Acta

entomologica fennica 47, Ed.Entomological Society of Finland,Helsinki.

Olosutean H., 2008 – Aspects regarding theestimation of alpha biodiversity onaquatic and semiaquatic Heteroptera(Heteroptera: Nepomorpha -Gerromorpha), Acta Oecologica, vol.XIV, no. 1-2, 49-58, ISSN 1221-5015,Sibiu.

Paina M. I., 1975 – „Lista heteroptereloracvatice şi semiacvatice (OrdinulHeteroptera) din Republica SocialistăRomânia”, Nymphaea, Culegeri ŞtiinţeNaturale, Oradea, România. (inRomanian)

Sîrbu I. and Benedek, A., 2004 – „Ecologiepractică”, Ed. Universităţii „LucianBlaga”, ISBN 973651-988-0, Sibiu. (inRomanian)

***, www.earthlife.net

AUTHORS:

1 Horea OLOSUTEAN,[email protected]

2 Daniela Minodora ILIE,[email protected] Suzana AXINTE,

[email protected] Andreea DRĂGOIU

[email protected]“Lucian Blaga” University of Sibiu,

Faculty of Sciences,Department of Ecology and Environment Protection,

Raţiu Street 5-7,Sibiu, Sibiu County,

Romania, RO-550012.

Page 149: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Some Megachilidae and Anthophoridae species frequency in Romania 149/156 pp. - 149 -

ASPECTS REGARDING THE FREQUENCYOF SOME MEGACHILIDAE AND ANTHOPHORIDAE

(HYMENOPTERA: APOIDEA)SPECIES IN ROMANIA

Cristina BAN-CĂLEFARIU 1

KEYWORDS: Romania, Apoidea, Megachilidae, Anthophoridae, frequency.

ABSTRACTThe frequency of 128 species which

belong to 29 genera of Megachilidaeand Anthophoridae in Romania wasanalysed. The synthesis was made basedon the material collected by the specialistsof “Grigore Antipa” National Museumof Natural History, within the periods 1995-1998 and 2003-2008, from different areasof the country and also based on the

material preserved in the collections of“Grigore Antipa” Museum and BrukenthalNational Museum. 21 megachilid speciesand 18 anthophorid species wereidentified only in one samplingsite, being rare in the south-eastern partof Transylvania (where most collecting sitesare located).

REZUMAT: Aspecte privind frecvenţa unor specii de megachilide şi anthophoride(Hymenoptera: Apoidea) în România.

A fost analizată frecvenţa a 128specii din 29 genuri de megachilideşi anthophoride în România. Sinteza afost realizată pe baza studierii materialuluicolectat de specialiştii Muzeului Naţionalde Istorie Naturală „Grigore Antipa”,în perioadele 1995-1998 şi 2003-2008, dindiverse zone ale ţării şi pe baza materialului

existent în colecţiile Muzeului “GrigoreAntipa” şi ale Muzeului NaţionalBrukenthal. 21 specii de megachilide şi 18specii de anthophoride au fost identificatenumai în câte un sit de colectare, fiind astfelspecii rare în partea sud-estică aTransilvaniei (unde sunt concentrate celemai numeroase situri).

ZUSAMMENFASSUNG: Aspekte bezüglich des Vorkommens einiger Megachilidae-und Anthoporidae-Arten (Hymenoptera: Apoidea) in Rumänien.

Es wurde die Häufigkeit voninsgesamt 128 Arten, gehörend zu 29Gattungen von Megachilidae undAnthophoridae in Rumänien analysiert. DieStudie basiert auf dem von den Spezialistendes Nationalen Museums fürNaturgeschichte „Grigore Antipa” zwischen1995-1998 und 2003-2008 in verschiedenenRegionen des Landes gesammeltenMaterials und dem bereits vorhandenen

aus den Sammlungen des NationalenMuseums für Naturgeschichte „GrigoreAntipa” und des Brukenthal NationalMuseums. 21 Megachilidaearten und 18Anthoporidaearten wurden an jeweils nureiner Probestelle identifiziert, so dass sie imsüd-westlichen Teil Transylvaniens (wo sichauch die misten Fundstellen befinden) alsselten anzusehen sind.

Page 150: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Ban-Călefariu- 150 -

INTRODUCTIONThe bees are distributed almost

everywhere, in places where entomophilousplants are also present, from subarcticregions to mountain peaks. However, theyprefer the arid and semiarid climate fromtemperate and subtropical zone; the richestfauna was recorded in California (1,985species), Mediterranean Basin (not less than1,700 species) and Central Asia (about 1,500species) (Michener, 2000). In Europe mostspecies are known in Spain (1,043),followed by France (865), Romania (698),

Czechia and Slovakia (690), Austria (647),Slovenia (536) (Banaszak and Romasenko,2001); in the European part of the formerUSSR 950 species of Apoidea wererecorded (Gogala, 1999).

Based on the up to present literature,in Romania apoid species present a higherdiversity in Muntenia (Wallachia),Dobrogea (Dobroudja) and Transilvania(Transylvania) compared to other regions,due to their ecological preferences(thermophilous and heliophilous).

MATERIAL AND METHODThe biologic material was collected

between 1995-1998 and 2003-2008 fromdifferent regions of Romania, in the frame ofseveral research projects. Besides, theenthomological collection from “GrigoreAntipa” National Museum of NaturalHistory in Bucharest and BruckenthalNational Museum in Sibiu, were studied.The material from Antipa Museumcomprises identified samples from thescientific collection and unidentified

specimens from the working collection,sampled by the museum's specialists, suchas Victoria Iuga-Raica, Xenia Scobiola-Palade and Ion Matache.

Most of Apoidea were collected fromxerophillous, xeromesophillous, andmesophillous meadows, where they findfood resources and nesting conditions; thematerial comes from 176 localities andcollecting sites, listed below grouped onhistorical regions (Fig. 1).

Figure 1: The map of the regions from where the studied material originates.

Page 151: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Some Megachilidae and Anthophoridae species frequency in Romania 149/156 pp. - 151 -

Maramureş: Bârsana, Bistra, BistraValley, Călineşti (Văleni), Crasna Vişeu,Crasna Vişeu (the confluence Hututeanca-Pop Ivan, Hututeanca Stream valley,Pop Ivan Stream Valley), Dragomireşti,Dragomireşti (Baicu Forest Range),Hodod, Ieud, Leordina, Mara, Moisei(Izvorul lui Dragoş), Onceşti, PietrosulRodnei, Poienile de sub Munte (CoşneaChalet, Rica River valley), Pir, Repedea(Forest Range, Elmo Clearing, SmereceniClearing), Săliştea (Idişor Stream), Săpânţa(Brustani Clearing, Colibi, SăpâncioaraValley), Strâmtura (“Podul Slătioarei”Forest Range), Slătioara River (BerşotaStream), Vadul Izei, Vaser Valley(Făina, transect Bardău - Cozia), Vişeul deJos.

Crişana: Arad, Cehu Silvaniei,Săldăbagiu Mic.

Banat: Băile Herculane, Bocşa,Caraşova (Gârlişte Gorges), Reşiţa, BeiValley.

Oltenia: Budieni, Costeni, Cozia(Călimăneşti), Craiova, Isverna (CosişteiValley), Işelniţa, Jiu Valley (LainiciMonastery), Topolniţa Monastery, Ocolna,Orşova, Polatişte, Râmnicu Vâlcea,Segarcea, Tarniţa, Tarniţa (SchitulLocurele), Bratcu Valley, Chitu Valley, JiuValley.

Muntenia: Balta Bila (ManafuForest), Borduşani (Balta Ialomiţei, Bentullui Cotoi), Bragadiru, Brăneşti, Brăneşti(Pasărea Forest), Bucureşti (Băneasa,Floreasca, Fundeni, Bucureşti BotanicalGarden, Bucureşti Village Museum,Bucureşti University - Faculty ofAgronomy Park, Park of “GrigoreAntipa” National Natural History Museum,Lacul Morii), Budeşti, Cama Islet,Căldăruşani, Cernica, Cetăţuia, Ciolpani,Ciolpani (Ţigăneşti Monastery), Comana,Copăceni, Copăniţa, Vizireanu Hill, tothe East of Vulcanii Noroioşi (MuddyVolcanoes), Drajna de Jos, Dridu, Frăţeşti,Galeşu, Giurgiu, Gulia, Islaz, Izvorani,Măgurele, Mihăileşti, Moara Domnească,Mogoşeşti, Mogoşoaia, Odaia, Odobeşti,Padina Tătarului, Papuceşti, ChitilaForest, Comana Forest (Izvorul cu Nuci),

Panciu Forest, Tâncăbeşti Forest, Periş,Pietroşani, Piteşti, Prundu, Săbăreni,Sătic (Scheilor Valley Chalet), ScorobiaValley, Schitu (Albele Forest), Scorţoasa(Pâclele de la Peciu), Sinaia, Snagov,Ştefăneştii de Jos, Cumpăna Mare Valley:Clăbucet, Gurban Valley, Ivan Valley, Valeacu Peşti, Vlaşin (Ogarca Forest), Voineşti.

Transilvania: Băile Victoria,Beclean, Gura Bârsei Chalet, Cluj, Cluj(Botanical Garden, Feleacu, Mănăştur),Cristian, Măgura, Nicoleni, Ocna Sibiului,Peştera, Retezat Mountains (Râu Mare),Sărata, Scorei, Sibiu, Sibiu (DumbravaSibiului, Guşteriţa, Cindrel Mountains,Turnişor), Sighişoara, Şeica Mare, Zărneşti(Gura Râului Chalet).

Dobrogea: Agigea, Alba, Babadag(Babadag Lake, Babadag Forest, SlavaRusă), Caraorman, C. A. Rosetti, CelicDere, Cerna, Chilia Veche, Greci, Luncaviţa(Valea Fagilor), Saon Monastery, Nalbant,Niculiţel, Niculiţel: 6 km towards ValeaTeilor, Olimp (North Mangalia),Techirghiol, Tuzla, Valu lui Traian,Suluc Valley, Suluc Valley (CulmeaPricopanului).

Moldova: Breazu, Broşteni,Ciumaşi, Gherăeşti, Racova, Sihlea, Traian,Tutova. Megachilidae species wereidentified according to Banaszak andRomasenko (2001), and anthophoridspecies according to Iuga (1958) andOsychnyuk, Panfilov and Ponomareva(1978). For the description andcharacterization of Megachilidae andAnthophoridae associations in the studiedareas we used as ecological index thespecies' frequency (according to Sîrbu andBenedek, 2004), which represents theratio between the number of samples ofthe study containing the given speciesand the total number of the collectedsamples.

Abreviations: Historical RomanianRegions: S1 - Maramureş; S2 - Crişana;S3 - Banat; S4 - Oltenia; S5 - Muntenia;S6 - Transilvania; S7 - Dobrogea;S8 - Moldova.

Page 152: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Ban-Călefariu- 152 -

RESULTSThere were studied 63 species

belonging to 16 genera of Megachilidae and65 species belonging to 13 genera of

Anthophoridae. This biological material ispresented in the tables 1 and 2.

Table 1: Frequency of Megachilidae species in the investigated areas.

Taxon S1 S2 S3 S4 S5 S6 S7Lithurguschrysurus 0.20000 0.03125

L. cornutus 0.03125 0.09091Trachusa byssina 0.05455 0.01563 0.04348Rhodanthidiumseptemdentatum 0.01563 0.04545

Paraanthidiellumlituratum 0.01563

Anthidiumflorentinum 0.01563 0.04348

A. manicatum 0.04688 0.17391A. punctatum 0.01818 0.04348Proanthidiumoblongatum 0.08696

Anthidiellumstrigatum 0.03636 0.20000 0.01563

Stelis minuta 0.04348S. ornatula 0.01818S. phaeoptera 0.01818Chelostomacampanularum 0.16364 0.05556 0.01563 0.04348

C. distinctum 0.05455 0.04348C. florisomne 0.05455 0.05556 0.06250 0.13043 0.04545C. rapunculi 0.05455 0.33333 0.01563 0.13043 0.04545Heriadescrenulatus 0.03636 0.05556 0.01563

H. truncorum 0.03636 0.20000 0.05556 0.01563 0.04348 0.09091Hoplitisanthocopoides 0.05556

H. claviventris 0.01818 0.05556 0.04348H. leucomelana 0.01818H. manicata 0.03636 0.05556 0.04348H. praestans 0.04545H. ravouxi 0.03636 0.05556Anthocopapapaveris 0.04545

Osmia aurulenta 0.01563 0.04545O. bicolor 0.12500O. brevicornis 0.13636O. caerulescens 0.14063 0.04348 0.04545O. cerinthidis 0.04688

Page 153: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Some Megachilidae and Anthophoridae species frequency in Romania 149/156 pp. - 153 -

Taxon S1 S2 S3 S4 S5 S6 S7

O. cornuta 0.09375 0.04348O. emarginata 0.01563O. fulviventris 0.03636 0.06250O. leaiana 0.04688O. rufa 0.23438 0.08696 0.04545Chalicodomaericetorum 0.04348

C. parietina 0.05556Megachilealpicola 0.01818 0.01563 0.08696

M. centuncularis 0.18182M. lagopoda 0.01818 0.04348M. lapponica 0.01818M. leucomalla 0.03125 0.04348M. ligniseca 0.01818 0.20000 0.05556 0.04688M. melanopyga 0.05556M. nigriventris 0.01563 0.04348M. octosignata 0.01563 0.04348M. pilicrus 0.01563 0.18182M. pilidens 0.04348 0.04545M. rotundata 0.03125 0.13043 0.04545M. versicolor 0.01818 0.20000 0.05556 0.04545M. willughbiella 0.03636 0.04688 0.04545Coelioxys afra 0.33333 0.01563 0.08696 0.04545C. aurolimbata 0.01818 0.03125 0.04348C. caudata 0.01563 0.09091C. elongata 0.08696 0.09091C. haemorrhoa 0.01563C. inermis 0.04348C. mandibularis 0.01563C. polycentris 0.08696C. quadridentata 0.20000C. rufescens 0.01818 0.04348C. rufocaudata 0.01563 0.04348 0.04545

In the Maramureş area the mostfrequent species are Chelostomacampanularum (with a frequency of16.36%) and Eucera longicornis (10.90%);the first species belongs to Megachilidaefamily and the second to Anthophoridaefamily. The following species belong toMegachilidae family: Trachussa byssina,Chelostoma distinctum, Chelostomaflorisomne and Chelostoma rapunculi,with a frequency of 5.45%, as well as other

7 species, with a frequency of 3.63%. Theother Megachilidae species and theAnthophoridae identified in the biologicalmaterial collected from Maramureş, comefrom just one sampling site from thisregion. The low number of species andthe low frequency of Anthophoridae is dueto the colder climate, as Anthophoridaespecies are especially sensitive to lowtemperatures.

Page 154: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Ban-Călefariu- 154 -

Table 2: Frequency of Anthophoridae species in the researched areas.Taxon S1 S2 S3 S4 S5 S6 S7 S8

Habropoda zonatula 0.04545

Anthophora aestivalis 0.04545

A. bimaculata 0.05556 0.03125

A. crassipes 0.01563 0.04348

A. crinipes 0.01563 0.13043 0.04545

A. furcata 0.01818 0.01563 0.08696

A. plagiata 0.01563 0.04348

A. plumipes 0.09375 0.17391 0.12500

A. quadrimaculata 0.01563 0.04348

A. retusa 0.05556 0.08696

A. robusta 0.03125

Amegilla magnilabris 0.01563 0.04545

A. quadrifasciata 0.08696 0.13636

A. salviae 0.33333 0.05556

Eucera cinerea 0.08696 0.13636

E. clypeata 0.03125 0.04348 0.04545 0.12500

E. dalmatica 0.01818 0.01563 0.13636

E. helvola 0.33333 0.01563 0.12500

E. interrupta 0.01563 0.04348 0.09091

E. longicornis 0.10909 0.04688 0.26087 0.09091

E. nigrescens 0.21875 0.04545

E. nigrilabris 0.01563 0.18182

E. nitidiventris 0.06250 0.09091

E. parvicornis 0.04545 0.12500

E. pollinosa 0.05556 0.03125 0.04348 0.04545 0.12500

E. taurica 0.01563 0.04348 0.04545

Tetralonia armeniaca 0.01563 0.04348 0.09091

T. dentata 0.33333 0.01563 0.13043

T. hungarica 0.33333 0.11111

T. lyncea 0.01563 0.04545

T. salicariae 0.01818 0.04348

T. scabiosae 0.01818 0.33333 0.20000 0.04348

T. tricincta 0.33333 0.04348 0.04545

Melecta albifrons 0.01563 0.04348

M. luctuosa 0.20000 0.13043

Thyreus ramosus 0.08696

T. scutellaris 0.08696 0.04545 0.12500

Pasites maculatus 0.08696

Biastes brevicornis 0.33333 0.01563 0.13043

B. emarginatus 0.01563 0.04348

Epeolus variegatus 0.05556 0.08696 0.04545

Nomada armata 0.05556 0.08696

N. cruenta 0.12500

Page 155: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Some Megachilidae and Anthophoridae species frequency in Romania 149/156 pp. - 155 -

Taxon S1 S2 S3 S4 S5 S6 S7 S8N. fabriciana 0.01563N. ferruginata 0.04348N. fucata 0.04688 0.13043 0.12500N. fulvicornis 0.03125 0.04348N. goodeniana 0.03125N. mutica 0.01563N. nobilis 0.04348 0.04545N. obtusifrons 0.04545N. ruficornis 0.08696N. sexfasciata 0.01818 0.03125 0.04348N. stigma 0.01818 0.25000N. zonata 0.04348 0.04545Ceratina acuta 0.03125 0.00000 0.04545C. callosa 0.11111 0.07813 0.21739 0.12500C. chrysomalla 0.01563C. cucurbitina 0.04545C. cyanea 0.07813 0.08696 0.04545C. gravidula 0.01563C. nigroaenea 0.09375C. nigrolabiata 0.01563Xylocopa valga 0.05556 0.12500 0.13636X. violacea 0.06250 0.08696 0.09091

In Crişana each of the nineidentified species were collected from justone site, having the same value of frequencyin this region. A similar situation wasrecorded also for Banat: all of the 8 specieswere identified in only one collected site. Itis likely that the equal frequencies areinfluenced by the low number of collectingsites.

Tetralonia hungarica and Ceratinacallosa have the highest frequencies(11.11%) in Oltenia.

In Muntenia the most frequentspecies are Osmia rufa (23.43%) andEucera nigrescens (21.87%), followed byOsmia caerulescens (14.06%), Osmiabicolor and Xylocopa valga (12.50%). Boththe frequent and the rare (identified in onlyone of the 64 researched sites fromMuntenia) species are evenly distributed intwo Apoidea families. In all 20Megachilidae and 22 Anthophoridae rarespecies were identified in Muntenia.

The most frequent species inTransilvania are two Anthophoridae: Eucera

longicornis (26.08%) and Ceratina calosa(21.73%). Other frequent species areAnthidium manicatum and Anthophoraplumipes (17.39%), followed by Chelostomaflorisomne, Chelostoma rapunculi,Megachile rotundata, Anthophora crinipes,Tetralonia dentata, Melecta luctuosa,Biastes brevicornis and Nomada fucata(with a frequency of 13.04%). A highnumber of Megachilidae (21 species) andAnthophoridae (18 species) were identifiedonly in one sampling site, being rare in thesouth-eastern part of Transylvania (wheremost collecting sites are located).

In Dobrogea, high frequency speciesare: Megachile centuncularis, Megachilepilicrus (among Megachilidae) and Euceranigrilabris (among Anthophoridae) -18.18%, followed by Osmia brevicornis,Amegilla quadrifasciata, Eucera cinerea,Eucera dalmatica and Xylocopa valga(13.63%). Numerous Megachilidae (14species) and Anthophoridae (19 species) arerare in Dobrogea, being identified only inone of the 22 collecting sites.

Page 156: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

C. Ban-Călefariu- 156 -

In the biological material collectedfrom Moldova only Anthophoridae specieswere identified. Among them Nomadastigma has a high frequency, of 25%. Theother species have the same value of thisindex.

Among the species identified in afew sites from several regions of Romania,can be considered as rare species: Heriadestruncorum, Megachile ligniseca, Megachileversicolor, Coelioxys afra, Eucera clypeata,Eucera pollinosa and Eucera taurica.Within Chelostoma genus, the species

Chelostoma campanularum is frequent inMaramureş, but rare in Muntenia andTransylvania (in the south-eastern part of theregion), Chelostoma florisomne is frequentin Maramureş and Transylvania, rare inDobrogea, and Chelostoma rapunculi isfrequent in Maramureş and Transylvania,rare in Muntenia and Dobrogea. Anthidiumflorentinum and Anthidium punctatum arerare in Transylvania, while Anthidiummanicatum is frequent. Nomada genus wasmentioned only in a few sites in Romania.

DISCUSSIONThe main factors responsible for the

distribution of wild bee species are:temperature, humidity, light and vegetation.Meantime, wild bees are less diverse in thevicinity of cultivated fields and in orchards,where prevails Apis mellifera, a dominantspecies in these habitats.

The low number of Anthophoridaespecies identified in Maramureş and theirlow frequency is due to their sensitivity tolow temperatures. 21 megachilid species and18 anthophorid species are rare in the south-eastern part of Transylvania, being identifiedonly in one sampling site, and 4 megachilidspecies, respectively 3 anthophorid are rare

in Romania, being identified in a lownumber of sites from several regions.

Most species were identified inMuntenia (36 megachilid species, 40anthophorid species), Transylvania (31megachilid species, 38 anthophorid species)and Dobrogea (21 megachilid species, 29anthophorid species), regions with suitablerelief and climat conditions for the wildbees. The equal values of frequency ofthe species identified in Banat and Crişanaare influenced by the low number ofcollecting sites. Among Chelostoma speciestwo are rare, two are frequent inTransylvania, while in Maramureş all fourare frequent.

REFERENCESBanaszak J. and Romasenko L., 2001 –

Megachilid Bees of Europe, SecondEdition, Bydgoszcz University ofKazimierz Wielki, 1-239.

Gogala A., 1999 – Bee Fauna of Slovenia:Checklist of species (Hymenoptera:Apoidea), Scopolia, 42: 1-79.

Iuga V. G., 1958 – Hymenoptera Apoidea,Fam. Apidae, Subfam. Anthophorinae,Fauna R.P.R., Bucureşti, 9 (3): 1-270.

Michener C. D., 2000 – The Bees of theworld, University of Kansas NaturalHistory Museum and Department ofEntomology, John HopkinsUniversity Press Baltimore andLondon, 913.

AUTHOR:1 Cristina BAN-CALEFARIU

[email protected]“Grigore Antipa” National Museum of Natural History,

Department of Terrestrial Fauna,Kiseleff Street 1, Bucharest,

RO-011341,Romania.

Page 157: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Ground beetle populations in Buila-Vânturariţa National Park; 157/174 pp. - 157 -

THE STRUCTURE OF GROUND BEETLE POPULATIONS(COLEOPTERA, CARABIDAE)

IN THREE TYPES OF HABITATSFROM BUILA-VÂNTURARIŢA NATIONAL PARK

(ROMANIAN CARPATHIANS)

Magdalena HUIDU 1

KEYWORDS: Buila-Vânturariţa National Park, Carabidae, forest habitats, meadow,dominance structure, constancy, diversity, similarity.

ABSTRACTFor protection of the natural capital

in Buila-Vânturariţa National Park usingstrategies of sustainable management isnecessary to develop complex studies on thecoenotic elements and the functionalcharacteristics existent in this area.Nowadays such studies are lacking,therefore their necessity is obvious. For thisstudy were chosen three categoriesrepresentative for the protected area as awhole: a deciduous forest, a mixed woodforest and a meadow. The aim of this studyis to emphasize the structural characteristicsof the ground beetle populations in the threecategories of habitat.

The fauna collected from April untilOctober 2007 represents 2044 individualsbelonging to 18 genera and 69 speciesrespectively.

The higher specific richness wasnoticed in meadow sites (between 32 and 40species). The dominance structure and thespecies constancy in the three habitats havea few common features, typical for thecomplex mountain areas biocoenoses.

The high degree of dissimilaritybetween the ground beetle populationsshows the heterogeneity of the ecologicalsystems from Buila-Vânturariţa NationalPark.

REZUMAT: Structura populaţiilor de carabide din trei tipuri de habitate din ParculNaţional Buila-Vânturariţa (Carpaţii Româneşti).

Pentru protejarea capitalului naturalîn Parcul Naţional Buila-Vânturariţa prinstrategii de management durabil estenecesară realizarea de studii aprofundate,privind elementele cenotice şi caracteristicilefuncţionale, existente în această arieprotejată. La ora actuală, nu există asemeneastudii, necesitatea lor fiind evidentă. Pentrustudiul de faţă au fost alese trei tipuri dehabitate reprezentative pentru parc: o pădurede foioase (de fag), o pădure de amestec(molid şi fag) şi o pajişte situată la margineapădurii de fag. Scopul lucrării esteevidenţierea caracteristicilor structurale alepopulaţiilor de carabide din cele trei tipuride habitate.

Materialul faunistic a fost colectat,în perioada aprilie-octombrie 2007 şiînsumează 2044 indivizi, aparţinând la 18genuri, respectiv 69 de specii.

Cea mai mare bogăţie specificăs-a semnalat în siturile din pajişte (între 32şi 40 de specii). Structura dominanţei şiconstanţa speciilor în habitate au câtevatrăsături comune în toate cele nouă situristudiate, caracteristice biocenozelor montanebine dezvoltate. Gradul ridicat dedisimilaritate între populaţiile de carabidestudiate indică heterogenitatea sistemelorecologice din Parcul Naţional Buila-Vânturariţa.

Page 158: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Huidu- 158 -

RÉSUMÉ: La structure des populations de carabidae de trois types d’habitats du ParcNational Buila-Vânturariţa.

Pour la protection du capital naturaledu Parc National Buila-Vânturariţa par desstratégies du managemet durable estnecessaire effectuer des études approfondiessur la biodiversité et sur la structure destypes d´habitats qui existent sur sonterritoire. Jusqu-à ce moment, dans le ParcNational Buila-Vântuirariţa il n´existe pasdes études complexes. Pour l´étude on achoisi trois types d´habitats représentatifspuor le parc: la forêt de hêtre, la forêtmélange (épicea et hêtre) et un pré situé aubord de la forêt de hêtre. Notre étudeconcerne la structure des population decarabidés des trois types d´habitats. L’étudepresente les caractéristiques des populationsde carabidae de trois types des habitats.

Le matériel faunesque a étè collectépendant avril-octobre 2007 et include 2044individus appartenant à 18 genres,respectivement à 69 espèce.

On a constaté la plus grandeabondance spécifique dans le cas des sitesde la pré (32 espèces, respectivement40 espèces). On a constaté, depuis notreétude, que la majorité des espèces ont lestatut d´ espèces eurytopes, des espèces quipréférent les regions aux températuresmodérées, hygrophiles, ces caractéristiquesreprésentent le trait commun entre lespopulations des trois habitas. Le degré basde similatité indique l’hétérogénéité despopulations.

INTRODUCTIONThe ground beetle fauna represents a

very important cenotic element in thestructure of all terrestrial ecosystems. Itsenergetic participation to the functioningof the integrating ecological structuresis partially known, but still representsthe central point of interest in manyecological and ecophysiological studies.The phenological and ecologicalcharacteristics of the ground beetle speciesdetermined the specialists to use the groundbeetles as bioindicators in studies of thehabitat conservation or degradation statusand for environmental predictionsconcerning ecosystems tendency. Theground beetle fauna could offer valuableinformation on the deterioration state of the

ecosystems affected by various anthropicactivities (overgrazing, wrong forestmanagement, soil or/and atmospherepollution etc.) or different stages of theecological restoration. Even if the status ofa national park is incompatible with theforest exploitations (at least in theory), theRomanian legislation allows this kind ofactivities.

Until now, in the Buila-VânturariţaNational Park was not undertaken complexstudies on the structure of the existenthabitats; therefore, it is necessary toevaluate the existent natural capital and todecide and implement a sustainablemanagement.

MATERIALS AND MEHODSThis specific scientific study is

focused on qualitative and quantitativestructural characteristics of the groundbeetle fauna in three types of habitats:deciduous forest (sites F1, F2 and F3),mixed forest of spruce and beech (sites A1,A2 and A3), and a meadow (sites P1, P2and P3).

The collecting method used was thatof Barber traps (plastic jars of 450 ml and 10cm diameter) filled with a solution of 4%

formalin. The distance between twoneighboring traps was of three meters.

The collecting frequency wasmonthly (April-October, 2007).

In each studied site were installed 9sampling units, respectively 81 samplingunits in each habitat through the wholeperiod of study.

All the sampled beetles weredetermined at species level, according to theidentification keys (Csiki, 1946; Jeannel,1967).

Page 159: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Ground beetle populations in Buila-Vânturariţa National Park; 157/174 pp. - 159 -

In the deciduous forest the dominantspecies is Fagus sylvatica; numerousindividuals of Sambucus nigra are present inF1 and the herbaceous layer comprisemainly Asplenium scolopendrium, Salviaglutinosa and Polygonatum latifolium. In F2and F3 the shrubs layer is missing and theherbaceous layer is represented mostly byAsplenium scolopendrium.

The mixed forest is dominated byFagus sylvatica and Picea abies. The

herbaceous layer is scarce and only Dentariaglandulosa and a few individuals of Salviassp. are present.

The meadow is situated at the edgeof a deciduous forest. In P1 the shrubs layeris composed by Crataegus monogyna; P2 islocated close to a temporary humid dell andthe flora is represented by Alnus glutinosa,Corylus avelana, Rubus idaeus, Rubushirtus. In P3 there are no tree or shrubspecies.

RESULTS AND DISCUSSIONSThe ground beetle fauna was

collected with 729 sample units andcounted.

The deciduous forestThe ground beetle species have

generally, in all three sampling sites 2044individuals, belonging to 18 genera and 69

species respectively. The ground beetlespecies have generally, in all three samplingsites, quite low relative abundances. Thehighest values are up to 37.43% (Abaxparallelipipedus in site F2) (Tab. 1).

Table 1: The numeric abundances (no. ind.), relative abundances (A - %) and frequencies(F - %) of the ground beetle species in the three sampling sites from the deciduous forest.

F1 F2 F3Species No.

ind. A (%) F (%) No.ind. A (%) F (%) No.

ind. A (%) F (%)

Abax parallelepipedus(Piller et Mittlepacher, 1783)

159 28.4 58.03 84 37.34 50.62 64 23.88 44.45

Abax continuus(Baudi di Selve, 1876)

3 0.54 2.47 4 1.78 3.71 4 1.5 4.94

Abax exaratus(Dejean, 1828)

3 0.36 2.47 2 0.8 2.47 2 0.75 2.47

Abax oblongus(Dejean, 1831)

- - - - - - 1 0.38 1.24

Abax parallelus(Duftschmid, 1812)

5 0.89 4.94 16 7.12 16.05 18 6.72 18.52

Amara aenea(Degger, 1774)

1 0.18 1.24 - - - 1 0.38 1.24

Amara familiaris(Duftschmid, 1812)

- - - 1 0.45 1.24 - - -

Amara montivaga(Sturm, 1825)

1 0.18 1.24 - - - - - -

Carabus arcensis(Herbst 1784)

80 14.24 28.4 3 1.34 3.71 19 7.09 11.12

Carabus cancellatus(Illiger, 1798)

1 0.18 1.24 - - - 1 0.38 1.24

Carabus convexus(Fabricius, 1755)

18 3.21 13.58 3 1.34 3.71 - - -

Carabus coriaceus(Linnaeus, 1758)

72 13.17 41.98 25 11.12 27.16 38 14.67 29.63

Carabus granulatus(Linnaeus, 1758)

- - - - - - 2 0.75 2.47

Page 160: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Huidu- 160 -

F1 F2 F3Species No.

ind. A (%) F (%) No.ind. A (%) F (%) No.

ind. A (%) F (%)

Carabus intricatus(Linnaeus, 1761)

1 0.18 1.24 - - - - - -

Carabus monilis(Fabricius, 1792)

20 3.56 11.12 - - - 7 2.62 6.18

Carabus nemoralis(Müller, 1764)

54 9.61 24.7 5 2.23 4.94 8 2.99 4.94

Carabus scheidleri(Panzer, 1799)

44 7.83 19.76 4 1.78 3.71 5 1.87 3.71

Carabus ullrichi(Germar, 1824)

4 0.72 4.94 - - - 2 0.75 2.47

Carabus violaceus(Linnaeus, 1758)

37 6.59 29.63 53 23.56 39.51 80 29.85 51.86

Cychrus caraboides(Linnaeus, 1758)

- - - 3 1.34 3.71 - - -

Cychrus cordicollis(Chaudoir, 1835)

- - - 1 0.45 1.24 - - -

Cychrus semigranosus(Palliardi, 1825)

4 0.72 3.71 2 0.89 2.47 5 1.87 3.71

Harpalus latus(Linnaeus, 1758)

1 0.18 1.24 - - - - - -

Harpalus affinis(Schrank, 1781)

6 1.07 6.18 2 0.89 2.47 - - -

Harpalus anxius(Duftschmid, 1812)

- - - - - 1 0.38 1.24

Leistus rufomarginatus(Duftschmid, 1812)

1 0.18 1.24 - - - - -

Harpalus laevipes(Zetterstedt, 1828)

2 0.36 2.47 3 1.34 3.71 - - -

Harpalus tardus(Panzer, 1796)

1 0.18 1.24 - - - - - -

Molops elatus(Fabricius, 1801)

1 0.18 1.24 - - - - - -

Molops piceus(Panzer, 1793)

9 1.61 6.18 13 5.78 14.82 7 2.75 8.65

Nebria rufescens(Ström, 1768)

- - - 1 0.45 1.24 - - -

Pterostichus cristatus(Dufour, 1820)

5 0.89 2.47 - - - - - -

Pterostichus niger(Schaller, 1783)

7 1.25 7.41 - - 2 0.75 2.47

Pterostichusoblongopunctatus(Fabricius, 1787)

15 2.67 7.41 - - - 1 0.38 1.24

Trechus quadristriatus(Schrank, 1781)

2 0.36 2.47 - - - - - -

Trechus rubens(Fabricius, 1792)

3 0.54 3.71 - - - - - -

Total 560 100 - 225 100 - 268 100 -

Page 161: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Ground beetle populations in Buila-Vânturariţa National Park; 157/174 pp. - 161 -

The species with low values of therelative abundances have also lowfrequencies in sample.

The species Abax parallelipipedushas the highest relative abundances in sitesF1 and F2 (28.4% and 37.43% respectively)and also the highest frequency (58.03% and50.62%), while in F3; Carabus violaceushas the highest registered values of therelative abundance and frequency (relativeabundance 29.85%, and frequency 51.86%)(Tab. 1), both of them being euritopic forestspecies.

The number of the ground beetlespecies varies from one sampling site toanother in the deciduous forest. For all that,in each site are present three eudominantspecies, two of them common for al threesites (Abax parallelipipedus and Carabusviolaceus) (Tab. 1).

The common characteristic in thedominance structure for the three samplingsites from deciduous forest is the numberalmost equal of eudominant and dominantspecies and also the fact that these speciesbelong to Carabus, Abax and Molops genera(Tab. 2).

Table 2: The structure of numerical dominance (no. sp.) and the constancy classes (no.sp.) in the three ground beetle populations from the deciduous forest: SR-subrecedent, R-recedent, SD-subdominant, D-dominant, ED-eudominant, ACC-accidental, ACS-accessory, CT-constant, ECT-euconstant.

Numerical dominance Constancy classesSites

SR R SD D ED ACC ACS CT ECT

F1 - 29 species 18 2 3 3 3 25 3 1 -

F2 - 18 species 6 6 1 2 3 15 2 1 -

F3 - 20 species 9 3 3 2 3 17 2 1 -

The most part of the ground beetlestudied populations consists in subrecedentspecies.

The frequency of the ground beetlespecies in the three sampling sites from thedeciduous forest is similar along the entireperiod of study: one constant species in eachsampling site (Abax parallelipipedus in F1and F2 and respectively Carabus violaceusin F3) and two or three accessory species ineach sampling site (Carabus arcensis,Carabus coriaceus and Carabus violaceusin F1, Carabus coriaceus and Carabusviolaceus in F2 and in F3 - Abaxparallelipipedus and Carabus coriaceus)(Tab. 2).

Most of the species (over 80%) havethe status of accidental species in all threepopulations while the euconstant species aremissing from all three sampling sites.

The analysis of the biological andecological characteristics of the groundbeetle species (Thiele 1977; Leśniak 2001;Desender, 1989; Falke, 2000; Paill, 2000;Loreau, 1982) shows that the mostnumerous species are euritopic forestspecies, mesothermic hygrophilous (speciesfrom sites F2 and F3) and meso-xerophylous(species from site F1) (Tab. 3).

It could be also noticed that mostspecies are autumn breeders, exceptionbeing in F3 where the spring breeders are inequal proportion with autumn breeders.

Over 70% of the ground beetlespecies from the deciduous forest aregeneralist predators, most (62% in F1,33.34% in F2 and 45% respectively in F3)consuming invertebrates with relative highbody size (snails, slugs, earthworms, variouslarva of other invertebrates, isopods etc.).

Page 162: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Huidu- 162 -

The ground beetle populations fromthe deciduous forest differ both in specificcomposition and in species proportions intheir populations.

The species richness in F1 siteconsists in 29 ground beetle species,meaning 560 collected individuals. TheShannon-Wiener index of diversity for thispopulation is 2.556 (Fig. 1). About 52.65%of the diversity index is due to six species:Abax parallelipipedus, Carabus arcensis,Carabus coriaceus, Trechus quadristriatus,Harpalus laevipes and Carabus nemoralis.

The F2 site is populated by 18ground beetle species, counting 225collected individuals. As in the case of theground beetle population from F1, here,most of the species are euritopic forestspecies. The value of the Shannon-Wiener

index of diversity is 1.973. The threedominant species (Abax parallelipipedus,Carabus violaceus, Carabus ciroaceus)represent 48% of the diversity index value.

In F3 site, the species richness is of20 species (most of them euritopic forestspecies), counting 268 captured individuals.The eudominant species (Carabus violaceus,Abax parallelipipedus, Carabus coriaceus)represent 46.07% from the diversity indexvalue.

Even if the ground beetle populationsdiffer in species composition and further theecological and biological limits of tolerance,the differences between the values of theShannon-Wiener index of diversity do notdiffer significantly (t = 0.291-0.978, P > 0.05).

Table 3: The composition (%) of the ground beetle populations in sampling sites from thedeciduous forest, according to species ecological and biological characteristics.

SitesSpecies characteristicsF1 F2 F3

Habitat affinityEuritopic forest species 58.62 66.66 70Stenotopic forest species 13.79 11.11 10Euritopic of open areas 17.24 11.11 15Euritopic of gravelly areas 6.89 11.11 -Sinantropic ruderal species 3.44 - -Euritopic species - - 5

Breeding periodAutumn breeders 55.17 55.55 45Spring breeders 41.37 33.33 45Variable 3.44 11.11 10

Humidity preferencesHygrophilous 28.57 50 40Mesoxerophilous 35.71 33.33 25Mesophilous 3.57 - 5Mesohygrophilous 25 16.66 30Xerophilous 7.14 - -

Temperature preferencesMesothermic 77.28 53.85 62.5Termophilous 9.09 23.08 18.75Low temperature preferences 13.64 23.08 18.75

Trophic categoryPredators 77.78 83.34 90Fitophagous 22.23 16.67 10

Page 163: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Ground beetle populations in Buila-Vânturariţa National Park; 157/174 pp. - 163 -

29

2.556

18

1.973

20

2.117

0

5

10

15

20

25

30

no. s

p / i

ndex

val

ue

F1 F2 F3

sampling sites

number of species

Shannon-Wiener index of diversity

Figure 1: The variations of species number and the Shannon-Wiener index ofdiversity in the three sampling sites from the deciduous forest.

The quite low values of the Jaccardindex of similarity (Tab. 4) confirm again

the idea of the high differences between thethree ground beetle populations.

Table 4: The degree of similarity (Jaccard index) between the ground beetle populationsfrom sampling sites of the deciduous forest.

Sites Value of Jaccard index of similarityF1 x F2 0.424F1 x F3 0.531F2 x F3 0.407

The common species to the threesampling sites - Abax parallelipipedus,Carabus coriaceus and Carabus violaceus -are euritopic forest species, autumnbreeders, but differ as temperature andhumidity limits of tolerance: Abaxparallelipipedus is mesotermic hygrophilous,Carabus coriaceus is mesoxerophylousand prefers low temperatures andCarabus violaceus is termophilous andmesohygrophylous.

The differences between the threeground beetle populations are granted by thespecies Abax oblongus, Carabus granulatus,Harpalus anxinus present only in F3, Amarafamiliaris, Cychrus caraboides, Cychruscordicollis present in F2 only (speciesmesotermophilous and hygrophilous) andthe species typical forF1: Amara montivaga,Harpalus latus, Leistus rufomarginatus,Trechus quadristriatus, Trechus rubens(generally euritopic of open habitats,xerophilous and termophilous species).

The mixed forestIn the A1-A3 selected sampling

sites, as in those from the deciduous forest,most of the sampled ground beetle specieshave low values of the relative abundances(Tab. 5).

The higher relative abundance wasrecorded for Carabus violaceus (31.2% inA3), present in all three sampling sites.

More than that, the species has alsothe higher frequency in sampling units(maximum of 34.57% in A2).

Page 164: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Huidu- 164 -

Table 5: The numeric abundances (no. ind.), relative abundances (A - %) and frequencies(F - %) of the ground beetle species in the three sampling sites from the mixed forest.

A1 A2 A3Species No.

ind.A (%) F (%)

No.ind. A (%) F (%)

No.ind. A (%) F (%)

Abax parallelepipedus(Piller et Mittlepacher,1783)

12 11.01 F (%) 25 15.73 22.23 24 18.75 23.46

Abax continuus(Baudi di Selve, 1876)

2 1.84 2.47 3 1.89 3.71 2 1.57 2.47

Abax oblongus(Dejean, 1831)

- - - - - - 1 0.79 1.24

Abax parallelus(Duftschmid, 1812)

7 6.43 7.41 5 3.15 6.18 14 10.94 14.82

Calosoma inquisitor(Linnaeus, 1758)

- - - 1 0.63 1.24 - - -

Carabus arcensis(Herbst, 1784)

1 0.92 1.24 9 5.66 8.65 5 3.91 6.18

Carabus cancellatus(Illiger, 1798)

- - - - - 1 0.79 1.24

Carabus convexus(Fabricius, 1755)

2 1.84 2.47 4 2.52 4.94 4 3.13 4.94

Carabus coriaceus(Linnaeus, 1758)

21 19.27 19.76 18 11.32 17.29 9 7.04 9.88

Carabus monilis(Fabricius 1792)

- - - 2 1.26 2.47 - - -

Carabus nemoralis(Müller, 1764)

1 0.92 1.24 2 1.26 2.47 2 1.57 2.47

Carabus scheidleri(Panzer, 1799)

- - - 2 1.26 2.47 2 1.57 2.47

Carabus ullrichi(Germar, 1824)

1 0.92 1.24 1 0.63 1.24 1 0.79 1.24

Carabus violaceus(Linnaeus, 1758)

34 31.2 29.63 35 22.02 34.57 34 26.57 27.16

Cychrus caraboides(Linnaeus, 1758)

10 9.18 8.65 26 16.36 3.46 10 7.82 9.88

Cychrus cordicollis(Chaudoir, 1835)

5 4.59 4.94 8 5.06 8.65 9 7.04 11.12

Cychrus semigranosus(Palliardi, 1825)

8 7.34 8.65 4 2.52 4.94 4 3.13 4.94

Harpalus affinis(Schrank, 1781)

- - - - - - 1 0.79 1.24

Harpalus laevipes(Zetterstedt, 1828)

- - - 4 2.52 3.71 - - -

Pseudoophonus rufipes(De Geer, 1774)

- - - 1 0.63 1.24 - - -

Molops piceus(Panzer, 1793)

- - - - - - 1 0.79 1.24

Pterostichus brevis(Duftschmid, 1812)

- - - 1 0.63 1.24 - - -

Pterostichus niger(Schaller, 1783)

4 3.67 4.94 8 5.04 9.88 4 3.13 4.94

Pterostichusoblongopunctatus(Fabricius, 1787)

1 0.92 1.24 - - - - -

Total 109 100 - 159 100 - 128 100 -

Page 165: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Ground beetle populations in Buila-Vânturariţa National Park; 157/174 pp. - 165 -

The species with low relativeabundances have also low frequencies in thesample units. First, the dominant andeudominant species represent about 42.85%of the ground beetle species from A1 (6species), 31.57% of those from A2 (6species) and respectively 33.33% of thosefrom A3 (6 species).

The eudominant species, common inall three sampling sites are Abaxparallelipipedus and Carabus violaceus,while Carabus coriaceus is eudominant inA1 and A2, Cychrus caraboides in A2 onlyand Abax parallelus in A3 only. Asexpected, most part of the species aresubrecedent in their populations (Tab. 6).

Table 6: The structure of numerical dominance (no. sp.) and the constancy classes(no. sp.) in the three ground beetle populations from the mixed forest: SR-subrecedent,R-recedent, SD-subdominant, D-dominant, ED-eudominant, ACC-accidental, ACS-accessory,CT-constant, ECT-euconstant.

Numerical dominance Constancy classesSites

SR R SD D ED ACC ACS CT ECT

A1-14 species 4 2 2 3 3 13 1 - -

A2-19 species 4 4 5 2 4 18 1 - -

A3-18 species 5 3 4 3 3 17 1 - -

Species to be considered “permanentinhabitants” in the mixed forest are missing,most of the species (over 90%) in the threesampling sites are accidental, and the restbeing accessory species; this fact leads to theconclusion that the ground beetle populationsare quite dynamic ones.

The species ecological and biologicalcharacteristics show that most species areeuritopic forest species, most of them beingalso autumn breeders with preferences formore humid habitats (Tab. 7). Over 80% ofthe ground beetle species in all three sitesare generalist predators. This could be theelement to sustain the hypothesis that theintegrating trophic structure is complex andrich enough to support high number ofpredator ground beetles.

In A1, the studied ground beetlepopulation comprises a total of 14 species,most of them euritopic forest species,counting 109 captured individuals. The valueof Shannon-Wiener index of diversity is1.885; the eudominant species Carabusviolaceus, Carabus coriaceus and Abaxparallelipipedus represent 49.4%.

The species richness in A2 is of 19species and the total number of the capturedindividuals is 159. The value of Shannon-Wiener index of diversity is 2.224. Alsolike in the previous case, the highestcontribution to the local specific diversity isof the species Carabus violaceus, Abaxparallelipipedus, Cychrus caraboides andCarabus monilis.

The site A3 is populated by 18species and, like in the last two sites most ofthem are euritopic forest species. Thecapture was of 128 individuals. The value ofShannon-Wiener index of diversity is 2.125,42.7% is due to the eudominant speciesCarabus violaceus, Abax parallelipipedusand Abax parallelus (Fig. 2).

The average values of the Shannon-Wiener index of diversity for thepopulations from deciduous forest andmixed forest are quite close (statisticallyinsignificant);

t = [0.152 - 0.870], p > 0.05.

Page 166: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Huidu- 166 -

Table 7: The composition (%) of the ground beetle populations in the sampling sites fromthe mixed forest, according to species ecological and biological characteristics.

SitesSpecies characteristicsA1 A2 A3

Habitat affinityEuritopic forest species 71.42 68.41 72.22Stenotopic forest species 7.14 5.26 11.11Euritopic of open areas - - 5.55Euritopic of gravelly areas - 10.52 -Euritopic species 21.42 15.78 11.11

Breeding periodAutumn breeders 57.14 57.89 61.11Spring breeders 42.85 36.84 33.33Variable - 5.26 5.55

Humidity preferencesHygrophilous 42.85 38.88 44.44Mesoxerophylous 21.42 16.66 22.22Mesohygrophylous 35.71 33.33 33.32Xerophyilous - 11.11 -

Temperature preferencesMesotermic 66.67 46.16 53.85Termophyilous 13.37 23.08 23.08Low temperature preferences 20 30.77 23.08

Trophic categoryPredators 86.3 84.21 94.12Phitophagous 13.7 15.79 5.89

14

1,885

19

2,224

18

2,125

0

2

4

6

8

10

12

14

16

18

20

no.s

p / i

ndex

val

ue

A1 A2 A3sampling sites

number of species

Shannon-Wiener index of diversity

Figure 2: The variations of species number and the Shannon-Wiener index of diversityin the three sampling sites from the mixed forest.

Page 167: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Ground beetle populations in Buila-Vânturariţa National Park; 157/174 pp. - 167 -

The highest part of the ground beetlepopulation is formed by the accidentalspecies (over 90%), suggesting the existenceof a high dynamics of the local species.

The presence (even in smallproportion represented in the value ofShannon-Wiener index of diversity) of thestenotopic species shows the existence ofa more stable food resources andmicroclimatic conditions. The values ofJaccard index of similarity show quite highdifferences between the three studiedpopulations (Tab. 8).

The ground beetle populations are60% similar in specific composition (Tabs.6-8). The species found in all three mixedforest sampling sites belong to Abax,

Carabus and Cychrus genera. Abaxparallelipipedus and Carabus violaceus,have the highest values of the relativeabundances and frequencies; both areeuritopic forest species, autumn breeders,are meso- to termophilous species and prefermore humid microclimate. The differencesin ground beetle populations in thesesampling sites are due to Abax oblongus,Carabus cancellatus, Molops piceus -euritopic forest species, mesotermophilous,occurred only in A3, to Harpalus laevipesand Pseudoophonus rufipes - euritopic ofopen habitats, present only in A2 and toPterostichus oblongopunctatus - alsoeuritopic forest species, mesohygrophilousand mesothermic species, present only in A1.

Table 8: The degree of similarity (Jaccard index) between the ground beetlepopulations from sampling sites of mixed forest.

Sites Value of Jaccard index of similarityA1 x A2 0.650A1 x A3 0.684A2 x A3 0.609

The meadow habitatMost of the ground beetle species

have low values of the relative abundances(below 10%) in all three sampling sites, farfrom the maximum of 30.94% recorded by

Pterostichus niger in P2 (Tab. 9); like thespecies with low relative abundances fromthe previous sampling sites, in the meadow,this category of species has also lowfrequencies in the sample units.

Table 9: The numeric abundances (no. ind.), relative abundances (A - %) and frequencies(F - %) of the ground beetle species in the three sampling sites from the meadow sites.

P1 P2 P3Species No.

ind.A

(%)F

(%)No.ind.

A(%)

F(%)

No.ind.

A(%)

F(%)

Abax continuus(Baudi di Selve, 1876)

- - - 2 0.72 2.47 2 1.05 2.47

Abax parallelepipedus(Piller et Mittlepacher, 1783)

1 0.8 1.24 12 4.32 14.82 28 14.66 14.82

Abax parallelus(Duftschmid, 1812)

2 1.6 2.47 6 2.16 7.41 3 1.57 2.47

Amara aenea(Degeer, 1774)

3 2.4 3.71 - - - 1 0.53 1.24

Amara apricaria(Payk., 1790)

- - - 1 0.36 1.24 - - -

Amara consularis(Duftschumid, 1812)

- - - 2 0.72 1.24 2 1.05 2.47

Amara familiaris(Duftschumid, 1812)

- - - 1 0.36 1.24 - - -

Amara infima(Duftschmid, 1812)

- - - 2 0.72 1.24 - - -

Page 168: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Huidu- 168 -

P1 P2 P3Species No.

ind.A

(%)F

(%)No.ind.

A(%)

F(%)

No.ind.

A(%)

F(%)

Amara lunicollis(Schioedte, 1837)

1 0.8 1.24 - - - - - -

Amara ovata(Fabricius, 1792)

- - - 1 0.36 1.24 - - -

Amara spreta(Dejean, 1831)

1 0.8 1.24 - - - - - -

Amblystomus niger(Heer, 1841)

1 0.8 1.24 - - - 1 0.53 1.24

Anisodactylus nemorivagus(Duftschmid, 1812)

- - - - - 1 0.53 1.24

Bembidion obtusum(Audinet-Serville, 1821)

- - - 1 0.36 1.24 - - -

Callistus lunatus(Fabricius, 1775)

- - - - - - 1 0.53 1.24

Carabus arcensis(Herbst, 1784)

- - - 1 0.36 1.24 3 1.57 3.71

Carabus cancellatus(Illiger, 1798)

- - - 1 0.36 1.24 1 0.53 1.24

Carabus convexus(Fabricius, 1755)

16 12.8 14.82 40 14.39 27.16 19 9.95 17.29

Carabus coriaceus(Linnaeus, 1758)

3 2.4 3.71 6 2.16 7.41 7 3.67 7.41

Carabus monilis(Fabricius, 1792)

1 0.8 1.24 1 0.36 1.24 1 0.53 1.24

Carabus nemoralis(Müller, 1764)

1 0.8 1.24 - - - - - -

Carabus ullrichi(Germar, 1824)

3 2.4 3.71 10 3.60 9.88 2 1.05 2.47

Carabus violaceus(Linnaeus, 1758) 3 2.4 3.71 2 0.72 2.47 8 4.19 6.18Chlaenius nitidulus(Schrank 1781)

- - - 1 0.36 1.24 - - -

Cryptophonus tenebrosus(Dejean, 1829)

10 8 3.71 - - - 2 1.05 1.24

Cychrus caraboides(Linnaeus, 1758)

8 6.4 9.88 2 0.72 1.24 2 1.05 2.47

Cychrus cordicollis(Chaudoir, 1835)

6 4.8 7.41 4 1.44 4.94 1 0.53 1.24

Cychrus hampei(Gestro 1874)

2 1.6 1.24 1 0.36 1.24 - - -

Cychrus semigranosus(Palliardi, 1825)

4 3.2 3.71 - - - 1 0.53 1.24

Harpalus affinis(Schrank, 1781)

- - - - - - 1 0.53 1.24

Harpalus anxinus(Duftschmid, 1812)

1 0.8 1.24 - - - - - -

Harpalus caspius(Steven, 1806)

1 0.8 1.24 - - - - - -

Page 169: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Ground beetle populations in Buila-Vânturariţa National Park; 157/174 pp. - 169 -

P1 P2 P3Species No.

ind.A

(%)F

(%)No.ind.

A(%)

F(%)

No.ind.

A(%)

F(%)

Harpalus hirtipes(Panzer 1796) - - - - - 1 0.53 1.24Hapalus latus(Linnaeus, 1758) 2 1.6 2.47 - - - 3 1.57 2.47Harpalus laevipes(Zetterstedt, 1828) - - - - - - 6 3.15 4.94Harpalus melancholicus(Dejean, 1829)

13 10.4 12.35 - - - 10 5.24 12.34

Harpalus rubripes(Duftschmid, 1812)

1 0.8 1.24 - - - 1 0.53 1.23

Harpalus rufipes(De Geer 1774)

- - - 1 0.36 1.24 7 3.67 7.41

Harpalus tardus(Panzer, 1796)

3 2.4 3.71 - - - - - -

Lebia crux-minor(Linnaeus 1758)

- - - 1 0.36 1.24 - - -

Poecilus cupreus(Linnaeus, 1758)

- - - - - - 1 0.53 1.24

Poecilus cursorius(Dejean, 1828)

1 0.8 1.24 22 7.92 7.41 9 4.72 6.17

Poecilus lepidus(Leske, 1785)

- - 1 0.36 1.24 7 3.67 4.94

Poecilus sericeus(Fischer, 1824)

1 0.8 1.24 - - - 5 2.62 6.17

Poecilus versicolor(Sturm, 1824)

6 4.8 1.24 18 6.48 11.12 23 12.05 13.58

Pseudophonus calceatus(Duftschmid, 1812)

- - - - - - 3 1.57 3.71

Pterostichus aethiops(Panzer, 1796)

3 2.4 3.71 3 1.08 2.47 2 1.05 2.47

Pterostichus brevis(Duftschmid, 1812)

3 2.4 3.71 2 1.76 2.47 3 1.57 2.47

Pterostichus cristatus(Dufour 1820)

- - 6 2.16 7.41 1 0.53 1.23

Pterostichus diligens(Sturm, 1824)

1 0.8 1.24 2 0.72 2.47 2 1.02 2.47

Pterostichus kokeili(Miller, 1850)

- - - 1 0.36 1.24 - - -

Pterostichuslineatopunctatum(Dejean 1831)

- - - - - - 1 0.53 1.24

Pterostichus negligens(Sturm, 1824)

- - - 1 0.36 1.24 - - -

Page 170: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Huidu- 170 -

P1 P2 P3Species No.

ind.A

(%)F

(%)No.ind.

A(%)

F(%)

No.ind.

A(%)

F(%)

Pterostichus niger(Schaller, 1783)

16 12.8 13.58 86 30.94 45.68 12 6.29 13.58

Pterostichusoblongopunctatus(Fabricius, 1778)

6 4.8 7.41 37 13.31 25.93 6 3.15 6.17

Pterostichus unctulatus(Duftschmid, 1812)

- - - - - - 1 0.53 1.24

Pterostichus ziegleri(Duftschmid, 1812)

1 0.8 1.24 - - - - - -

Total 125 100 - 278 100 - 191 100 -

The highest relative abundanceshave Pterostichus niger and Carabusconvexus in P1 (12.8% for both species)and P2 (30.94% and 14.39% respectively).These species are also the most frequentin the sample units. In P3, Abaxparallelipipedus has the highest relativeabundance (14.66%), while the mostfrequent species is Carabus convexus(17.29%) (Tab. 9).

The studied species number varybetween the meadow sites; there werecaptured 32 species in P1, 33 species inP2 and 40 species in F3 respectively (Tab.9).

In the structure of dominance, it isnoticed an equal number of threeeudominant species in P1 and P2, two ofthem - Carabus convexus and Pterostichusniger - present in both habitats. In P3 onlyAbax parallelippedus and Poecilusversicolor are eudominant species (Tab. 10).

About 50% of the ground beetlepopulations consists in subrecedent species;this category represents 40.63% ofthe ground beetle population in P1 (13species), 60.61% from the populationfrom P2 (20 species) and 55% of thepopulation from P3 (22 species). Theaccessory species identified are Carabusconvexus, Pterostichus niger andPterostichus oblongopunctatus, present inP2 (Tab. 10).

Table 10: The structure of numerical dominance (no. sp.) and the constancy classes(no. sp.) in three ground beetle populations from meadow sites; SR-subrecedent, R-recedent,SD-subdominant, D-dominant, ED-eudominant, ACC-accidental, ACS-accessory, CT-constant,ECT-euconstant.

Numerical dominance Constancy classesSites SR R SD D ED ACC ACS CT ECTP1 - 32 species 13 3 11 2 3 32 - - -P2 - 33 species 20 3 5 2 3 30 3 - -P3 - 40 species 22 5 8 3 2 40 - - -

The analysis of the species’ecological and biological characteristicsshows that most of them are euritopic forestspecies followed as proportion by theeuritopic of open habitats ones, withpreferences for humid and moderate dryhabitats. More than half of the present

species are mesothermic (Tab. 11); thedifferences between spring breeder speciesand autumn breeders are very small. As inmixed forest described population, inmeadow populations, most of the groundbeetle species (more than 70%) arepredators.

Page 171: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Ground beetle populations in Buila-Vânturariţa National Park; 157/174 pp. - 171 -

Table 11: The composition (%) of the ground beetle populations in sampling sites fromthe meadow, according to species ecological and biological characteristics.

SitesSpecies characteristicsP1 P2 P3

Habitat affinityEuritopic forest species 42.86 50 38.24Stenotopic forest species 3.58 3.58 2.95Euritopic of open habitats 28.58 28.58 38.24Euritopic of gravelly areas - - 2.95Euritopic species 17.86 14.29 11.77Stenotopic of open habitats 3.58 - -Euritopic of sandy areas 3.58 - -Stenotopic species - 3.58 5.89

Breeding periodAutumn breeders 40 54.55 52.38Spring breeders 50 40.91 42.86Variable 10 4.55 4.77

Humidity preferencesHygrophilous 31.82 41.67 37.04Mesoxerophylous 31.82 25 29.63Mesohygrophilous 18.19 16.22 18.52Xerophylous 18.19 16.67 14.82

Temperature preferencesMesothermic 62.5 58.83 62.5Thermophylous 25 17.65 18.75Low temperatures preferences 12.5 23.53 18.75

Trophic categoryPredators 71.43 75 70.27Fitophagous 28.58 25 29.73

In P1 the ground beetle populationcomprises 32 species, most of themeuritopic forest species, represented by125 captured individuals. The valueof Shannon-Wiener index of diversity is3.006 (Fig. 3); the eudominant and dominantspecies represent 38.23% of this indexvalue.

The species richness in P2 isassured by 33 ground beetle species,meaning a capture of 278 individuals. Mostof the species are euritopic forest species.

The value of Shannon-Wiener indexof diversity is 2.517, 42.52% of this value isdue to the eudominant and dominantspecies.

The P3 site is populated by 40species, identified in the 191 capturedindividuals, as in previous case, mostlyeuritopic forest species. The value ofShannon-Wiener index of diversity is 3.109,but, in this population, the eudominant anddominant species cover only 23.43% of theindex value.

Page 172: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Huidu- 172 -

32

3,006

33

2,517

40

3,109

0

5

10

15

20

25

30

35

40

no. s

p. /

inde

x va

lue

P1 P2 P3

sampling sites

number of species

Shannon-Wiener index of diversity

Figure 3: The variations of species number and the Shannon-Wiener index of diversityin the three sampling sites from the meadow.

Table 12: The degree of similarity (Jaccard index) between the ground beetle populationsfor sampling sites from meadow.

Sites Value of Jaccard index of similarityP1 x P2 0.347P1 x P3 0.684P2 x P3 0.5

The characteristic of the groundbeetle studied populations from meadowis the high proportion of the euritopicforest species as accidental species,emphasizing the strong influence of theneighboring forest on the structure ofground beetles populations inhabiting themeadow.

The differences between thethree ground beetle populations are grantedby the species Amara aenea, Amaralunicollis, Amara spreta, Harpalus caspius,Harpalus anxinus, Harpalus tardus (speciesfound only in P1, which are euritopic

of the open areas, mesotermophilous,fitophagous species, preferring habitatswith moderate dryness), species likeAmara apricaria, Amara infima, Amaraovata, Bembidion obtusum, Pterostichuskokeli and Pterostichus negligens, foundonly in P2 (euritopic of open areas andalso euritopic forest species) andthose occurred in P3 only: Poeciluscupreus, Pseudophonus calceatus,Pterostichus lineatopunctatum andPterostichus unctulatus.

Page 173: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Ground beetle populations in Buila-Vânturariţa National Park; 157/174 pp. - 173 -

CONCLUSIONSThe highest specific richness was

observed in meadow sites (between 32 and40 species), and the lowest in mixed forestsites (14 species, 19 species, 18 speciesrespectively); that was reflected also in thehigher values of Shannon-Wiener diversityindex.

In all nine studied sites, the groundbeetle populations are similar in that a verysmall proportion of the whole number ofcollected species has high relativeabundance and implicit (eu)dominant status.The high proportion of species with lowvalues of relative abundance and accidentalstatus is present in all the studied sites.

In all sites it is noticed a very highrate for predators species indicating a verycomplex trophic structure.

The ground beetle populationsstructure represented by a low rate of(eu)dominant species and the presence of alow number of stenotopic ones (or theirabsence) was also noticed in other montanehabitats in Romania (Falcă, 2000 a, b, c,

2002; Purice 2002, 2003). These structuralcharacteristics and the high rate of speciesbelonging to habitats situated nearby studiedareas (species with accidental status)indicate dynamic ground beetle populations.

Analyzing the ground beetleecological characteristics it must be said thefact that a common trait for all threehabitats are the species well adapted tomicroclimatic conditions (high number ofthe mesohygrophilous species in theforest habitats and high number of themesoxerophylous, mesotermic and eventermophylous species in the meadow).

The high specific richness in P1-P3sites associated with ecological speciescharacteristics and their status in dominancestructure and constancy classes show that inthe meadows the influence of the forestneighborhood is visible in ground beetlepopulation’s structure; these ground beetlepopulations have a dynamic stability whichinterferes a lot with the structure andprocesses in the adjacent habitats.

REFERENCESCsiki E., 1946 – Die Käferfauna des

Karpaten Beckens, I. Band.Allgemeiner Teil und Caraboidea.(in German)

Desender K. 1989 – Loss of habitats andchanges in the composition ofthe ground and tiger beetle faunain four of the West Europeancountries since 1950 (Coleoptera:Carabidae, Cicindelidae). BiologicalConservation. 48: 227-294.

Falcă M., Vasiliu-Oromulu L., Sanda V.,Popescu A., Fişteag G., Paucă-Comănescu M., Honciuc V., TacinăA., Purice D., Arion C., 2000a –Ecosystemic characterization ofsome spruce fir forests from thesuperior basin of the Prahova River,Proceedings of the Instit. of Biol.,Ann. Scient. Ses. II: 37-50.

Falcă M., Vasiliu-Oromulu L., Sanda V.,Popescu A., Fişteag G., Paucă-Comănescu M., Honciuc V., TacinăA., Purice D., Arion C., 2000b. –

The comparative study of somemixed fir-beech forests from Bucegiand Gârbova Massifs, Proceedings ofthe Instit. of Biol., Ann. Scient. Ses.,II: 23-36.

Falcă M., Vasiliu-Oromulu L., Sanda V.,Popescu A., Paucă-Comănescu M.,Tăcină A., Honciuc V., Onete M.,Purice D., Stănescu M. and Biţă C.,2000c – Comparative ecosystemicanalysis of the acidophilic beechforests and of the beech forests withmull flora from Bucegi Massif,Proceedings of the Institute ofBiology. III: 59-78.

Falcă M., Vasiliu-Oromulu L., SandaV., Popescu A., Paucă-ComănescuM., Tăcină A., Honciuc V., OneteM., Purice D., Stănescu M. andBiţă C., 2002 – Ecologicalinvestigation into the fir-beechforests from the higher PrahovaBasin, Proceedings of Institute ofBiology, IV: 43-62.

Page 174: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Huidu- 174 -

Falke B., Oevermann S. and AssmannT., 2000 – Ground beetles(Coleoptera, Carabidae) in amedieval wood-pasture reserve innorth-west Germany, NaturalHistory and Applied Ecologyof Carabid Beetles, Proceedings ofthe IX European Carabidologists’Meeting (26-31 July 1998,Camigliatello, Cosenza, Italy),Pensoft Publishers, 265-275.

Jeannel R., 1967 – Coléopters Carabiques,Faune. Fr. 39: 1-571. (in French)

Leśniak A., 2001 – Ground beetles(Carabidae, Coleoptera) of ŚwiniaGóra Reserve in the ŚwiętokrzyskieMountains, Fragmenta Faunistica,44: 41-57.

Loreau M., 1982 – Trophic role of carabidbeetles in a forest, New Trends inSoil Biology, 281-286.

Paill W., 2000 – Slugs as prey for larvaeand imagines of Carabus violaceus(Coleoptera: Carabidae), NaturalHistory and Applied Ecology ofCarabid Beetles, Proceedings ofthe IX European Carabidologists’

Meeting (26-31 July 1998,Camigliatello, Cosenza, Italy),Pensoft Publishers, 221-227.

Purice D., 2002 – Aspects of the carabidbeetles communities from someforest ecosystems of Retezat MassifProceedings of Institute of Biology,IV: 157-164.

Purice D., 2003 – The structure of groundbeetles communities (Ord.Coleoptera, Fam. Carabidae) insome forest ecosystems of PiatraCraiului National Park, Research inPiatra Craiului National Park I: 243-249.

Szujecki A., Szyszko J., Mazur S. andPerliński S., 1983 – “The process offorest soil macrofauna formationafter afforestation of farmland”,Warsaw Agricultural UniversityPress, Warsaw.

Thiele H.-U., 1977 – Carabid beetles in theirenvironments. A study on habitatselection by adaptations inphysiology and behaviour, Springer-Verlag Berlin Heidelberg New York,1-330.

AUTHORS:

1 Magdalena [email protected]

Buila-Vânturariţa National Park Administration,Pieţei Street 7, Horezu,

Vâlcea County,Romania, RO-245800.

Page 175: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Terrestrial Isopod fauna in Oaş and Igniş mountains; 175/182 pp. - 175 -

CONTRIBUTIONS TO THE KNOWLEDGE OF THE TERRESTRIALISOPOD FAUNA IN OAŞ DEPRESSION AND IGNIŞ MOUNTAIN MASS

(ROMANIAN CARPATHIANS)

Radu HOTEA 1 and Marcelina HOTEA 2

KEYWORDS: Romania, Satu Mare, Maramureş, swamp, species.

ABSTRACTThis study presents the results of the

research made in a few ecosystems in OaşDepression and Igniş Mountain Mass, morespecifically: Poiana Brazilor Swamp,Măgura Batarciului subtermophile sites,“Muntele Pustiu” Subthermophile Zonefrom: “Turulung - Vii”, Tinoavele from Oaş- Igniş Montains (Brebu Swamp, “PoianaSălătrucului” Swamp - both of them fromCerteze), where we indentified eight speciesof terrestrial isopods, from whom wecollected 459 individuals.

Analyzing the spread of these eightspecies identified, we draw the conclusionthat one species is found in all the searchedarea, and this one is Protracheoniscuspolitus politus, followed by the sylvanspecies: Trachelipus wächtleri, found in fourecosystems the paludicol: Hyloniscus

transsylvanicus in three ecosystems, thepaludal Ligidium hypnorum, and the sylvanPorcellium conspersum and Trachelipusarcuatus, found in two ecosystems. Thepaludal species: Ligidium germanicum andthe praticol species: Trachelipus nodulosushave been identified only in one ecosystem.

These results indicate a relativelylarge diversity of ecological conditions ofthe five ecosystems and great differencesregarding the ecological valence of isopodspecies. The species with narrow ecologicalvalence limits are present only in thoseecosystems where the environment factors(especially temperature and humidity) donot have big variations in the biologicalactivity period of isopods..

REZUMAT: Contribuţii la cunoaşterea faunei de izopode terestre din Depresiunea Oaşşi masivul Igniş (Carpaţii Româneşti).

Lucrarea prezintă rezultatelecercetărilor făcute în câteva ecosisteme dinDepresiunea Oaş şi masivul Igniş, respectiv:Mlaştina Poiana Brazilor, Staţiuneasubtermofilă Măgura Batarciului, Staţiuneasubtermofilă „Muntele Pustiu” de laTurulung-Vii, Tinoavele din Munţii Oaş-Igniş (Mlaştina „Brebu”, Mlaştina „PoianaSălătrucului”, ambele de la Certeze), în caream identificat un numar de 8 specii deizopode terestre, din care am colectat unnumar de 459 indivizi.

Analizând răspândirea celor 8 speciiidentificate, constatăm că o singură specieeste prezentă în toate ecosistemele cercetateşi anume specia silvicolă Protracheoniscuspolitus politus, urmată de speciile: silvicolăTrachelipus wächtleri, prezentă în 4

ecosisteme cercetate, paludicolă Hyloniscustranssylvanicus în 3 ecosisteme, iar speciilepaludicolă Ligidium hypnorum, silvicolePorcellium conspersum şi Trachelipusarcuatus sunt prezente în două ecosisteme.Speciile paludicolă Ligidium germanicum şipraticolă Trachelipus nodulous au fostidentificate într-un singur ecosistem fiecare.

Aceste rezultate indică o diversitaterelativ mare a condiţiilor ecologice din celecinci ecosisteme şi diferenţe mari, privindvalenţa ecologică a speciilor de izopode.Speciile cu limite înguste ale valenţeiecologice populează numai acele ecosistemeîn care factorii de mediu, în specialtemperatura şi umiditatea, nu înregistreazăvariaţii mari în perioada de activitatebiologică a izopodelor.

Page 176: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

R. Hotea and M. Hotea- 176 -

ZUSAMMENFASSUNG: Beiträge zur Kenntnis der terrestrischen Isopodenfauna derOaş-Senke und des Igniş-Massivs (Maramureş, Rumänien).

Die Arbeit stellt die Ergebnisse ineinigen Ökosystemen der Oaş-Senke unddes Igniş-Massivs, bzw. des Poiana BrazilorMoores, der subtermophilen StandorteMăgura Batarciului sowie „Muntele Pustiu“von Turulung-Vii, der Torfmoore des Oaş-Igniş Gebirges (Brebu- Moor, PoianaSălătrucului-Moor, beide bei Certeze),durchgeführter Forschungen vor. Dabeiwurden 8 Arten terrestrischer Isopoden mit459 Individuen festgestellt.

Analysiert man die Verbreitung der 8Arten, so wird deutlich, dass eine einzigeArt in allen untersuchten Ökosystemenvorkommt und zwar die WaldartProtracheoniscus politus politus. Ihr folgtdie in vier der untersuchten Ökosystemevorkommende Waldart Trachelipuswächtleri, die in drei Ökosystemenfestgestellte Sumpfart Hyloniscus

transsylvanicus und schließlich die in zweiÖkosystemen registrierte Sumpfart Ligidiumhypnorum sowie die beiden WaldartenPorcellium conspersum und Trachelipusarcuatus. Die Sumpfarten Ligidiumgermanicum und die Wiesenart Trachelipusnodulosus wurden jeweils in einem einzigenÖkosystem festgestellt.

Diese Ergebnisse belegen eine relativhohe Biodiversität der ökologischenBedingungen in den fünf untersuchtenÖkosystemen sowie große Unterschiede wasdie ökologische Valenz der Isopodenartenbetrifft. Die Arten mit einer engerenökologischen Valenz kommen nur in denÖkosystemen vor, in denen dieStandortfaktoren, vor allem Temperatur undFeuchtigkeit, während der biologischaktiven Periode der Isopoden keine großenSchwankungen aufweisen.

INTRODUCTIONThe Isopoda order represents a divers

group of crustaceans, from a biological, aswell as an ecological point of view. Theisopods live both in water (sea water andfresh water) and on land. The terrestrialspecies are phytophagus, most of themeating vegetal detritus, thus, having animportant role in matter circulation in theenvironment, contributing to organic matterdegradation from the plants (Hassal, 1977,1983; Hassal and Ruston, 1982; Radu,1964), and in the galleries dug in the

ground, the isopod species have animportant role in loosening of the soil,especially in the forests.

Our research made on terrestrialisopods from Oaş Depresion and IgnişMontain Mass, is part of a larger themeincluded in the project „Together forenvironment Protection”, RO-2004/016-942.01.01.17, financially supported byPhare and the Romanian Government,project developed from 2006 to 2007.

MATERIALS AND METHODSIn our research on terrestrial isopod

communities, we took samples from fiveecosystems in Oaş Depression and IgnişMountain Mass. These are different from oneanother in altitude, temperature, humidity,vegetation structure, differences whichinfluence the terretrial isopod communities.

Măgura Batarciului subthermo-phile experimental zone

It can be found at aproximately 2,5km S-SE from Batarci Village, beingdelimitated by Turţ and Batarci rivulets. Ithas an altitude of 150 metres above the

nearby plain, represented by steep slopes.The medium altitude of the searched area is286 m and the highest peak has 396 m. Thisterritory is placed in chestnut oak forest(Quercus petraea) which form compactforests in the surrounding area. Beside this,there also is the yoke elm (Carpinusbetulus), some pine (Pinus sylvestris) and insome places plantations of locust treeextend.

“Muntele Pustiu” subthermophyleexperimental zone

Page 177: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Terrestrial Isopod fauna in Oaş and Igniş mountains; 175/182 pp. - 177 -

It is situated near the Tur Riverand Turulung - Vii Village at: 47055’280”and 47055’744” northern latitude and23009’531” and 23009’606” easternlongitude. The altitude of the experimentalzone is 154 m at the basis and 325 m on thetop. The wooden vegetation is representedby chestnut oak (Quercus petraea), whichforms here compact forests.

Poiana Brazilor SwampIt is situated in the middle of the

vulcanic plateau Oaş - Maramureş, betweenOaş County and Maramureş County, at47084’078” and 47050’436” northernlatitude, 23071’375” and 23042’308” easternlongitude.

This area belongs to MaramureşCounty, Giuleşti Village. This is anoligotrophe area, continuing withpassing swamps (mezotrophic) alongthe riversides. In the peaty oligotrophearea - with typical plants, relictar, there isa Picea abies population surroundedby Pinus mugo. This dwarf pin groveis considered the lowest location ofjuniper tree in the country and theCarpathians, situated only at 980 m,altitude where beech is found. The enclaveof spruce fir has an autochtonousorigin, while the other spruce groveare artificially introduced in this area.The presence of dwarf pine grove and ofspruce fir is a case of exception in theMaramureş zone. As Pop E. (1983) states,here there is a layer of peat having themaximum thickness of 2.3 m, and a totalquantity of 55,000 m3.“Brebu” Swamp

This swamp is situated in the Easternpart of Oaş County, in Certeze Village,where Mărăuşa rivulet and Valea Albă

River meet, at 47052’467” and 47052’540”northern latitude, 23031’913” and23031’786” eastern longitude, at an altitudeof 667 m.

The territory of the swamp, whichis drained by Valea Albă, has a slightdecline towards the village Certeze. Becauseof excessive humidity, on some placesthe water remains on the surface. Onthe experimental zone territory there aremany marshy habitats of mezo - andeutrophyc.

“Poiana Sălătrucului” SwampThis experimental zone spreads in

the Eastern part of Satu Mare County, on theterritory of Certeze Village, at about 11.5km East from the center of the village, at47051’644” and 47051’547” northernlatitude, 23037’435” and 23037’167” easternlongitude, at an altitude of 1,060 m.

It is located at the external borderzone of Gutâi Mountains, being surroundedby dwarf pine grove, which can be found infact in the beech area. Here you can see aglade of 10 hectars.

The swamp is an over-humid terrain,belonging to mezo-oligotrophic tinovs. Ithas a thick peaty under-layer which is acid(pH - 5.5). On the actual swamp territory,the vegetal under-layer, formed especially ofpeat moss (Sphagnum), slightly bumped.This is characteristic for montain tinovswhere, in fact, there are the oligotrophicswamps. The collecting of isopods has beenmade with soil traps (Barber traps). Theresalty water has been put. The samples havebeen taken after a month, at least. Thecollected material was put in separate tubes,in 700 alcohol and analised in the laboratory.The species were analised, and all theindividuals collected were counted.

RESULTSIn the searched areas described

above we found 8 species of terrestrialisopods (Tab. 1). Compared with theRomanian isopod fauna, which hasaproximately 140 species (Radu, 1983;1985) we consider that the isopod fauna inthe searched area is rich, taking also intoconsideration its surface.

The species identified by us belongto 3 families and 5 genera. The taxonomicspectrum of the species is presented inpercentage (Fig. 1) having the followingvalues, genera Trachelipus - 3 species,Ligidium - 2 species, are the richest-representing (37.5%) and (25%), of all thespecies found by us.

Page 178: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

R. Hotea and M. Hotea- 178 -

The genera: ProtracheoniscusHyloniscus and Porcellium, have only onespecies, representing (12.5%) of the total.This can be explained by the fact that in theRomanian, as well as the European faunathey are represented by a reduced number ofspecies (Radu, 1983; 1985).

The Porcellionidae family isrepresented by 5 species - 62.5% from all

the families, the Ligiidae family - 2 species -25% and Trichoniscidae, only one specieswith 12.5% (Fig. 2).

The eight identified species arefirst written about here by us as they arepresent inthe ecosystems. We haven't foundanydata regarding the terrestrial isopods inthis area.

37,5%

12,5%

12,5%

12,5%

25%

Trachelipus

Ligidium

Hyloniscus

Protracheoniscus

Porcelium

Figure 1: The range of genus of terrestrial isopods.

Page 179: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Terrestrial Isopod fauna in Oaş and Igniş mountains; 175/182 pp. - 179 -

37,5%

12,5%

25%

Porcellionidae

Liigidae

Trichoniscidae

Figure 2: The range of terrestrial isopods families.

Having made these studies weconsider that we contributed to a betterknowledge of the locations of these speciesin our country. Our research, especiallycollecting the biological material, vising theBarber traps and direct collection withprincers, took place in May-September2007, when we took samples from theecosystems we found in the searched areafound in the project “Together forenvironment Protection”, RO-2004/016-942.01.01.17, financially supported by Phareand the Romanian Government. We placed10 Barber traps in each ecosystem and wetook the samples after a month. In those 50Barber traps we collected 459 individualsbelonging to the following species:paludicol (Ligidium hypnorum - 20individuals, Ligidium germanicum - 7individuals, Hyloniscus transsylvanicus - 9individuals), sylvan (Protracheoniscus

politus politus - 240 individuals, Porcelliumconspersum - 14 individuals, Trachelipusarcuatus - 27 individuals, Trachelipuswächtleri - 158 individuals) and the praticolspecies Trachelipus nodulosus - 20individuals.

We can conclude that the mostnumerous species is Protracheoniscuspolitus politus, followed by Trachelipuswächtleri. The other species have a smallnumber of individuals. The faunistic andecological research on vast areas, takingsamples, on periods over the years are veryfew because of the amount of work.

In Romania such researches havebeen made by: Accola (1994) in CheileTurzii, Olariu (1999) in Dornei Depression,Mureşan (2004) in Arieşului Basin and theupper sector of the Someşului Cald Basin,Hotea (2006) in Baia Mare Depression andlimitrophe areas, for the Ph.D. thesis.

Page 180: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

R. Hotea and M. Hotea- 180 -

Table 1: The terrestrial isopods communities identified in the ecosystems of Oaş IgnişDepression. I = ecological categories of isopods: eu = eurithrope, hu = humicol, pa = paludicol,pr = praticol, s = sylvan, II = the biogeographical floors where the isopods are present:bo = boreal, ne = nemoral, st = stepic; III = spreading area: C = Carpathian, CE = CentralEuropean, E = European, H = Holarctic.

No. Taxons I II IIIFam. LigiidaeBrandt, 1883

1. Ligidium hypnorumCuvier, 1792 pa bo, ne CE

2. Ligidium germanicumVerhoeff, 1901 pa bo, ne SE

Fam. TrichoniscidaeVerhoeff, 1908

3. Hyloniscus transsylvanicusVerhoeff, 1901 pa bo, ne C

Fam. PorcellionidaeVerhoeff, 1918

4. Protracheoniscus politus politusC. L. Koch, 1841 s bo, ne SE

5. Porcellium conspersumVerhoeff, 1907 s, hu bo, ne CE

6. Trachelipus arcuatusBudde Lung, 1825 s ne, st CE, SE

7. Trachelipus wachtleriC. L. Koch, 1841 s bo, ne CE, SE

8. Trachelipus nodulosusC. L. Koch, 1838 pr ne, st CE, SE

Taking into consideration theecological conditions where the terrestrialisopods live, there are the followingecological categories: the paludicol species,the humicol species, the sylvan species andthe praticol species.

The paludicol species: (Ligidiumhypnorum, Ligidium germanicum,Hyloniscus transsylvanicus, represent37.5% of the total species number. Thesespecies populate microhabitats with veryhigh humidity in the forest ecosystemsand in swamps as well. The paludicolspecies can't be found in open humidecosystems, because they are affected bythe thermic values which are high during

the summer, exceeding the ecologicaloptimum limits of these species.

The sylvan species which represent50% are: Protracheoniscus politus politus,Porcellium conspersum, Trachelipusarcuatus, Trachelipus wächtler. ThePorcellium conspersum species is also ahumicol species, which lives in humidmicrohabitats, rich in vegetable soil, fromthe forests.

The praticol species Trachelipusnodulosus, represents 12.5% and it lives inopen ecosystems, being a species adapted toxeric microhabitats, which do not mind thehigh temperature and the dry summer time.We found it only in Poiana Brazilor, in theforest near the swamp.

Page 181: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Terrestrial Isopod fauna in Oaş and Igniş mountains; 175/182 pp. - 181 -

Table 2: Terrestrial isopod species found in the ecosystems of Oaş-Igniş: 1 = PoianaBrazilor; 2 = Brebu Swamp; 3 = Sălătruc Swamp; 4 = Pustiu Mountain; 5 = Măgura Batarci;X = the presence of the species.

No. Species 1 2 3 4 5 Total1 Ligidium hypnorum X X 22 Ligidium germanicum X 13 Hyloniscus transsylvanicus X X X 34 Protracheoniscus politus politus X X X X X 55 Porcellium conspersum X X 26 Trachelipus arcuatus X X 27 Trachelipus wachtler X X X X 48 Trachelipus nodulosus X 1

Total species 4 5 3 4 4 0

Analizing the data in the tablenumber 2, we aknowledge that from theeight species of terrestrial isopods found inOaş-Igniş Depression area, most of them arepresent in the Brebu Swamp area, followedby Poiana Brazilor Swamp, Pustiu Mountainand Măgura Batarci.

As well, the same table 2 makes usunderline that from the eight species ofterrestrial isopods, the sylvan species

Protracheoniscus politus politus is found inall the searched areas followed by: sylvanTrachelipus wächtleri, in four areas, paludalHyloniscus transsylvanicus in three areas,and the paludal Ligidium hypnorum, sylvanPorcellium conspersum and Trachelipusarcuatus, found in two areas. The paludalspecies Ligidium germanicum and thepraticol Trachelipus arcuatus have beenidentified in only one area each.

CONCLUSIONSIn the searched areas there are a total

of 8 species of terrestrial isopods, notmentioned before in other studies, quoted byspecialists as being present in theseecosystems. The most numerous individualsof the identified species are that belongingto Protracheoniscus politus politus andTrachelipus wächtleri.

The only species found in all thesearched areas is Protracheoniscus polituspolitus, and the species found only in oneecosystem are: Ligidium germanicum foundin Brebu Swamp and Trachelipus nodulosusin Poiana Brazilor.

We state that the presence of sylvanspecies in microhabitats with very highhumidity is due to their migration from theforest areas nearby.

Page 182: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

R. Hotea and M. Hotea- 182 -

REFERENCESAccola S., 1994 – Ecologia şi biologia unor

specii de izopode terestre, Teză dedoctorat, Universitatea „Babeş-Bolyai”, Cluj-Napoca. (in Romanian)

Hassal M., 1977 – Consumption of leaf litterby the terrestrial isopod Philosciamuscorum in relation to foodavailability in a Dune Grasslandecosystem, Ecol. Bull., 25, 550-553.

Hassal M., 1983 – Population metabolism ofthe terrestrial isopod Philosciamuscorum in a dune brasslandecosystem. Oikos, 41, 17-26.

Hassal M. and Rushton S. P., 1982 – Therole of coprophagy in the feedingstrategy of terrestrial isopods,Oecologia, Berlin, 53, 374-381.

Hotea R., 2006 – Cercetări faunistice şiecologice asupra izopodelor terestredin depresiunea Baia Mare şi zonelelimitrofe, Teză de doctorat,Universitatea „Babeş-Bolyai”, Cluj-Napoca. (in Romanian)

Mureşan D., 2004 – Studiul populaţiilor deizopode terestre din BazinulArieşului şi Bazinul superior alSomeşului Cald, Teză de doctorat,universitatea „Babeş-Bolyai”, Cluj-Napoca, 2004. (in Romanian)

Mureşan D., Tomescu N., Dolniţchi-OlariuL., Hotea R., 2003 – Cercetărifaunistice şi ecologice asupraizopodelor terestre din sectorulmijlociu al Bazinului Arieşului,„Anal. Univ. Oradea, Fasc.Biologie”, Tom. 10. (in Romanian)

Olariu L., 1999 – Studiu faunistic, biologicşi ecologic al populaţiilor de izopodeterestre din zona Dornelor, Teză dedoctorat, Univ. Babeş-Bolyai dinCluj-Napoca. (in Romanian)

Pop E., 1983 – Mlaştini de turbă din R. P.R., Ed. Academiei Române,Bucureşti 1960. (in Romanian)

Radu V. G., 1983 – Fauna RepubliciiSocialiste România, Crustacea vol.,IV, Fasc., 13, Ed. Acad., R. S. R. (inRomanian)

Radu V. G., 1985 – Fauna RepubliciiSocialiste România, Crustacea vol.,IV, Fasc., 14, Ed. Acad., R. S. R. (inRomanian)

***, – Studiu privind situatia mediului înzona transfrontalieră Româno-Ucraineană în vederea constituiriiunor rezervaţii naturale, ProiectPHARE RO-2004/016-942.01.02.17.(in Romanian)

AUTHORS:

1 Radu [email protected]

Baia Mare Sports Highschool,Republicii Street 33-35,

Baia Mare, Maramureş County, Romania, RO-430191,2 Marcelina HOTEA

[email protected]“Gheorghe Şincai” Highschool,

“Gheorghe Şincai” Street 25,Baia Mare, Maramureş County,

Romania, RO-430191.

.

Page 183: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Biodiversity - the foundation of ecosystem services; 183/190 pp. - 183 -

BIODIVERSITY - THE FOUNDATIONOF ECOSYSTEM SERVICES

Gina Alina RADU 1

KEYWORDS: biodiversity, ecosystem goods and services, human well-being.

ABSTRACTThe biodiversity provides numerous

ecosystem services which are crucial tohuman well-being, at present and will be inthe future.

Ecosystems offer goods and serviceswhich are provided by the biodiversity. Theyinclude soil formation, the provision of foodand fiber, air quality and climate regulation,the regulation of water supply and qualityand the cultural and aesthetic value of certainplants and species.

The biodiversity represents thefoundation of ecosystems which, through theservices they provide, affect human well-being. It is being threatened at an

unprecedented scale by global environmentalchange brought about by human societies.

Millennium Ecosystem Assessment,2005, considered that aproximately 60%(15 out of 24) of the ecosystem servicesevaluated in this assessment are beingdegraded, affecting: fishing, wood fuel,fresh water, air quality regulation, waterpurification, natural hazard regulation,respectively aesthetic values.

The choices we make today inhow we use the “gifts” of nature willhave enormous consequences on thefuture sustainability of earth’s ecosystemsand the services they provide.

REZUMAT: Biodiversitatea - fundament al serviciilor ecologice.Biodiversitatea oferă numeroase

servicii ecosistemice, care sunt crucialepentru bunăstarea populaţiei, atât în prezent,cât şi în viitor.

Serviciile ecosistemice sunt bunurileşi serviciile pe care biodiversitatea leasigură. Acestea includ formarea solului,furnizarea de produse alimentare şi fibre,calitatea aerului şi stabilizarea climatului,furnizarea apei potabile şi valoarea estetică şiculturală ale anumitor specii de plante şianimale.

Biodiversitatea este fundamentulecosistemelor care, prin serviciile pe care lefurnizează, afectează bunăstarea populaţieiumane. Aceasta este ameninţată la un nivel

fără precedent de schimbările globale alemediului provocate de către societateaumană.

Evaluarea Ecosistemelor Mileniului,din 2005 a considerat că aproximativ 60%(15 din 24) din serviciile ecosistemiceevaluate sunt degradate, afectând: pescuitul,producţia de material lemnos, alimentarea cuapă, tratarea şi detoxifierea deşeurilor,purificarea apei, protecţia faţă de pericolelenaturale, respectiv reglarea calităţii aerului.

Alegerile pe care le facem astăzi înmodul în care vom folosi „darurile” oferitede natură vor avea consecinţe enorme asupradurabilităţii viitoare a ecosistemelor şiserviciilor pe care acestea le oferă.

RÉSUMÉ: La biodiversité - la fondation des services écologiques.La biodiversité offre de nombreux

services fournis par les écosystèmes qui sontessentiels au bien-être humain à l'heureactuelle et dans l'avenir. Les services desécosystèmes sont les biens et les servicesque la diversité biologique fournit. Ils

comprennent la formation des sols, lafourniture d'aliments et de fibres, la qualitéde l'air et la stabilisation du climat, lafourniture de l’eau potable et la valeurculturelle et esthétique de certaines espècesde plantes et d’animaux.

Page 184: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

G. A. Radu- 184 -

La biodiversité constitue lefondement des écosystèmes qui, par le biaisdes services qu'ils fournissent, affectent laprospérité humaine. Elle est menacée à uneéchelle sans précédent par les changementsglobaux de l’environnement provoqués parles sociétés humaines.

Millennium Ecosystem Assessment,2005, a estimé que près de 60% (15 sur 24)des services éco systémiques évalués danscette évaluation sont dégradés, en affectant:la pêche, la production de bois,

l’alimentation d'eau douce, le traitement etla détoxication des déchets, la purificationde l'eau, la protection devant les risquesnaturels et le réglage de la qualité de l’air.

Les choix que nous faisonsaujourd'hui en ce qui concerne la manièredont nous utiliserons les „cadeaux” offertspar la nature auront des conséquencesénormes sur la durabilité future desécosystèmes terrestres et des services qu'ilsfournissent.

INTRODUCTIONThe biodiversity includes plants,

animals and other organisms and isdefined in the Convention on BiologicalDiversity (CBD) as the variability amongorganisms from all sources includingterrestrial, marine and other aquaticecosystems and the ecological complexesof which they are part; it includes diversitywithin species, between species and ofecosystems.

The biodiversity plays an importantrole in the way the ecosystems functionand in the services they provide. Theability of ecosystems to provide services tohumans is strongly influenced by theecological characteristics of the mostabundant species, not by the number ofspecies.

Ecosystem services are the goodsand services that biodiversity provides.In the publication “Nature Services: SocietalDependence on Natural Ecosystems”,Gretchen Daily (1997) defined ecosystemservices as “the conditions and processesthrough which natural ecosystems, and thespecies that make them up, sustain andfulfill human life”.

We need air for breathing, food,drinkable water, and liveable climates. Eachof these is underpinned by a set ofecosystem services, including: production offood, fuel, fibers and medicines, regulation

of water, air quality and climate regulationmaintenance of soil fertility, cycling ofnutrients, absorption of wastes, pollinationof crops and native vegetation, maintenanceof genetic resources, maintenance of habitat,biodiversity, quality, the cultural andaesthetic value of certain plants and species.The list can be much longer, but I thinkthese examples suffice to show theimportance of ecosystem services.

The biodiversity represents thefoundation of ecosystems that, through theservices they provide, affect human well-being.

Ecological goods and servicesare the basic processes, functions andproducts required for life to exist on ourplanet.

The biodiversity contributes directly(through provisioning, regulating, andalso cultural ecosystem services) andindirectly (through supporting ecosystemservices) to many constituents ofhuman well-being, including security,basic material for a good life, health, goodsocial relations, and freedom of choice andaction.

The humans, while buffered againstenvironmental changes by culture andtechnology, are fundamentally dependenton the continuous flow of ecosystemservices.

Page 185: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Biodiversity - the foundation of ecosystem services; 183/190 pp. - 185 -

RESULTS AND DISCUSSIONS“Goods and services” paradigmThe logic that underlies the ‘goods

and services paradigm’ is summarized in thefigure number 1. The diagram makesdistinction between what can be regarded asecological structures and functions and theeventual services and benefits that theyprovide to people.

The key point emphasized in thefigure number 1 is that a particular functionwhich a given ecological structure orprocess might have, depends on whether

people actually place a value on thatparticular output (i.e. regard the service asproducing some ‘benefit’). Thus woodlandsor the presence of other habitats such aswetlands in a catchment, may have thecapacity (function) of slowing the passage ofsurface water, thereby modifying theintensity of flooding. Whether this functionis regarded as a service depends uponwhether ‘flood control’ is considered as abenefit or not.

Figure 1: The logic underlying the ecosystem goods and services paradigm(Haines-Young et al., 2006).

Ecological goods and services arethe basic processes, functions and productsrequired for life to exist on our planet.Society places great value on water andair quality, recreation, wildlife habitat,climate regulation, aesthetics, andbiodiversity. Unlike other natural resourcessuch as timber or minerals, however, theseintangible but necessary products are notassigned a financial value.

The concern over ecological goodsand services arises because of a perception

that we are losing them at an unsustainablerate, and therefore land use managersmust devise a host of tools to encouragethe provision of more ecological goodsand services. Rural and suburban settingsare especially important, as lands whichare developed and converted from theirnatural state, losing their specific ecologicalfunctions.

Therefore, ecological goods andservices provided by privately held landsbecome increasingly important.

Page 186: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

G. A. Radu- 186 -

Ecosystem services, biologicaldiversity and human well-being

The ecosystems and the biologicaldiversity contained within them providea stream of goods and services, thecontinued delivery which remain reallyessential to our economic prosperity andother aspects of our welfare. In a broadsense, ecosystem services refer to the rangeof conditions and processes through whichnatural ecosystems, and the species that theycontain, help sustain and fulfill human life(Daily, 1997).

The recent Millennium EcosystemAssessment (MA), officialy launched bythe United Nations Secretary General,highlighted the fact that most of theecosystem services are in decline.Approximately 60% (15 out of 24) ofthese specific services evaluated in thisspecial assessment are being degraded:fishing, wild foods, wood fuel, geneticresources, biochemicals, fresh water,air quality regulation, regional andlocal climate regulation, erosion regulation,water purification, pest regulation,pollination, natural hazard regulation,spiritual and religious values, estheticvalues.

The key drivers of this degradationare: Habitat destruction by conversion

especially for urban and industrialdevelopment, and also foragriculture;

Pollution, particularly of water, butalso through air emissions and solidwaste;

Climate change, which is affectingthe distribution and status ofbiodiversity globally, and also theability of ecosystems to regulate theclimate;

The accidental or not introductionof different non-native invasivespecies;

Over-exploitation (for example offish, timber, and certain birds andmammals).Ecosystem services are the benefits

obtained by people from ecosystems. TheMillennium Ecosystem Assessment (MA)identifies four types of ecosystems servicesbroadly based on both their ecological andeconomic function: provisioning services are the

products obtained from ecosystemssuch as food, clean water, timber,fibers, and genetic resources;

regulating services are de benefitsobtained from regulating ecosystemprocesses such as the regulation ofclimate, floods, diseases, waterquality, and pollination;

cultural services represents non-material benefits delivered byecosystems such as recreational,aesthetic, and spiritual benefits;

supporting services are thosenecessary for the production of allothers ecosystem services like forexample soil formation, and nutrientcycling.

The biodiversity affects keyecosystem processes in terrestrialecosystems such as biomass production,nutrient and water cycling, and soilformation and retention. The relationshipbetween biodiversity and supportingecosystem services depends on composition,relative abundance, functional diversity,and, to a lesser extent, taxonomic diversity.If multiple dimensions of biodiversityare driven to very low levels, especiallytrophic or functional diversity withinan ecosystem, both the level and stability(for instance, the biological insurance)of the supportive services may decrease(Fig. 2).

Page 187: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Biodiversity - the foundation of ecosystem services; 183/190 pp. - 187 -

Figure 2: Biodiversity, ecosystem functioning and ecosystem services(Millennium Ecosystem Assessment).

The biodiversity represents thefoundation of ecosystems that, through theservices they provide, affect human well-being. The MA considers human well-beingto consist of five main components: thebasic material needs for a good life, health,good social relations, security, and freedom

of choice and action. Human well-being isthe result of many factors, many directly orindirectly linked to biodiversity andecosystem services while others can beconsidered as independent of these.

The figure number 3 illustrates thelinkages among biodiversity, ecosystem

Page 188: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

G. A. Radu- 188 -

services, and human well-being. Thisdepicts the strength of linkages betweencategories of ecosystem services andcomponents of human well-being that arecommonly encountered, and includesindications of the extent to which it ispossible for socio-economic factors tomediate the linkage. The strength of thelinkages and the potential for mediationdiffer in different ecosystems and regions.

In addition to the influences ofecosystem services on human well-beingdepicted here, other factors (including otherenvironmental factors as well as economic,social, technological, and cultural factors)influence human well-being, and ecosystemsare in turn affected by changes in humanwell-being.

Figure 3: Linkages among biodiversity, ecosystem services, and human well-being(adapted by: Millennium Ecosystem Assessment).

So the ecosystem services are theaspects of ecosystems consumed andutilized to yield human well-being. Theecosystem structure is a service to theextent that it provides the foundation fromwhich ecosystem processes occur.

How much structure and process isrequired to provide a certain diversity ofservices in a given context is still an activeimportant research question. Someminimum configuration of structure andprocess is clearly required for “healthy”functioning and services provision, but theminimum is often uncertain (Turner andDaily, 2008).

Over recent decades, humanity hasbenefited enormously from development,land has come under intensive farming orhas been taken for towns and cities, andindustrialization has produced pollution thatnow threatens the world’s climate.

However, much of this developmenthas been associated with a decline in boththe variety and extent of natural systems - ofbiodiversity. This loss of biodiversity, at thelevels of ecosystems, species and genes, isof concern not just because of the importantintrinsic value of nature, but also because itresults in a decline in ‘ecosystem services’which natural systems provide.

Page 189: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Biodiversity - the foundation of ecosystem services; 183/190 pp. - 189 -

Changes in biodiversity due tohuman activities were more rapid in the past50 years than at any time in the humanhistory, and the drivers of change thatcause biodiversity loss and lead to changesin ecosystem services are either steady,

show no evidence of declining over time,or are increasing in intensity. Under thefour plausible future scenarios developedby the MA, these rates of change inbiodiversity are projected to continue, or toaccelerate.

CONCLUSIONSBiodiversity plays a critical role in

underpinning ecosystem functions thatprovide supporting, provisioning, regulating,and cultural services.

The decline in the world’secosystems means a decline in the naturalresources and ecosystem services thatsupport production of food and otheressential elementss for sustainable humanpopulations. Though losses of biodiversity

may have only small impacts on anecosystem in short term, they may reduce itscapacity to adjust to changing environmentsin the future.

The ecosystem services term andconcept received high attention in the recentliterature, but an operational decision-support system for better biodiversityconservation and environmental changemanagement has been slow to emerge.

REFERENCESDaily G. E., 1997 – Nature's Services -

Societal Dependence on NaturalEcosystems, Island Press,Washington.

Haines-Young R., Potschin M. and CheshireD., 2006 – Defining and identifyingEnvironmental Limits for SustainableDevelopment, A Scoping Study,Final Overview Report to Defra.

Millennium Ecosystem Assessment, 2005 –Ecosystems and Human Well-being:Biodiversity Synthesis, WorldResources Institute, Washington,D.C.

Turner R. K. and Daily G. C., 2008 – TheEcosystem Services Framework andNatural Capital Conservation,Environ Resource Econ, SpringerScience-Business Media B. V.

Page 190: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

G. A. Radu- 190 -

AUTHOR:

1 Gina Alina [email protected]

“Dunărea de Jos” University of Galaţi,Faculty of Food Science and Engineering,

Domnească Street 47, Galaţi,Galaţi County,

RO-800008,Romania.

Page 191: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Action of some volatile oils on fungi isolated from stone; 191/198 pp. - 191 -

ACTION OF SOME VOLATILE OILSON FUNGI ISOLATED FROM STONE

Monica MIRONESCU 1, Cecilia GEORGESCU 2, Letiţia OPREAN 1,Raul-Constantin ISMANĂ 3 and Livia BUCŞA 4

KEYWORDS: volatile oil, fungi, antifungal, stone.

ABSTRACTIn this research, ten concentrated

essential oils (juniper, common thyme, pine,peppermint, silver fir, eucalyptus, fennel,tarragon, caraway and wild thyme) wereinvestigated for their antifungal activityagainst two mould types isolated from astone monument, the Evanghelic Churchfrom Sibiu, Transylvania, Romania. Theaction of essential oils was investigatedusing the antibiogram method. Resultsindicated that the antifungal activity of theessential oils is different. The action of wildthyme, common thyme and fennel essential

oil appeared the most interesting, withstrong fungicidal effect on both mouldstested, followed by tarragon, caraway andeucalyptus. Pine has different action,depending on the mould type. Peppermint,juniper and silver fir seem to have verysmall or no inhibitory action on mouldsisolated from stone. Some volatile oilsinduce modifications in mouldspigmentation; in the presence of tarragonand caraway (for one mould type), or thymeand peppermint (for the other mould type),no coloration of the colonies appears.

REZUMAT: Acţiunea unor uleiuri volatile asupra fungilor izolaţi de pe piatră.În această cercetare, este investigată

acţiunea antifungică a zece uleiuri volatile(ienupăr, cimbru, pin, mentă, brad, eucalipt,fenicul, tarhon, chimen şi cimbrişor) asupraa două mucegaiuri izolate de pe unmonument din piatră, Biserica Evanghelicădin Sibiu, Transilvania, România, folosindmetoda antibiogramei. Rezultatele arată căacţiunea acestora este diferită, în funcţie deuleiul folosit şi de mucegaiul analizat.Uleiurile de cimbru, cimbrişor şi feniculau acţiune antifungică foarte puternică

asupra ambelor mucegaiuri, urmate detarhon şi chimen. Pinul are o acţiunediferită, în funcţie de mucegai. Menta,ienupărul şi bradul posedă acţiuneinhibitoare foarte slabă sau acţiunea loreste inexistentă. Unele uleiuri volatileinduc modificări ale pigmentaţiei coloniilor;în prezenţa tarhonului sau chimenului (încazul unuia dintre mucegaiuri) sau acimbrului, cimbrişorului sau mentei (încazul celuilalt mucegai studiat), pigmentaţiadispare.

RÉSUMÉ: Action des huiles volatiles sur moisissures isolées de pierre.Cette recherche présente l’action de

dix volatile huiles - genièvre, thymcommun, pine, mente, sapin, eucalyptus,fenouil, estragon, cumin, et thym sauvage -sur deux moisissures isolées d’un monumenten pierre, L’Eglise Protestante de Sibiu,Transylvanie, Roumanie. L’action estanalysée en utilisant la méthode del’antibiograme. Les résultats montrent quel’activité antifungique des huiles volatilesdépend avec le type de huile utilisé et le typede moisissure. Le thym commun, thym

sauvage et fenouil montrent une actionantifungique très forte, suivi par estragon etcumin. Le pine a une activité antifungiquevariable, dépendant du moisissure sur lequelactionne. L’huile de mente, sapin eteucalyptus ont une très faible ou mêmeinexistante action biocide. Quelques huilesvolatiles modifies la pigmentation descolonies, comme l’huile d’estragon et cumin(pour une moisissure) ou l’huile de thymcommun, mente et thym sauvage (pourl’autre moisissure).

Page 192: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Mironescu, C. Georgescu, L. Oprean, R.-C. Ismană and L. Bucşa- 192 -

INTRODUCTIONRisks caused by moulds growth on

stone are a major concern (Simonovicova etal., 2004; Warscheid and Braams, 2000).Problems associated with fungal growth onsurfaces refer to the aesthetic deteriorationand material degradation (Allsopp and Seal,1986). Various workers (Diakumaku et al.,1995; Saiz-Jimenez, 1995; Saiz-Jimenez etal., 1995) consider that the metabolites ofmicroscopic fungi (melanin, melanoids,intracellular polymerising products) causepigmentation of marble, sandstone andlimestone. Examples of moulds whichproduce pigments are Alternaria, Aspergillusand Penicillium, fungi with large dispersal,giving the black or grey colour of stoneoutdoors, or Cladosporium and Penicillium,identified as frequent indoors contaminants(Görs et al., 2007).

A frequent and aggressive biodeterio-ration produced by moulds is biochemicalbiodegradation. Moulds can form acids asmetabolites, which produce micro- ormacroscopical cavities, deformations,rugosity (Simonovicova et al., 2004).

To prevent deterioration stone treatmentwith products with biocide action is realised

(Malagodi et al., 2000). The known biocideshave different compositions (Urzi and DeLeo, 2007). The biocides - microorganismsinteractions are various. For example,Bronopol and the ammonium quaternarysalts act at the cell membrane level or at thecell proteins (Denyer and Stewart, 1998).

A modern solution is to use theessential oils as biocides. Recent studiesshowed the inhibitory action of thyme orgeranium oil on Aspergillus niger,Trichoderma viridae and Penicilliumchrysogenum (Yang and Clausen, 2007).

Preliminary studies of the authors(Mironescu and Georgescu, 2008) showedthat the antifungal activity of the essentialoils is different, depending on the mouldtype and on the essential oil used. In thispaper, the antifungal effect of ten volatileoils extracted from plants on two fungi isinvestigated. The oils used are obtained fromjuniper, thyme, pine, peppermint, tarragon,caraway, fennel and silver fir. The volatileoils are tested on superior moulds isolatedfrom stone. The objective of this study is toevaluate the ability of the volatile oils toinhibit the spores’ moulds to form mycelia.

MATERIALS AND METHODSVolatile oils were obtained from

parts of ten plants by steam distillation forfive hours. The plants used were: Juniper(Juniperus communis), common thyme(Thymus vulgaris), pine (Pinus sylvestris),peppermint (Mentha piperita), silver fir(Abies alba), eucalyptus (Eucalyptus spp.),fennel (Foeniculus vulgare), tarragon(Artemisia dracunculus), caraway (Carumcarvi) and also wild thyme (Thymusserpyllum).

Essential oils antifungal activity wasevaluated on two moulds isolated from thesurface of the Evangelic Church in Sibiu,Romania. After isolation on Czapek-Doxsubstrate, the moulds were identified bycolonial analysis and optical microscopy asPenicillium sp. and Alternaria sp. Moreinvestigations are necessary to identify thetwo species isolated. In this paper, the twomoulds are abbreviated as BE2a (Alternariasp.) and BE2b (Penicillium sp.).

The action of essential oils wastested on mould spores. For the obtaining ofspores, pure cultures from each mould typewere cultivated on malt broth for 5 days.Spores were harvested from the aerialcentral part of mycelia and poured in sterilewater. 1 ml of the aqueous suspensionobtained was distributed in Petri dishes andCzapek-Dox cultivation medium was pouredover the spores. For the investigation of theaction of essential oils on spores, Petridishes immediately after the addition ofspores’ suspension were used.

The essential oils antifungal activitywas measured using the Kirby-Bauer method(Boyle et al., 1973) usually used to determinethe antibacterial response of differentantibiotics. Small round paper discs wereimpregnated with the non-diluted volatileoils and distributed directly on the Petridishes cultivated with spores. The inhibitionzone of each essential oil was appreciated.

1

Page 193: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Action of some volatile oils on fungi isolated from stone; 191/198 pp. - 193 -

RESULTSSome images of the action of

essential oils on spores grown in Petri dishesare presented in the figures 1 and 2.

The studied inhibition areas can beclear observed on the colonies formed byspores.

Figure 1: Influence of the treatment with volatile oilfrom a) juniper, b) common thyme, c) pine, d)peppermint, e) silver fir, f) eucalyptus, g) fennel, h)tarragon, i) caraway and j) wild thyme on the mouldBE2a.

a b c

d e f

g h i

j

Page 194: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Mironescu, C. Georgescu, L. Oprean, R. Ismană and L. Bucşa- 194 -

Figure 2: Influence of the treatment with volatile oilfrom a) juniper, b) common thyme, c) pine, d)peppermint, e) silver fir, f) eucalyptus, g) fennel, h)tarragon, i) caraway and j) wild thyme on the mouldBE2b.

a b c

de f

g h i

j

Page 195: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Action of some volatile oils on fungi isolated from stone; 191/198 pp. - 195 -

The growth of the two moulds isdifferent. BE2a has a slowly growth withlarger colonies, whereas BE2b grows fasterand forms small colonies. This result is mostprobably due to the difference in theconcentration of spores of the initial sporesuspension.

As observed in the figures 1 and 2,pigmentation disappears at the use of somevolatile oils. It is the case of tarragon andcaraway oils for BE2a and of commonthyme, peppermint and wild thyme forBE2b. This action could be very useful for

the use of volatile oils in biocide compoundsfor stone monuments, because it could allowthe elimination of pigmentation as majorproblem of biodeterioration of culturalheritages.

The antifungal efficiency of essentialoils tested is expressed as the inhibition zonearound each paper disc. The screening of thebiocide action of volatile oils on the twomoulds analysed is presented in the tablenumber 1.

Table 1: Screening of the biocide action of volatile oils on two mould isolated from stone;0: no action; +: low biocide action; ++: middle biocide action; +++: high biocide action; ++++:very high biocide action.

Volatileoil

Biocide action of the volatileoil on BE2a

Biocide action of the volatileoil on BE2b

juniper + +common thyme ++++ +++

pine ++++ +peppermint 0 ++

silver fir 0 ++eucalyptus ++ ++

fennel ++++ ++tarragon ++ ++caraway ++ ++

wild thyme ++++ ++

The obtained results indicate thefact that the action on spores of thestudied essential oil extracted from boththyme types and from fennel can beconsidered as considerable. Eucalyptus oil,together with tarragon oil and caraway oilshow middle inhibitory effect on spores,whereas juniper oil inhibits in low measurethe spores’ germination.

The Pine oil has a different biocideaction depending on the mould type.The spores from BE2a are strongly inhibitedby the pine oil, whereas the spores ofBE2b are not influenced by the addition ofvolatile oil, excepting a very small areaaround the paper disc impregnated withvolatile oil.

In the specific case of BE2a, thesilver fir oil and peppermint oil seem tostimulate the development of spores,probably serving as substrate for theirgrowth. Contrary, both silver fir andpeppermint oil show a middle inhibitoryactivity on BE2b.

In both cases, juniper oil show lowbiocide action on spores.

Microscopic investigations usingthe optical microscope didn’t revealeddifferences in the appearance of hyphae orof spores.

More analyses, using electronmicroscopy and biochemical measurementsare necessary to clarify the exact action ofessential oils on moulds.

Page 196: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Mironescu, C. Georgescu, L. Oprean, R. Ismană and L. Bucşa- 196 -

CONCLUSIONSFor this research, ten essential oils -

juniper, common thyme, pine, peppermint,silver fir, eucalyptus, fennel, tarragon,caraway and wild thyme - were extractedfrom plants.

In this study two moulds wereisolated from stone and were used to testthe antifungal activity of the essential oils.The results indicated the fact that theantifungal activity of the volatile oils is

different, depending on the mould type andon the oil used.

The actions of common and wildthyme oil, together with fennel volatile oilare the most powerful, with strongfungicidal effect on both mould tested, andfollowed by tarragon and caraway. Silverfir and pine seem to have no action onmoulds.

ACKNOWLEDGEMENTSThis work was supported by the research grant PNCDI2 - Program 4 - Partnerships 91-

011, Romania, “Ecological products and technologies for integrated preservation of the nationalcultural and architectural heritage from the Sibiu region - European cultural capital 2007”(Produse şi tehnologii ecologice pentru conservarea integrată a patrimoniului cultural naţionalarhitectural din zona Sibiu - Capitală culturală europeană 2007).

Page 197: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Action of some volatile oils on fungi isolated from stone; 191/198 pp. - 197 -

REFERENCESAllsopp D. and Seal K. J., 1986 –

Introduction to Biodeterioration,Edward Arnold, London.

Boyle J. V., Fancher M. and Ross Jr. R.W., 1973 – Rapid, ModifiedKirby-Bauer Susceptibility Testwith Single, High-ConcentrationAntimicrobial Disks, Antimicrobialagents and chemotherapy, 3 (3), 418-424.

Denyer S. P. and Stewart G. S. A. B., 1998 –Mechanism of action of disinfectants,International Biodeterioration andBiodegradation, 41, 261-268.

Diakumaku E., Gorbushina A. A., KrumbeinW. E., Panina L. and SoukharjevskiS., 1995 – Black fungi in marble andlimestone, an aesthetical, chemicaland physical problem for theconservation of monuments, Scienceof the Total Environment 167, 295-304.

Görs S., Schumann R., Haubner N. andKarsten U., 2007 – Fungal and algalbiomass in biofilms on artificialsurfaces quantified by ergosterol andchlorophyll a as biomarkers,International Biodeterioration andBiodegradation, 60, 50-59.

Malagodi M., Nugari M. P., Altieri A. andLonati G., 2000 – Effects ofcombined application of biocidesand protectives on marble, inFassina, V. (ed.), Proceedings of theNinth International Congresson Deterioration and Conservationof Stone, vol. 2. Elsevier,Amsterdam, The Netherlands, 225-233.

Mironescu M. and Georgescu C., 2008 –Preliminary researches on the effectof essential oils on moulds isolatedfrom stone surfaces, Journal ofagroalimentary processes andtechnologies, vol. XIV, no. 1, 30-33.

Saiz-Jimenez C., 1995 – Microbial melaninsin stone monuments, Science ofthe Total Environment 167, 273-286.

Saiz-Jimenez C., Ortega-Clavo J. J. andLeeuw J. W., 1995 – The chemicalstructure of fungal melanins andtheir possible contribution to blackstrains in stone monuments, Scienceof the Total Environment 167, 305-314.

Simonovicova A., Godyova M. and Sevc J.,2004 – Airborne and soil microfungias contaminants of stone in ahypogean cemetery, InternationalBiodeterioration and Biodegradation,54, 7-11.

Urzi C. and De Leo F., 2007 – Evaluation ofthe efficiency of water-repellent andbiocide compounds against microbialcolonization of mortars, InternationalBiodeterioration and Biodegradation,60, 25-34.

Warscheid T. and Braams J. M., 2000 –Biodeterioration of stone: a review,International Biodeterioration andBiodegradation 46, 343-368.

Yang V. and Clausen C., 2007 – Antifungaleffect of essential oils on southernyellow pine, InternationalBiodeterioration and Biodegradation,59, 302-306.

Page 198: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

M. Mironescu, C. Georgescu, L. Oprean, R. Ismană and L. Bucşa- 198 -

AUTHORS:

1 Monica [email protected]

Department of Food Biotechnology,“Lucian Blaga” University of Sibiu, Romania.

2 Cecilia GEORGESCUDepartment of Chemistry,

“Lucian Blaga” University of Sibiu, Romania.1 Letiţia OPREAN

Department of Food Biotechnology.“Lucian Blaga” University of Sibiu, Romania.

3 Raul-Constantin ISMANĂDepartment of Ecology and Environmental Protection

“Lucian Blaga” University of Sibiu, Romania.4 Livia BUCŞA

Department of Preservation and Restoration,“Lucian Blaga” University of Sibiu, Romania.

Page 199: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Dorman Creek reconstruction model; 199/204 pp. - 199 -

AN ECOLOGICAL RECONSTRUCTION MODEL OF A SMALLTRIBUTARY, THE DORMAN CREEK (TRANSYLVANIA, ROMANIA)

Zoltán HAJDU 1 and Arpád KELEMEN 2

KEYWORDS: integrated water management, biodiversity, ecological reconstruction.ABSTRACTIn the Dorman creek watershed were

executed few ecological reconstruction andrestoration works. Were realised wetlandreconstructions in two cases, in the first casea former wetland which was drained severalyears ago (probably about 50 years ago) bythe local people in order to increase theagricultural land surface. In the second casewas reconstructed a wetland in the place of aformer meander of the creek. Were realisedalso pilot works in order to increase thequantity of the water in the creek during thedry seasons and in order to ensure a betteroxygenation of the water of the creek. Were

realised three types of bottom weirs. Onetype of bottom weir was realised from rocksand stones, and the other two were realisedfrom wood. The positive effects of thereconstruction and restoration works are:reconstruction of habitats and increasing thebiodiversity, increasing the quantity of thewater in dry seasons and improving thequality of the water. In the same time werecreated small scale, new, touristdestinations. The restoration works have acontribution also to the regularisation of thewater flow, to improve the microclimate andto control the erosion process.

REZUMAT: Un model de reconstrucţie ecologică a unui mic afluent, pârâul Dorman.În bazinul pârâului Dorman au fost

realizate câteva lucrări de reconstrucţie şirestaurare ecologică. Au fost realizatereconstrucţii ale unor zone umede în douăcazuri, în primul caz, a fost reconstruită ofostă zonă umedă drenată cu câţiva ani înurmă (probabil, acum aproximativ 50 de ani)de către localnici pentru creşterea suprafeţeiarabile. În cel de-al doilea caz, a fostreconstruită o fostă zonă umedă într-un fostmeandru al pârâului. Au fost de asemenearealizate amenajări pilot, pentru creştereaoxigenării şi cantităţii apei pârâului în

timpul sezonului secetos. Au fost realizatetrei tipuri de praguri de fund. Un tip a fostrealizat din pietre şi stânci, şi celelalte douădin lemn. Efectele pozitive ale lucrărilor dereconstrucţie şi restaurare sunt: reconstrucţiahabitatelor şi creşterea biodiversităţii,creşterea cantităţii apei în timpul sezonuluisecetos şi a calităţii apei. În acelaşi timp, aufost create noi destinaţii, la scară mică, pentruturişti. Lucrările de restaurare contribuie deasemenea la regularizarea debitului de apă,îmbunătăţirea microclimatului şi controlulprocesului de eroziune.

RÉSUMÉ: Un modèle de reconstruction écologique d’un petit tributaire, le ruisseau Dorman.Dans le lit du ruisseau Dorman ont

été exécutés plusieurs reconstructionsécologiques et des travaux de restauration.Dans deux situations, des reconstructions dezones marécageuses ont été réalisées. Dansle premier cas a été remis en état un ancienmarécage, drainé il y a plusieurs années(probablement il y a 50 ans) par lapopulation locale afin d’agrandir la surfacecultivable. Dans le deuxième cas a étérestauré un marécage à la place d’un ancienméandre du ruisseau. Des travaux pilote ontété réalisés afin d’accroître la quantité d’eaudu ruisseau pendant la saison sèche et afind’assurer une meilleure oxygénation de

l’eau du ruisseau. Trois types de barragessubmergés ont été réalisés. Un type debarrage a été réalisé de pierres et rochers etdeux autres ont été construits en bois. Leseffets positifs des travaux de reconstructionet de restauration sont: la reconstruction deshabitats et l’augmentation de la biodiversité,l’augmentation de la quantité d’eau pendantla saison sèche et l’amélioration de la qualitéde l’eau. En même temps des nouvellesdestinations touristiques de petite envergureont été créées. Les travaux de restaurationcontribuent également à la régularisation dudébit et à l’amélioration du microclimatainsi qu’au contrôle du processus d’érosion.

Page 200: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

Z. Hajdu and A. Kelemen- 200 -

MATERIAL AND METHODSEcological recostruction of small

watersheds is essential, due to its importantrole in the hydrological cycle. If we considerthat the average annual rainfall of a territoryis 720 mm, then the most important part ofthis precipitation, 410 mm, comes from theevaporation of the water resulting from thesmall hydrological cycle (Kravcik, 2007). Ifthe reduction of wetlands reduces theamount of water, then the amount of waterthat can evaporate and participate in thesmall hydrologic cycle will be reduced.

The area proposed for rehabilitationwas elected on a small tributary, the streamcatchment Dorman. It should be mentionedat the outset that, similar to many othercases, there isn’t an established name for thestudied stream. In various sources ofinformation - including the communityelders, are known and used several namessuch as: according to the first militarymapping (1765-1785) is known as Pükbrook, the second military mapping (1806-1869) (Timar et. al., 2007) uses the name ofthe brook Adorján, another author (Orban etal., 1870) uses the name Dorna, nowdays theoffical name of the brook is Dorma and thelocal people use the name Dorman.

In this paper, it was adopted thename Dorman. Dorman brook is a small lefttributary of first order (direct) of the NirajRiver valley.

Working towards the rehabilitationmodel a plan for environmentalrehabilitation was developed, consisting of:

- colection of data on morphologyand hydrologic regim of the streamcatchment Dorman;

- choice of options, methods andtehnologies most suitable for rehabilitation

- choose the most suitable sites forrehabilitation work;

- making a digital map of thecatchment;

- identify the rehabilitation worksites with a GPS, Garmin e-Trex brand, andmark their location on the digital map;

- recruiting collaborators to assesssuitable sites for rehabilitation;

- completion of the rehabilitationmodel.

Rehabilitation works were carriedout in collaboration with students of theFaculty of Geography of Babeş-BolyaiUniversity in Cluj-Napoca, using onlynatural materials in the area.

RESULTS AND DISCUSSIONSHydro-morphological

characterization of the studied territoryBrook Dorman was once directly

tributary of the river, nowdays the brookbeing a tributary of Veţca channel, dug inover 300 years ago and since then collectsmost tributaries of the mountain left side formedium-sized area of the main valley.Therefore, the natural course of the streamwas shortened by approx. 1 km. With acatchment area of only 7.4 km2 and thelength of the main valley of 5 km, accordingto the Water Law 107/1996 (as amended),the brook is viewed as “uncoded”, thus isnot part of the coded hydrographic systemand is not in the evidence and administrationof the Romanian Waters N. A.

The basin altitude ranges from about.335 mdM and up to approximatively 552mdM at confluence of the waters. The

general orientation of the valley is SE-NW.Catchment shape is regular, with averagewidth of approx. 1.5 km. The valley’s crosssection is roughly symmetrical, with adistortion on the middle-stream, whereslopes are more swoon left and the righteousare delivered steep.

The characteristic of the rivernetwork tributaries is focusing exclusivelyon the upper third of the course. In thevillage of Adrianu Mare, the valleybifurcates and branch tributary of right turnsjust before leaving the town, forming a fan.

Limited areas of old landslidesslopes are met on the right main valley.

Groundwater depth is 0.8-2.0 mbelow ground share.

Because of the land, the infiltrationin basin is small, with surface flowpredominantly.

Page 201: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Dorman Creek reconstruction model; 199/204 pp. - 201 -

Groundwater appears to the surfaceon slope downwards in some very smallsprings. They have served as a source ofdrinking water at the works done on thefield, and for animal watering places. Mostof these springs dry in the warm period. Inrecent decades there has been registered aprogressive and pronounced drying ofnatural sources.

Catchment research has revealed theexistence of some natural wetlands,scattered on both slopes and valleys. Theywere fed either by springs or by theaccumulation of runoff in microdepresions.However, all were drained, the proof of theirexistence remains today only as typicalvegetation, dry or semidry, mostrepresentative being reed and rush. Acommon feature of these areas is theirdevelopment in areas with high slope.

The existence of these wetlandsshows that, once, groundwater flow wasmore persistent and that the surface flowwas lower.

Also, while recognizing the influenceand contribution of other factors, on thebasis of debris - once held out of orchardsand vineyards on slopes, up away from thevalleys, and the number of existinghouseholds, each equipped with stables foranimals (including many abandoned today),are evidence that groundwater was found inabundance and was able to provide water tothese needs.

Estimated by indirect methods, at thejunction with Veţca channel, maximum flowrates provided with probability 1.5 and 10%have a value of approximatively 45, 26 and19 m3/s. Similarly, the output module(multi-annual average flow) results fromapprox. 0.03 m3/s.

The general slope of valley is 2.9%.In the section from the point of

confluence of the upstream end of thevillage Adrianu Mare and to the exit of thevillage Adrianu Mic the length isapproximatively 1,650 m, the difference inlevel is about. 30 m, hence a general slopeof approx. 1.8%.

In this section, the creek formed aminor well shaped, with a width of approx.2.4 m. Partially and on some sections, theriver bed is invaded by vegetation from treesand shrubs. Bank erosion occurs in isolationand short portions. Thalweg erosion is arelatively recent phenomenon, occurred insome cases with accelerated development.

Dorman creek is seasonal, drying inwarm periods.

Pedological characterization of thestudied territory

The plot presents a stratification ofdusty clays and clay Marne, the latteroccurring in many places even at thesurface. These lands are slightly permeableand have intercalation of sand layers as thinwater-bearing lenses, thicker at the bottomof the valley, which is fuelling the localwells.

Population and land useOn stream valley has developed two

localities, the first from 1,332 (Hajdu, 2004),Adrianu Mic upstream and Adrianu Maredownstream, belonging to Găleşti Village,with about 210 inhabitants today.

Of all households, only two havetheir own sewage and purification systems,for the rest, the sewage - even faeces of thefew households equipped with sanitaryfacilities - are discharged directly into theinner grooves. Most households have onlydry pit latrines dug in the ground andunprotected, from which the liquid leachesinto the soil. Also, deposits of manure arewashed by rain and reach the stream. Forthese reasons, its waters are heavilypolluted, a phenomenon exacerbated by lackof permanent flow, able to secure a degreeof dilution.

Slopes are covered with forest,meadows, orchards and vineyards and arableland cultivated with wheat, corn, potatoes.

Ecological reconstruction activitiesClimate change in recent years has

caused profound changes: reduced amountof water, reduced biodiversity andendangered aquatic ecosystem, degradedlandscape and habitat loss for wildlife,extreme drainage system, low water table,water quality degradation.

Page 202: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

Z. Hajdu and A. Kelemen- 202 -

In theoretical and practicalapproaches concerning these phenomenons,the authors took into account both theenvironmental dimension of the problemand the social and economic dimension,provided by the Water Framework Directive(WFD, 2000).

- 3 trainings were organized with thelocal community

- the potential for reconstruction wasevaluated

- have been marked most appropriatesites

Restoration of former wetlandsFirst work performed was the

restoration of former wetlands and wasmade in late 2000.

The work site is situated on thevalley of a right tributary of the brookDorman order II, about 300 m upstream ofthe confluence with the right tributaryoutside the area of the village Adrianu Mare,upstream of this locality.

The shape of the collection basin isroughly triangular, favouring theachievement in time of rain concentration inthe section. The sub-basin area is 0.68 km2,representing a weight of approx. 9% of thetotal catchment of the creek Dorman. Theaverage altitude is about 465 mdM. Thelength of the valley until the sealing sectionis about 1.0 km, and the averagelongitudinal slope of 12.8%. The area iscovered with forest at a rate ofapproximatively 25%, the rest being coveredwith grassland. In the basin there are twosprings, one on each line. The spring on theright side of the mountain has - according toinformation received from local residents -the largest flow of all springs in the valley,but it is now virtually dried up, appearingonly as a wet spot.

The selected section of the valleybottom has a width of approximatively 18 mand trapezoidal cross section.

The valley bottom in this area issemihorizontal, being located at an altitudeof about 397 mdM. Estimated with indirectmethods, the flow modul in the section isabout 0.004 m3/s and the maximum flowrate 20% of 2.4 m3/s.

The main features of theaccumulation to the normal retention are:maximum water depth: 1.1 m, length oflake: 110 m, the surface gloss of water: 2100m2, the volume of water: 1100 m3.

To protect the dam from destructionby erosion due to high flood water dischargeover canopy, provision was discharged withan opening height of 0.4 m, which followsthe valley bottom above the dam height of1.5 m.

The calculations regarding water lossby evaporation from the surface,subsequently verified also in practiceshowed that the volume of water resistswithout drying in a warm period and withoutprecipitation for over a month.

Completing the four types ofthresholds for bottom

The second set of works consisted oflandscaping the minor river bed, made insummer 2007.

These are the cross works, made inthe form of thresholds for bottom withwaterfall, a number of five built in this firststage.

To prove even more possibilitiesfrom this first stage, these thresholds werebuilt not only in the bottom erosion area, butalso on areas with slopes more prominentand with minor riverbed banks high enoughthat their effect of ascension of levels willnot worsen the transit of high waters. Thus,thresholds can be classified into twocategories, the first being the area of deeperosion and the second for increaseoxygenation of the water.

Except for the the main goal, whichis the bottom erosion control, the thresholdsimplemented in these areas have a prime“secondary” role very welcomed, which isthe one of water oxygenation.

The blade falling and swell horizontalshaft water created in the basin at the bottomof the thresholds, causes in the air a highamount of oxygen in proportion to flow andthe height of fall of water. Oxygen enrichmentof water increases the rate of water self-purification, which creates the conditions forthe reappearance and maintenance of thefish. The water from small thresholds, and

Page 203: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Dorman Creek reconstruction model; 199/204 pp. - 203 -

small lakes created by the retention, wherethe fish will be able to shelter during periodsof drought, will contribute to this.

The thresholds have double role ofcreating small water basins and oxygenatethe water. All contribute to the delay ofsmall water flow in river bed, favouringinfiltration into soil, also facilitating theaccumulation of groundwater.

Inspired from he literature (Dan,1964) were used many solutions forecological reconstruction works.

Some works are made of wood.Some work is threshold flooring, built in acurve, from hardwood stakes. To betterconsolidation of threshold in banks, it hasbeen used a tree existing on the right bank.Downstream and upstream, on both sides,on a length of approximative 2 m, a banksprotection was set, made of wattle and thinbranches up to 3 cm in diameter on a seriesof poles. An essential request that received alot of attention is to ensure the canopydensity. In this way they can prevent thedirection of the preferential flow by onlyone of the sides, which results in its strongerosion. The threshold is in the console,which allows removal of water to drop theblade front wall and thus creating a freeblade with an enhanced aesthetic effect.Downstream, at the bottom of the thresholda small basin was created, achieved bydigging a 0.3 m deep pits, where wereplaced a few stones. This pool is intended tocontrol, reduce and prevent erosion intodownstream transmission due to energy ofthe falling water.

The stones divide series of water,thus increasing the efficiency of energydissipation of water and mixing blade,emphasizing water falling water in the tank.

Elevation made is 0.5 m. The lakecreated in the minor river bed upstreamdeveloped over a length of around 30 m.

Works made of stoneSome works are made of stone.

Threshold it is located in a curve and builtfrom crude stone placed between two rowsof stakes, beaten across the river bed. Stonesizes range from 10-25 cm, with a weight ofaround 1-15 kg.

This variety ensures a bettercombination of stones and therefore anincreased resilience to water action. Thisthreshold is permeable to water, whichmeans that at very low flow rates, waterflows through rocks with only a slightdifference of level, without exceeding thethreshold rate.

Increased lifting of upstream levelsstarts only at average flow rates. In this case,the oxygenation of water is produced bydividing the flow into several successivestreams and their passage over the stones.Furthermore, this threshold is performingwell also in high water, due to highroughness, can dissipate the water energyeven on the threshold, without need forswimming downstream sinks.

The difference in level achieved atthis level is about 0.3 m.

The work (Fig. 8) was performed onthe middle of the Dorman on a site, wherethe valley bottom widens naturally on theright and the longitudinal slope is greater.The lake was created artificially by digging.The water surface created is about 100 m2

and the depth of around 1.5 m. For therenewal of water supply has provided thepossibility of retention of a threshold set atthe end upstream and downstream discharge.

Water intake was made out of a hardwood box, with the possibility of closingwith a small dam, also made from ahardwood cabinet. Share of the exhaust pipeshall maintain the level qvasiconstant in thelake, discharging the excess flow divertedinto it.

To rinse the water in the lake, at thebuffer zone they achieved a lower depthwhere harvested reeds from the area wereplanted, and built a small sandy dam thatfilters the water.

Page 204: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

Z. Hajdu and A. Kelemen- 204 -

CONCLUSIONSBy achieving this work, we tried to

create a model for ecological reconstructionof a small creek. Such streams are verycommon in the Carpathian Basin and theirecological reconstruction is required.

Through the ecologicalreconstruction was achieved:

• a degree of adjustment of the flow,• habitat reconstruction,• increased biodiversity,• improvement of the landscape and

the microclimate,• improvement of the quality of small

waters,

• reduction and control of erosion,• establishment of some turistic

atraction.The actual work of reconstruction

and studies has shown that only a holisticview is likely to play out in thereconstruction process. If the economiccomponent prevails, then environmentaldegradation is increasing, on the other handif the ecological component prevails, thenthere is resistance (or lack of participation)from the local population.

AKNOWLEDGEMENTSThe research and the reconstruction work were performed with the support of the

Partnership Foundation and the Global Environment Facility. We thank as well to all colleagueswho have contributed to this work of reconstruction.

REFERENCESDan E., 1964 – Regularizări de râuri şi căi

de comunicaţie, Partea I, Ed.Didactică şi Pedagogică, Bucureşti.(in Romanian)

EU Water Framework Directive –“Directive 2000/60/EC” of theEuropean Parliament and of theCouncil establishing a framework forthe Community action in the field ofwater policy.

Hajdu Z., 2004 – Az Adorjánok völgye anyárádmenti fenntartható fejlődésforrása, Focus Eco Center,Marosvásárhely, 3-6. (in Hungarian)

Kravcik M, et. al., 2007 – Water for theRecovery of the Climate - A NewWater Paradigm, Krupa Print, Zilina.

Orbán B., Székelyföld A. and Ráth M. K.,1870 – Pest, IV. Kötet, 64-65. (inHungarian)

Timár G., Biszak S., Molnár G., Székely B.,Imecs Z. and Jankó A., 2007 –Digitized maps of the HabsburgEmpire, First and Second MilitarySurvey, 1763-1785, 1806-1869,Institute and Museum of WarHistory, Arcanium Adatbazis kft,Budapest.

AUTHORS:

1 Zoltan [email protected]

2 Árpad [email protected]

Focus Eco Center, Târgul Mureş,Crinului Street 22, Mureş County,

Romania, RO-540343.

Page 205: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Ichthyofauna of the middle and lower Siret River basin - Review; 205/206 pp. - 205 -

ECOLOGICAL STUDIESON THE ICHTHYOFAUNA

IN THE MIDDLE AND LOWER BASINOF THE SIRET RIVER

- REVIEW -

Angela CURTEAN-BĂNĂDUC 1 and Doru BĂNĂDUC 2

Dorel Ureche, 2008. Ecologicalstudies on the ichthyofauna in the middleand lower basin of the Siret River, 223pages, Ed. Pim, Iaşi, ISNB 978-973-716-996-9.

The book is a monography and it isthe result of an icthyological study of aboutten years.

The book was structured in twosections.

The first section gathers theintroduction, ichthyology research history,and two chapters: Chapter 1 - Habitatcharacteristics, Chapter 2 - The prospectivemonitoring of the ichthyofauna (generaloverview).

The second section of this bookcomprises eight chapters, conclusions, andreferences.

The River Siret is one of the largestrivers from Romania, with a various and richfish fauna. The last census of the fishspecies in Romanian rivers basins was madeabout 50 years ago. Consequently, this bookaims to update the data on the specificstructure of the fish communities in the SiretRiver.

The assessment of the structure ofinland waters fish communities is veryimportant because of the human impact onnatural ecosystems, which has increased inthe last five decades. It is thereforenecessary to adopt appropriate measures toconserve and restore biodiversity.

The first chapter – Habitatcharacteristics - looks into the physicalenvironment, bringing together a wealth ofinformation that comprise essentialbackground material for biological studiesof the area. There are also presented datareffering to the water polution and to thewater quality.

Chapter 2 – The prospectivemonitoring of the ichthyofauna - is anoverview of the monitoring process. Thischapter presents the sampling methods, theecological indices, the structure and thebiodiversity of the fish communities, thebiological integrity index (IBI) also beingpresented.

Both of traditional and modernfishing methods are presented in thischapter, such as electrofishing, which is themain sampling method used in themonitoring studies.

The monitoring methodology ispresented step-by-step, to be useful even forthe beginners.

The second section presents indetails the results of the ecological studieson the ichthyofauna of the main tributariesof the Siret River (Trotuş, Şuşiţa, Putna,Rîmnicu Sărat and Buzău rivers) (Chapter 3- Chapter 7) and on the ichthyofauna of thedam lakes on the middle course of the SiretRiver (Chapter 8).

Each of these six chapters thatpresent ecological studies on riverwatersheds is accompanied by graphicrepresentations of the sampling points andof the specific structure of the fishassociations.

The maps are made in a clear andsuggestive manner. Also the fish regions arebounded by the ecological indices and thefish associations.

The chapters 3-8 may be consideredaltogether an extensive analysis of fishcommunities in all the 198 sections of therivers and in the 18 sections of the damlakes. The author shows that these rivers areecologically sensitive, with goodpopulations of protected species, and thatPutna River remain substantially

Page 206: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

A. Curtean-Bănăduc and D. Bănăduc- 206 -

biologically intact from this point of view.Other rivers are more impacted by humanactivity (Trotuş River) and will requiremanagement and monitoring. At the sametime, in Rîmnicu Sărat River, the fish faunais not very rich in species due to the naturalimpurification with salts from the lithologicsubstrate.

Chapter 9 is a special chapter whichpresents the Red List of the fish species. Inthis chapter, the fish species with a specialstatus are presented, together with theevaluation criteria and categories ofthreatened species according with IUCN2005.

The last chapter - Chapter 10 is abrief presentation of the importance of theichthyological genetic resources.

This publication is a contribution toknowledge of the current state of the fishpopulations in the Siret River basin, whichwill be essential for those drawing up futuremanagement plans.

The book has a remarkable clearnesand aplicativity, being a very usefulinstrument not only for biologists andecologists in the field of ichthyology, butalso for students.

REVIEWERS:

1 Angela CURTEAN-BĂNĂ[email protected], [email protected]

2 Doru BĂNĂ[email protected], [email protected]

“Lucian Blaga” University of Sibiu, Faculty of Sciences,Department of Ecology and Environment Protection,

Dr. Ioan Raţiu Street 5-7,Sibiu, Sibiu County,

Romania, RO-550012.

Page 207: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

The Wetlands Diversity - Review; 207/210 pp. - 207 -

TRANSYLVANIAN REVIEW OF SYSTEMATICAL AN ECOLOGICALRESEARCH 6 (2008) - THE WETLANDS DIVERSITY

- REVIEW -

Teodora TRICHKOVA 1

Angela Curtean-Bănăduc, DoruBănăduc and Ioan Sîrbu, 2008.Transylvanian Review of Systematical andEcological Research, 6 - The WetlandsDiversity, 216 pages, Ed. Universităţii“Lucian Blaga” din Sibiu, ISSN 1841-7051.

Wetlands are recognized worldwideas diverse and very productive naturalecosystems. They support rich biodiversityespecially this of fish and waterfowl andthey serve as habitat of many other animalsand plants, including many endangered andthreatened species. Further, they provide awide range of ecosystem services thatcontribute to human well-being, and in somewetland types this may include servicesrelating to climate change mitigation andadaptation. For instance, wetlands help inwater purification and waste treatment, floodcontrol and storm protection; they ensure astable, long-term supply of groundwater,and they provide recreational opportunities.Considering the values of wetlands and thenecessity of their conservation and wise usein the spirit of the Ramsar Convention onWetlands (1971), the editors of theTransylvanian Review of Systematical andEcological Research series dedicatedVolume 6 to the Wetlands Diversity. Mostof the included contributions are result ofthe Aquatic Biodiversity InternationalConference, Sibiu, Transylvania, Romania,2007 and present data from diverse wetlandsaround the world. A broad definition of theterm wetland, as used in the RamsarConvention, is accepted, including: marine/coastal wetlands (estuaries, lagoons, tidalflats, near-shore marine areas, coral reefs,rocky marine shores, etc.); inland wetlands(lakes, rivers, springs, swamps, marshes,wet grasslands, waterfalls, peatlands, etc.);and human-made wetlands (reservoirs, fishponds, rice fields, salt pans, etc.).

This Volume is also dedicated to thememory of Acad. Dr. Grigore Antipa (1867-1944), highly distinguished Romanianhydrobiologist, ichthyologist and naturalist.He studied the fauna of the Danube Deltaand the Black Sea and worked in the areasof zoology, ecology and oceanography.Between 1893 and 1944, he was the directorof the Bucharest Natural History Museum,which now bears his name. In 1910 he waselected member of the Romanian Academyand was also member of foreign academies.Among his many original contributions are:the first Romanian oceanographical research(1893); the first Romanian fishing law(1895); the first dioramas in the world(1906); the first book on the fish fauna ofRomania (1909); the first publication onfishing in Romania (1916); and the firstwork on the Black Sea in Romania (1941).

The 21 papers in the Volume exploredifferent aspects of the wetlands diversity,included in 5 thematic sections: Biotopes,Biosensors, Ecosystems, Human Impact andProtection and Conservation.

The Biotopes section presents onereview paper entitled “The explanation ofworldwide spread of acid sulphate soils” byLeendert Poons. The acid sulphate soils(ASS) and potential acid sulphate soils(PASS) are characterized with very low pH,and because of this, they are unfavourableand even toxic to plants, causing loss ofbiological functions and habitats. The authorexplains the process of formation of thesesoils and presents data on their distributionworldwide. He identifies ten ecotopes withASS and PASS in relation to differentenvironmental factors, such as: climate,vegetation, geology, sedimentation andhuman influence. The ASS and PASS arefound mostly in the deltas, estuaries andcoastal zones of tropical regions.

Page 208: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

T. Trichkova- 208 -

There are four contributions in theVolume dealing with Wetlands Biocoenosis.Three of them provide extensive informationon the benthic macroinvertebratecommunities in different types of wetlands.Results on the “Riparian vegetation andmacrozoobenthos of the Bačkovský PotokBrook in the Slánske Vrchy Mountains(Slovakia)” are presented by Peter Manko,Jaroslav Jusko, Pavol Balázs, ZuzanaZatovičová-Čiamporová and AlicaKočišová. Very high taxonomic diversity isrecorded in the study brook: 106 taxa ofriparian vegetation and 99 taxa of benthicmacroinvertebrates are listed in two tableswith information on occurrence in differentriver sectors. The relationship betweenmacroinvertebrate community and theriparian vegetation in general and in theparticular case is discussed. The nextcontribution of Peter Manko explores againthe macroinvertebrate community but inrelation to potential human disturbances inthe upper part of Torysa River: Aquaticmacroinvertebrate communities in riverTorysa across the Javorina Military Trainingarea in the Levočské Vrchy Mountains(Slovakia). The author reports that dominantand most abundant were the representativesof Ephemeroptera, Plecoptera, Trichopteraand Malacostraca. The main threat to themacrozoobenthos community in the studyriver section is wood-cutting andmanipulation and transport of the woodthrough the riverbed, whose impact isanalogous to this in civil areas.

The next paper is on the “State ofmussel settlements from Agigea, on theRomanian coast of the Black Sea” by AlionaNovac and Nina Shurova. The authors presentresults on the density, biomass, mortality,annual survival rate, life span of mussels andage structure of mussel settlements. Incomparison with other areas of the north-western Black Sea the studied musselsettlements have higher values of density,biomass, survival rate and life span (8 years).

The last contribution in this sectionis on “The dynamics of metals in fish fromNistru and Prut rivers (Moldova)” by NataliaZubcov, Elena Zubcov and Daniel Schlenk.

It shows that the accumulation patterns oftrace elements in organs and tissues of fishfrom families Cyprinidae and Percidae areinfluenced by fish biology (age, growth rate,reproduction) and by some environmentalparameters. The highest metal content wasrecorded in fish skin, scales and gills,followed by liver, while the lowest contentwas found in muscles and gonads.

The authors of four papers in theVolume present their research results onwetlands at Ecosystem level. The author offirst paper here, Erika Schneider-Binder,emphasizes on the “Importance of floodplainsand floodplain wetlands along the LowerDanube with special regard tophytodiversity”. An evaluation of the LowerDanube floodplains has been conductedwithin the frame of a GEF-project withregard to the ecological and restorationpotential. The high diversity of aquatic andterrestrial plant species and habitatsrecorded, prove the need to safeguard thehigh natural values and the imperativenessto restore the loss of functions and values ofthe Lower Danube floodplains.

Milen Vassilev and Ivan Botev presentresults on the “Assessment of the ecologicalstatus of some Bulgarian rivers from theAegean Sea basin based on bothenvironmental and fish parameters”. Totally36 sites in the basins of Struma, Mesta andMaritsa rivers were sampled. Based on shareof density and total biomass of indicator fishspecies in catches, the ecological status at 19sites was classified as good, at 10 sites ashigh, and at 7 sites as moderate, poor or bad.The main physical-chemical parameters ofwater which influence the fish distributionare water temperature, concentration ofdissolved oxygen and conductivity.

Data on “Swamps biodiversity of theWhite Nile (Sudan)” are presented by ElpidaPaltenea, Andrei Viforeanu, CristianBulgaru and Elena Jecu. The attention isfocused on vegetation and waterfowl in fourtypes of habitats: seasonally floodedgrasslands, river flooded grasslands,permanent swamps and open water. Thehigh abundance of plants and animalsrecorded in these undisturbed so far by the

Page 209: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecologica Carpatica II

Transylvanian Review of Systematical and Ecological Research 6 - Review 207/210 pp.- 209 -

presence of man ecosystems makes themsites of invaluable importance. It is stress onthe necessity of preserving the biodiversityand protecting the area from human impact.

As already mentioned, the wetlandecosystems provide different services tosustain human well-being. The contributionfrom Elena Minca and Katalin Petz presentsa new approach to illustrate this function:“Ecosystem services and their mapping inthe Tisza/Tisa River basin – initial steps inHungary and Romania”. The authorsinvestigate the role of ecosystem servicesand their spatial distribution in two pilotregions. Seven land cover types and 14ecosystem services are analysed in terms ofthree main factors: natural characteristics ofecosystems, climate extremes and humanrecognition. The spatial distribution isvisualized by generated GIS maps for foodand recreation services in the two regions.The results prove that application of suchmaps can prevent shortcomings in the watermanagement and land use plansdevelopment, and in addition, can contributeto the efforts of biodiversity conservation.

Five contributions in the Volumefocus on the consequences of Human Impacton different types of wetlands. The firstcontribution presents data on “Waterpollution in the Mureş Basin and its impacton the aquatic communities (Romania)” byCristina Sandu, Jürg Bloesch and AlinaComan. The water physical-chemical datashow that 10% of the 2320 km of monitoredwater courses are considered of poor or badquality. In the tributaries the pollutionimpact is much higher, because of thedrained industrial, mining and agriculturalareas. Water quality has a strong effect onthe aquatic biota, such as plankton, benthicalgae, benthic macroinvertebates and fish.

In the next paper, Violeta Astratineiand Ioana Varduca report on the “Effect ofmetal pollution on aquatic microorganisms:a case study in mining areas (Romania)”.Critical levels of toxicity are recorded in theLăpuş and Săsar rivers from the Baia Maremining area, using method based oninhibition of bacterial luminescence. Thetoxicity data correlated with the metal

concentrations in the water determined byatomic absorption spectrometry.

“The pollution degree of theRomanian seaside lakes water and itsconsequences” is studied by Liviu Galaţchi,Stoica Godeanu and Monica Iordan. Thelakes are located in the central and southernpart of the Romanian Black Sea coast andare influenced by different human activities,such as: agriculture, fishculture and wastedischarge. The results on the content ofinorganic and organic pollutants as well ason primary production showed that theseaside lake water can be included in thesecond/ third category of surface waters, andthat some lakes are highly eutrophicated.Taking of urgent measures, specific forevery lake, to efficiently fight against theprocess of eutrophication and organic siltingare recommended.

The next contribution is “Decline ofbiodiversity as result of various humanimpacts related to river regulation –exemplified by several small rivercatchments (Austria)” by ClemensGumpinger and Christian Scheder. Itexplains the direct consequences of humanimpact (river regulation by dams andimpoundments, the alteration of the naturalflow regime by residual waters and thethermal pollution) on fish populations, suchas: shift in the species composition, declineof biomass and numbers of fish species.

Finally in this section HaraldKutzenberger summarizes on the “Threatsfor Danube region biodiversity - globaltrends and local impacts and changes inbiogeographical patterns”. The Danuberegion shows a specific richness in manyaspects: biogeographical, populational,cultural, land-use, etc. The changes inbiodiversity are caused by global trends(climate change, human transport) as well asby local impacts (improvement of watertransport, infrastructures, and settlementsalong the river). Reaching a solution forsustainable development in the region isneeded: a concept of an European identityincluding social, economic and ecologicalaspects, respecting the local traditions in arapid change of structures.

Page 210: MORPHOGENETIC SYSTEMS AND THEIR IMPACT ON THE …reviste.ulbsibiu.ro/actaoc/AOCII2009Papers.pdf · Acta Oecologica Carpatica II Morphogenetic systems and their impact on the landscape

Acta Oecol. Carpat. II .

T. Trichkova- 210 -

Seven papers are concerned with theProtection and Conservation of the wetlandsdiversity. The first one is a review paper ofMarioara Costea entitled “Considerationsconcerning the wetlands importance,protection and sustainable management(Romania)”. The author providesinformation on different types of wetlandsand highlights their importance especially ashabitat and place of refuge for species ofplants and animals and their role in theconservation of biodiversity. Their multiplefunctions are indicated: hydrologic,geomorphologic, biologic, ecologic, climaticand economic. The human exploitation ofthe resources and the exposure to risk of thewetlands is discussed, and finally, a reviewof the protection, reconstruction andconservation measures of the wetlands, withreference to Romania is made.

With the next paper a specific measureis proposed “Reactive barriers used in theprotection of aquatic ecosystems(Romania)” by Ioan Bica, AlexandruDimache, Iulian Iancu, Sevastiţa Vraciu,Cătălin Constantin, Mugur Ştefănescu, AncaVoicu and Ciprian Dumitrescu. This is apassive method of restraining theadvancement of contaminated groundwaterfronts, representing one of the most vantagemethods of protection “in-situ” of sensibleaquatic areas, especially when the pollutedarea remediation is difficult or expensive.

An approach for restoration isproposed by Ulrike Bart, ClemensGumpinger and Christian Scheder by“Reuse of abandoned quarries and gravel-pits for the utilisation of their (limno-)ecological potential (Austria)”.

Another approach is discussed byJenică Hanganu and Adrian Constantinescu“Challenge for ecological reconstruction ofthe largest agricultural polder in the DanubeDelta (Romania)”. The authors developedhydrological scenarios in order to assesshabitat distribution after reconnection of the

largest agricultural polder of the DanubeDelta to the Danube River flood pulse. Theflood period under actual elevation aspredicted by this scenarios is in accordancewith the original one, which leads to theassumption that the development of habitatdistribution could be also in conformity withthe pattern before the embankment.

Dan Ionescu, Vladimir Popescu andDaniel Iordache present “Data about thedesignation of Dumbrăviţa (Romania)complex as Ramsar Site”. These includegeneral ecological features, wetland types,criteria and justification. It is concluded thatthree criteria are achieved, but only anappropriate conservation management canmaintain the bird “key” species in the area.

“Natura 2000 site proposal for theEuropean community interest Cottidae fishspecies (Romania)” is made by DoruBănăduc. Ten sites in the RomanianCarpathians are proposed as Natura 2000sites for the species Cottus gobio (Cottidae,Perciformes). The proposal is supported byarguments based on the author’s original noolder then seven years data, about thisspecies populations and communities, andspecific criteria (stable fish populations; wellpreserved fish populations; healthy fishpopulations; typical natural habitats; lowhuman impact; good geographical position).

The last contribution is “Diversity inaquatic environment - new classificationproposal” by Stoica Godeanu. The authorpresents his point of view concerning thevariety and the complexity of different typesof ecological diversity (autecological,synecological, ecosystemic, landscape,ecozone and global/ planetary diversity),using limnetic environments examples.

The high variety of themes and issuesdiscussed in the Volume shows the necessityof such scientific forum devoted to WetlandsDiversity. Hopefully the TransylvanianReview of Systematical and EcologicalResearch editors will continue this tradition.

REVIEWER:1 Teodora Trichkova

[email protected] of Zoology, Bulgarian Academy of Sciences,Tsar Osvoboditel Boulevard 1, Sofia 1000, Bulgaria.