more u-substitution

89
More U-Substitution Chapter 5.5 February 8, 2007

Upload: karim

Post on 30-Jan-2016

33 views

Category:

Documents


0 download

DESCRIPTION

More U-Substitution. Chapter 5.5 February 8, 2007. In-Class Assignment. Integrate using two different methods: 1st by multiplying out and integrating 2nd by u-substitution - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: More U-Substitution

More U-Substitution

Chapter 5.5

February 8, 2007

Page 2: More U-Substitution

In-Class Assignment

Integrate using two different methods:

1st by multiplying out and integrating 2nd by u-substitution

Do you get the same result? (Don’t just assume or claim you do; multiply out your results to show it!)

If you don’t get exactly the same answer, is it a problem? Why or why not?

3x −1( )∫2dx

Page 3: More U-Substitution

Fundamental Theorem of Calculus (Part 2)

If f is continuous on [a, b], then :

Where F is any antiderivative of f. ( )

f (t)dta

b

∫ =F(b)−F(a)

F ' = f

Page 4: More U-Substitution

Substitution Rule for Indefinite Integrals

If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then

f ' g(x)( ) g'(x)dx=∫ f u( )∫ du= f g x( )( ) +C

Substitution Rule for Indefinite Integrals

If g’(x) is continuous on [a,b] and f is continuous on the range of u = g(x), then

f g(x)( ) g'(x)dxa

b

∫ = f(u)dug(a)

g(b)

Page 5: More U-Substitution

Using the Chain Rule, we know that:

d

dxsin x2( )( ) =2xcos x2( )

Evaluate:

Page 6: More U-Substitution

Evaluate:

Looks almost like cos(x2) 2x, which is

the derivative of sin(x2).

Using the Chain Rule, we know that:

d

dxsin x2( )( ) =2xcos x2( )

Page 7: More U-Substitution

Evaluate:

We will rearrange the integral to get an exact match:

d

dxsin x2( )( ) =2xcos x2( )

Using the Chain Rule, we know that:

Page 8: More U-Substitution

Evaluate:

We will rearrange the integral to get an exact match:

Using the Chain Rule, we know that:

d

dxsin x2( )( ) =2xcos x2( )

x cos x2( )dx= cos x2( )xdx∫∫

Page 9: More U-Substitution

Evaluate:

We will rearrange the integral to get an exact match:

Using the Chain Rule, we know that:

d

dxsin x2( )( ) =2xcos x2( )

x cos x2( )dx= cos x2( )xdx∫∫=12

cos x2( )2xdx∫

Page 10: More U-Substitution

Evaluate:

We will rearrange the integral to get an exact match:

We put in a 2 so the pattern will match.

Using the Chain Rule, we know that:

d

dxsin x2( )( ) =2xcos x2( )

x cos x2( )dx= cos x2( )xdx∫∫=12

cos x2( )2xdx∫

Page 11: More U-Substitution

Evaluate:

We will rearrange the integral to get an exact match:

We put in a 2 so the pattern will match.

So we must also put in a 1/2 to keep the

problem the same.

Using the Chain Rule, we know that:

d

dxsin x2( )( ) =2xcos x2( )

x cos x2( )dx= cos x2( )xdx∫∫=12

cos x2( )2xdx∫

Page 12: More U-Substitution

Evaluate:

We will rearrange the integral to get an exact match:

Using the Chain Rule, we know that:

d

dxsin x2( )( ) =2xcos x2( )

x cos x2( )dx= cos x2( )xdx∫∫=12

cos x2( )2xdx∫

Page 13: More U-Substitution

Evaluate:

We will rearrange the integral to get an exact match:

Using the Chain Rule, we know that:

d

dxsin x2( )( ) =2xcos x2( )

x cos x2( )dx= cos x2( )xdx∫∫=12

cos x2( )2xdx∫

=12sin x2( )⎡⎣ ⎤⎦+C

Page 14: More U-Substitution

Check Answer:

Page 15: More U-Substitution

Check:

Check Answer:

Page 16: More U-Substitution

Check:

From the chain rule

Check Answer:

Page 17: More U-Substitution

Indefinite Integrals by Substitution

Page 18: More U-Substitution

1) Choose u.

Indefinite Integrals by Substitution

Page 19: More U-Substitution

1) Choose u.

2) Calculate du.

du =du

dxdx

Indefinite Integrals by Substitution

Page 20: More U-Substitution

1) Choose u.

2) Calculate du.

3) Substitute u.Arrange to have du in your integral also.(All xs and dxs must be replaced!)€

du =du

dxdx

Indefinite Integrals by Substitution

Page 21: More U-Substitution

1) Choose u.

2) Calculate du.

3) Substitute u.Arrange to have du in your integral also.(All xs and dxs must be replaced!)

4) Solve the new integral.

du =du

dxdx

Indefinite Integrals by Substitution

Page 22: More U-Substitution

Indefinite Integrals by Substitution

1) Choose u.

2) Calculate du.

3) Substitute u.Arrange to have du in your integral also.(All xs and dxs must be replaced!)

4) Solve the new integral.

5) Substitute back in to get x again.

du =du

dxdx

Page 23: More U-Substitution

ExampleA linear substitution:

Let u = 3x + 2. Then du = 3dx.

e3x+2dx∫ =13

e3x+23dx∫

=1

3eudu∫

=1

3eu + C

=1

3e3x+2 + C

Page 24: More U-Substitution

Choosing u Try to choose u to be an inside function.

(Think chain rule.) Try to choose u so that du is in the

problem, except for a constant multiple.

Page 25: More U-Substitution

Choosing uFor

u = 3x + 2 was a good choice because

(1) 3x + 2 is inside the exponential.

(2) The derivative is 3, which is only a constant.

Page 26: More U-Substitution

PracticeLet u = 

du = 

Page 27: More U-Substitution

PracticeLet u = x2 + 1

du = 

Page 28: More U-Substitution

PracticeLet u = x2 + 1

du = 2x dx

Page 29: More U-Substitution

PracticeLet u = x2 + 1

du = 2x dx

Page 30: More U-Substitution

PracticeLet u = x2 + 1

du = 2x dx

Make this a 2x dx and we’re

set!

Page 31: More U-Substitution

PracticeLet u = x2 + 1

du = 2x dx

Page 32: More U-Substitution

PracticeLet u = x2 + 1

du = 2x dx

Page 33: More U-Substitution

PracticeLet u = x2 + 1

du = 2x dx

Page 34: More U-Substitution

PracticeLet u = x2 + 1

du = 2x dx

= 1

2ln x2 + 1 + C

Page 35: More U-Substitution

PracticeLet u = 

du = 

Page 36: More U-Substitution

PracticeLet u = sin(x)

du = 

Page 37: More U-Substitution

PracticeLet u = sin(x)

du = cos(x) dx

Page 38: More U-Substitution

PracticeLet u = sin(x)

du = cos(x) dx

Page 39: More U-Substitution

PracticeLet u = sin(x)

du = cos(x) dx

Page 40: More U-Substitution

PracticeLet u = sin(x)

du = cos(x) dx

Page 41: More U-Substitution

PracticeLet u = 

du = An alternate possibility:

Page 42: More U-Substitution

PracticeLet u = cos(x)

du = –sin(x) dxAn alternate possibility:

Page 43: More U-Substitution

PracticeLet u = cos(x)

du = –sin(x) dxAn alternate possibility:

Page 44: More U-Substitution

PracticeLet u = cos(x)

du = –sin(x) dxAn alternate possibility:

Page 45: More U-Substitution

PracticeLet u = cos(x)

du = –sin(x) dxAn alternate possibility:

Page 46: More U-Substitution

PracticeLet u = cos(x)

du = –sin(x) dxAn alternate possibility:

Page 47: More U-Substitution

Practice

Note:

Page 48: More U-Substitution

Practice

Note:

Page 49: More U-Substitution

Practice

Note:

What’s the difference?

Page 50: More U-Substitution

PracticeNote:

What’s the difference?

Page 51: More U-Substitution

Practice

Note:

What’s the difference?

Page 52: More U-Substitution

Practice

Note:

What’s the difference?

This is 1!

Page 53: More U-Substitution

Practice

Note:

What’s the difference?

Page 54: More U-Substitution

Practice

Note:

What’s the difference?

That is, the difference is a constant.

Page 55: More U-Substitution

PracticeLet u = 

du = 

Page 56: More U-Substitution

PracticeLet u = 1+ex

du = 

Page 57: More U-Substitution

PracticeLet u = 1+ex

du = exdx

Page 58: More U-Substitution

PracticeLet u = 1+ex

du = exdx

Page 59: More U-Substitution

PracticeLet u = 1+ex

du = exdx

Page 60: More U-Substitution

PracticeLet u = 1+ex

du = exdx

Page 61: More U-Substitution

PracticeLet u = 1+ex

du = exdx

Page 62: More U-Substitution

PracticeLet u = 

du = 

Page 63: More U-Substitution

PracticeLet u = x2

du = 2x dx

Page 64: More U-Substitution

PracticeLet u = x2

du = 2x dx

Page 65: More U-Substitution

PracticeLet u = x2

du = 2x dx

Page 66: More U-Substitution

PracticeLet u = x2

du = 2x dx

Page 67: More U-Substitution

PracticeLet u = x2

du = 2x dx

Page 68: More U-Substitution

Doesn’t Fit All

Page 69: More U-Substitution

Doesn’t Fit AllWe can’t use u–substitution to solveeverything.

Page 70: More U-Substitution

Doesn’t Fit AllWe can’t use u–substitution to solveeverything. For example:

Let u = du = 

Page 71: More U-Substitution

Doesn’t Fit AllWe can’t use u–substitution to solveeverything. For example:

Let u = x2

du = 2x dx

Page 72: More U-Substitution

Doesn’t Fit AllWe can’t use u–substitution to solveeverything. For example:

Let u = x2

du = 2x dx

Page 73: More U-Substitution

Doesn’t Fit AllWe can’t use u–substitution to solveeverything. For example:

Let u = x2

du = 2x dx

We need 2x this time, not just 2.

Page 74: More U-Substitution

Doesn’t Fit AllWe can’t use u–substitution to solveeverything. For example:

Let u = x2

du = 2x dx

We need 2x this time, not just 2.

We CANNOT multiply by a variable to adjust our integral.

Page 75: More U-Substitution

Doesn’t Fit AllWe can’t use u–substitution to solveeverything. For example:

Let u = x2

du = 2x dx

We need 2x this time, not just 2.

We CANNOT multiply by a variable to adjust our integral.

We cannot complete this problem

Page 76: More U-Substitution

Doesn’t Fit AllFor the same reason, we can’t do the following by u–substitution:

Page 77: More U-Substitution

Doesn’t Fit AllFor the same reason, we can’t do the following by u–substitution:

But we already knew how to do this!

Page 78: More U-Substitution

Doesn’t Fit AllFor the same reason, we can’t do the following by u–substitution:

But we already knew how to do this!

Page 79: More U-Substitution

Doesn’t Fit AllFor the same reason, we can’t do the following by u–substitution:

But we already knew how to do this!

Page 80: More U-Substitution

Morals No one technique works for everything. Don’t forget things we already know!

There are lots of integrals we will never learn how to solve…

That’s when Simpson’s Rule, the Trapezoidal Rule, Midpoint,….. need to be used to estimate…...

Page 81: More U-Substitution

Use u-substitution to find:

Similarly for:

tan xdx∫sin x

cos xdx∫ ln sec x +C

cot xdx∫cos x

sin xdx∫ ln sin x +C

Page 82: More U-Substitution

Definite Integral Examples:

e1

x

x2dx

1

2

xe−x2dx0

1

sin−1(x)

1−x2dx

0

12

e1

x

x2dx

1

2

xe−x2dx0

1

sin−1(x)

1−x2dx

0

12

e− e

1

21−

1e

⎛⎝⎜

⎞⎠⎟

π 2

72

eudu1

2

1

1

2eudu

−1

0

udu0

π6

Page 83: More U-Substitution

Definite Integrals

Evaluate: dx

x −2( )20

4

Page 84: More U-Substitution

Definite Integrals: Why change bounds?

Can simplify calculations. (no need to substitute back to the original variable)

Try:

Change of bounds: when x = -5, u = 25 - (-5)2=0 when x = 5, u = 25 - (5)2 = 0

x 25 −x2dx−5

5

∫ −1

225 − x2 (−2x)dx

−5

5

∫u =25 −x2

du=−2xdx

−1

2udu

0

0

Page 85: More U-Substitution

Definite Integrals & bounds

x 25 −x2dx−5

5

∫ −1

225 − x2 (−2x)dx

−5

5

u =25 −x2

du=−2xdx

−1

2udu

0

0

Page 86: More U-Substitution

Examples to try:

cos(3x)dx∫

x 4 + x2( )dx∫

sin( x )

xdx∫

ln x( )( )2

xdx∫

Page 87: More U-Substitution

Examples

cos(3x)dx∫ 1

3cos( 3x ) 3dx∫

x 4 + x2( )dx∫

sin( x )

xdx∫

ln x( )( )2

xdx∫

1

24 + x2( ) 2xdx∫

2sin( x )

2 xdx∫

ln(x)( )2

xdx∫

1

3cos( u ) du∫

1

2u du∫

2 sin( u ) du∫

u( )2du∫

Page 88: More U-Substitution

Summary Make a u-substitution: find u and du, then transform

to an integral we can do. Be sure to transform back to the original variable!

Rearrange to get du Substitution will still not solve every integral. (Nor is it

always needed!)

Page 89: More U-Substitution

Change of Variable

Applet