monterey, california · 14. 7/1 injection holes, m=0.5 vortex generator #4 ---- 47 position h vii....

224
(NAVAL POSTGRADUATE SCHOOL £ Monterey, California THESIS EFFECTS OF AN EMBEDDED VORTEX ON A SINGLE FILM-COOLING JET IN A TURBULENT BOUNDARY LAYER by Warren W. Williams June 1988 Thesis Advisor: P. M. Ligrani Approved for public release; distribution is unlimited. DTIC y MAY0 3 1989 jl U C 9wm

Upload: others

Post on 23-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

(NAVAL POSTGRADUATE SCHOOL£ Monterey, California

THESIS

EFFECTS OF AN EMBEDDED VORTEX ON A SINGLEFILM-COOLING JET IN A TURBULENT

BOUNDARY LAYER

by

Warren W. Williams

June 1988

Thesis Advisor: P. M. Ligrani

Approved for public release; distribution is unlimited.

DTIC

y MAY0 3 1989

jl U

C 9wm

Page 2: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

UNCLASSIFIEDSECURITY CLASSIFICATION 01: THIS PAGE

REPORT DOCUMENTATION PAGEIa. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION, AVAILABILITY OF REPORT

Approved for public release;2b. DECLASSIFICATIONi DOWNGRADING SCHEDULE di stri buti on i s unl imi ted

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6 NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (if applicable)Code 69

6c. ADDRESS (City, State, and ZIP Code) 70 ADDRESS (Ciry. State, and ZIP Code)

Monterey, California 93943-50000

Ba. NAME OF FUNDING, SPONSORING So OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION (If applicable)

k, ADDRESS(City. State, and ZIP Code) 10 SOURCE 0; rUNDING NUMBERSPROGRAM PROJECT TASK WORK UNITELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification)

Effects of an Embedded Vortex on a Single Film-Cooling Jet in a Turbulent Boundary Layer12. PERSONAL AUTHOR(S)

Williams. Warren W.13a. TYPE OF REPORT '3b TME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGF COUNTM!aster's Thesis FRO4 TO 1 1988, June 22A16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect tile official_policy or position of the Department of Defense or the U. S. Government.17 COSA TI CODES 1B SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SuB.GROUPFL GU SG P Embedded Vortex, Film-Cooling Single Jet, Heat Transfer,

Endwall Secondary Flows. 00___

19. ARACT (Continue on reverse f necessary and identify by block number)-Effects of embedded longitudinal vortices on heat transfer in a turbulent boundary

layer film cooled from a single injection hole are discussed. Film coolant was injected atblowing ratios 0.50 to 1.50 at a freestream velocity of 10 m/s. A single longitudinalvortex was induced upstream of the film-cooling holes. Heat transfer measurements were madedownstream of injection. Flow visualization tests were conducted after the injettant wascontaminated with smoke. Surveys of mean velocity and mean temperature were also made indifferent spanwise normal planes. For all blowing ratios examined, the embedded vorticecause significant alterations to wall heat transfer and to film-cooling distributions.--'

Measurement of mean temperature and mean velocities in spanwise planes show thatinjectant is pushed to the upwash side of the vortex when the injection hole is locatedbeneath the vortex core or vortex downwash. Evidence of injection is seen only for x/d>7.4.For other injection locations with respect to the vortex core, evidence of injectant appearsfor x/d up to 96, and the injectant is not swept into the vortex upwash by secondary flows.20 DISTRIBUTION/AVALABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION)0 UNCLASSIFIED/UNLIMITED ED SAME AS RPT 0 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOLPhilliD M. Liqrani (408)646-3382 69Li

DD FORM 1473, 84 MAR 83 APR edton may be used until exrlaustec SECURITY CLASSIFICATION OF THIS PAGEAil olner ehtons are obsolete *VA

UNCLASSIFIEDi

Page 3: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

UNCLASSIFIEDSgCUMITY CLAWPICATION OP THI1 PAGS

#19 (Con't)Also measured are secondary heat transfer peaks which appear for blowing ratios

of 1.0 and 1.5.

UNCLASSIFIEDSECURITY CLASSIFICATION OF THIS PAGE

ii

Page 4: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Approved for public release; distribution is unlimited.

Effects of an Embedded Vortex on a SingleFilm-Cooling Jet in a Turbulent Boundary Layer

by

Warren W. WilliamsLieutenant Commander, United States Navy

B.A., The Citadel, 1976

Submitted in partial fulfillment of therequirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOLJune 1988

Author: 4Warren W. Williams

A p p r ov ed b y : ____ _

P M. Lig ni, Thesis Advisor

Anthonyv r Healey, hrmn

Department of'Mechanical! Agineering

Gordon E. Schacher, Dean ofScience and Engineering

iii

Page 5: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

ABSTRACT

Effects of embedded longitudinal vortices on heat

transfer in a turbulent boundary layer film cooled from a

single injection hole are discussed. Film coolant was

injected at blowing ratios 0.50 to 1.50 at a freestream

velocity of 10 m/s. A single longitudinal vortex was

induced upstream of the film-cooling holes. Heat transfer

measurements were made downstream of injection. Flow

visualization tests were conducted after the injectant

was contaminated with smoke. Surveys of mean velocity and

mean temperature were also made in different spanwise normal

planes. For all blowing ratios examined, the embedded

vortices cause significant alterations to wall heat transfer

and to film-cooling distributions.

Measurement of mean temperature and mean velocities

in spanwise planes show that injectant is pushed to the

upwash side of the vortex when the injection hole is

located beneath the vortex core or vortex downwash.

Evidence of injection is seen only for x/d<7.4.

For other injection locations with respect to the vortex

core, evidence of injectant appears for x/d up to 96, and

the injectant is not swept into the vortex upwash by

secondary flows.

iv

Page 6: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Also measured are secondary heat transfer peaks

which appear for blowing ratios of 1.0 and 1.5.

Acce.ston For

NTIS T.DTIC T. ' "

By.

DIst

V

Page 7: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

TABLE OF CONTENTS

Page

I. INTRODUCTION ---------------------------------------- 1

II. EXPERIMENTAL APPARATUS AND PROCEDURES --------------- 6

A. WIND TUNNEL AND COORDINATE SYSTEM -------------- 6

B. VORTEX GENERATORS 8------------------------------8

C. INJECTION SYSTEM ------------------------------- 9

D. HEAT TRANSFER MEASUREMENT --------------------- 12

E. TEMPERATURE MEASUREMENTS ---------------------- 15

F. MEAN VELOCITY MEASUREMENTS -------------------- 16

G. FLOW VISUALIZATION ---------------------------- 18

III. EXPERIMENTAL RESULTS ------------------------------ 19

A. FLOW VISUALIZATION ---------------------------- 19

B. MEAN VELOCITY AND MEAN TOTAL PRESSURE SURVEYS-21

C. MEAN TEMPERATURE SURVEYS ---------------------- 23

D. HEAT TRANSFER RESULTS ------------------------- 24

IV. SUMMARY AND CONCLUSIONS --------------------------- 35a

APPENDIX A, FIGURES ------------------------------------ 36

APPENDIX B, UNCERTAINITY ANALYSIS --------------------- 195

APPENDIX C, SOFTWARE DIRECTORY------------------------ 196

LIST OF REFERENCES ------------------------------------ 199

INITIAL DISTRIBUTION LIST ----------------------------- 201

vi

Page 8: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

LIST OF FIGURES

Page

1. Coordinate System of the Test Section ------------- 36

2a. Discharge Coefficient vs. Reynolds Number for ---- 37One Injection Hole

2b. Discharge Coefficient vs Reynolds Number for ----- 38Two Injection Holes

2c. Discharge Coefficient vs Reynolds Number for ------ 39Thirteen Injection Holes

3. Five Hole Probe Calibration Cpyaw vs. Yaw --------- 40

4. Five Hole Probe Calibration CpPitch vs. Pitch ----- 41

5. Five Hole Probe Calibration Cpt-S v.s Pitch -------42

6. Five Hole Probe Calibration Cptotal vs. Pitch ----- 43

7. 7/1 Injection Holes, m=0.5 No Vortex Generator ---- 44

8. 7/1 Injection Holes, m=0.5 Vortex Generator #2,---44Position e

9. 7/1 Injection Holes, m=0.5 Vortex Generator #2 ---- 45Position f

10. 7/1 Injection Holes, m=0.5 Vortex Generator #2 ---- 45Position g

11. 7/1 Injection Holes, m=0.5 Vortex Generator #2 ---- 46Position h

12. 7/2 Injection Holes, m=0.5 No Vortex Generator ---- 46

13. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 47Position h

14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47Position h

vii

Page 9: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48

Position i

16. 13 Injection Holes, m=l.0 No Vortex Generator ----- 48

17. 13 Injection Holes, m=1.0 Vortex Generator #2 ----- 49Position e

18. 13 Injection Holes, m=1.0 Vortex Generator #2 ----- 49Position f

19. 13 Injection Holes, m=1.0 Vortex Generator #2 ----- 50Position g

20. 13 Injection Holes, m=1.0 Vortex Gererator #2 ----- 50Position h

21. 13 Injection Holes, m=1.0 Vortex Generator #1 ----- 51Position e

22. 13 Injection Holes, m=l.0 Vortex Generator #3 ----- 51Position e

23. 13 Injection Holes, m=1.4 Vortex Generator #4 ----- 52Position e

24. 13 Injection Holes, m=1.4 Vortex Generator #2 ----- 52Position e

25. 13 Injection Holes, m=1.4 Vortex Generator #2 ----- 53Position g

26. Secondary Flow Vectors, m=0.5 Vortex ------------- 54Generator #2, Position e, Probe Position x/d=5.2

27. Streamwise Velocity Field, m=0.5 Vortex ----------- 55aGenerator #2 Position e, Probe Position x/d=5.2

28. Total Pressure Field, m=0.5 Vortex --------------- 55bGenerator #2, Position e, Probe Position x/d=5.2

29. Secondary Flow Vectors, m=0.5 Vortex -------------- 56Generator #2, Position e, Probe Position x/d=41.9

30. Streamwise Velocity Field m=0.5 Vortex ------------ 57Generator #2, Position e, Probe Position x/d=41.9

viii

Page 10: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

31. Total Pressure Field, m=0.5 Vortex ---------------- 58Generator #2, Position e, Probe Position x/d=41.9

32. Secondary Flow Vectors, m=0.5 Vortex -------------- 59Generator #2, Position h, Probe Position x/d=41.9

33. Streamwise Velocity Field, m=0.5 Vortex ----------- 60Generator #2, Position h, Probe Position x/d=41.9

34. Total Pressure Field, m=0.5 Vortex ---------------- 61Generator #2, Position h, Probe Position x/d=41.9

35. Secondary Flow Vectors, m=0.5 Vortex -------------- 62Generator #2, Position k, Probe Position x/d=41.9

36. Streamwise Velocity Field, m=0.5 Vortex ---------- 63Generator #2, Position k, Probe Position x/d=41.9

37. Total Pressure Field, m=0.5 Vortex --------------- 64Generator #2, Position k, Probe Position x/d=41.9

38. Local Temperature Minus Free Stream ---------------65Temperature m=0.5 Vortex #2 Position h, Probe Positionx/d=5.2

39. Local Temperature Minus Free Stream ---------------66Temperature m=0.5 Vortex #2 Position h, Probe Positionx/d=41.9

40. Local Temperature Minus Free Stream ---------------67Temperature m=0.5 Vortex #2 Position h, Probe Positionx/d=82.9

41. Local Temperature Minus Free Steam ---------------- 68Temperature m=0.5 Vortex #2 Pusition h, Probe Positionx/d=109.2

42. Local Temperature Minus Free Stream ---------------69Temperature m=0.5 Vortex Generator Position k, ProbePosition x/d=41.9

43. Local Temperature Minus Free Stream --------------- 70Temperature m=0.5 Vortex Generator Position e, ProbePosition x/d=41.9

44. Spanwise Averaged Stanton Numbers at -------------- 7110m/, Without Vortex and Without Film-Cooling

ix

Page 11: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

45. Local Heat Transfer Coefficient Distribution ------ 72for Baseline Tests Without Vortex and Without Film-Cooling

46a. Film-Cooling Data Without Vortex Four ------------- 73Blowing Ratios, Free Stream Velocity 10m/s

46b. Film-Cooling Data Without Vortex, Four ----------- 74Blowing Ratios, 15m/s Free Stream Velocity

47. Local St/Sto for Film-Cooled Boundary ------------ 75Layer without Vortex 15m/s Free Stream Velocity

48. Local St/Sto for Film-Cooled Turbulent Boundary---76Layer without Vortex 10m/s Free Stream Velocity

49. Local St/Sto with Film-Cooling from a Single ------ 77Hole and No Vortex m=0.5

50. Local St/Sto with Film-Cooling from a Single ------ 78Hole and No Vortex m=l.0

51. Local St/Sto with Film-Cooling from a Single ------ 79Hole, and No Vortex m=l.5

52. Local Stanton Number Ratios in Boundary ----------- 80Layers with Film Cooling, with and withoutan Embedded Vortex

53. Local Stanton Number Ratios in Boundary ----------- 81Layers with Film-Cooling, with and withoutan Embedded Vortex

54. Local Stanton Number Ratios in Boundary---------- 82Layers with Film-Cooling, with and withoutan Embedded Vortex

55. Local Stanton Number Ratios in Boundary ----------- 83Layers with Film-Cooling, with and withoutan Embedded Vortex

56. Spanwise Variation of Stanton Number Ratios -------84Vortex #2 Position a

57. Spanwise Variation of Stanton Number Ratios -------85Vortex #2 Position b

x

Page 12: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

58. Spanwise Variation of Stanton Number Ratios -------86Vortex #2 Position c

59. Spanwise Variation of Stanton Number Ratios ------- 87Vortex #2 Position d

60. Spanwise Variation of Stanton Number Ratios ------- 88Vortex #2 Position e

61. Spanwise Variation of Stanton Number Ratios ------- 89Vortex #2 Position f

62. Spanwise Variation of Stanton Number Ratios ------- 90Vortex #2 Position g

63. Spanwise Variation of Stanton Number Ratios ------- 91Vortex #2 Position h

64. Spanwise Variation of Stanton Number Ratios ------- 92Vortex #2 Position i

65. Spanwise Variation of Stanton Number Ratios ------- 93Vortex #2 Position j

66. Spanwise Variation of Stanton Number Ratios ------- 94Vortex #2 Position k

67. Spanwise Variation of Stanton Number Ratios ------- 95Vortex #2 Position a

68. Spanwise Variation of Stanton Number Ratios ------- 96Vortex #2 Position b

69. Spanwise Variation of Stanton Number Ratios ------- 97Vortex #2 Position c

70. Spanwise Variation of Stanton Number Ratios ------- 98Vortex #2 Position d

71. Spanwise Variation of Stanton Number Ratios ------- 99Vortex #2 Position e

72. Spanwise Variation of Stanton Number Ratios ------ 100Vortex #2 Position f

73. Spanwise Variation of Stanton Number Ratios ------ 101Vortex #2 Position g

xi

Page 13: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

74. Spanwise Variation of Stanton Number Ratios ------ 102Vortex #2 Position h

75. Spanwise Variation of Stanton Number Ratios ------ 103Vortex #2 Position i

76. Spanwise Variation of Stanton Number Ratios ------ 104Vortex #2 Position j

77. Spanwise Variation of Stanton Number Ratios ------ 105Vortex #2 Position k

78. Spanwise Variation of Stanton Number Ratios ------ 106Vortex #2 Position a

79. Spanwise Variation of Stanton Number Ratios ------ 107Vortex #2 Position b

80. Spanwise Variation of Stanton Number Ratios ------ 108Vortex #2 Position c

81. Spanwise Variation of Stanton Number Ratios ------ 109Vortex #2 Position d

82. Spanwise Variation of Stanton Number Ratios ------ 110Vortex #2 Position e

83. Spanwise Variation of Stanton Number Ratios ------ 111Vortex #2 Position f

84. Spanwise Variation of Stanton Number Ratios ------ 112Vortex #2 Position g

85. Spanwise Variation of Stanton Number Ratios ------ 113Vortex #2 Position h

86. Spanwise Variation of Stanton Number Ratios ------ 114Vortex #2 Position i

87. Spanwise Variation of Stanton Number Ratios ------ 115Vortex #2 Position j

88. Spanwise Variation of Stanton Number Ratios ------ 116Vortex #2 Position k

89. Spanwise Variation of Stanton Number Ratios ------ 117Vortex #2 Position b

xii

Page 14: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

90. Spanwise Variation of Stanton Number Ratios ------ 118Vortex #2 Position e

91. Spanwise Variation of Stanton Number Ratios ------ 119Vortex #2 Position h

92. Spanwise Variation of Stanton Number Ratios ------ 120Vortex #2 Position k

93. Spanwise Variation of Stanton Number Ratios ------ 121Vortex #2 Position b

94. Spanwise Variation of Stanton Number Ratios ------ 122Vortex #2 Position e

95. Spanwise Variation of Stanton Number Ratios ------ 123.Vortex #2 Position h

96. Spanwise Variation of Stanton Number Ratios ------ 124Vortex #2 Position k

97. Spanwise Variation of Stanton Number Ratios ------ 125Vortex #2 Position b

98. Spanwise Variation of Stanton Number Ratios ------ 126Vortex #2 Position e

99. Spanwise Variation of Stanton Number Ratios ------ 127Vortex #2 Position h

100. Spanwise Variation of Stanton Number Ratios ------ 128Vortex #2 Position k

101. Local Stanton Number Ratios in Boundary --------- 129Layers with Film Cooling, with and withoutan Embedded Vortex

102. Local Stanton Number Ratios in Boundary ---------- 130Layers with Film Cooling, with and withoutan Embedded Vortex

103. Local Stanton Number Ratios in Boundary ---------- 131Layers with Film Cooling, with and withoutan Embedded Vortex

104. Spanwise Variation of Stanton Number Ratios ------ 132Vortex #2 Position b

xiii

Page 15: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

105. Spanwise Variation of Stanton Number Ratios ------ 133Vortex #2 Position c

106. Spanwise Variation of Stanton Number Ratios ------ 134Vortex #2 Position d

107. Spanwise Variation of Stanton Number Ratios ------ 135Vortex #2 Position e

108. Spanwise Variation of Stanton Number Ratios ------ 136Vortex #2 Position f

109. Spanwise Variation of Stanton Number Ratios ------ 137Vortex #2 Position g

110. Spanwise Variation of Stanton Number Ratios------ 138Vortex #2 Position h

111. Spanwise Variation of Stanton Number Ratios ------ 139Vortex #2 Position b

112. Spanwise Variation of Stanton Number Ratios ------ 140Vortex #2 Position c

113. Spanwise Variation of Stanton Number Ratios ------ 141Vortex #2 Position d

114. Spanwise Variation of Stanton Number Ratios ------ 142Vortex #2 Position e

115. Spanwise Variation of Stanton Number Ratios ------ 143Vortex #2 Position f

116. Spanwise Variation of Stanton Number Ratios ------ 144Vortex #2 Position g

117. Spanwise Variation of Stanton Number Ratios ------ 145Vortex #2 Position h

118. Spanwise Variation of Stanton Number Ratios ------ 146Vortex #2 Position b

119. Spanwise Variation of Stanton Number Ratios ------ 147Vortex #2 Position c

120. Spanwise Variation of Stanton Number Ratios ------ 148Vortex #2 Position d

xiv

Page 16: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

121. Spanwise Variation of Stanton Number Ratios ------ 149Vortex #2 Position e

122. Spanwise Variation of Stanton Number Ratios ------ 150Vortex #2 Position f

123. Spanwise Variation of Stanton Number Ratios ------ 151Vortex #2 Position g

124. Spanwise Variation of Stanton Number Ratios ------ 152Vortex #2 Position h

125. Spanwise Variation of Stanton Number Ratios ------ 153Vortex #2 Position b

126. Spanwise Variation of Stanton Number Ratios ------ 154Vortex #2 Position e

127. Spanwise Variation of Stanton Number Ratios ------ 155Vortex #2 Position h

128. Spanwise Variation of Stanton Number Ratios ------ 156Vortex #2 Position b

129. Spanwise Variation of Stanton Number Ratios ------ 157Vortex #2 Position e

130. Spanwise Variation of Stanton Number Ratios ------ 158Vortex #2 Position h

131. Spanwise Variation of Stanton Number Ratios ------ 159Vortex #2 Position b

132. Spanwise Variation of Stanton Number Ratios ------ 160Vortex #2 Position e

133. Spanwise Variation of Stanton Number Ratios ------ 161Vortex #2 Position h

134. Local Stanton Number Ratios in Boundary --------- 162Layers with Film Cooling, with and withoutan Embedded Vortex

135. Local Stanton Number Ratios in Boundary --------- 163Layers with Film Cooling, with and withoutan Embedded Vortex

xv

Page 17: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

136. Local Stanton Number Ratios in Boundary ---------- 164Layers with Film Cooling, with and withoutan Embedded Vortex

137. Spanwise Variation of Stanton Number Ratios ------ 165Vortex #2 Position b

138. Spanwise Variation of Stanton Number Ratios ------ 166Vortex #2 Position c

139. Spanwise Variation of Stanton Number Ratios ------ 167Vortex #2 Position d

140. Spanwise Variation of Stanton Number Ratios ------ 168Vortex #2 Position e

141. Spanwise Variation of Stanton Number Ratios ------ 169Vortex #2 Position f

142. Spanwise Variation of Stanton Number Ratios ------ 170Vortex #2 Position g

143. Spanwise Variation of Stanton Number Ratios ------ 171Vortex #2 Position h

144. Spanwise Variation of Stanton Number Ratios ------ 172Vortex #2 Position b

145. Spanwise Variation of Stanton Number Ratios ------ 173Vortex #2 Position c

146. Spanwise Variation of Stanton Number Ratios ------ 174Vortex #2 Position d

147. Spanwise Variation of Stanton Number Ratios ------ 175Vortex #2 Position e

148. Spanwise Variation of Stanton Number Ratios ------ 176Vortex #2 Position f

149. Spanwise Variation of Stanton Number Ratios ------ 177Vortex #2 Position g

150. Spanwise Variation of Stanton Number Ratios ------ 178Vortex #2 Position h

Xvi

Page 18: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

151. Spanwise Variation of Stanton Number Ratios ------ 179Vortex #2 Position b

152. Spanwise Variation of Stanton Number Ratios ------ 180Vortex #2 Position c

153. Spanwise Variation of Stanton Number Ratios ------ 181Vortex #2 Position d

154. Spanwise Variation of Stanton Number Ratios ------ 182Vortex #2 Position e

155. Spanwise Variation of Stanton Number Ratios ------ 183Vortex #2 Position f

156. Spanwise Variation of Stanton Number Ratios ------ 184Vortex #2 Position g

157. Spanwise Variation of Stanton Number Ratios ------185Vortex #2 Position h

158. Spanwise Variation of Stanton Number Ratios ------186Vortex #2 Position b

.159. Spanwise Variation of Stanton Number Ratios ------187Vortex #2 Position e

160. Spanwise Variation of Stanton Number Ratios ------188Vortex #2 Position h

161. Spanwise Variation of Stanton Number Ratios ------ 189Vortex #2 Position b

162. Spanwise Variation of Stanton Number Ratios ------190Vortex #2 Position e

163. Spanwise Variation of Stanton Number Ratios ------191Vortex #2 Position h

164. Spanwise Variation of Stanton Number Ratios ------192Vortex #2 Position b

165. Spanwise Variation of Stanton Number Ratios ------193Vortex #2 Position e

166. Spanwise Variation of Stanton Number Ratios ------ 194Vortex #2 Position h

xvii

Page 19: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

TABLE OF SYMBOLS

A - area of injection holes

C D - discharge coefficient

C p - specific heat at constant pressure

d - injection hole diameter

h - heat transfer coefficientI

q /(Tro - Tw)m - blowing ratio, PcUc/pw Um

P - static pressure

R - gas constant

St - Stanton number

St - baseline Stanton number, no film-cooling, no vortex

St - Stanton number with film-cooling only

T - static temperature

U - mean velocity

V - volumetric flowrate

x - downstream distance as measured from the leading edge ofthe boundary layer trip or from the downstream edges ofinjection holes when used as x/d

y - vertical distance from the test surfacce upward

z - spanwise distance from the test section center line

c - unheated starting length

p - density

e - non-dimensional coolant temperature,

(Trc - Tr ) / (Tw - T ro

xviii

Page 20: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

1 - boundary layer displacement thickness

SUBSCRIPTS

c - coolant at exit of injection holes

i - isentriopic

o - stagnation condition

p - injection plenum chamber

r - recovery condition

w - wall

0 - freestream

xix

Page 21: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

ACKNOWLEDGEMENTS

This work was supported by Wright Aeronautical

Laboratories, Wright-Patterson Air Force Base.

Dr. Dick Rivir was program monitor.

The composition of this work was greatly influenced by

P. M. Ligrani along with the work of S. L. Joseph, A. Ortiz

and D. L. Evans.

Technical contributions were made by Dr. Bart Singer,

for his work on computor software and G. E. Schwartz for his

work on uncertanity analysis.

I wish to express my thanks to Professor Phil Ligrani

for his understanding, persistence and good humor.

xx

Page 22: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

I. INTRODUCTION

Current turbine inlet temperatures are approaching

2000 K. Because of the substantial thermal load resulting

on blades and endwalls, an understanding of the heat

distributions in turbine passages is needed. This is

because both high temperatures and large temperature

gradients can lead to increased thermal stresses and

reduced component life. Consequently, local hot spots

must be avoided by providing adequate protection of

turbine surfaces. One method of protection is film

cooling. However, as injectant from film-cooling holes

spreads over blade and endwall surfaces, it may be

distorted by the secondary flows. This can lead to local

hot spots just downstream of injection sites at exact

locations where film-cooling would ordinarily be expected

to provide adequate protection, and where protection is

most needed.

One type of secondary flow expected to cause

disturbances to film-cooling is the embedded vortex. Near

the walls of turbine blade passages, such vortices result

from at least two different mechanisms. First, they

initially develop from the pressure gradient formed at the

intersection of the blade leading edge and endwall.

! 1

Page 23: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Second, a centrifugal instability results in spanwise

varying regions of high and low speed flow which form

into Taylor-Gortler vortices.

Some of the earliest evidence that embedded vortices

cause alterations to film-cooling was reported by

Blair (1). He measured large variations of heat transfer

and film-cooling effectivenesss on an endwell. These

variations were attributed to a large vortex located in

the corner between the endwall and the suction surface

of their cascade. Goldstein and Chen (2,3) performed

experimental studies on the influence of the endwall

on film-cooling from blades using one and two rows of

injection holes. The authors concluded that a

triangular region exists on the convex side of the blade

where coolant is swept away from the surface by the

passage vortex. Sato, Aoki, Takeishi and Matsuura (4)

studied distributions of heat transfer and film-cooling

effectiveness on the endwall and airfoil within an annular

low aspect ratio cascade.

Of work near concave surfaces with injection,

Kobayashi (5) examined how homogeneous suction from a

permeable wall affected the onset of longitudinal vortices

in laminar boundary layers. In a later study,

2

Page 24: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Kobayashi (6) examined the effects of both blowing and

suction. Results showed that suction increases the

stability of laminar boundary layers to centrifugal

instabilities, whereas blowing had little influence on the

instability. In a study of similar phenomena, El-Hady and

Verma (7) reached slightly different conclusions. They

showed that the overall effect of suction or cooling was

to stabilize boundary layers by reducing the amplitude

ratio of the vortices. The layers were found to be less

stable at higher Mach numbers and at higher cooling

injection rates.

Recent studies conducted at the Naval Postgraduate

School show that the protection provided by film-cooling

can be altered significantly by embedded vorticies such

as the ones existing in turbine blade passages. Without

understanding the interaction of such secondary flows

with film-cooling, it will not be possible to design

schemes for efficient and uniform protection near turbine

passage surfaces. Joseph (8) shows that heat transfer

coefficients in boundary layers with film-cooling can be

altered by as much as 30 percent by the presence of

embedded vortices. These were obtained using a constant

heat flux surface, instrumented with thermocouples

3

Page 25: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

to measure surface temperature. Spanwise-average Stanton

numbers show excellent agreement with the expected

turbulent heat transfer correlation for a flow without

film-cooling and without an embedded vortex. Evans (9)

used a five-hole pressure probe to document the mean

flow field characteristics of a boundary layer with

film-cooling and embedded vortices. Heat transfer is

generally higher on the downwash side of the vortex due to

local boundary layer thinning, and lower on the upwash side

due to local thickening of the boundary layer. Some of Evan's

streamwise velocity results, provide evidence of the

dominating effect that vortices have on local flow behavior.

Near the downwash side of the vortex high velocity fluid is

brought near the wall, where it dominates flow field

behavior by minimizing the effects of the film-cooling.

Ortiz (10) repeated some of these results and provided

additional data on the effects that vortices have on

local flow.

In order to better understand phenonena described by

Joseph (8), Evans (9) and Ortiz (10) the objective of the

present work is to document the effects of an embedded

longitudinal vortex on a single film-cooling jet in a

turbulent boundary layer. Attention is focusssed on the

downstream development of flow fields, effects of spanwise

4

Page 26: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

vortex positions, and on how the interactions between

vortices and film-cooling changes with blowing ratio.

In order to isolate an influence of the vortex only,

tests were conducted on a flat plate in a zero pressure

gradient. With earlier data (8,9,10) the present results

will aid the gas turbine heat transfer analyst to obtain a

detailed cooling scheme for both the turbine blades and

endwalls which allow for maximum inlet temperature.

Experimental data for such design are particularly

valuable since the complicated three-dimensional character

of the flow interactions makes prediction and modelling

impractical at the present time.

The organization of this report is now discussed. In

section 2 experimental apparatus and procedure are

presented. This is followed by section 3 which gives

experimental results. The results consist of flow

visualization results, heat transfer data, surveys of mean

velocity, mean pressure, and mean temperature. In Section

4 is a summary. This is followed by Appendix A, which

contains photographs and figures. Appendix B presents the

uncertainity analysis. A list of references follows along

with a Distribution List.

5

Page 27: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

II. EXPERIMENTAL APPARATUS AND PROCEDURES

A. WIND TUNNEL AND COORDINATE SYSTEM

The experiments were conducted in an open-circuit,

subsonic wind tunnel located in the laboratories of the

Department of Mechanical Engineering at the Naval Post-

graduate School. A centrifugal blower was located at the

upstream end of the tunnel. Air entered the inlet from

the surrounding room through a coarse filter. The dis-

charge from the fan passed to the inlet of the diffuser.

A 1.6mm clearance between fan and diffuser isolated

vibrations from the fan to the wind tunnel body. The

diffuser contained a second fine filter to remove small

particles from the air as well as four baffle vanes to

reduce noise and minimize the likelihood of flow

separations. The diffuser was then followed by a header

containing a honeycomb and three screens to reduce spatial

nonuniformities in the flow. Afterwards, a 16 to 1

contraction ratio nozzle lead to the test section. The

test section was a rectangular duct 3.05 m long and 0.61 m

wide. The height of the topwall was adjustable to permit

changes in the streamwise pressure gradient. For the

present study, a zero presure gradient was maintained

without vortex or film-cooling to within .007 inches of

6

Page 28: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

water differential pressure along the length of the test

section. The air speed through the test section was

adjustable from lm/s to 40m/s.

At the exit plane of the nozzle, the variation of

total pressure was less than 0.4% at 26m/s and 34m/s.

Mean velocity varied less than 0.7% for the same speeds.

Profile measurements of the mean velocity and longitudinal

turbulence intensity in the turbulent boundary layer

developing at 20 m/s indicated normal, spanwise uniform

behavior. At x= 1.8m, measurements from hot-wire probes

showed that boundary layer thickness, boundary layer

displacement thickness, and boundary layer momentum

thickness were 29.7mm, 5.09mm and 3.59mm, respectively.

At a freestream velocity of 21.0m/s, the momentum thicknes

Reynolds number was 4780 and the friction velocity was

.8m/s. The freestream turbulence intensity was about .1

percent (based on freestream velocity) for freestream

velocities from 20 m/s to 30 m/s. For this qualification

test, and the present study, the boundary layer was

tripped near the exit of the nozzle with a 1.5 mm high

strip of tape.

The coordinate system is shown in figure 1. With the

heat transfer surface at elevated temperature, an

unheated starting length of 1.10 m existed. Freestream

7

Page 29: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

air was maintained at ambient temperature, and thus, the

direction of heat transfer was from the wall to the gas.

Temperature differences were maintained less than about

300C to minimize the effects of variable properties.

Referring again to Figure 1, the downstream edges of the

injection nozzles were located 1.08m downstream of the

boundary layer trip and 0.02m upstream of the test

surface. The leading edge of the vortex generator was

placed 0.48m downstream of the trip. Also labelled in

Figure 1 are the locations of thermocouple rows along the

test surface.

B. VORTEX GENERATORS

Each Vortex generator consisted of a half-delta wing

attached to the wind tunnel floor at an angle of 18 0 with

respect to the tunnel centerline. The generator design

was similar to ones employed by Joseph (8) Evans (9),

Ortiz (10), Westphal, et. al. (11,12) and Eibeck and

Eaton (13). The heights of or vortex generators one,

two, three, and four were 1.9, 3.3, 5.2, and 7.4 cm,

respectively. The bases measured 4.5, 7.7, 12.4 and 17.4cm

respectively. Vortex generator positions with respect to

the wind tunnel centerline are given labelled a-k in Table I.

8

Page 30: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

TABLE I. Vortex Generator Position in CM and Inches

TABLE I

VORTEX POSITION CM INCHES

a -5.1 -2.0b -3.8 -1.5c -2.5 -1.0d -1.3 -0.5e 0.0 0.0f 1.3 0.5g 2.5 1.0h 3.8 1.5i 5.1 2.0j 6.3 2.5k 7.6 3.0

C. INJECTION SYSTEM

In the present study coolant was ejected from circular

injection holes into the boundary layer developing along

the bottom wall of the test section. Diameters of the

injection holes were .952 cm, scaled such that 61/d was

approximately 0.38. The injection parameters m and O were

also scaled to resemble parameters near gas turbine blades.

Injection holes were inclined at angle of 300 with a three

diameter spanwise spacing between center lines. The middle

tube was located on the center line of the test surface.

Three injection tubes were used during most heat transfer

measurements.

9

Page 31: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

The centerline injection tube was used in addition to two

other tubes open on the ends of the injection row, one on

each side. The flow was studied as the vortex affected

the jet from the center injection hole. Injectant from

the two peripheral holes did not touch the heat transfer

surface or affect the heat transfer measurements.

Injection from these two holes was required in order to

maintain steady flow in the injection system at measurable

flows rates. Blowing ratios (m) of 0.5, 1.0, and 1.5 were

employed for measurements with film-cooling and a vortex.

Air for the injection system originated in a 10 HP two

stage, 150 psig Ingersol-Rand air compressor. From the

compressor, air flowed through an adjustable pressure

regulator, a cut-off valve, flexible tubing, a moisture

separator, a flow regulator, a Fisher and Porter

rotometer, a diffuser, and finally into the injection heat

exchanger and plenum chamber. The exchanger provided

means to heat injectant above ambient temperature. The

top surface of the plenum contained 13 plexiglass

injection tubes, each 8 cm long with a length-to-diameter

ratio of 8.4. When three holes were used, ten of the

holes were plugged and covered with transparent tape on

the wind tunnel bottom wall. Qualification tests of the

injection system showed satisfactory uniformity of the

10

Page 32: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

plenum chamber pressure over a range of blowing ratios.

Discharge coefficients ranged between 0.5 and 0.77, and

increased with Reynolds number in agreement with results

given by Ligrani and Camci (14) and Joseph (8). In order

to determine the discharge coefficient and other injection

parameters, a number of quantities were measured, including

Pco, To , VC , POP I Top , and A. The coolant velocity and

static density were then given by

U Vc and c'--P---- (1,2)A RTc

where T c is the static temperature at the exits of

injection holes. The temperature drop between Top and Toc

was measured and correlated as a function of Top and

Reynolds number. The coolant mass flux is then the

product of Uc and P . To calculate the isentropic mass

flux, Pci and Uci were found using

pci (3)RTci

and

Uci. 2 (Pop - P} (4)

Pci

where T Top - Uc2/2gcC p . Discharge coefficients, Cd, were then

given by

Cd OcUc (5)

(PcUc)i

11

Page 33: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Results of qualification tests are presented in

Figures 2a, 2b, and 2c for one hole, two holes and

thirteen injection holes, respectively. The qualification

tests were performed with the injected heated at three

different levels, and without heating. Higher discharge

coefficients are present when no heat is provided to the

injectant. Data for a given number of injectant holes,

no matter which heat level is employed, fall on the same

curve. The lower CD with heating are believed to be a

result of expansion of the plenum chamber, causing some

expansion of cracks in injection holes. This results in

roughness on injection tube surfaces which impedes flow

through the system.

D. HEAT TRANSFER MEASUREMENT

The heat transfer surface was designed and developed

to provide a constant heat flux over its area. The plate

was constructed so that its upward facing part was adjacent

to the wind tunnel air stream, with minimal heat loss by

conduction from the sides and beneath the test surface.

It consisted of a thin stainless steel foil

1.3m x .467m x 20mm, painted flat black with seven layers

of liquid crystals. Attached to the underside of the foil

were 126 copper-constantan thermocouples in six rows. In

12

Page 34: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

each of the six rows, 21 thermocouples were located

1.27 cm apart to provide adequate spanwise resolution of

temperature distributions. Thermocouple lead wires were

located in grooves cut into a triple sheet of 0.254mm

thick double sided tape, manufactured by 3M Company.

The grooves were then filled with RTV epoxy. A thin

foil heater, 1.0mm x 1.118 m x 0.438 m, rated at 120V

and 1500W and manufactured by Electrofilm Corp., was

attached to the tape with Electrobond epoxy. Beneath

the heater was a 12.7mm thick lexan sheet, followed by

25.4mm of foam insulation, 82.55mm thick styrofoam,

three sheets of .254mm thick lexan and one sheet of

9.53mm thick balsa wood. This surface was developed

and constructed by Ortiz (10), based on an earlier

design by Joseph (8).

The vertical height of the surface was adjustable in

order to account for thermal expansion. It was maintained

level with the test surface by adjusting screws in the

plexiglass frame supporting the heat transfer surface

from below. During heat transfer tests, the top surface

of the foil remained flat and smooth with minimal surface

irregularities. The surface temperature was controlled

by adjusting input voltage to the heater using a Standard

Electrical Co. Variac, type 3000B.

13

Page 35: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

To determine the heat loss by conduction from the heat

transfer test surface, results from the energy balance of

Ortiz (10) were used. Radiation losses from the top of

the test plate were estimated analytically. For an

average plate temperature of 400C with a freestream at

10 m/s and 180 C, radiation losses were approximately 55

watts or about 8.5 percent of the total power into the

test plate.

Tests to determine the thermal contact resistance

between thermocouples and the foil top surface were

conducted and compared to earlier tests. The first step in

this procedure was to calibrate the liquid crystals used

to measure the temperature of the foil surface. This

involved coating several samples with liquid crystals and

placing them in an isothermal bath whose temperature could

be regulated. A platinum resistance thermometer was used

to measure the bath temperature. These temperatures were

then matched to colors appearing on the liquid crystals.

Once the calibration of the liquid crystals was complete,

they were then applied to the heat transfer surface. Heat

was applied to the surface and a test case was run without

injection and without a vortex generator. Temperatures

of thermocouples attached to the foil immediately below

the liquid crystals were obtained when the liquid crystals

14

Page 36: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

clearly showed a color identifiable with a temperature

from the earlier calibration. The temperature difference

AT divided by the convection heat transfer q is thecony

contact resistance given by

CR = AT/qconv (6)

A value of 0.0154 was found for CR. Because this value

was very close to 0.016, the CR determined by Joseph (8),

CR=0.016, was used for all data reduction.

Experimental uncertainties of Stanton numbers and

quantities used to deduce Stanton numbers are given in

Appendix B. These uncertainties were estimated by

Schwartz (15)

E. TEMPERATURE MEASUREMENTS

The copper-constantan thermocouples used with the heat

transfer surface were calibrated by Ortiz (10). His

calibration data was used for all but three thermocouples

used in the present work. These three thermocouples were

used to measure freestream temperature, plenum chamber

temperature, and the temperature in surveys. From

calibration results, a third order polynomial equation was

used to represent temperature as a function of voltage in

millvolts. For the freestream temperature on channel 147,

T=-2.6 + 32178E - 5483059E 2 + 12473940000E 3 (7)

15

Page 37: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

For the plenum chamber temperature on channel 148,

T=1.66 + 21973E + 248196E 2 - 7809850000E 3 (8)

Finally, for the thermocouple attached to the tranverse

apparatus on channel 152,

T=-0.776 + 27843E - 2196907E 2 + 4408860000E 3 (9)

For all three equations E is read in millivolts. For

the boundary layer/vortex temperature survey, 800 probe

locations were used, covering an area of 12cm x 22cm. The

probe was positioned by means of a motorized traversing

device controlled by a Mitas controller. This, in turn

was operated by the HP 9836S computer. Voltages from the

thermocouples were received by an HP-3497A Data

Acquisition/Control unit with an HP-3498A Extender.

These units were also controlled by the Hewlett-Packard

Series 300, Model 9836S computer, equipped with a MC68000,

8MHz 16/32-bit processor, dual 5-1/4 inch floppy disk

drives, and 1M byte of memory.

F. MEAN VELOCITY MEASUREMENTS

The three mean velocity components were measured using

a five-hole pressure probe manufactured by United Sensors

and Control Corporation. The probe is a DC-250-24CD conical

five-hole probe with a tip diameter of 6.35mm. During

16

Page 38: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

measurements, the pressure from each of the five holes is

directed to its own differential pressure transducer with

one end open to the atmosphere. Celesco model LCVR

variable reluctance transducers are used with the United

sensors probe. These transducers have a full scale pressure

range of 2cm of water. Transducer output signals were

converted to DC signals by Celesco CD-10D carrier demodulators

which then connected to the same data acquisition system as

used for temperature measurement.

The probe was calibrated in the uniform freestream of

an open circuit blower tunnel located in the

laboratories of the Department of Mechanical Engineering.

Calibration is performed by yawing the probe in 10 degree

increments from -20 degrees to +20 degrees. At each yaw

angle, the probe is pitched through a 40 degree range, also

at 10 degree increments. A total of 25 combination angles

are used.

17

Page 39: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

At each angle, pressure coefficients are computed as follows:

Cpyaw = (P2 - P3) / (PI -P) (1,1)

Cppitch = (P4 - P5 ) / (Pl - (11)

Cpt-s (P0 - Ps) / (P1 -I ) (12)and

CPTOTAL = (P0 -P ) / (Pl - ") (13)

Here, P0 is the total pressure, P. is the static pressure,

P=(P 2 +P3+P4+P5)/4 , and pressure numbers correspond to

ones at probe ports. Figures 3-6 show calibration curves

for the United Sensor probe. The variations of the

coefficients follow expected behavior for this type of

probe.

G. FLOW VISUALIZATION

Injectant was visualized by providing white smoke to

the injection plenum, produced by a Rosco Electric Fog/Smoke

Machine, Model 1500. The Fog/Smoke machine has ten smoke

settings, and utilizes liquid smoke fluid. Flexible 10.3cm

diameter tubing carried the smoke from the smoke generator

to the plenum chamber. For these tests, plenum pressure was

maintained entirely by the Fog/Smoke machine. Freestream

wind tunnel conditions were then set to achieve desired

blowing ratios.

18

Page 40: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

III. EXPERIMENTAL RESULTS

A. FLOW VISUALIZATION

Flow visualization photographs are presented in

Figures 7-25. These are presented in three parts. In the

first part, injection is provided through seven injection

holes where the vortex affects injectant only from one

central hole. Injection from the remaining six holes is

needed to maintain steady injection plenum conditions at

measurable flow rates. In the second part, flow is studied

as the vortex affects injectant from two holes, with

peripheral injection from five other holes. In the third

part, all thirteen injection holes are used. For all

three cases, smoke is provided to the injection plenum and

thus, coolant jets are visualized as they are contaminated

by smoke.

The effects of an embedded vortex on injection from a

single injection hole is evident from results in

Figures 7-11. In these Figures, flow is moving from the

top of the photograph to the bottom of the photograph as

viewed looking down on the test surface. Figure 7 shows

the behavior of the smoke from injection holes with no

vortex in the flow. The smoke moves in the downstream

19

Page 41: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

direction without spanwise motion. Figure 8 shows the

smoke when the vortex is at position e. Here skewing of

the smoke is evident when using vortex generator #2. For

spanwise vortex positions f. g. and h in Figures 9, 10

and 11, less smoke is present, but with more disorder as

the smoke proceeds downstream. The photographs shown in

Figures 8 -11 show the effects upon the smoke of spanwise

vortex position. Farther downstream for vortex positions

f, g, and h, some waviness of the smoke is evident as a

result of vortex motion.

The effects of an embedded vortex on injection from

two injection holes is evident from results in Figures 12-

15. The injection flow is shown in Figure 12 without a

vortex in the flow. With generator #4 at position h, the

upstream viewed pattern in Figure 13 shows how the

injectant is distorted and lifted off the wall.

Figure 14 shows how the swirl from the vortex lifts the

injectant and swirls it in the flow field. Figure 15

shows a downward view of smoke from jets which is greatly

skewed. For Figures 13 and 14, vortex generator #4 was

used at position h. For Figure 15, vortex generator #4

was used at position i.

The effects of an embedded vortex on injection from

thirteen holes is evident from results in Figures 16-25.

20

Page 42: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

The injectant is shown in Figure 16 without a vortex

in the flow. Figures 17-20 show the effects on the

smoke as vortex generator #2 is moved spanwise

from positions e-h. The largest amount of distortion

to smoke from the vortex generator is shown in Figure 19.

Such distortion results in a high heat transfer region

where the injectant is spread away from the wall.

Figures 21-23 show how the smoke pattern changes as the

size of the vortex generator is changed. Figures 24 and 25

show injectant from thirteen holes as distorted by vortex

generator #2 at positions e and g, respectively. Distortion

to the injectant is greatest in Figure 25.

B. MEAN VELOCITY AND MEAN TOTAL PRESSURE SURVEYS

Distributions of mean velocity and mean total pressure

are presented in Figures 26-37. These surveys were

obtained using the five-hole pressure probe. For each survey,

the probe was positioned at 800 different locations in span-

wise planes at chosen downstream locations. Four different

sets of data are presented. Downstream locations are

given as x/d, nondimensional distance from the downstream

edge of injection holes. All results were obtained with

a blowing ratio of 0.5 and vortex generator #2.

Figures 26-28 show the effects of the vortex generator

positioned at spanwise location e. The pressure probe is

21

Page 43: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

positioned at x/d=5.2. Figures 29-37 show the effects of

the vortex generator positioned at three different

spanwise locations for x/d=41.9.

Results in Figures 26-28 were obtained to locate the

vortex position with respect to the film-cooling holes.

Figure 26 shows the velocity vector field. Figure 27 shows

streamwise velocity distribution. Figure 28 shows the total

pressure field. Strong secondary spanwise velocities are

observed close to the wall in Figure 26. Very high stream-

wise velocities are evident near the wall at the downwash

side of the vortex in Figure 27. Here, the boundary layer

is quite thin. Within the upwash region, low-pressure fluid

is convected away from the wall, as shown in Figure 28.

Results in Figures 29-37 were obtained to document

effects of different spanwise vortex positions e, h, and k.

Figures 29-31 show measurements for the vortex generator

positioned at spanwise location e. Figures 32-34 show data

for spanwise location h and Figures 35-39 are for spanwise

location k. For results in Figures 29-37 the probe stream-

wise position is held constant at x/d=41.9. Figures 29, 32

and 35 show the vortex at different spanwise locations with

respect to the wind tunnel centerline. A qualitative

comparison of these Figures indicates no significant

22

Page 44: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

changes in local vortex structure. For each case, a region

of low streamwise velocity and low pressure exists near the

upwash side of the vortex. A region of high streamwise

velocity and high pressure is present near the downwash

side of each vortex.

C. MEAN TEMPERATURE SURVEY

Utilizing vortex generator #2 and a constant blowing

ratio of 0.5, surveys of mean temperature were made over

spanwise planes. The survey was performed at four

different streamwise locations for x/d=5.2, 41.9, 82.9

and 109.2. The film-cooling injectant was heated to 51 C

without providing any heat to the test plate. Thus, the

temperature field shows how fluid from the film-cooling

holes is convected and distorted by the vortex, where

higher temperatures indicate greater amounts of coolant.

The temperature survey is presented in two parts.

First, the downstream development effects are discussed,

followed by effects of spanwise vortex position.

The results in Figures 38-41 show the downstream

development of the film coolant. As the flow moves down-

stream, most coolant is convected into the upwash side of the

vortex. Near the downwash side, a very thin boundary

layer is present and there is little coolant.

23

• In |

Page 45: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

As downstream distance increases, coolant is convected

farther from the wall and spread over a larger area.

The results in Figures 39, 42, and 43 show coolant

distributions at x/d=4.19 for vortex positions h, k, and e,

respectively. Figures 39 and 43 show the injectant being

lifted away from the wall and convected into the upwash of

the vortex. For vortex position k, coolant is less spread

out and not pushed to the vortex upwash side. These

changes result due to different locations of the vortex

as it passes near film-cooling injection locations.

D. HEAT TRANSFER RESULTS

Heat transfer results are presented in five parts.

These five parts are: (1) baseline heat transfer without

vortex and without film-cooling. (2) boundary layer with

film-cooling from a row of thirteen injection holes,

(3) boundary layer film-cooling from a single injection

hole, (4) boundary layer with embedded vortex, and (5)

boundary layer with embedded vortex and film-cooling

from a single injection hole. A step by step procedure

was used in order to verify and check facilities and

measurement techniques.

24

Page 46: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

1. Baseline Heat Transfer Without Vortex and Without

Film-Cooling

Figure 44 shows spanwise - averaged Stanton numbers

plotted with respect to Reynolds number for a free stream

velocity of 10 m/s. Results are given for six streamwise

locations. These data lie approximately 5-6 percent below

the correlations for constant heat flux and unheated

starting length given by Kays and Crawford (1980).

0 -0.2 l-() 0.9] -0.111 114)StxPr 0.04 0' Re x

StxPr 0.04 0.03 Rex -0 2 [ ) 1 (15)

0.9Here, Ul= l-( /x) 09U

Figure 45 shows the heat transfer coefficient

plotted as a function of spanwise location. Results for

10 m/s show good spanwise uniformity with exception of

some variations in the first row.

2. Boundary Laver With Film-Cooling from a Row ofThirteen Injection Holes

To check the heat transfer surface and film-cooling

system, measurements of St/St were made with film-cooling

and no embedded vortex. Figures 46a and 46b show spanwise -

averaged ratios for freestream speeds for 10 m/s and 15 m/s

at different blowing ratios. St/Sto increases with Reynolds

number for each set of data. The lowest St/Sto are observed

25

Page 47: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

for blowing ratios between 0.38 and 0.64. This behavior is

consistant with the results of Joseph (8) and Ortiz (10).

Local St/St0 for a blowing ratio of 1.1 at 10 m/s,

and for a blowing ratio of 0.5 at 15 m/s are shown in Figures

48 and 47, respectively. These data show good spanwise

uniformity with the exception of the first row.

3. Boundary Laver With Film-Cooling from A SinaleInjection Hole

Figures 49-51 show local St/Sto distributions from

the boundary layer with film-cooling injection from a single

hole. These data were collected at a free stream velocity

of 10 m/s with blowing ratios of 0.5, 1.0, and 1.5. No

vortex was present. The value for e was maintained at

approximately 1.5 for these tests.

Results show low St/Stu at locations where injectant

is present in the flow. This is most evident for a blowing

ratio of 0.5. With streamwise development the effects of

heat transfer diminish for all three blowing ratios.

4. Boundary layer With Embedded Vortex

Measurements of St/Sto were made with an embedded

vortex and no film-cooling. For the tests, the injection

system was turned off and the cooling holes were sealed

and taped. The free stream velocity was maintained at

26

Page 48: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

10 m/s. Local distributions of St/Sto showed good agreement

with the measurements of Ortiz (10) and Joseph (8), as

expected.

5. Boundary Layeith Embedded Vortex and Film-

Coolingi Frm a Single Injection Hole

These data are presented according to the blowing

ratio used in the tests. Data for a blowing ratio of 0.5

are given in Figures 52-100. Data for a blowing ratio of

1.0 are given in Figures 101-133. Data for a blowing

ratio of 1.5 are given in Figures 134-166. In each Figure,

spanwise distributions of Stf/St o and St/St o are given.

Three-dimensional plots of results documenting streamwise

development are given in Figures 52-55 for a blowing ratio

m of 0.5, in Figures 101-133 for m=l.0, and in

Figures 134-136 for m=1.5. The other Figures provide

additional information on streamwise development as well

as information on the effects of spanwise vortex position.

All Stf/Sto and St/St o data were measured at a free steam

velocity of 10 m/s and e approximately equal to 1.5.

The effect of the vortex on the film-cooled boundary

layer is evident from the Figures by comparing St/St o

distributions to Stf/St0 distributions. When the boundary

layer is not affected by the film-cooling or the vortex,

the values of St/Sto and Stf/Sto are close to 1.0.

27

Page 49: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

In general terms, the vortex upwash and downwash regions

result in local regions of low St/St0 and high St/Sto

respectively, compared to Stf/Sto distributions.

A. RESULTS FOR THE BLOWING RATIO m=0.5

Tables II and III give experimental conditions

corresponding to Figures 52-100.

TABLE II. m=0.5 DataFigure m Vortex Position x/d

52 .52 b 1.15-2.00 7.4-96.653 .53 e 1.15-2.00 7.4-96.654 .51 h 1.15-2.00 7.4-96.655 .51 k 1.15-2.00 7.4-96.656 .51 a 1.15 7.457 .52 b 1.15 7.458 .51 c 1.15 7.459 .51 d 1.15 7.460 .53 e 1.15 7.461 .51 f 1.15 7.462 .50 g 1.15 7.463 .51 h 1.15 7.464 .49 i 1.15 7.465 .46 j 1.15 7.466 .51 k 1.15 7.467 .51 a 1.25 17.568 .52 b 1.25 17.569 .51 c 1.25 17.570 .51 d 1.25 17.571 .53 e 1.25 17.572 .51 f 1.25 17.573 .50 g 1.25 17.574 .51 h 1.25 17.575 .49 i 1.25 17.576 .46 j 1.25 17.577 .51 k 1.25 17.578 .51 a 1.4 33.679 .52 b 1.4 33.680 .51 c 1.4 33.681 .51 d 1.4 33.6

28

Page 50: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

TABLE III. m=0.5 Data

Figure 2 vortex Position NIZX x/d82 .53 e 1.4 33.683 .51 f 1.4 33.684 .50 g 1.4 33.685 .51 h 1.4 33.686 .49 i 1.4 33.687 .46 j 1.4 33.688 .51 K 1.4 33.689 .52 b 1.6 54.690 .53 e 1.6 54.691 .51 h 1.6 54.692 .51 k 1.6 54.693 .52 b 1.8 75.694 .53 e 1.8 75.695 .51 h 1.8 75.696 .51 k 1.8 75.697 .52 b 2.0 96.698 .53 e 2.0 96.699 .51 h 2.0 96.6

100 .51 k 2.0 96.6

Figures 52-55 show three-dimensional presentations of

experimental data illustrating the effects of streamwise

development for vortex positions b, e, h, and k. A

comparison of these Figures shows how St/St. distributions

change as the spanwise position of the vortex is changed.

For position b the film injectant is initially located to

the right of the vortex downwash and the effects of film-

cooling are seen for x/d up to 54.6. For positions e and

h the coolant is ejected just beneath the downwash and the

St/Sto signature of the film injectant disappears for

x/d>17.5. Thus, for these situations, local St/St o

29

Page 51: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

variations are a result of the vortex rather than

film-cooling injection. For vortex position k the

injectant is initially located beneath the vortex upwash.

Here, the film coolant seems to affect local St/St0

distributions for x/d up to 33.6. Of the four vortex

positions. St/Sto peaks are largest for position k.

Additional information on the influence of spanwise

vortex position may be found in Figures 56-66 for x/d=7.41,

in Figures 67-77 for x/d=17.5, in Figures 78-88 for

x/d=33.6, in Figures 89-92 for x/d=54.6, in Figures 93-96 for

x/d=75.6, and in Figures 97-100 for x/d=96.6.

B. RESULTS FOR BLOWING RATIO m=l.0

Table IV gives experimental conditions corresponding to

Figures 101-133.

30

Page 52: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

TABLE IV. m=1.0 Data

Ficure Vortex Position x(m) x/d

101 0.99 b 1.15-2.00 7.4-96.6102 0.99 e 1.15-2.00 7.4-96.6103 1.0 h 1.15-2.00 7.4-96.6104 .99 b 1.15 7.4105 .99 c 1.15 7.4106 .99 d 1.15 7.4107 .99 e 1.15 7.4108 1.1 f 1.15 7.4109 1.1 g 1.15 7.4110 1.0 h 1.15 7.4ill .99 b 1.25 17.5112 .99 c 1.25 17.5113 .99 d 1.25 17.5114 .99 e 1.25 17.5115 1.1 f 1.25 17.5116 1.1 g 1.25 17.5117 1.0 h 1.25 17.5118 .99 b 1.4 33.6119 .99 c 1.4 33.6120 .99 d 1.4 33.6121 .99 e 1.4 33.6122 1.1 f 1.4 33.6123 1.1 g 1.4 33.6124 1.0 h 1.4 33.6125 .99 b 1.6 54.6126 .99 e 1.6 54.6127 1.0 h 1.6 54.6128 .99 b 1.8 75.6129 .99 e 1.8 75.6130 1.0 h 1.8 75.6131 .99 b 2.0 96.6132 .99 e 2.0 96.6133 1.0 h 2.0 96.6

Figures 101-103 show three-dimensional presentations of

experimental data illustrating the effects of streamwise

development for vortex positions b, e, and h. As for the

m=0.5 data, these results show st/st distribution changes0

as the spanwise position of the vortex is changed.

31

Page 53: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

For position b the effects of the injection are seen for

7.41<x/d<96.6. For positions e and h, the effects of

injection on St/Sto are evident only for x/d=7.41. This

is because the injectant is issued beneath the downwash

of the vortex where the vortex dominates local boundary

layer behavior. Of the three vortex positions, the

highest St/St0 are observed for vortex position h.

Also of particular interest is a double peak of St/Sto

evident for vortex position e at x/d=7.41.

Additional information on the influence of spanwise

vortex position may be found in Figures 104-110 for

x/d=7.41, in Figures 111-117 for x/d=17.5, and in

Figures 118-124 for x/d=33.6, in Figures 125-127 for

x/d=54.6, in Figures 128-130 for x/d=75.6, and in

Figures 131-133 for x/d=96.6.

C. RESULTS FOR BLOWING RATIO m=1.5 data

Table V gives experimental conditions corresponding to

Figures 134-166.

32

Page 54: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

TABLE V. m=l.5 Data

Figure m Vortex Position x

134 1.3 b 1.15-2.00 7.4-96.6135 1.51 e 1.15-2.00 7.4-96.6136 1.5 h 1.15-2.00 7.4-96.6137 1.3 b 1.15 7.4138 1.6 c 1.15 7.4139 1.6 d 1.15 7.4140 1.5 e 1.15 7.4141 1.6 f 1.15 7.4142 1.6 g 1.15 7.4143 1.5 h 1.15 7.4144 1.3 b 1.25 17.5145 1.6 c 1.25 17.5146 1.6 d 1.25 17.5147 1.5 e 1.25 17.5148 1.6 f 1.25 17.5149 1.6 g 1.25 17.5150 1.5 h 1.25 17.5151 1.3 b 1.4 33.6152 1.6 c 1.4 33.6153 1.6 d 1.4 33.6154 1.5 e 1.4 33.6155 1.6 f 1.4 33.6156 1.6 g 1.4 33.6157 1.5 h 1.4 33.6158 1.3 b 1.6 54.6159 1.5 e 1.6 54.6160 1.5 h 1.6 54.6161 1.3 b 1.8 75.6162 1.5 e 1.8 75.6163 1.5 h 1.8 75.6164 1.3 b 2.0 96.6165 1.5 e 2.0 96.6166 1.5 h 2.0 96.6

Figures 134-136 show three-dimensional presentations of

experimental data illustrating the effects of streamwise

development for vortex positions b, e, and h. As for m=0.5

33

Page 55: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

and m=l.0 data for positions e and h, the vortex downwash

rather than the injectant is most responsible for the local

distributions seen. For these two sets of data with vortex,

evidence of injection is apparent only for x/d=7.41 for

vortex position e. For vortex position b data in Figure 134,

the injectant seems to affect local St/Sto variations for x/d

up to 96.6. For this situation, injectant is issued at larger

z than locations of the vortex downwash.

Additional information on the influence of spanwise

vortex position may be found in Figures 137-143 for x/d=741,

in Figures 144-150 for x/d=17.5, and in Figures 151-157 for

x/d=33.6, in Figures 158-160 for x/d=54.6, in Figures 161-163

for x/d=75.6, and in Figures 164-166 for x/d=96.6.

34

Page 56: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

IV. SUMMARY AND CONCLUSIONS

Local Stanton number distributions are significantly

changed by longitudinal vortices in film-cooled turbulent

boundary layers. For all experimental conditions

investigated, the vortices caused significant disturbances

to the film coolant. Film coolant was ejected from a

single hole at blowing ratios of 0.5, 1.0, and 1.5.

Freestream velocity was maintained at 10 m/s. Non-

dimensional coolant temperature e was maintained at about 1.5.

Measurement of mean temperature and mean velocities in

spanwise planes show that injectant is pushed to the upwash

side of the vortex when the injection hole is located beneath

the vortex core or vortex downwash. For these situations

regardless of blowing ratio, local heat transfer

distributions are altered significantly by the vortex.

Evidence of injection is seen only for x/d<7.4, where x is

downstream distance from injection holes and d is injection

hole diameter. For other injection locations with respect to

the vortex core, evidence of injectant appears for x/d up to

96, and the injectant is not swept into the vortex upwash by

secondary flows.

Also measured are secondary heat transfer peaks which

appear for blowing ratios of 1.0 and 1.5 and result from a

shear layer interaction between injectant and vortices.

35

Page 57: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

APPENDIX A

FIGURES

If

Ii

0

9L

t 4

4

336

Page 58: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

P $4

0S 44

aa00

+ 0 U+

0

zz

0 CO

11 0 04

00+ cO.400

0ci 4)VW 4

(4 4)0o

Oll *0 W q-, t- C-0 2-6 0*INMOLMO H!)YHDS)

C) W37

Page 59: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0

0 0

- I4

z >D+-

C c 0

4

0 ~ ~ 00 ) a

- z 0

0 04 u~ -4

0 0

WO W * f0 ga v 0 Z, ' 0*04

+mou o -ouvOIs

038 Z 4

Page 60: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

00444

0

o to

a 0n

-C-CA

CO V 0

ZOOZ

CI) r.4r.

0 0 C+Z0 0044 -Z 0 ~~

000 0 S)c4 _ _4_(1)

ot *'-

~0.,

-.r4 =

00E-

0

01T 6*0 910 Co TO 9*0 r0 W0 Z*0 VO 0*0

~IMIJ93OD a!DUVHDSla

39

Page 61: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Ia..I. . .. ...

AUII12iiI I 0.144

-c >~.

0- (0

r4

cr .0

-I-4I I

>.1

0-P 4)- ~0.0

40)

Page 62: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

L)

0

~4J

\ d

4-)4

. .-. .-. - -

o oT 0

U , " Z" BUB*- Bip*- 29?-.- 11 01.

[dd:

41

Page 63: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

g',

\.. 4J

-iU

H I. -

! °I

0

* --4

r-4

4210

/ ,ON

cm r0

SE~l 2'1 2*1 STl ze1 69

42

Page 64: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

CD1%C- 1\ N

0 0

d:4)

4 31-.

o 0

4. .l I

Li /

I 0,'

/1/ . 14•0

I.I

4]Z

4 l

Page 65: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Figure 7. 7/1 Injection Holes, m=0.5 No Vortex Generator

Figure 8. 7/1 Injection Holes, m=0.5 Vortex Generator #2,Position e

44

Page 66: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Figure 9. 7/1 Injection Holes, m=0.5 Vortex Generator #2Position f

Figure 10. 7/1 Injection Holes, m=0.5 Vortex Generator #2Position g

45

Page 67: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Figure 11. 7/1 Injection Holes, m=0.5 Vortex Generator #2Position h

Figure 12. 7/2 Injection Holes, m=0.5 No Vortex Generator

46

Page 68: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Figure 13. 7/2 Injection Holes, m=0.5 Vortex Generator #4Position h

Figure 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4Position h

47

Page 69: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Figure 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4Position i

Figure 16. 13 Injection Holes, m=l.0 No Vortex Generator

48

Page 70: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Figure 17. 13 Injection Holes, m=l.0 Vortex Generator #2Position e

Figure 18. 13 Injection Holes, m=1.0 Vortex Generator #2Position f

49

Page 71: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Figure 19. 13 Injection Holes, m=1.0 Vortex Generator #2Position g

Figure 20. 13 Injection Holes, m=1.0 Vortex Gererator #2Position h

50

Page 72: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Figure 21. 13 Injection Holes, m=l.0 Vortex Generator #1Position e

Figure 22. 13 Injection Holes, m=1.0 Vortex Generator #3Position e

51

Page 73: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Figure 23. 13 Injection Holes, m=1.4 Vortex Generator #4Position e

Figure 24. 13 Injection Holes, m=1.4 Vortex Generator #2Position e

52

Page 74: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Figure 25. 13 Injection Holes, m=1.4 Vortex Generator #2

Position g

53

Page 75: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

- - - % --% ' -~ -

S * - ' ' * 5 "5% - -- -

t'Id (5 5.. . . . . . . *" ." a.

- - - - - - - - - -

- -- -- - - - 0 "'. .. I

555555555 0

m

4

. n t "4 .

..- -- 0 .-. 40 t

> 0 ... a... . . .1 l 0. . . . . . . . . ri 1 d0

Ln .... . . . . . ...

0U S

0 . ..._. L4

*,41

> I lii e Id 4

- - S . ' .* . . I I I

*5 % S0

(54) A

54

Page 76: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

LAI

x

>.,i

in uuinm tlA0

I0

n 4

-4r-~~~ Louw~~

N 0 0

41.

xDLn i 4)4)

I w 5 .0

co WW

55aAAA flC

Page 77: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

4)0

004>.A

0

In L*Jn

co r r-4 4co ~N

N 1'

ED 4' 14

Do U CD 0 1.4

* a Ii-4$.U

U I

w CD NDr

(WOJ)

55b

Page 78: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

- - - -- - - - - - -

- .. - - .. -, - -

- - - - - --

0%

Lw .- ----- - - - - S..

h -. - .- .-.-.-.- - - - -.----

I-) - .. - - - - - - - -m 9 ) -.. - - - - - - -

Cr- -- - --

R.iX 4-)

I I I --

N - -- -- - . - ~ '' .- - -~ - - -.. - 0)~, m .0

ni- - - - - - -~ - - - - ........ u

m$ 0

IAr

56 0

> 0

o 0 /1I - Jil 0

0 . . . . . ' . . . g

. .V .. .. .

z 0

0 S e

II % Z

56

Page 79: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

CD 0

Ln a

m n P-40

Cr,4 e-4

N /P fiU00

41-

cu m 'r*

\ wWDN S

(LUZ)

57d~

Page 80: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

x0

.9-I

U0-4

CDu ~in m

L 0___ _v__ _v___ __ __ ___ __ __ _ 1n r:4

0 D n

(Wa) A

58r

Page 81: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

LWJ

- -4 - -~ -

Lfl Ln

Lfl II . . . . . . .- " % \ \iI

. . .- . . ... - . ,......,_,_., \,

0 0

........~ ~ ~~ 0 "'.="4'Z irJ I . . . . . . . 4" .Uo 0 . . . . . . . . . . . .- "

0 0- - - --

__1 41

ULJ lid" ***'4~/ I~

> . ... .. . .. . . ...

o 0

.,-4

03 4WLAn - -

Z 0 --z4

z---------------------- . .~ . , . .

c) . .59LL U W

* 1

I .44

(WO)

59

Page 82: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0

en >

/ 4)

In L.cy 1A 40

xi in Lo\, D 4) .

Cu \ 4 u

z 4 0

NI U. 0~

11 w .n , tn c

it" U)II 4

rI mt v

114

CD w u

(Wam)

60

Page 83: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0

0 4Ln 11n 11Ln C Ln -4

ILn( N co**u 1 /~r .IcxJ

1. -o4A M0 Ln in 4) $4

$e4Cf0

0 t i

1I 1+4

v Iu

61 I

Page 84: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

04 0

.- . - . . .

LL- .~ - ,. - - . . . .

- - -- - - - - - % p 04

0t0 - -. -. - 0Ll. - -* - -. - -3

> V --. - - - - --n 0

r-4 (1

X adZ

0 0 - - -- -- - >4wn

o$ 0'-44

a- ,0--- -- ------------- - -

CZ \ n----

Z U)

I Q

U)~ >

62

Page 85: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0%

x 9

( U

/ rA- 0)a: \ 4

-~~ \4 \4 Iww

1-44 U00 4

9x >

in N in w

4 j

III I

63

Page 86: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

ai

9-4

I I 0

Q 0

04)/ .9.>

w0

\m tn v vu v) n w

JLi 0

WN 0 LD , O a

DW 0

a a.FA.a*

0D kn e i~n G 4) w

- - -- - E-45.

*~r e I m~n v 0

*~ r* i* * * ; JI AA O)

64 * I

Page 87: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0-9441i o0

a)0

i-n cu.fcu $4.v ,4-=

Vm in (o

Zr) - - --w0,% A % % A

S-.- - , - -

a: V

o q- -'40

I >

(n C a) n

cu- w 141

4..1

z to on cuu,~ in i

D~~ M_ I '4%

. 't lu 0,

U P.I, N/E-/ X

u m w

65

Page 88: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0

In0

0

1.4

4. K g

inty _: cu

I'd 4)4

w x1

0 A 0%A $

r0 ix in taN& a A

C ~~W~ (Ac A4

4- cn r66

Page 89: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0

41.-,4

0

to 0

mm4

rU - 4J

- -: U $4 "q

in) in P

c i N: ~4N-4~$ aWN~

C3 'u FLON

U14J0 4.1

(1 mu 04z3 1 E

(n 4)4JO

a: J VV '

mm 41 0. I

cs-I

(910 inA 41

670cui ,

Page 90: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0.1441J-- 4

(0

0

0S..

04

inu fu R

m lm

N- -5A - -

- ~a:MW~ xO

-0M. -- > -

li ~ 4) U

W 4-

-4 mO

co al in inJ (2

68

Page 91: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0

0-f-I41

to)0

N-1 to1

40

N w-.-- h- \\ x

IV~ w ~ 41

~ -~0

4.- 0II-4J 114 '

a: ~ --. 41

in n in W .4CD minlN -4 4 4

4)

Uw cu wv -

(WO)

69

Page 92: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0

'0

InA

4) 01w A 4.)M

CT))

'N V)0 N C- 0) 0- V 4

0 . .n m

J.4(.4j

$40

04wCUi 0)Ll

4) .).

E4 to 0

A inIZIII in *N' $S4 -'V iyi N r4 )

muv v,-* ~ ~ aN~ to4)4

A .70

Page 93: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Lflcu qrI0

0

cu.0

m

U- QIA IUS ,

Page 94: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

1

Lii H ' R

Lij C :3--I

P1 P

_4 0

I4~w .-4 *04 0

Lo04U. U4

LL.I

0

Li...UE *Pxi 4J

.1v w n vR cI- Dza2v 4M

72N

Page 95: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

in 0 4* N.

*~~~~> 0__ _ __ _ _

>q.r oi

cc 41 4)4

43 40 4

I- fI~** * .4J

41

00(

.0 0z 0 t

-u~

LI-~~ .- 4 4

r4

73

Page 96: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

>1S 4.)

- 4 0

In 004N, 34

owl

004

0

4 C4E-0 0

'-41 -

.0

74

Page 97: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

inUvU

Uw

N (a

co faiVi

2U)- in

a: 0 ta00

LiL 0 U I&Q i LU

Z N .4)

Z 1

I-

U) ~.*

x- - N WI

133311 -

75V

Page 98: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

$I4l

0* 4 )

*w 01~0 >

Z 4:(kr-4 14

za Z w

in inaIN

I-L II4

761.

Page 99: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

%Al

U) in

ai -

46 0%

- J $

16 424I-X ON-

*L

Z F.*x

m 0-40z W 0

W r.

0 m *ri .

ci -W

0 4

770a

Page 100: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0K 0

0 LL0

00a

Fu 0"4

Li r

U P-40

*0N

- xz 41 41

00z

CE 0 41 to

F--

I u

t~ i n

78

Page 101: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 i 0 *x 0 _14

-lD Im S

0

C33 z)~

'4)

z 4J00

LI 00

G:0 N' v

Li Ur-

gnU* * * * * '

-~~L -- -I

79

Page 102: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

,' " " 2.00 M

(96.6)__1.80 M (75.6)

St ..o 1.60 (54.6)

St /St

1.4 ::, .... "- 1.40',M (3.6)

1.2 1.25 M (17.5)I (M) x/d

1.0 ~N

.8 Run No. 41988.184010 m/s. VORTEX AT

V, j POSITION b, m a .52.6 ..... St f/St

-20 -,0 0 2O0 ... St/St

Z (CM)

Figure 52. Local Stanton Number Ratios in BoundaryLayers with Film Cooling, with and withoutan Embedded Vortex

80

Page 103: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

2.00 M(96.6)

~1.80 M (75.6)

st/St .6M (54.6)St /St

1.4

1.2 .. 25 M (17.5)x(M) M/

1.0

'- 1.1 M 1(.4) 336

Run No. 41988.15201 Ota/% VORTEX ATPOSITION *. m z.53

. ..- . S /St0

*--S t / St-20 -10 0 10 20

Z (CM)

Figure 53. Local Stanton Number Ratios in BoundaryLayers with Film-Cooling, with and withoutan Embedded Vortex

81

Page 104: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

st/st .0 ( 49Stf /S

1.4

1.2 - 1 25

1.0 4 '~

1.15 M (7.41)

.8 .~Run No. 41988.163010 rn/s VORTEX ATPOSITION h, mn a 0.51

.6 Stf /St___________________________________ *-*.-.-.St / St0

-20 -10 0 10 200Z (CM)

Figure 54. Local Stanton Number Ratios in BoundaryLayers with Film-Cooling, with and withoutan Embedded Vortex

82

Page 105: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

-. 200 M

/ ~ . 1.80 M (75.6)

St /St0

1.42 /

1.0

.8 -Run No. 41988.173510 rn/S VORTEX AT

POSITIONkI. m aO. 51

.6 *'*-.S fSt 0

-20 210 0* * * s 20t

Z (C M)

Figure 55. Local Stanton Number Ratios in Boundary.Layers with Film-Cooling, with and withoutan Embedded Vortex

83

Page 106: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 0

In 0

In z

0 0

Liin

W; 00

0 0 w

z 1.01zE Li0 00

F- -$a4

z 10 4.

CE, Sn 0 - 0 wF- - x ~ >

84- h. '

Page 107: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

o Lai

in -0* Li

U 00

a, uI- W; W

0

m 04

z 0. P Pkyx 0 4

0L i 90--4

W 0

z3 >111 0 to

I-- -- 39 4)

* *n >nu

x 0+ z" I.-in mu*

~ e'~ pa - U S N * WIQ)

85

Page 108: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

-1. ,.

r-T - --I- ' T- Fan"

in)

CD, 0 0

1% *1

Sto

CE l

9 00

00

z o0

: S,". ESN .

00

>~U -4.

q~~~~~L qq X ~ 0 N I

*~: * n --~~

~ --4I 04

86W

Page 109: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

V L4

IO U)0 Li

1-4 t 1- 0

Ti Uml 0

Z) LI -iZ9. 00

o0 00 I-0 xOV

0 LIf)~~ 0~'".

Ln J0

x 0.0

04S/4S

87

Page 110: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

((4P.

n I I l I I I I U

00

CEW0

ti

m 0

N Wu

z U,

I

F- c 14

, ,, _-0' 1. .0+,,4U

m > >

IIA

x U >a IK %D

U UN

54

( 88

Page 111: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

InULr) in

Iin

0* U,

z ~04

I-lwz 4 4

. $4 U

G:* in C9 u

zl m0 +

00S,-, S a4

gn 4

z 89

Page 112: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Uft

a nj0*

0 0

I-totoz a4 t

I- I H

Li4 0

>m

x- x

z a C.4.)

GL o

H1S4 -I

90I

Page 113: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

I~dtoUjU

z 0 Cx c c

Ld 0U

1-4 w U 0

z . ID-0

3 > 4.'* 0 -P4

z0 0zz r40

. C)

0C4 / 4 (3I- - II >

* 3.-91

Page 114: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

In.-

W; Ll

* U 2

w 0

1a

Lii Li 0

0U 0 -

z 1.0z I-I IX0

0 3: L'.I- OW )I-o - u 0 '.

1- Li 400+

CD in Q)

II a I w ~

C 92

Page 115: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

00

1- CD

w u

w~ r.

0

X:44

z o 0 -M

z -- 1 -0

> I-0 U $

(r w93 1

Page 116: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

CV'V

0* g0 Li

_j 0

iw U

z rUz d

z "4e4

0 0 to -r

z0 - > I~

H- -t aIf) -1 Li 1

0+ U 0>

* '-9 4s 0

94-

Page 117: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

ai 40

U)'

S 0

u

- U U0

Cu' 4J

1~1 *144

Kz 0Sxcc

z 1.- "4 004> - \

0 0

z x

U )a 0

#4 u

n (D- - --

a P

( 95

Page 118: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Sl

Ul

I I I I _j

LA))

a: 1 "

0

z~ 0A

m 0 00* 00i?

z 0

x 2Si 00

ow wI- 2:>5-

5 +

z 1 5-0

CE Ifl > . EI-a NU in - O

U) -* I-I- 1*. "

'-4-. ~>

965 S u

Page 119: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

inUinI U I I USU

00 0~

UmW W 401- -

41

-. 0~ 0i

0 -P0

:3>

x S ly?L6 0

0 4

z +L

0 - 0 *qhL>

97U

Page 120: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

cnU

WU

0* Li

I.0- 0

a: 0

inz

zr c

wxIhI4 0

ow: tn1 0*F-U 2140

0

in

H *...fr- q4X

U) - -**- U98

Page 121: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

U)UC)U

I I I I I

0*0F-I U 0C

LI c

m 00

U 0010

00H >1- 2..4 xz 3314)

In cU4oj f"$3: 0-

U)~0 CA >4- * U0

04 S.' I So

99

Page 122: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

inn

Li f

U;

r- Z

0 0

00 44

IIcn0 - >i

0+L

V~~~ I" >

A1.4

100

Page 123: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

CC,wS

I- U,

0 0 0

5-50 0! 0z -- 0"-r"

0x 0 tL M"

0 UQ

F-m

II) 4.)w V9

U t >x S

oz r4

4O

Z I.-0 .s

a: ~>>

101

Page 124: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

CD U"F- x

0~ £5 0

41

014-. C

(X I

" 4 1

F- %z I- 0

0Zr

1x 00+ u-.

U) *

U

Iria j i

O l S .,' S> CI

10

Page 125: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

-inSl

U,

40

Q~c0 0)

U 4J

0 - LiF4 FF-> *- a - ' 0

z>CE n CA

H- - z t 04)

U) - -1

0+ u

I OU

0 IS/ 0St3-

103

Page 126: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

IinIi

Ln n:

In - S

W;

Uj z c* 0

x *Lii 00

r >1 x

In U

o- -

z

a a a N 0 in

0'>~Z

104

Page 127: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

in 4!In

L)

0w

F--

a: 0$ 4

In-

N Un

4.'

zI-- -M

0 Li to

>Uj -,-4UtO(U o

0 *a

.F-r

w >

>~Z

105

Page 128: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 w0

F--

CLI W

LL - 00s .41a ZV c

LLw t 04 04

ZI to -r

>w NC[i 0 '~ 0 00v

Zj - 4 J4LL )t 09

OLJ . AjU

ofo

H106

Page 129: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0UaU

FI co 0 .,(I I

--

w u 0

I-l a OA

w~00

z -r4 -- 4

z 00

cc 0* 00z- ,-

o to >

>w r4

1- >1107

Page 130: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

-1

0co~ ~

- W1m~Z

cli z r

fyL I i fr 0an1

rr x0 Li

Us m0 rN>s 0

cl 0W

Tz u

x 041 z_______ ___ S

108

Page 131: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

-, (n

0 0 '0

0 -P4

i~Li Inz 4

0 ka

ZF c

W 0

II0 0

(fi "q

>- #.- $ 0-* U m 0

X 0>

x X *Z *P .

1090

Page 132: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

}U

I I I I I I I U

cu.

a 0

I-- U"tel I U 0,t

0 cw U 0

0.1

tt

110Z

Z * s 0 0x c

z U )

I- 0 >4 4

I-M > *a: 0I IA

(J) -x go. w 4U jmI~: >.* U .

C) q.S I P4S

-4

110

Page 133: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

U)

I IS

in W ~ W

I~~Z (A

ili

0 *V4

z '0 $

0)0

J4

M

X: 44a 044

z.

00

O f/ x .0 .0

4 ) Im*111:

I

U)

u

4 0

•~~ " i

Page 134: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

WL.

01 _j

w 0m c

0 0

z t. A r00 - 0-64

LI64 - 4J

I ux0+ ~ z

I I I I'

( 112

Page 135: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

LInEn w

0 C (nU

co a tI 4

0 IA

W U U

In rI

z~ 0.0

ww U

0O w

Uz N

U)x x

0+ u

1-4 0 0~

I I * (53 -4>

Page 136: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0

K: Z:

V zLi C 0

00

N U n

x 0+ 0*y x

-~ -- $4 0 I

cr L) t

(. 114

Page 137: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

-1 Zn

acaLI V

fl~ Lb 'inmIs Lw, o

* 0.0O0

0i Xz 10rF- LL ,4

-e~r 411~W. :K X n 0 14

X; X+ Z

x 0+ z

__________________1 ('1 N - 0 0 Sin

(. 115

Page 138: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

bf) 6U

cnU

ow C; ),co~~ a j .4

in u 0

N U

*0X

U. r.zx Ux>I w 0o Io

I-~~~ >- *Ig10 3 U>

o- (D *

x 0+uUc

116

Page 139: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Eta

U_U0 0X 4

0 14

~4J

N '4

Lii~ 010* h. "4 4

U. 0 C6

za 0000 9; r 0 s

I- 011 0 M-

3c UM cn to $

I ILol'/4

X 0+ >

117

Page 140: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

U)U

I- I IDcn 4

10

I-ow

xSI-- 00

0i Li"I

> 02

U .

10+.

Z N/14

a11

Page 141: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

cc j ,,

in jo0

a: z

C)

0J z

I-w 00 ! 1

C r' 1.V

04'

Iw x00 Li

0 - 4! U >z >- N

o to.CD -P4F-(I) 00,- $4

x0+ u

I I I I I *

119

Page 142: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

(MUn

0 ul (

co _j 0IMa

0* U,0 LI0

a oww * 1

U az >

U)U

0~ 41-~~ >1 J4

0+ u

120U

Page 143: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 _j m

0* 0

cl 0

ty

a1 0

4V)

z 04

Z * 00a!x U S

z > o

:3>0+ -

0I4/I

'4

1211

Page 144: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

in

00N,)

Li I

00Q 4j

z

Wj 00-mm * 04

z 00>

Cw 00t

I- >1>

0 -

A ..

Co r9

(f) -122

Page 145: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 0

Lv)I

1-4w Z* ~0

z 0 Xz

w~ U.

El 0,

w( 3 40

* >:

0OW 4.141

1- >1->

2: * 123

Page 146: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Lr)0 En

F-

0 $

0 W .i

- %U z

wU 0

S.. 09

U0 0

z -P4-P

0 0*k 0

co xx ow t

xX 0+u

z

>~Z

( 124

Page 147: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

a!

1 -- ; -% C,

0

U 4.j

0.Q

LAS 00z I -4 40 x 414V0o0w ..J "4~

U $4

0 -0 0 0

I- - I- C&. *. )

I~t II * 40X >

- ux 0+

an

0O*S/l.S>-

125

Page 148: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Ul kn

0U

w U,

fri U 0

z 0

Z- 0 4)

0 t

z>x a -

S"0in 3: ga

0+UR 'U'

H00! U

Z.*0*4/04

o126EI

Page 149: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

CCmU

gn

0* S

Z0

N .

o0~~ 0 0r

z 1*0hI: 000

x X

ow>Hx

0 n

X 0+ U1->zJ

127

Page 150: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

in goCV)

Cf*0 Wa

CD 0 _j

inU u

U zr

0

N~c U;,z Uz X

z 1

owW 0

z 0 uoCE 0

x x 0 0Ir -4.- x

X 0 0

zV 0

E~ 0 S S U N U

( 128

Page 151: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

f 2.00M

/ (9&6)

S t 1St0Sf/s 01.0M(36- - -_

1.4 _ /

1.0 L.15 M (7.41)

.8 Run No. 41788.150010 mn/s, VORTEX ATPOSITION b, mna 0.99

.6 4*-. -. -.-. St 1 St

-20 -1 0 0 1 0 20 St0

Z (C M)

Figure 101. Local Stanton Number Ratios in BoundaryLayers with Film Cooling, with and withoutan Embedded Vortex

129

Page 152: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

/- . . 200 M... ~. 166)

1.80 M (75.6)

1.60M(54 6)/StI,.St /StOI./ ,,.1..M. .)

1.2

.8 ,Run No. 41788.13301O rn/s VORTEX AT

POSITION e. me 0.99.6 . . S tf /St

' ' ' ' ' ' * ' • .. ."-St / Sto-20 -10 0 K0 20 t

z (CM)

Figure 102. Local Stanton Number Ratios in BoundaryLayers with Film Cooling, with and withoutan Embedded Vortex

130

Page 153: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

~ 2.00 M,____ ____ ___ ____ ____ ___ (96.6)

St /StoSt /St

f 01.0M(31.4 k /

t.2/2.5M (17.5)

1.01.5M (. )

.8 Run No. 41788.141510 m/s, VORTEX AT

POSITION h, m z 1.0

.6 Stf / t0+-#-+-+-+ St/St

-20 -10 0 10 20 0

Z (CM)

Figure 103. Local Stanton Number Ratios in BoundaryLayers with Film Cooling, with and withoutan Embedded Vortex

131

Page 154: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

I I I II I Im

In

LL

Li w.

I.-z I LIx

0

a)z

z Li 001

z Z 440 0 0~

H- m 40f .4 \ -r la

z 0 0

(f)~~ 0- ( r

( 132$

Page 155: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

V, I

E n

CD 0 0

cE~ 0

LI u

0n zmL U"

0

D NZ 0 0

zL I m -q'

0 J

70 > G)

mL M X

XX >+u-L

0+ z

c*$

133

Page 156: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 LiJ00

H-- CD0

0

L)

UL U.-" cm 04 0UY

xLiJ 00

z- -r .ri

0IIVz0>

CE -n0040

F- - F- LL. --0-4 31 w4

X0+ Z

5 00 I S qI m

134

Page 157: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

OD ~0

0

- -4

i-- -% z

Li 0

00

> $4 0

Z 0 0>

0E 0 (X m

Hn \) C W

W) 3: fI u:

a! P. 0 In0-~ II EX UH I-t- L

00

135

Page 158: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

cu

in0

00

c 00

-- 4.)V;

- z0

0

z 04

Dxz -r4

F-~~~ 0 0rU

z 0 >UlL) 0 -. 0 0)

U) En** in X~J

x0+ Z

0 0 /4

136

Page 159: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

w

G: -

I41

CEC41.

U~ U.

m 0 oAl 00t

M x -4 X

I~ I-g

0+ z

(V) cu

5 0

-- - - -- ,4

137

Page 160: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

m 0 0

F-- to0

00

w -mWzz

0L

F--z 04 02:

wi 0 0zJ -P "I9-

_j t> - Iu $4

X 0 >

w 40

I u

~~~~~~ + flz.S O O Il

-~L -4 - -

138

Page 161: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

cu

En

0

0~0

zz0 r.

0.

H-n

- tvX~ 0+

Iw W; -I- -I I 4

- > -- to -4 0

139o U o 1

Page 162: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

I ~ I I

.o .)

ILI

crcu

inUz0 z U)

0 J 0

U" ~> ,

CD aO0- 0 ,4

__ E II , n""4

II Ild 0

to U

x 0+ z

_ _) _J ._ ,~: En M. 5 N.-, ,

140

Page 163: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

tn

0n - 1

-4 $

Li u

m 4

zU " c

Li 0i

z4 U

('U 0 -0 0~H I- (X HLf 411- 41

u 0

x 0 > -

CE ('2 ( 0 N 0 0 I

to41 4

Page 164: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

) an E

0 w

CE~ 0w u~

IW

a cr

(. Z

00mwjo-H 57

~4

x 0+ 0 0

w 00

- Ii -P- - -4

(> 1420

Page 165: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

O nIn

-- )

I-- N \

CD~ 0

( '= .- ,,.,G: ' z0

- " O00

0 OW . .N n0 -H-4

-U to 0.-

II II i UJn,

X X0xInC)

0 + z U;

I1 I I - - - t -

a) CD N (a in•- -. - - _- I :

143

Page 166: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

w-1

(f: - z

wc UL

z0cr~ 0

m 0 c rw 0

z F- 4 004

04-7 -0 >cE: 0 - 0 0

N 3: I (zw

I-IEn . 4X

x 0+ z'-4

> F34

144

Page 167: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

U,;

U)O -

0* wj 0

0

w L

Li 0

44)

z0.x -. C00

oF OLI - -'

0n 0 - 0 W4

9i

I, F- 0 >

F--

cn tn

1454

Page 168: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

(J-) tn ILi

-- LA

0~ M~~

cr 0

H- - '4

LUULLJ 0

M 41

Z 0.Qx CDcLi -; 0 0

0 0w A 0t4

H- > 1- touS

Z 0- 0.!G:0 - 0 W4

H - II X

NE r.L ~ 4 J

-t >

x0+ z

1464

Page 169: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

in1kn

0 -1

CE: 0U,4

G/: )

I-4w 0 c

U; 4

crn

1 0~ zw U1 - "- r

> 40

z 0

o t

H: 0 0x 00+ z

vI CV) cmito cu

1471

Page 170: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

w uW

a: Zz

NN

w ~00

0 Li ,

E1(0 0202 >

.LL Up'

m~ I 4.

Z+ Z: ;

La n

S00

0 148

Page 171: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

tUw

CD 19 0 I 0I

wUL;

CT) a: n

0x 0LA4J

m 0 4

xz~ -H 00z 0. w -H

>- S u9 $4 0

or - 0 04

(5))*f En

x 0+z

1494

Page 172: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

LIn

0 00

CD- - 0

cy $

to I.

m 0

w 0

D NUx 0 f

ow In 0 0

zj co..00 - 0 0

F- F-- 0 >4

:3 >

xx 0+o

- -9 - -)

0+50

Page 173: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

in

CD 0 0 0

F-- z0

IL u .

zz

LAJ u "in 00

z 0- Icx

>. ow -,-4 t

z~ 1.40:3 > X N

CE:0 0 q

I- (2>

1-44-4cn cn

w d 1I 040

q ~~~~~~ >~N-m m N U - 0* * N

> a

151

Page 174: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

In G!

ini

qr

0 0

-j-trco 2

zz

1-- 00.z I- I

0 Lk ~0

z 1 P r

U)> -- 0 f

z >D >

1-4 (n C 4j

> 4

152

Page 175: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

(f) - II-lw0 0

H - D X . .4

0IE10-4 ).g

w~ - 0

LLI 0

z 0.0

x cIA - r4"

0 000

F- 0 4 0.

06 - -- x

CE 0 0 *q4

H-~~~c >nI oL

UU

olnu - 0)

> Z

( 153

Page 176: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

I I I I I I I I ' i

C4

EE0 w

0 0

* I -,0 ,-

0 ou A

cc o Z

SU! U " a

C~ %-I 0

I U. .

154m 0 0rr x 41-V

Z 44 0-

Ir 1011z0 >

DD >I C4

H -F- L. x

LO to Enc4II LaJ '4

X 0+ Z

-0 - r -

154

Page 177: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

In G!

Lnn0 w

-4 0 .,

- too

0

OI I " I $4

- La u

IL a: " Z t,- e--- ,,,,

0

N En

z- 00

00 0z -1 41

ci- > k o

II"

H L) 0

x 0 z>

> 55

~~~~~~ 0' .m N0 n

I uI

0+55r

Page 178: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

in

Ln

0 LiJU

I-D. 99 0G: z 04

a: ZQi z

LIJ 0

41

0 0

z -P-4

zi 0 >

F- * I-I- X(f) 3t Q)1

in 3:) >

I u0 0+ z

UNI I I I I

-~~ - r- -I

> 44~

156

Page 179: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

N

1Y Liw

CE 90

0

:DN\ zT 44

z 0- 4)0o ~x CD1c

0 0k Li o> m 0

co LL. X4

- QU

0 0+ z C

qr mY M - S n c N ED inS

> 1-4

( 157

Page 180: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

In

in

0 0

CE 0ry 01-4

F- UUu

in Lia zml 0

Dz0C

xcc

-00

00 -w)s

> -.- (9 4

0L4)

xi 0+mX :1 -4X

n I w >

I - N WI -* * .tz

- - --r-4

Hn

158

Page 181: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 00

F--

Li

a)'U "0r

~44

z S 0.QxCr

z I-- Hr .0 4

00 - 0 4

> x

x0+ z'-6)

ru En

fU~~ ~ > N I

0+ z

159

Page 182: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 L~0

CD 0 0

w-c 0

r..U r

0m)400 4

D C

0 000

z to 00

0 0>

CE 0 0N* 0 0 40

H) x c n >

I LIx ~+

(U -. 0 0 w iSa

160

Page 183: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

U

0

N-- - 01

cl 0

Lilcc- "- Li

W - U.-I

Z 44xcc

0 I0- 0z -r4-0

CE 0 0o 4

>f U $44 0ti o

> T-

o 00 4CE M t

I -i

- 0+ -

161n

Page 184: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

2.00 M

St /St0Sti/St0 140 M (33.6)- -

1.4 a M) x/

1.21.5M(7 )

.8 Run No. 41788.191510 m/s, VORTEX ATPOSITION b, mn a. 3

.6 4* - St f St

-20 .10 0 10 20 St/SZ (CM)

Figure 134. Local Stanton Number Ratios in BoundaryLayers with Film Cooling, with and withoutan Embedded Vortex

162

Page 185: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

2.00 M.. " (966)

1.80 M (75.6)

*/+'"+" . 1.60 M (54.6)

St /St 0S t / S t 0 iP ,,,. 1.4 1 M (3 .6) -- ._

1.4 -- () - /

1.2 -4- 1.25 M (17.5)

1.0 " 1.15 M (7.41)

.8 Run No. 417488.174510 m/s,VORTEX ATPOSITION a, m a 1.51

.6 t I. . S t/S1f 0

-20 -0 0 10 20 - S - / Sto

Z (CM)

Figure 135. Local Stanton Number Ratios in BoundaryLayers with Film Cooling, with and withoutan Embedded Vortex

163

Page 186: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

+2.00 M(96.6)

r ~ 1.80 M (75 6)

I ~ 1.60 M (54.6)

st /St 0 . 4-

Stf /St 1.40 M (33.6)

1.2 4-'1.25 M (17.5)

1.0-- 1. 15 m (7.41)

.8 Run No. 41788.183010 m/s, VORTEX ATPOSITION h,man 1. 5

.6 -t- f St

-20 -10 0 -20 St/St0Z (CM)

Figure 136. Local Stanton Number Ratios in Boundary.Layers with Film Cooling, with and withoutan Embedded Vortex

164

Page 187: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

In

(U) U

0a)0 Jw

F--i- mZ

0

z%-* 0

M z

0 - 4 0 A

zW 0-. 0~

H - i -H -M

xr U

0 0 w('I~ UU $4 0 0

I- -- -L -

W040

in(165

Page 188: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

In Inl

- _j

CE 00

F- a)LU u .0

Lcr in"

5 0(T) 4-)

\ M

z -r4I -0 0k w a-P

>L~ -p.4 t

z 0, >oi -n 0 0

F- L- 4I X~

*n Lfln 4

In

x 0+ Z

1 ~ ~~~~ t'S/ ('h - - £

( 166

Page 189: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

CDu

LN - (nl

cl0 0fy

*-

F--.

m 037,

Dz X: 44

00 0CLC9

ci r _-~~ 0

-44

CE Ln >

I uo0+ z

InLn

( 167

Page 190: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

r

in~

LJ

-

cl 1 054

*u

00

zt *1

ti 0 0 w41

I0 w

-~~ $4 N D V0z > > C4 ** *

-i - n 0 - 0) m

T :1 1 -y-t-z4X

168n

Page 191: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

cn a) )

0 a - L

0

In " z

zz

00

7 - 4

MIi 0 0o -4 -rq0 0 w J to-4

> \I - U)

Z)) >

LA in XN~~~ X m ' i

IS) Ln -4

( 169

Page 192: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

LOTE

0 .L

Li

CZ 0 0

0

IJ 0

y a: z

zzH-J rHLL

0+ 0

517

Page 193: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

tn

0 oR

0 4

Ud 0

LAJ U

-L U- rm 0L )

N * EU

xz4 04 E 0r x 4

U, 0 >

k n 0A 0-L >

0+ z

*D

0: S I- V)I

-~ -- -

> z

171

Page 194: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

tnU

U7

U, Ur

- U7

0 a

-- U;

a: z

zto 0

Aj

z 190

9- 0 0

0 - 4 -r4

F- > 9- 1

CZ 1u 90 cr 041

ci: MI 0,LO

wH- iic~ >

:x 0+ LA * InV

172

Page 195: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

o w

0 0i

00a

$4

U "r

CID

iEn

z to z

Li 00Z I- .4

U $4 0

a:0 0 >~

mf Xq L, -,

wII -

X 0 + Z

1 9 0 -4

a) co la (

( 173

Page 196: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

U) tnw

0 0 0

F- t0

Goi UJ :

Ecr LII * z

LU -;

2X:

w V; 00

0 t - 4

F- 0~F-

ClU m ot- c

x 0+ z

174l

Page 197: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

r T Fr

ELI a

Sf1

(f) I'

w ~00-7 u

o 0 L) \ 0- to> ~ ~ I *-u $

0. >

m0U>

> 44

1750

Page 198: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

-- 41

a) W

041S

to 41

0%

mx

\ -A t

0

>- to T- NI

CLA -r4 9-9

-- )14)

x 0+ z

a) m t in; I-)

( 176

Page 199: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 00

0

00

z 0 0

Z 00

0i 000\-> * U 4J0

z 00cfl 0 -

H) r'j U LC!) x C91- M $4

X 0 + Z

O;S/;O

( 177

Page 200: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

CY) in

to 0

0

z U

LEr U " r1-0 0

z 04x 0 c

z "4

X 0 >~4

X 0)-- -- - -)

Ln 0 En

(. 178

Page 201: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 0

go 00

LI z

0

xN E

0 03H- > 1- U

cE - 0 0 3w

m j m

0-4 t

0lS/4S> 44

179

Page 202: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

(7uLnU

T E

roo

a: in " Z

inn

w 0z 0 >>m

xxo

O~a j

I- 92 \coV!U-i

z'S 4 s> 2

CE 180

Page 203: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

00

49 0

CE 0

U)

0

w0I- W S~%LI 41

z 0 pm r.r0 0 0

z -P4-rcr x4j 4

z 1-0 .

Cf* E $

In >

Lfln

* '-4

( 181

Page 204: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

in

00

()0

w0

m Z-'

(444

0 0

014 -1-4 t414

10>2:N

X X 0 M 14

* II * L 40In

x 0 + z

I I

( 182

Page 205: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 w

00

OD~ - (n040

C00

0

S04

u0 0

z 0 0

0 0 4 qa

(01Lii a 0

in >10+ 0 Up,zt

I-inn: :3> W

H-8

Page 206: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

C--;

I II

cn m En

0 w_j

0N 1

0

w U~w 2

z S

0 0CQC

z0H ic

- 00

0 >

I

w (' ('1 - U U £0 u~S-4 0)

- - -i41

(.1 184

Page 207: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

4 U1

0* u

I'- W 4

0

Nn c-)w

00

zS -4

Ir

U m~z 0 x

> 0 04CE 0 I a

x 040x >n

w~~~~ + 'U - U 0 U )

0 I

(. 185

Page 208: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 w

J

wU

I-J 7, "I 9

0cY,)

z X:-.0

H- ow 4mU x00 w -

0 -- 0 \

F- F-- 0 I

cc 0+ 0ZcLO7 r4

(~~~JL 3. 0 ~ ti

I uI

186z C

Page 209: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

IIn

, I I -I 1

0_ I

0

..-. U) °

N V--

Hw

a: n

L4J29

-- r -00

> >

18 0 >f) I..4) "j

w

-IIn

r s

187

Page 210: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 W5~~~ 0

F-A CD 0 -,-

o r

00to

2: g 9I r.-r -r

z F-4140~~ 00 V4t

z0F- IA I 4

(f)~~ - 41-*n Lf)1J In

35 in jU>u

0+ Z

n

> r4

( 188

Page 211: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

- (f

LJ V

(g- r.

zS - V4

> k 00

CE 0 0 0ioo M I-4F- \A 1 40

I-o X :r 9W >~

x 0

0 c4 *-x> r-

1894

Page 212: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

LI aOc - 0

0 '

N I 4)

-d z

F- S i

LUJ 0

N 44

to 1: 0 )

-0 0

I-I v41(Y x to 04

0 - 0 gA

LL. - 4)

m 0 >U,

0+0

> L

( 190

Page 213: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

(cCD cS

W mn

0a0

I-- - 0

-. 0 0

in4

z 1Ix

0 000

> 414 0

- o

CE* -4 U r -.

-c >

x0+ Zc

i n

is in~ N 0 N 68 on

Q 191

Page 214: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

C4

LnS

I I I I I I I ITLO T LI

W

I I

1-I'-

(LJ 1- 0

z 0.

D or.r

x 4,

o$ 07- >-kzi 0- to,

F- - O

IIw > fU; 2

x 0+ZS 1 -4

-- - - - -,4

K 192

Page 215: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

In'in

0 0CD 0 0 V

CE 0

0 F-

Q U1- 4!)

-L u~- 0

N 'n

Cz 0 0)

x C9 0 0

(r x ou -H

> F-

Z F- 0)CT- 0 - rA

F- F- r.4clu la -

Ix 0 +

4~~~i 4)U-~ ~ ~

> 4

(. 193

Page 216: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

0 w 6

w' U)

CE o 14

9 r

> -- t

6.U' 3t 0UI 4.1

x 0+

Z I- 4.1I-S

z 44

Z 194

Page 217: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

APPENDIX B

UNCERTAINITY ANALYSIS

TypicalQuantity Nominal Experimental(Units) Valve Uncertainty

Tr. (°C) 18.0 .13

Tw (OC) 40.0 .21

Pambient (mm Hg) 760. .71

P. (mm Hg) 760. .71

(Po.P.) (mm water) 6.13 .047

Pc (Kg/m3 ) 1.23 .009

U. (m/s) 10.0 .06

C (J/kg~k) 1006. 1.

qwA (W) 270. 10.5

h (W/m 2k) 24.2 1.03

St .00196 .000086

St/St 1.05 .058

A (m2 ) .558 .0065

m .98 .05

x/d 54.6 .36

195

Page 218: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

APPENDIX C

SOFTWARE

The following programs are listed:

Temcheq: This program acquires multiple channel thermocouple

data and performs energy balance to estimate

conduction losses.

Setcond: This program is used to set conditions for data run.

It determines injection velocity, Reynolds number,

and blowing ratio. It requires terminal input of

freestream conditions, % on rotometer, and

delta P Plenum. This program gets plenum

temperature from thermocouple 148 and gets plate

average temperature to calculate Theta.

Stanton3: This program acquires multiple thermocouple data

and creates a file to be read by Stanton4.

Stanton4: This program acquires multiple tiermocouple data

from Stanton3 and calculates heat transfer

coefficients and stanton numbers.

196

Page 219: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

Stanfcl: Heat transfer program to acquire thermocouple

readings from DAS and Store information files

on floppy disk. The files are read by Stanfc2.

Stanfc2: This is a middle program that runs after StanfCl.

This program calculates Stanton numbers for all

flow conditions from input file data created by

StanfCl.

Stanfc3: This program runs after stanfc2. This program

processes multiple channel thermocouple data

alnd calculates heat transfer coefficients and

Stanton numbers ratios and film-cooling parameters.

ENERB: Energy balance estimation for conduction losses.

ACQTPRO: Heat transfer program to acquire temperatures from

automatic traversing device for temperature surveys.

PLOTRUN: Program to read a data file to plot temperature

contours.

PTSTAV: Programs read a data file to plot spanwise averaged

Stanton numbers vs. Reynolds number.

PTSTLC: Reads a data file to plot spanwise local heat

transfer coefficients.

197

Page 220: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

PLSTRTIO: Plots spanwise averaged St/Sto for film cooling

only.

PLSTRAVOR: Plots spanwise variations of St/Sto for embedded

vortex data only.

PLSTRVV: Plots spanwise variations of St/Sto for film

cooling only and St/Sto for film-cooling and

embedded vortex by rows.

SURFCONT: Plots surface contours of St /St

f o

PLSTRFC: Plots spanwise variations of local St/Sto for film-

cooling data only.

Names of variables used are intended to be self-explanatory

198

Page 221: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

LIST OF REFERENCES

1. Blair, M. F.,"An Experimental Study of Heat Transfer andFilm-Cooling on Large-Scale Turbine Endwalls,"ASMETransactions--Journal of Heat Transfer. Vol. 96,pp. 524-529, 1974.

2. Goldstein, R. J. and Chen, H. P., "Film-Cooling on a GasTurbine Blade Near the End Wall,"ASME Transactions--Journal of Enaineering for Gas Turbines and Power,Vol.107, pp.117-122, January 1985.

3. Goldstein, R. J. and Chen, H. P., "Film-Cooling of aTurbine Blade with Injection Through Two Rows of Holesin the Near-Endwall Region,"The American Society ofMechanical Engineers, Paper No. 87-GT-196, pp. 1-7,June 1987.

4. Sato, T., Aoki, S., Takeishi, K. and Matsuura, M.,"Effect of Three-Dimensional Flow Field on HeatTransfer Problems of a Low Aspect Ratio Turbine Nozzle",Takasago Research and Development Center, MitsubishiHeavy Industries, Ltd., 1987.

5. Kobayashi, R., "Note on the Stability of a Bounddary Layeron a Concave Wall with Suction,"Journal of FluidMechanics, Vol. 52, pp. 269-272, 1972.

6. Kobayashi, R., "Taylor-Gortler Instability of a BoundaryLayer with Sucction or Blowing," Report Institute of HighSpeed Mechanics, Vol. 32, Series B, pp. 129-148, 1975.

7. El-Hady, N. M. and Verma, A. K.,"Instability ofCompressible Boundary Layers Along Curved Walls withSuction or Cooling,"AIAA Journal, Vol. 22, No. 2,pp. 206-213, 1984.

199

Page 222: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

8. Joseph, S. L.,"The Effects of an Embedded Vortex on aFilm-Cooled Turbulent Boundary Layer,"M. E. Thesis,U. S. Naval Postgraduate School, Monterey, CA.,December 1986.

9. Evans, D. L.,"Study of Vortices Embedded in BoundaryLayers with Film-Cooling,"M. S. Thesis, U. S. NavalPostgraduate School, Monterey, CA., March 1987.

10. Ortiz, A.,"The Thermal Bahavior of Film Cooled TurbulentBoundary Layers as Affected by Longitudinal Vortices",M. E. Thesis, U. S. Naval Postgraduate School,Monterey, CA., September 1987.

11. Westphal R. V., Pauley W. R. and Eaton J. K.,"InteractionBetween a Vortex and a Turbulent Boundary Layer, Part I:Mean Flow Evolution and Turbulence Properties,"NASATechnical Memorandum 88361, January 1987.

12. Westphal, R. R., Eaton, J. K., and Pauley, W. R.,"Interaction Between a Vortex and a Turbulent Boundarylayer in a Streamwise Pressure Gradient", FifthSymposium on Turbulent Shear Flows, Cornell University,Ithaca, NY 1985.

13. Eibeck, P. A. and Eaton, J. K.,"Heat Transfer Effects ofa Longitudinal Vortex Embedded in Turbulent BoundaryLayer,"ASME Transactions-Journal 21 Heat Transfer,Vol. 109, pp. 16-23, February 1987.

14. Ligrani, P. M. and Camci, C.,"Adiabatic Film CoolingEffectiveness From Heat Transfer Measurements inCompressible Variable-Property Flow," J of HeatTransfer, Vol. 107, pp. 313-320, May 1985.

15. Schwartz, G. E.,"Studies of thee Interactions BetweenVortices and Shear Layers", M. S. Thesis, NavalPostgraduate School, September 1988.

200

Page 223: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

INITIAL DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2Cameron StationAlexandria, Virginia 22304-6145

2. Library, Code 0142 2Naval Postgraduate SchoolMonterey, California, 93943-5002

3. Department Chairman, Code 69Department of Mechanical EngineeringNaval Postgraduate SchoolMonterey, California, 93943-5000

4. Professor Phillip M. Ligrani, Code 69Li 10Department of Mechanical EngineeringNaval Postgraduate SchoolMonterey, California, 93943-5000

5. Dr. Dick Rivir 10Components BranchTurbine Engine DivisionAero Propulsion LaboratoryDepartment of the Air ForceAir Force Wright Aeronautical LaboratoriesWright-Patterson Air Force Base, Ohio, 45433

6. LCDR Warren W. Williams 4RT 1 Box 8Dryden, Virginia 24243

201

Page 224: Monterey, California · 14. 7/1 Injection Holes, m=0.5 Vortex Generator #4 ---- 47 Position h vii. 15. 7/2 Injection Holes, m=0.5 Vortex Generator #4 ---- 48 Position i 16. 13 Injection

o 2.1 Copies

7. Naval Sea Systems Command 1PHS 350Washington, D. C. 20362

8. Commanding OfficerDavid Taylor R & D CenterCarderrock LaboratoryBethesda, Maryland 20084

202