monte carlo simulations of quantum systems with global...

73
Monte Carlo simulations of quantum systems with global updates Alejandro Muramatsu Institut f¨ ur Theoretische Physik III Universit¨ at Stuttgart

Upload: others

Post on 11-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Monte Carlo simulations of quantumsystems with global updates

Alejandro MuramatsuInstitut fur Theoretische Physik III

Universitat Stuttgart

Page 2: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Spinons, holons, and antiholons in one dimension

0 2 4 6 8 10

0

0

-6-4

-2 0

2 4

0

0

1

2

3

4

5

6

7

8

9

10

PSfragreplacements

n = 0:6 J=t = 0:5

!=t

k

A(k; !)

kF

kF

kF

EF

EF

Page 3: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.1 The t-J model in one dimension

Page 4: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.1 The t-J model in one dimension

Phase diagramM. Ogata, M.U. Luchini, S. Sorella, and F.F. Assaad, Phys. Rev. Lett. 66, 2388 (1991)

1 2 3

separationgap

0.5(repulsive)

0

1

Spin

Luttinger liquid

Phase

J/t

n

ρ<1

Kρ>1

SC

ρK =1

K

Page 5: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.1 The t-J model in one dimension

Phase diagramM. Ogata, M.U. Luchini, S. Sorella, and F.F. Assaad, Phys. Rev. Lett. 66, 2388 (1991)

1 2 3

separationgap

0.5(repulsive)

0

1

Spin

Luttinger liquid

Phase

J/t

n

ρ<1

Kρ>1

SC

ρK =1

K

Phase diagram, with phases similar to those in high Tc superconductors

Page 6: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Exact results for the nearest neighbor t-J model

Page 7: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Exact results for the nearest neighbor t-J model

At J = 0One-particle spectral function from Ogata-Shiba wavefunctionK. Penc, K. Hallberg, F. Mila, and H. Shiba, Phys. Rev. Lett. 77, 1390 (1996)

Page 8: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Exact results for the nearest neighbor t-J model

At J = 0One-particle spectral function from Ogata-Shiba wavefunctionK. Penc, K. Hallberg, F. Mila, and H. Shiba, Phys. Rev. Lett. 77, 1390 (1996)

2040

60

80

100

25

50

75

100

00.00050.001

0.00150.002

2040

60

80

100

Page 9: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Exact results for the nearest neighbor t-J model

At J = 0One-particle spectral function from Ogata-Shiba wavefunctionK. Penc, K. Hallberg, F. Mila, and H. Shiba, Phys. Rev. Lett. 77, 1390 (1996)

2040

60

80

100

25

50

75

100

00.00050.001

0.00150.002

2040

60

80

100

Shadow bands

Page 10: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Exact results for the nearest neighbor t-J model

At J = 0One-particle spectral function from Ogata-Shiba wavefunctionK. Penc, K. Hallberg, F. Mila, and H. Shiba, Phys. Rev. Lett. 77, 1390 (1996)

2040

60

80

100

25

50

75

100

00.00050.001

0.00150.002

2040

60

80

100

Shadow bands

At J = 2tBethe-Ansatz solutionP.A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990)No correlations functions

Page 11: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.2 The 1/r2 (inverse square) t-J model in one dimension

Page 12: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.2 The 1/r2 (inverse square) t-J model in one dimension

HIS−t−J = −∑

i<j,σ

tij(c†i,σcj,σ + h.c.) +

i<j

Jij

(

Si · Sj −14ninj

)

,

where at the supersymmetric (SuSy) point J = 2 t,

tij = Jij/2 = t(π/L)2/ sin2(π(i− j)/L)

Page 13: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.2 The 1/r2 (inverse square) t-J model in one dimension

HIS−t−J = −∑

i<j,σ

tij(c†i,σcj,σ + h.c.) +

i<j

Jij

(

Si · Sj −14ninj

)

,

where at the supersymmetric (SuSy) point J = 2 t,

tij = Jij/2 = t(π/L)2/ sin2(π(i− j)/L)

Ground-state: Gutzwiller wavefunctionY. Kuramoto and H. Yokoyama, Phys. Rev. Lett. 67, 1338 (1991)

Page 14: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.2 The 1/r2 (inverse square) t-J model in one dimension

HIS−t−J = −∑

i<j,σ

tij(c†i,σcj,σ + h.c.) +

i<j

Jij

(

Si · Sj −14ninj

)

,

where at the supersymmetric (SuSy) point J = 2 t,

tij = Jij/2 = t(π/L)2/ sin2(π(i− j)/L)

Ground-state: Gutzwiller wavefunctionY. Kuramoto and H. Yokoyama, Phys. Rev. Lett. 67, 1338 (1991)

Compact support and excitation contentZ.N.C. Ha and F.D.M. Haldane, Phys. Rev. Lett. 73, 2887 (1994)

spinon Q=0, S=1/2 semionholon Q=+e, S=0 semionantiholon Q=–2e, S=0 boson

Page 15: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.2 The 1/r2 (inverse square) t-J model in one dimension

HIS−t−J = −∑

i<j,σ

tij(c†i,σcj,σ + h.c.) +

i<j

Jij

(

Si · Sj −14ninj

)

,

where at the supersymmetric (SuSy) point J = 2 t,

tij = Jij/2 = t(π/L)2/ sin2(π(i− j)/L)

Ground-state: Gutzwiller wavefunctionY. Kuramoto and H. Yokoyama, Phys. Rev. Lett. 67, 1338 (1991)

Compact support and excitation contentZ.N.C. Ha and F.D.M. Haldane, Phys. Rev. Lett. 73, 2887 (1994)

spinon Q=0, S=1/2 semionholon Q=+e, S=0 semionantiholon Q=–2e, S=0 boson

Semion −→ sjs` = is`sj −→ ‘half a fermion’

Page 16: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Spectral function for electron addition

M. Arikawa, Y. Saiga, and Y. Kuramoto, Phys. Rev. Lett. 86, 3096 (2001)

Page 17: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Spectral function for electron addition

M. Arikawa, Y. Saiga, and Y. Kuramoto, Phys. Rev. Lett. 86, 3096 (2001)

k

ωaU

kF

2kF

ωs

ωaL ωh

3

2

1

2π0

ω/t

π 2π−3kF

2π−2kF

3kF 2π−kF

Page 18: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Analytic expressions

Page 19: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Analytic expressions

Spectral function for electron addition (0 ≤ k < 2π)

Page 20: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Analytic expressions

Spectral function for electron addition (0 ≤ k < 2π)

A+(k, ω) = AR(k, ω) +AL(k, ω) +AU(k, ω)

where

AR(k, ω) =1

∫ kF

0

dqh

∫ kF−qh

0

dqs

∫ 2π−4kF

0

dqa δ (k − kF − qs − qh − qa)

×δ [ω − εs(qs)− εh(qh)− εa(qa)]εgs−1s (qs) ε

gh−1h (qh) εga−1

a (qa)

(qh + qa/2)2 ,

with AL(k, ω) = AR(2π − k, ω)gs = 1/2, gh = 1/2, and ga = 2, statistical parameters, and

AU(k, ω) =

εa(k − 2kF )k(π − k/2)

δ{

ω − [εs(kF ) + εa(k − 2kF )]}

, (2kF ≤ k ≤ 2π − 2kF )

Page 21: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.3 Spectral functions for the n.n. t-J model from QMCC. Lavalle, M. Arikawa, S. Capponi, F.F. Assaad, and A. Muramatsu,PRL 90, 216401, (2003)

0 2 4 6 8 10

0

-6-4

-2 0

2 4

0

0 5

10 15 20 25 30 35

PSfragreplacements

n = 0:6 J=t = 2

!=t

k

A(k; !)

kF

kF

EF

Page 22: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Spinon, holons, and antiholons in the n.n. t-J model at J=2t

0 KF 2 KF PI-8

-6

-4

-2

0

2

4

Y

ω

kF 2kF π

+ spinon: εsR(L)(qs) = tqs(

±v0s − qs

)

0 ≤ qs ≤ kF∗ holon: εhR(L)(qh) = tqh

(

qh ± v0c

)

0 ≤ qh ≤ kFantiholon: εh(qh) = tqh(2v0

c − qh)/2 0 ≤ qh ≤ 2π − 4kF

v0s = π, v0

c = π(1− n)

Page 23: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Excitation content of the hole spectrum at the supersymmetric pointM. Brunner, F.F. Assaad, and A. Muramatsu, Eur. Phys. J. B 16, 209 (2000)

Supersymmetric point J/t = 2 −→ exact holon and spinon dispersionsfrom Bethe-Ansatz

P.-A. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990)P.-A. Bares, G. Blatter, and M. Ogata, Phys. Rev. B 44, 130 (1991)

38.018.125.96.255.655.495.585.464.863.843.492.941.891.471.421.261.021.020.980.880.860.780.740.660.640.630.680.851.071.201.491.451.45PSfrag replacements �

�2

00

�1�2�3�4�5

�6

�7

�8

1 2 3

4

5

!=t

Full line: One holon + one spinon withdispersions given by charge-spin separation Ansatz.

Crosses: One holon + one spinon withdispersions given by Bethe-Ansatz

.

Page 24: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Spectral function at J = 0.5 t

0 2 4 6 8 10

0

0

-6-4

-2 0

2 4

0

0

1

2

3

4

5

6

7

8

9

10

PSfragreplacements

n = 0:6 J=t = 0:5

!=t

k

A(k; !)

kF

kF

kF

EF

EF

Page 25: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Spinon, holons, and antiholons at J = 0.5 t and n = 0.6

0 KF 2 KF PI-8

-6

-4

-2

0

2

4

Y

ω

kF 2kF π

+ spinon: εsR(L)(qs) = (J/2) qs(

±v0s − qs

)

0 ≤ qs ≤ kF∗ holon: εhR(L)(qh) = tqh

(

qh ± v0c

)

0 ≤ qh ≤ kFantiholon: εh(qh) = tqh(2v0

c − qh)/2 0 ≤ qh ≤ 2π − 4kF

v0s = π, v0

c = π(1− n)

Page 26: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Charge-spin separation at J = 0.5 t

Photoemission I-Photoemission

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4

0-6 -4 -2 0 2 4 -4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6-4 -2 0 2 4 6

PSfrag

replacements

a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a)a) b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)b)

ω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/tω/t

πππππππππππππππππππππ

2kF2kF2kF2kF2kF2kF2kF2kF2kF2kF2kF2kF2kF2kF2kF2kF2kF2kF2kF2kF2kF

kFkFkFkFkFkFkFkFkFkFkFkFkFkFkFkFkFkFkFkFkFkFkFkF

EF

Page 27: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Antiholons at J = 0.5 t vs. doping

Page 28: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Antiholons at J = 0.5 t vs. doping

0

-6

-5

-4

-3

-2

-1

0

PSfrag

replacements

ρ = 1 J/t = 2ρ = 1 J/t = 2ρ = 1 J/t = 2

ω/tω/tω/t

πkF

2kFEF

0-6

-4

-2

0

2

4

PSfrag

replacements

ρ = 0.95 J/t = 2ρ = 0.95 J/t = 2ρ = 0.95 J/t = 2ρ = 0.95 J/t = 2ρ = 0.95 J/t = 2

ω/tω/tω/tω/tω/t

πkF

2kFEF

0

-6

-4

-2

0

2P

Sfragreplacem

ents

ρ = 0.9 J/t = 2ρ = 0.9 J/t = 2ρ = 0.9 J/t = 2ρ = 0.9 J/t = 2ρ = 0.9 J/t = 2

ω/tω/tω/tω/tω/t

πkF 2kF

EF

0

-6

-4

-2

0

2

4

PSfrag

replacements

ρ = 0.8 J/t = 2ρ = 0.8 J/t = 2ρ = 0.8 J/t = 2ρ = 0.8 J/t = 2ρ = 0.8 J/t = 2

ω/tω/tω/tω/tω/t

πkF 2kF

EF

0

-6

-4

-2

0

2

4

PSfrag

replacements

ρ = 0.7142 J/t = 2ρ = 0.7142 J/t = 2ρ = 0.7142 J/t = 2ρ = 0.7142 J/t = 2ρ = 0.7142 J/t = 2

ω/tω/tω/tω/tω/t

πkF 2kFE

F

0

-6

-4

-2

0

2

4

PSfrag

replacements

ρ = 0.6 J/t = 2ρ = 0.6 J/t = 2ρ = 0.6 J/t = 2ρ = 0.6 J/t = 2ρ = 0.6 J/t = 2

ω/tω/tω/tω/tω/t

πkF 2kF

EF

Page 29: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Antiholons are generic to the nearest neighbor t-J model at finite J

Page 30: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Antiholons are generic to the nearest neighbor t-J model at finite J

• New excitation with Q = 2e, S = 0, and mah = 2mh

−→ not charge conjugated to holons

Page 31: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Antiholons are generic to the nearest neighbor t-J model at finite J

• New excitation with Q = 2e, S = 0, and mah = 2mh

−→ not charge conjugated to holons

• Antiholons are bosons with Q = 2e −→ pre-formed pairs?

Page 32: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Antiholons are generic to the nearest neighbor t-J model at finite J

• New excitation with Q = 2e, S = 0, and mah = 2mh

−→ not charge conjugated to holons

• Antiholons are bosons with Q = 2e −→ pre-formed pairs?

• Can they Bose-condensed for some J and n?

Page 33: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Antiholons are generic to the nearest neighbor t-J model at finite J

• New excitation with Q = 2e, S = 0, and mah = 2mh

−→ not charge conjugated to holons

• Antiholons are bosons with Q = 2e −→ pre-formed pairs?

• Can they Bose-condensed for some J and n?

• Can they help to understand D = 2?

Page 34: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Photoemission and inverse photoemission with phase separation

0 2 4 6 8 10

0

-15 -10 -5 0 50 0

10

20

30

40

50

60

PSfragreplacements

n = 0:9 J=t = 4

!=t

k

A(k; !)�

kF

kF

EF

EF

Discontinuous spectrum on the photoemission side

Page 35: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.4 Outlook of on-going and future work

Page 36: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.4 Outlook of on-going and future work

• Spin and density correlation and spectral functions.−→ spin-gap and phase separation

Page 37: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.4 Outlook of on-going and future work

• Spin and density correlation and spectral functions.−→ spin-gap and phase separation

• Correlation and spectral functions for superconductivity

Page 38: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.4 Outlook of on-going and future work

• Spin and density correlation and spectral functions.−→ spin-gap and phase separation

• Correlation and spectral functions for superconductivity

• Feasibility of two-dimensional simulations

Page 39: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

5.4 Outlook of on-going and future work

• Spin and density correlation and spectral functions.−→ spin-gap and phase separation

• Correlation and spectral functions for superconductivity

• Feasibility of two-dimensional simulations

• Extension to finite temperature

Page 40: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

New representation and the minus-sign problem

Page 41: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

New representation and the minus-sign problem

Minus sign problem in one dimension: non-existent for N↑+N↓ = 4m+ 2,with m integer

Page 42: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

New representation and the minus-sign problem

Minus sign problem in one dimension: non-existent for N↑+N↓ = 4m+ 2,with m integer

Observation: < sign >> 0.95 for N↑ +N↓ = 4m

Page 43: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

New representation and the minus-sign problem

Minus sign problem in one dimension: non-existent for N↑+N↓ = 4m+ 2,with m integer

Observation: < sign >> 0.95 for N↑ +N↓ = 4m

1 2 3 4 5 7 8 16

Page 44: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

New representation and the minus-sign problem

Minus sign problem in one dimension: non-existent for N↑+N↓ = 4m+ 2,with m integer

Observation: < sign >> 0.95 for N↑ +N↓ = 4m

1 2 3 4 5 7 8 16

|↓> is a barrier for holes

Page 45: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

New representation and the minus-sign problem

Minus sign problem in one dimension: non-existent for N↑+N↓ = 4m+ 2,with m integer

Observation: < sign >> 0.95 for N↑ +N↓ = 4m

1 2 3 4 5 7 8 16

|↓> is a barrier for holes

expect also less severe minus signproblem for J small, low doping, andlarge systems in two dimensions

Page 46: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 1

Page 47: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 1

• Checkerboard decomposition −→ reduction to a 2-sites problem

Page 48: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 1

• Checkerboard decomposition −→ reduction to a 2-sites problem

• World-lines −→ useful in 1-D or with bosons in higher dimensions

Page 49: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 1

• Checkerboard decomposition −→ reduction to a 2-sites problem

• World-lines −→ useful in 1-D or with bosons in higher dimensions

• Local moves −→ inefficient (large autocorrelation times), possiblynon-ergodic.

Page 50: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 1

• Checkerboard decomposition −→ reduction to a 2-sites problem

• World-lines −→ useful in 1-D or with bosons in higher dimensions

• Local moves −→ inefficient (large autocorrelation times), possiblynon-ergodic.

• Fast Fourier transformation −→ alternative to checkerboarddecomposition.

Page 51: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 1

• Checkerboard decomposition −→ reduction to a 2-sites problem

• World-lines −→ useful in 1-D or with bosons in higher dimensions

• Local moves −→ inefficient (large autocorrelation times), possiblynon-ergodic.

• Fast Fourier transformation −→ alternative to checkerboarddecomposition.

• Jordan-Wigner transformation −→ from bosons to fermions in 1-DFor 2-D seeE. Frradkin, Phys. Rev. Lett. bf 63, 322 (1989)Y.R. Wang, Phys. Rev. B 43, 3786 (1991)

Page 52: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 2

Page 53: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 2

• Loop-algorithm −→ particular form of cluster algorithms.Statistical mechanics of graphsC. Fortuin and P. Kasteleyn, Physica 57, 536 (1972)

Page 54: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 2

• Loop-algorithm −→ particular form of cluster algorithms.Statistical mechanics of graphsC. Fortuin and P. Kasteleyn, Physica 57, 536 (1972)

• Improved estimators −→ efficient reduction of noise

Page 55: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 2

• Loop-algorithm −→ particular form of cluster algorithms.Statistical mechanics of graphsC. Fortuin and P. Kasteleyn, Physica 57, 536 (1972)

• Improved estimators −→ efficient reduction of noise

• Continuous imaginary time −→ no systematic error, very efficient forlarge systems

S-1/2 Heisenberg antiferromagnet up to 103 × 103 sitesJ.-K. Kim and M. Troyer, Phys. Rev. Lett. 80, 2705 (1998)

Page 56: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 2

• Loop-algorithm −→ particular form of cluster algorithms.Statistical mechanics of graphsC. Fortuin and P. Kasteleyn, Physica 57, 536 (1972)

• Improved estimators −→ efficient reduction of noise

• Continuous imaginary time −→ no systematic error, very efficient forlarge systems

S-1/2 Heisenberg antiferromagnet up to 103 × 103 sitesJ.-K. Kim and M. Troyer, Phys. Rev. Lett. 80, 2705 (1998)

• Minus-sign problem −→ eliminated in special cases with the Meronmethod

Page 57: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 3

Page 58: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 3

• t-J model −→ strongly correlated fermions

Page 59: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 3

• t-J model −→ strongly correlated fermions

• Canonical transformation −→ pseudospins + spinless holes

Page 60: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 3

• t-J model −→ strongly correlated fermions

• Canonical transformation −→ pseudospins + spinless holes

• Single hole dynamics and loop-algorithm −→ exact treatment of single holedynamics

Page 61: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 3

• t-J model −→ strongly correlated fermions

• Canonical transformation −→ pseudospins + spinless holes

• Single hole dynamics and loop-algorithm −→ exact treatment of single holedynamics

• Single hole in a 2-D quantum antiferromagnet−→ coherent quasiparticle with internal dynamics

holons and spinons confined by string potentialSelf-consistent Born approximation agrees very well with QMC

Page 62: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 4

Page 63: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 4

• Hybrid-loop algorithm −→ new algorithm for doped antiferromagnets

Page 64: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 4

• Hybrid-loop algorithm −→ new algorithm for doped antiferromagnets

• Loop-algorithm −→ pseudospins

Page 65: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 4

• Hybrid-loop algorithm −→ new algorithm for doped antiferromagnets

• Loop-algorithm −→ pseudospins

• Determinantal algorithm −→ holes

Page 66: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 4

• Hybrid-loop algorithm −→ new algorithm for doped antiferromagnets

• Loop-algorithm −→ pseudospins

• Determinantal algorithm −→ holes

• Stabilization −→ like in simulations of the Hubbard model

Page 67: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 4

• Hybrid-loop algorithm −→ new algorithm for doped antiferromagnets

• Loop-algorithm −→ pseudospins

• Determinantal algorithm −→ holes

• Stabilization −→ like in simulations of the Hubbard model

• Static and dynamical correlation functions −→ spectral functions

Page 68: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 5

Page 69: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 5

• t-J model in 1-D −→ rich phase diagram reminiscent of high Tcsuperconductors

Page 70: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 5

• t-J model in 1-D −→ rich phase diagram reminiscent of high Tcsuperconductors

• 1/r2 t-J model −→ free excitations with fractional statistics

Page 71: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 5

• t-J model in 1-D −→ rich phase diagram reminiscent of high Tcsuperconductors

• 1/r2 t-J model −→ free excitations with fractional statistics

• One-particle spectral functions −→ QMC for the nearest neighbort-J model vs. analytical resultsfor the 1/r2 t-J model

Page 72: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Summary of Lecture 5

• t-J model in 1-D −→ rich phase diagram reminiscent of high Tcsuperconductors

• 1/r2 t-J model −→ free excitations with fractional statistics

• One-particle spectral functions −→ QMC for the nearest neighbort-J model vs. analytical resultsfor the 1/r2 t-J model

• Antiholon −→ new generic excitation of the nearest neighbort-J model

Page 73: Monte Carlo simulations of quantum systems with global updatesscs.physics.unisa.it/TCVIII/Download/Muramatsu/Lecture5.pdf · 5.1 The t-J model in one dimension Phase diagram M. Ogata,

Collaborators

• Dr. Michael Brunner (HypoVereinsbank-Munchen)

• Dr. Catia Lavalle (University of Stuttgart)

• Dr. Sylvain Capponi (Universite Paul Sabatier, Toulouse)

• Dr. Mitsuhiro Arikawa (University of Stuttgart)

• Prof. Dr. Fakher F. Assaad (University of Wurzburg)