molecular modeling fundamentals: modus in silico

26
Molecular Modeling Molecular Modeling Fundamentals: Fundamentals: Modus in Modus in Silico Silico C372 C372 Introduction to Introduction to Cheminformatics II Cheminformatics II Kelsey Forsythe Kelsey Forsythe

Upload: cael

Post on 16-Jan-2016

39 views

Category:

Documents


0 download

DESCRIPTION

Molecular Modeling Fundamentals: Modus in Silico. C372 Introduction to Cheminformatics II Kelsey Forsythe. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Molecular Modeling Fundamentals:  Modus in Silico

Molecular ModelingMolecular ModelingFundamentals: Fundamentals: Modus in Modus in

SilicoSilico

C372C372

Introduction to Introduction to Cheminformatics IICheminformatics II

Kelsey ForsytheKelsey Forsythe

Page 2: Molecular Modeling Fundamentals:  Modus in Silico

"Every attempt to employ mathematical methods in the study of "Every attempt to employ mathematical methods in the study of chemical questions must be considered profoundly irrational and chemical questions must be considered profoundly irrational and

contrary to the spirit in chemistry. If mathematical analysis contrary to the spirit in chemistry. If mathematical analysis should ever hold a prominent place in chemistry - an aberration should ever hold a prominent place in chemistry - an aberration which is happily almost impossible - it would occasion a rapid which is happily almost impossible - it would occasion a rapid

and widespread degeneration of that science." A. Comte and widespread degeneration of that science." A. Comte (1830)(1830)

1992 Nobel Prize in Chemistry1992 Nobel Prize in Chemistry

Rudolph Marcus (Theory of Electron Rudolph Marcus (Theory of Electron Transfer)Transfer)

1998 Nobel Prize in Chemistry1998 Nobel Prize in Chemistry

John Pople (John Pople (ab initioab initio))

Walter Kohn (DFT-density functional Walter Kohn (DFT-density functional theory)theory)

Page 3: Molecular Modeling Fundamentals:  Modus in Silico

Characteristics of Molecular Characteristics of Molecular ModelingModeling

Representing behavior of molecular Representing behavior of molecular systemssystems Visual rendering of moleculesVisual rendering of molecules

Tinker toysTinker toys Tinker Program (Washington Univ. St. Louis)Tinker Program (Washington Univ. St. Louis)

Mathematical rendering of molecular Mathematical rendering of molecular interactionsinteractions Newton’s Laws - Kinetic Theory of GasesNewton’s Laws - Kinetic Theory of Gases Matrix Algebra - Quantum TheoryMatrix Algebra - Quantum Theory

Graph Theory? Informatics!!Graph Theory? Informatics!!

Page 4: Molecular Modeling Fundamentals:  Modus in Silico

Molecular Modeling Molecular Modeling

++ ==

Underlying equations:Underlying equations:empirical (approximate, soluble)empirical (approximate, soluble)

--Morse Potential Morse Potential

ab initioab initio (exact, insoluble (exact, insoluble (less hydrogen atom)(less hydrogen atom)))--Schrodinger Wave EquationSchrodinger Wave Equation

VHH D0(1 e a(R R0 ))2

ˆ H E

Valence Valence Bond Bond TheoryTheory

Page 5: Molecular Modeling Fundamentals:  Modus in Silico

EnergyEnergyEnergy = ?Energy = ?E=KE + PEE=KE + PE

Depends on underlying equations/assumptions:Depends on underlying equations/assumptions:

Energy of all/some of particles?Energy of all/some of particles?Energy = 0?Energy = 0?

EEMMFFMMFF NOTNOT E EHFHF

E H G

Page 6: Molecular Modeling Fundamentals:  Modus in Silico

ElectrostaticsElectrostatics Coulombs Law Coulombs Law

Permittivity used for vacuumPermittivity used for vacuum Point particles?Point particles? Solvent effectsSolvent effects

Poisson EquationPoisson Equation Used to calculate electronic propertiesUsed to calculate electronic properties

PE qiq j

40rij

F

(PE)

2

Page 7: Molecular Modeling Fundamentals:  Modus in Silico

Atomic UnitsAtomic Units

PE qiq j

40rij

PE qiq j

rij

Page 8: Molecular Modeling Fundamentals:  Modus in Silico

ThermodynamicsThermodynamics

How might we compute relevant How might we compute relevant thermodynamic quantities?thermodynamic quantities? Equipartition TheoremEquipartition Theorem Harmonic Oscillator ApproximationHarmonic Oscillator Approximation

Page 9: Molecular Modeling Fundamentals:  Modus in Silico

Quantum MechanicsQuantum Mechanics All chemical properties for a system are given by the Schrodinger equationAll chemical properties for a system are given by the Schrodinger equation

No closed form solutions for systems of more than two-bodies (H-atom)No closed form solutions for systems of more than two-bodies (H-atom) Number of equations too numerous for computation/storage (informatics problem?)Number of equations too numerous for computation/storage (informatics problem?)

ˆ H E

Page 10: Molecular Modeling Fundamentals:  Modus in Silico

Schrodinger’s EquationSchrodinger’s Equation

- Hamiltonian operator- Hamiltonian operator

Gravity? Gravity?

ˆ H E

ˆ H

ˆ H ˆ T ˆ V

2

2mi

2

i

N

Ceie j

ri rji j

N

Page 11: Molecular Modeling Fundamentals:  Modus in Silico

Hydrogen Molecule Hydrogen Molecule HamiltonianHamiltonian

Born-Oppenheimer ApproximationBorn-Oppenheimer Approximation

Now Solve Electronic ProblemNow Solve Electronic Problem

221221112121

22

21

22

21

2

111111

ˆˆˆ

epepepepppee

e

e

e

e

p

p

p

p

rrrrrrC

mmmmH

VTH

ˆ H el ˆ T el ˆ V el nuclei Vnuclei

ˆ H el 2

2

e12

me

e 2

2

me

C

1

re1e 2

1

rp1e1

1

rp1e 2

1

rp2e1

1

rp 2e 2

C

1

rp1p 2

cons tan t

Page 12: Molecular Modeling Fundamentals:  Modus in Silico

Electronic Schrodinger Electronic Schrodinger EquationEquation

Solutions:Solutions:

, the basis set, are of a known form , the basis set, are of a known form Need to determine coefficients (cNeed to determine coefficients (cm)

Wavefunctions gives probability ( ) of Wavefunctions gives probability ( ) of finding electrons in space (e. g. s,p,d and f finding electrons in space (e. g. s,p,d and f orbitals)orbitals)

Molecular orbitals are formed by linear Molecular orbitals are formed by linear combinations of electronic orbitals (LCAO)combinations of electronic orbitals (LCAO)

(r ) cm m (

r )

m

F

m (r )

ˆ O * ˆ O d

*

Page 13: Molecular Modeling Fundamentals:  Modus in Silico

Statistical MechanicsStatistical Mechanics Molecular description of thermodynamicsMolecular description of thermodynamics

Temperature represents average state for system of moleculesTemperature represents average state for system of molecules

Energy of system is not energy of each molecule - distributionEnergy of system is not energy of each molecule - distribution

Condensed Phase - Ideal Gas Law not applicable. Condensed Phase - Ideal Gas Law not applicable. Boltzmann averaging Boltzmann averaging Use Monte Carlo for spatial/configurational averaging or molecular dynamics to average a property Use Monte Carlo for spatial/configurational averaging or molecular dynamics to average a property

(ergodic hypothesis)(ergodic hypothesis)

1

N

1

2m v 2

3

2kT

w(i)e E i / kT

Page 14: Molecular Modeling Fundamentals:  Modus in Silico

Geometry OptimizationGeometry Optimization

First Derivative is Zero - At First Derivative is Zero - At minimum/minimum/maximummaximum

As N increases so does As N increases so does dimensionality/complexity/beauty/difficuldimensionality/complexity/beauty/difficultyty Multi-dimensional (macromolecules, Multi-dimensional (macromolecules,

proteins)proteins) Conjugate gradient methodsConjugate gradient methods Monte Carlo methodsMonte Carlo methods

dV (r )

dr

0

Page 15: Molecular Modeling Fundamentals:  Modus in Silico

Empirical ModelsEmpirical Models Simple/Elegant?Simple/Elegant? Intuitive?-Vibrations ( ) Intuitive?-Vibrations ( ) Major Drawbacks:Major Drawbacks:

Does not include quantum mechanical effectsDoes not include quantum mechanical effects No information about bonding (No information about bonding (e) Not generic (organic inorganic)Not generic (organic inorganic)

InformaticsInformatics Interface between parameter data sets and Interface between parameter data sets and

systems of interest systems of interest Teaching computers to develop new potentials Teaching computers to develop new potentials

from existing math templatesfrom existing math templates

rkF

Page 16: Molecular Modeling Fundamentals:  Modus in Silico

MMFF PotentialMMFF Potential

E = E = EEbondbond + + EEangleangle + + EEangleangle

-bond -bond + + EEtorsiontorsion + + EEVDW VDW + + EEelectrostaticelectrostatic

Merck Molecular Force FieldMerck Molecular Force Field-Common organics/biopolymers-Common organics/biopolymers

Page 17: Molecular Modeling Fundamentals:  Modus in Silico

MMFF EnergyMMFF Energy

StretchingStretching

202020 )(

12

7)(1*)( ijijijijijijbondbond rrcsrrcsrrKE

Page 18: Molecular Modeling Fundamentals:  Modus in Silico

MMFF EnergyMMFF Energy

BendingBending

)(1*)( 020ijkijkijkijkangle cbKE

Page 19: Molecular Modeling Fundamentals:  Modus in Silico

MMFF EnergyMMFF Energy

Stretch-Bend InteractionsStretch-Bend Interactions

000 )()( ijkijkkjkjkjiijijijkanglebond rrKrrKE

Page 20: Molecular Modeling Fundamentals:  Modus in Silico

MMFF EnergyMMFF Energy

Torsion (4-atom bending)Torsion (4-atom bending)

3cos12cos1cos15.0 321 VVVEtorsion

Page 21: Molecular Modeling Fundamentals:  Modus in Silico

MMFF EnergyMMFF Energy

Analogous to Lennard-Jones 6-12 Analogous to Lennard-Jones 6-12 potentialpotential London Dispersion ForcesLondon Dispersion Forces Van der Waals RepulsionsVan der Waals Repulsions

2

07.0

07.1

07.0

07.17*7

7*7

*

*

ijij

ij

ijij

ijijVDW

RR

R

RR

RE

Page 22: Molecular Modeling Fundamentals:  Modus in Silico

Intermolecular/atomic Intermolecular/atomic modelsmodels

General form:General form:

Lennard-Jones Lennard-Jones

V V (r) V (ri,rj ) V (ri,rj ,rk ) .....i jjk

N

i j

N

V (rij )4 r

12

r

6

Van derWaals repulsionVan derWaals repulsion London AttractionLondon Attraction

Page 23: Molecular Modeling Fundamentals:  Modus in Silico

MMFF EnergyMMFF Energy

Electrostatics (ionic compounds) Electrostatics (ionic compounds) D – Dielectric ConstantD – Dielectric Constant - electrostatic buffering constant- electrostatic buffering constant

nij

jiticelectrosta

RD

qqE

Page 24: Molecular Modeling Fundamentals:  Modus in Silico

8.35E-28 8.77567E+14 20568787140 2.03098E-18 1.05374E-188.35E-28 8.77567E+14 20568787140 1.77569E-18 9.66155E-198.35E-28 8.77567E+14 20568787140 1.54682E-18 8.82365E-198.35E-28 8.77567E+14 20568787140 1.34201E-18 8.02375E-198.35E-28 8.77567E+14 20568787140 1.15913E-18 7.26185E-198.35E-28 8.77567E+14 20568787140 9.96207E-19 6.53795E-198.35E-28 8.77567E+14 20568787140 8.51451E-19 5.85205E-198.35E-28 8.77567E+14 20568787140 7.23209E-19 5.20415E-198.35E-28 8.77567E+14 20568787140 6.09973E-19 4.59425E-198.35E-28 8.77567E+14 20568787140 5.10362E-19 4.02235E-198.35E-28 8.77567E+14 20568787140 4.2311E-19 3.48845E-198.35E-28 8.77567E+14 20568787140 3.47061E-19 2.99255E-198.35E-28 8.77567E+14 20568787140 2.81155E-19 2.53465E-198.35E-28 8.77567E+14 20568787140 2.24426E-19 2.11475E-198.35E-28 8.77567E+14 20568787140 1.75987E-19 1.73285E-198.35E-28 8.77567E+14 20568787140 1.35031E-19 1.38895E-198.35E-28 8.77567E+14 20568787140 1.0082E-19 1.08305E-198.35E-28 8.77567E+14 20568787140 7.26787E-20 8.15147E-208.35E-28 8.77567E+14 20568787140 4.99924E-20 5.85247E-208.35E-28 8.77567E+14 20568787140 3.22001E-20 3.93347E-208.35E-28 8.77567E+14 20568787140 1.87901E-20 2.39447E-208.35E-28 8.77567E+14 20568787140 9.29638E-21 1.23547E-208.35E-28 8.77567E+14 20568787140 3.29443E-21 4.56475E-21

Empirical Potential for Hydrogen Molecule

0

2E-19

4E-19

6E-19

8E-19

1E-18

1.2E-18

1.4E-18

0 0.5 1 1.5 2 2.5 3 3.5 4

Page 25: Molecular Modeling Fundamentals:  Modus in Silico

8.35E-28 8.77567E+14 20568787140 2.03098E-18 1.05374E-188.35E-28 8.77567E+14 20568787140 1.77569E-18 9.66155E-198.35E-28 8.77567E+14 20568787140 1.54682E-18 8.82365E-198.35E-28 8.77567E+14 20568787140 1.34201E-18 8.02375E-198.35E-28 8.77567E+14 20568787140 1.15913E-18 7.26185E-198.35E-28 8.77567E+14 20568787140 9.96207E-19 6.53795E-198.35E-28 8.77567E+14 20568787140 8.51451E-19 5.85205E-198.35E-28 8.77567E+14 20568787140 7.23209E-19 5.20415E-198.35E-28 8.77567E+14 20568787140 6.09973E-19 4.59425E-198.35E-28 8.77567E+14 20568787140 5.10362E-19 4.02235E-198.35E-28 8.77567E+14 20568787140 4.2311E-19 3.48845E-198.35E-28 8.77567E+14 20568787140 3.47061E-19 2.99255E-198.35E-28 8.77567E+14 20568787140 2.81155E-19 2.53465E-198.35E-28 8.77567E+14 20568787140 2.24426E-19 2.11475E-198.35E-28 8.77567E+14 20568787140 1.75987E-19 1.73285E-198.35E-28 8.77567E+14 20568787140 1.35031E-19 1.38895E-198.35E-28 8.77567E+14 20568787140 1.0082E-19 1.08305E-198.35E-28 8.77567E+14 20568787140 7.26787E-20 8.15147E-208.35E-28 8.77567E+14 20568787140 4.99924E-20 5.85247E-208.35E-28 8.77567E+14 20568787140 3.22001E-20 3.93347E-208.35E-28 8.77567E+14 20568787140 1.87901E-20 2.39447E-208.35E-28 8.77567E+14 20568787140 9.29638E-21 1.23547E-208.35E-28 8.77567E+14 20568787140 3.29443E-21 4.56475E-21

Empirical Potential for Hydrogen Molecule

0

2E-19

4E-19

6E-19

8E-19

1E-18

1.2E-18

1.4E-18

0 0.5 1 1.5 2 2.5 3 3.5 4

Page 26: Molecular Modeling Fundamentals:  Modus in Silico

Hydrogen MoleculeHydrogen Molecule

Bond DensityBond Density