molecular dynamics simulations: theory and...

50
Molecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz Department of Chemistry, Bar-Ilan University, Israel 6 th Strasbourg Summer School in Cheminformatics, June 2018, Strasbourg France

Upload: others

Post on 07-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Molecular Dynamics Simulations: Theory and Applications (in Drug Design)

Hanoch SenderowitzDepartment of Chemistry, Bar-Ilan University, Israel

6th Strasbourg Summer School in Cheminformatics, June 2018, Strasbourg France

Page 2: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Binding Free Energy

• Docking and Scoring

• Pharmacophore

• QSAR

• Incomplete treatment of the binding process

• Static, single molecule view

NNNN

NN

kT

EddkTA rp

rprp ,

,expln

Page 3: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

The Potential Energy Surface

en

erg

y

coordinates

Force Field

HF

DFT

QM/MM

Building the PES

• Energy minimization

• Conformational search

• Molecular dynamics

Sampling the PES

Page 4: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Force Fields

stretch

bend

torsion

Non-bonded

))cos(1(2

)(2

)(2

)( 2

0,

2

0,

nV

kll

krV

torsions

n

ii

angles

iii

bonds

iN

termscross4

41 1 0

612

N

i

N

ij ij

ji

ij

ij

ij

ij

ijr

qq

rr

• Force Fields

Defined by equations and parameters

Empirical

Are not correct / incorrect but rather useful / not useful

Build unique PESs

Page 5: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Energy Minimization and Conformational Search

Page 6: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

MD: PES Phase Space

• Any experimentally measurable property is obtained by a weighted average of that property over all phase space:

• The weighting function gives the probability of finding this particular system state in the phase space

• For the NVT (canonical) ensemble, the probability function is given by the Boltzmann function:

dAA NNNN ),(),( rprp

),( NNrP

QTkE B

NNNN /)/),(exp(),( rprp

Tk

EddCQ

B

NNNN

NVT

),(exp

rprp

Page 7: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

The Ergodic Hypothesis

• In order for us to obtain the ensemble average <A>, we need to prepare many systems, each in a different state. This can’t be done.

• Thus instead of averaging over many systems, we can propagate a single system through the phase space and average over time:

• The ergodic hypothesis states that given enough time, a trajectory in phase space passes near every point in the space and spends in its region an amount of time proportional to its ensemble weight. Thus:

• However since we can’t simulate a process on a computer to infinity:

0))()((

1lim

t

NN

ave dtttAA rp

aveAA

aveAA

Page 8: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Molecular Dynamics: The Basis

• Solve Newton’s equations of motion

1st law

2nd law

From the PES

dr t

v tdt

dv t

F m a t mdt

q

dUF

dq

-

-

1 2 1 2

2

Q Q Q QdU dF

dr dr r r

Page 9: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Molecular Dynamics: The Method

• Assuming we have the positions, q, and velocities, v, at time t:

• The position at time t+Dt is then given by:

• The velocity at time t+Dt is then given by:

• If we can compute the acceleration from the forces acting on each particle at any instant, we can simulate trajectories

t t t t t D Dq q v

t t t t t D Dv v am

Fa From energy

function

q(t)v(t)

Dq=v(t)·Dt

q(t+Dt)

Page 10: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Molecular Dynamics: The Trajectory

Calculate velocities based on force

Dt typically 10-15sec

Calculate new position

Calculate force based on surface curvature

Save energy and geometry for average

F = m x a

Page 11: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Setting Up an MD Simulation

Initial coordinates

Minimize structure

Initial velocities

Heating dynamics

Equilibration dynamics

Production dynamics

Trajectory analysis

Page 12: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Convergence Problems in Molecular Dynamics( a 20 Years Old Example…)

DG ~ 1.7 kcal/mol

DG ~ 10 kcal/mol

Page 13: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

13

Enhanced Sampling Methods

accept reject

Replica 4 (at T4)

Replica 3 (at T3)

Replica 2 (at T2)

Replica 1 (at T1)

Replica exchange

Accelerated MD

Page 14: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Analysis

Time (ns)

RM

SD (

nm

)

Root Mean Squared Deviation (RMSD)

Root Mean Squared Fluctuation (RMSF)

Page 15: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Covariance Matrix

22,cov

)()(

))()((

YYXX

YYXXN

ii

ii

YX

Page 16: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Principle Component Analysis (PCA)

Page 17: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Direct Binding Simulations

Decherchi et al., Nature Comm. 2015, 6, 6155

purine nucleoside phosphorylase

Page 18: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Direct Binding Simulations

Decherchi et al., Nature Comm. 2015, 6, 6155

Page 19: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Direct Binding Simulations

Decherchi et al., Nature Comm. 2015, 6, 6155

Page 20: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Direct Binding Simulations

Decherchi et al., Nature Comm. 2015, 6, 6155

Page 21: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Free Energy Perturbations

Zwanzig equation (1954)

AB

ABBAB

Tk

EETkFFBAF

D expln)(

4321 GGGG DDDD

Page 22: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Free Energy Perturbations

Wang et al., JACS. 2015, 13:2695-703

Page 23: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Protein Folding

• Native-centric force field

• Multiple repeats

• Not all trajectories successful

• Environment is important

• Information about folding efficiency

Shi et al., bioRxiv , doi: . http://dx.doi.org/10.1101/350074

Page 24: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

NTPDase2 Inhibitors: Potential Anti-Coagulates

P2Y1 / P2Y11

Page 25: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Homology Modeling and Docking

Lecka et al., J Med Chem. 2013 56:8308-20

Page 26: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Linear Interaction Energy (LIE) (Because Docking Didn’t Work…)

)()( free

el

slbound

el

slfree

vdw

slbound

vdw

slbind VVVVG D

Lecka et al., J Med Chem. 2013 56:8308-20

Page 27: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Results

Page 28: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Selectivity of Most Potent Compound

Phe365

Tyr350

Tyr408

Arg394

NTPDase1 (inactive) NTPDase2 (20 mM)

Radenine-Tyr350 = 4.19 ÅRadenine-Arg394 = 4.38 Å

Radenine-Tyr350 ≈ 4.19 ÅRadenine-Tyr408 = 5.52 Å

Page 29: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

The Cystic Fibrosis Disease

• CF is the most common lethal, inherited disease among people of European descent

• The number of CF patients is estimated at 90,000 worldwide, about 30,000 of which are in the US (~700 in Israel, ~7000 in France)

• Median survival age is ~40 years

• CF results in pathologies in multiple organs

Depressed lung function, lung infection, inflammation, and advanced lung disease

• Currently, there is no general cure for CF and most of the treatments are symptomatic

• CF is caused by mutations to the CFTR chloride channel

Airways

Liver

Pancreas

Intestine

Reproductive Tract

Skin

Page 30: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

CFTR Mutations

• ~2000 CFTR mutations• > 300 mutations confirmed as CF-causing• 12 mutations confirmed as non CF-causing• All CF-causing mutations compromise the ability of CFTR to conduct

Cl- ions

Page 31: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

CF Treatment Hypothesis

• Restoring Cl- conductance to “normal” levels will ameliorate CF pathologies

Current ~ [# channels] * [open probability]

• CFTR corrector: Corrects the folding defect and increases the number of CFTR channels at the cell membrane

• CFTR potentiator: Increases the open probability of CFTR channels at the membrane

• Combo therapy: Does both

Defective CFTR

Co

rrection

Poten

tiation

• Impaired Cl- conductance disrupts the salt-water balance across epithelial cells leading to accumulation of a viscous mucus layer which is colonized by bacteria

Page 32: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

The Holy Grail

Page 33: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

CF Therapeutics

• Mucociliary clearance agents

2 available, plus 5 in pipeline

• Anti-inflammatories

1 available, plus 4 in pipeline

• Antimicrobials

4 available, plus 8 in pipeline

• Agents to restore CFTR function

3 available, 11 in clinical trials, 5 preclinical stage

33

Page 34: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Available CFTR Modulators

Corrector: Lumacaftor (VX-809)

Potentiator: Ivacaftor (VX-770) approved for CF patients with the G551D (~4% of CF patient population), and other 22 gating mutations

Corrector: Tezacaftor (VX-661)

Orkambi

Symdeko

Where do modulators bind?

Page 35: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

The Structure of CFTR

NBD2

NBD1

MSD2

MSD1

R

• CFTR is an ABC transporter

Membrane proteins

Found in prokaryotes and eukaryotes

Harness the energy of ATP hydrolysis for substrate transport across cell membranes

Page 36: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

CFTR Sequence and Mutations

Rishishwar L et al. PLOS One 2012;7(8):e42336.

Page 37: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

The Gating Cycle of CFTR

Page 38: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

NBD1

• >20 CFTR NBD1 crystal and NMR structures are currently available

• Studied mostly with respect to F508del

Page 39: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

NBD1

Figure 14: A comparison between the crystal structure of wt- (2PZE,

blue) and F508del (2PZF; orange) NBD1. Left: 491-496 region showing a

- interaction in the wt which is lost in the mutant. Right: 508-512

region showing enhanced exposure of V510 to the solvent in the mutant.

491-496 region 508-512 region

Figure 14: A comparison between the crystal structure of wt- (2PZE,

blue) and F508del (2PZF; orange) NBD1. Left: 491-496 region showing a

- interaction in the wt which is lost in the mutant. Right: 508-512

region showing enhanced exposure of V510 to the solvent in the mutant.

491-496 region 508-512 region491-496 region491-496 region 508-512 region508-512 region

Figure 14: A comparison between the crystal structure of wt- (2PZE,

blue) and F508del (2PZF; orange) NBD1. Left: 491-496 region showing a

- interaction in the wt which is lost in the mutant. Right: 508-512

region showing enhanced exposure of V510 to the solvent in the mutant.

491-496 region 508-512 region

Figure 14: A comparison between the crystal structure of wt- (2PZE,

blue) and F508del (2PZF; orange) NBD1. Left: 491-496 region showing a

- interaction in the wt which is lost in the mutant. Right: 508-512

region showing enhanced exposure of V510 to the solvent in the mutant.

491-496 region 508-512 region491-496 region491-496 region 508-512 region508-512 region

Zhenin et al., JCIM 2015, 55, 2349-64

Page 40: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

NBD1

R516

Zhenin et al., JCIM 2015, 55, 2349-64

Page 41: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

NBD2

• Poorly behaved!

• A single structure of NBD2 is available

Dimer incompatible conformation

Catalytically inactive(H1402A)

• All attempts to demonstrate NBD1:NBD2 coupling have failed.

Page 42: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

NBD2

Green – structure of DI

Yellow – structure of DC

1.0 1.2 1.4 1.6 1.8 2.0-1

0

1

2

3

4

5

6

7

R [C(Q550)-P(ATP)] (nm)

ID

PM

F (

kca

l/m

ol)

CD

Potential of Mean Force

0.8 1.0 1.2 1.4 1.6 1.8-7

-6

-5

-4

-3

-2

-1

0

R [C(Q1291)-P(ATP)] (nm)

ID

CD

PM

F (

kcal/m

ol)

Potential of Mean Force

DGD (CD-ID)

kcal/mol

NBD2 4.5

HylBB -4

Haemolysine B

NBD2

Page 43: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

EM Maps of CFTR

43

Rosenberg et al., JBC 2011, 286, 42647-54

Rosenberg et al., JBC 2004, 273, 39051-7

Zhang et al., JSB 2009, 167, 242-251

Page 44: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Map Fitting

Utotal = UMD + UEM + USS

Page 45: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Open vs. Closed Channel

Page 46: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Structures Are Now Available

Cell 2016, 167, 1586–1597; Cell 2017, 169, 85-95; Cell 2017; 170, 483-491

Page 47: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

“Dynamic” Sites

Page 48: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

P67L-CFTR: Where VX-809 Binds?

Page 49: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Take Home Messages

• Always look at your data

Don’t just rely on numbers

• Its bad practice to deduce anything from a single simulation

Results vary and also depend on the simulations setup

• Hold yourself to the same standards you require from

experimentalists

Multiple repeat, positive and negative controls

Page 50: Molecular Dynamics Simulations: Theory and …bigchem.eu/sites/default/files/Hanoch_Senderowitz.pdfMolecular Dynamics Simulations: Theory and Applications (in Drug Design) Hanoch Senderowitz

Acknowledgments

Group members

• Luba Simachev

• Netaly Khazanov

• Michael Zhenin

• Kobi Spiegel

• Malkeet Singh

• Hadar Binyamin

• Omer Kaspi

Former Group members

• Oren Nahum

• Efrat Noy

• Hannah Avgy

• Gal Fradin

• Tamar Getter

• Shirin Kahremani

• Reut Gigi

• Seema Dhail

• Avi Yosipof

• Yocheved Gilad

Collaborators

• Bilha Fischer (BIU)

• CFFT consortium